C-746-U Contained Landfill
Third Quarter Calendar Year 2018
(July-September)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

Date

C-746-U Contained Landfill
Third Quarter Calendar Year 2018
(July–September)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—November 2018

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURE	S		v
ΤA	BLES	5		v
ΑC	CRON	YMS		vii
1.	INTI	RODUC	TION	1
	1.1	BACK	GROUND	1
	1.2		TORING PERIOD ACTIVITIES	
		1.2.1	Groundwater Monitoring	
		1.2.2	Methane Monitoring	
		1.2.3	Surface Water Monitoring	3
	1.3	KEY F	RESULTS	
2.	DAT	'A EVA	LUATION/STATISTICAL SYNOPSIS	9
	2.1		STICAL ANALYSIS OF GROUNDWATER DATA	
		2.1.1	Upper Continental Recharge System	
		2.1.2	Upper Regional Gravel Aquifer	
			Lower Regional Gravel Aquifer	
	2.2	DATA	VERIFICATION AND VALIDATION	11
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	13
4.	REF	ERENC	ES	15
ΑF	PENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE	
	(-		MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PENI	OIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PENI	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PENI	DIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PENI	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PENI	OIX F:	NOTIFICATIONS	F-1
ΑF	PENI	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PENI	OIX H:	METHANE MONITORING DATA	H-1
ΑF	PENI	OIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
2.	C-746-U Landfill Surface Water Monitoring Locations	. 4
	TABLES	
1.	Summary of MCL Exceedances	5
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	. 6
4.	C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters	. 7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	. 7
6.	Monitoring Wells Included in Statistical Analysis	10

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit

MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

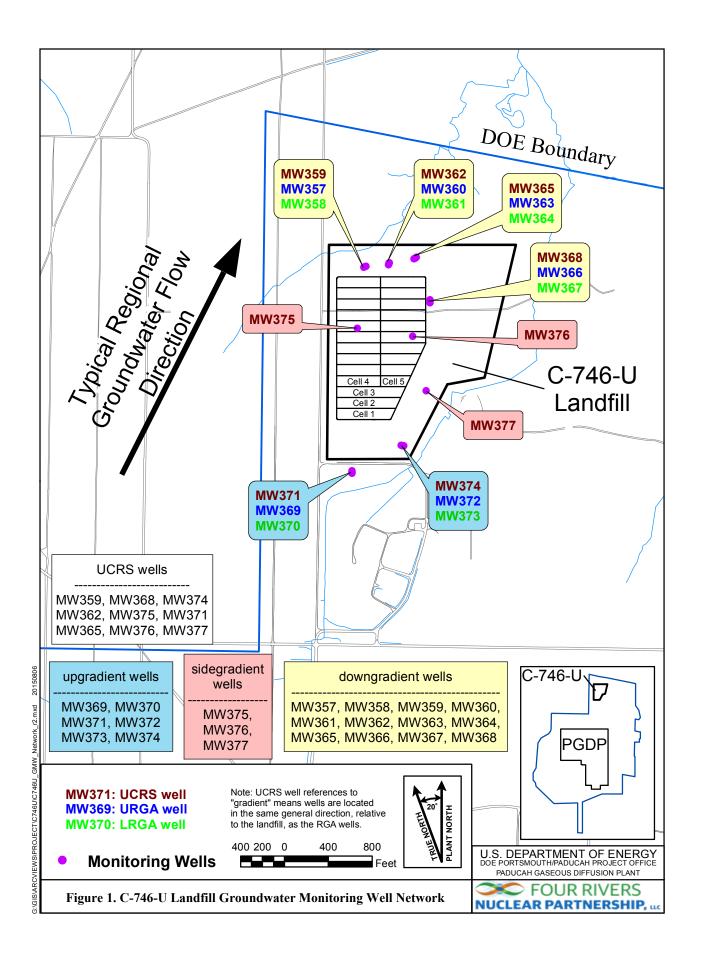
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Third Quarter Calendar Year 2018 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Site and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 4 and 5. Phases 1, 2, and 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

Consistent with the approved *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills* (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the

RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the third quarter 2018 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on July 24, 2018, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During July, RGA groundwater flow in the area of the landfill was oriented north to northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in July was 5.93×10^{-4} ft/ft. The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 6.22×10^{-4} ft/ft and 7.25×10^{-4} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.06 to 1.81 ft/day for the URGA and 1.23 to 2.10 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Landfill permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on August 20, 2018. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill. The C-746-U Landfill has an upstream location, L154; a downstream location, L351;

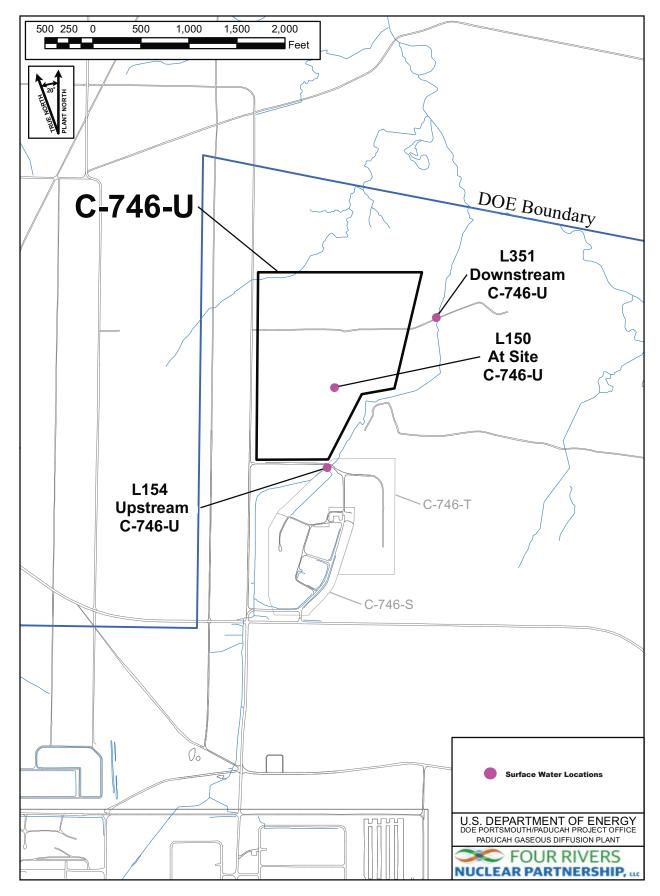


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

and a location capturing runoff from the landfill surface, L150. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Landfill Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the third quarter 2018, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW366: Trichloroethene	MW361: Trichloroethene
	MW372: Trichloroethene	MW364: Trichloroethene
		MW370: Beta activity
		MW373: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Oxidation-reduction
oxidation-reduction potential, pH**,	potential	potential, pH**
sulfate		
MW362: Dissolved oxygen,	MW360: Oxidation-reduction	MW361: Oxidation-reduction
oxidation-reduction potential, sulfate	potential, sodium	potential, pH**
MW365: Dissolved oxygen,	MW363: Oxidation-reduction	MW364: Oxidation-reduction
oxidation-reduction potential, sulfate	potential, pH**	potential, pH**
MW368: Calcium, dissolved	MW366: Oxidation-reduction	MW367: Oxidation-reduction
oxygen, magnesium,	potential, pH**	potential
oxidation-reduction potential, sulfate		
MW371: Dissolved oxygen,	MW369: Oxidation-reduction	MW370: Beta activity,
oxidation-reduction potential, sulfate	potential	oxidation-reduction potential,
		technetium-99
MW374: Oxidation-reduction	MW372: Oxidation-reduction	MW373: Oxidation-reduction
potential	potential, technetium-99	potential
MW375: Oxidation-reduction		
potential, sulfate		net reference (relative to the landfill) that is attributed to

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

^{**}pH concentration is less than the LTL.

¹ The UTL comparison for pH uses a two-sided test, for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW360: Sodium	MW358: pH*
MW363: pH*	MW361: pH*
MW366: pH*	MW364: pH*

^{*}pH concentration is less than the LTL.

The notification of parameters that exceeded the MCL was submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW361, MW364, and MW366 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL, sodium in MW360 and pH in MW358, MW361, MW363, MW364, and MW366, do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate the preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All but two of these preliminary Type 2 exceedances in downgradient wells did not have an increasing or decreasing trend and are considered to be Type 1 exceedances (not attributable to the landfills).

The Mann-Kendall statistical test indicates that there is a decreasing trend of the LTL of pH in MW361 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-U Landfill because the shallower, collocated (URGA) well, MW360, did not show a statistically significant exceedance. The adjacent LRGA well, MW358, did not show a statistically significant exceedance and adjacent LRGA well, MW364, did not show the decreasing Mann-Kendall trend (refer to Table 4).

Table 4. C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
	MW358	pH ⁵	8	0.05	0.193	-8	No Trend
C-746-U Landfill	MW360	Sodium	8	0.05	0.133	-10	No Trend
	MW361	pH ⁵	8	0.05	0.012	-19	Decreasing Trend
	MW363	pH ⁵	8	0.05	0.005	-22	Decreasing Trend
	MW364	pH ⁵	8	0.05	0.548	0	No Trend
	MW366	pH ⁵	8	0.05	0.227	-7	No Trend

Footnotes:

Note: Statistics generated using ProUCL.

The Mann-Kendall statistical test indicates that there is a decreasing trend of the LTL of pH in MW363 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-U Landfill because the adjacent URGA wells, MW357 and MW360, do not show a statistically significant exceedance.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS wells with calcium, magnesium, pH, and sulfate values that exceed both the historical and current backgrounds (Table 5). Because these wells are not hydrogeologically downgradient of the C-746-U Landfill, these exceedances are not attributable to C-746-U sources and are considered to be Type 1 exceedances.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS				
MW359: pH**				
MW368: Calcium, magnesium, sulfate				
WE do not contain the second of the second o				

^{*}In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances, except for pH in MW361 and MW363, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill. The decreasing trend for pH in MW361 and MW363 do not appear to be landfill-related. The pH in MW361 and MW363 will continue to be evaluated in the context of these observations.

¹ An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

⁵ pH concentration is less than the LTL.

^{**}pH concentration is less than the LTL.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2018 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both a UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375	(10)	(10)
MW376***		
MW377***		

^{*}A map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the UCRS. During the third quarter, calcium, dissolved oxygen, magnesium, oxidation-reduction potential, pH, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Calcium, magnesium, pH, and sulfate exceeded the current background UTL and are included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

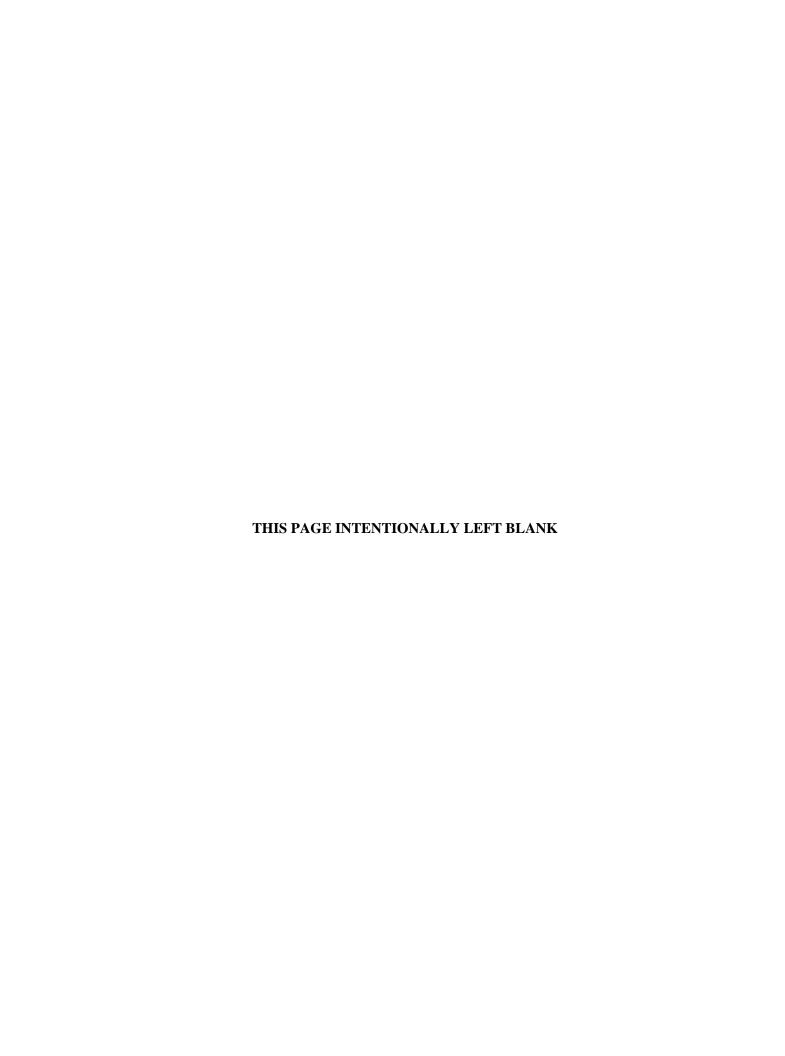
In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the URGA. During the third quarter, oxidation-reduction potential, pH, sodium, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. The pH and sodium exceeded the current background UTL and are included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the LRGA. During the third quarter, beta activity, oxidation-reduction potential, pH, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. The pH exceeded the current background UTL and is included in Table 3.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}MW376 and MW377 had insufficient water to permit a water sample for laboratory analysis.


2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

Third Quarter Calendar Year 2018 (July-September)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0027/V3)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

> <u>November 14, 2018</u>

PG113927

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:		Gaseous Diffusion F n on DWM Permit Face)	'lant Activ	rity: <u>C-746</u>	-U Contained Landfill
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No	o: Qu	arter & Year	3rd Qtr. CY 2018
Please check the	following as applicabl	e:			
Charac	terization X Qu	arterly Se	miannual	Annual _	Assessment
Please check ap	plicable submittal(s):	X Ground	lwater	X Surfa	ce Water
	3	Leacha	ite	X Meth	ane Monitoring
45:160) or by stat jurisdiction of the (48) hours of ma Submitting the la instruction pages. I certify under pe accordance with a Based on my inque the best of my known in the state of t	utilized by those sites require (Kentucky Revised State Division of Waste Manaking the determination be report is NOT consider and the designed to assure ity of the person or person owledge and belief, true, a including the possibility of	atues Chapter 224) to deagement. You must recomment and all attacher that qualified persons directly responsible accurate, and complete.	conduct groundwater eport any indicatio alyses, direct comp etions for completing ments were prepare nnel properly gather for gathering the info I am aware that ther	r and surface we not of contamin parison, or	rater monitoring under the nation within forty-eight ther similar techniques. ttached. Do not submit the irrection or supervision in the information submitted is, to
	ield, Deputy Program nelear Partnership, LL			Date	118
Jennifer Wood U.S. Departme	ard, Paducah Site Lea	d .		Date	29/18

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date: _	Groundwater: July 2018 Surface water: September 2018 Methane: August 2018	County:	McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045		
Facility Name: U.S. DOE—Paducah Gaseous Diffusion Plant							
	(As officially show	wn on DWM Permit Face)				
Site Address: 5600 Hobbs Road Kevil, Kentucky 42053							
Street City/State Zip							
Phone No: (270)) 441-6800 Latitude:	N 37° 07' 45"	Longit	tude: W	88° 47' 55"		
	OWN	NER INFORMATION					
Facility Owner:	U.S. DOE, Robert E. Edwards	III, Manager	Phone No:	(859) 227	7-5020		
Contact Person:	James Miller		Phone No:				
Contact Person Tit	Director, Waste, Materia	ls, and Environmental Ser					
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053			
Maning Address.	Street	City/State		Zip			
Company: GEC Contact Person: Mailing Address:	Consultants, LLC Sam Martin 199 Kentucky Avenue Street	Kevil, Kentucky City/State	Phone No:	(270) 44 42053 Zip	1-6755		
	LABO	RATORY RECORD #1					
Laboratory GEL	Laboratories, LLC	Lab	ID No: <u>KY901</u>	29			
Contact Person:	Valerie Davis		Phone No:	(843) 769	9-7391		
Mailing Address:	2040 Savage Road Street	Charleston, South Car City/State	olina	294 Zij			
	Succi	City/State		Zij	<u> </u>		
	LABO	RATORY RECORD #2					
Laboratory: N/A	Λ	Lab II	D No: N/A				
Contact Person:	N/A		Phone No:	N/A			
Mailing Address:	N/A						
	Street	City/State			Zip		
	LABO	RATORY RECORD #3					
Laboratory: N/A	Λ	Lab II	D No: N/A				
Contact Person:	N/A		Phone No:	N/A			
Mailing Address:	N/A						
	Street	City/State			Zin		

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-47	799	8004-09	81	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g., b	4W−1	., MW-2, etc	:.)	357		358		359		360	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/16/2018 09	9:56	7/17/2018	07:33	7/16/2018	10:36	7/16/2018 0	8:56
Duplicate ("Y'	' or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW357UG4	I-18	MW358U	G4-18	MW359U0	G4-18	MW360UG	4-18
Laboratory Sam	mple ID Number (if applicable)		45467700)3	454816	005	4546770	005	4546770	01		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ysis.	7/18/2018	3	7/19/20	18	7/18/20	18	7/18/201	8		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWI	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.406		0.452		<0.2		0.163	J
16887-00-6	Chloride(s)	т	mg/L	9056	36.1	*	38.5	*	1.11	*	11.6	*
16984-48-8	Fluoride	Т	mg/L	9056	0.134		0.235		<0.1		0.413	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.23		1.08		1.15		0.0782	J
14808-79-8	Sulfate	т	mg/L	9056	49.2	*	64		53.2	*	14.1	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.99		30		29.99		29.99	
S0145	Specific Conductance	Т	μ M H0/cm	Field	439		484		239		595	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-4798	8	8004-4799	9	8004-0981		8004-4800	1	
Facility's Lo	ocal Well or Spring Number (e.g., M	ī-1, i	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.42		326.41		334.5		326.39	
N238	Dissolved Oxygen	т	mg/L	Field	3.48		0.87		4.47		2.94	
S0266	Total Dissolved Solids	т	mg/L	160.1	227		264	*	164		279	
s0296	рн	T	Units	Field	5.77		5.66		5.66		6.24	
NS215	Eh	Т	mV	Field	298		282		316		237	
s0907	Temperature	T	°C	Field	19.94		20.17		21.11		19.11	
7429-90-5	Aluminum	T	mg/L	6020	<0.05		<0.05		0.106		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00241	J
7440-39-3	Barium	т	mg/L	6020	0.0652		0.0453	*	0.0293		0.165	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.392		0.444	В	0.00901	J	0.0398	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	25.1		29.7		6.84		27.5	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00257		<0.001		0.0171	
7440-50-8	Copper	т	mg/L	6020	0.000512	J	0.000464	J	0.00123		0.000354	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.707		0.118		4.65	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.8		14.7		3.82		9.46	
7439-96-5	Manganese	Т	mg/L	6020	0.00188	J	0.128		0.00177	J	0.251	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	ER¹,	Facility Well/Spring Number		8004-479	8	8004-479	99	8004-098	1	8004-480	0		
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		0.000552	
7440-02-0		Nickel	Т	mg/L	6020	<0.002		0.0104		0.00122	J	0.00241	
7440-09-7		Potassium	Т	mg/L	6020	1.58		2.22		0.134	J	0.711	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	36.9		41.7		33.6		84.5	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000098	J	0.00104	
7440-62-2		Vanadium	Т	mg/L	6020	<0.01		<0.01		0.00846	J	<0.01	
7440-66-6		Zinc	Т	mg/L	6020	<0.01		0.00476	J	0.01	J	<0.01	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
67-64-1		Acetone	Т	mg/L	8260	0.00189	J	<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-098	81	8004-480	00
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	1, MW-2, et	:c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00439		0.0049		0.00072	J	0.00099	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4799)	8004-098	31	8004-48	00
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	l, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.000198		<0.0000195		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.099		<0.099		<0.104		<0.1	
12674-11-2	PCB-1016	т	ug/L	8082	<0.099		<0.099		<0.104		<0.1	
11104-28-2	PCB-1221	т	ug/L	8082	<0.099		<0.099		<0.104		<0.1	
11141-16-5	PCB-1232	т	ug/L	8082	<0.099		<0.099		<0.104		<0.1	
53469-21-9	PCB-1242	т	ug/L	8082	<0.099		<0.099		<0.104		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.099		<0.099		<0.104		<0.1	

C-7

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.099		<0.099		<0.104		<0.1	
11096-82-5	PCB-1260	т	ug/L	8082	<0.099		<0.099		<0.104		<0.1	
11100-14-4	PCB-1268	т	ug/L	8082	<0.099		<0.099		<0.104		<0.1	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.193	*	1.91	*	-0.784	*	0.227	*
12587-47-2	Gross Beta	т	pCi/L	9310	26.8	*	29.2	*	4.46	*	-1.23	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.0617	*	0.852	*	0.534	*	0.245	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	4.68	*	-3.08	*	-0.529	*	1.36	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	41.2	*	42.8	*	0.558	*	4.99	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.15	*	0.684	*	-0.276	*	-0.0504	*
10028-17-8	Tritium	т	pCi/L	906.0	123	*	-3.85	*	68.2	*	154	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	37.6		35		34		26.7	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5		<0.5	*	0.173	*J
S0268	Total Organic Carbon	т	mg/L	9060	0.578	J	0.819	J	1.28	J	2.06	
s0586	Total Organic Halides	Т	mg/L	9020	0.00514	J	0.00392	J	0.0062	J	0.02	
												

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., N	4W−1	., MW-2, etc	:.)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/16/2018 07	7:38	7/16/2018	08:17	7/17/2018	08:41	7/17/2018 1	10:04
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG4	l-18	MW362U0	G4-18	MW363U0	G4-18	MW364UG	4-18
Laboratory Sam	mple ID Number (if applicable)		45467700	7	454677	009	4548160	007	4548160	09		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ysis.	7/18/2018	3	7/18/20	18	7/19/20	18	7/19/201	8		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWI	V	DOWN	I
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.437		0.0863	J	0.145	J	0.421	
16887-00-6	Chloride(s)	т	mg/L	9056	37.1	*	5.76	*	23.2	*	35.6	*
16984-48-8	Fluoride	Т	mg/L	9056	0.137		0.377		0.324		0.148	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.23		0.593		4.7		0.975	
14808-79-8	Sulfate	т	mg/L	9056	80.1	*	32.7	*	36.8		74.6	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.98		30		30.01		30.01	
S0145	Specific Conductance	Т	μ M H0/cm	Field	490		747		405		484	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-479	5	8004-0986	5	8004-4796		8004-4797	•	
Facility's Lo	ocal Well or Spring Number (e.g., M	ī-1, i	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.4		338.97		326.23		325.43	
N238	Dissolved Oxygen	т	mg/L	Field	2.79		4.07		1.13		1.87	
s0266	Total Dissolved Solids	т	mg/L	160.1	263		424		239	*	251	*
s0296	рн	т	Units	Field	5.59		6.5		5.66		5.58	
NS215	Eh	т	mV	Field	387		367		282		317	
s0907	Temperature	т	°C	Field	18.56		18.94		20.5		21.17	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.219		<0.05		<0.05	
7440-36-0	Antimony	T	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	T	mg/L	6020	0.0547		0.103		0.15	*	0.0621	*
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.343		0.0189		0.0594	В	0.0321	В
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	30.2		21		25		28.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.000754	J	0.000393	J
7440-50-8	Copper	т	mg/L	6020	0.000814	J	0.00171		0.000304	J	0.0004	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.179		0.0653	J	0.0671	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	13.2		9.24		11		13.6	
7439-96-5	Manganese	т	mg/L	6020	0.00333	J	0.00238	J	0.168		0.0143	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number		8004-479	5	8004-098	36	8004-479	6	8004-479	17		
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		0.000536		<0.0005		0.000411	J
7440-02-0		Nickel	Т	mg/L	6020	<0.002		0.0011	J	0.00107	J	0.000906	J
7440-09-7		Potassium	Т	mg/L	6020	1.83		0.338		1.39		1.99	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	38.2		131		41.5		43.6	
7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		0.00439		<0.0002		<0.0002	
7440-62-2		Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6		Zinc	т	mg/L	6020	<0.01		<0.01		<0.01		0.0334	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
67-64-1		Acetone	т	mg/L	8260	0.00254	J	<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-098	6	8004-479	96	8004-47	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	361		362		363		364	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T	mg/L	8260	0.00718		0.00115		0.00147		0.00612	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-479	5	8004-0986	ŝ	8004-479	96	8004-47	97		
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	l, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000196		<0.0000195		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0962		<0.1		<0.102		<0.0962	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0962		<0.1		<0.102		<0.0962	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.1		<0.102		<0.0962	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0962		<0.1		<0.102		<0.0962	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0962		<0.1		<0.102		<0.0962	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0962		<0.1		<0.102		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479	 97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0962		<0.1		<0.102		<0.0962	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0962		<0.1		<0.102		<0.0962	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0962		<0.1		<0.102		<0.0962	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-2.34	*	0.0246	*	1.76	*	3.28	*
12587-47-2	Gross Beta	Т	pCi/L	9310	28.2	*	3.17	*	6.93	*	23.4	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.294	*	0.398	*	-0.0127	*	0.364	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-3.41	*	-1.01	*	-0.771	*	0.688	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	43.2	*	-1.21	*	11.3	*	30.7	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	0.0421	*	0.469	*	0.781	*	-0.0867	*
10028-17-8	Tritium	Т	pCi/L	906.0	124	*	29.6	*	-65	*	-51	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	41.3		24.9		21.8		65.2	
57-12-5	Cyanide	T	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5	*	<0.5	*	0.172	J	<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	0.688	J	2.28		0.807	J	0.731	J
S0586	Total Organic Halides	Т	mg/L	9020	0.0087	J	0.0185		0.007	J	0.0055	J
												<u> </u>

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	4793	8004-09	983
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	L, MW-2, etc	:.)	365		36	66	36	57	368	1
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/17/201	8 09:21	7/17/201	8 12:41	7/17/2018	12:00	7/18/2018	07:27
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW365U0	G4-18	MW366	UG4-18	MW3671	JG4-18	MW368U	G4-18
Laboratory San	mple ID Number (if applicable)				4548160	011	45481	6001	45481	6013	454896	003
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis.	7/19/20	18	7/19/2	2018	7/19/2	2018	7/25/20)18
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOWN)	DOW	V	DO	WN	DO	ΝN	DOW	'N
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*	0.474			*	0.146	J
16887-00-6	Chloride(s)	т	mg/L	9056		*	40.1	*		*	9.21	*
16984-48-8	Fluoride	т	mg/L	9056		*	0.171			*	0.262	
s0595	Nitrate & Nitrite	т	mg/L	9056		*	1.04			*	0.0447	J
14808-79-8	Sulfate	Т	mg/L	9056		*	69.3			*	200	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.01		30.01		30.01		30.03	
S0145	Specific Conductance	Т	μ MHO/cm	Field	427		510		347		830	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793		8004-0983	3
Facility's Lo	ocal Well or Spring Number (e.g., M	ī-1, i	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.75		326.33		326.29		332.98	
N238	Dissolved Oxygen	т	mg/L	Field	2.8		2.17		3.07		5.49	
s0266	Total Dissolved Solids	т	mg/L	160.1		*	276	*		*	536	
s0296	рн	т	Units	Field	5.79		5.54		5.3		6.42	
NS215	Eh	т	mV	Field	284		250		306		389	
s0907	Temperature	т	°c	Field	20.78		23.11		22.78		18.83	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		0.441	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		0.00216	J	0.00401	J
7440-39-3	Barium	T	mg/L	6020	0.108	*	0.112	*	0.173	*	0.0468	
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	T	mg/L	6020	0.0194	В	0.295	В	0.038	В	0.00966	J
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.8		32.8		18.6		76.9	
7440-47-3	Chromium	T	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	T	mg/L	6020	0.00212		<0.001		0.014		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00322		0.000445	J	0.000446	J	0.0013	
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0395	J	6.08		0.241	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.5		15.6		10.3		24.3	
7439-96-5	Manganese	т	mg/L	6020	0.0198		0.00749		1.49		0.00938	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	33
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		0.000975	
7440-02-0		Nickel	Т	mg/L	6020	0.00544		0.000686	J	0.00527		0.00096	J
7440-09-7		Potassium	Т	mg/L	6020	0.251	J	1.99		3.08		1.03	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	49.3		44.9		27.1		61.4	
7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	0.000195	J	<0.0002		<0.0002		0.000573	
7440-62-2		Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6		Zinc	т	mg/L	6020	0.00907	J	0.00403	J	0.0135		0.00578	J
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984		8004-098	2	8004-479	93	8004-098	83
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00043	J	0.00575		0.00279		0.00055	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-0982	2	8004-479	93	8004-09	83
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000197		<0.0000197		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.099			*	0.13	
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.099			*	<0.0943	*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.099			*	<0.0943	
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.099			*	<0.0943	
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.099			*	0.13	
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.099			*	<0.0943	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.099			*	<0.0943	
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.099			*	<0.0943	
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.099			*	<0.0943	
12587-46-1	Gross Alpha	Т	pCi/L	9310	4.1	*	2.07	*	-0.203	*	8.37	*
12587-47-2	Gross Beta	Т	pCi/L	9310	1.22	*	33.6	*	8.73	*	3.55	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.218	*	0.222	*	0.472	*	0.276	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.163	*	3.85	*	-0.408	*	-0.627	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-6.87	*	46.8	*	1.73	*	-19.6	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	0.431	*	0.777	*	0.438	*	0.705	*
10028-17-8	Tritium	Т	pCi/L	906.0	-29.1	*	10.1	*	-52.9	*	201	*
s0130	Chemical Oxygen Demand	T	mg/L	410.4		*	14.3	J		*	19.4	*J
57-12-5	Cyanide	Т	mg/L	9012		*	<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060		*	0.735	J		*	2.06	В
s0586	Total Organic Halides	Т	mg/L	9020		*	<0.01			*	0.00488	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	1819	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g., M	1W−1	, MW-2, etc	:.)	369		37	0	37	1	372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/18/2018	12:39	7/18/201	8 14:09	7/18/201	8 13:22	7/18/2018	09:07
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW369UG	G4-18	MW370	JG4-18	MW371U	JG4-18	MW372U	G4-18
Laboratory Sa	mple ID Number (if applicable)				4548960	005	45489	6007	45489	6009	454896	011
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	7/25/20	18	7/25/2	2018	7/25/2	2018	7/25/20)18
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP		U	Р	UF)	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.397		0.371		<0.2		0.614	
16887-00-6	Chloride(s)	т	mg/L	9056	36.1	*	36	*	1.8	*	46.6	*
16984-48-8	Fluoride	т	mg/L	9056	0.221		0.172		0.219		0.125	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.59		1.1		<0.4		0.336	
14808-79-8	Sulfate	т	mg/L	9056	6.71		21.5		47.7		81.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		30.02		30.03		30.05	
S0145	Specific Conductance	т	μ M H0/cm	Field	372		427		512		597	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820	0	8004-4818	3	8004-4819		8004-4808	}
Facility's Lo	ocal Well or Spring Number (e.g., M	ī-1, i	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.38		327.35		343.22		327.37	
N238	Dissolved Oxygen	т	mg/L	Field	2.46		3.36		4.89		0.88	
S0266	Total Dissolved Solids	т	mg/L	160.1	197		179		306		323	
s0296	рн	T	Units	Field	6.19		6.09		6.54		6.13	
NS215	Eh	т	mV	Field	338		369		342		371	
S0907	Temperature	Т	°C	Field	21.44		20.83		20.78		20.28	
7429-90-5	Aluminum	т	mg/L	6020	0.0345	J	<0.05		0.355		0.0361	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00268	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.373		0.209		0.0603		0.101	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0133	J	0.031		0.0121	J	0.474	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	15.6		26.2		58.4		38.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00501		0.000325	J	<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00165		0.00091	J	0.00167		0.00136	
7439-89-6	Iron	т	mg/L	6020	0.0807	J	<0.1		0.222		0.22	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	6.5		11.1		11.3		16.2	
7439-96-5	Manganese	т	mg/L	6020	0.00736		0.00167	J	0.00419	J	0.00372	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	Molybdenum					8004-482	0	8004-481	18	8004-481	9	8004-480	18
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴		CONSTITUENT	D	OF	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		0.000418	J	<0.0005	
7440-02-0		Nickel	Т	mg/L	6020	0.0091		<0.002		0.00126	J	<0.002	
7440-09-7		Potassium	Т	mg/L	6020	0.509		2.37		0.673		1.76	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	48.8		38.1		31.2		39	
7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000731		<0.0002	
7440-62-2		Vanadium	т	mg/L	6020	<0.01		<0.01		0.00374	J	<0.01	
7440-66-6		Zinc	т	mg/L	6020	0.00393	J	0.0042	J	0.00492	J	0.00541	J
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		0.00423	J	0.00809		0.00725	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	369		370		371		372	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00076	J	0.00079	J	<0.001		0.00532	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-4818	3	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000197		<0.0000196		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	0.0402	J	<0.0962		<0.0952		<0.0952	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0962	*	<0.0962	*	<0.0952	*	<0.0952	*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.0962		<0.0952		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0962		<0.0962		<0.0952		<0.0952	
53469-21-9	PCB-1242	Т	ug/L	8082	0.0402	J	<0.0962		<0.0952		<0.0952	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0962		<0.0962		<0.0952		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818	3	8004-481	9	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0962		<0.0962		<0.0952		<0.0952	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0962		<0.0962		<0.0952		<0.0952	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0962		<0.0962		<0.0952		<0.0952	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.52	*	8.3	*	14.1	*	10.5	*
12587-47-2	Gross Beta	Т	pCi/L	9310	14.9	*	102	*	4.53	*	27.7	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	AN-1418	-0.0135	*	0.484	*	0.174	*	0.527	*
10098-97-2	Strontium-90	T	pCi/L	905.0	-0.265	*	1.63	*	0.597	*	0.975	*
14133-76-7	Technetium-99	T	pCi/L	Tc-02-RC	31.4	*	96.2	*	6.52	*	70.9	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	0.213	*	0.22	*	0.727	*	-0.212	*
10028-17-8	Tritium	Т	pCi/L	906.0	157	*	193	*	117	*	85.4	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	14.5	*J	19.4	*J	19.4	*J	39.1	*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		<0.5		0.169	J
S0268	Total Organic Carbon	Т	mg/L	9060	1.47	BJ	1.3	BJ	1.88	BJ	1.2	BJ
s0586	Total Organic Halides	Т	mg/L	9020	0.0133		0.0125		0.00552	J	0.00954	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-09	990	8004-09	85	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g., b	4W−1	, MW-2, etc	:.)	373		374		375		376	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/18/2018 1	1:53	7/18/2018	09:50	7/18/2018	08:16	NA	
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW373UG4	l-18	MW374U	G4-18	MW375U0	G4-18	NA	
Laboratory Sam	mple ID Number (if applicable)		45489601	3	454896	015	4548960	001	NA			
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	e Or	ganics Anal	ysis.	7/25/2018	3	7/25/20	18	7/25/20	18	NA	
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	Т	mg/L	9056	0.573		0.742		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	45	*	66	*	4.74	*		*
16984-48-8	Fluoride	т	mg/L	9056	0.178		0.189		0.291			*
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.2		<0.1		1.27			*
14808-79-8	Sulfate	т	mg/L	9056	81.3		7.69		25.9			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		30.05		30.03			*
S0145	Specific Conductance	т	μ M H0/cm	Field	622		667		340			*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

