C-746-U Contained Landfill
Second Quarter Calendar Year 2018
(April—June)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

8-23-18

Date

C-746-U Contained Landfill Second Quarter Calendar Year 2018 (April–June) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—August 2018

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURE	S		v
TA	BLES	S		v
ΑC	CRON	YMS		vii
1.	INTI	RODUC	TION	1
	1.1		GROUND	
	1.2	MONI	TORING PERIOD ACTIVITIES	1
		1.2.1	Groundwater Monitoring	1
		1.2.2	Methane Monitoring	
		1.2.3	Surface Water Monitoring	
	1.3	KEY F	RESULTS	5
2.	DAT	'A EVA	LUATION/STATISTICAL SYNOPSIS	9
	2.1		STICAL ANALYSIS OF GROUNDWATER DATA	
		2.1.1	Upper Continental Recharge System	
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	
	2.2	DATA	VERIFICATION AND VALIDATION	11
3.	PRO	FESSIC	NAL GEOLOGIST AUTHORIZATION	13
4.	REF.	ERENC	ES	15
ΑF	PENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE	
			MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PENI	OIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PENI	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PENI	DIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PENI	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PENI	OIX F:	NOTIFICATIONS	F-1
ΑF	PENI	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PENI	OIX H:	METHANE MONITORING DATA	H-1
ΑF	PENI	OIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network
2.	C-746-U Landfill Surface Water Monitoring Locations
	TABLES
1.	Summary of MCL Exceedances
	Exceedances of Statistically Derived Historical Background Concentrations
	Exceedances of Current Background UTL in Downgradient Wells
4.	C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells
6.	Monitoring Wells Included in Statistical Analysis

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

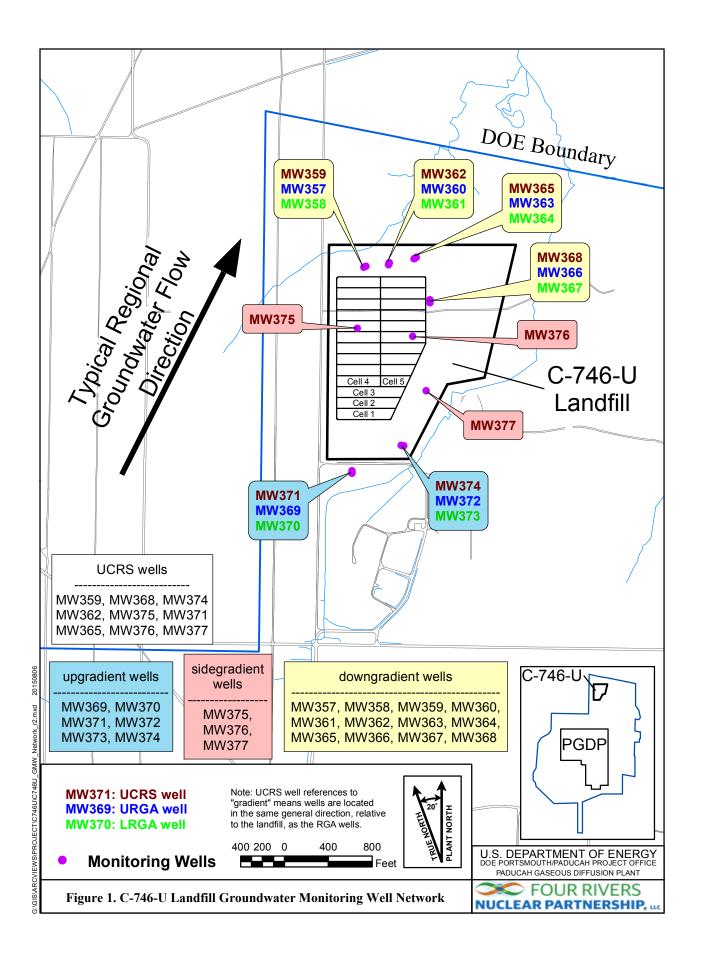
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Second Quarter Calendar Year 2018 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Site and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 4 and 5. Phases 1, 2, and 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah

Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan), UCRS wells are included in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the second quarter 2018 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 25, 2018, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During April, RGA groundwater flow in the area of the landfill was oriented northeastward to southeastward. While this varies from typical regional flow, the fluctuation in flow has occurred at least twice during April (2011 and 2015) over the last seven years. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in April was 3.59×10^{-4} ft/ft. The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 4.72×10^{-4} ft/ft and 3.85×10^{-4} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.802 to 1.37 ft/day for the URGA and 0.654 to 1.12 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Landfill permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on May 29, 2018. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous

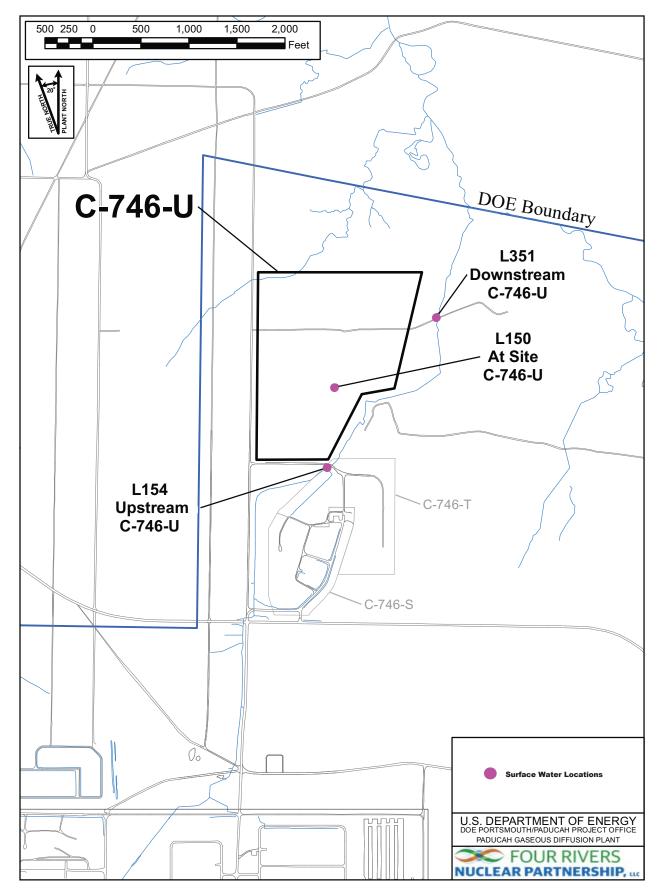


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill. The C-746-U Landfill has an upstream location, L154; a downstream location, L351; and a location capturing runoff from the landfill surface, L150. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Landfill Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL concentrations during the second quarter 2018, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW357: Trichloroethene	MW358: Trichloroethene
	MW369: Beta activity	MW361: Trichloroethene
	MW372: Trichloroethene	MW364: Trichloroethene
		MW367: Trichloroethene
		MW373: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Oxidation-reduction
oxidation-reduction potential, sulfate	potential, thorium-230	potential
MW362: Dissolved oxygen,	MW360: Oxidation-reduction	MW361: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW365: Dissolved oxygen,	MW363: Oxidation-reduction	MW364: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW368: Oxidation-reduction	MW366: Oxidation-reduction	MW367: Oxidation-reduction
potential, sulfate	potential, thorium-230	potential, technetium-99
MW371: Dissolved oxygen,	MW369: Beta activity, oxidation-	MW370: Oxidation-reduction
oxidation-reduction potential, sulfate	reduction potential, technetium-99	potential, technetium-99
MW374: Oxidation-reduction	MW372: Oxidation-reduction	MW373: Oxidation-reduction
potential	potential	potential
MW375: Oxidation-reduction		
potential, sulfate		

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Opgradient wens: Mw309, Mw3/0, Mw3/1, Mw3/2, Mw3/3, Mw3/4

Sidegradient wells: MW375, MW376, MW377

¹ The term "concentration" may refer to a field measurement result such as pH or oxidation-reduction potential or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW357: Thorium-230	None
MW366: Thorium-230	

The notification of parameters that exceeded the MCL submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW357, MW358, MW361, MW364, and MW367 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL, thorium-230 in MW357 and MW366, do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate the preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4.

The Mann-Kendall statistical test indicates that there is an increasing trend of thorium-230 in MW357 and MW366 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, these are considered to be Type 2 exceedances (source unknown). The source of the trends is believed to be unrelated to the C-746-U Landfill because thorium-230 has very limited solubility; therefore, if the source were related to landfill leachate, other soluble constituents (not detected) also would be expected. This quarter is only the second detection of thorium-230 in MW357 (analysis of thorium-230 was initiated in 2004; 57 samples collected to date) and the third detection in MW366 (analysis of thorium-230 was initiated in 2004; 60 samples collected to date). The concentrations are only slightly elevated above the minimum detectable activity; therefore, the detections are uncertain. Similarly, the past seven quarters of data appear to suggest a trend below the minimum detectable activity making the trend uncertain. Results of this parameter from these wells will be evaluated with the next quarter's results to identify if there is a persistent trend.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS wells with dissolved oxygen and sulfate values that exceed both the historical and current backgrounds (Table 5). Because these wells are not hydrogeologically downgradient of the C-746-U Landfill, these exceedances are not attributable to C-746-U sources and are considered to be Type 1 exceedances.

Table 4. C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
C-746-U Landfill	MW357	Thorium-230	8	0.05	0.007	20	Positive Trend
	MW366	Thorium-230	8	0.05	0.007	20	Positive Trend

Footnotes:

Note: Statistics generated using ProUCL.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW359: Sulfate
MW362: Dissolved oxygen, sulfate
MW365: Dissolved oxygen, sulfate
MW368: Sulfate

^{*}In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances, except thorium-230 in MW357 and MW366, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill. The increasing trends for thorium-230 in MW357 and MW366 do not appear to be landfill related. Thorium-230 in MW357 and MW366 will continue to be evaluated.

¹ An alpha of 0.05 represents a 95% confidence interval.

²The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

 $^{^3}$ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

The Mann-Kendall decision operates on two hypotheses, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2018 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375	,	, 10
MW376***		
MW377***		

^{*}A map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the UCRS. During the second quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Dissolved oxygen and sulfate exceeded the current background UTL and are included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 32 parameters, including those with MCLs, required statistical analysis in the URGA. During the second quarter, beta activity, oxidation-reduction potential, technetium-99, and thorium-230 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Thorium-230 exceeded the current background UTL and is included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the LRGA. During the second quarter, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedances of the current background UTL for any LRGA downgradient wells as summarized in Table 3.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}MW376 and MW377 had insufficient water to permit a water sample for laboratory analysis.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

Second Quarter Calendar Year 2018 (April–June)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0027/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

The parties of the pa

PG 113927 XRD 8/23/18

Kenneth R Davis

Kenneth R. Davis

PG113927

August 23, 2018
Date

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah Ga	seous Diffusion Plant	Activity: C-74	6-U Contained Landfill
	(As officially shown on	DWM Permit Face)		
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Yea	r 2nd Qtr. CY 2018
Please check the	following as applicable:			
Charact	terization X Quarte	erly Semiannual	Annual	Assessment
Please check app	plicable submittal(s):	X Groundwater	X Sur	face Water
		Leachate	X Me	thane Monitoring
45:160) or by state jurisdiction of the (48) hours of ma Submitting the la instruction pages. I certify under peraccordance with a Based on my inquire the best of my known in the best of my known i	the (Kentucky Revised Statue Division of Waste Manager Liking the determination us be report is NOT considered in the malty of law that this document as system designed to assure the liry of the person or persons dividedge and belief, true, accuming the property of the person or persons dividedge and belief, true, accuming the property of the person or persons dividedge and belief, true, accuming the property of the person or persons dividedge and belief, true, accuming the property of the person or persons dividedge and belief, true, accuming the property of the person or persons divided the person or person or persons divided the person or person	d by regulation (Kentucky Was S Chapter 224) to conduct groment. You must report any sing statistical analyses, directly responsible for gatherin rate, and complete. I am aware and imprisonment for such view and complete.	undwater and surface indication of contan ect comparison, or ompleting the form are expressed under my ly gather and evaluate g the information, the e that there are significations.	water monitoring under the nination within forty-eight other similar techniques. attached. Do not submit the direction or supervision in the information submitted information submitted is, to cant penalties for submitting
	ield, Deputy Program Ma iclear Partnership, LLC	anager	Date	30/18
	wordard ard, Paducah Site Lead nt of Energy		Date	130/18