^{* =} See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-4792	2	8004-0990)	8004-0985		8004-0988	}	
Facility's Loca	al Well or Spring Number (e.g., MW	-1, N	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	327.32		338.48		336.64			*
N238	Dissolved Oxygen	Т	mg/L	Field	2.52		0.52		2.23			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	340		351		181			*
s0296	рн	т	Units	Field	6.14		6.7		6.47			*
NS215	Eh	Т	mV	Field	318		269		373			*
s0907	Temperature	Т	°C	Field	21.17		20.72		19.17			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.031	J		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00207	J	<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0308		0.145		0.167			*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	Т	mg/L	6020	1.62		0.0129	J	0.0117	J		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	T	mg/L	6020	49.3		19.9		13.1			*
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00303		<0.001			*
7440-50-8	Copper	Т	mg/L	6020	0.000523	J	0.000443	J	0.000647	J		*
7439-89-6	Iron	Т	mg/L	6020	<0.1		1.08		0.0381	J		*
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020	18		5.09		5.51			*
7439-96-5	Manganese	Т	mg/L	6020	0.00263	J	0.733		0.00224	J		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	38
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-02-0		Nickel	Т	mg/L	6020	<0.002		0.00205		0.000895	J		*
7440-09-7		Potassium	T	mg/L	6020	2.19		0.401		0.272	J		*
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		0.00228	J		*
7440-22-4		Silver	T	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5		Sodium	Т	mg/L	6020	40.9		109		53			*
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		0.000221		0.00009	J		*
7440-62-2		Vanadium	Т	mg/L	6020	<0.01		<0.01		0.00435	J		*
7440-66-6		Zinc	Т	mg/L	6020	0.00413	J	<0.01		0.00549	J		*
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		0.00366	J		*
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	T	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	T	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	T	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00553		<0.001		0.00039	J		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-0990)	8004-098	35	8004-09	88
Facility's Loc	al Well or Spring Number (e.g., M	1W −1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.000194		<0.0000196			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0943		<0.0952		<0.0952			*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0943	*	<0.0952	*	<0.0952	*		*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0943		<0.0952		<0.0952			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0943		<0.0952		<0.0952			*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0943		<0.0952		<0.0952			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0943		<0.0952		<0.0952			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	8
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0943		<0.0952		<0.0952			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0943		<0.0952		<0.0952			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0943		<0.0952		<0.0952			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	6.23	*	5.44	*	5.5	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	30.6	*	-3.46	*	4.97	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.108	*	0.729	*	0.558	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.994	*	1.41	*	1.29	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-15.9	*	-2.44	*	-2.38	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.306	*	0.679	*	0.301	*		*
10028-17-8	Tritium	Т	pCi/L	906.0	190	*	70.2	*	79.1	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	30.9	*	19.4	*J	19.4	*J		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060	1.14	BJ	2.59	В	1.18	BJ		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0199		0.0202		0.006	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-00	00	0000-000	00	0000-000)0
Facility's Loca	al Well or Spring Number (e.g., N	1W −1	1, MW-2, etc	:.)	377		E. BLAN	IK	F. BLAN	K	T. BLANK	(1
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	NA		Е		F		Т	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		NA		7/17/2018	06:45	7/17/2018 0	7:35	7/16/2018 0	6:40
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				NA		RI1UG4-	·18	FB1UG4-	·18	TB2UG4-	18
Laboratory Samp	ple ID Number (if applicable)		NA		4548160	16	4548160	15	45467701	11		
Date of Analys:	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						7/20/20	18	7/20/201	8	7/18/201	8
Gradient with	respect to Monitored Unit (UP, DO	NWO,	, SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	μ M H0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number		8004-0989	9	0000-000)	0000-0000		0000-0000)		
Facility's Lo	ocal Well or Spring Number (e.g., M	ī-1,	MW-2, BLANK-	F, etc.)	377		E. BLAN	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	Т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.002	*	<0.002	*		*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	0.00858	BJ	0.0101	BJ		*
7440-43-9	Cadmium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	<0.001		<0.001			*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	00
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	(1
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0		Nickel	Т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7		Potassium	Т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6		Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5		Sodium	Т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7		Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0		Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	Т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2		Vanadium	Т	mg/L	6020		*	<0.01		<0.01			*
7440-66-6		Zinc	Т	mg/L	6020		*	<0.01		<0.01			*
108-05-4		Vinyl acetate	Т	mg/L	8260		*	<0.005	*	<0.005	*	<0.005	*
67-64-1		Acetone	Т	mg/L	8260		*	0.00663		0.00518		0.00783	
107-02-8		Acrolein	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000)	0000-000	00	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	cc.)	377		E. BLAN	(F. BLAN	IK	T. BLAN	< 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000)	0000-000	00	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g., N	1W−1	L, MW-2, et	.c.)	377		E. BLAN	(F. BLAN	IK	T. BLANI	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011		*	<0.0000198		<0.0000196		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	т	ug/L	8082		*	<0.1		<0.0962			*
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.1		<0.0962			*
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.1		<0.0962			*
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.1		<0.0962			*
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.1		<0.0962			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.1		<0.0962			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989)	0000-0000		0000-000	0	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	377		E. BLANK		F. BLAN	K	T. BLANK	(1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.1		<0.0962			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.1		<0.0962			*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.1		<0.0962			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	-1.85	*	0.783	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	2.17	*	-4.03	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*	0.202	*	0.0763	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	0.325	*	1.96	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	-7.26	*	0.435	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	0.107	*	0.641	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	64.1	*	10.7	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				000-000	00	0000-00	00	8004-4799)	\	
Facility's Loca	al Well or Spring Number (e.g., M	IW – 1	, MW-2, etc	:.)	T. BLANK	(2	T. BLAN	К 3	358			
Sample Sequence	#				1 1			2				
If sample is a Bl	ank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	Т		Т		NA			
Sample Date and	Sample Date and Time (Month/Day/Year hour: minutes)					6:40	7/18/2018	06:30	7/17/2018 07	':33		
Duplicate ("Y" or "N") ²					N		N		Y			
Split ("Y" or "	'N") ³				N		N		N			
Facility Sample	e ID Number (if applicable)				TB3UG4-	18	TB4UG4	-18	MW358DUG4	1 -18		
Laboratory Samp	Laboratory Sample ID Number (if applicable)						4548960	17	454816003		\ /	
Date of Analysi	Date of Analysis (Month/Day/Year) For Volatile Organics Analysis					8	7/25/20	18	7/19/2018		\ /	
Gradient with r	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	NA		NA		DOWN		<u> </u>	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI6	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*	0.447			
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*	38.7	*		
16984-48-8	Fluoride	т	mg/L	9056		*		*	0.168			
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*	1.08			
14808-79-8	Sulfate	т	mg/L	9056		*		*	64.3			
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*	30			
S0145	Specific Conductance	т	μ MH0/cm	Field		*		*	484		/	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	8004-4799)	\
Facility's Loca	al Well or Spring Number (e.g., MW	-1, N	W-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	358		<u> </u>
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED F VALUE L OR A PQL ⁶ G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*	326.41		
N238	Dissolved Oxygen	Т	mg/L	Field		*		*	0.87		
s0266	Total Dissolved Solids	T	mg/L	160.1		*		*	259	*	
s0296	рН	T	Units	Field		*		*	5.66		\ /
NS215	Eh	T	mV	Field		*		*	282		\ /
s0907	Temperature	T	°c	Field		*		*	20.17		\ /
7429-90-5	Aluminum	T	mg/L	6020		*		*	<0.05		\ /
7440-36-0	Antimony	T	mg/L	6020		*		*	<0.003		\/
7440-38-2	Arsenic	T	mg/L	6020		*		*	<0.005		l X I
7440-39-3	Barium	T	mg/L	6020		*		*	0.0452	*	/\
7440-41-7	Beryllium	T	mg/L	6020		*		*	<0.0005		/ \
7440-42-8	Boron	T	mg/L	6020		*		*	0.483	В	/ \
7440-43-9	Cadmium	T	mg/L	6020		*		*	<0.001		/ \
7440-70-2	Calcium	T	mg/L	6020		*		*	30.2		/ /
7440-47-3	Chromium	T	mg/L	6020		*		*	<0.01		/ /
7440-48-4	Cobalt	Т	mg/L	6020		*		*	0.00239		
7440-50-8	Copper	Т	mg/L	6020		*		*	0.00046	J	7
7439-89-6	Iron	Т	mg/L	6020		*		*	0.713		
7439-92-1	Lead	Т	mg/L	6020		*		*	<0.002		
7439-95-4	Magnesium	Т	mg/L	6020		*		*	14.9		
7439-96-5	Manganese	Т	mg/L	6020		*		*	0.122		/ \
7439-97-6	Mercury	Т	mg/L	7470		*		*	<0.0002		/

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None
For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	00	8004-479	9		
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	(3	358			
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
7439-98-7		Molybdenum	Т	mg/L	6020		*		*	<0.0005			
7440-02-0		Nickel	Т	mg/L	6020		*		*	0.0102			
7440-09-7		Potassium	Т	mg/L	6020		*		*	2.27			
7440-16-6		Rhodium	Т	mg/L	6020		*		*	<0.005			
7782-49-2		Selenium	Т	mg/L	6020		*		*	<0.005			
7440-22-4		Silver	Т	mg/L	6020		*		*	<0.001		\ /	
7440-23-5		Sodium	Т	mg/L	6020		*		*	42		\ /	
7440-25-7		Tantalum	Т	mg/L	6020		*		*	<0.005		\/	
7440-28-0		Thallium	Т	mg/L	6020		*		*	<0.002		X	
7440-61-1		Uranium	Т	mg/L	6020		*		*	<0.0002		/\	
7440-62-2		Vanadium	Т	mg/L	6020		*		*	<0.01		/ \	
7440-66-6		Zinc	Т	mg/L	6020		*		*	0.00452	J	/ /	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005	*	<0.005		<0.005	*		\setminus
67-64-1		Acetone	Т	mg/L	8260	0.00615		<0.005		<0.005			
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			\setminus
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-000	0	8004-47	99	\	- 1
Facility's Loc	al Well or Spring Number (e.g., N	4W −1	l, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	358			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			Π
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		$\backslash /$	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			Λ
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		0.00409		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	8004-4799			\overline{I}
Facility's Loc	al Well or Spring Number (e.g., N	1W −1	L, MW-2, et	cc.)	T. BLANK	2	T. BLANK	3	358			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			\Box
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005			\prod
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		\	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000197		<0.0000194		\	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			<u> </u>
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			\mathbb{L}
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		0.00037	J	<0.001			\prod
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.101			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.101			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.101			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.101			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.101			
12672-29-6	PCB-1248	Т	ug/L	8082		*		*	<0.101		/	

C-43

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000		8004-479	9		
Facility's Loc	al Well or Spring Number (e.g., M	4W−1	1, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3	}	358			
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L S
11097-69-1	PCB-1254	т	ug/L	8082		*		*	<0.101			
11096-82-5	PCB-1260	т	ug/L	8082		*		*	<0.101		\ /	
11100-14-4	PCB-1268	т	ug/L	8082		*		*	<0.101		\ /	
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*	0.286	*	\ /	
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*	24.1	*	\ /	
10043-66-0	Iodine-131	Т	pCi/L			*		*		*	\ /	
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*		*	0.0537	*	\	
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*	-1.05	*	V	
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*	34.4	*	\land	
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*	0.811	*	/\	
10028-17-8	Tritium	т	pCi/L	906.0		*		*	18.4	*	/ \	
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*	25.6		/ \	
57-12-5	Cyanide	Т	mg/L	9012		*		*	<0.2		/ \	
20461-54-5	Iodide	Т	mg/L	300.0		*		*	<0.5		/	
s0268	Total Organic Carbon	Т	mg/L	9060		*		*	0.792	J		\
s0586	Total Organic Halides	Т	mg/L	9020		*		*	0.00416	J		

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description								
004-4798 MW357	MW357UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.								
		Sulfate	W	Post-digestion spike recovery out of control limits.								
		Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria								
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 3.4. Rad error is 3.39.								
		Gross beta		TPU is 9.71. Rad error is 8.68.								
		lodine-131		Analysis of constituent not required and not performed.								
					Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.277. Rad error is 0.277.					
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 3.4. Rad error is 3.32.								
		Technetium-99		TPU is 12.8. Rad error is 11.9.								
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.756. Rad error is 0.754.								
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 117. Rad error is 115.								
		lodide	W	Post-digestion spike recovery out of control limits.								
004-4799 MW358	MW358UG4-18	MW358UG4-18	MW358UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.						
		Barium	Е	Result estimated due to matrix interferences.								
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits								
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 5.77. Rad error is 5.76.								
		Gross beta		TPU is 9.18. Rad error is 7.85.								
		lodine-131		Analysis of constituent not required and not performed.								
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.711. Rad error is 0.703.								
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 3.97. Rad error is 3.97.								
		Technetium-99		TPU is 11.6. Rad error is 10.6.								
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.915. Rad error is 0.904.								
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 144. Rad error is 144.								

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description													
04-0981 MW359	MW359UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.													
		Sulfate	W	Post-digestion spike recovery out of control limits.													
		Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria													
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.59. Rad error is 2.59.													
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 7.99. Rad error is 7.96.													
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.													
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.57. Rad error is 0.567.													
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.28. Rad error is 2.28.													
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 10.9. Rad error is 10.9.													
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.353. Rad error is 0.352.													
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 118. Rad error is 117.													
		lodide	W	Post-digestion spike recovery out of control limits.													
04-4800 MW360	MW360UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.													
		Sulfate	W	Post-digestion spike recovery out of control limits.													
						Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria									
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5.62. Rad error is 5.62.													
		lodine-131		Analysis of constituent not required and not performed.													
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.494. Rad error is 0.494.													
			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.74. Rad error is 1.73.												
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 10.8. Rad error is 10.7.													
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.609. Rad error is 0.608.													
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 125. Rad error is 121.													
		lodide	W	Post-digestion spike recovery out of control limits.													

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description																		
004-4795 MW361	MW361UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.																		
		Sulfate	W	Post-digestion spike recovery out of control limits.																		
		Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria																		
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.42. Rad error is 3.41.																		
		Gross beta		TPU is 9.79. Rad error is 8.66.																		
		lodine-131		Analysis of constituent not required and not performed.																		
					Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. To 0.442. Rad error is 0.441.															
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.68. Rad error is 2.68.																		
		Technetium-99		TPU is 12.5. Rad error is 11.6.																		
						Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.759. Rad error is 0.757.														
						Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 120. Rad error is 118.														
		lodide	W	Post-digestion spike recovery out of control limits.																		
004-0986 MW362	MW362UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.																		
		Sulfate	W	Post-digestion spike recovery out of control limits.																		
		Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria																		
																				Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.8. Rad error is 4.8.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.69. Rad error is 6.67.																		
		lodine-131		Analysis of constituent not required and not performed.																		
						Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.402. Rad error is 0.397.														
														Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.95. Rad error is 1.95.						
											Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 10.8. Rad error is 10.8.									
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.804. Rad error is 0.796.																		
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 112. Rad error is 111.																		
		lodide	W	Post-digestion spike recovery out of control limits.																		

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description			
04-4796 MW363	MW363UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.			
		Total Dissolved Solids	*	Duplicate analysis not within control limits.			
		Barium	Е	Result estimated due to matrix interferences.			
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits			
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 5.16. Rad error is 5.15.			
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 6.04. Rad error is 5.93.			
		lodine-131		Analysis of constituent not required and not performed.			
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.454. Rad error is 0.454.			
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 1.95. Rad error is 1.95.			
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 8.6. Rad error is 8.5.			
						Thorium-230	U
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 132. Rad error is 132.			
04-4797 MW364	MW364UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.			
					Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits			
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 4.91. Rad error is 4.87.			
		Gross beta		TPU is 8.4. Rad error is 7.44.			
		lodine-131		Analysis of constituent not required and not performed.			
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.37. Rad error is 0.363.			
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 2.52. Rad error is 2.52.			
		Technetium-99		TPU is 10.3. Rad error is 9.68.			
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.863. Rad error is 0.862.			
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 133. Rad error is 133.			

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-0984 MW365	MW365UG4-18	Bromide		A resample was collected - sample shipment delayed by FedE
		Chloride		A resample was collected - sample shipment delayed by FedE
		Fluoride		A resample was collected - sample shipment delayed by FedE
		Nitrate & Nitrite		A resample was collected - sample shipment delayed by FedE
		Sulfate		A resample was collected - sample shipment delayed by FedE
		Total Dissolved Solids		A resample was collected - sample shipment delayed by FedE
		Barium	Е	Result estimated due to matrix interferences.
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		PCB, Total		A resample was collected - sample shipment delayed by Fedf
		PCB-1016		A resample was collected - sample shipment delayed by Fedi
		PCB-1221		A resample was collected - sample shipment delayed by Fedl
		PCB-1232		A resample was collected - sample shipment delayed by Fedl
		PCB-1242		A resample was collected - sample shipment delayed by Fedl
		PCB-1248		A resample was collected - sample shipment delayed by Fed
		PCB-1254		A resample was collected - sample shipment delayed by Fed
		PCB-1260		A resample was collected - sample shipment delayed by Fed
		PCB-1268		A resample was collected - sample shipment delayed by Fed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 5.37. Rad error is 5.33.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 4.89. Rad error is 4.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.317. Rad error is 0.313.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 1.68. Rad error is 1.68.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 8.79. Rad error is 8.79.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.893. Rad error is 0.887.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 133. Rad error is 133.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		A resample was collected - sample shipment delayed by Fedl
		lodide		A resample was collected - sample shipment delayed by Fedl
		Total Organic Carbon		A resample was collected - sample shipment delayed by Fedl
		Total Organic Halides		A resample was collected - sample shipment delayed by Fedl

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0982 MW366	MW366UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Barium	E	Result estimated due to matrix interferences.
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.8. Rad error is 5.79.
		Gross beta		TPU is 9.84. Rad error is 8.13.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.448. Rad error is 0.448.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.61. Rad error is 3.56.
		Technetium-99		TPU is 17.6. Rad error is 16.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.865. Rad error is 0.851.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 140. Rad error is 140.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4793 MW367	MW367UG4-18	Bromide		A resample was collected - sample shipment delayed by FedE
		Chloride		A resample was collected - sample shipment delayed by FedE
		Fluoride		A resample was collected - sample shipment delayed by FedE
		Nitrate & Nitrite		A resample was collected - sample shipment delayed by FedE
		Sulfate		A resample was collected - sample shipment delayed by FedE
		Total Dissolved Solids		A resample was collected - sample shipment delayed by FedE
		Barium	E	Result estimated due to matrix interferences.
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		PCB, Total		A resample was collected - sample shipment delayed by Fedf
		PCB-1016		A resample was collected - sample shipment delayed by FedE
		PCB-1221		A resample was collected - sample shipment delayed by Fedi
		PCB-1232		A resample was collected - sample shipment delayed by Fedi
		PCB-1242		A resample was collected - sample shipment delayed by Fedl
		PCB-1248		A resample was collected - sample shipment delayed by Fed
		PCB-1254		A resample was collected - sample shipment delayed by Fed
		PCB-1260		A resample was collected - sample shipment delayed by Fed
		PCB-1268		A resample was collected - sample shipment delayed by Fed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 3.58. Rad error is 3.58.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 6.36. Rad error is 6.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.442. Rad error is 0.424.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 2.71. Rad error is 2.71.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 9.13. Rad error is 9.13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.764. Rad error is 0.757.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 132. Rad error is 132.
		Chemical Oxygen Demand		A resample was collected - sample shipment delayed by Fedi
		Cyanide		A resample was collected - sample shipment delayed by Fedl
		lodide		A resample was collected - sample shipment delayed by Fedl
		Total Organic Carbon		A resample was collected - sample shipment delayed by Fedl
		Total Organic Halides		A resample was collected - sample shipment delayed by Fedl

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0983 MW368	MW368UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 7.1. Rad error is 6.96.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.46. Rad error is 5.43.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.414. Rad error is 0.414.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.94. Rad error is 1.94.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 28.9. Rad error is 28.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.894. Rad error is 0.881.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 131. Rad error is 125.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-4820 MW369	MW369UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.43. Rad error is 4.43.
		Gross beta		TPU is 7.35. Rad error is 6.94.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.486. Rad error is 0.486.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.38. Rad error is 2.38.
		Technetium-99		TPU is 18.4. Rad error is 18.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.666. Rad error is 0.663.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 124. Rad error is 121.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-4818 MW370	MW370UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 7.13. Rad error is 6.99.
		Gross beta		TPU is 21.1. Rad error is 13.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.709. Rad error is 0.707.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.72. Rad error is 1.7.
		Technetium-99		TPU is 21.7. Rad error is 18.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.864. Rad error is 0.862.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 126. Rad error is 121.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4819 MW371	MW371UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		Gross alpha		TPU is 8.35. Rad error is 8.02.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.83 . Rad error is 6.78 .
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.438. Rad error is 0.437.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.59. Rad error is 1.59.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 18. Rad error is 18.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.84. Rad error is 0.828.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 120. Rad error is 118.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
3004-4808 MW372	MW372UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		Gross alpha		TPU is 7.63. Rad error is 7.44.
		Gross beta		TPU is 8.9. Rad error is 7.64.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.857. Rad error is 0.852.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.41. Rad error is 1.4.
		Technetium-99		TPU is 34.4. Rad error is 33.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.448. Rad error is 0.446.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 109. Rad error is 108.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
3004-4792 MW373	MW373UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.31. Rad error is 8.25.
		Gross beta		TPU is 10.6. Rad error is 9.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.417. Rad error is 0.417.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.66. Rad error is 1.65.
		Technetium-99	U 	Indicates analyte/nuclide was analyzed for, but not detected. TPU 18.2. Rad error is 18.2.
		Thorium-230	U 	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.833. Rad error is 0.829.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 126. Rad error is 120.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0990 MW374	MW374UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TR 8.39. Rad error is 8.34.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 7.19. Rad error is 7.19.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. Ti 0.93. Rad error is 0.914.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. To 2. Rad error is 1.99.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 8.67. Rad error is 8.67.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.891. Rad error is 0.88.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 117. Rad error is 116.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-0985 MW375	MW375UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.37. Rad error is 6.31.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5.6. Rad error is 5.54.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.541. Rad error is 0.54.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. To 2.63. Rad error is 2.62.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 23.5. Rad error is 23.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.75. Rad error is 0.746.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. To 117. Rad error is 116.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376	•	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Molybdenum		During sampling, the well went dry; therefore, no sample wa collected.
		Nickel		During sampling, the well went dry; therefore, no sample wa collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample w collected.
		Acetone		During sampling, the well went dry; therefore, no sample w collected.
		Acrolein		During sampling, the well went dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample w collected.
		Benzene		During sampling, the well went dry; therefore, no sample w collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample w collected.
		Xylenes		During sampling, the well went dry; therefore, no sample w collected.
		Styrene		During sampling, the well went dry; therefore, no sample w collected.
		Toluene		During sampling, the well went dry; therefore, no sample w collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample w collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample w collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample w collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample w collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample w collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample war collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample we collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa
		Iodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample we collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample war collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample wa collected.
		Acetone		During sampling, the well went dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well went dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample wa collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377	•	Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample war collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
				ooncolou.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG4-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Barium	Е	Result estimated due to matrix interferences.
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.88. Rad error is 2.87.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5.27. Rad error is 5.26.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.399. Rad error is 0.393.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.23. Rad error is 2.23.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 9.27. Rad error is 9.27.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.614. Rad error is 0.612.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 142. Rad error is 141.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG4-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Barium	E	Result estimated due to matrix interferences.
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5.1. Rad error is 5.1.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 5.13. Rad error is 5.13.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.343. Rad error is 0.342.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 2.72. Rad error is 2.7.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 9.14. Rad error is 9.14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.852. Rad error is 0.841.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 142. Rad error is 142.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG4-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG4-18	Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSI recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
		Cyanide Iodide Total Organic Carbon		Analysis of constituent not required and not per Analysis of constituent not required and not per Analysis of constituent not required and not per

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description					
000-0000 QC	TB3UG4-18	Bromide		Analysis of constituent not required and not performed.					
		Chloride		Analysis of constituent not required and not performed.					
		Fluoride		Analysis of constituent not required and not performed.					
		Nitrate & Nitrite		Analysis of constituent not required and not performed.					
		Sulfate		Analysis of constituent not required and not performed.					
		Barometric Pressure Reading		Analysis of constituent not required and not performed.					
		Specific Conductance		Analysis of constituent not required and not performed.					
		Static Water Level Elevation		Analysis of constituent not required and not performed.					
		Dissolved Oxygen		Analysis of constituent not required and not performed.					
		Total Dissolved Solids		Analysis of constituent not required and not performed.					
		рН		Analysis of constituent not required and not performed.					
		Eh		Analysis of constituent not required and not performed.					
		Temperature		Analysis of constituent not required and not performed.					
		Aluminum		Analysis of constituent not required and not performed.					
		Antimony		Analysis of constituent not required and not performed.					
		Arsenic		Analysis of constituent not required and not performed.					
		Barium		Analysis of constituent not required and not performed.					
		Beryllium		Analysis of constituent not required and not performed.					
		Boron		Analysis of constituent not required and not performed.					
		Cadmium		Analysis of constituent not required and not performed.					
		Calcium		Analysis of constituent not required and not performed.					
		Chromium		Analysis of constituent not required and not performed.					
		Cobalt		Analysis of constituent not required and not performed.					
		Copper		Analysis of constituent not required and not performed.					
		Iron		Analysis of constituent not required and not performed.					
		Lead		Analysis of constituent not required and not performed.					
		Magnesium		Analysis of constituent not required and not performed.					
		Manganese		Analysis of constituent not required and not performed.					
		Mercury		Analysis of constituent not required and not performed.					
		Molybdenum		Analysis of constituent not required and not performed.					
		Nickel		Analysis of constituent not required and not performed.					
		Potassium		Analysis of constituent not required and not performed.					
		Rhodium		Analysis of constituent not required and not performed.					
		Selenium		Analysis of constituent not required and not performed.					
		Silver		Analysis of constituent not required and not performed.					
		Sodium		Analysis of constituent not required and not performed.					
		Tantalum		Analysis of constituent not required and not performed.					
		Thallium		Analysis of constituent not required and not performed.					
		Uranium		Analysis of constituent not required and not performed.					
		Vanadium		Analysis of constituent not required and not performed.					

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG4-18	Zinc	_	Analysis of constituent not required and not performed.
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG4-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG4-18	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
	Technetium-99		Analysis of constituent not required and not performed.	
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
004-4799 MW358	MW358DUG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Barium	E	Result estimated due to matrix interferences.
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 5.39. Rad error is 5.38.
		Gross beta		TPU is 10.1. Rad error is 9.33.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.241. Rad error is 0.241.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 2.7. Rad error is 2.7.
		Technetium-99		TPU is 10.7. Rad error is 10.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.939. Rad error is 0.924.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 133. Rad error is 133.

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ .	Facility Well/Spring Number		8004-09	84	8004-	4793	\			/		
	al Well or Spring Number (e.g., N	ī₩ – 1	. MW-2. etc)	365		36					
Sample Sequence				,	1		1					
	ank, specify Type: (F)ield, (T)rip,	(34) -			<u>'</u>						/	
-				quipment	NA 7/40/2040	10.00	NA	0.40-00				
Sample Date and Time (Month/Day/Year hour: minutes)					7/19/2018	12:00	7/19/201	8 12:33				
Duplicate ("Y" or "N") ²					N		N		\			
Split ("Y" or "	N		N		\	\						
Facility Sample	MW365UG	4-18R	MW367L	JG4-18R								
Laboratory Samp	4550340	001	45503	34002	_		/					
Date of Analysi	is (Month/Day/Year) For Volatile	01	ganics Anal	ysis								
Gradient with r	respect to Monitored Unit (UP, DC	, NW	, SIDE, UNKN	OWN)	DOWN	١	DO	DOWN		1	V	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.322		,	*		*
16887-00-6	Chloride(s)	т	mg/L	9056	3.57	*	25.9	*		*		*
16984-48-8	Fluoride	т	mg/L	9056	0.295		0.112			*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.599		<0.4			*	'	*
14808-79-8	Sulfate	Т	mg/L	9056	64.1		39			*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.94		29.94			*		
S0145	Specific Conductance	т	μ MH0/cm	Field	480		360			*		*\

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-0984	ļ	8004-4793	3	\			/
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	365		367					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR RQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	331.72		326.27			*		*
N238	Dissolved Oxygen	т	mg/L	Field	2.62		0.96			*		*
s0266	Total Dissolved Solids	т	mg/L	160.1	274		179			*		*
S0296	рН	т	Units	Field	6.15		5.93			*		*
NS215	Eh	т	mV	Field	429		310			*		*
s0907	Temperature	т	°c	Field	19.83		20.22			/*		*
7429-90-5	Aluminum	т	mg/L	6020		*		*		1		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*\		*
7440-38-2	Arsenic	т	mg/L	6020		*		*		*)		*
7440-39-3	Barium	т	mg/L	6020		*		*		*/		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*/		*
7440-42-8	Boron	т	mg/L	6020		*		*		/*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*	/	*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	т	mg/L	6020		*		*		*		*
7439-89-6	Iron	т	mg/L	6020		*		*		*	\	*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6020		*		*		*		<u>\</u> *
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		_\
7439-97-6	Mercury	т	mg/L	7470		*		*	<u>/</u>	*		* \

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-479	3	\			/
Facility's Loc	al Well or Spring Number (e.g., M	ſW−1	., MW −2, et	.c.)	365		367					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DATECTED VALUE OR POL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260		*		*		*	/	*
591-78-6	2-Hexanone	т	mg/L	8260		*		*		*		*
74-88-4	Iodomethane	Т	mg/L	8260		*		*		*		*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*		*	\	*		*
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*		*		\ *		*
75-09-2	Dichloromethane	Т	mg/L	8260		*		*		<u> </u>		*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*		*		*\		*
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011		*		*		* \		*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260		*		*		*	X	*
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260		*		*		* /		*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260		*		*		*/		*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260		*		*		<i>f</i>		*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*		*		<u> </u>		*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*		*		*		*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*		*		*		*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*		*		*		*
1336-36-3	PCB,Total	Т	ug/L	8082	0.122		<0.0962			*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0943		<0.0962			*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0943		<0.0962			*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0943		<0.0962			*		*
53469-21-9	PCB-1242	т	ug/L	8082	0.122		<0.0962			*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.0943		<0.0962			*		* \

C-73

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-4793		\			$\overline{}$
Facility's Loc	cal Well or Spring Number (e.g., 1	MW −1	L, MW-2, et	te.)	365		367					
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0943		<0.0962			*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0943		<0.0962			*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0943		<0.0962			*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		1		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*		* \		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		* \		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		*	\land	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		* /		*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*/		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	17.8	BJ	24.3	В		/*		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		/	*		*
20461-54-5	Iodide	Т	mg/L	300.0	0.168	*J	0.182	*J		*		*
S0268	Total Organic Carbon	Т	mg/L	9060	1.89	BJ	0.468	J		*		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0218		0.00478	J		*		*
											V	
												$\overline{\ }$
												$\overline{}$
												$\overline{}$
									/			

RESIDENTIAL/CONTAINED – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	MW365UG4-18R	Chloride	W	Post-digestion spike recovery out of control limits.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Ethylbenzene		Analysis of constituent not required and not performed.
		2-Hexanone		Analysis of constituent not required and not performed.
		lodomethane		Analysis of constituent not required and not performed.
		Dibromochloromethane		Analysis of constituent not required and not performed.
		Carbon tetrachloride		Analysis of constituent not required and not performed.
		Dichloromethane		Analysis of constituent not required and not performed.
		Methyl Isobutyl Ketone		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performed.
		1,2-Dichloropropane		Analysis of constituent not required and not performed.
		trans-1,3-Dichloropropene		Analysis of constituent not required and not performed.
		cis-1,3-Dichloropropene		Analysis of constituent not required and not performed.
		trans-1,2-Dichloroethene		Analysis of constituent not required and not performed.
		Trichlorofluoromethane		Analysis of constituent not required and not performed.
		1,2,3-Trichloropropane		Analysis of constituent not required and not performed.
		1,2-Dichlorobenzene		Analysis of constituent not required and not performed.
		1,4-Dichlorobenzene		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		C-75	w	
		lodide	۷V	Post-digestion spike recovery out of control limits.

RESIDENTIAL/CONTAINED – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	ı	Flag	Description
8004-4793 MW367	MW367UG4-18R	Chloride		W	Post-digestion spike recovery out of control limits.
		Aluminum			Analysis of constituent not required and not performed.
		Antimony			Analysis of constituent not required and not performed.
		Arsenic			Analysis of constituent not required and not performed.
		Barium			Analysis of constituent not required and not performed.
		Beryllium			Analysis of constituent not required and not performed.
		Boron			Analysis of constituent not required and not performed.
		Cadmium			Analysis of constituent not required and not performed.
		Calcium			Analysis of constituent not required and not performed.
		Chromium			Analysis of constituent not required and not performed.
		Cobalt			Analysis of constituent not required and not performed.
		Copper			Analysis of constituent not required and not performed.
		Iron			Analysis of constituent not required and not performed.
		Lead			Analysis of constituent not required and not performed.
		Magnesium			Analysis of constituent not required and not performed.
		Manganese			Analysis of constituent not required and not performed.
		Mercury			Analysis of constituent not required and not performed.
		Ethylbenzene			Analysis of constituent not required and not performed.
		2-Hexanone			Analysis of constituent not required and not performed.
		lodomethane			Analysis of constituent not required and not performed.
		Dibromochloromethane			Analysis of constituent not required and not performed.
		Carbon tetrachloride			Analysis of constituent not required and not performed.
		Dichloromethane			Analysis of constituent not required and not performed.
		Methyl Isobutyl Ketone			Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropro	pane		Analysis of constituent not required and not performed.
		1,2-Dichloropropane			Analysis of constituent not required and not performed.
		trans-1,3-Dichloroproper	ne		Analysis of constituent not required and not performed.
		cis-1,3-Dichloropropene			Analysis of constituent not required and not performed.
		trans-1,2-Dichloroethene)		Analysis of constituent not required and not performed.
		Trichlorofluoromethane			Analysis of constituent not required and not performed.
		1,2,3-Trichloropropane			Analysis of constituent not required and not performed.
		1,2-Dichlorobenzene			Analysis of constituent not required and not performed.
		1,4-Dichlorobenzene			Analysis of constituent not required and not performed.
		Gross alpha			Analysis of constituent not required and not performed.
		Gross beta			Analysis of constituent not required and not performed.
		lodine-131			Analysis of constituent not required and not performed.
		Radium-226			Analysis of constituent not required and not performed.
		Strontium-90			Analysis of constituent not required and not performed.
		Technetium-99			Analysis of constituent not required and not performed.
		Thorium-230			Analysis of constituent not required and not performed.
		Tritium	C-76		Analysis of constituent not required and not performed.
		lodide	C-70	W	Post-digestion spike recovery out of control limits.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u> LAB ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the third quarter 2018 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The third quarter 2018 data used to conduct the statistical analyses were collected in July 2018. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that had exceeded the historical background (using the last eight quarters). The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^a *	SG	UCRS
MW377 ^a *	SG	UCRS

^a **NOTE:** The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

^{*}Well was dry this quarter, and a groundwater sample could not be collected

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, third quarter 2018. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

upper $TL = X + (\hat{K} \times S)$

lower $TL = X - (K \times S)$

D-5

_

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations:

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Acetone Aluminum Beta Activity Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iodide Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential PCB, Total PCB-1242 рН* Potassium Sodium Sulfate Technetium-99 Total Organic Carbon (TOC) Total Organic Halides (TOX) Trichloroethene Vanadium

Zinc
*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	5	2	Yes
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	2	5	Yes
	7	7	0	No
Antimony Beryllium	7	7	0	No
Boron	7	5	2	Yes
Bromide	7	4	3	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	0	7	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	5	2	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	6	1	Yes
Iodomethane	7	7	0	No
Iron	7	1	6	Yes
Magnesium	7	0	7	Yes
Manganese	7	0	7	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	4	3	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	5	2	Yes
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	5	2	Yes
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	3	4	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Vanadium	7	4	3	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	2	5	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	4	2	Yes
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Boron	6	1	5	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	0	6	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	3	3	Yes
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No
Molybdenum	6	5	1	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Nickel	6	2	4	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	5	1	Yes
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	5	1	Yes
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	2	4	Yes
Total Organic Halides (TOX)	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	4	2	Yes
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	6	0	No
Antimony	6	6	0	No
Beryllium	6	6	0	No
Beta activity	6	1	5	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	0	6	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	2	4	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	5	1	Yes
Iodomethane	6	6	0	No
Iron	6	3	3	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.5. Tests Summary for Qualified Parameters—LRGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	5	1	Yes
Nickel	6	3	3	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	2	4	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	1	5	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 29, 30, and 28 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for calcium, dissolved oxygen, magnesium, oxidation-reduction potential, pH, and sulfate.

URGA

This quarter's results identified historical background exceedances for oxidation-reduction potential, pH, sodium, and technetium-99.

LRGA

This quarter's results identified historical background exceedances for beta activity, oxidation-reduction potential, pH, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, pH*, Sulfate	MW357: Oxidation-Reduction Potential	MW358: Oxidation-Reduction Potential, pH*
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential, Sodium	MW361: Oxidation-Reduction Potential, pH*
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential, pH*	MW364: Oxidation-Reduction Potential, pH*
MW368: Calcium, Dissolved Oxygen, Magnesium, Oxidation- Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential, pH*	MW367: Oxidation-Reduction Potential
MW371: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW369: Oxidation-Reduction Potential	MW370: Beta activity, Oxidation-Reduction Potential, Technetium-99
MW374: Oxidation-Reduction Potential	MW372: Oxidation-Reduction Potential, Technetium-99	MW373: Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate		

^{*}pH concentration is less than the LTL.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	2.24	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	Current results exceed statistically derived historical background concentration in MW368.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, and MW371.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW368.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Tests Summary for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
pH**	Tolerance Interval	0.04	Current results exceed statistically derived historical background concentration in MW359.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.
**pH concentration is less than the LTL.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	3.88	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Tests Summary for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
PCB, Total	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.36	No exceedance of statistically derived historical background concentration.
pH**	Tolerance Interval	0.03	Current results exceed statistically derived historical background concentration in MW363 and MW366.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	Current results exceed statistically derived historical background concentration in MW360.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW372.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.
**pH concentration is less than the LTL.

A tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	2.67	No exceedance of statistically derived historical background concentration.
Beta activity	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Tests Summary for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373.
pH**	Tolerance Interval	0.03	Current results exceed statistically derived historical background concentration in MW358, MW361, and MW364.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.
**pH concentration is less than the LTL.

A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 6, 4, and 4 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (in Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW360: Sodium	MW358: pH*
MW363: pH*	MW361: pH*
MW366: pH*	MW364: pH*

^{*}pH concentration is less than the LTL.

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that pH in MW359 and calcium, magnesium, and sulfate in MW368 exceeded the current TL this quarter.

URGA

This quarter's results showed an exceedance of sodium in MW360 and pH in MW363 and MW366; these wells are located downgradient of the landfill.

LRGA

This quarter's results showed an exceedance of pH in MW358, MW361, and MW364; these wells are located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

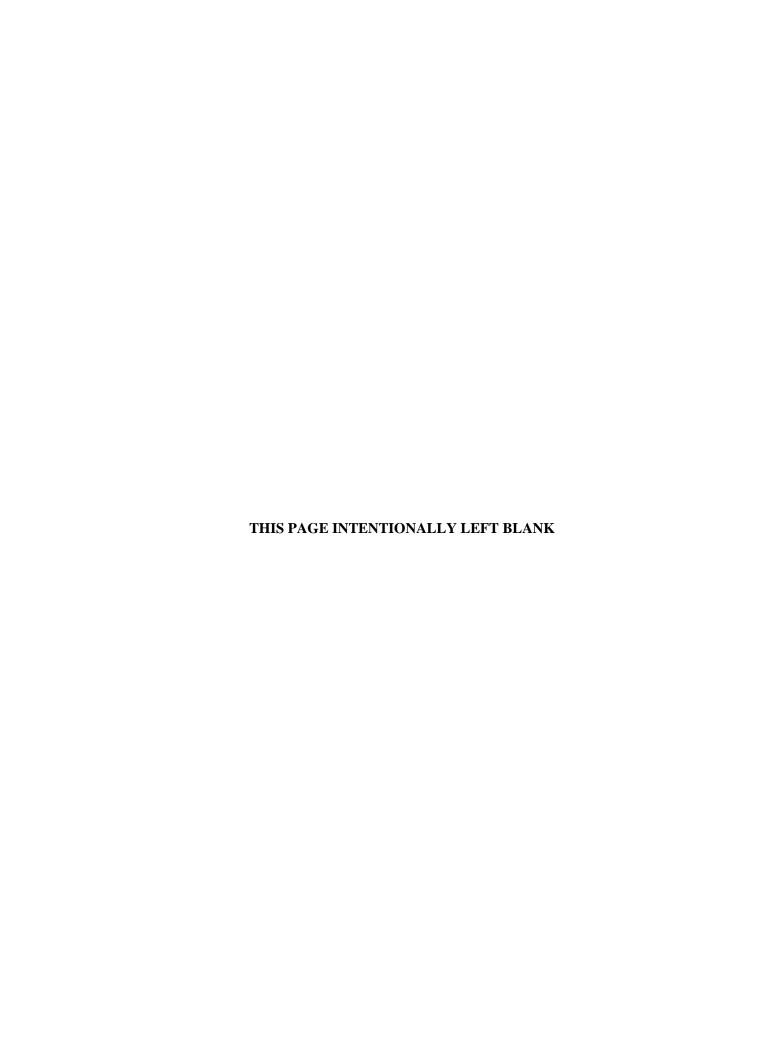
Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.38	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Oxygen	Tolerance Interval	0.65	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.46	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.31	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
рН	Tolerance Interval	0.04	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW359 exceeded the lower TL, which is evidence of a difference in concentration with respect to current background data.
Sulfate	Tolerance Interval	1.38	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.17	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
pH	Tolerance Interval	0.02	MW363 and MW366 exceeded the lower TL, which is evidence of a difference in concentration with respect to current background data.
Sodium	Tolerance Interval	0.15	MW360 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	1.08	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV: coefficient of variation


Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta activity	Tolerance Interval	0.69	MW370 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.16	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
рН	Tolerance Interval	0.02	MW358, MW361, and MW364 exceeded the lower TL, which is evidence of a difference in concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.68	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.938 S = 111.751 CV(1) = 2.238

K factor=** 2.523

TL(1)= 331.886 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.847

 $S= 1.149 \quad CV(2)=0.404$

K factor=** 2.523

TL(2) = 5.746

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	18	2.890
4/22/2002	10	2.303
7/15/2002	10	2.303
10/8/2002	15	2.708
1/8/2003	10	2.303
4/3/2003	10	2.303
7/9/2003	10	2.303
10/6/2003	10	2.303
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.298
Date Collected	Result	
Date Collected 10/8/2002	Result 200	5.298
Date Collected 10/8/2002 1/7/2003	Result 200 26	5.298 3.258
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 200 26 10	5.298 3.258 2.303
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 200 26 10 10	5.298 3.258 2.303 2.303
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 200 26 10 10 430	5.298 3.258 2.303 2.303 6.064

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	5	N/A	1.609	N/A
MW362	Downgradient	No	5	N/A	1.609	N/A
MW365	Downgradient	No	5	N/A	1.609	N/A
MW368	Downgradient	No	5	N/A	1.609	N/A
MW371	Upgradient	Yes	8.09	N/A	2.091	NO
MW374	Upgradient	No	5	N/A	1.609	N/A
MW375	Sidegradient	Yes	3.66	N/A	1.297	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

S= 6.859

CV(1)=2.078

K factor=** 2.523

TL(1)= 20.604

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.371 S = 1.678 CV(2) = -4.521

K factor**= 2.523

TL(2) = 3.863

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.059
Date Collected	Result	
Date Collected 10/8/2002	Result 21.3	3.059
Date Collected 10/8/2002 1/7/2003	Result 21.3 20	3.059 2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 21.3 20 4.11	3.059 2.996 1.413
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 21.3 20 4.11 1.41	3.059 2.996 1.413 0.344
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 21.3 20 4.11 1.41 1.09	3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data	a
----------------------	---

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.106	N/A	-2.244	NO
MW362	Downgradient	Yes	0.219	N/A	-1.519	NO
MW365	Downgradient	No	0.05	N/A	-2.996	N/A
MW368	Downgradient	Yes	0.441	N/A	-0.819	NO
MW371	Upgradient	Yes	0.355	N/A	-1.036	NO
MW374	Upgradient	No	0.05	N/A	-2.996	N/A
MW375	Sidegradient	Yes	0.031	N/A	-3.474	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1)=1.238

K factor=** 2.523

TL(1)= 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 10/8/2002	Result 2	0.693
Date Collected 10/8/2002 1/7/2003	Result 2 0.2	0.693 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.00901	N/A	-4.709	N/A
MW362	Downgradient	Yes	0.0189	N/A	-3.969	NO
MW365	Downgradient	Yes	0.0194	N/A	-3.942	NO
MW368	Downgradient	No	0.00966	N/A	-4.640	N/A
MW371	Upgradient	No	0.0121	N/A	-4.415	N/A
MW374	Upgradient	No	0.0129	N/A	-4.351	N/A
MW375	Sidegradient	No	0.0117	N/A	-4.448	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394

S = 0.474

CV(1)=0.340

K factor=** 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.279

S = 0.332

CV(2)=1.190

K factor=** 2.523

TL(2)=1.118

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.742
Date Collected	Result	
Date Collected 10/8/2002	Result 2.1	0.742
Date Collected 10/8/2002 1/7/2003	Result 2.1 2.1	0.742 0.742
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2.1 2.1 1.9	0.742 0.742 0.642
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2.1 2.1 1.9 1	0.742 0.742 0.642 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2.1 2.1 1.9 1 1.9	0.742 0.742 0.642 0.000 0.642

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current C	Duarter Data
-----------	--------------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	Yes	0.0863	NO	-2.450	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Downgradient	Yes	0.146	NO	-1.924	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.742	NO	-0.298	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 34.100 **S**= 13.637 **CV(1)**= 0.400

K factor**= 2.523

TL(1) = 68.505

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.466 S = 0.356

K factor**= 2.523

TL(2) = 4.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.209
Date Collected	Result	
Date Collected 10/8/2002	Result 67.3	4.209
Date Collected 10/8/2002 1/7/2003	Result 67.3 60.6	4.209 4.104
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 67.3 60.6 47.2	4.209 4.104 3.854
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 67.3 60.6 47.2 34.7	4.209 4.104 3.854 3.547
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 67.3 60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

landfill.

Dry/Partially Dry Wells

CV(2) = 0.103

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	6.84	NO	1.923	N/A
MW362	Downgradient	Yes	21	NO	3.045	N/A
MW365	Downgradient	Yes	22.8	NO	3.127	N/A
MW368	Downgradient	Yes	76.9	YES	4.343	N/A
MW371	Upgradient	Yes	58.4	NO	4.067	N/A
MW374	Upgradient	Yes	19.9	NO	2.991	N/A
MW375	Sidegradient	Yes	13.1	NO	2.573	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 72.938 S = 70.749 CV(1) = 0.970

K factor=** 2.523

TL(1)= 251.437 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.000

S = 0.702 CV(2) = 0.175

K factor=** 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.561
Date Collected	Result	,
Date Collected 10/8/2002	Result 260	5.561
Date Collected 10/8/2002 1/7/2003	Result 260 214	5.561 5.366
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 260 214 147	5.561 5.366 4.990
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 260 214 147 72	5.561 5.366 4.990 4.277
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 260 214 147 72 56	5.561 5.366 4.990 4.277 4.025

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	34	NO	3.526	N/A
MW362	Downgradient	Yes	24.9	NO	3.215	N/A
MW365	Downgradient	Yes	17.8	NO	2.879	N/A
MW368	Downgradient	Yes	19.4	NO	2.965	N/A
MW371	Upgradient	Yes	19.4	NO	2.965	N/A
MW374	Upgradient	Yes	19.4	NO	2.965	N/A
MW375	Sidegradient	Yes	19.4	NO	2.965	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

K factor=** 2.523

TL(1)= 310.697 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.620**S=** 1.590

CV(2) = 0.439

K factor**= 2.523

TL(2) = 7.631

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.294
Date Collected	Result	
Date Collected 10/8/2002	Result 199.2	5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

Current Quarter Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Butu							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW250	Danna ana diana	. 17	1 11	NO	0.104	NI/A		

MW359	Downgradient	Yes	1.11	NO	0.104	N/A
MW362	Downgradient	Yes	5.76	NO	1.751	N/A
MW365	Downgradient	Yes	3.57	NO	1.273	N/A
MW368	Downgradient	Yes	9.21	NO	2.220	N/A
MW371	Upgradient	Yes	1.8	NO	0.588	N/A
MW374	Upgradient	Yes	66	NO	4.190	N/A
MW375	Sidegradient	Yes	4.74	NO	1.556	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.009

CV(1)=1.314

K factor=** 2.523

TL(1) = 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

CV(2) = -0.238

K factor**= 2.523

TL(2) = -2.331

LL(2)=N/A

(2)

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.01	-4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.01 0.01	-4.605 -4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.01 0.01 0.001 0.00161	-4.605 -4.605 -4.605 -6.432
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.01 0.01 0.00161 0.001	-4.605 -4.605 -4.605 -6.432 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	No	0.001	N/A	-6.908	N/A
MW365	Downgradient	Yes	0.00212	N/A	-6.156	NO
MW368	Downgradient	No	0.001	N/A	-6.908	N/A
MW371	Upgradient	No	0.001	N/A	-6.908	N/A
MW374	Upgradient	Yes	0.00303	N/A	-5.799	NO
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor=** 2.523

TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.705 S = 0.550 CV(2) = 0.082

K factor=** 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.915
Date Collected	Result	
Date Collected 3/18/2002	Result 1007	6.915
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9 172	6.915 7.427 7.448 5.147
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

(Current	Quarter Data					
W	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
N	1W359	Downgradient	Yes	239	NO	5.476	N/A
N	1W362	Downgradient	Yes	747	NO	6.616	N/A
N	1W365	Downgradient	Yes	480	NO	6.174	N/A
N	1W368	Downgradient	Yes	830	NO	6.721	N/A
N	1W371	Upgradient	Yes	512	NO	6.238	N/A
N	1W374	Upgradient	Yes	667	NO	6.503	N/A
N	1W375	Sidegradient	Yes	340	NO	5.829	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S = 0.072

CV(1) = 1.275

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915

CV(2) = -0.270

K factor**= 2.523

TL(2) = -1.086

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter D	ata
--------------------------	-----

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00123	N/A	-6.701	NO
MW362	Downgradient	Yes	0.00171	N/A	-6.371	NO
MW365	Downgradient	Yes	0.00322	N/A	-5.738	NO
MW368	Downgradient	Yes	0.0013	N/A	-6.645	NO
MW371	Upgradient	Yes	0.00167	N/A	-6.395	NO
MW374	Upgradient	Yes	0.00044	3 N/A	-7.722	NO
MW375	Sidegradient	Yes	0.00064	7 N/A	-7.343	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.138 S = 0.621

CV(1) = 0.546

K factor**= 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

K factor=** 2.523

TL(2) = 1.441

LL(2)=N/A

(2)

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	4.47	YES	1.497	N/A
MW362	Downgradient	Yes	4.07	YES	1.404	N/A
MW365	Downgradient	Yes	2.8	YES	1.030	N/A
MW368	Downgradient	Yes	5.49	YES	1.703	N/A
MW371	Upgradient	Yes	4.89	YES	1.587	N/A
MW374	Upgradient	Yes	0.52	NO	-0.654	N/A
MW375	Sidegradient	Yes	2.23	NO	0.802	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362

MW365

MW368

MW371

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 590.000 S = 248.068 CV(1) = 0.420

K factor=** 2.523

TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.308

S = 0.383 CV(2) = 0.061

K factor=** 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 7.035
Date Collected	Result	
Date Collected 10/8/2002	Result 1136	7.035
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient

MW377 Sidegradient

MW375 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.198

N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	164	NO	5.100	N/A
MW362	Downgradient	Yes	424	NO	6.050	N/A
MW365	Downgradient	Yes	274	NO	5.613	N/A
MW368	Downgradient	Yes	536	NO	6.284	N/A
MW371	Upgradient	Yes	306	NO	5.724	N/A
MW374	Upgradient	Yes	351	NO	5.861	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

181

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.000

S = 0.000

CV(1)=0.000 K

K factor=** 2.523

TL(1) = 2.000

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.693

S= 0.000

CV(2) = 0.000

K factor=** 2.523

TL(2) = 0.693

LL(2)=N/A

(2)

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	2	0.693
1/8/2003	2	0.693
4/3/2003	2	0.693
7/9/2003	2	0.693
10/6/2003	2	0.693
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	` '
Date Collected 10/8/2002	Result 2	0.693
Date Collected 10/8/2002 1/7/2003	Result 2 2	0.693 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2 2 2	0.693 0.693 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2 2 2 2	0.693 0.693 0.693 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2 2 2 2 2 2	0.693 0.693 0.693 0.693

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	C	uri	rent	Q)ua	ırte	r l	Data	
Ī									

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	No	0.5	N/A	-0.693	N/A
MW362	Downgradient	No	0.5	N/A	-0.693	N/A
MW365	Downgradient	Yes	0.168	NO	-1.784	N/A
MW368	Downgradient	No	0.5	N/A	-0.693	N/A
MW371	Upgradient	No	0.5	N/A	-0.693	N/A
MW374	Upgradient	No	0.5	N/A	-0.693	N/A
MW375	Sidegradient	No	0.5	N/A	-0.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612

S = 6.487

CV(1)=0.981 **K factor**=** 2.523

TL(1)= 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.363

S= 1.147

CV(2) = 0.841

K factor=** 2.523

TL(2) = 4.256

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.135
Date Collected	Result	
Date Collected 10/8/2002	Result 23	3.135
Date Collected 10/8/2002 1/7/2003	Result 23 13.9	3.135 2.632
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 23 13.9 14	3.135 2.632 2.639
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 23 13.9 14 14.2	3.135 2.632 2.639 2.653
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 23 13.9 14 14.2 7.92	3.135 2.632 2.639 2.653 2.069

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.118	NO	-2.137	N/A
MW362	Downgradient	Yes	0.179	NO	-1.720	N/A
MW365	Downgradient	: No	0.1	N/A	-2.303	N/A
MW368	Downgradient	Yes	0.241	NO	-1.423	N/A
MW371	Upgradient	Yes	0.222	NO	-1.505	N/A
MW374	Upgradient	Yes	1.08	NO	0.077	N/A
MW375	Sidegradient	Yes	0.0381	NO	-3.268	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.347 **S**= 3.019

CV(1)=0.266

K factor=** 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401 S = 0.237

CV(2) = 0.099

K factor=** 2.523

TL(2)= 2.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.996 2.779 2.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.82	NO	1.340	N/A
MW362	Downgradient	Yes	9.24	NO	2.224	N/A
MW365	Downgradient	Yes	11.5	NO	2.442	N/A
MW368	Downgradient	Yes	24.3	YES	3.190	N/A
MW371	Upgradient	Yes	11.3	NO	2.425	N/A
MW374	Upgradient	Yes	5.09	NO	1.627	N/A
MW375	Sidegradient	Yes	5.51	NO	1.707	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.248 S = 0.222

CV(1) = 0.894

K factor**= 2.523

TL(1) = 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.873 S = 1.068

CV(2) = -0.570

K factor**= 2.523

TL(2)= 0.821

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.518
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 0.596	-0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	-0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	-0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	-0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	-0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00177	NO	-6.337	N/A
MW362	Downgradient	Yes	0.00238	NO	-6.041	N/A
MW365	Downgradient	Yes	0.0198	NO	-3.922	N/A
MW368	Downgradient	Yes	0.00938	NO	-4.669	N/A
MW371	Upgradient	Yes	0.00419	NO	-5.475	N/A
MW374	Upgradient	Yes	0.733	NO	-0.311	N/A
MW375	Sidegradient	Yes	0.00224	NO	-6.101	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

S = 0.010

CV(1) = 1.650

K factor=** 2.523

TL(1) = 0.030

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.108 S = 1.239

CV(2) = -0.203

K factor**= 2.523

TL(2) = -2.983

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.00121	-6.717
4/3/2003	0.001	-6.908
7/9/2003	0.00111	-6.803
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) -6.110
Date Collected	Result	
Date Collected 10/8/2002	Result 0.00222	-6.110
Date Collected 10/8/2002 1/7/2003	Result 0.00222 0.00201	-6.110 -6.210
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.00222 0.00201 0.00159	-6.110 -6.210 -6.444
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.00222 0.00201 0.00159 0.00242	-6.110 -6.210 -6.444 -6.024
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.00222 0.00201 0.00159 0.00242 0.001	-6.110 -6.210 -6.444 -6.024 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0005	N/A	-7.601	N/A
MW362	Downgradient	Yes	0.000536	6 N/A	-7.531	NO
MW365	Downgradient	No	0.0005	N/A	-7.601	N/A
MW368	Downgradient	Yes	0.000975	5 N/A	-6.933	NO
MW371	Upgradient	Yes	0.000418	8 N/A	-7.780	NO
MW374	Upgradient	No	0.0005	N/A	-7.601	N/A
MW375	Sidegradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S= 0.022

CV(1)=0.980

K factor=** 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349 S = 1.109

CV(2) = -0.255

K factor**= 2.523

TL(2) = -1.552

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.05	-2.996
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.005 0.00794	-2.996 -2.996 -2.996 -4.836
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.05 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00122	NO	-6.709	N/A
MW362	Downgradient	Yes	0.0011	NO	-6.812	N/A
MW365	Downgradient	Yes	0.00544	NO	-5.214	N/A
MW368	Downgradient	Yes	0.00096	NO	-6.949	N/A
MW371	Upgradient	Yes	0.00126	NO	-6.677	N/A
MW374	Upgradient	Yes	0.00205	NO	-6.190	N/A
MW375	Sidegradient	Yes	0.00089	5 NO	-7.019	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.281 S = 78.889 CV(1) = 3.541

K factor=** 2.523

TL(1) = 221.319LL(1)=N/A

Statistics-Transformed Background Data

X = 3.642**S**= 1.729

CV(2) = 0.475

K factor**= 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.905
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

MW375 Sidegradient

Yes

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	316	N/A	5.756	YES
MW362	Downgradient	Yes	367	N/A	5.905	YES
MW365	Downgradient	Yes	429	N/A	6.061	YES
MW368	Downgradient	Yes	389	N/A	5.964	YES
MW371	Upgradient	Yes	342	N/A	5.835	YES
MW374	Upgradient	Yes	269	N/A	5.595	YES
	Well No. MW359 MW362 MW365	MW362 Downgradient MW365 Downgradient MW368 Downgradient MW371 Upgradient	Well No. Gradient Detected? MW359 Downgradient Yes MW362 Downgradient Yes MW365 Downgradient Yes MW368 Downgradient Yes MW371 Upgradient Yes	Well No. Gradient Detected? Result MW359 Downgradient Yes 316 MW362 Downgradient Yes 367 MW365 Downgradient Yes 429 MW368 Downgradient Yes 389 MW371 Upgradient Yes 342	Well No. Gradient Detected? Result Result >TL(1)? MW359 Downgradient Yes 316 N/A MW362 Downgradient Yes 367 N/A MW365 Downgradient Yes 429 N/A MW368 Downgradient Yes 389 N/A MW371 Upgradient Yes 342 N/A	Well No. Gradient Detected? Result Result >TL(1)? LN(Result) MW359 Downgradient Yes 316 N/A 5.756 MW362 Downgradient Yes 367 N/A 5.905 MW365 Downgradient Yes 429 N/A 6.061 MW368 Downgradient Yes 389 N/A 5.964 MW371 Upgradient Yes 342 N/A 5.835

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

373

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells	with	Exceedances
MW35	59	

YES

MW362 MW365 MW368

5.922

MW371 MW374

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** PCB, Total **UNITS: UG/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.224

S = 0.207CV(1)=0.922 **K factor**=** 2.523

TL(1) = 0.746

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.647 S = 0.440

CV(2) = -0.267

K factor**= 2.523

TL(2) = -0.537

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/9/2003	0.17	-1.772
10/6/2003	0.17	-1.772
7/13/2004	0.18	-1.715
7/25/2005	0.17	-1.772
4/5/2006	0.18	-1.715
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) -1.772
Date Collected	Result	,
Date Collected 7/9/2003	Result 0.17	-1.772
Date Collected 7/9/2003 10/7/2003	Result 0.17 0.17	-1.772 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.17 0.17 0.18	-1.772 -1.772 -1.715
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.17 0.17 0.18 0.17	-1.772 -1.772 -1.715 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.17 0.17 0.18 0.17 0.18	-1.772 -1.772 -1.715 -1.772 -1.715

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.104	N/A	-2.263	N/A
MW362	Downgradient	No	0.1	N/A	-2.303	N/A
MW365	Downgradient	Yes	0.122	NO	-2.104	N/A
MW368	Downgradient	Yes	0.13	NO	-2.040	N/A
MW371	Upgradient	No	0.0952	N/A	-2.352	N/A
MW374	Upgradient	No	0.0952	N/A	-2.352	N/A
MW375	Sidegradient	No	0.0952	N/A	-2.352	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.159

S = 0.224

CV(1)=1.409

K factor**= 2.523

TL(1) = 0.726

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.134 S = 0.579

CV(2) = -0.272

K factor=** 2.523

TL(2) = -0.672

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/9/2003	0.13	-2.040
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/25/2005	0.09	-2.408
4/5/2006	0.1	-2.303
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.040
Date Collected	Result	
Date Collected 7/9/2003	Result 0.13	-2.040
Date Collected 7/9/2003 10/7/2003	Result 0.13 0.09	-2.040 -2.408
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.13 0.09 0.1	-2.040 -2.408 -2.303
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.13 0.09 0.1 0.1	-2.040 -2.408 -2.303 -2.303
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.13 0.09 0.1 0.1 0.1	-2.040 -2.408 -2.303 -2.303 -2.303

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter	Data
-----------------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.104	N/A	-2.263	N/A
MW362	Downgradient	No	0.1	N/A	-2.303	N/A
MW365	Downgradient	Yes	0.122	N/A	-2.104	NO
MW368	Downgradient	Yes	0.13	N/A	-2.040	NO
MW371	Upgradient	No	0.0952	N/A	-2.352	N/A
MW374	Upgradient	No	0.0952	N/A	-2.352	N/A
MW375	Sidegradient	No	0.0952	N/A	-2.352	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S = 0.295 CV

CV(1) = 0.045

K factor=** 2.904

TL(1) = 7.475

LL(1)=5.7635

Statistics-Transformed Background Data

X= 1.889 **S**=

S = 0.046

CV(2) = 0.024

K factor=** 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/18/2002	Result 5.75	1.749
Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW359	Downgradient	Yes	5.66	YES	1.733	N/A
MW362	Downgradient	Yes	6.5	NO	1.872	N/A
MW365	Downgradient	Yes	6.15	NO	1.816	N/A
MW368	Downgradient	Yes	6.42	NO	1.859	N/A
MW371	Upgradient	Yes	6.54	NO	1.878	N/A
MW374	Upgradient	Yes	6.7	NO	1.902	N/A
MW375	Sidegradient	Yes	6.47	NO	1.867	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of lowered concentration with respect to historical background data.

Wells with Exceedances

MW359

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

S = 0.907

CV(1) = 0.718

K factor=** 2.523

TL(1) = 3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

CV(2) = -32.218

K factor=** 2.523

TL(2) = 1.874

LL(2)=N/A

(2)

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.112
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	0.134	NO	-2.010	N/A
MW362	Downgradient	Yes	0.338	NO	-1.085	N/A
MW365	Downgradient	Yes	0.251	NO	-1.382	N/A
MW368	Downgradient	Yes	1.03	NO	0.030	N/A
MW371	Upgradient	Yes	0.673	NO	-0.396	N/A
MW374	Upgradient	Yes	0.401	NO	-0.914	N/A
MW375	Sidegradient	Yes	0.272	NO	-1.302	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor=** 2.523

TL(1) = 367.800LL(1)=N/A

Statistics-Transformed Background Data

X = 5.146 S = 0.356 CV(2) = 0.069

K factor**= 2.523

TL(2) = 6.044

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.817
Date Collected	Result	
Date Collected 10/8/2002	Result 336	5.817
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	33.6	NO	3.515	N/A
MW362	Downgradient	Yes	131	NO	4.875	N/A
MW365	Downgradient	Yes	49.3	NO	3.898	N/A
MW368	Downgradient	Yes	61.4	NO	4.117	N/A
MW371	Upgradient	Yes	31.2	NO	3.440	N/A
MW374	Upgradient	Yes	109	NO	4.691	N/A
MW375	Sidegradient	Yes	53	NO	3.970	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Sulfate** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

S = 3.153

CV(1) = 0.487

K factor=** 2.523

TL(1)= 14.423

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.794

S = 0.357

CV(2) = 0.199

K factor**= 2.523

TL(2) = 2.694

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
10/0/2003		1.009
Well Number:	MW374	1.009
	MW374	LN(Result)
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
Well Number: Date Collected 10/8/2002	MW374 Result 5	LN(Result)
Well Number: Date Collected 10/8/2002 1/7/2003	MW374 Result 5	LN(Result) 1.609 1.609
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 5 5 5	LN(Result) 1.609 1.609
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 5 5 5 5 6	LN(Result) 1.609 1.609 1.609 1.723

5

7/14/2004

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient utilizing TL(1).