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

	Groundwater: April 2018				SW07300014,
a 1: D :	Surface water: April 2018	Country	Mari	Permit	SW07300015,
Sampling Date:	Methane: May 2018	County:	McCracken	_ Nos.	SW07300045
Facility Name:	U.S. DOE—Paducah Gaseous D				
	(As officially sho	wn on DWM Permit Face	e)		
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053	
	Street	City/State		Zip	
Phone No: (27)	0) 441-6800 Latitude:	N 37° 07' 45"	Longi	tude: W	88° 47' 55"
	own	NER INFORMATION			
Facility Owner:	U.S. DOE, Robert E. Edwards	III, Manager	Phone No:	(859) 22'	7-5020
Contact Person:	James Miller	, ,	Phone No:		
	Director, Waste, Materia	als, and Environmental Se		('' '')	
Contact Person Ti	tle: Four Rivers Nuclear Par	tnership, LLC			
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053	
	Street	City/State		Zip	
- · · —	(IF OTHER THA O Consultants, LLC	PLING PERSONNEL N LANDFILL OR LAB	,	(270) 4	11 (755
Contact Person:	Sam Martin	IZ	Phone No:		
Mailing Address:	199 Kentucky Avenue Street	Kevil, Kentucky City/State	<u>42053</u> Zip		
	- Succi	- City/State		Zip	
	LABO	RATORY RECORD #	1		
Laboratory GE	L Laboratories, LLC	Lab	ID No: <u>KY90</u>	129	
Contact Person:	Valerie Davis		Phone No:	(843) 769	9-7391
Mailing Address:	2040 Savage Road	Charleston, South Ca	rolina	294	.07
	Street	City/State		Zi	p
	LABO	PRATORY RECORD #2	2		
Laboratory: N/	A	Lab 1	ID No: N/A		
Contact Person:	Contact Person: N/A Phone No: N/A				
Mailing Address:	N/A				
	Street	City/State			Zip
	LABO	RATORY RECORD #3	3		
Laboratory: N/	Α	Lab l	ID No: N/A		
Contact Person:	N/A		Phone No:	N/A	
Mailing Address:	N/A				
	Street	City/State			Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798	3	8004-4	799	8004-09	981	8004-480	00
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, etc	:.)	357		358		359		360	
Sample Sequen	ace #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	and Time (Month/Day/Year hour: minu	ıtes)		4/10/2018 12	2:07	4/10/2018	13:10	4/10/2018	10:29	4/10/2018 0	9:47
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	ole ID Number (if applicable)				MW357UG3	-18	MW358U	G3-18	MW359U0	G3-18	MW360UG	3-18
Laboratory Sa	mple ID Number (if applicable)		44771800	1	447718	003	447718	005	4477180	07		
Date of Analy	rsis (Month/Day/Year) For <u>Volatil</u>	ysis.	4/13/2018	3	4/13/20)18	4/13/20	18	4/13/201	8		
Gradient with	respect to Monitored Unit (UP, D	OWN,	, SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
24959-67-9	Bromide	Т	mg/L	9056	0.303		0.459		<0.2		0.278	
16887-00-6	Chloride(s)	Т	mg/L	9056	25.5		38.9		0.989		25.3	
16984-48-8	Fluoride	Т	mg/L	9056	0.214		0.187		<0.1		0.222	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.18		1.07		1.23		0.697	
14808-79-8	Sulfate	т	mg/L	9056	32.3		68.1		50.9		19.9	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.33		30.32		30.33		30.32	
s0145	Specific Conductance	т	μ MHO /cm	Field	351		495		236		444	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798	8	8004-4799	9	8004-0981		8004-4800)
Facility's Lo	ocal Well or Spring Number (e.g., MW	I-1,	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.1		327.33		340.76		327.22	
N238	Dissolved Oxygen	т	mg/L	Field	4.45		1.25		4.39		1.89	
S0266	Total Dissolved Solids	т	mg/L	160.1	210		274		177		241	
s0296	рн	Т	Units	Field	6.09		6.08		6.29		6.49	
NS215	Eh	Т	mV	Field	399		223		375		340	
s0907	Temperature	Т	°C	Field	15.11		15.22		14.61		14.61	
7429-90-5	Aluminum	Т	mg/L	6020	0.0272	J	<0.05		0.046	J	0.0813	
7440-36-0	Antimony	T	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	T	mg/L	6020	<0.005		0.00212	J	<0.005		<0.005	
7440-39-3	Barium	T	mg/L	6020	0.0826		0.0441		0.0249		0.175	
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	T	mg/L	6020	0.247		0.428		<0.015		0.0524	
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	20.2		32.1		6.48		23.9	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00275		<0.001		0.0022	
7440-50-8	Copper	Т	mg/L	6020	0.000618	J	0.00118		0.000917	J	0.00134	
7439-89-6	Iron	Т	mg/L	6020	0.0444	J	1.31		0.0512	J	0.594	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	8.65		14.7		3.95		10.1	
7439-96-5	Manganese	Т	mg/L	6020	0.0198		0.114		<0.005		0.0263	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	i1	8004-480	00
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		0.000213	J	<0.0005		0.000234	J
7440-02-0		Nickel	Т	mg/L	6020	<0.002		0.0131		0.000761	J	0.00115	J
7440-09-7		Potassium	Т	mg/L	6020	1.35		2.37		<0.3		0.964	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		0.00206	J
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	37.7		42.4		40.7		56.9	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	0.000189	J	<0.0002		0.00008	J	<0.0002	
7440-62-2		Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6		Zinc	Т	mg/L	6020	0.0058	J	0.00745	J	0.00332	J	0.00409	J
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-098	81	8004-480	00
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0053		0.00602		0.00084	J	0.00236	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4799	9	8004-098	B1	8004-48	00
Facility's Loc	al Well or Spring Number (e.g., M	ſW−1	l, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000197		<0.0000197		<0.0000197		<0.0000201	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.098	
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.098	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.098	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.098	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.098	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.098	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g., N	MW−1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.098	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.098	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.098	
12587-46-1	Gross Alpha	Т	pCi/L	9310	5.48	*	0.198	*	2.77	*	0.391	*
12587-47-2	Gross Beta	Т	pCi/L	9310	19.5	*	23.4	*	6.57	*	4.36	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.412	*	0.531	*	0.304	*	0.694	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.224	*	-0.177	*	0.435	*	-0.97	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	32.3	*	42.9	*	9.66	*	10.9	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	2.15	*	0.209	*	0.00547	*	0.646	*
10028-17-8	Tritium	Т	pCi/L	906.0	-55.1	*	1.21	*	40.6	*	-18.6	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	30.7		32.7		20.7		30.7	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	0.492	J	0.996	J	0.649	J	1.29	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00478	J	0.00532	J	<0.01		0.00778	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479)7
Facility's Loc	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	:.)	361		362		363		364	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)∈	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/10/2018 07	7:48	4/10/2018	09:05	4/11/2018	07:53	4/11/2018 0	9:22
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW361UG3	3-18	MW362U	G3-18	MW363U0	G3-18	MW364UG	3-18
Laboratory San	mple ID Number (if applicable)				44771801	1	447718	013	4479380	003	44793800	01
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/13/2018	3	4/13/20	18	4/17/20	18	4/17/201	8
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWI	7	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.429		<0.2		0.161	J	0.412	
16887-00-6	Chloride(s)	т	mg/L	9056	33.8	*	5.9	*	23.6	*	33.4	*
16984-48-8	Fluoride	т	mg/L	9056	0.185		0.43		0.181		0.157	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.25		0.576		4.48	*	0.855	
14808-79-8	Sulfate	т	mg/L	9056	62.1		30.6		38		69.8	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.3		30.32		30.21		30.22	
s0145	Specific Conductance	т	μ MH 0/cm	Field	462		705		407		467	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796		8004-4797	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.24		339.49		327.3		326.56	
N238	Dissolved Oxygen	т	mg/L	Field	3.51		6.57		1.32		3.9	
s0266	Total Dissolved Solids	т	mg/L	160.1	286		453		239	В	266	В
s0296	рН	т	Units	Field	5.87		6.9		5.98		6.13	
NS215	Eh	т	mV	Field	403		340		437		434	
s0907	Temperature	т	°C	Field	13.83		14.22		13.33		14.67	
7429-90-5	Aluminum	т	mg/L	6020	0.0214	J	6.02		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00294	٦	0.00208	J	0.00226	J
7440-39-3	Barium	Т	mg/L	6020	0.0529		0.118		0.159		0.0661	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.322		0.0164		0.0299		0.0112	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	30.2		21.6		26.1		29.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		0.00628	J	<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00173		0.00102		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000763	J	0.00466		0.000376	J	0.000524	J
7439-89-6	Iron	Т	mg/L	6020	0.0998	J	3.78		0.0664	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		0.00305		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	13.2		9.87		10.5		13.2	
7439-96-5	Manganese	Т	mg/L	6020	0.0505		0.0183		0.266		0.00823	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	6	8004-479	7
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		0.00115		<0.0005		0.000382	J
7440-02-0		Nickel	Т	mg/L	6020	<0.002		0.00303		0.00107	J	0.000848	J
7440-09-7		Potassium	Т	mg/L	6020	1.85		0.721		1.29		2.03	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	0.000382	J	<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	43.6		138		38.1		42.6	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		0.00594		<0.0002		<0.0002	
7440-62-2		Vanadium	Т	mg/L	6020	<0.01		0.00966	J	<0.01		<0.01	
7440-66-6		Zinc	Т	mg/L	6020	0.00489	J	0.0103		<0.01		0.0494	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-098	6	8004-479	96	8004-47	97
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	:c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00934		0.00205		0.00257		0.00693	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-479	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., N	IW-1	L, MW-2, et	:c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000197		<0.0000198		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0935		<0.099		0.0474	J	<0.0971	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0935		<0.099		<0.0943		<0.0971	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0935		<0.099		<0.0943		<0.0971	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0935		<0.099		<0.0943		<0.0971	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0935		<0.099		0.0474	J	<0.0971	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0935		<0.099		<0.0943		<0.0971	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479)7
Facility's Loc	al Well or Spring Number (e.g., 1	∕w-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0935		<0.099		<0.0943		<0.0971	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0935		<0.099		<0.0943		<0.0971	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0935		<0.099		<0.0943		<0.0971	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.85	*	4.16	*	-0.354	*	-0.186	*
12587-47-2	Gross Beta	Т	pCi/L	9310	30.3	*	4.09	*	6.75	*	36.6	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.236	*	0.157	*	0.0999	*	0.0741	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.872	*	-1.51	*	1.05	*	-1.27	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	39.8	*	6.29	*	15.2	*	42.1	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.26	*	0.858	*	0.7	*	1.22	*
10028-17-8	Tritium	Т	pCi/L	906.0	-59.4	*	59.8	*	19.5	*	2.53	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	18.7	J	24.7		<20		10.7	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	0.796	J	2.8		0.696	J	0.798	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00662	J	0.0273		<0.01		0.0095	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	4793	8004-09	983
Facility's Loc	cal Well or Spring Number (e.g., 1	MW−1	., MW-2, etc	.)	365		36	66	36	7	368	3
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/11/2018	08:36	4/10/201	8 13:57	4/11/201	8 10:11	4/11/2018	12:15
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW365U0	€3-18	MW366	JG3-18	MW3671	JG3-18	MW368U	G3-18
Laboratory San	mple ID Number (if applicable)			4479380	005	44771	8015	44788	4001	447884	003	
Date of Analys	sis (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	4/17/20	18	4/13/2	2018	4/17/2	2018	4/17/20	018
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOW	٧	DO	ΝN	DOV	ΝN	DOW	/N
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.481		0.467		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	2.88	*	40.2	*	39.5	*	0.896	*
16984-48-8	Fluoride	Т	mg/L	9056	0.268		0.203		0.161		0.258	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.01	*	0.979		0.707		<0.2	
14808-79-8	Sulfate	Т	mg/L	9056	65.5		56.1		58.3		27.7	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.21		30.31		30.22		30.18	
S0145	Specific Conductance	т	μ MH0/cm	Field	429		478		472		382	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793		8004-0983	3
Facility's Lo	ocal Well or Spring Number (e.g., MV	I-1,	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	336.57		327.01		327.2		362.84	
N238	Dissolved Oxygen	т	mg/L	Field	5.82		2.19		1.81		2.17	
S0266	Total Dissolved Solids	Т	mg/L	160.1	269	В	271		280	В	241	В
s0296	рн	Т	Units	Field	6.33		6.19		6.11		6.63	
NS215	Eh	Т	mV	Field	425		258		409		389	
s0907	Temperature	Т	°C	Field	13.83		15.83		15.61		15.5	
7429-90-5	Aluminum	Т	mg/L	6020	0.0237	J	<0.05		<0.05		0.658	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	T	mg/L	6020	0.00231	J	<0.005		<0.005		<0.005	
7440-39-3	Barium	T	mg/L	6020	0.106		0.112		0.147		0.0186	
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	T	mg/L	6020	<0.015		0.142		0.053		0.00643	J
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	22		31.6		31.6	В	38.7	В
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00204		<0.001		0.000455	J	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00164		<0.001		0.000631	J*	0.000831	J*
7439-89-6	Iron	Т	mg/L	6020	<0.1		<0.1		0.735		0.439	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.5		13.5		12.6		11.4	
7439-96-5	Manganese	т	mg/L	6020	0.0525		0.0097		0.0649		0.00868	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number		8004-098	4	8004-098	32	8004-479	3	8004-098	3		
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		0.000758	
7440-02-0		Nickel	Т	mg/L	6020	0.00476		<0.002		0.00132	J	0.00138	J
7440-09-7		Potassium	Т	mg/L	6020	0.271	J	1.9		2.74		0.495	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		0.00248	J	<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	51.6		45.1		36.9		20.7	
7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	0.000161	BJ	<0.0002		0.000109	BJ	0.000346	В
7440-62-2		Vanadium	Т	mg/L	6020	0.00371	J	<0.01		<0.01		0.00768	J
7440-66-6		Zinc	Т	mg/L	6020	0.00627	J	0.00345	J	0.00502	J	0.00813	J
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-098	2	8004-479	93	8004-09	33
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0007	J	0.0041		0.00592		0.00224	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-098	4	8004-0982	2	8004-479	93	8004-09	83	
Facility's Loc	al Well or Spring Number (e.g., N	ſW−1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.00002		<0.0000199		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	0.0335	J*	<0.0971		<0.0952		<0.0943	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.0971		<0.0952		<0.0943	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.0971		<0.0952		<0.0943	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.0971		<0.0952		<0.0943	
53469-21-9	PCB-1242	т	ug/L	8082	0.0335	J*	<0.0971		<0.0952		<0.0943	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0952		<0.0971		<0.0952		<0.0943	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	., MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.0971		<0.0952		<0.0943	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0952		<0.0971		<0.0952		<0.0943	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0952		<0.0971		<0.0952		<0.0943	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.665	*	-0.681	*	4.78	*	1.6	*
12587-47-2	Gross Beta	т	pCi/L	9310	3.49	*	11.4	*	32.8	*	7.03	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.122	*	0.0575	*	1.35	*	0.189	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2.45	*	0.456	*	-0.886	*	-0.32	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-5.31	*	62.1	*	60.2	*	-2.03	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.127	*	2.8	*	0.708	*	0.257	*
10028-17-8	Tritium	Т	pCi/L	906.0	-89.7	*	-11.5	*	-96.8	*	11.2	*
s0130	Chemical Oxygen Demand	T	mg/L	410.4	<20		16.7	J	18.7	J	22.7	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	1.52	J	0.745	J	0.677	J	1.32	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0153		0.00904	J	0.00824	J	0.005	J
												$oxed{oxed}$
		\bigsqcup										