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis

|--|

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	53.2	YES	3.974	N/A
MW362	Downgradient	Yes	32.7	YES	3.487	N/A
MW365	Downgradient	Yes	64.1	YES	4.160	N/A
MW368	Downgradient	Yes	200	YES	5.298	N/A
MW371	Upgradient	Yes	47.7	YES	3.865	N/A
MW374	Upgradient	Yes	7.69	NO	2.040	N/A
MW375	Sidegradient	Yes	25.9	YES	3.254	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.609

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362

MW365

MW368

MW371

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 17.631 S = 24.314 CV(1) = 1.379

K factor=** 2.523

TL(1)= 78.977

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979 CV(2) = 0.422

K factor**= 2.523

TL(2) = 4.788

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	
Date Collected 10/8/2002	Result 90	4.500
Date Collected 10/8/2002 1/7/2003	Result 90 64	4.500 4.159
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 90 64 25	4.500 4.159 3.219
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 90 64 25 16	4.500 4.159 3.219 2.773
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	1.28	N/A	0.247	NO
MW362	Downgradient	Yes	2.28	N/A	0.824	NO
MW365	Downgradient	No	1.89	N/A	0.637	N/A
MW368	Downgradient	Yes	2.06	N/A	0.723	NO
MW371	Upgradient	No	1.88	N/A	0.631	N/A
MW374	Upgradient	Yes	2.59	N/A	0.952	NO
MW375	Sidegradient	No	1.18	N/A	0.166	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor**= 2.523

TL(1)= 797.131 **LL(1)=**N/A

NO

NO

Statistics-Transformed Background Data

X= 4.867 **S**=

 $S= 1.065 \quad CV(2)=0.219$

K factor=** 2.523

TL(2) = 7.554

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

MW374 Upgradient

MW375 Sidegradient

Yes

Yes

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

3.006

1.792

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	6.2	N/A	1.825	NO	
MW362	Downgradient	Yes	18.5	N/A	2.918	NO	
MW365	Downgradient	Yes	21.8	N/A	3.082	NO	
MW368	Downgradient	Yes	4.88	N/A	1.585	NO	
MW371	Upgradient	Yes	5.52	N/A	1.708	NO	
	Well No. MW359 MW362 MW365 MW368	Well No. Gradient MW359 Downgradient MW362 Downgradient MW365 Downgradient MW368 Downgradient	Well No. Gradient Detected? MW359 Downgradient Yes MW362 Downgradient Yes MW365 Downgradient Yes MW368 Downgradient Yes	Well No. Gradient Detected? Result MW359 Downgradient Yes 6.2 MW362 Downgradient Yes 18.5 MW365 Downgradient Yes 21.8 MW368 Downgradient Yes 4.88	Well No. Gradient Detected? Result Result >TL(1)? MW359 Downgradient Yes 6.2 N/A MW362 Downgradient Yes 18.5 N/A MW365 Downgradient Yes 21.8 N/A MW368 Downgradient Yes 4.88 N/A	Well No. Gradient Detected? Result Result >TL(1)? LN(Result) MW359 Downgradient Yes 6.2 N/A 1.825 MW362 Downgradient Yes 18.5 N/A 2.918 MW365 Downgradient Yes 21.8 N/A 3.082 MW368 Downgradient Yes 4.88 N/A 1.585	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

N/A

20.2

6

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072

CV(1)=1.319

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912

CV(2) = -0.265

K factor**= 2.523

TL(2) = -1.138

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00846	N/A	-4.772	NO
MW362	Downgradient	No	0.01	N/A	-4.605	N/A
MW365	Downgradient	No	0.01	N/A	-4.605	N/A
MW368	Downgradient	No	0.01	N/A	-4.605	N/A
MW371	Upgradient	Yes	0.00374	N/A	-5.589	NO
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	Yes	0.00435	N/A	-5.438	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.083

CV(1)=1.380 K

K factor**= 2.523

TL(1) = 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259 S = 0.840

0.840 **CV(2)=-**0.258

K factor**= 2.523

TL(2) = -1.140

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02 -3.912	
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	` '
Date Collected 10/8/2002	Result 0.025	-3.689
Date Collected 10/8/2002 1/7/2003	Result 0.025 0.35	-3.689 -1.050
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.35 0.035	-3.689 -1.050 -3.352
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.025 0.35 0.035 0.02	-3.689 -1.050 -3.352 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.025 0.35 0.035 0.02 0.02	-3.689 -1.050 -3.352 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.01	N/A	-4.605	NO
MW362	Downgradient	No	0.01	N/A	-4.605	N/A
MW365	Downgradient	Yes	0.00907	N/A	-4.703	NO
MW368	Downgradient	Yes	0.00578	N/A	-5.153	NO
MW371	Upgradient	Yes	0.00492	N/A	-5.314	NO
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	Yes	0.00549	N/A	-5.205	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 372.563 S = 1447.319CV(1) = 3.885

K factor**= 2.523

TL(1)= 4024.149 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.736 S = 1.603 CV(2) = 0.586

K factor=** 2.523

TL(2) = 6.780

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 1.609 10 4/22/2002 2.303 7/15/2002 14 2.639 10 10/8/2002 2.303 1/8/2003 10 2.303 4/3/2003 10 2.303 7/8/2003 10 2.303 5800 10/6/2003 8.666 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 14 2.639 10 4/23/2002 2.303 7/16/2002 10 2.303 10/8/2002 10 2.303 10 1/7/2003 2.303 10 4/2/2003 2.303 7/9/2003 18 2.890 10/7/2003 10 2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	1.89	N/A	0.637	NO			
MW360	Downgradient	t No	5	N/A	1.609	N/A			
MW363	Downgradient	t No	5	N/A	1.609	N/A			
MW366	Downgradient	t No	5	N/A	1.609	N/A			
MW369	Upgradient	No	5	N/A	1.609	N/A			
MW372	Upgradient	Yes	7.25	N/A	1.981	NO			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.774CV(1)=1.239**K factor**=** 2.523 TL(1) = 2.578Statistics-Background Data X = 0.625LL(1)=N/A **Statistics-Transformed Background**

Data

X = -0.973 S = 0.935 CV(2) = -0.961

K factor=** 2.523 TL(2) = 1.386

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.255 -1.3664/22/2002 0.2 -1.6097/15/2002 0.322 -1.133 10/8/2002 0.2 -1.609 1/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.689 -0.373Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.61 0.959 4/23/2002 0.2 -1.6097/16/2002 0.131 1.14 10/8/2002 0.862 -0.1491/7/2003 2.32 0.8424/2/2003 0.2 -1.6097/9/2003 0.2 -1.60910/7/2003 -1.609 0.2

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.05	N/A	-2.996	N/A
MW360	Downgradient	No	0.05	N/A	-2.996	N/A
MW363	Downgradient	No	0.05	N/A	-2.996	N/A
MW366	Downgradient	No	0.05	N/A	-2.996	N/A
MW369	Upgradient	Yes	0.0345	N/A	-3.367	NO
MW372	Upgradient	Yes	0.0361	N/A	-3.321	NO
MW366 MW369	Downgradient Upgradient	No Yes	0.05 0.0345	N/A N/A	-2.996 -3.367	N/A NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Boron** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 0.985S = 0.825CV(1)=0.838**K factor**=** 2.523 TL(1) = 3.067Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** X = -0.430 S = 0.990

Data

CV(2) = -2.302

K factor=** 2.523

TL(2) = 2.068

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.693 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6091/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 0.693 2 10/8/2002 0.492 -0.7091/7/2003 0.492-0.7094/2/2003 0.6 -0.5117/9/2003 0.57 -0.56210/7/2003 0.604 -0.504

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.392	NO	-0.936	N/A	
MW360	Downgradient	Yes	0.0398	NO	-3.224	N/A	
MW363	Downgradient	Yes	0.0594	NO	-2.823	N/A	
MW366	Downgradient	Yes	0.295	NO	-1.221	N/A	
MW369	Upgradient	No	0.0133	N/A	-4.320	N/A	
MW372	Upgradient	Yes	0.474	NO	-0.747	N/A	
37/4 D	1. 11 .10 1 3	r - 15					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S= 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1)=N/A Statistics-Transformed Background X = 0.000 S= 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2)=N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 1 0.000 7/15/2002 1 0.000 10/8/2002 1 0.000 1/8/2003 1 0.000 4/3/2003 1 0.000 7/8/2003 1 0.000 10/6/2003 1 0.000Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 0.000 10/8/2002 0.000 1/7/2003 0.0004/2/2003 1 0.000 7/9/2003 0.000

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.406	NO	-0.901	N/A
MW360	Downgradient	Yes	0.163	NO	-1.814	N/A
MW363	Downgradient	Yes	0.145	NO	-1.931	N/A
MW366	Downgradient	Yes	0.474	NO	-0.747	N/A
MW369	Upgradient	Yes	0.397	NO	-0.924	N/A
MW372	Upgradient	Yes	0.614	NO	-0.488	N/A
NI/A D	14 11 416 1 3	T D	1 1 1 1	1 1	1.7 1:1.7	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 32.763 S = 9.391CV(1) = 0.287**K factor**=** 2.523 TL(1)= 56.456 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background**

Data

X = 3.449CV(2) = 0.087S = 0.299

K factor=** 2.523

TL(2) = 4.202

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 29.5 3.384 4/22/2002 29.8 3.395 7/15/2002 25.3 3.231 10/8/2002 21.9 3.086 1/8/2003 20.9 3.040 4/3/2003 22.2 3.100 7/8/2003 22.9 3.131 10/6/2003 21.7 3.077 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 41.5 3.726 4/23/2002 43.6 3.775 7/16/2002 3.699 40.4 10/8/2002 38.8 3.658 1/7/2003 41.1 3.716 4/2/2003 42.9 3.759 7/9/2003 35.1 3.558 10/7/2003 46.6 3.842

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	25.1	NO	3.223	N/A
MW360	Downgradient	Yes	27.5	NO	3.314	N/A
MW363	Downgradient	Yes	25	NO	3.219	N/A
MW366	Downgradient	Yes	32.8	NO	3.490	N/A
MW369	Upgradient	Yes	15.6	NO	2.747	N/A
MW372	Upgradient	Yes	38.4	NO	3.648	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 35.938 S = 3.750CV(1)=0.104**K factor**=** 2.523 TL(1)= 45.399 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background**

Data

X = 3.578 S = 0.089CV(2) = 0.025 **K factor**=** 2.523

TL(2) = 3.803

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 3.555 4/22/2002 35 3.555 7/15/2002 35 3.555 10/8/2002 50 3.912 1/8/2003 35 3.555 4/3/2003 35 3.555 7/8/2003 35 3.555 10/6/2003 35 3.555 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 35 3.555 4/23/2002 35 3.555 7/16/2002 35 3.555 10/8/2002 35 3.555 35 1/7/2003 3.555 4/2/2003 35 3.555 7/9/2003 35 3.555 10/7/2003 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	37.6	NO	3.627	N/A		
MW360	Downgradient	Yes	26.7	NO	3.285	N/A		
MW363	Downgradient	Yes	21.8	NO	3.082	N/A		
MW366	Downgradient	Yes	14.3	NO	2.660	N/A		
MW369	Upgradient	Yes	14.5	NO	2.674	N/A		
MW372	Upgradient	Yes	39.1	NO	3.666	N/A		
NT/A D	1	r						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 44.119 S = 4.554CV(1)=0.103**K factor**=** 2.523 **TL(1)=** 55.607 Statistics-Background Data

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.782 S = 0.099CV(2) = 0.026 **K** factor**= 2.523

TL(2) = 4.033

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 7/15/2002 48.3 3.877 10/8/2002 47.7 3.865 1/8/2003 3.822 45.7 4/3/2003 47.4 3.859 7/8/2003 4.024 55.9 10/6/2003 47.4 3.859 1/7/2004 45.5 3.818 4/7/2004 43.4 3.770 Well Number: MW372 Date Collected Result LN(Result) 7/16/2002 39.8 3.684 10/8/2002 41 3.714 39.4 1/7/2003 3.674 4/2/2003 39.2 3.669 7/9/2003 39.8 3.684 10/7/2003 40 3.689 1/5/2004 43.4 3.770 4/5/2004 42 3.738

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	36.1	NO	3.586	N/A
MW360	Downgradient	Yes	11.6	NO	2.451	N/A
MW363	Downgradient	Yes	23.2	NO	3.144	N/A
MW366	Downgradient	Yes	40.1	NO	3.691	N/A
MW369	Upgradient	Yes	36.1	NO	3.586	N/A
MW372	Upgradient	Yes	46.6	NO	3.842	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.025

CV(1) = 0.845

K factor=** 2.523

TL(1) = 0.077

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.090 S = 1.006

S = 0.021

CV(2) = -0.246

K factor**= 2.523

TL(2) = -1.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138
7/8/2003	0.0541	-2.917
10/6/2003	0.0689	-2.675
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.00158	-3.689 -3.689 -3.689 -6.450
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.00158 0.0147	-3.689 -3.689 -3.689 -6.450 -4.220

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	Yes	0.0171	NO	-4.069	N/A
MW363	Downgradient	Yes	0.000754	4 NO	-7.190	N/A
MW366	Downgradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	Yes	0.00501	NO	-5.296	N/A
MW372	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 482.856 S = 57.603 CV(1) = 0.119

K factor=** 2.523

TL(1)= 628.189 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123 CV(2) = 0.020

K factor=** 2.523

TL(2) = 6.484

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 5.961 388 4/22/2002 404 6.001 7/15/2002 394 5.976 10/8/2002 403 5.999 1/8/2003 520 6.254 4/3/2003 487 6.188 7/8/2003 478 6.170 10/6/2003 476 6.165 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 508 6.230 4/23/2002 501 6.217 7/16/2002 6.229 507 10/8/2002 495 6.205 1/7/2003 508.7 6.232 4/2/2003 515 6.244 7/9/2003 576 6.356 10/7/2003 565 6.337

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
•	MW357	Downgradient	Yes	439	NO	6.084	N/A	
	MW360	Downgradient	Yes	595	NO	6.389	N/A	
	MW363	Downgradient	Yes	405	NO	6.004	N/A	
	MW366	Downgradient	Yes	510	NO	6.234	N/A	
	MW369	Upgradient	Yes	372	NO	5.919	N/A	
	MW372	Upgradient	Yes	597	NO	6.392	N/A	
							_	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.025

S = 0.010

CV(1) = 0.400

K factor=** 2.523

TL(1) = 0.050

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.742 S = 0.307 CV(2) = -0.082

K factor**= 2.523

TL(2) = -2.967

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	,
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.05	-3.689 -3.689 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.05 0.02	-3.689 -3.689 -2.996 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.05 0.02 0.02	-3.689 -3.689 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.000512	2 NO	-7.577	N/A
MW360	Downgradient	Yes	0.000354	4 NO	-7.946	N/A
MW363	Downgradient	Yes	0.000304	4 NO	-8.098	N/A
MW366	Downgradient	Yes	0.000445	5 NO	-7.717	N/A
MW369	Upgradient	Yes	0.00165	NO	-6.407	N/A
MW372	Upgradient	Yes	0.00136	NO	-6.600	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.781
 S= 1.351
 CV(1)=0.759 K factor**= 2.523
 TL(1)=5.190 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.228
 S= 1.065
 CV(2)=4.665 K factor**= 2.523
 TL(2)=2.915 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 5.41 1.688 4/22/2002 1.57 0.451 7/15/2002 -0.2230.8 10/8/2002 1.09 0.086 1/8/2003 2.69 0.990 4/3/2003 2.04 0.713 7/8/2003 1.19 0.174 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.9967/16/2002 0.285 1.33 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.916 -0.094 4/2/2003 0.91 7/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	3.48	NO	1.247	N/A		
MW360	Downgradient	Yes	2.94	NO	1.078	N/A		
MW363	Downgradient	Yes	1.13	NO	0.122	N/A		
MW366	Downgradient	Yes	2.17	NO	0.775	N/A		
MW369	Upgradient	Yes	2.46	NO	0.900	N/A		
MW372	Upgradient	Yes	0.88	NO	-0.128	N/A		
NI/A Dagu	lta identified on 1	Jan Dataata	durina lal	andtami analizaia a	. data validatia	m and syara nat		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 285.188 **S**= 44.908 **CV(1)**=0.157

K factor**= 2.523

TL(1)= 398.489 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

K factor=** 2.523

TL(2) = 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.687
Date Collected	Result	
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	227	NO	5.425	N/A		
MW360	Downgradient	Yes	279	NO	5.631	N/A		
MW363	Downgradient	Yes	239	NO	5.476	N/A		
MW366	Downgradient	Yes	276	NO	5.620	N/A		
MW369	Upgradient	Yes	197	NO	5.283	N/A		
MW372	Upgradient	Yes	323	NO	5.778	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 2.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 2.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 0.693 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 0.693 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.693 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 2 0.693 1/8/2003 2 0.693 2 4/3/2003 0.693 7/8/2003 2 0.693 2 10/6/2003 0.693 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 2 0.693 2 1/7/2003 0.693 2 4/2/2003 0.693 7/9/2003 2 0.693 10/7/2003 0.693

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	0.5	N/A	-0.693	N/A		
MW360	Downgradient	Yes	0.173	NO	-1.754	N/A		
MW363	Downgradient	Yes	0.172	NO	-1.760	N/A		
MW366	Downgradient	No	0.5	N/A	-0.693	N/A		
MW369	Upgradient	No	0.5	N/A	-0.693	N/A		
MW372	Upgradient	Yes	0.169	NO	-1.778	N/A		
NI/A D	1/ 11 // 1 N	T D ()	1 1 1 1		1.4 11.1.41	1 /		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=7.385
 S= 6.991
 CV(1)=0.947
 K factor**= 2.523
 TL(1)= 25.024
 LL(1)=N/A

 Statistics-Transformed Background
 X=1.358
 S= 1.323
 CV(2)=0.974
 K factor**= 2.523
 TL(2)= 4.697
 LL(2)=N/A

Data

Upgradient Wells with Transformed Result

Historical Background Data from

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.656	-0.422
4/22/2002	0.695	-0.364
7/15/2002	7.1	1.960
10/8/2002	21.5	3.068
1/8/2003	18.5	2.918
4/3/2003	14.9	2.701
7/8/2003	11.3	2.425
10/6/2003	14.9	2.701
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.783
Date Collected	Result	,
Date Collected 3/19/2002	Result 5.95	1.783
Date Collected 3/19/2002 4/23/2002	Result 5.95 0.792	1.783 -0.233
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5.95 0.792 1.78	1.783 -0.233 0.577
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5.95 0.792 1.78 0.776	1.783 -0.233 0.577 -0.254
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5.95 0.792 1.78 0.776 3.55	1.783 -0.233 0.577 -0.254 1.267

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	0.1	N/A	-2.303	N/A		
MW360	Downgradient	Yes	4.65	NO	1.537	N/A		
MW363	Downgradient	Yes	0.0653	NO	-2.729	N/A		
MW366	Downgradient	Yes	0.0395	NO	-3.231	N/A		
MW369	Upgradient	Yes	0.0807	NO	-2.517	N/A		
MW372	Upgradient	Yes	0.22	NO	-1.514	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Magnesium **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 12.864 S = 3.505

CV(1)=0.272

K factor=** 2.523

TL(1)= 21.707

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.517 S = 0.290 CV(2) = 0.115

K factor=** 2.523

TL(2) = 3.248

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11.4 2.434 4/22/2002 12 2.485 7/15/2002 10 2.303 10/8/2002 8.62 2.154 1/8/2003 7.89 2.066 4/3/2003 7.97 2.076 7/8/2003 10.3 2.332 10/6/2003 9.14 2.213 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 15.7 2.754 4/23/2002 16.6 2.809 7/16/2002 15.4 2.734 10/8/2002 15.8 2.760 1/7/2003 15.8 2.760 2.797 4/2/2003 16.4 7/9/2003 15.2 2.721 10/7/2003 17.6 2.868

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	10.8	NO	2.380	N/A		
MW360	Downgradient	Yes	9.46	NO	2.247	N/A		
MW363	Downgradient	Yes	11	NO	2.398	N/A		
MW366	Downgradient	Yes	15.6	NO	2.747	N/A		
MW369	Upgradient	Yes	6.5	NO	1.872	N/A		
MW372	Upgradient	Yes	16.2	NO	2.785	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.274X = 0.413

CV(1)=0.664

K factor=** 2.523

TL(1)=1.105

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.226 S = 1.008 CV(2) = -0.822

K factor**= 2.523

TL(2) = 1.317

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.034	-3.381
4/22/2002	0.062	-2.781
7/15/2002	0.436	-0.830
10/8/2002	0.867	-0.143
1/8/2003	0.828	-0.189
4/3/2003	0.672	-0.397
7/8/2003	0.321	-1.136
10/6/2003	0.714	-0.337
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 3/19/2002	Result 0.205	LN(Result) -1.585
Date Collected 3/19/2002 4/23/2002	Result 0.205 0.345	LN(Result) -1.585 -1.064
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.205 0.345 0.21	LN(Result) -1.585 -1.064 -1.561
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.205 0.345 0.21 0.0539	LN(Result) -1.585 -1.064 -1.561 -2.921
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.205 0.345 0.21 0.0539 0.537	LN(Result) -1.585 -1.064 -1.561 -2.921 -0.622

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00188	NO	-6.276	N/A
MW360	Downgradient	Yes	0.251	NO	-1.382	N/A
MW363	Downgradient	Yes	0.168	NO	-1.784	N/A
MW366	Downgradient	Yes	0.00749	NO	-4.894	N/A
MW369	Upgradient	Yes	0.00736	NO	-4.912	N/A
MW372	Upgradient	Yes	0.00372	NO	-5.594	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.010 S= 0.012 CV(1)=1.199 K factor**= 2.523 TL(1)= 0.040 LL(1)=N/A

Statistics-Transformed Background Data

X=-5.698 **S**= 1.607 **CV(2)**=-0.282

K factor**= 2.523 T

TL(2) = -1.643 LI

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.001 -6.908 1/8/2003 0.001 -6.908 4/3/2003 0.001 -6.9087/8/2003 0.001 -6.908 10/6/2003 0.001 -6.908Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.025 -3.689 4/23/2002 0.025 -3.6890.025 7/16/2002 -3.68910/8/2002 0.001 -6.9081/7/2003 0.001-6.908 0.001 -6.908 4/2/2003 7/9/2003 0.00105 -6.85910/7/2003 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.0005	N/A	-7.601	N/A	
MW360	Downgradient	Yes	0.000552	2 N/A	-7.502	NO	
MW363	Downgradient	No	0.0005	N/A	-7.601	N/A	
MW366	Downgradient	No	0.0005	N/A	-7.601	N/A	
MW369	Upgradient	No	0.0005	N/A	-7.601	N/A	
MW372	Upgradient	No	0.0005	N/A	-7.601	N/A	
27/4 72	1. 11 .10 1 37	T					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.021X = 0.024

CV(1) = 0.910

K factor**= 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.246 S = 1.075 CV(2) = -0.253

K factor**= 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.002	N/A	-6.215	N/A	
MW360	Downgradient	Yes	0.00241	NO	-6.028	N/A	
MW363	Downgradient	Yes	0.00107	NO	-6.840	N/A	
MW366	Downgradient	Yes	0.000686	6 NO	-7.285	N/A	
MW369	Upgradient	Yes	0.0091	NO	-4.699	N/A	
MW372	Upgradient	No	0.002	N/A	-6.215	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 74.563 S = 94.243 CV(1) = 1.264

K factor**= 2.523

TL(1)= 312.337 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784 CV(2) = 0.172

K factor**= 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	` '
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

	Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
•	MW357	Downgradient	Yes	298	N/A	5.697	YES	
	MW360	Downgradient	Yes	237	N/A	5.468	YES	
	MW363	Downgradient	Yes	282	N/A	5.642	YES	
	MW366	Downgradient	Yes	250	N/A	5.521	YES	
	MW369	Upgradient	Yes	338	N/A	5.823	YES	
	MW372	Upgradient	Yes	371	N/A	5.916	YES	
	3.7/4 D	1: 11 ::0 1 3	T D			1.7	1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with E	xceedances
--------------	------------

MW357 MW360 MW363

MW366 MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison UNITS: UG/L** PCB, Total **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 0.390S = 0.350CV(1) = 0.897**K factor**=** 2.523 TL(1)=1.272Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background**

Data

X = -1.238 S = 0.737 CV(2) = -0.595

K factor=** 2.523 TL(2) = 0.622

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 0.17 -1.7727/15/2002 -1.7720.17 7/8/2003 1.15 0.140 10/6/2003 0.605 -0.5037/13/2004 0.42 -0.8687/20/2005 0.28 -1.273-1.470 4/4/2006 0.23 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.000 4/23/2002 0.17 -1.772-1.7727/16/2002 0.17 7/9/2003 0.17 -1.77210/7/2003 0.17-1.772 -1.715 7/14/2004 0.18 7/21/2005 0.17 -1.772 -1.715 4/5/2006 0.18

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.099	N/A	-2.313	N/A	
MW360	Downgradient	No	0.1	N/A	-2.303	N/A	
MW363	Downgradient	No	0.102	N/A	-2.283	N/A	
MW366	Downgradient	No	0.099	N/A	-2.313	N/A	
MW369	Upgradient	Yes	0.0402	NO	-3.214	N/A	
MW372	Upgradient	No	0.0952	N/A	-2.352	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison PCB-1242 UNITS: UG/L URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.281

CV(1)=1.361

K factor**= 2.523

TL(1)=1.247

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.835 S = 0.938 CV(2) = -0.511

S = 0.383

K factor**= 2.523

TL(2) = 0.532

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/8/2003	1.15	0.140
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/20/2005	0.1	-2.303
4/4/2006	0.1	-2.303
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/19/2002	Result	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 0.11	0.000 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 0.11 0.11	0.000 -2.207 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003	Result 1 0.11 0.11 0.13	0.000 -2.207 -2.207 -2.040
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003	Result 1 0.11 0.11 0.13 0.09	0.000 -2.207 -2.207 -2.040 -2.408

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.099	N/A	-2.313	N/A
MW360	Downgradient	No	0.1	N/A	-2.303	N/A
MW363	Downgradient	No	0.102	N/A	-2.283	N/A
MW366	Downgradient	No	0.099	N/A	-2.313	N/A
MW369	Upgradient	Yes	0.0402	N/A	-3.214	NO
MW372	Upgradient	No	0.0952	N/A	-2.352	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 6.274 **S**= 0.194

CV(1)=0.031

K factor**= 2.904

TL(1)= 6.837

LL(1)=5.7114

Statistics-Transformed Background Data

X = 1.836 S = 0.031

CV(2) = 0.017

K factor=** 2.904

TL(2)=1.925

LL(2)=1.7467

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 7/15/2002 6.1 1.808 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 1/7/2003 6.26 1.834 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841 10/7/2003 6.4 1.856

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradien	t Yes	5.77	NO	1.753	N/A
MW360	Downgradien	t Yes	6.24	NO	1.831	N/A
MW363	Downgradien	t Yes	5.66	YES	1.733	N/A
MW366	Downgradien	t Yes	5.54	YES	1.712	N/A
MW369	Upgradient	Yes	6.19	NO	1.823	N/A
MW372	Upgradient	Yes	6.13	NO	1.813	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of lowered concentration with respect to historical background data.

Wells with Exceedances

MW363 MW366

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.663
 S= 0.488
 CV(1)=0.293
 K factor**= 2.523
 TL(1)= 2.895
 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.456
 S= 0.362
 CV(2)=0.794
 K factor**= 2.523
 TL(2)= 1.368
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.693 0.793 4/22/2002 2.21 7/15/2002 2 0.693 10/8/2002 0.966 -0.035 1/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 1.62 0.482 0.131 10/6/2003 1.14 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 7/16/2002 0.693 10/8/2002 1.54 0.432 1/7/2003 1.88 0.631 4/2/2003 2.09 0.737 7/9/2003 1.78 0.577 10/7/2003 1.79 0.582

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	1.58	NO	0.457	N/A
MW360	Downgradient	Yes	0.711	NO	-0.341	N/A
MW363	Downgradient	Yes	1.39	NO	0.329	N/A
MW366	Downgradient	Yes	1.99	NO	0.688	N/A
MW369	Upgradient	Yes	0.509	NO	-0.675	N/A
MW372	Upgradient	Yes	1.76	NO	0.565	N/A
NI/A D	14 11 416 1 3	T D	1 1 1 1	1 1	1.7 1:1.7	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.100 S = 11.875 CV(1) = 0.263

K factor=** 2.523

TL(1)= 75.061

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.780 S = 0.242 CV(2) = 0.064

K factor**= 2.523

TL(2) = 4.390

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35.7 3.575 4/22/2002 37.6 3.627 7/15/2002 42.4 3.747 10/8/2002 66.9 4.203 1/8/2003 67.9 4.218 4/3/2003 61.8 4.124 7/8/2003 45.6 3.820 4.079 10/6/2003 59.1 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 37.2 3.616 4/23/2002 38.6 3.653 7/16/2002 35.6 3.572 10/8/2002 37.5 3.624 1/7/2003 34.1 3.529 4/2/2003 34.4 3.538 7/9/2003 44.1 3.786 10/7/2003 43.1 3.764

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	36.9	NO	3.608	N/A
MW360	Downgradient	Yes	84.5	YES	4.437	N/A
MW363	Downgradient	Yes	41.5	NO	3.726	N/A
MW366	Downgradient	Yes	44.9	NO	3.804	N/A
MW369	Upgradient	Yes	48.8	NO	3.888	N/A
MW372	Upgradient	Yes	39	NO	3.664	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW360

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Sulfate** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.031 S = 33.919 CV(1) = 0.753

K factor**= 2.523

TL(1)= 130.609

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.420 S = 0.981 CV(2) = 0.287

K factor**= 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	15.5	2.741
4/22/2002	15.8	2.760
7/15/2002	13.8	2.625
10/8/2002	6.9	1.932
1/8/2003	10.5	2.351
4/3/2003	10.5	2.351
7/8/2003	10.9	2.389
10/6/2003	16.3	2.791
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.272
Date Collected	Result	
Date Collected 3/19/2002	Result 71.7	4.272
Date Collected 3/19/2002 4/23/2002	Result 71.7 74.7	4.272 4.313
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 71.7 74.7 74.1	4.272 4.313 4.305
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 71.7 74.7 74.1 70.5	4.272 4.313 4.305 4.256
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 71.7 74.7 74.1 70.5 75.8	4.272 4.313 4.305 4.256 4.328

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	49.2	NO	3.896	N/A
MW360	Downgradient	Yes	14.1	NO	2.646	N/A
MW363	Downgradient	Yes	36.8	NO	3.605	N/A
MW366	Downgradient	Yes	69.3	NO	4.238	N/A
MW369	Upgradient	Yes	6.71	NO	1.904	N/A
MW372	Upgradient	Yes	81.5	NO	4.401	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 20.821 S = 18.044 CV(1) = 0.867

K factor=** 2.523

TL(1)= 66.344

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.770 S = 1.150 CV(2) = 0.415

K factor**= 2.523

TL(2) = 3.972

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	41.7	3.731
4/22/2002	53.1	3.972
7/15/2002	18.1	2.896
10/8/2002	16.4	2.797
1/8/2003	3.49	1.250
4/3/2003	9.34	2.234
7/8/2003	17.5	2.862
10/6/2003	17	2.833
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.802
Date Collected	Result	
Date Collected 3/19/2002	Result 44.8	3.802
Date Collected 3/19/2002 4/23/2002	Result 44.8 0.802	3.802 -0.221
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 44.8 0.802 19.8	3.802 -0.221 2.986
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 44.8 0.802 19.8 46.1	3.802 -0.221 2.986 3.831
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 44.8 0.802 19.8 46.1 -0.973	3.802 -0.221 2.986 3.831 #Func!

landfill.

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	41.2	NO	3.718	N/A
MW360	Downgradient	No	4.99	N/A	1.607	N/A
MW363	Downgradient	No	11.3	N/A	2.425	N/A
MW366	Downgradient	Yes	46.8	NO	3.846	N/A
MW369	Upgradient	Yes	31.4	NO	3.447	N/A
MW372	Upgradient	Yes	70.9	YES	4.261	N/A
37/4 D	1/ 11 /10 1 N	. B.	1 1 1 1		1 . 1:1 .:	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 3.513S = 4.307CV(1)=1.226**K factor**=** 2.523 **TL(1)=** 14.378 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background**

Data

X = 0.851 S = 0.828 CV(2) = 0.973

K factor**= 2.523

TL(2) = 2.940LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.531 1.7 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 1/8/2003 9 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1.2 0.182 7/16/2002 0.000 1 10/8/2002 1 0.000 1/7/2003 1.6 0.470

1.5

1.5

3

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.578	N/A	-0.548	NO
MW360	Downgradient	Yes	2.06	N/A	0.723	NO
MW363	Downgradient	Yes	0.807	N/A	-0.214	NO
MW366	Downgradient	Yes	0.735	N/A	-0.308	NO
MW369	Upgradient	No	1.47	N/A	0.385	N/A
MW372	Upgradient	No	1.2	N/A	0.182	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.405

1.099

0.405

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

K factor**= 2.523

TL(1) = 230.231LL(1)=N/A

Statistics-Transformed Background Data

X = 3.772 S = 1.023 CV(2) = 0.271

K factor**= 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.215
Date Collected	Result	, ,
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50	5.215 3.912 3.912 3.912 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	5.14	NO	1.637	N/A
MW360	Downgradient	Yes	20	NO	2.996	N/A
MW363	Downgradient	Yes	7	NO	1.946	N/A
MW366	Downgradient	No	10	N/A	2.303	N/A
MW369	Upgradient	Yes	13.3	NO	2.588	N/A
MW372	Upgradient	Yes	9.54	NO	2.255	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Trichloroethene** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 3.594 CV(1)=0.639**K factor**=** 2.523 **TL(1)=** 14.693 Statistics-Background Data X = 5.625LL(1)=N/A **Statistics-Transformed Background** X = 1.571 S = 0.565 CV(2) = 0.360TL(2) = 2.995

Data

K factor**= 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 2.398 4/22/2002 16 2.773 7/15/2002 8 2.079 10/8/2002 3 1.099 1/8/2003 2 0.693 4/3/2003 3 1.099 7/8/2003 3 1.099 2 10/6/2003 0.693 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 5 1.609 4/23/2002 5 1.609 7/16/2002 4 1.386 10/8/2002 6 1.792 5 1/7/2003 1.609 4/2/2003 6 1.792 7/9/2003 5 1.609 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	4.39	N/A	1.479	N/A
MW360	Downgradient	Yes	0.99	N/A	-0.010	N/A
MW363	Downgradient	Yes	1.47	N/A	0.385	N/A
MW366	Downgradient	Yes	5.75	NO	1.749	N/A
MW369	Upgradient	No	0.76	N/A	-0.274	N/A
MW372	Upgradient	Yes	5.32	NO	1.671	N/A
37/4 D	1	r - 15				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.173CV(1)=1.490X = 0.116

K factor**= 2.523

TL(1) = 0.552LL(1)=N/A

Statistics-Transformed Background Data

X = -2.729 S = 1.014 CV(2) = -0.371

K factor**= 2.523

TL(2) = -0.172

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 -2.303 0.1 4/22/2002 0.1 -2.3037/15/2002 0.1 -2.303 10/8/2002 0.025 -3.689 1/8/2003 0.035 -3.352 4/3/2003 0.035 -3.352 7/8/2003 0.02 -3.912 -3.912 10/6/2003 0.02 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.725 -0.3224/23/2002 0.1 -2.3037/16/2002 -2.3030.1 10/8/2002 0.025 -3.6891/7/2003 0.035-3.352 0.035 -3.352 4/2/2003 7/9/2003 0.2 -1.60910/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	No	0.01	N/A	-4.605	N/A
	MW360	Downgradient	No	0.01	N/A	-4.605	N/A
	MW363	Downgradient	No	0.01	N/A	-4.605	N/A
	MW366	Downgradient	Yes	0.00403	N/A	-5.514	NO
	MW369	Upgradient	Yes	0.00393	N/A	-5.539	NO
	MW372	Upgradient	Yes	0.00541	N/A	-5.220	NO
	3.7/4 B	1. 11 .10 1 3	v				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Acetone UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.625 S = 137.818 CV(1) = 2.670

K factor**= 2.523

TL(1)= 399.340 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.777 S = 1.127 CV(2) = 0.406

K factor**= 2.523

TL(2) = 5.621

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	18	2.890
4/23/2002	110	4.700
7/15/2002	10	2.303
10/8/2002	18	2.890
1/8/2003	10	2.303
4/3/2003	10	2.303
7/9/2003	10	2.303
10/6/2003	10	2.303
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 2.197
Date Collected	Result	
Date Collected 3/18/2002	Result 9	2.197
Date Collected 3/18/2002 4/23/2002	Result 9 560	2.197 6.328
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 9 560 10	2.197 6.328 2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 9 560 10 10	2.197 6.328 2.303 2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 9 560 10 10 10	2.197 6.328 2.303 2.303 2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	No	5	N/A	1.609	N/A		
MW361	Downgradient	Yes	2.54	N/A	0.932	NO		
MW364	Downgradient	No	5	N/A	1.609	N/A		
MW367	Downgradient	No	5	N/A	1.609	N/A		
MW370	Upgradient	Yes	4.23	N/A	1.442	NO		
MW373	Upgradient	No	5	N/A	1.609	N/A		
NT/A D	1, 11, 10, 1, 3	T D	1 . 11		1.7			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 9.815**S**= 7.838 CV(1)=0.799**K factor**=** 2.523 **TL(1)=** 29.591 **Statistics-Background Data** LL(1)=N/A **Statistics-Transformed Background** X = 2.072 S = 0.630 CV(2) = 0.304

Data

K factor**= 2.523

TL(2) = 3.662

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 2.313 10.1 4/23/2002 4.46 1.495 7/15/2002 1.884 6.58 10/8/2002 4.9 1.589 1/8/2003 4.47 1.497 4/3/2003 8.65 2.158 7/9/2003 1.297 3.66 10/6/2003 5.38 1.683 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 15.1 2.715 4/23/2002 6.26 1.834 7/16/2002 6.22 1.828 10/8/2002 4.06 1.401 1/7/2003 11.2 2.416 4/2/2003 18.5 2.918 7/9/2003 13.3 2.588 10/7/2003 34.2 3.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	29.2	N/A	3.374	N/A		
MW361	Downgradient	Yes	28.2	N/A	3.339	N/A		
MW364	Downgradient	Yes	23.4	N/A	3.153	N/A		
MW367	Downgradient	No	8.73	N/A	2.167	N/A		
MW370	Upgradient	Yes	102	YES	4.625	N/A		
MW373	Upgradient	Yes	30.6	N/A	3.421	N/A		
37/4 75								

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- LL Lower Tolerance Limit, LL = X (K * S)Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Boron** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.780CV(1)=0.684**K factor**=** 2.523 TL(1) = 3.108Statistics-Background Data X = 1.140LL(1)=N/A **Statistics-Transformed Background** X = -0.235 S = 1.006 CV(2) = -4.287**K factor**=** 2.523 TL(2) = 2.303LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 0.693 4/23/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6091/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 0.693 2 10/8/2002 0.79 -0.2361/7/2003 0.807 -0.2144/2/2003 1.13 0.122 7/9/2003 1.28 0.247 10/7/2003 0.215 1.24

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.483	NO	-0.728	N/A	
MW361	Downgradient	Yes	0.343	NO	-1.070	N/A	
MW364	Downgradient	Yes	0.0321	NO	-3.439	N/A	
MW367	Downgradient	Yes	0.038	NO	-3.270	N/A	
MW370	Upgradient	Yes	0.031	NO	-3.474	N/A	
MW373	Upgradient	Yes	1.62	NO	0.482	N/A	
NT/A D	14 11 416 1 3	T D ()	1 1 1 1		1 4 11 14	1 4	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S= 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1)=N/A Statistics-Transformed Background X = 0.000 S= 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2)=N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 0.000 4/23/2002 1 0.000 7/15/2002 1 0.000 10/8/2002 1 0.000 1/8/2003 1 0.000 4/3/2003 1 0.000 7/9/2003 1 0.000 10/6/2003 1 0.000Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 0.000 10/8/2002 0.000 1/7/2003 0.0004/2/2003 1 0.000 7/9/2003 0.000 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.452	NO	-0.794	N/A		
MW361	Downgradient	Yes	0.437	NO	-0.828	N/A		
MW364	Downgradient	Yes	0.421	NO	-0.865	N/A		
MW367	Downgradient	Yes	0.322	NO	-1.133	N/A		
MW370	Upgradient	Yes	0.371	NO	-0.992	N/A		
MW373	Upgradient	Yes	0.573	NO	-0.557	N/A		
NT/A D	1, 11, 20, 1, 3	r - 15			1 . 1:1 .:	1		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 43.413 S = 13.444 CV(1) = 0.310

K factor**= 2.523

TL(1)= 77.331 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.723 S = 0.323 CV(2) = 0.087

K factor**= 2.523

TL(2) = 4.539

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.550 34.8 4/23/2002 43.4 3.770 7/15/2002 33.2 3.503 10/8/2002 29.2 3.374 1/8/2003 3.444 31.3 4/3/2003 32.4 3.478 7/9/2003 22.9 3.131 10/6/2003 28 3.332 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 61.9 4.126 4/23/2002 59.2 4.081 7/16/2002 47.6 3.863 10/8/2002 46.1 3.831 1/7/2003 49.2 3.896 4/2/2003 57.8 4.057 7/9/2003 52.7 3.965 10/7/2003 64.9 4.173

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	30.2	NO	3.408	N/A			
MW361	Downgradient	Yes	30.2	NO	3.408	N/A			
MW364	Downgradient	Yes	28.9	NO	3.364	N/A			
MW367	Downgradient	Yes	18.6	NO	2.923	N/A			
MW370	Upgradient	Yes	26.2	NO	3.266	N/A			
MW373	Upgradient	Yes	49.3	NO	3.898	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.938 S = 24.732 CV(1) = 0.590

K factor**= 2.523

TL(1)= 104.336 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.658 S = 0.339 CV(2) = 0.093

K factor=** 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	MW370				
Date Collected	Result	LN(Result)				
3/17/2002	35	3.555				
4/23/2002	134	4.898				
7/15/2002	35	3.555				
10/8/2002	35	3.555				
1/8/2003	35	3.555				
4/3/2003	35	3.555				
7/9/2003	35	3.555				
10/6/2003	35	3.555				
Well Number:	MW373					
Well Number: Date Collected	MW373 Result	LN(Result)				
		LN(Result) 3.555				
Date Collected	Result					
Date Collected 3/18/2002	Result 35	3.555				
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850				
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555				
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555				
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	35	NO	3.555	N/A		
MW361	Downgradient	Yes	41.3	NO	3.721	N/A		
MW364	Downgradient	Yes	65.2	NO	4.177	N/A		
MW367	Downgradient	Yes	24.3	NO	3.190	N/A		
MW370	Upgradient	Yes	19.4	NO	2.965	N/A		
MW373	Upgradient	Yes	30.9	NO	3.431	N/A		
NI/A D	1, 11, 10, 1, 3	T D	1 . 11		1.7			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.919 S = 7.524

CV(1)=0.164

K factor=** 2.523

TL(1)= 64.901

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.814 S = 0.165 CV(2) = 0.043

K factor**= 2.523

TL(2) = 4.231

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/15/2002	55.5	4.016
10/8/2002	53.6	3.982
1/8/2003	52.9	3.968
4/3/2003	53.6	3.982
7/9/2003	51.9	3.949
10/6/2003	53	3.970
1/7/2004	53	3.970
4/7/2004	51.6	3.944
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.704
Date Collected	Result	
Date Collected 7/16/2002	Result 40.6	3.704
Date Collected 7/16/2002 10/8/2002	Result 40.6 38.8	3.704 3.658
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 40.6 38.8 39	3.704 3.658 3.664
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 40.6 38.8 39 38.4	3.704 3.658 3.664 3.648
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 40.6 38.8 39 38.4 38.1	3.704 3.658 3.664 3.648 3.640

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	38.7	NO	3.656	N/A		
MW361	Downgradient	Yes	37.1	NO	3.614	N/A		
MW364	Downgradient	Yes	35.6	NO	3.572	N/A		
MW367	Downgradient	Yes	25.9	NO	3.254	N/A		
MW370	Upgradient	Yes	36	NO	3.584	N/A		
MW373	Upgradient	Yes	45	NO	3.807	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.032CV(1)=1.165**K factor**=** 2.523 **TL(1)=** 0.108 Statistics-Background Data X = 0.027LL(1)=N/A **Statistics-Transformed Background**

Data

X = -4.058 S = 1.011 CV(2) = -0.249

K factor**= 2.523 TL(2) = -1.507 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.689 4/23/2002 0.025 -3.6897/15/2002 0.025 -3.689 10/8/2002 0.0174 -4.051 1/8/2003 0.0105 -4.556 0.00931 4/3/2003 -4.6777/9/2003 0.137 -1.9880.0463 10/6/2003 -3.073Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.025 -3.689 4/23/2002 0.034 -3.381 7/16/2002 0.025 -3.68910/8/2002 0.00411-5.494 1/7/2003 0.00344-5.672 -5.605 4/2/2003 0.00368 7/9/2003 0.0405 -3.2060.00843 -4.776 10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current Quarter Data							
_	Well No.	Gradient	Detected?	Result Re	esult >TL(1)?	LN(Result)	LN(Result) >TL(2)	
	MW358	Downgradient	Yes	0.00257	N/A	-5.964	NO	
	MW361	Downgradient	No	0.001	N/A	-6.908	N/A	
	MW364	Downgradient	Yes	0.000393	N/A	-7.842	NO	
	MW367	Downgradient	Yes	0.014	N/A	-4.269	NO	
	MW370	Upgradient	Yes	0.000325	N/A	-8.032	NO	
	MW373	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 608.719 **S**= 156.157 **CV(1)**=0.257

K factor**= 2.523

TL(1)= 1002.702 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor=** 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 6.006 406 4/23/2002 543 6.297 7/15/2002 476 6.165 10/8/2002 441 6.089 1/8/2003 486 6.186 4/3/2003 466 6.144 7/9/2003 479 6.172 6.075 10/6/2003 435 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 661 6.494 4/23/2002 801 6.686 7/16/2002 774 6.652 10/8/2002 680 6.522 1/7/2003 686.5 6.532 4/2/2003 763 6.637 7/9/2003 828 6.719 10/7/2003 814 6.702

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	484	NO	6.182	N/A		
MW361	Downgradient	Yes	490	NO	6.194	N/A		
MW364	Downgradient	Yes	484	NO	6.182	N/A		
MW367	Downgradient	Yes	360	NO	5.886	N/A		
MW370	Upgradient	Yes	427	NO	6.057	N/A		
MW373	Upgradient	Yes	622	NO	6.433	N/A		
37/4 B	1. 11 10 1	r			11.1			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.010 CV(1) = 0.399 K factor** = 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.739 S = 0.308 CV(2) = -0.082 K factor** = 2.523
 TL(2) = -2.963 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.689 4/23/2002 0.025 -3.6897/15/2002 0.05 -2.99610/8/2002 0.02 -3.912 1/8/2003 0.02 -3.912 -3.912 4/3/2003 0.02 7/9/2003 0.02 -3.912 -3.912 10/6/2003 0.02 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.026 -3.650 4/23/2002 0.025 -3.6897/16/2002 0.05 -2.99610/8/2002 0.02 -3.9120.02 1/7/2003 -3.912 0.02 -3.912 4/2/2003 7/9/2003 0.02 -3.912 10/7/2003 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00046	4 NO	-7.676	N/A
MW361	Downgradient	Yes	0.00081	4 NO	-7.114	N/A
MW364	Downgradient	Yes	0.0004	NO	-7.824	N/A
MW367	Downgradient	Yes	0.00044	6 NO	-7.715	N/A
MW370	Upgradient	Yes	0.00091	NO	-7.002	N/A
MW373	Upgradient	Yes	0.00052	3 NO	-7.556	N/A
NT/A D	14 11 416 1 3	T D ()	1 1 1 1		1.4 1:1.4:	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.387

S = 1.153CV(1) = 0.831 **K factor**=** 2.523

TL(1) = 4.295

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.115 S = 1.207 CV(2) = -10.514

K factor=** 2.523

TL(2) = 2.930

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 3/18/2002	Result 3.04	LN(Result)
Date Collected 3/18/2002 4/23/2002	Result 3.04 0.03	LN(Result) 1.112 -3.507
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 3.04 0.03 0.23	LN(Result) 1.112 -3.507 -1.470
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.04 0.03 0.23 0.86	LN(Result) 1.112 -3.507 -1.470 -0.151
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.04 0.03 0.23 0.86 0.21	LN(Result) 1.112 -3.507 -1.470 -0.151 -1.561

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	0.87	NO	-0.139	N/A
	MW361	Downgradient	Yes	2.79	NO	1.026	N/A
	MW364	Downgradient	Yes	1.87	NO	0.626	N/A
	MW367	Downgradient	Yes	3.07	NO	1.122	N/A
	MW370	Upgradient	Yes	3.36	NO	1.212	N/A
	MW373	Upgradient	Yes	2.52	NO	0.924	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 356.188 **S**= 106.752 **CV(1)**=0.300

K factor=** 2.523

TL(1)= 625.523 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor=** 2.523

TL(2)= 6.616

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.057
Date Collected	Result	
Date Collected 3/18/2002	Result 427	6.057
Date Collected 3/18/2002 4/23/2002	Result 427 507	6.057 6.229
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427 507 464	6.057 6.229 6.140
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427 507 464 408	6.057 6.229 6.140 6.011
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427 507 464 408 404	6.057 6.229 6.140 6.011 6.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	264	NO	5.576	N/A
MW361	Downgradient	Yes	263	NO	5.572	N/A
MW364	Downgradient	Yes	251	NO	5.525	N/A
MW367	Downgradient	Yes	179	NO	5.187	N/A
MW370	Upgradient	Yes	179	NO	5.187	N/A
MW373	Upgradient	Yes	340	NO	5.829	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 2.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 2.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 0.693 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 0.693 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 0.693 4/23/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 2 0.693 1/8/2003 2 0.693 2 4/3/2003 0.693 7/9/2003 2 0.693 2 10/6/2003 0.693 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 2 0.693 2 1/7/2003 0.693 2 4/2/2003 0.693 7/9/2003 2 0.693 10/7/2003 0.693

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.5	N/A	-0.693	N/A
MW361	Downgradient	No	0.5	N/A	-0.693	N/A
MW364	Downgradient	No	0.5	N/A	-0.693	N/A
MW367	Downgradient	Yes	0.182	NO	-1.704	N/A
MW370	Upgradient	No	0.5	N/A	-0.693	N/A
MW373	Upgradient	No	0.5	N/A	-0.693	N/A
M/A Dogg	Ita idantified as N	Jan Dataata	durina lal	annatami analizaia a	. data validatia	m and syana nat

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 9.230**S**= 8.841 CV(1)=0.958**K factor**=** 2.523 **TL(1)=** 31.535 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** LL(2)=N/A

Data

X = 1.942 S = 0.713 CV(2) = 0.367

K factor=** 2.523

TL(2) = 3.740

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 7/15/2002 1.258 3.52 10/8/2002 7.45 2.008 1/8/2003 7.04 1.952 4/3/2003 4.64 1.535 7/9/2003 15.8 2.760 10/6/2003 6.49 1.870 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 7/16/2002 10.7 2.370 10/8/2002 3.75 1.322 1/7/2003 3.87 1.353 4/2/2003 3.5 1.253 7/9/2003 7.72 2.044 10/7/2003 1.075 2.93

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.713	NO	-0.338	N/A
MW361	Downgradient	No	0.1	N/A	-2.303	N/A
MW364	Downgradient	Yes	0.0671	NO	-2.702	N/A
MW367	Downgradient	Yes	6.08	NO	1.805	N/A
MW370	Upgradient	No	0.1	N/A	-2.303	N/A
MW373	Upgradient	No	0.1	N/A	-2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Magnesium **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 17.544 S = 5.911

CV(1)=0.337**K factor**=** 2.523 **TL(1)=** 32.458

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.810 S = 0.343 CV(2) = 0.122

K factor=** 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 2.493 12.1 4/23/2002 15.1 2.715 7/15/2002 12.4 2.518 12.2 10/8/2002 2.501 1/8/2003 2.442 11.5 4/3/2003 12.3 2.510 7/9/2003 10 2.303 10/6/2003 12.1 2.493 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 24.8 3.211 4/23/2002 22.7 3.122 7/16/2002 2.934 18.8 10/8/2002 21.1 3.049 19.9 2.991 1/7/2003 4/2/2003 25.5 3.239 7/9/2003 23.3 3.148 10/7/2003 3.292 26.9

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	14.9	NO	2.701	N/A
MW361	Downgradient	Yes	13.2	NO	2.580	N/A
MW364	Downgradient	Yes	13.6	NO	2.610	N/A
MW367	Downgradient	Yes	10.3	NO	2.332	N/A
MW370	Upgradient	Yes	11.1	NO	2.407	N/A
MW373	Upgradient	Yes	18	NO	2.890	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.080S = 0.674CV(1)=0.624**K factor**=** 2.523 TL(1) = 2.780Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** TL(2) = 1.547

Data

X = -0.114 S = 0.658 CV(2) = -5.762

K factor**= 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.244 -1.411 0.599 4/23/2002 1.82 7/15/2002 0.199 1.22 10/8/2002 0.988 -0.012 1/8/2003 -0.3160.729 4/3/2003 0.637 -0.4517/9/2003 2.51 0.920 0.049 10/6/2003 1.05 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.355 -1.0364/23/2002 2.16 0.770 7/16/2002 0.329 1.39 10/8/2002 0.717 -0.3331/7/2003 0.587-0.533-0.607 4/2/2003 0.545 7/9/2003 1.76 0.565 10/7/2003 -0.562 0.57

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
-	MW358	Downgradient	Yes	0.128	NO	-2.056	N/A
	MW361	Downgradient	Yes	0.00333	NO	-5.705	N/A
	MW364	Downgradient	Yes	0.0143	NO	-4.247	N/A
	MW367	Downgradient	Yes	1.49	NO	0.399	N/A
	MW370	Upgradient	Yes	0.00167	NO	-6.395	N/A
	MW373	Upgradient	Yes	0.00263	NO	-5.941	N/A
							_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.012X = 0.010

CV(1)=1.198

K factor=** 2.523

TL(1)= 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.693 S = 1.604 CV(2) = -0.282

K factor**= 2.523

TL(2) = -1.647

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00113	-6.786
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/16/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/7/2003	0.001	-6.908
4/2/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/7/2003	0.001	-6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.0005	N/A	-7.601	N/A
MW361	Downgradient	No	0.0005	N/A	-7.601	N/A
MW364	Downgradient	Yes	0.00041	1 N/A	-7.797	NO
MW367	Downgradient	No	0.0005	N/A	-7.601	N/A
MW370	Upgradient	No	0.0005	N/A	-7.601	N/A
MW373	Upgradient	No	0.0005	N/A	-7.601	N/A
37/4 D	1, 11, 10, 1, 3	T D	1 . 11		1.7	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Nickel UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.022CV(1) = 0.901**K factor**=** 2.523 TL(1) = 0.078Statistics-Background Data X = 0.024LL(1)=N/A **Statistics-Transformed Background**

Data

X = -4.239 S = 1.087CV(2) = -0.256

K factor=** 2.523 TL(2) = -1.497 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.05 -2.9964/23/2002 0.05 -2.9967/15/2002 0.05 -2.99610/8/2002 0.005 -5.298 -5.298 1/8/2003 0.005 4/3/2003 0.005 -5.2987/9/2003 0.0264 -3.634 10/6/2003 0.00971 -4.635 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.05 -2.996 4/23/2002 0.05 -2.9967/16/2002 0.05 -2.99610/8/2002 0.005 -5.298 1/7/2003 0.005-5.298 -5.298 4/2/2003 0.005 7/9/2003 0.0112 -4.492 10/7/2003 0.005 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	0.0104	NO	-4.566	N/A
	MW361	Downgradient	No	0.002	N/A	-6.215	N/A
	MW364	Downgradient	Yes	0.00090	6 NO	-7.006	N/A
	MW367	Downgradient	Yes	0.00527	NO	-5.246	N/A
	MW370	Upgradient	No	0.002	N/A	-6.215	N/A
	MW373	Upgradient	No	0.002	N/A	-6.215	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 46.688 S = 60.986 CV(1) = 1.306

K factor=** 2.523

TL(1)= 200.555 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.829 S = 1.151 CV(2) = 0.301

K factor**= 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	282	N/A	5.642	YES	
MW361	Downgradient	Yes	387	N/A	5.958	YES	
MW364	Downgradient	Yes	317	N/A	5.759	YES	
MW367	Downgradient	Yes	310	N/A	5.737	YES	
MW370	Upgradient	Yes	369	N/A	5.911	YES	
MW373	Upgradient	Yes	318	N/A	5.762	YES	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW361

MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** pН **UNITS: Std Unit LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.159CV(1)=0.025**K factor**=** 2.904 TL(1) = 6.745**Statistics-Background Data** X = 6.283LL(1)=5.8202 **Statistics-Transformed Background**

Data

X = 1.837 S = 0.025 CV(2) = 0.014

K factor=** 2.904

TL(2)=1.911

LL(2)=1.7634

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.841 6.3 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 1/7/2003 6.35 1.848 4/2/2003 6.14 1.815 7/9/2003 6.1 1.808 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	5.66	YES	1.733	N/A
MW361	Downgradien	t Yes	5.59	YES	1.721	N/A
MW364	Downgradien	t Yes	5.58	YES	1.719	N/A
MW367	Downgradien	t Yes	5.93	NO	1.780	N/A
MW370	Upgradient	Yes	6.09	NO	1.807	N/A
MW373	Upgradient	Yes	6.14	NO	1.815	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of lowered concentration with respect to historical background data.

Wells with Exceedances

MW358 MW361 MW364

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Potassium LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.522CV(1)=0.185**K factor**=** 2.523 TL(1) = 4.139Statistics-Background Data X = 2.823LL(1)=N/A **Statistics-Transformed Background** X = 1.024 S = 0.167CV(2) = 0.163TL(2) = 1.445LL(2)=N/A

Data

K factor**= 2.523

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.22 1.169 4/23/2002 3.43 1.233 7/15/2002 2.98 1.092 10/8/2002 2.46 0.900 1/8/2003 2.41 0.880 4/3/2003 2.43 0.888 7/9/2003 2.44 0.892 0.908 10/6/2003 2.48 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 4.34 1.468 4/23/2002 3.04 1.112 7/16/2002 2.93 1.075 10/8/2002 2.3 0.8331/7/2003 2.45 0.896 0.993 4/2/2003 2.7 7/9/2003 0.986 2.68 10/7/2003 2.88 1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	2.27	NO	0.820	N/A	
MW361	Downgradient	Yes	1.83	NO	0.604	N/A	
MW364	Downgradient	Yes	1.99	NO	0.688	N/A	
MW367	Downgradient	Yes	3.08	NO	1.125	N/A	
MW370	Upgradient	Yes	2.37	NO	0.863	N/A	
MW373	Upgradient	Yes	2.19	NO	0.784	N/A	
27/4 72	1	v			11.1		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.544 S = 15.227 CV(1) = 0.295

K factor**= 2.523

TL(1)= 89.962

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.906 S = 0.272 CV(2) = 0.070

K factor**= 2.523

TL(2) = 4.592

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.770
Date Collected	Result	
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	42	NO	3.738	N/A
MW361	Downgradient	Yes	38.2	NO	3.643	N/A
MW364	Downgradient	Yes	43.6	NO	3.775	N/A
MW367	Downgradient	Yes	27.1	NO	3.300	N/A
MW370	Upgradient	Yes	38.1	NO	3.640	N/A
MW373	Upgradient	Yes	40.9	NO	3.711	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 122.381 **S**= 195.095 **CV(1)**=1.594

K factor**= 2.523

TL(1)= 614.606 **LL(1)=**N/A

Statistics-Transformed Background Data

X=3.985 S=1.323 CV(2)=0.332

K factor**= 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	17.4	2.856			
4/23/2002	37.9	3.635			
7/15/2002	15.7	2.754			
10/8/2002	13.4	2.595			
1/8/2003	14.4	2.667			
4/3/2003	18.1	2.896			
7/9/2003	9.6	2.262			
10/6/2003	16.5	2.803			
Well Number:	MW373				
Well Number: Date Collected	MW373 Result	LN(Result)			
		LN(Result) 5.096			
Date Collected	Result				
Date Collected 3/18/2002	Result 163.3	5.096			
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697			
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695			
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706			
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	64.3	N/A	4.164	NO
MW361	Downgradient	Yes	80.1	N/A	4.383	NO
MW364	Downgradient	Yes	74.6	N/A	4.312	NO
MW367	Downgradient	Yes	39	N/A	3.664	NO
MW370	Upgradient	Yes	21.5	N/A	3.068	NO
MW373	Upgradient	Yes	81.3	N/A	4.398	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 13.274 **CV(1)**=1.734 **K factor**=** 2.523 **TL(1)=** 41.146 **Statistics-Background Data** X = 7.655LL(1)=N/A **Statistics-Transformed Background** X = 1.946 S = 0.939 CV(2) = 0.483**K** factor**= 2.523 TL(2) = 3.833LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	10.8	2.380			
4/23/2002	8.53	2.144			
7/15/2002	5.09	1.627			
10/8/2002	4.78	1.564			
1/8/2003	-5.12	#Func!			
4/3/2003	5.11	1.631			
7/9/2003	4.25	1.447			
10/6/2003	6.54	1.878			
Well Number:	MW373				
Well Number: Date Collected		LN(Result)			
		LN(Result) 2.803			
Date Collected	Result				
Date Collected 3/18/2002	Result 16.5	2.803			
Date Collected 3/18/2002 4/23/2002	Result 16.5 3.49	2.803 1.250			
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 16.5 3.49 1.42	2.803 1.250 0.351			
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 16.5 3.49 1.42 -6.06	2.803 1.250 0.351 #Func!			
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 16.5 3.49 1.42 -6.06 -8.41	2.803 1.250 0.351 #Func!			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data									
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
	MW358	Downgradient	Yes	42.8	N/A	3.757	NO		
	MW361	Downgradient	Yes	43.2	N/A	3.766	NO		
	MW364	Downgradient	Yes	30.7	N/A	3.424	NO		
	MW367	Downgradient	No	1.73	N/A	0.548	N/A		
	MW370	Upgradient	Yes	96.2	N/A	4.566	YES		
	MW373	Upgradient	No	-15.9	N/A	#Error	N/A		
	AT/A D	1, 11, 20, 1, 3	T D	1 . 11		1.1	1		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 6.169 **S**= 12.072 **CV(1)**=1.957

K factor**= 2.523

TL(1)= 36.626 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 1.069 S = 1.014

 $S= 1.014 \quad CV(2)=0.948$

K factor**= 2.523

TL(2) = 3.626

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	1.2	0.182
4/23/2002	4.3	1.459
7/15/2002	2.6	0.956
10/8/2002	2.3	0.833
1/8/2003	3	1.099
4/3/2003	1.2	0.182
7/9/2003	2.6	0.956
10/6/2003	1.7	0.531
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.095
Date Collected	Result	
Date Collected 3/18/2002	Result 1.1	0.095
Date Collected 3/18/2002 4/23/2002	Result 1.1 17.5	0.095 2.862
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1.1 17.5 49	0.095 2.862 3.892
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1.1 17.5 49 2.9	0.095 2.862 3.892 1.065
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1.1 17.5 49 2.9 3.9	0.095 2.862 3.892 1.065 1.361

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.819	N/A	-0.200	NO
MW361	Downgradient	Yes	0.688	N/A	-0.374	NO
MW364	Downgradient	Yes	0.731	N/A	-0.313	NO
MW367	Downgradient	Yes	0.468	N/A	-0.759	NO
MW370	Upgradient	No	1.3	N/A	0.262	N/A
MW373	Upgradient	No	1.14	N/A	0.131	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: ug/L Total Organic Halides (TOX) LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

K factor=** 2.523

TL(1)= 277.798 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.971 S = 0.950 CV(2) = 0.239

K factor**= 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	50	3.912			
4/23/2002	228	5.429			
7/15/2002	88	4.477			
10/8/2002	58	4.060			
1/8/2003	72.4	4.282			
4/3/2003	26.6	3.281			
7/9/2003	16.4	2.797			
10/6/2003	31.1 3.437				
Well Number:	MW373				
Well Number: Date Collected	MW373 Result	LN(Result)			
		LN(Result) 3.912			
Date Collected	Result				
Date Collected 3/18/2002	Result 50	3.912			
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620			
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176			
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331			
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	4.16	NO	1.426	N/A
MW361	Downgradient	Yes	8.7	NO	2.163	N/A
MW364	Downgradient	Yes	5.5	NO	1.705	N/A
MW367	Downgradient	Yes	4.78	NO	1.564	N/A
MW370	Upgradient	Yes	12.5	NO	2.526	N/A
MW373	Upgradient	Yes	19.9	NO	2.991	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Trichloroethene LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X= 12.188 **S**= 6.950 CV(1)=0.570**K factor**=** 2.523 **TL(1)=** 29.721 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background**

Data

X = 2.305 S = 0.687CV(2) = 0.298 **K** factor**= 2.523

TL(2) = 4.039

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 19 2.944 4/23/2002 17 2.833 7/15/2002 15 2.708 10/8/2002 18 2.890 1/8/2003 17 2.833 4/3/2003 18 2.890 7/9/2003 15 2.708 10/6/2003 16 2.773 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 7/16/2002 1.099 3 10/8/2002 4 1.386 1/7/2003 6 1.792 4/2/2003 5 1.609 7/9/2003 1.792 6 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current						
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
,	MW358	Downgradient	Yes	4.9	N/A	1.589	N/A
	MW361	Downgradient	Yes	7.18	NO	1.971	N/A
	MW364	Downgradient	Yes	6.12	NO	1.812	N/A
	MW367	Downgradient	Yes	2.79	N/A	1.026	N/A
	MW370	Upgradient	No	0.79	N/A	-0.236	N/A
	MW373	Upgradient	Yes	5.53	NO	1.710	N/A
	3.7/4 D	10 11 00 1 3	T D	1		1.7	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.037CV(1) = 0.673**K factor**=** 2.523 TL(1) = 0.147Statistics-Background Data X = 0.055LL(1)=N/A **Statistics-Transformed Background** X = -3.131 S = 0.691TL(2) = -1.388

Data

CV(2) = -0.221

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 -2.303 0.1 4/23/2002 0.1 -2.3037/15/2002 0.1 -2.303 10/8/2002 0.025 -3.6891/8/2003 0.035 -3.352 4/3/2003 0.035 -3.352 7/9/2003 0.02 -3.912 -3.912 10/6/2003 0.02 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.1 -2.303 4/23/2002 0.1 -2.3037/16/2002 -2.3030.1 10/8/2002 0.025 -3.689 1/7/2003 0.035-3.352 0.035 -3.352 4/2/2003 7/9/2003 0.0234 -3.75510/7/2003 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW358	Downgradient	Yes	0.00476	NO	-5.348	N/A
	MW361	Downgradient	No	0.01	N/A	-4.605	N/A
	MW364	Downgradient	Yes	0.0334	NO	-3.399	N/A
	MW367	Downgradient	Yes	0.0135	NO	-4.305	N/A
	MW370	Upgradient	Yes	0.0042	NO	-5.473	N/A
	MW373	Upgradient	Yes	0.00413	NO	-5.489	N/A
							_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

Current Background Comparison

UCRS Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 32.919 S = 12.357 CV(1) = 0.375

K factor**= 2.523

TL(1)= 64.096

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.431

S = 0.363CV(2) = 0.106 K factor**= 2.523

TL(2) = 4.347

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 7/18/2016 42.2 3.742 10/19/2016 42.1 3.740 1/18/2017 43.1 3.764 4/18/2017 39.1 3.666 7/20/2017 40.3 3.696 10/3/2017 42.1 3.740 1/22/2018 38.1 3.640 4/12/2018 62.5 4 135

4/12/2010	02.3	4.133
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/18/2016	21	3.045
10/19/2016	21.7	3.077
1/19/2017	23.8	3.170
4/18/2017	21.6	3.073
7/20/2017	21.5	3.068
10/3/2017	22	3.091
1/22/2018	24.2	3.186
4/12/2018	21.4	3.063

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No	o. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW36	8 Downgradier	nt Ves	76.9	VES	4 343	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Dissolved Oxygen

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Back	kground Data
-----------------	--------------

$$X = 2.571$$

$$TL(1) = 6.777$$

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.798

S = 0.534

CV(2)=0.670

UNITS: mg/L

K factor**= 2.523

TL(2)= 2.145

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 7/18/2016 3.65 1.295 10/19/2016 2.2 0.788 1/18/2017 2.41 0.8804/18/2017 3.43 1.233 7/20/2017 3.51 1.256 10/3/2017 1.82 0.599 1/22/2018 2.8 1.030 4/12/2018 7.85 2.061

Well Number:	MW374	
Date Collected	Result	LN(Result)
7/18/2016	1	0.000
10/19/2016	3.39	1.221
1/19/2017	1.43	0.358
4/18/2017	1.52	0.419
7/20/2017	1.95	0.668
10/3/2017	1.12	0.113
1/22/2018	1.39	0.329
4/12/2018	1.67	0.513

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	4.47	NO	1.497	N/A
MW362	Downgradien	t Yes	4.07	NO	1.404	N/A
MW365	Downgradien	t Yes	2.8	NO	1.030	N/A
MW368	Downgradien	t Yes	5.49	NO	1.703	N/A
MW371	Upgradient	Yes	4.89	NO	1.587	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.798

CV(1) = 0.460

K factor**= 2.523

TL(1)= 21.163

UCRS

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.175

S= 0.483 **CV(2)**=0.222

S = 4.505

K factor**= 2.523

TL(2) = 3.395

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 7/18/2016 13.4 2.595 10/19/2016 15 2.708 1/18/2017 16.1 2.779 14.2 4/18/2017 2.653 7/20/2017 13.8 2.625 10/3/2017 14.8 2.695 1/22/2018 14.4 2.667 4/12/2018 10.3 2.332

.,,		
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/18/2016	5.33	1.673
10/19/2016	5.83	1.763
1/19/2017	6.04	1.798
4/18/2017	5.08	1.625
7/20/2017	5.32	1.671
10/3/2017	6.22	1.828
1/22/2018	5.91	1.777
4/12/2018	5.03	1.615

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW368	Downgradien	ıt Yes	24 3	YES	3 190	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

Current Background Comparison UCRS

Oxidation-Reduction Potential

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: mV

Statistics-Background Data

X = 290.875 S = 91.502 CV(1) = 0.315

K factor**= 2.523

TL(1)= 521.735 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.625S = 0.324 CV(2) = 0.058

K factor**= 2.523

TL(2) = 6.442

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/18/2016	441	6.089
10/19/2016	370	5.914
1/18/2017	410	6.016
4/18/2017	257	5.549
7/20/2017	364	5.897
10/3/2017	375	5.927
1/22/2018	339	5.826
4/12/2018	365	5.900
1/12/2010	303	3.700
Well Number:	MW374	3.900
.,,	MW374	LN(Result)
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
Well Number: Date Collected 7/18/2016	MW374 Result 193	LN(Result) 5.263
Well Number: Date Collected 7/18/2016 10/19/2016	MW374 Result 193 241	LN(Result) 5.263 5.485
Well Number: Date Collected 7/18/2016 10/19/2016 1/19/2017	MW374 Result 193 241 187	LN(Result) 5.263 5.485 5.231
Well Number: Date Collected 7/18/2016 10/19/2016 1/19/2017 4/18/2017	MW374 Result 193 241 187 193	LN(Result) 5.263 5.485 5.231 5.263
Well Number: Date Collected 7/18/2016 10/19/2016 1/19/2017 4/18/2017 7/20/2017	MW374 Result 193 241 187 193 188	LN(Result) 5.263 5.485 5.231 5.263 5.236

331

4/12/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	316	NO	5.756	N/A
MW362	Downgradient	Yes	367	NO	5.905	N/A
MW365	Downgradient	Yes	429	NO	6.061	N/A
MW368	Downgradient	Yes	389	NO	5.964	N/A
MW371	Upgradient	Yes	342	NO	5.835	N/A
MW374	Upgradient	Yes	269	NO	5.595	N/A
MW375	Sidegradient	Yes	373	NO	5.922	N/A

Conclusion of Statistical Analysis on Current Data

5.802

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Current Background Comparison UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

pН

X = 6.664

CV(1) = 0.036

K factor**= 2.904

TL(1) = 7.355

LL(1)=5.9733

Statistics-Transformed Background Data

X= 1.896

S= 0.036 **CV(2)**=0.019

S = 0.238

K factor**= 2.904

TL(2) = 2.000

LL(2)=1.7925

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 7/18/2016 6.45 1.864 10/19/2016 1.893 6.64 1/18/2017 1.890 6.62 4/18/2017 6.67 1.898 7/20/2017 6.7 1.902 10/3/2017 6.59 1.886 1/22/2018 6.64 1.893 4/10/0010 1 000

4/12/2018	6.1	1.808
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/18/2016	7.26	1.982
10/19/2016	6.89	1.930
1/19/2017	6.5	1.872
4/18/2017	6.71	1.904
7/20/2017	6.85	1.924
10/3/2017	6.73	1.907
1/22/2018	6.65	1.895
4/12/2018	6.63	1.892

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< td=""><td>,</td><td>LN(Result) >TL(2)? LN(Result) <ll(2)?< td=""></ll(2)?<></td></ll(1)?<>	,	LN(Result) >TL(2)? LN(Result) <ll(2)?< td=""></ll(2)?<>
MW359	Downgradien	t Yes	5.66	YES	1.733	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW359

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of lowered concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=15.353 S= 21.124 CV(1)=1.376

K factor**= 2.523

TL(1)= 68.649

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.352

S = 0.745 CV(2) = 0.317

K factor**= 2.523

TL(2) = 4.231

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 7/18/2016 27.6 3.318 10/19/2016 14.8 2.695 1/18/2017 2.573 13.1 13.9 4/18/2017 2.632 7/20/2017 14 2.639 10/3/2017 10 2.303 1/22/2018 11 2.398 4/12/2018 91.6 4.517 Well Number: MW374 Date Collected Result LN(Result) 7/18/2016 6.25 1.833 10/19/2016 6.18 1.821

4.83

5.71

6.31

6.78

6.34

7.24

1/19/2017

4/18/2017

7/20/2017

10/3/2017

1/22/2018

4/12/2018

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	53.2	N/A	3.974	NO
MW362	Downgradient	Yes	32.7	N/A	3.487	NO
MW365	Downgradient	Yes	64.1	N/A	4.160	NO
MW368	Downgradient	Yes	200	N/A	5.298	YES
MW371	Upgradient	Yes	47.7	N/A	3.865	NO
MW375	Sidegradient	Yes	25.9	N/A	3.254	NO

Conclusion of Statistical Analysis on Current Data

1.575

1.742

1.842

1.914

1.847

1.980

Wells with Exceedances

MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 $\overline{\text{CV}}$ Coefficient-of-Variation, $\overline{\text{CV}} = S/X$ If $\overline{\text{CV}}$ is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

Current Background Comparison URGA

UNITS: mV Oxidation-Reduction Potential

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 321.750 S = 56.187 CV(1) = 0.175

K factor**= 2.523

TL(1)= 463.510 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.759S = 0.179 CV(2) = 0.031

K factor**= 2.523

TL(2) = 6.210

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/14/2016 323 5.778 10/19/2016 5.900 365 5.943 1/18/2017 381 4/18/2017 271 5.602 7/20/2017 376 5.930 10/3/2017 399 5.989 1/22/2018 346 5.846 4/11/2018 397 5.984

Well Number: MW372 Date Collected Result LN(Result) 7/18/2016 248 5.513 10/19/2016 242 5.489 1/19/2017 263 5.572 4/18/2017 5.545 256 7/20/2017 300 5.704 10/3/2017 358 5.881 1/22/2018 275 5.617 4/12/2018 348 5.852

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradien	t Yes	298	NO	5.697	N/A
MW360	Downgradien	t Yes	237	NO	5.468	N/A
MW363	Downgradien	t Yes	282	NO	5.642	N/A
MW366	Downgradien	t Yes	250	NO	5.521	N/A
MW369	Upgradient	Yes	338	NO	5.823	N/A
MW372	Upgradient	Yes	371	NO	5.916	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.257

CV(1)=0.025

K factor**= 2.904

TL(1) = 6.706

LL(1)=5.8080

Statistics-Transformed Background Data

X = 1.833

S = 0.025 CV(2

S = 0.155

CV(2) = 0.013

K factor**= 2.904

TL(2) = 1.905

LL(2)=1.7621

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/14/2016	6.42	1.859
10/19/2016	6.4	1.856
1/18/2017	6.23	1.829
4/18/2017	6.01	1.793
7/20/2017	6.2	1.825
10/3/2017	6.12	1.812
1/22/2018	6.21	1.826
4/11/2018	6.34	1.847

4/11/2016	0.34	1.04/
Well Number:	MW372	
Date Collected	Result	LN(Result)
7/18/2016	6.64	1.893
10/19/2016	6.34	1.847
1/19/2017	6.02	1.795
4/18/2017	6.25	1.833
7/20/2017	6.24	1.831
10/3/2017	6.22	1.828
1/22/2018	6.29	1.839
4/12/2018	6.18	1.821

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data	l				
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>, ,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	, ,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW363	Downgradien	t Yes	5.66	YES	1.733	N/A
MW366	Downgradien	t Yes	5.54	YES	1.712	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of lowered concentration with respect to current background data.