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	4819	8004-4	808
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	, MW-2, etc	.)	369		37	0	37	1	372	!
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	ites)		4/11/2018	12:59	4/11/201	8 13:43	4/12/201	8 07:21	4/12/2018	08:05
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW369UG	3-18	MW370	JG3-18	MW3711	JG3-18	MW372U	G3-18
Laboratory Sa	mple ID Number (if applicable)		4479380	007	44793	8009	44795	0001	447950	003		
Date of Analy	sis (Month/Day/Year) For Volatile	ganics Anal	ysis	4/17/20	18	4/17/2	2018	4/18/2	2018	4/19/20)18	
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	OWN)	UP		U	Р	U	P	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.407		0.43		<0.2		0.572	
16887-00-6	Chloride(s)	Т	mg/L	9056	35.5	*	35.6	*	1.77		43.2	
16984-48-8	Fluoride	Т	mg/L	9056	0.177		0.168		0.128		0.197	
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.976		0.965		<0.2		0.413	
14808-79-8	Sulfate	Т	mg/L	9056	24		21.1		91.6	*	78.2	*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.15		30.15		29.94		29.94	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	425		445		503		614	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820	0	8004-4818	3	8004-4819		8004-4808	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	327.15		327.2		343.62		327.35	
N238	Dissolved Oxygen	Т	mg/L	Field	1.27		3.18		7.85		1.22	
s0266	Total Dissolved Solids	Т	mg/L	160.1	281	В	236	В	304	В	356	В
s0296	рН	Т	Units	Field	6.34		6.1		6.1		6.18	
NS215	Eh	Т	mV	Field	397		368		365		348	
s0907	Temperature	т	°C	Field	17.11		16.28		15.67		16.89	
7429-90-5	Aluminum	Т	mg/L	6020	0.0247	J	<0.05		1.62		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00289	J	0.00311	J	0.00342	J	0.00285	٦
7440-39-3	Barium	т	mg/L	6020	0.505		0.222		0.0583		0.0537	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0244		0.0285		<0.015		0.953	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	28.7		28.5		62.5		49.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.000935	J	0.00041	J	<0.001		0.00118	
7440-50-8	Copper	Т	mg/L	6020	0.00321		0.000661	J	0.00234		0.000793	J
7439-89-6	Iron	Т	mg/L	6020	0.0697	J	<0.1		0.963		0.0669	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		0.000602	J	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	12.6		12.7		10.3		19.4	
7439-96-5	Manganese	Т	mg/L	6020	0.0127		0.00452	J	0.0142		0.00775	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number		8004-482	0	8004-481	8	8004-481	9	8004-480	18		
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		0.00031	J	0.000358	J
7440-02-0		Nickel	Т	mg/L	6020	0.00122	J	0.000797	J	0.00164	J	0.00132	J
7440-09-7		Potassium	Т	mg/L	6020	1.59		2.56		0.643		2.19	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	49.2		42.1		14.6		46.4	
7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000391	В	<0.0002	
7440-62-2		Vanadium	Т	mg/L	6020	0.00366	J	0.00355	J	0.00759	J	0.00362	J
7440-66-6		Zinc	Т	mg/L	6020	0.00665	J	0.00456	J	0.00749	J	0.00689	J
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00107		0.0006	J	<0.001		0.00788	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-482	0	8004-4818	3	8004-48	19	8004-48	08	
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	l, MW-2, et	:c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.000198		<0.0000197		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.0962		<0.0952		<0.0962	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0952		<0.0962		<0.0952		<0.0962	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.0962		<0.0952		<0.0962	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.0962		<0.0952		<0.0962	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.0962		<0.0952		<0.0962	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0952		<0.0962		<0.0952		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.0962		<0.0952		<0.0962	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0952		<0.0962		<0.0952		<0.0962	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0952		<0.0962		<0.0952		<0.0962	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-4.88	*	2.77	*	-3.51	*	-3.97	*
12587-47-2	Gross Beta	Т	pCi/L	9310	102	*	50	*	-0.0836	*	20.9	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	-0.19	*	0.166	*	0.00973	*	0.258	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2.29	*	-0.792	*	0.408	*	0.551	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	142	*	107	*	2.35	*	36.6	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.0378	*	0.287	*	0.529	*	-0.178	*
10028-17-8	Tritium	Т	pCi/L	906.0	28.1	*	-104	*	-69.8	*	-158	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	24.7		<20		<20		10.7	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.29	J	1.07	J	1.09	J	0.849	J
s0586	Total Organic Halides	т	mg/L	9020	0.00398	J	<0.01		<0.01		0.00596	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-09	990	8004-09)85	8004-098	.8
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	373		374		375		376	
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/12/2018 09	9:31	4/12/2018	08:47	4/12/2018	10:19	NA	
Duplicate ("Y'	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW373UG3	3-18	MW374U	G3-18	MW375U0	G3-18	NA	
Laboratory Sam	mple ID Number (if applicable)				44795000	5	447950	007	4479500	009	NA	
Date of Analys	sis (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis.	4/19/2018	3	4/19/20	18	4/19/20	18	NA	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.58		0.704		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	43.1		58.4		4.36			*
16984-48-8	Fluoride	т	mg/L	9056	0.167		0.17		0.281			*
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.09		0.124	J	1.24			*
14808-79-8	Sulfate	Т	mg/L	9056	89.5	*	7.24	*	25.5	*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.94		29.94		29.93			*
s0145	Specific Conductance	т	μ MH 0/cm	Field	662		654		350			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	}
Facility's Loc	cal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	327.37		338.3		343.24			*
N238	Dissolved Oxygen	т	mg/L	Field	2.78		1.67		0.69			*
S0266	Total Dissolved Solids	т	mg/L	160.1	386	В	363	В	220	В		*
s0296	рн	т	Units	Field	6.18		6.63		6.35			*
NS215	Eh	т	mV	Field	350		331		344			*
s0907	Temperature	т	°C	Field	17.94		17.67		16.67			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.0611			*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	0.00298	J	0.00266	J	<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0314		0.119		0.166			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.18		0.0221		0.0112	J		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	53.2		21.4		13.1			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000414	J	0.00044	J		*
7440-50-8	Copper	Т	mg/L	6020	0.000498	J	0.00061	J	0.000649	J		*
7439-89-6	Iron	Т	mg/L	6020	0.0668	J	1.11		0.126			*
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020	20.6		5.03		5.47			*
7439-96-5	Manganese	Т	mg/L	6020	0.00864		0.0716		0.005			*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	35	8004-098	38
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		0.000237	J	<0.0005			*
7440-02-0		Nickel	Т	mg/L	6020	<0.002		0.000663	J	0.00103	J		*
7440-09-7		Potassium	Т	mg/L	6020	2.39		0.429		0.27	J		*
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		0.00268	J		*
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5		Sodium	Т	mg/L	6020	47.9		108		49.3			*
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		0.000328	В	0.000085	BJ		*
7440-62-2		Vanadium	Т	mg/L	6020	0.00376	J	<0.01		<0.01			*
7440-66-6		Zinc	Т	mg/L	6020	0.006	J	0.00444	J	0.00516	J		*
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00771		0.00207		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-0990)	8004-098	35	8004-09	188
Facility's Loc	cal Well or Spring Number (e.g., I	MW-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.00002		<0.0000199		<0.0000198			*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0952		<0.0952		<0.0952			*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0952		<0.0952		<0.0952			*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0952		<0.0952		<0.0952			*
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0952		<0.0952		<0.0952			*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0952		<0.0952		<0.0952			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0952		<0.0952		<0.0952			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g., I	MW−1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.0952		<0.0952			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0952		<0.0952		<0.0952			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.0952		<0.0952			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.32	*	2.8	*	0.0709	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	4.99	*	6.03	*	1.38	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.0404	*	0.268	*	0.164	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.912	*	2.68	*	1.5	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	30.2	*	-4.27	*	0.0545	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.299	*	-0.15	*	0.557	*		*
10028-17-8	Tritium	Т	pCi/L	906.0	-4.51	*	-40	*	47.9	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	24.7		22.7		14.7	J		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060	1.09	J	2.46		1.1	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.0132	В	0.0248	В	0.0125	В		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-00	00	0000-00	00	0000-000	0
Facility's Loc	al Well or Spring Number (e.g., N	4W−1	1, MW-2, etc	·•)	377		E. BLAN	١K	F. BLAN	IK	T. BLANK	(1
Sample Sequenc	e #				1		1		1		1	
If sample is a B	clank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		Е		F		Т	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		NA		4/10/2018	06:35	4/10/2018 (07:55	4/10/2018 0	6:30
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				NA		RI1UG3	-18	FB1UG3-	-18	TB1UG3-	18
Laboratory Sam	oratory Sample ID Number (if applicable) e of Analysis (Month/Day/Year) For Volatile Organics Analy						4477180	18	4477180	17	44771801	19
Date of Analys	is (Month/Day/Year) For Volatile	e 01	rganics Anal	ysis	NA		4/13/20	18	4/13/201	18	4/13/201	8
Gradient with	respect to Monitored Unit (UP, DO	NWC	, SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	Т	μ MHO /cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved ⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989	9	0000-0000)	0000-0000		0000-0000)
Facility's Lo	ocal Well or Spring Number (e.g., MV	-1,	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-41-7	Beryllium	Т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	Т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	Т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	Т	mg/L	6020		*	0.00085	J	0.00048	J		*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	Т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	00
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	[1
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7		Molybdenum	Т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0		Nickel	Т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7		Potassium	Т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6		Rhodium	T	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	T	mg/L	6020		*	<0.001		<0.001			*
7440-23-5		Sodium	T	mg/L	6020		*	<0.25		<0.25			*
7440-25-7		Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0		Thallium	T	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	T	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2		Vanadium	T	mg/L	6020		*	<0.01		<0.01			*
7440-66-6		Zinc	T	mg/L	6020		*	<0.01		<0.01			*
108-05-4		Vinyl acetate	T	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	T	mg/L	8260		*	0.00333	J	0.00893		0.00309	J
107-02-8		Acrolein	T	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	T	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260		*	0.00126		0.00067	J	0.00125	
1330-20-7		Xylenes	Т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000)	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., N	∕w-1	L, MW-2, et	:c.)	377		E. BLAN	(F. BLAN	IK	T. BLAN	〈 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		0.0136		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	377		E. BLANK	(F. BLAN	IK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.000199		<0.0000198		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.099		<0.0962			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.099		<0.0962			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.099		<0.0962			*
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.099		<0.0962			*
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.099		<0.0962			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.099		<0.0962			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989)	0000-0000		0000-000	0	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	377		E. BLANK		F. BLAN	K	T. BLANK	(1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.099		<0.0962			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.099		<0.0962			*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.099		<0.0962			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	0.388	*	3.39	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	1.7	*	8.02	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*	0.0999	*	-0.0247	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	-1.34	*	0.0909	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	7.06	*	-4.93	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	1.12	*	0.574	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	-0.777	*	24.7	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5	*	<0.5	*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	8004-479	95	\	
Facility's Loca	al Well or Spring Number (e.g., M	IW-1	L, MW-2, etc	.)	T. BLANK	(2	T. BLAN	K 3	361			
Sample Sequence	· #				1		1		2			
If sample is a Bl	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						Т		NA			
Sample Date and	l Time (Month/Day/Year hour: minu	tes)		4/11/2018 0	6:45	4/12/2018	06:35	4/10/2018 0	7:48		
Duplicate ("Y"	or "N") ²				N		N		Y			
Split ("Y" or "	'N") ³				N		N		N		\	
Facility Sample	Facility Sample ID Number (if applicable)						TB3UG3	-18	MW361DUG	3-18		
Laboratory Samp	Laboratory Sample ID Number (if applicable)						4479500)11	447718009		\ /	
Date of Analysi	s (Month/Day/Year) For Volatile	Or	ganics Anal	ysis	4/17/201	8	4/19/20	18	4/13/2018		\ /	
Gradient with r	respect to Monitored Unit (UP, DC	, NW	, SIDE, UNKN	OWN)	NA		NA		DOWN		Y	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQI	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*	0.408			
16887-00-6	Chloride(s)	т	mg/L	9056		*		*	34.7			
16984-48-8	Fluoride	т	mg/L	9056		*		*	0.158			
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*	1.22			
14808-79-8	Sulfate	Т	mg/L	9056		*		*	62.5			
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*	30.3			
s0145	Specific Conductance	Т	μ MHO/cm	Field		*		*	462		/	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000		8004-4795		\	i
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK 3		361			\Box
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*	327.24			T
N238	Dissolved Oxygen	Т	mg/L	Field		*		*	3.51			I
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*	256			I
s0296	На	Т	Units	Field		*		*	5.87		\ /	\Box
NS215	Eh	Т	mV	Field		*		*	403		\ /	
s0907	Temperature	Т	°C	Field		*		*	13.83		\ /	
7429-90-5	Aluminum	Т	mg/L	6020		*		*	<0.05		\ /	
7440-36-0	Antimony	т	mg/L	6020		*		*	<0.003		$\setminus \setminus \setminus$	
7440-38-2	Arsenic	т	mg/L	6020		*		*	<0.005		X	
7440-39-3	Barium	т	mg/L	6020		*		*	0.0519		/\	
7440-41-7	Beryllium	т	mg/L	6020		*		*	<0.0005		/ \	
7440-42-8	Boron	Т	mg/L	6020		*		*	0.308		/ \	
7440-43-9	Cadmium	Т	mg/L	6020		*		*	<0.001		/ /	
7440-70-2	Calcium	т	mg/L	6020		*		*	28.6			\
7440-47-3	Chromium	Т	mg/L	6020		*		*	<0.01			
7440-48-4	Cobalt	Т	mg/L	6020		*		*	<0.001			1
7440-50-8	Copper	T	mg/L	6020		*		*	0.00123			
7439-89-6	Iron	Т	mg/L	6020	_	*		*	0.089	J		
7439-92-1	Lead	T	mg/L	6020		*		*	<0.002			
7439-95-4	Magnesium	т	mg/L	6020		*		*	12.6			
7439-96-5	Manganese	Т	mg/L	6020		*		*	0.0469			
7439-97-6	Mercury	т	mg/L	7470		*		*	<0.0002			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number		0000-000	0	0000-0000 8004-4795		5					
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	< 3	361			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
7439-98-7	Molybdenum	Т	mg/L	6020		*		*	<0.0005			\prod
7440-02-0	Nickel	Т	mg/L	6020		*		*	<0.002			\prod
7440-09-7	Potassium	Т	mg/L	6020		*		*	1.82			I
7440-16-6	Rhodium	Т	mg/L	6020		*		*	<0.005			
7782-49-2	Selenium	Т	mg/L	6020		*		*	<0.005			
7440-22-4	Silver	Т	mg/L	6020		*		*	0.000688	J	\ /	
7440-23-5	Sodium	Т	mg/L	6020		*		*	41.6		\ /	
7440-25-7	Tantalum	Т	mg/L	6020		*		*	<0.005			
7440-28-0	Thallium	Т	mg/L	6020		*		*	<0.002		X	
7440-61-1	Uranium	Т	mg/L	6020		*		*	<0.0002		/\	
7440-62-2	Vanadium	Т	mg/L	6020		*		*	<0.01			
7440-66-6	Zinc	Т	mg/L	6020		*		*	0.00429	J	/ /	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			\
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			\setminus
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7	Chlorobenzene	Т	mg/L	8260	0.00106		0.00114		<0.001			
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-000	0	8004-4795		\	
Facility's Loca	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	361		\	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L 24 G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			1/
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			Π
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			/
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		\/	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			\
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		0.0147			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	8004-4795			
Facility's Loc	al Well or Spring Number (e.g., M	w−1	L, MW-2, et	cc.)	T. BLANK	2	T. BLANK	3	361			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005			\prod
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			
75-09-2	Dichloromethane	T	mg/L	8260	<0.005		<0.005		<0.005		\ /	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000201		<0.0000196		<0.0000197		\/	
78-87-5	Propane, 1,2-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.0971			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.0971			
11104-28-2	PCB-1221	Т	ug/L	8082		*		*	<0.0971			
11141-16-5	PCB-1232	Т	ug/L	8082		*		*	<0.0971			
53469-21-9	PCB-1242	Т	ug/L	8082		*		*	<0.0971			
12672-29-6	PCB-1248	т	ug/L	8082		*		*	<0.0971		1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-000	0	0000-0000		8004-4795					
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	, MW-2, et	cc.)	T. BLANK	2	T. BLANK 3	3	361			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
11097-69-1	PCB-1254	Т	ug/L	8082		*		*	<0.0971			
11096-82-5	PCB-1260	Т	ug/L	8082		*		*	<0.0971			
11100-14-4	PCB-1268	Т	ug/L	8082		*		*	<0.0971			/
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*	1.66	*		
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*	25.3	*	\ /	
10043-66-0	Iodine-131	Т	pCi/L			*		*		*	\ /	
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*		*	0.295	*	\ /	
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*	0.566	*	V	
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*	39.9	*	\setminus	
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*	0.471	*	/\	
10028-17-8	Tritium	Т	pCi/L	906.0		*		*	-43.6	*	/ \	
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*	26.7		/ \	
57-12-5	Cyanide	Т	mg/L	9012		*		*	<0.2			
20461-54-5	Iodide	Т	mg/L	300.0		*		*	<0.5	*		
s0268	Total Organic Carbon	Т	mg/L	9060		*		*	0.851	J		
s0586	Total Organic Halides	т	mg/L	9020		*		*	0.0115			