Wells with Exceedances

MW363 MW366

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.181 S = 7.527 CV(1) = 0.147

K factor**= 2.523

TL(1)= 70.173

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.926 **S**= 0.136 **CV(2)**= 0.035

K factor**= 2.523

TL(2) = 4.268

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected LN(Result) Result 7/14/2016 58.9 4.076 10/19/2016 3.955 52.2 72 1/18/2017 4.277 4/18/2017 62 4.127 7/20/2017 54 3.989 10/3/2017 50.3 3.918 1/22/2018 48.5 3.882 4/11/2010

4/11/2018	49.2	3.896
Well Number:	MW372	
Date Collected	Result	LN(Result)
7/18/2016	48.5	3.882
10/19/2016	49.7	3.906
1/19/2017	43.4	3.770
4/18/2017	48	3.871
7/20/2017	42.8	3.757
10/3/2017	47.5	3.861
1/22/2018	45.5	3.818
4/12/2018	46.4	3.837

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

V	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW360	Downgradien	t Yes	84 5	YES	4 437	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW360

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 48.442 S = 52.160 CV(1) = 1.077

K factor**= 2.523

TL(1)= 180.041

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.451

S = 0.934CV(2) = 0.271 K factor**= 2.523

TL(2) = 5.806

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/14/2016 10.7 2.370 10/19/2016 83.3 4.422 1/18/2017 3.296 27 9.22 4/18/2017 2.221 7/20/2017 34.2 3.532 10/3/2017 70.8 4.260 1/22/2018 38.8 3.658 4/11/2018 142 4.956

Well Number: MW372 Date Collected Result LN(Result) 7/18/2016 35.4 3.567 10/19/2016 10.3 2.332 1/19/2017 24.7 3.207 4/18/2017 9.55 2.257 7/20/2017 30.2 3.408 10/3/2017 195 5.273 1/22/2018 17.3 2.851 4/12/2018 36.6 3.600

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Ouarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	70.9	N/A	4 261	NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 37.187 S = 25.685 CV(1) = 0.691

K factor=** 2.523

TL(1)= 101.990

LRGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.354 S = 0.792 CV(2) = 0.236

K factor**= 2.523

TL(2) = 5.352

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/18/2016 58 4.060 10/19/2016 19.1 2.950 1/18/2017 44.8 3.802 4/18/2017 65.7 4.185 7/20/2017 84.6 4.438 10/3/2017 69 4.234 1/22/2018 71.9 4.275

4/11/2018	50	3.912
Well Number:	MW373	
Date Collected	Result	LN(Result)
7/18/2016	18.1	2.896
10/19/2016	17.8	2.879
1/19/2017	15.6	2.747
4/18/2017	14.6	2.681
7/20/2017	16.7	2.815
10/3/2017	20.6	3.025
1/22/2018	23.5	3.157
4/12/2018	4.99	1.607

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

,	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW370	Ungradient	Yes	102	YES	4 625	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

Current Background Comparison

Oxidation-Reduction Potential

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: mV

Statistics-Background Data

X = 350.563 S = 57.412 CV(1) = 0.164

K factor**= 2.523

TL(1)= 495.413 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.847

S = 0.162CV(2) = 0.028

Current Quarter Data

K factor**= 2.523

TL(2) = 6.257

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

well Number.		
Date Collected	Result	LN(Result)
7/18/2016	483	6.180
10/19/2016	402	5.996
1/18/2017	412	6.021
4/18/2017	278	5.628
7/20/2017	343	5.838
10/3/2017	392	5.971
1/22/2018	334	5.811
4/11/2018	368	5.908
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.820
Date Collected	Result	,
Date Collected 7/18/2016	Result 337	5.820
Date Collected 7/18/2016 10/19/2016	Result 337 322	5.820 5.775
Date Collected 7/18/2016 10/19/2016 1/19/2017	Result 337 322 279	5.820 5.775 5.631
Date Collected 7/18/2016 10/19/2016 1/19/2017 4/18/2017	Result 337 322 279 260	5.820 5.775 5.631 5.561
Date Collected 7/18/2016 10/19/2016 1/19/2017 4/18/2017 7/20/2017	Result 337 322 279 260 309	5.820 5.775 5.631 5.561 5.733

Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	282	NO	5.642	N/A
MW361	Downgradient	Yes	387	NO	5.958	N/A
MW364	Downgradient	Yes	317	NO	5.759	N/A
MW367	Downgradient	Yes	310	NO	5.737	N/A
MW370	Upgradient	Yes	369	NO	5.911	N/A
MW373	Upgradient	Yes	318	NO	5.762	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 6.201 **S**= 0.144

CV(1)=0.023

K factor**= 2.904

TL(1)= 6.620

LL(1)=5.7827

Statistics-Transformed Background Data

X = 1.824

S = 0.023 CV

MW364 Downgradient

Yes

5.58

CV(2) = 0.013

K factor**= 2.904

TL(2)= 1.893

LL(2)=1.7562

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/18/2016 5.8 1.758 10/19/2016 6.29 1.839 1/18/2017 1.818 6.16 4/18/2017 6.31 1.842 7/20/2017 6.19 1.823 10/3/2017 6.13 1.813 1/22/2018 6.12 1.812

6.1	1.808		
MW373			
Result	LN(Result)		
6.5	1.872		
6.31	1.842		
6.25	1.833		
6.21	1.826		
6.24	1.831		
6.24	1.831		
6.19	1.823		
6.18	1.821		
	MW373 Result 6.5 6.31 6.25 6.21 6.24 6.24 6.19		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>,</th><th colspan="2">LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>			
MW358	Downgradien	t Yes	5.66	YES	1.733	N/A			
MW361	Downgradien	t Yes	5 59	YES	1 721	N/A			

YES

1.719

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of lowered concentration with respect to current background data.

Wells with Exceedances

N/A

MW358 MW361 MW364

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the

UNITS: pCi/L

Statistics-Background Data

Technetium-99

LL, that is statistically significant evidence of elevated or lowered concentration in that well. X = 56.745 S = 38.319 CV(1) = 0.675

K factor**= 2.523

TL(1)= 153.424

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.785

S = 0.773CV(2) = 0.204 K factor**= 2.523

TL(2) = 5.735

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/18/2016 93.2 4.535 10/19/2016 31.7 3.456 1/18/2017 82.8 4.416 99.1 4.596 4/18/2017 7/20/2017 120 4.787 10/3/2017 103 4.635 1/22/2018 73.9 4.303 4/11/2018 107 4.673

Well Number:	MW373	
Date Collected	Result	LN(Result)
7/18/2016	23.7	3.165
10/19/2016	19.9	2.991
1/19/2017	33.1	3.500
4/18/2017	26.8	3.288
7/20/2017	9.12	2.210
10/3/2017	29.6	3.388
1/22/2018	24.8	3.211
4/12/2018	30.2	3.408

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Wel	l No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
M	W370	Ungradient	Yes	96.2	NO	4 566	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

October 8, 2018

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an Environmental Scientist, with a bachelor's degree in science, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the third quarter 2018 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Watson

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED—QUARTERLY, 3rd CY 2018

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2018 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on July 24, 2018. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling for laboratory analysis.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 6.22 × 10⁻⁴ ft/ft and 7.25 × 10⁻⁴ ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 5.93 × 10⁻⁴ ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for July 2018, the groundwater flow direction in the immediate area of the landfill ranges from north to northeastward.

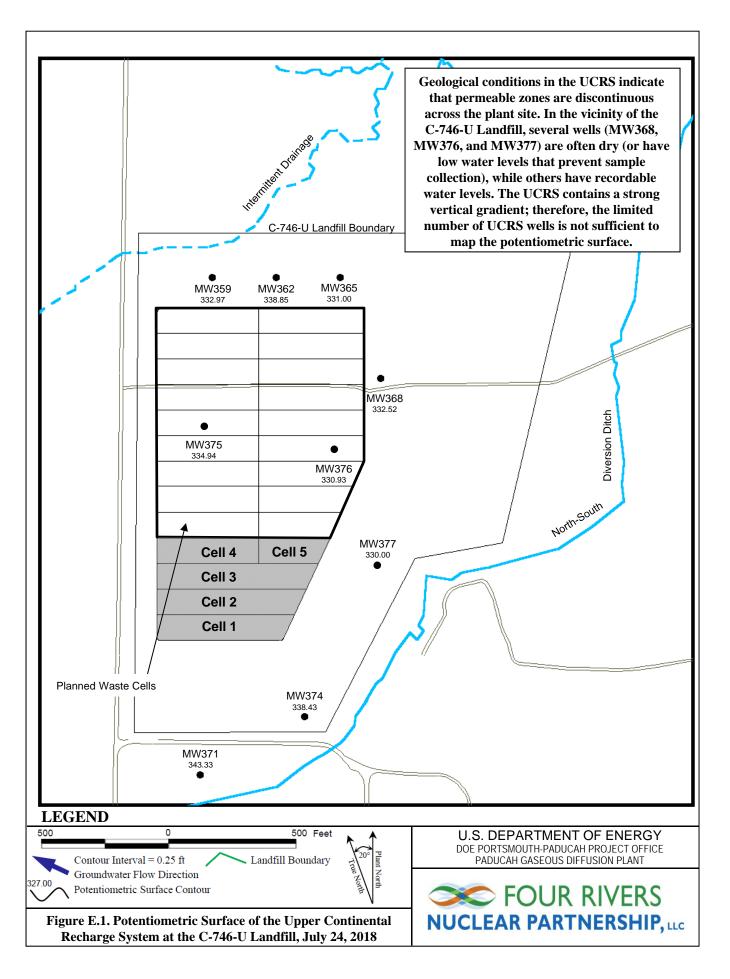


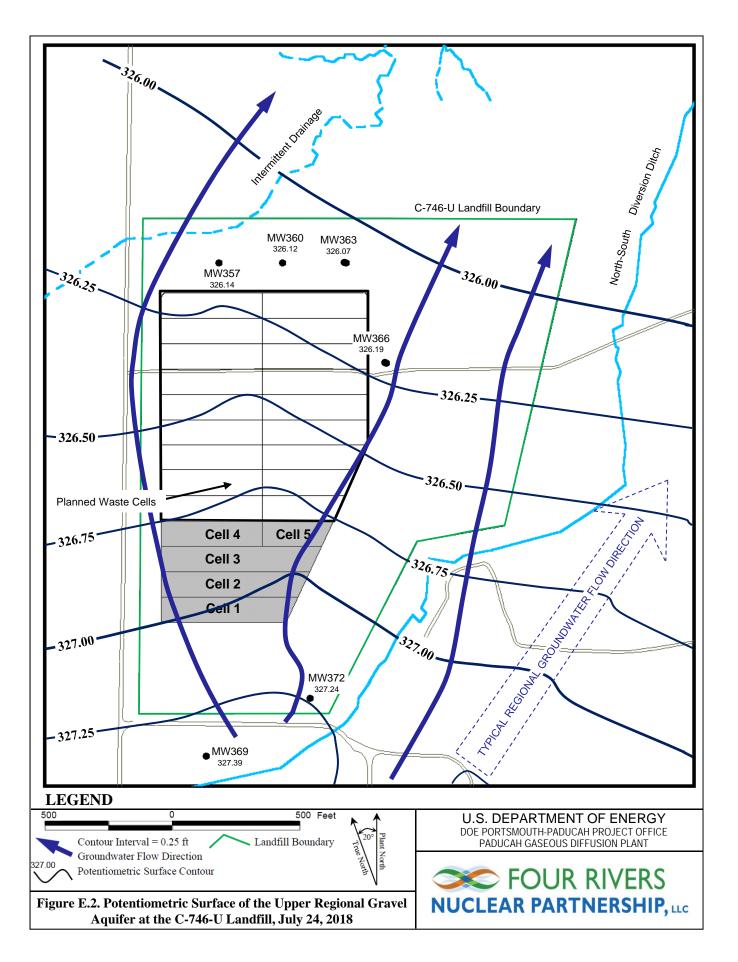
Table E.1. C-746-U Landfill Third Quarter 2018 (July) Water Levels

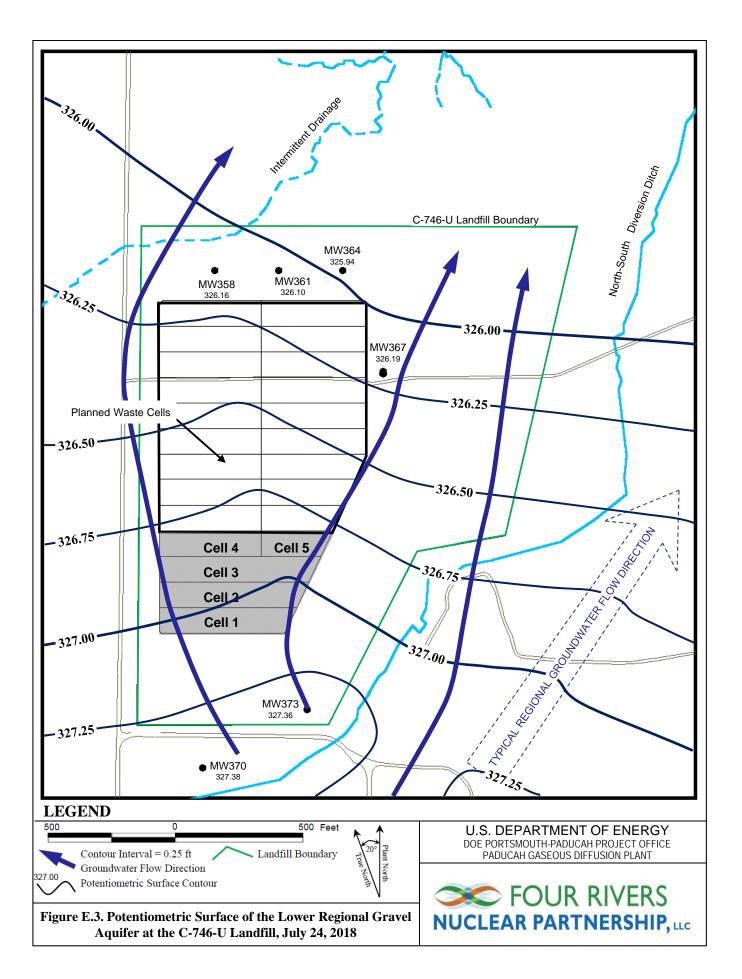
C-746-U Landfill (July 2018) Water Levels										
							Rav	w Data	*Corrected Data	
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
			_	(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
7/24/2018	7:13	MW357	URGA	368.99	29.99	0.00	42.85	326.14	42.85	326.14
7/24/2018	7:15	MW358	LRGA	369.13	29.99	0.00	42.97	326.16	42.97	326.16
7/24/2018	7:14	MW359	UCRS	369.11	29.99	0.00	36.14	332.97	36.14	332.97
7/24/2018	7:11	MW360	URGA	362.30	29.99	0.00	36.18	326.12	36.18	326.12
7/24/2018	7:09	MW361	LRGA	361.54	29.99	0.00	35.44	326.10	35.44	326.10
7/24/2018	7:10	MW362	UCRS	362.04	29.99	0.00	23.19	338.85	23.19	338.85
7/24/2018	6:58	MW363	URGA	368.84	29.99	0.00	42.77	326.07	42.77	326.07
7/24/2018	6:54	MW364	LRGA	368.45	29.99	0.00	42.51	325.94	42.51	325.94
7/24/2018	6:56	MW365	UCRS	368.37	29.99	0.00	37.37	331.00	37.37	331.00
7/24/2018	7:04	MW366	URGA	369.27	29.99	0.00	43.08	326.19	43.08	326.19
7/24/2018	7:03	MW367	LRGA	369.66	29.99	0.00	43.47	326.19	43.47	326.19
7/24/2018	7:01	MW368	UCRS	369.27	29.99	0.00	36.75	332.52	36.75	332.52
7/24/2018	7:24	MW369	URGA	364.48	29.99	0.00	37.09	327.39	37.09	327.39
7/24/2018	7:26	MW370	LRGA	365.35	29.99	0.00	37.97	327.38	37.97	327.38
7/24/2018	7:25	MW371	UCRS	364.88	29.99	0.00	21.55	343.33	21.55	343.33
7/24/2018	7:23	MW372	URGA	359.52	29.99	0.00	32.28	327.24	32.28	327.24
7/24/2018	7:21	MW373	LRGA	359.95	29.99	0.00	32.59	327.36	32.59	327.36
7/24/2018	7:22	MW374	UCRS	359.71	29.99	0.00	21.28	338.43	21.28	338.43
7/24/2018	7:19	MW375	UCRS	370.53	29.99	0.00	35.59	334.94	35.59	334.94
7/24/2018	8:08	MW376	UCRS	370.61	30.00	-0.01	39.69	330.92	39.68	330.93
7/24/2018	7:17	MW377	UCRS	365.92	29.99	0.00	35.92	330.00	35.92	330.00
Initial Barometric Pressure 29.99										

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

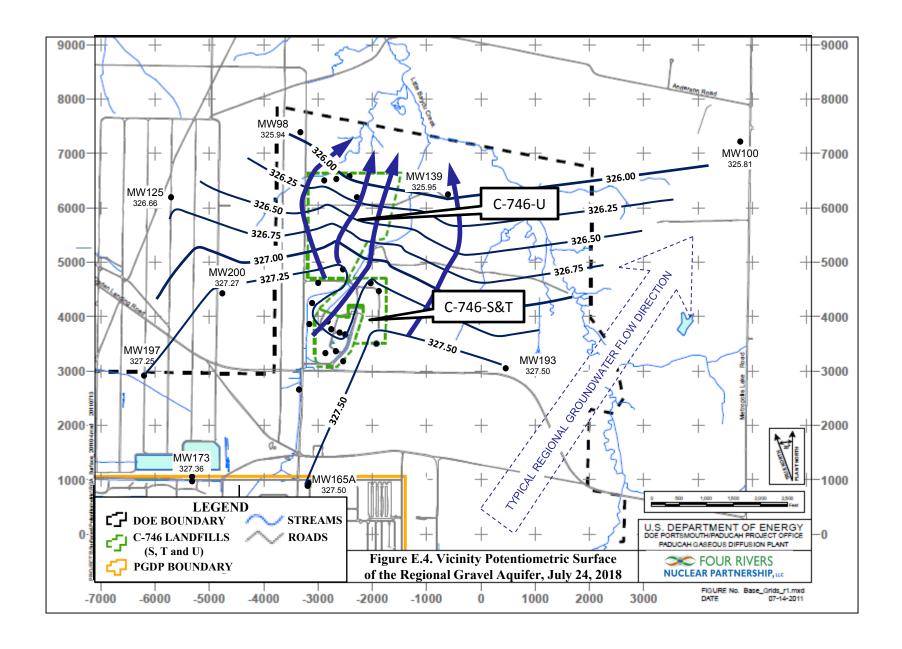
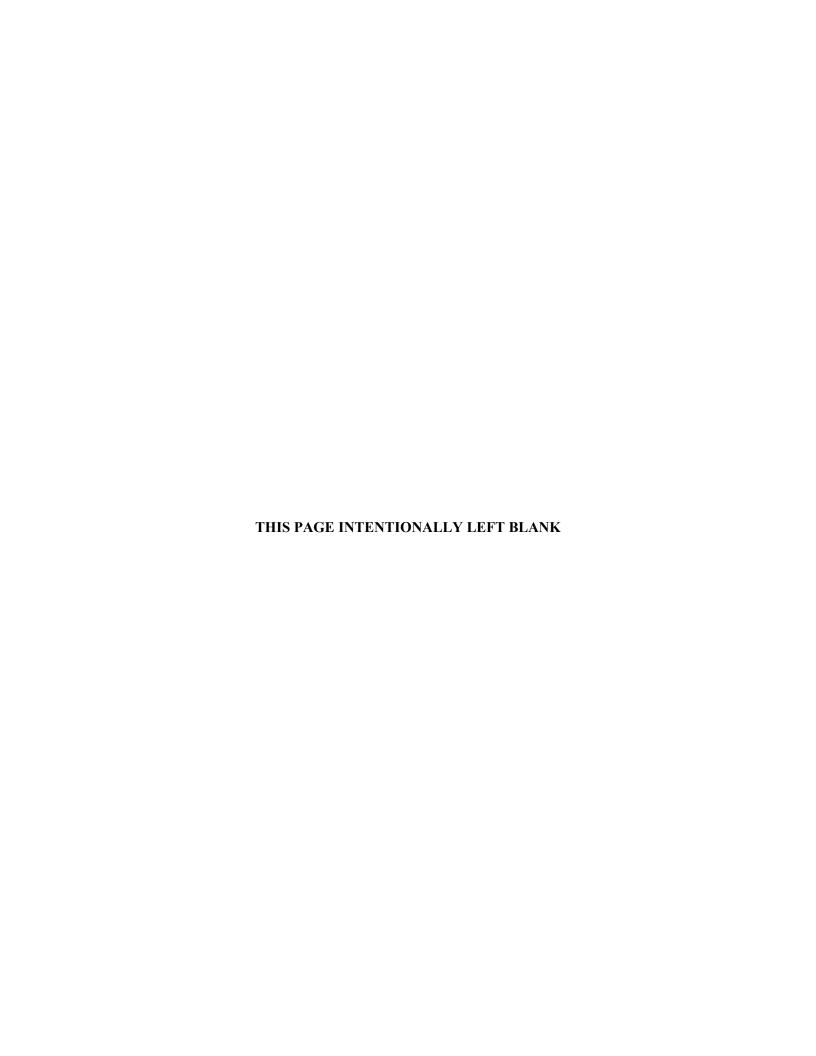



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	6.22×10^{-4}
Beneath Landfill—Lower RGA	7.25×10^{-4}
Vicinity	5.93 × 10 ⁻⁴

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	c Discharge (q)	Average	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.451	1.59×10^{-4}	1.81	6.37×10^{-4}
425	0.150	0.265	9.34×10^{-5}	1.06	3.73×10^{-4}
Lower RGA					
725	0.256	0.525	1.86×10^{-4}	2.10	7.42×10^{-4}
425	0.150	0.308	1.09×10^{-4}	1.23	4.35×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the third quarter 2018 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW360 MW372
Lower Regional Gravel Aquifer	Technetium-99	MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

8/27/2018

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4795	MW361	Trichloroethene	8260B	7.18	ug/L	5
8004-4797	MW364	Trichloroethene	8260B	6.12	ug/L	5
8004-0982	MW366	Trichloroethene	8260B	5.75	ug/L	5
8004-4818	MW370	Beta activity	9310	102	pCi/L	50
8004-4808	MW372	Trichloroethene	8260B	5.32	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	5.53	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Groundwater Flow System	I			UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003	L										*	*			L.,			<u> </u>			
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*			*							
Quarter 3, 2004						*										*					
Quarter 3, 2005						*															
Quarter 4, 2005						*															
ALPHA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2009																					
ALUMINUM																					
Quarter 3, 2003											*										
BETA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004	1	<u> </u>	ļ	ļ							ļ		ļ	ļ			ļ	<u> </u>	ļ		
Quarter 4, 2004		<u> </u>																<u> </u>			
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007										•											
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007										•											
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008										•											
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																		W"W			
Quarter 3, 2012	1																				
Quarter 4, 2012	T																				
Quarter 1, 2013	1																				
Quarter 3, 2013	1		1	1							1		1	1			1		1		7
Quarter 4, 2013	1		1	1							1		1	1			1		1		
Quarter 1, 2014	1	\vdash													Ħ			\vdash			
Quarter 4, 2014	1																				
Quarter 1, 2015	1	\vdash																\vdash			
Quarter 2, 2015	1	 	 	 							 		 	 	-		 	 	 		
Quarter 4, 2015	1	 	 	 							 		 	 		ι-	 	 			
Quarter 3, 2016	+	\vdash			-		-	-							-	1		\vdash	-		_
Quarter 4, 2016	+	\vdash			-		-	-							 	1		\vdash		-	_
Quarter 2, 2017	+													-							
Quarter 3, 2017 Quarter 3, 2017	1		 	 							 		 	 			 		 		
Quarter 4, 2017	1		 	 							 		 	 			 		 		
Quarter 1, 2018	1	1	-	-							-		-	-	-	1	-	1			
	1	-	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>		<u> </u>			-	<u> </u>	-			
Quarter 2, 2018	1	1	-	-							-		-	-		1	-	1	-		
Quarter 3, 2018																					
BROMIDE Quarter 2, 2004													*								
Quarter 2, 2004													*								
CALCIUM Overter 2, 2002										*											
Quarter 3, 2003	₩	1	-	-						*	-		-	-		1	-	1	-		_
Quarter 2, 2005	₩	₩	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	324	!	<u> </u>	₩	<u> </u>	 	*
Quarter 3, 2006	₩	₩	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	*	!	<u> </u>	₩	<u> </u>	 	
Quarter 2, 2008	₽	 	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>	-	<u> </u>	<u> </u>	*	<u> </u>	<u> </u>	 	<u> </u>		
Quarter 3, 2009										_					*					Щ	

Groundwater Flow System	1			UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM																					
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010	t														*						
Quarter 1, 2011	l														*						
Quarter 2, 2011	t														*						
Quarter 3, 2011	1																				*
Quarter 4, 2011	1														*						*
Quarter 1, 2012	1														*						*
Quarter 2, 2012	1														*						*
	1																				*
Quarter 3, 2012	1														*						*
Quarter 4, 2012	-														*						
Quarter 1, 2013															*						*
Quarter 2, 2013															*						
Quarter 3, 2013															*						*
Quarter 4, 2013															*						
Quarter 2, 2014															*						*
Quarter 3, 2014															*				L_		*
Quarter 4, 2014															*						
Quarter 2, 2015															*						
Quarter 3, 2015	Ī														*	1					
Quarter 4, 2015															*						
Quarter 1, 2016	1														*						
Quarter 2, 2016	t										l -	l -		 	*	1	 	 	 	l -	
Quarter 2, 2017	*															1					
Quarter 1, 2018	*	<u> </u>	<u> </u>			<u> </u>				-	 	 	<u> </u>	 	-	 	 				
Quarter 3, 2018	*																				
CARBON DISULFIDE																					
Quarter 3, 2003	<u> </u>									*											<u> </u>
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006						*															
Quarter 3, 2010		*									*										
Quarter 4, 2010														*							
Quarter 1, 2011															*						
CHEMICAL OXYGEN DEMA	ND																				
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003	1					*				*	*										
Quarter 3, 2004						***				*	-4-										
Quarter 3, 2004 Quarter 3, 2005	 					*				*	 	 		 	*	*	 	 	*	 	
	 					*					 	 		 	-π'		 	*	*	 	
Quarter 4, 2005	\vdash	<u> </u>	<u> </u>			不					 	 	<u> </u>	<u> </u>	<u> </u>	 	<u> </u>	不		 	
Quarter 1, 2006	1	<u> </u>	<u> </u>			<u> </u>				ļ	 	 	<u> </u>	 	 	!	 	*	*	 	
Quarter 4, 2016	1	<u> </u>	<u> </u>			<u> </u>				ļ	4	 	<u> </u>	 	 	!	 	木	 	 	
Quarter 1, 2017											*										
CHLORIDE																					
Quarter 1, 2006	<u> </u>										<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>		*	
Quarter 2, 2014															*						
COBALT																					
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	
Quarter 1, 2004														*							
Quarter 2, 2016														*							
CONDUCTIVITY																					
Quarter 4, 2002										*											
Quarter 1, 2003	1									*											
Quarter 2, 2003	t									*	*										
Quarter 4, 2003	t									*	-	 		1	1	1	1	1	1	 	
Quarter 1, 2004	t	 	 	\vdash		 	\vdash			*	 	1	 								
Quarter 1, 2004 Quarter 2, 2004	1-	<u> </u>	<u> </u>			<u> </u>				*	-	-	<u> </u>	-	-	-	-	-	<u> </u>	-	
Quarter 2, 2004 Quarter 3, 2004	1-	<u> </u>	<u> </u>			<u> </u>				*	-	-	<u> </u>	-	-	-	-	-	<u> </u>	-	
Quarter 3, 2004 Quarter 1, 2005	1—	-	-			-				-	-	-	—	-	*	1	-	-	<u> </u>	-	
Quarter 1, 2005 Quarter 2, 2005	1-	<u> </u>	<u> </u>			<u> </u>				 	-	 	<u> </u>	-	*	-	-	-	<u> </u>	 	
	1-	<u> </u>	<u> </u>			*				 	 	 	<u> </u>	-	₩.	-	-	-	*	 	
Quarter 3, 2005 Quarter 4, 2005	l —					*				-	-	-		-	*	1	-	*	*	-	
Quarter 4, 2005 Quarter 1, 2006	1													-	*		-	-π'	-		—
Quarter 1, 2000									_	_			_		_ ★	_					_