											1	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4798 MW357	MW357UG3-18	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.76. Rad error is 5.69.
		Gross beta		TPU is 7.38. Rad error is 6.63.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.435. Rad error is 0.433.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.65. Rad error is 1.65.
		Technetium-99		TPU is 11.4. Rad error is 10.8.
		Thorium-230		TPU is 1.91. Rad error is 1.82.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 118. Rad error is 118.
		lodide	W	Post-digestion spike recovery out of control limits.
3004-4799 MW358	MW358UG3-18	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.34. Rad error is 3.34.
		Gross beta		TPU is 7.94. Rad error is 6.96.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.483. Rad error is 0.476.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.1. Rad error is 2.1.
		Technetium-99		TPU is 11.3. Rad error is 10.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.873. Rad error is 0.868.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 125. Rad error is 125.
		lodide	W	Post-digestion spike recovery out of control limits.
3004-0981 MW359	MW359UG3-18	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.94. Rad error is 4.92.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.54. Rad error is 5.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.4. Rad error is 0.395.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.65. Rad error is 2.65.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.93. Rad error is 8.86.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.688. Rad error is 0.687.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 128. Rad error is 128.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4800 MW360	MW360UG3-18	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.98. Rad error is 2.98.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.72. Rad error is 4.67.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.589. Rad error is 0.567.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 2. Rad error is 2.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 10.6. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.77. Rad error is 0.754.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 121. Rad error is 121.
		lodide	W	Post-digestion spike recovery out of control limits.
8004-4795 MW361	MW361UG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 4.13. Rad error is 4.11.
		Gross beta		TPU is 9.67. Rad error is 8.33.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.347. Rad error is 0.34.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 3.09. Rad error is 3.09.
		Technetium-99		TPU is 12.2. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.13. Rad error is 1.09.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 120. Rad error is 120.
		lodide	W	Post-digestion spike recovery out of control limits.
3004-0986 MW362	MW362UG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 5.56. Rad error is 5.52.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 5.18. Rad error is 5.13.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.312. Rad error is 0.308.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.48. Rad error is 1.48.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 9.99. Rad error is 9.97.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.05. Rad error is 1.03.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 123. Rad error is 122.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description	
004-4796 MW363	MW363UG3-18	Chloride	W	Post-digestion spike recovery out of control limits.	
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement	
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.84. Rad error is 3.84.	
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 7.48. Rad error is 7.39.	
		lodine-131		Analysis of constituent not required and not performed.	
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.275. Rad error is 0.275.	
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.08. Rad error is 3.08.	
			Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 9.89. Rad error is 9.75.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.967. Rad error is 0.948.	
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 131. Rad error is 131.	
		lodide	W	Post-digestion spike recovery out of control limits.	
004-4797 MW364	MW364UG3-18	Chloride	W	Post-digestion spike recovery out of control limits.	
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.12. Rad error is 3.11.	
		Gross beta		TPU is 11.7. Rad error is 10.	
		Iodine-131		Analysis of constituent not required and not performed.	
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.208. Rad error is 0.208.	
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.01. Rad error is 2.01.	
		Technetium-99		TPU is 12.8. Rad error is 12.	
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.6. Rad error is 1.55.	
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 129. Rad error is 129.	
		lodide	W	Post-digestion spike recovery out of control limits.	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0984 MW365	MW365UG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		PCB, Total	Р	Difference between results from two GC columns unacceptable.
		PCB-1242	Р	Difference between results from two GC columns unacceptable.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.27. Rad error is 4.27.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.1. Rad error is 8.08.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.241. Rad error is 0.241.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.41. Rad error is 2.41.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 9.53. Rad error is 9.53.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.707. Rad error is 0.703.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 126. Rad error is 126.
		lodide	W	Post-digestion spike recovery out of control limits.
004-0982 MW366	MW366UG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.77. Rad error is 1.76.
		Gross beta		TPU is 7.08. Rad error is 6.83.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.218. Rad error is 0.216.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.89. Rad error is 1.89.
		Technetium-99		TPU is 13.1. Rad error is 11.2.
		Thorium-230		TPU is 2.03. Rad error is 1.9.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 127. Rad error is 127.
		lodide	W	Post-digestion spike recovery out of control limits.
3004-4793 MW367	MW367UG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Copper	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.66. Rad error is 4.58.
		Gross beta		TPU is 9.84. Rad error is 8.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.761. Rad error is 0.758.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.21. Rad error is 2.21.
		Technetium-99		TPU is 14.6. Rad error is 13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.09. Rad error is 1.07.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 124. Rad error is 124.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description												
3004-0983 MW368	MW368UG3-18	Chloride	W	Post-digestion spike recovery out of control limits.												
		Copper	*	Duplicate analysis not within control limits.												
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.46. Rad error is 4.45.												
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 5.48. Rad error is 5.36.												
		lodine-131		Analysis of constituent not required and not performed.												
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.456. Rad error is 0.456.												
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.83. Rad error is 1.83.												
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 10. Rad error is 10.												
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.13. Rad error is 1.12.												
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 130. Rad error is 130.												
		lodide	W	Post-digestion spike recovery out of control limits.												
004-4820 MW369	MW369UG3-18	Chloride	W	Post-digestion spike recovery out of control limits.												
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.82. Rad error is 3.82.												
		Gross beta		TPU is 22.4. Rad error is 14.8.												
		lodine-131		Analysis of constituent not required and not performed.												
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.198. Rad error is 0.198.												
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.32. Rad error is 2.32.												
		Technetium-99		TPU is 21.8. Rad error is 15.2.												
														Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.619. Rad error is 0.617.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 131. Rad error is 131.												
		lodide	W	Post-digestion spike recovery out of control limits.												
004-4818 MW370	MW370UG3-18	Chloride	W	Post-digestion spike recovery out of control limits.												
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.88. Rad error is 4.86.												
		Gross beta		TPU is 14.6. Rad error is 12.2.												
		lodine-131		Analysis of constituent not required and not performed.												
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.332. Rad error is 0.331.												
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.89. Rad error is 1.89.												
		Technetium-99		TPU is 18.3. Rad error is 14.												
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.843. Rad error is 0.838.												
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 125. Rad error is 125.												
		lodide	W	Post-digestion spike recovery out of control limits.												