Groundwater Flow System				UCR	S							URG	A					LRG	A		_
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY																					
Quarter 2, 2006															*						
Quarter 3, 2006															*						<u> </u>
Quarter 1, 2007															*						<u> </u>
Quarter 2, 2007 Quarter 3, 2007	1														*						
Quarter 4, 2007	1			-	-		-				-	-	-		*		-				—
Quarter 1, 2008	1														*						
Quarter 2, 2008															*						
Quarter 3, 2008															*						
Quarter 4, 2008	1														*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010	1-	<u> </u>		<u> </u>	<u> </u>		<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	*		<u> </u>	<u> </u>			<u> </u>
Quarter 1, 2011	1-	<u> </u>		<u> </u>	<u> </u>		<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	*		<u> </u>	<u> </u>			
Quarter 2, 2011	1—	<u> </u>		<u> </u>	<u> </u>		<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	*		<u> </u>	<u> </u>			<u> </u>
Quarter 3, 2011	1-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	*		<u> </u>	<u> </u>	<u> </u>		
Quarter 4, 2011	1—	 		 	 		 		-		 	 	 	alle:	*		 	 			
Quarter 1, 2012	1	 		 	 		 				 	 	 	*	*		 	 			
Quarter 2, 2012 Quarter 3, 2012	1-	-		-	-		-				-	-	-	-	*		-	-			
Quarter 4, 2012	-														*						
Quarter 1, 2013	1														*						\vdash
Quarter 2, 2013	1			-									-		*						
Quarter 3, 2013	1														*						
Quarter 4, 2013															*						
Quarter 1, 2014	1														*						
Quarter 2, 2014															*						
Quarter 3, 2014															*						
Quarter 4, 2014	1														*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016															*						
DISSOLVED OXYGEN					34	14				44											
Quarter 1, 2003					*	*				*											_
Quarter 3, 2003	1			-	*		-			*	-	-	-				-				-
Quarter 4, 2003	1				*																\vdash
Quarter 1, 2004 Quarter 2, 2004	1			-	不		-	*			-	-	-			*	-				\vdash
Quarter 1, 2005					*			~								~					\vdash
Quarter 2, 2005	1			-	т-			*					-								
Quarter 1, 2006	1				*			-11													
Quarter 2, 2006	1				*			*													\Box
Quarter 3, 2006	1	1		1	*		1	*			1	1	1	1			1	1			
Quarter 4, 2006	1	1		1	*		1	Ė	*		1	1	1	1			1	1			
Quarter 2, 2007	1				*			*													
Quarter 3, 2007	1				*			*	*												
Quarter 1, 2008	1				*														*		
Quarter 2, 2008								*	*												
Quarter 3, 2008								*													
Quarter 1, 2009							*														
Quarter 2, 2009					*			*	*												
Quarter 3, 2009						*		*	*												
Quarter 1, 2010					*		*														
Quarter 2, 2010					*	*		*	*											*	*
Quarter 3, 2010					*	*															
Quarter 4, 2010							*					*								*	
Quarter 1, 2011				L		*							L								
Quarter 2, 2011					*	*	*	*	*					*							

DISSOINED DOXYGEN	Groundwater Flow System				UCR	RS							URG	A					LRG	A		
DISSOLVED ONYGEN Quarter 1, 2012	Gradient																					U
Quarter 1, 2011	Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2, 2012	DISSOLVED OXYGEN																					
Quarter 1, 2012	Quarter 3, 2011						*			*												
Quarter 2, 2012								*														
Quarter 1, 2012		*			*	*	*		*													
Quarter 4, 2012		-			-1-	-4-			***													
Quarter 1, 2013		1					***			*												
Ounter 2, 2013		-					*															
Ounter 3, 2013 Ounter 2, 2014 Ounter 2, 2014 Ounter 2, 2014 Ounter 3, 2015 Ounter 2, 2016 Ounter 2, 2017 Ounter 2, 2018 Ounter 2, 2018 Ounter 2, 2018 Ounter 2, 2008 Ounter 2, 2000 Ounter 3, 2000 Ounter		-					木	44														
Ounter 4, 2013 Ounter 2, 2014 Ounter 2, 2014 Ounter 3, 2014 Ounter 3, 2014 Ounter 2, 2015 Ounter 4, 2016 Ounter 2, 2017 Ounter 2, 2018 Ounter 2, 2019 Ounter 2, 2009 Ounter 2, 2009 Ounter 2, 2009 Ounter 2, 2009 Ounter 2, 2010 Ounter 3, 2010 Ounter 4, 2011 Ounter 3, 2010 Ounter 3, 2010 Ounter 3, 2010 Ounter 4, 2011 Ounter 3, 2010 Ounter 4, 2010 Ounter 3, 2010 Ounter 3, 2010 Ounter 4, 2010 Ounter 5, 2010 Ounter 6, 2018 Ounter 6, 2018 Ounter 7, 2018 Ounter 7, 2018 Ounter 7, 2018 Ounter 8, 2018 Ounter 8, 2018 Ounter 9, 2018 Ounter 9, 2018 Ounter 9, 2018 Ounter		-							L													
Ounter 2, 2014 Ounter 3, 2014 Ounter 3, 2015 Ounter 3, 2015 Ounter 3, 2015 Ounter 3, 2015 Ounter 2, 2015 Ounter 3, 2015 Ounter 3, 2016 Ounter 3, 2017 Ounter 3, 2017 Ounter 3, 2017 Ounter 3, 2017 Ounter 4, 2017 Ounter 4, 2017 Ounter 4, 2017 Ounter 4, 2018 Ounter 3, 2018 Ounter 3, 2018 Ounter 4, 2008 Ounter 4, 2003 Ounter 4, 2003 Ounter 4, 2003 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2007 Ounter 4, 2009 Ounter 6, 2009 Ounter 7, 2009 Ounter 7, 2009 Ounter 8, 2009 Ounter 8, 2009 Ounter 9, 2009		*				*		*	*													
Ounter 3 : 2014 Ounter 4 : 2014 Ounter 2 : 2015 Ounter 4 : 2015 Ounter 3 : 2015 Ounter 4 : 2015 Ounter 4 : 2015 Ounter 4 : 2016 Ounter 2 : 2016 Ounter 2 : 2016 Ounter 2 : 2016 Ounter 3 : 2017 Ounter 3 : 2018 Ounter 3 : 2008 Ounter 3 : 2009 Ounter 1 : 2009 Ounter 4 : 2008 Ounter 4 : 2008 Ounter 4 : 2009 Ounter 5 : 2009 Ounter 6 : 2009 Ounter 6 : 2009 Ounter 7 : 2009 Ounter 6 : 2009 Ounter 7 : 2009 Ounter 6 : 2009 Ounter 7 : 2009 Ounter 7 : 2009 Ounter 8 : 2009 Ounter 8 : 2009 Ounter 8 : 2009 Ounter 9 : 2009 Ounter 9 : 200																					*	
Ounter 2, 2015 Ounter 3, 2015 Ounter 3, 2015 Ounter 1, 2016 Ounter 1, 2016 Ounter 1, 2016 Ounter 1, 2016 Ounter 2, 2016 Ounter 2, 2016 Ounter 2, 2016 Ounter 3, 2017 Ounter 3, 2018 Ounter 3, 2008 Ounter 3, 2008 Ounter 4, 2009 Ounter 5, 2009 Ounter 6, 2009 Ounter 7, 2009 Ounter 6, 2009 Ounter 7, 2009 Ounter 8, 2009 Ounter 8, 2009 Ounter 9, 2009 Ounter	Quarter 2, 2014	*				*	*	*	*	*									*			
Owater 2, 2015 Owater 4, 2015 Owater 4, 2015 Owater 4, 2016 Owater 4, 2016 Owater 2, 2016 Owater 3, 2016 Owater 4, 2016 Owater 4, 2017 Owater 2, 2018 Owater 3, 2018 Owater 4, 2019 Owater 2, 2019 Owater	Quarter 3, 2014	*				*	*	*														
Owarier 3, 2015	Quarter 4, 2014						*															
Ounter 4, 2015	Quarter 2, 2015					*	*	*	*													
Owarter 1, 2016	Quarter 3, 2015					*	*		*													
Ounter 1, 2016 Ounter 2, 2016 Ounter 3, 2016 Ounter 3, 2016 Ounter 4, 2016 Ounter 1, 2017 Ounter 2, 2017 Ounter 3, 2017 Ounter 4, 2017 Ounter 4, 2018 Ounter 2, 2018 Ounter 2, 2018 Ounter 2, 2018 Ounter 3, 2018 Ounter 4, 2008 Ounter 4, 2009 Ounter 4, 2008 Ounter 4, 2006 Ounter 2, 2009 Ounter 3, 2009 Ounter 4, 2008 Ounter 3, 2009 Ounter 2, 2009 Ounter 3, 2009 Ounter 3, 2009 Ounter 3, 2009 Ounter 4, 2010 Ounter 3, 2010 Ounter 3, 2010 Ounter 4, 2010 Ounter 3, 2010 Ounter 4, 2010 Ounter 2, 2010 Ounter 3, 2010 Ounter 4, 2010 Ounter 4, 2010 Ounter 4, 2010 Ounter 4, 2011 Ounter 2, 2011 Ounter 4, 2011 Ounter 2, 2011 Ounter 4, 2014 Ounter 2, 2015 Ounter 4, 2016 Ounter 3, 2010 Ounter 4, 2016 Ounter 1, 2016 Ounter 3, 2010 Ounter 2, 2010 Ounter 2, 2010 Ounter 3, 2010 Ounter 4, 2016 Ounter 3, 2010 Ounter 4, 2010 Ounter 3, 2010 Ounter 4, 2010 Ounter 3, 2010 Ounter 4, 2010 Ounter 3, 2010 Ounter 3, 2010 Ounter 4, 2010 Ounter 3, 2010 Ounter 4, 2010 Ounter 3, 2010 Ounter 4, 2010 Ounter 3, 2010 Ounter 4, 2014 Ounter 3, 2010 Ounter 3, 2010		*					*	*														
Ouarter 2, 2016						*																
Ounter 3, 2016 Ounter 1, 2016 Ounter 1, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 3, 2016 Ounter 1, 2017 Ounter 4, 2017 Ounter 4, 2017 Ounter 4, 2018 Ounter 2, 2018 Ounter 2, 2018 Ounter 3, 2018 Ounter 3, 2018 Ounter 3, 2018 Ounter 4, 2002 Ounter 1, 2003 Ounter 4, 2002 Ounter 1, 2003 Ounter 2, 2003 Ounter 3, 2003 Ounter 3, 2003 Ounter 3, 2003 Ounter 4, 2006 Ounter 1, 2007 Ounter 4, 2008 Ounter 4, 2008 Ounter 2, 2009 Ounter 1, 2007 Ounter 4, 2008 Ounter 2, 2009 Ounter 2, 2009 Ounter 2, 2009 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2006 Ounter 1, 2007 Ounter 4, 2008 Ounter 2, 2009 Ounter 2, 2009 Ounter 3, 2001 Ounter 4, 2008 Ounter 4, 2008 Ounter 3, 2009 Ounter 4, 2009 Ounter 4, 2001 Ounter 3, 2001 Ounter 3, 2001 Ounter 4, 2001 Ounter 5, 2001 Ounter 6, 2001		_	*				*		*	*											*	*
Ounter 4, 2016 Ounter 2, 2017 Ounter 3, 2018 ** ** ** ** ** ** ** ** ** ** ** ** *		-	т-							т				3 Ł							т	т-
Ounter 1, 2017 Quarter 2, 2017 * * * * * * * * * * * * * * * * * * *		+		-	1	*		*	*	ᅶ				*				-	-	-		
Quarter 2, 2017 *		-		-		-	不	4		不				.				-	-	-		
Quarter 3, 2017		1		 	.							-		*				 	 	 		
Quarter 4, 2017 Quarter 1, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2001 Quarter 4, 2009 Quarter 3, 2001 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2001 Quarter 3, 2010 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2015 Quarter 3, 2006 Quarter 4, 2015 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2015 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2015 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 200																		<u> </u>	Ļ	<u> </u>		
Ouarter 1, 2018 Ouarter 2, 2018 Ouarter 3, 2018 Ouarter 3, 2018 Ouarter 4, 2002 Ouarter 1, 2003 Ouarter 3, 2003 Ouarter 4, 2006 Ouarter 4, 2006 Ouarter 1, 2007 Ouarter 2, 2007 Ouarter 2, 2007 Ouarter 2, 2007 Ouarter 1, 2008 Ouarter 1, 2009 Ouarter 1, 2009 Ouarter 3, 2009 Ouarter 4, 2009 Ouarter 4, 2009 Ouarter 4, 2009 Ouarter 2, 2010 Ouarter 2, 2011 Ouarter 2, 2011 Ouarter 2, 2011 Ouarter 3, 2011 Ouarter 4, 2011 Ouarter 4, 2011 Ouarter 4, 2011 Ouarter 4, 2012 Ouarter 4, 2012 Ouarter 4, 2012 Ouarter 4, 2013 Ouarter 4, 2013 Ouarter 4, 2013 Ouarter 4, 2011 Ouarter 3, 2013 Ouarter 4, 2011 Ouarter 4, 2011 Ouarter 3, 2011 Ouarter 4, 2012 Ouarter 4, 2011 Ouarter 4, 2011 Ouarter 4, 2012 Ouarter 4, 2011 Ouarter 4, 2011 Ouarter 3, 2013 Ouarter 4, 2014 Ouarter 4, 2015 Ouarter 4, 2015 Ouarter 1, 2016 Ouarter 1, 2015 Ouarter 1, 2003 Ouarter 2, 2003 Ouarter 2, 2003 Ouarter 2, 2003 Ouarter 3, 2000 Ouarter 3, 2000 Ouarter 3, 2001 Ouarter 3, 2015 Ouarter 1, 2016 Ouarter 3, 2000 Ouarter 3, 2000 Ouarter 3, 2000 Ouarter 3, 2001 Ouarter 3, 2001 Ouarter 4, 2015 Ouarter 3, 2000 Ouarter 3, 2001 Ouarter 4, 2015 Ouarter 4, 2015 Ouarter 2, 2003 Ouarter 3, 2000 Ouarter 4, 2016 Ouarter 4, 2016 Ouarter 3, 2000 Ouarter 3, 2000 Ouarter 4, 2010 Ouarter 3, 2010 Ouarter 4, 2010 Ouarter 3, 2010 Ouarter 3, 2010 Ouarter 4, 2010 Ouarter 4, 2010 Ouarter 5, 2014 Ouarter 5, 2015 Ouarter 6, 2015 Ouarter 7, 2016 Ouarte	Quarter 3, 2017	*	*			*	*	*	*										*			
Quarter 2, 2018	Quarter 4, 2017						*	*											*			
Dissolved Solids	Quarter 1, 2018					*	*	*	*												*	
Duarter 3, 2018	Ouarter 2, 2018					*	*	*	*													
DISSOLVED SOLIDS	` '	*				*		*														
Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2016 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2003 Quarter 2, 2003 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 200																						
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2008 Quarter 2, 2007 Quarter 4, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 5, 2012 Quarter 6, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 7, 2013 Quarter 7, 2014 Quarter 7, 2012 Quarter 7, 2013 Quarter 7, 2014 Quarter 7, 2015 Quarter 7, 2017 Quarter 7, 2018 Quarter 7, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 7, 2010 Quarter 7, 2011 Quarter 8, 2011 Quarter 9, 2011 Quarter 9, 2012 Quarter 9, 2013 Quarter 9, 2014 Quarter 9, 2015 Quarter 9, 2015 Quarter 9, 2015 Quarter 9, 2016 Quarter 9, 2015 Quarter 9, 2016 Quarter 9, 201											*											
Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 9, 201																						
Quarter 3, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 5, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 3, 2010 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2012 Quarter 7, 2012 Quarter 8, 2012 Quarter 1, 2013 Quarter 9, 2014 Quarter 1, 2015 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2000 Quarter 4, 200		_																				
Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 7, 2011 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2013 Quarter 9, 2013 Quarter 9, 2014 Quarter 1, 2016 Quarter 1, 2016 Quarter 4, 2003 Quarter 9, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *	` '																					
Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 8, 2010 Quarter 9, 201								*				*										
Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 5, 2018 Quarter 6, 2018 Quarter 7, 2019 Quarter 9, 2018 Quarter 9, 2019 Quarter 9, 201	Quarter 4, 2003										*											
Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 200	Quarter 3, 2005						*															
Quarter 2, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 200	Quarter 4, 2006															*						
Quarter 2, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 200	Ouarter 1, 2007															*						
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2010 **																						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 ** Quarter 4, 2015 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4		1																				
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2003 Quarter 3, 2010		1																				
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 2, 2022 Quarter 2, 2022 Quarter 3, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2003 Quarter 4, 2015 Quarter 3, 2003 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 200		-																				
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 IODIDE Quarter 3, 2003 Quarter 3, 2000 ** ** ** ** ** ** ** ** **	•	-																				
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 3, 2010 Quarter 3, 2003 Quarter 3, 2010 ** ** ** ** ** ** ** ** **																						
Quarter 2, 2010 * * * * * <																						
Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 4, 2014 * * Quarter 2, 2014 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 3, 2015 * * Quarter 3, 2005 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 4, 2003 * * Quarter 4, 2003 * * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																						
Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 4, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 3, 2015 * * Quarter 4, 2016 * * Quarter 2, 2003 * * Quarter 4, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * *	Quarter 2, 2010															*						
Quarter 1, 2011	Quarter 3, 2010															*						
Quarter 2, 2011	Quarter 4, 2010															*						
Quarter 2, 2011																*						
Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 4, 2013 * * Quarter 4, 2014 * * Quarter 2, 2014 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * *	` '	1																				
Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 2, 2005 * * Quarter 2, 2005 * * Quarter 2, 2005 * * Quarter 3, 2015 * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * *																						
Quarter 1, 2012		+																				
Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 3, 2015 * * Quarter 2, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *		+													·							
Quarter 3, 2012		_													*							
Quarter 4, 2012	` '																					*
Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 3, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 4, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *						<u> </u>	<u> </u>											<u> </u>	<u> </u>	<u> </u>		*
Quarter 2, 2013																						
Quarter 3, 2013	Quarter 1, 2013			L				L			L						L	L		L		
Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 3, 2015 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131	Quarter 2, 2013															*						
Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 4, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *																*						
Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 3, 2014 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *																						
Quarter 2, 2014		1																				
Quarter 4, 2014		1		1		 	 	1										1	 	1		
Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *		+	-	 	1	 	 	 	1			-	-					 	 	 		
Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *		+	-	-	-	<u> </u>	<u> </u>	-	-		-	-	-	-			-	<u> </u>	<u> </u>	<u> </u>		
Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *		_	-	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	-	 	<u> </u>	-	-				<u> </u>	<u> </u>	<u> </u>	<u> </u>		
Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *		1		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>						<u> </u>	<u> </u>	<u> </u>		
IODIDE IODIDE IODIDE IODIDE IODIDE IODINE-131 IODINE-131 <th< td=""><td>Quarter 4, 2015</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Quarter 4, 2015																					
Quarter 2, 2003 * Quarter 3, 2003 * Quarter 4, 2003 * Quarter 3, 2010 * * * * * * * * * * * * * * * * * * * * * * * * *	Quarter 1, 2016	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	L	L	L	L	L	L	L	LĪ	L	L	L	L		*	L	L	L	L		
Quarter 2, 2003 * * * * * * Quarter 3, 2003 * <t< td=""><td>IODIDE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	IODIDE																					
Quarter 3, 2003 * Quarter 4, 2003 * Quarter 3, 2010 * IODINE-131 *																	*					
Quarter 4, 2003 * Quarter 3, 2010 * * * * * * *		*									*											
Quarter 3, 2010		Ť						*			Ė											
IODINE-131		+	 	<u> </u>	\vdash	 	*	<u> </u>	*	\vdash	—	\vdash	 	*	\vdash	 	—	*	 	 	\vdash	
							T		*					~				*				
Ouarter 5, 2010																						
	Quarter 3, 2010										Щ						Щ	Ц		Ц		

Groundwater Flow System				UCR	RS							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
IODOMETHANE																					
Quarter 4, 2003						*															
IRON Quarter 4, 2002						*															
Quarter 3, 2003	1					不										*					
Quarter 4, 2003	l									*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005	ļ														*						*
Quarter 3, 2005						*									4						*
Quarter 2, 2006 Quarter 3, 2006	1														*						*
Quarter 1, 2007	1														*						
Quarter 2, 2008															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011	1		-	-							-		-	<u> </u>	*		-		-		
Quarter 3, 2011	┡														*						
Quarter 4, 2011															*						
Quarter 1, 2012 Quarter 2, 2012	1														*						
Quarter 3, 2012	H														*						
Quarter 4, 2012															*						
Quarter 1, 2013	l														*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 2, 2014															*						
Quarter 4, 2014															*						
Quarter 2, 2015	<u> </u>														*						
Quarter 3, 2015	<u> </u>														*						
Quarter 4, 2015	┡														*						
Quarter 1, 2016	-														*						
Quarter 2, 2016 Quarter 3, 2016	*														不						
Quarter 4, 2016	*																				
Quarter 2, 2017	*																				
Quarter 3, 2017	*																				
Quarter 1, 2018	*																				
Quarter 3, 2018	*																				
MANGANESE																					
Quarter 3, 2002										*		*									
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2003	ļ									*		*									
Quarter 3, 2003	-									*	34	*	*			*	*	*	*		
Quarter 4, 2003 Quarter 1, 2004										*	*	*	*			*	*	*			
Quarter 2, 2004							*			*	*	*				不	不	*			
Quarter 3, 2004	1						*			*	*	*				*		т-			
Quarter 4, 2004							***			*		*				*					
Quarter 1, 2005	l									*		*									
Quarter 2, 2005	T									*		*									
Quarter 3, 2005										*		*				*					
Quarter 4, 2005										*						*					
Quarter 1, 2006										*											
Quarter 2, 2006	<u> </u>						*			*		*									
Quarter 3, 2006	<u> </u>	<u> </u>								*		<u> </u>		<u> </u>		*		<u> </u>			
Quarter 4, 2006	<u> </u>		<u> </u>							*	<u> </u>		<u> </u>								
Quarter 1, 2007	₽									*											
		1	ı				*			*		<u> </u>		<u> </u>		Ь—	<u> </u>	<u> </u>	<u> </u>		
Quarter 2, 2007	1						ale:														
Quarter 2, 2007 Quarter 3, 2007							*														
Quarter 2, 2007							* *														

Groundwater Flow System	I			UCR	S							URG	Ā			I		LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
MANGANESE Quarter 3, 2009							*														
Quarter 3, 2011							*														
Quarter 2, 2016														*							
Quarter 3, 2016									*												_
NICKEL										.											
Quarter 3, 2003 OXIDATION-REDUCTION PO	OTEN	JTIAI								*											
Quarter 4, 2002	I	TIA															*		*		
Quarter 1, 2002 Quarter 1, 2003	l																*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004	!				<u>.</u>								*	.	4		*			.	*
Quarter 3, 2004 Quarter 4, 2004					*			*				*	*	*	*		*			*	*
Quarter 1, 2005												~					*			*	*
Quarter 2, 2005	l							*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006					*			*	*								*				*
Quarter 2, 2006	!	-	-	<u> </u>	*	ļ	*	*	ļ		<u> </u>	-	*	<u> </u>	<u> </u>	!	*	ļ	<u> </u>	*	├
Quarter 3, 2006	 			 	*	-	*	*	-	*	 	<u>ж</u>	*	 	 	 	*	-	 	*	<u> </u>
Quarter 4, 2006 Quarter 1, 2007	H	*		 	*		不	*		*	 	*	*	 	1	 	*		 	*	*
Quarter 2, 2007		Tr.			*			т.					*				*			*	*
Quarter 3, 2007					*			*									*			*	
Quarter 4, 2007																	*			*	*
Quarter 1, 2008					*			*				*	*						*	*	
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008	<u> </u>				*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009 Quarter 2, 2009	1				*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009	1	*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009	t	*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2011 Quarter 3, 2011		*			不	*	不	*	*	*	不	*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*	-	*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013	<u> </u>	*				*		*	*	*	*	*	*	*		*	*	*		*	L
Quarter 2, 2013	- Ju	*			- Ju	- JL		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013 Quarter 4, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014		*				т-		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*			*	*	*	*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2014		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 1, 2015		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015 Quarter 1, 2016	*	*		-	*	不	*	*	不	*	不	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 3, 2016	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2017	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017			1	l	*	*	*	*	*	*	1	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017	*	*			-	414	s.La	alla.	+la	şl.		414	114	484	11.		,IL	,la			-10
Quarter 3, 2017 Quarter 4, 2017	*	*				*	*	*	*	*		*	*	*	*	- AF	*	*		*	*
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017 Quarter 4, 2017	*	*									*					*			*	*	

Moniforing Well 388 375 376 377 399 362 365 371 374 366 360 361 387 390 372 367 36 36 388 370 37 37 37 37 37 37 37 37 37 37 37 37 37	Groundwater Flow System	T			UCR	S							URG	A					LRG	A		_
CR. 101AL	Gradient	D	S	S	_		D	D	U	U	D	D	_		U	U	D	D	_	_	U	U
Quarter 4, 2003	Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2000 Quarter 2, 2010 Quarter 2, 2008 Quarter 2, 2010 Quarter 2, 2008 Quarter 2, 2010 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2000 Quarter 2, 2001 Quarter 2, 200	PCB, TOTAL																					
Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2010 Quarter 2, 201	Quarter 4, 2003																	*				
Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 2, 2010 Quarter 2, 201													*									<u> </u>
Quarter 3, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 200	` '	-																				<u> </u>
Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2001 Quarter 2, 2010 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 200		+																				-
Quarter 2, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2000 Quarter 2, 2010 Quarter 2, 2000 Quarter 2, 2001 Quarter 2, 2000 Quarter 2, 200	` .	-																				<u> </u>
Quarter 1, 2007		_																				
Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2004 Quarter 2, 2010 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2006 Quarter 2, 2011 Quarter 2, 2010 Quarter 2, 201																						
Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 RCB-1016 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2000 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2010 Quarter 3, 2000 Quart	•																					
Quarter 1, 2009								*														
Quarter 1, 2010	Quarter 4, 2008							*														
Quarter 2, 2010	Quarter 3, 2009							*														
Quarter 4, 2010 PCB-1016 Quarter 2, 2004 Quarter 2, 2006 Quarter 3, 2004 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2010 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2000	Quarter 1, 2010																					
CR-B-1016																						
Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2006 Quarter 1, 2008 Quarter 2, 2006 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2002 Quarter 1, 2003 Quarter 3, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2005 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2005 Quarter 4, 2005 Quarter 5, 2005 Quarter 6, 200								*														
Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2009 Quarter 1, 2010 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 4, 2006 Quarter 4, 2008 Quarter 5, 2008 Quarter 6, 2008 Quarter 7, 2008 Quarter 7, 2008 Quarter 7, 2008 Quarter 6, 2008 Quarter 7, 200													-10									
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 2, 2010 Quarter 3, 2006 Quarter 1, 2008 Quarter 3, 2006 Quarter 1, 2008 Quarter 2, 2008 ** Quarter 2, 2006 ** Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2001 Quarter 1, 2004 Quarter 3, 2005 Quarter 1, 2001 Quarter 1, 2011 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2005 Quarter 3,		-	<u> </u>		-			طو	-			-		 	<u> </u>				<u> </u>	-		\vdash
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 1, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008 PCB-1269 Quarter 2, 2008 Quarter 3, 2006 Quarter 4, 2000 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2005 Quarter 2, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2005 Quarter 2, 2011 Quarter 3, 2001 Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2011 Quarter 3, 2010 Quarter 4, 2000		-	<u> </u>		-				-			-	*	 	<u> </u>				<u> </u>	-		\vdash
Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 ** Quarter 2, 2010 ** Quarter 2, 2008 ** Quarter 3, 2009 Quarter 4, 2006 Quarter 1, 2008 ** Quarter 4, 2006 Quarter 1, 2008 ** Quarter 2, 2008 ** Quarter 3, 2009 Quarter 4, 2005 Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2001 Quarter 2, 2005 Quarter 3, 2011 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2015 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarte		-	-												-				-			-
Quarter 2, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2018 Quarter 2, 2018 PCB-1248 Quarter 2, 2018 PCB-1248 Quarter 2, 2008 PCB-1248 Quarter 2, 2008 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2000 Quarter 1, 2003 Quarter 1, 2004 Quarter 4, 2005 Quarter 3, 2006 ** Quarter 4, 2005 Quarter 3, 2006 ** Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2011 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2015 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2007 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4,	` .	+	-												-				-			
Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2010 PCB-1248 Quarter 2, 2008 PCB-1248 Quarter 2, 2008 PCB-1260 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2006 Quarter 1, 2008 Quarter 2, 2006 Quarter 1, 2009 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2006 Quarter 2, 2010 Quarter 3, 2015 Quarter 2, 2010 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 2, 2010 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2010 Quarter 3, 2016 Quarter 2, 2010 Quarter 3, 2016 Quarter 2, 2010 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2010 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2010 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2005 Quarter 5, 2010 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Qua		+																				\vdash
Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 PI Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2008 Quarter 2, 2008 PCB-1260 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2000 PI Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2010 Quarter 3, 2016 Quarter 2, 2010 Quarter 3, 2018 Quarter 2, 2000 Quarter 3, 2018 Quarter 2, 2000 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2000 Quarter 3, 2018 Quarter 3, 2010 Quarter 3, 2016 Quarter 2, 2010 Quarter 3, 2016 Quarter 2, 2010 Quarter 3, 2016 Quarter 3, 2018 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2016 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2005 Quarter 3, 2016 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2016 Quarter 4, 2005 Quarter 2, 2010 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2016 Quarter 4, 2005 Quarter 5, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 7, 2007 Quarte		1	1												1				1			
Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008 PCB-1248 Quarter 2, 2008 PCB-1248 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 PCB-1249 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 PCB-1260 Quarter 2, 2006 PCB-1260 Quarter 1, 2003 Quarter 3, 2002 Quarter 1, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 PCB-1260 Quarter 2, 2001 PCB-1260 Quarter 3, 2005 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 1, 2014 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2005 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2005 Quarter 2, 2005 Quar																						
Quarter 2, 2010 Quarter 4, 2010 Quarter 3, 2006 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2006 Quarter 2, 2012 Quarter 3, 2006 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2006 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2001 Quarter 3, 2005 Quarter 3, 2001 Quarter 3, 2005 Quarter 4, 2001 Quarter 3, 2005 Quarter 4, 2001 Quarter 3, 2005 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2005 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2006 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2005 Quarter 4, 2001 Quarter 4, 2001 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2016 Quarter 3, 2018 Quarter 2, 2010 Quarter 2, 2017 Quarter 2, 2016 Quarter 3, 2018 Quarter 2, 2005 Quarter 2, 2018 Quarter 2, 2005 Quarter 3, 2018 Quarter 3, 2005 Quarter 3, 2018 Quarter 4, 2005 Quarter 3, 2018 Quarter 4, 2005 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 5, 2005 Quarter 6, 200																						
Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 PCB-1260 Quarter 2, 2006 PCB-1260 Quarter 3, 2002 Quarter 3, 2002 Quarter 1, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 3, 2006 PCB-1260 PCB																						
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 PI Quarter 3, 2002 Quarter 1, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2005 ** Quarter 4, 2005 Quarter 1, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2018 PCB-1266 Quarter 4, 2005 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2018 PCB-1266 Quarter 3, 2018 PCB-1266 Quarter 3, 2018 PCB-1266 Quarter 3, 2018 PCB-1266 Quarter 4, 2005 Quarter 2, 2017 Quarter 3, 2018 PCB-1266 Quarter 4, 2005 Quarter 2, 2017 Quarter 3, 2018 PCB-1266 Quarter 4, 2005 Quarter 2, 2017 Quarter 3, 2018 PCB-1266 Quarter 4, 2005 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2018 PCB-1266 Quarter 4, 2005 Quarter 2, 2005								*														
Quarter 4, 2006 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2012 ** PCB-1248 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2005 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 2, 2017 Quarter 2, 2019 Quarter 3, 2018 Quarter 2, 2019 Quarter 3, 2018 Quarter 2, 2019 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2019 Quarter 3, 2018 Quarter 2, 2019 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2019 Quarter 1, 2014 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 5, 2005 Quarter 6, 2005	PCB-1242																					
Quarter 1, 2008 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2006 PCB-1260 Quarter 2, 2006 PI Quarter 3, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2005 PR Quarter 3, 2005 PR Quarter 4, 2005 PR Quarter 3, 2006 PR Quarter 4, 2005 PR POSTASSILM QUARTER 3, 2014 PR POTASSILM QUARTER 2, 2014 QUARTER 1, 2014 PR POTASSILM QUARTER 2, 2015 QUARTER 2, 2016 QUARTER 2, 2016 QUARTER 2, 2018 PR QUARTER 3, 2018 PR POTASSILM QUARTER 2, 2019 QUARTER 2, 2019 QUARTER 3, 2018 PR QUARTER 3, 2018 PR POTASSILM QUARTER 2, 2005 QUARTER 2, 2019 QUARTER 2, 2011 QUARTER 3, 2018 PR POTASSILM QUARTER 2, 2005 QUARTER 2, 2005 QUARTER 2, 2005 QUARTER 2, 2005 QUARTER 2, 2019 QUARTER 2, 2011 QUARTER 2, 2011 QUARTER 3, 2018 PR POTASSILM QUARTER 2, 2005 QUARTER 3, 2005 QUARTER 3, 2005 QUARTER 2, 2005 QUARTER 3, 2005 QUAR	Quarter 3, 2006							*					*									
Quarter 2, 2012											*											
PCB-1248 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 PH Quarter 3, 2002 Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2018 ** ** ** ** ** ** ** ** **																						
Quarter 2, 2008 PCB-1260 Quarter 2, 2006 PH Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2018 POTASSIUM Quarter 2, 2014 RADIUM-228 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2014 Quarter 2, 2018 POTASSIUM Quarter 2, 2014 RADIUM-228 Quarter 2, 2005 Quarter 2, 2010 Quarter 3, 2018 POTASSIUM Quarter 2, 2005 Quarter 3, 2005 SELENIUM								*														
PCB-1260 Quarter 2, 2006 PH Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 5, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 7, 2007 Quarter 8, 2008 Quarter 9, 2008 Qu								- 10														
Quarter 2, 2006 pH Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2010 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2018 POTASSIUM Quarter 1, 2014 RADIUM-228 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 SELENIUM								*														
Quarter 3, 2002								*														
Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2001 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 1, 2014 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Qua																						
Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 3, 2018 POTASSIUM Quarter 1, 2014 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4											*											
Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2018 POTASSIUM Quarter 1, 2014 RADUM-228 Quarter 2, 2005 Quarter 2, 2016 Quarter 3, 2018 POTASSIUM Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 POTASSIUM Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 SELENIUM																						
Quarter 2, 2003 Quarter 3, 2003	•																					
Quarter 4, 2003 Quarter 1, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 SELENIUM											*											
Quarter 1, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 POTACSSIUM Quarter 1, 2014 RADIUM-228 Quarter 4, 2005	Quarter 3, 2003	*						*			*											
Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2011 Quarter 3, 2006 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 3, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2018 ** ** ** ** ** ** ** ** **	Quarter 4, 2003																					
Quarter 4, 2005 * * * * * * * * Quarter 3, 2006 * * * * * Quarter 3, 2011 *								*									*					
Quarter 3, 2006 Quarter 2, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2018 ** ** ** ** ** ** ** ** **																			*			
Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2018 ** ** ** ** ** ** ** ** **	` '	-					*													*		\vdash
Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2005 Quarter 4, 2005 SELENIUM ** ** ** ** ** ** ** ** **		_													14		*					ш
Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 POTASSIUM Quarter 1, 2014 RADIUM-228 Quarter 4, 2005 Quarter 4, 2005 SELENIUM * * * * * * * * * * * * * * * * * *	` '	-																				\vdash
Quarter 1, 2012 * * * Quarter 2, 2012 * * * Quarter 1, 2013 * * * Quarter 3, 2015 * * * Quarter 2, 2016 * * * Quarter 3, 2016 * * * Quarter 2, 2017 * * * * * * Quarter 3, 2018 * * * * * * * * * POTASSIUM * * * * * * * * Quarter 1, 2014 * * * * * * * RADIUM-228 * * * * * * * * * Quarter 4, 2005 * * * * * * * * * * * * * * * * * * *		+													_							
Quarter 2, 2012 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2018 ** ** ** ** ** ** ** ** **		+	 		 				 			 	 	 	*		*	*	 	 		
Quarter 1, 2013 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2018 ** ** ** ** ** ** ** ** **		1	1		l -				l -			l -	*	l -	1				1	l -		
Quarter 3, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2018 POTASSIUM Quarter 1, 2014 RADIUM-228 Quarter 4, 2005 QUARTER 5, 2005 QUARTER 6, 2005 QUARTER 7, 2005 QUARTER	Quarter 1, 2013	1	1								*				1		*		1			
Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 * * * * * * * * * * * * * * * * * *	Quarter 3, 2015	1																*				
Quarter 3, 2016 * * * * Quarter 2, 2017 * <t< td=""><td>Quarter 2, 2016</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td>*</td></t<>	Quarter 2, 2016																				*	*
Quarter 3, 2018	Quarter 3, 2016																				*	
POTASSIUM Quarter 1, 2014 * *																						
Quarter 1, 2014 * RADIUM-228 * Quarter 2, 2005 ■ Quarter 4, 2005 ■ SELENIUM ■	Quarter 3, 2018					*					*		*					*	*	*		
RADIUM-228 ■ <td< td=""><td>POTASSIUM</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	POTASSIUM																					
Quarter 2, 2005 Quarter 4, 2005 ELENIUM	` '																*					
Quarter 4, 2005 SELENIUM																						
SELENIUM		_					-						-						-			$\vdash \vdash$
Quarter 4, 2003																						
	Quarter 4, 2003		_					_						_	_		_		_			_

Gradient D S S S D D D U U D D D U U D D D U D D D D	Groundwater Flow System	Г			UCR	S							URG	À			Γ		LRG	A		
Country 2,0002	Gradient	D	S	S		_	D	D	U	U	D	D			U	U	D	D			U	U
Quarter 3, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 200	Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2,003																						
Ounter 1, 2003 Ounter 2, 2003 Ounter 3, 2003 Ounter 1, 2007 Ounter 1, 2017 Ounter 1, 2019 Ounter 2, 2018 Ounter 3, 2018 Ounter 3, 2018 Ounter 4, 2018 Ounter 2, 2016 Ounter 3, 2016 Ounter 3, 2016 Ounter 2, 2017 Ounter 3, 2010 Ounter 4, 2017 Ounter 3, 2017 Ounter 4, 2017 Ounter 3, 2010 Ounter 4, 2003 Ounter 2, 2003 Ounter 3, 2003 Ounter 4, 2003 Ounter 2, 2003 Ounter 3, 2003 Ounter 4, 2003 Ounter 4, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 3, 2004 Ounter 3, 2005 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2007 Ounter 3, 2009 Ounter 4, 2009 Ounter 2, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 2, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 2, 2009 Ounter 2, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 2, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 5, 2009 Ounter 6, 2009 Ounter 6, 2009 Ounter 6, 2009 Ounter 7, 2009 Ounter 7, 2009 Ounter 8, 2009 Ounter 8, 2009 Ounter 9, 2009 Ounter														*								
Ounter 1, 2003 Ounter 1, 2007 Ounter 1, 2014 Ounter 1, 2014 Ounter 2, 2014 Ounter 2, 2014 Ounter 3, 2014 Ounter 3, 2014 Ounter 3, 2014 Ounter 4, 2016 Ounter 4, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 3, 2017 Ounter 4, 2018 SIRONIUM-99 Ounter 4, 2018 SIRONIUM-99 Ounter 4, 2008 SUEARE Ounter 4, 2008 Ounter 4, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 3, 2004 Ounter 3, 2004 Ounter 3, 2005 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2006 Ounter 2, 2007 Ounter 3, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2006 Ounter 3, 2006 Ounter 4, 2007 Ounter 4, 2006 Ounter 4, 2007 Ounter 4, 2006 Ounter 4, 2007 Ounter 4, 2008 Ounter 4, 2009 Ounter 4, 2001 Ounter 4, 2010 Ounter 5, 2007 Ounter 6, 2008 Ounter 6, 2008 Ounter 7, 2008 Ounter 7, 2008 Ounter 8, 2008 Ounte		1										*			*							
Quatral 2, 2003 Quatral 1, 2007 Quatral 1, 2012 Quatral 2, 2014 Quatral 3, 2014 Quatral 3, 2014 Quatral 3, 2014 Quatral 4, 2015 Quatral 4, 2016 Quatral 2, 2017 Quatral 2, 2019 Quatral 2, 2019 Quatral 2, 2003 Quatral 2, 2004 Quatral 2, 2003 Quatral 2, 2004 Quatral 2, 2005 Quatral 2, 2006 Quatral 2, 2006 Quatral 2, 2006 Quatral 2, 2007 Quatral 2, 2009 Quatral 2, 2009 Quatral 2, 2007 Quatral 2, 2009 Quatral 2, 2001 Quatral 2, 200		1								<u> </u>												!
Quarter 20012		1								<u> </u>	*											-
Ounter 1, 2012 Ounter 2, 2014 Ounter 3, 2014 Ounter 4, 2015 Ounter 4, 2015 Ounter 2, 2016 Ounter 3, 2016 Ounter 2, 2016 Ounter 2, 2017 Ounter 1, 2017 Ounter 1, 2017 Ounter 1, 2017 Ounter 2, 2018 SIRONII M-99 Ounter 2, 2008 SULPATE Ounter 2, 2003 Ounter 2, 2004 Ounter 2, 2005 Ounter 2, 2006 Ounter 2, 2007 Ounter 1, 2006 Ounter 2, 2007 Ounter 2, 2006 Ounter 2, 2007 Ounter 2, 2008 Ounter 2, 2009 Ounter 3, 2009		1			-			-	-					-	-	-		-				-
Ounter 1, 2014 Ounter 4, 2014 Ounter 4, 2015 Ounter 1, 2016 Ounter 1, 2016 Ounter 2, 2017 Ounter 3, 2017 Ounter 3, 2017 Ounter 2, 2017 Ounter 3, 2017 Ounter 2, 2017 Ounter 3, 2017 Ounter 4, 2017 Ounter 4, 2017 Ounter 2, 2017 Ounter 4, 2017 Ounter 4, 2017 Ounter 3, 2017 Ounter 3, 2017 Ounter 4, 2017 Ounter 4, 2017 Ounter 4, 2017 Ounter 3, 2019 Ounter 4, 2000 Ounter 2, 2000 Ounter 2, 2000 Ounter 2, 2000 Ounter 2, 2000 Ounter 3, 2000 Ounter 3, 2000 Ounter 2, 2000 Ounter 2, 2000 Ounter 2, 2000 Ounter 3, 2000 Ounter 3, 2000 Ounter 2, 2000 Ounter 3, 2000 Ounter 2, 2000 Ounter 3, 2000 Ounter 4, 2000 Ounter 3, 2000 Ounter 4, 2000 Ounter 3, 2000 Ounter 4, 2001 Ounter 5, 2001 Ounter 6, 2001 Ounter 6, 2001 Ounter 7, 2001 Ounter 7, 2001 Ounter 7, 2001 Ounter 8, 2001 Ounter 8, 2001 Ounter 9, 2001 Ounter 9, 2001 Ounter		1										~			*							
Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2018 SIRONIIM-90 Quarter 3, 2018 SIRONIIM-90 Quarter 3, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarte		1								-					-1-	*						
Quarter 4, 2014		1										*				-						
Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 2, 2008 Quarter 2, 2007 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 2, 2001 Quarter 2, 200																						
Ounter 2, 2016 Ounter 4, 2016 Ounter 4, 2016 Ounter 4, 2017 Ounter 2, 2017 Ounter 3, 2018 Ounter 2, 2017 Ounter 4, 2018 Ounter 2, 2017 Ounter 4, 2018 Ounter 2, 2019 Ounter 2, 2000 Ounter												*										
Ounter 3, 2016 Ounter 1, 2017 Ounter 3, 2017 Ounter 1, 2018 Ounter 1, 2018 Ounter 1, 2018 Ounter 1, 2018 Ounter 2, 2008 SILEATE Ounter 1, 2008 Ounter 2, 2003 Ounter 2, 2004 Ounter 2, 2004 Ounter 2, 2004 Ounter 2, 2004 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2006 Ounter 3, 2006 Ounter 2, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 2, 2006 Ounter 3, 200	Quarter 1, 2016											*										
Ounter 4.2016 Ounter 4.2017 Ounter 2.2017 Ounter 2.2017 Ounter 2.2017 Ounter 4.2018 Ounter 4.2008 SULFATE Ounter 1.2003 Ounter 1.2003 Ounter 2.2003 Ounter 2.2003 Ounter 2.2003 Ounter 2.2003 Ounter 2.2005 Ounter 2.2006 Ounter 2	Quarter 2, 2016																					
Ounter 1, 2017 Ounter 3, 2017 Ounter 3, 2017 Ounter 3, 2017 Ounter 1, 2018 Ounter 1, 2018 SIRONTHIN-90 Ounter 1, 2018 SIRONTHIN-90 Ounter 1, 2008 SILEATE Ounter 1, 2003 Ounter 2, 2004 Ounter 1, 2005 Ounter 2, 2006 Ounter 2, 2006 Ounter 2, 2007 Ounter 2, 2006 Ounter 3, 2006 Ou																						
Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 4, 2008 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 200																						
Ountret 3, 2017 Ountret 1, 2018 Ountret 2, 2008 SILEATE Ountret 2, 2003 Ountret 2, 2004 Ountret 2, 2005 Ountret 2, 2004 Ountret 2, 2005 Ountret 2, 2004 Ountret 3, 2004 Ountret 2, 2004 Ountret 2, 2005 Ountret 2, 2005 Ountret 2, 2006 Ountret 3, 2007 Ountret 3, 2007 Ountret 3, 2006 Ountret 3, 2007 Ountret 3, 2007 Ountret 3, 2006 Ountre																						
Quarter 4, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2006 Quarter 1, 2005 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2009 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2009 Quarter 1, 2008 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2001 Quarter 3, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 4, 200	` '	_																				<u> </u>
Quarter 1, 2018		1								<u> </u>												!
Ounter 4, 2008 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2004 Ounter 2, 2005 Ounter 2, 2005 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2006 Ounter 4, 2007 Ounter 2, 2007 Ounter 2, 2007 Ounter 2, 2007 Ounter 3, 2006 Ounter 4, 2007 Ounter 4, 2009 Ounter 4, 2008 Ounter 3, 2006 Ounter 1, 2006 Ounter 1, 2006 Ounter 1, 2006 Ounter 1, 2006 Ounter 2, 2007 Ounter 4, 2007 Ounter 4, 2008 Ounter 3, 2006 Ounter 1, 2008 Ounter 1, 2009 Ounter 2, 2009 Ounter 3, 2008 Ounter 1, 2009 Ounter 1, 2009 Ounter 2, 2000 Ounter 2, 2000 Ounter 3, 2009 Ounter 3, 2009 Ounter 4, 2000 Ounter 2, 2000 Ounter 3, 2000 Ounter 3, 2000 Ounter 4, 2000 Ounter 4, 2000 Ounter 5, 2001 Ounter 5, 2001 Ounter 6, 2001 Ounter 6, 2001 Ounter 7, 2009 Ounter 7, 2009 Ounter 8, 2001 Ounter 9, 2001		1	-		 			 	 	 			-	 	 	 	_	 	-	-	 	
STRONTHIM-90		┢		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-				<u> </u>	<u> </u>	<u> </u>	-	<u> </u>				
Quarter 4, 2008												*										
SULEXTE																						
Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Q	,																					
Quarter 2, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2013 Quarter 6, 2014 W W W W W W W W W W W W W								*														
Quarter 3, 2003		1					*										1					
Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 ** ** ** ** ** ** ** ** **		*					*															
Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 2, 2007 Quarter 4, 2008 ** ** ** ** ** ** ** ** ** ** ** ** *						*		*														
Quarter 3, 2004 Quarter 1, 2005	Quarter 1, 2004					*	*	*														
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2008 ** ** ** ** ** ** ** ** **	Quarter 2, 2004																					
Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 ** ** ** ** Quarter 1, 2008 Quarter 1, 2008 ** ** ** Quarter 4, 2008 ** ** Quarter 4, 2009 ** Quarter 2, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 ** Quarter 4, 2014 ** ** Quarter 4, 2014 ** ** Quarter 4, 2014 ** ** Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 ** ** ** Quarter 4, 2014 ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2014 ** ** Quarter 4, 2014 ** ** ** Quarter 4, 2014 ** ** Quarter 4, 2014 ** ** ** Quarter 2, 2014 ** ** ** Quarter 3, 2014 ** Quarter 3, 2014 ** Quarter 3, 2014 ** Quarter 4, 2014 ** Quarter 4, 2014 ** Quarter 3, 2014 ** Quarter 3, 2014 ** Quarter 4, 2014 ** Quarter 3, 2014 ** Quarter 4, 2014 ** Quarter 3, 2014 ** Quarter 4, 2014 ** Quarter 3, 2014 ** Quarter 3, 2014 ** Quarter 4, 2014 ** Quarter 3, 2014 ** Quarter 3, 2014 ** Quarter 4, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** Quarter 4, 2014 ** ** Quarter 3, 2014 ** Quarter 4, 2014 ** ** Quarter 4, 2014 ** Quarter 4, 2014 ** Quarter 5, 2014 Quarter 6, 2014 ** ** Quarter 6, 2014 ** ** Quarter 7, 201								*														
Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 * * * * * * * * * * * * * * * * * * *							*															
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 ** ** ** ** ** ** ** ** **										*						*						
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 ** ** ** ** ** ** ** ** **						*	*	*								44						<u> </u>
Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 ** ** ** ** ** ** ** ** **						sle				- 14						*						<u> </u>
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 ** ** ** ** ** ** ** ** ** ** ** ** *		-				*	3	- JL								<u> </u>						
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 W W W W W W W W W W W W W		1					不			不						不						-
Quarter 2, 2007		1								<u> </u>												-
Quarter 3, 2007 *		1								<u> </u>												
Quarter 1, 2007 Quarter 1, 2008		1							-													
Quarter 1, 2008 *		1	*					-4-														
Quarter 2, 2008 *		1				*		*		*												
Quarter 3, 2008 *			*				*															
Quarter 1, 2009 * * * * * Quarter 2, 2009 *		1	*			*	*	*														
Quarter 2, 2009 * * * * * * * * Quarter 3, 2009 *			*				*	*														
Quarter 3, 2009 * * * * * Quarter 4, 2009 *	Quarter 1, 2009																					
Quarter 4, 2009 * * * * * Quarter 1, 2010 *																						
Quarter 1, 2010 * * * * * Quarter 1, 2010 *								*														
Quarter 2, 2010 * * * * * * Quarter 3, 2010 * * * * * * * Quarter 4, 2010 * * Quarter 1, 2011 * * * * Quarter 1, 2011 * * * * * * * * * Quarter 3, 2011 *		1			ļ			L.	ļ	<u> </u>				ļ	ļ			ļ			ļ	<u> </u>
Quarter 3, 2010 * * * * * Quarter 3, 2010 * * * * * * Quarter 4, 2011 * * Quarter 2, 2011 *		1								<u> </u>												<u> </u>
Quarter 4, 2010 * * * * * Quarter 1, 2011 *		1—			<u> </u>				<u> </u>	1		-	-	<u> </u>	<u> </u>		<u> </u>	<u> </u>	-	-	<u> </u>	<u> — </u>
Quarter 1, 2011 * * * * * * * * Quarter 2, 2011 * <t< td=""><td></td><td>Ͱ</td><td></td><td><u> </u></td><td><u> </u></td><td>*</td><td></td><td></td><td><u> </u></td><td><u> </u></td><td></td><td>-</td><td>-</td><td><u> </u></td><td><u> </u></td><td></td><td>!</td><td><u> </u></td><td>-</td><td>-</td><td><u> </u></td><td>├</td></t<>		Ͱ		<u> </u>	<u> </u>	*			<u> </u>	<u> </u>		-	-	<u> </u>	<u> </u>		!	<u> </u>	-	-	<u> </u>	├
Quarter 2, 2011 * * * * * * Quarter 3, 2011 *		1			 		*	*	 	 		-	-	 	 	*	_	 	-	-	 	
Quarter 3, 2011 * * * * Quarter 4, 2011 * * * * Quarter 1, 2012 * * * * Quarter 2, 2012 * * * * Quarter 3, 2012 * * * * Quarter 4, 2012 * * * Quarter 1, 2013 * * * Quarter 2, 2013 * * * Quarter 3, 2013 * * * Quarter 4, 2013 * * * Quarter 1, 2014 * * * Quarter 2, 2014 * * * Quarter 4, 2014 * * * Quarter 4, 2014 * * *		ऻ		-	-	*	*	*	-	-		-	-	-	-	*	 	-	-	-	-	
Quarter 4, 2011 * * * * * Quarter 1, 2012 * <t< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>1</td><td></td><td></td><td> </td><td>*</td><td></td><td></td><td>*</td><td> </td><td></td><td></td><td></td><td> </td><td> </td><td></td><td>1</td><td> </td><td></td><td></td><td> </td><td>\vdash</td></t<>	· · · · · · · · · · · · · · · · · · ·	1			 	*			*	 				 	 		1	 			 	\vdash
Quarter 1, 2012 * * * * * * Quarter 1, 2012 * <t< td=""><td></td><td>1</td><td></td><td></td><td> </td><td></td><td></td><td><u> </u></td><td>_</td><td>1</td><td></td><td></td><td></td><td> </td><td> </td><td></td><td>1</td><td> </td><td></td><td></td><td> </td><td> </td></t<>		1			 			<u> </u>	_	1				 	 		1	 			 	
Quarter 2, 2012 * * * * * * * * * * * Quarter 3, 2012 * * * * * * * * * * * Quarter 4, 2012 * * * * * * * * * * Quarter 1, 2013 * * * * * * * * * * * * Quarter 2, 2013 * * * * * * * * * * * * * * * * * * Quarter 3, 2013 * * * * * * * * * * * * * * * * * * *		1			 			*	*	1				 	 		1	 			 	
Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 4, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * *	` '	*			*	*	*			*												
Quarter 4, 2012 * Quarter 1, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * Quarter 4, 2013 * Quarter 1, 2014 * Quarter 2, 2014 * Quarter 3, 2014 * Quarter 3, 2014 * Quarter 4, 2014 * Quarter 3, 2014 * Quarter 4, 2014 *		Ī																				
Quarter 1, 2013 * * * Quarter 2, 2013 * * * Quarter 3, 2013 * * * Quarter 4, 2013 * * * Quarter 1, 2014 * * * Quarter 2, 2014 * * * Quarter 2, 2014 * * * Quarter 3, 2014 * * * Quarter 4, 2014 * * *		Ī	*																			
Quarter 3, 2013 * * * * * * * Quarter 4, 2013 * Quarter 1, 2014 * Quarter 2, 2014 * * Quarter 3, 2014 * * * * * * Quarter 4, 2014 * * * * * * * *							*															
Quarter 4, 2013 * Quarter 1, 2014 * Quarter 2, 2014 * Quarter 3, 2014 * Quarter 4, 2014 * * * Quarter 4, 2014 * * * * * * * * * * * * * * * * * * * * * * * * * * * * *																						
Quarter 1, 2014 * Quarter 2, 2014 * Quarter 3, 2014 * Quarter 4, 2014 *		*			*	*	*	*														
Quarter 2, 2014 * * * * * * * * Quarter 3, 2014 * * * * * * * * * Quarter 4, 2014 * * * * * * * * * * * * * * * * * * *																						
Quarter 3, 2014 * * * * * * Quarter 4, 2014 * * * * * * *		L.																				
Quarter 4, 2014 * *					<u> </u>					<u> </u>				<u> </u>	<u> </u>			<u> </u>			ļ	<u> </u>
Z		*			<u> </u>	*		*	*	<u> </u>				<u> </u>	<u> </u>	*		<u> </u>			<u> </u>	<u> </u>
Quarier 1, 2015		1			<u> </u>		*	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>
	Quarter 1, 2015	_	*	_		_	_	_	_		_	_	_						_			<u> </u>

Groundwater Flow System	I			UCR	RS							URG	A					LRG	A		\neg
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SULFATE																					
Quarter 2, 2015	*	*			*		*								*						
Quarter 3, 2015	L.	*			*	*		*							*						
Quarter 4, 2015	*	*				*	*	*													
Quarter 1, 2016	*	*			*	*	*		<u> </u>												
Quarter 2, 2016	*	*			*	*	*	- Ju													
Quarter 3, 2016 Quarter 4, 2016	*	*			木	*	*	*	<u> </u>												
Quarter 1, 2017	*	*				*	*	不													
Quarter 2, 2017	*	*			*	*	*														
Quarter 3, 2017	*	*			*	*	*														
Quarter 4, 2017		*				*	*														
Quarter 1, 2018	*	*			*	*	*														
Quarter 2, 2018	*	*			*	*	*	*													
Quarter 3, 2018	*	*			*	*	*	*													
TECHNETIUM-99																					
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003																	*				
Quarter 4, 2003																	*				*
Quarter 1, 2004															*		*				*
Quarter 2, 2004															*						*
Quarter 3, 2004															*						*
Quarter 4, 2004															*		*				*
Quarter 3, 2005	<u> </u>								<u> </u>						L		*				
Quarter 1, 2006															*						*
Quarter 2, 2006		*							*												*
Quarter 3, 2006																					*
Quarter 4, 2006															*						*
Quarter 1, 2007													44		44					- 14	*
Quarter 2, 2007													*		*		14	- 14		*	
Quarter 3, 2007	1									4					*		*	*	4		-
Quarter 4, 2007	1			-		-	-	-	-	*	-				*			-	*	- JL	*
Quarter 1, 2008	1						- JL	*						*	*	*			*	*	*
Quarter 2, 2008							*	不						不	*	不			不		
Quarter 3, 2008 Quarter 4, 2008										*					不		*		*		
Quarter 1, 2009	1									*							•		Ψ.		
Quarter 2, 2009									<u> </u>	-								*			
Quarter 3, 2009	1			-		-	-	*		*					*				-		
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010									-	*					***	*	*	*	*		
Quarter 3, 2010									-	*					*						
Quarter 4, 2010	1																	*			
Quarter 1, 2011		*								*							*				
Quarter 2, 2011																*	*	*	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012								*										*			
Quarter 3, 2012	L								L								*	*			
Quarter 4, 2012															*			*			*
Quarter 1, 2013																		*			*
Quarter 2, 2013																					*
Quarter 3, 2013										*											*
Quarter 4, 2013															*		*	*			*
Quarter 1, 2014	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>			<u> </u>	*		*	*	<u> </u>						
Quarter 2, 2014	<u> </u>								<u> </u>								L.	*	<u> </u>		
Quarter 3, 2014	<u> </u>								<u> </u>						L		*	*	*		
Quarter 4, 2014	<u> </u>	<u> </u>		<u> </u>	1		<u> </u>			<u> </u>	*				<u> </u>						
Quarter 1, 2015	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>			<u> </u>	*	<u>,</u>		*	<u> </u>						
Quarter 2, 2015	<u> </u>	<u> </u>		<u> </u>	1	ļ	<u> </u>			<u> </u>		*		112	,12	J.,					
Quarter 3, 2015	<u> </u>	<u> </u>		<u> </u>	1	-	<u> </u>			<u> </u>	JI.		112	*	*	*					
Quarter 4, 2015	<u> </u>	<u> </u>		<u> </u>	1		<u> </u>			<u> </u>	*	,1.	*	,1.	,1.	*	٠,,				
Quarter 1, 2016	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	*	*	*	*	بر	*
Quarter 2, 2016	₽-	<u> </u>		<u> </u>	 	-	<u> </u>			<u> </u>		*	*	*	*	*					
Quarter 3, 2016	₽-	<u> </u>		<u> </u>	 	JL.	<u> </u>			طو		-	*	مدر	*	*					
Quarter 4, 2016	₽-	<u> </u>		<u> </u>	 	*	<u> </u>			*		-	*	*	ىد	بر					
Quarter 1, 2017	<u> </u>	<u> </u>		<u> </u>	1		<u> </u>			<u> </u>			*	<u> </u>	*	*					
Quarter 2, 2017	₽-	<u> </u>		<u> </u>	 	—	<u> </u>			<u> </u>		-		<u> </u>	<u> </u>	*					
Quarter 3, 2017	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>		<u> </u>	*	*	-	*	*	<u> </u>	*	
Quarter 4, 2017	 	 		 	1		 			木	木		木	木	 	*					
Quarter 1, 2018	1-	 	<u> </u>	-	 	-	-	-	├	-	 		<u> </u>	*	<u> </u>	*	<u> </u>	 	-	*	
Quarter 2, 2018	1	-		-	-	-	-	-	1		-			*	*	*		-	-	*	
Quarter 3, 2018	_			_		_	_	_		_	_	_			*	_		_	_	不	

Groundwater Flow System				UCR	S					URGA						LRG	A				
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
THORIUM-230																					
Quarter 4, 2015																*					
Quarter 2, 2016										*											
Quarter 4, 2016	*											*				*			*		
Quarter 4, 2017													*								<u> </u>
Quarter 2, 2018										*			*								
TOLUENE										4				4							
Quarter 2, 2014 TOTAL ORGANIC CARBON										*				*							
Quarter 3, 2002		_								*	*	*		*							*
Quarter 4, 2002										*	*	Α		*							-
Quarter 1, 2003										*	*			不							\vdash
Quarter 3, 2003	*									*	*					*					\vdash
Quarter 4, 2003	*									*	*					·					\vdash
Quarter 1, 2004										Ψ.	*										\vdash
Quarter 3, 2005						*				*	Ψ.				*	*			*		\vdash
						*				不					不	不		*	*		\vdash
Quarter 4, 2005						*												不	*		\vdash
Quarter 1, 2006																			*		
Overtor 4, 2002										*											
Quarter 4, 2002		 		 						*	 	—		 				 			$\vdash\vdash\vdash$
Quarter 1, 2003		 		 						*	 			 				 			$\vdash\vdash\vdash$
Quarter 2, 2003		 		 						ボ	 			 		JI.		 			$\vdash\vdash\vdash$
Quarter 1, 2004																*					
TRICHLOROETHENE																					
Quarter 3, 2002	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>		-	<u> </u>	<u> </u>	<u> </u>		-	$\vdash \vdash$
Quarter 4, 2002																				_	\vdash
Quarter 1, 2003																				_	
Quarter 2, 2003							_								•					_	_
Quarter 3, 2003																					•
Quarter 4, 2003															•						
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					•
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008		1		1							1			1				1			
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009															ī						
Quarter 1, 2010						Ε-	F				_		ī	<u> </u>	1		Ε-				
Quarter 2, 2010													=		=						Ħ
Quarter 3, 2010															1						Ħ
Quarter 4, 2010													ī		1						Ħ
Quarter 4, 2010 Quarter 2, 2011		1		l							l		-	1	ī			1			Ħ
Quarter 3, 2011		l —		 							 			l —				l —	-		-
Quarter 4, 2011		1		1							1		i	1				1			
Quarter 1, 2012		 		 							 			 				 	W'''		=
Quarter 1, 2012 Quarter 2, 2012		 		 							 		-	 			-	 	anda		
Quarter 3, 2012		 		 							 			 				 			
3	-	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-		<u> </u>		<u> </u>		÷	-	<u> </u>	 			
Quarter 4, 2012	-	 	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	-	 			_	i	-	<u> </u>	 			
Quarter 1, 2013	-	 	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	-	 			 		-	_	 			=
Quarter 2, 2013		-		-						-	-		-	-				-			
Quarter 3, 2013		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>		-	<u> </u>	-	-	<u> </u>	<u> </u>			
Quarter 4, 2013		<u> </u>		<u> </u>							<u> </u>			<u> </u>	-			<u> </u>	-		-
Quarter 1, 2014		<u> </u>		<u> </u>							<u> </u>	.		<u> </u>	_		_	<u> </u>	-		
Quarter 2, 2014	_			Щ.						_	Щ.					_					

Groundwater Flow System		UCRS							URGA						LRGA						
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2014																					
Quarter 4, 2014															•						
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 3, 2015																					
Quarter 4, 2015																					
Quarter 1, 2016																					
Quarter 2, 2016																					
Quarter 3, 2016																					
Quarter 4, 2016																					
Quarter 1, 2017																					
Quarter 2, 2017																					
Quarter 3, 2017																					
Quarter 4, 2017																					
Quarter 1, 2018																					
Quarter 2, 2018																					
Quarter 3, 2018																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an elevated concentration (i.e., a statistical exceedance).																					
■ MCL Exceedance																					

URGA Upper Regional Gravel Aquifer LRGA Lower Regional Gravel Aquifer

Previously reported as an MCL exceedance; however, result was equal to MCL UCRS Upper Continental Recharge System

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

Date:	08/20/2018	Time:	0900am	Monitor:	Mic	hael Hideg
Weather Condition Mostly cloudy at 8	ns: 2 degrees with scatte	red showe	rs			
Monitoring Equipn RAE Systems, Mul	nent: lti-RAE, Serial# 4497					
	Moni	toring Loc	ation			Reading (% LEL)
C-746-U1	Checked at floor level					.0
C-746-U2	Checked at floor level					0
C-746-U-T-14	Checked at floor level					0
C-746-U15	Checked at floor level					0
MG1	Dry casing					0
MG2	Dry casing					0
MG3	Dry casing					0
MG4	Dry casing					0
Suspect or Problem Areas	No problems noted					N/A
Remarks:						
Performed by:	Laum Signat	men Sun			8/20	0/18
	Signat	are				Date

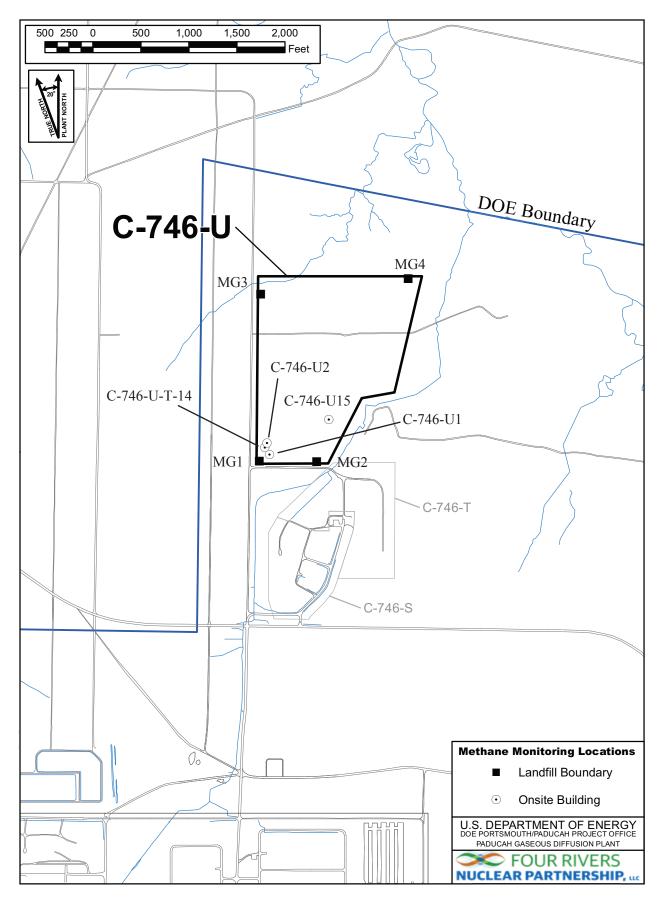


Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	(KPDES Discharge Number, or "U	OWNSTREAM")	L150 AT SITE	Ξ	L154 UPSTRE	AM	L351 DOWNSTF	REAM	\	1			
Sample Sequer	ce	#				1		1		1			
If sample is a	a Bl	ank, specify Type: (F)ield, (T) ri	ip, (M) ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		9/24/2018 06:	55	9/8/2018 13:3	35	9/8/2018 13:15			
Duplicate ("Y" or "N") ¹						N		N		N			T
Split ('Y' or "N") ²						N		N		N			7
Facility Samp	le	ID Number (if applicable)				L150US4-18	3	L154US4-18	L154US4-18		8		
Laboratory Sample ID Number (if applicable)						460062001		459145001		459145002)	\ /	
Date of Analysis (Month/Day/Year)					10/4/2018		9/26/2018		9/26/2018		18		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	Т	MGD	Field	0.03		0.21		0.65		/ \	
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	2.35		4.31		3.75		/ /	\setminus
14808-79-8	0	Sulfate	Т	mg/L	300.0	22.7		10		7.27			
7439-89-6	0	Iron	Т	mg/L	200.8	0.802		0.377		1.08			$ \rangle$
7440-23-5	0	Sodium	Т	mg/L	200.8	2.64		3.02		2.21			
s0268	0	Organic Carbon ⁶	Т	mg/L	9060	13.5		17.7		19.2			
s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	70.1	*B	81.2		95.4			

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	(KPDES Discharge Number, or	ן" ב	JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	REAM	\	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F A G S ⁷	DETECTED VALUE OR PQL ⁵	E A G S ⁷
S0145	1	Specific Conductance	т	µmho/cm	Field	237		177		126			Γ
s0270	0	Total Suspended Solids	т	mg/L	160.2	26		47.9		31.7			
s0266	0	Total Dissolved Solids	Т	mg/L	160.1	153	*	156	*	107	*		
s0269	0	Total Solids	Т	mg/L	SM-2540 B 17	213		157	*	222	*	\ /	
s0296	0	рН	Т	Units	Field	7.33		7.09		7.23		\	
7440-61-1		Uranium	Т	mg/L	200.8	0.000863		0.00124		0.00157		\	
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	4.46	*	1.18	*	-0.376	*	\	
12587-47-2		Gross Beta (β)	т	pCi/L	9310	12.6	*	13.5	*	24.3	*	V	
												\land	
												/ \	
													1
													\prod
													\Box
													\Box
													\
												1	

RESIDENTIAL/CONTAINED - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	g Facility Sample ID	Constituent	Flag	Description
L150	L150US4-18	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limit
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.84. Rad error is 4.77.
		Beta activity		TPU is 7.61. Rad error is 7.31.
L154	L154US4-18	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.62. Rad error is 1.61.
		Beta activity		TPU is 4.24. Rad error is 3.61.
L351	L351US4-18	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.97. Rad error is 1.97.
		Beta activity		TPU is 5.45. Rad error is 3.64.