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Soud-4819 MW371 MW371UG3-18 Sulfate W Post-digestion spike recovery out of control Gross alpha U Indicates analyte/nuclide was analyzed for, 4.48. Rad error is 7.29. Analysis of constituent not required and no Radium-226 U Indicates analyte/nuclide was analyzed for, 7.29 Rad error is 7.29. Analysis of constituent not required and no Radium-226 U Indicates analyte/nuclide was analyzed for, 0.448. Rad error is 0.497. Strontium-90 U Indicates analyte/nuclide was analyzed for, 11.6. Rad error is 1.0.9. Technetium-99 U Indicates analyte/nuclide was analyzed for, 11.6. Rad error is 1.1.6. Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.0.5. Rad error is 1.0.7. Rad error is 1.0.5. Rad error is 1.0.7. Rad error is 1.	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
4.48. Rad error is 4.48. Gross beta U Indicates analyte/nuclide was analyzed for 7.29. Rad error is 7.29. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for 7.29. Rad error is 0.447. Strontium-90 U Indicates analyte/nuclide was analyzed for 3.09. Rad error is 3.09. Technetium-99 U Indicates analyte/nuclide was analyzed for 11.6. Rad error is 1.04. Tritium U Indicates analyte/nuclide was analyzed for 1.05. Rad error is 1.04. Tritium U Indicates analyte/nuclide was analyzed for 1.05. Rad error is 1.04. Tritium U Indicates analyte/nuclide was analyzed for 1.05. Rad error is 1.04. Tritium U Indicates analyte/nuclide was analyzed for 1.05. Rad error is 1.04. Tritium U Indicates analyte/nuclide was analyzed for 1.05. Rad error is 1.04. Tritium U Indicates analyte/nuclide was analyzed for 3.6. Rad error is 3.6. TPU is 9.52. Rad error is 0.419. Indicates analyte/nuclide was analyzed for 0.424. Rad error is 0.419. Indicates analyte/nuclide was analyzed for 1.3. Rad error is 0.419. Tritium U Indicates analyte/nuclide was analyzed for 1.3. Rad error is 0.34. Tritium U Indicates analyte/nuclide was analyzed for 1.3. Rad error is 1.3. Technetium-99 Tritium U Indicates analyte/nuclide was analyzed for 0.938. Rad error is 1.2. Gross alpha U Indicates analyte/nuclide was analyzed for 1.3. Rad error is 1.3. TPU is 12.5. Rad error is 1.3. TPU is 12.5. Rad error is 1.9. Indicates analyte/nuclide was analyzed for 1.3. Rad error is 1.3. Indicates analyte/nuclide was analyzed for 1.3. Rad error is 0.42. Indicates analyte/nuclide was analyzed for 1.3. Rad error is 0.42. Indicates analyte/nuclide was analyzed for 1.3. Rad error is 1.4. Indicates analyte/nuclide was analyzed for 1.4. Rad error is 1.4. Technetium-99 Tritium-230 U Indicates analyte/nuclide was analyzed for 1.7.4. Rad error is 1.0.4. Tritium-230 U Indicates analyte/nuclide was analyzed for 1.7.4. Rad error is 1.0.4. Tritium-230 U Indicates analyte/nuclide was analyzed for 1.7.4. Technetium-99 Tritium-230 U	004-4819 MW371	MW371UG3-18	Sulfate	W	Post-digestion spike recovery out of control limits.
Radium-226			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.48. Rad error is 4.48.
Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, 0.448. Rad error is 0.447. Strontium-90 U Indicates analyte/nuclide was analyzed for, 3.09. Rad error is 3.09. Technetium-99 U Indicates analyte/nuclide was analyzed for, 1.16. Rad error is 1.04. Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.05. Rad error is 1.04. Tritium U Indicates analyte/nuclide was analyzed for, 1.27. Rad error is 1.27. W Post-digestion spike recovery out of contro 1.27. Rad error is 1.27. Gross alpha U Indicates analyte/nuclide was analyzed for, 1.27. Rad error is 3.6. Gross beta U Indicates analyte/nuclide was analyzed for, 3.6. Rad error is 3.6. Gross beta I PU is 9.52. Rad error is 8.84. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 0.424. Rad error is 0.419. Indicates analyte/nuclide was analyzed for, 0.424. Rad error is 0.419. Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 0.419. I Indicates analyte/nuclide was analyzed for, 0.438. Rad error is 1.3. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 1.3. Tritium U Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 1.3. Total analyte/nuclide was analyzed for, 1.3. Rad error is 1.3. Total analyte/nuclide was analyzed for, 1.3. Rad error is 1.3. Total analyte/nuclide was analyzed for, 1.3. Rad error is 1.4.2. Gross alpha U Indicates analyte/nuclide was analyzed for, 1.4. Rad error is 4.25. Gross beta U Indicates analyte/nuclide was analyzed for, 1.4. Rad error is 0.4.9. I Radium-226 U Indicates analyte/nuclide was analyzed for, 1.4. Rad error is 0.4.9. I Radium-226 U Indicates analyte/nuclide was analyzed for, 1.7.4. Rad error is 0.4.9. I Radium-226 U Indicates analyte/nuclide was analyzed for, 1.7.4. Rad error is 1.0.4. I PU Is 10.9. Rad error is 10.4. Trotium-90 U Indicates analyte/nuclide was analyzed for, 1.7.4. Rad error is 1.0.4.			Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 7.29. Rad error is 7.29.
O.448. Rad error is 0.447. Strontium-90 U. Indicates analyte/nuclide was analyzed for, 3.09. Rad error is 3.09. Technetium-99 U. Indicates analyte/nuclide was analyzed for, 11.6. Rad error is 11.6. Thorium-230 U. Indicates analyte/nuclide was analyzed for, 1.05. Rad error is 11.6. Tritium U. Indicates analyte/nuclide was analyzed for, 127. Rad error is 127. Round-4808 MW372 MW372UG3-18 Sulfate W. Post-digestion spike recovery out of contro. 127. Rad error is 127. Gross alpha U. Indicates analyte/nuclide was analyzed for, 3.6. Rad error is 3.6. Gross beta Iodine-131 Radium-226 U. Indicates analyte/nuclide was analyzed for, 0.424. Rad error is 0.419. Strontium-90 U. Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 1.3. Technetium-99 Thorium-230 U. Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 0.934. Tritium U. Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 1.3. TPU is 12.5. Rad error is 1.9. Thorium-230 U. Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 1.3. Rad error is 1.3. TPU is 12.5. Rad error is 1.9. Tritium U. Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 1.74. Tritium U. Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 1.4.2. Gross beta U. Indicates analyte/nuclide was analyzed for, 1.4.4. Rad error is 4.22. Gross beta U. Indicates analyte/nuclide was analyzed for, 1.4.4. Rad error is 4.25. Indicates analyte/nuclide was analyzed for, 1.4.4. Rad error is 1.74. Technetium-90 U. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 0.17. Technetium-90 U. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. TPU is 10.9. Rad error is 0.1.4. TPU is 10.9. Rad error is 0.1.4.			lodine-131		Analysis of constituent not required and not performed.
Technetium-99 Technetium-99 Technetium-99 Technetium-99 Thorium-230 Thorium-230 Tritium Tritium Tritium U Indicates analyte/nuclide was analyzed for, 1.05. Rad error is 1.04. Tritium U Indicates analyte/nuclide was analyzed for, 1.05. Rad error is 1.04. Tritium U Indicates analyte/nuclide was analyzed for, 1.27. Rad error is 127. Sulfate Gross alpha U Indicates analyte/nuclide was analyzed for, 3.6. Rad error is 3.6. Gross beta Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 3.6. Rad error is 3.6. TPU is 9.52. Rad error is 8.84. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 0.424. Rad error is 0.419. Strontium-90 Thorium-230 U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 11.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 0.934. Tritium U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 123. Sulfate Gross alpha U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 123. Tothen U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 123. Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.23. Rad error is 1.23. Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.24. Rad error is 1.25. Gross beta U Indicates analyte/nuclide was analyzed for, 1.24. Rad error is 1.25. Indicates analyte/nuclide was analyzed for, 1.24. Rad error is 1.42. Gross beta U Indicates analyte/nuclide was analyzed for, 1.24. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.24. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.24. Rad error is 0.179. The is 10.9. Rad error is 0.179. The is 10.9. Rad error is 10.4. The is 1.91. The is 1.91. The is 1.91. The is 1.91. The is 1.91. The is 1.91. The is 1.91. The is 1.91. The is 1.91. The is 1.91. The is 1.91. The is 1.94. The			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.448. Rad error is 0.447.
11.6. Rad error is 11.6. Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.05. Rad error is 1.04. Tritium U Indicates analyte/nuclide was analyzed for, 127. Rad error is 1.07. 3004-4808 MW372 MW372UG3-18 Sulfate Gross alpha U Indicates analyte/nuclide was analyzed for, 3.6. Rad error is 3.6. Gross beta Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 3.6. Rad error is 3.6. TPU is 9.52. Rad error is 8.84. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 0.424. Rad error is 0.419. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 1.3. TPU is 12.5. Rad error is 1.9. Tritium U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 0.934. Tritium U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 123. S004-4792 MW373 MW373UG3-18 Sulfate W Post-digestion spike recovery out of contro 4.24. Rad error is 123. Gross beta U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for, 8.49. Rad error is 8.45. Analysis of constituent not required and no 1.68. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 0.179. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 0.179. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 0.179. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 0.179. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.09. Rad error is 3.09.
Tritium Tritium U Indicates analyte/nuclide was analyzed for, 127. Rad error is 1.04. Indicates analyte/nuclide was analyzed for, 127. Rad error is 128. Rad error is 1.04. Indicates analyte/nuclide was analyzed for, 3.6. Rad error is 3.6. TPU is 9.52. Rad error is 8.84. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 0.424. Rad error is 0.419. Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 1.3. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 0.934. Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 1.3. TPU is 12.5. Rad error is 0.934. Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 123. Rad error is 124. Post-digestion spike recovery out of contror 4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 6.45. Indicates analyte/nuclide was analyzed for, 8.49. Rad error is 0.479. Rad error is 0.479. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Rad error is 1.74. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Rad error is 1.74. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1			Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.6. Rad error is 11.6.
127. Rad error is 127. 3004-4808 MW372 MW372UG3-18 Sulfate W Post-digestion spike recovery out of control Gross alpha U Indicates analyte/nuclide was analyzed for, 3.6. Rad error is 3.6. TPU is 9.52. Rad error is 8.84. Iodine-131 Analysis of constituent not required and no 1.3. Rad error is 0.419. Strontium-90 U Indicates analyte/nuclide was analyzed for, 0.424. Rad error is 0.419. Strontium-90 Thorium-230 U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 11.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 123. Tritium U Indicates analyte/nuclide was analyzed for, 123. Rad error is 123. Sulfate W Post-digestion spike recovery out of control Gross alpha U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for, 8.49. Rad error is 4.25. Iodine-131 Analysis of constituent not required and no 1.40. Radium-226 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.9. Rad error is 10.4.			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.05. Rad error is 1.04.
Gross alpha Gross beta Gross beta Iodine-131 Radium-226 Strontium-90 Thorium-230 Tritium Undicates analyte/nuclide was analyzed for 0.938. Rad error is 0.13. Tritium Undicates analyte/nuclide was analyzed for 0.938. Rad error is 1.13. Tritium Undicates analyte/nuclide was analyzed for 0.938. Rad error is 1.19. Thorium-230 Undicates analyte/nuclide was analyzed for 0.938. Rad error is 1.23. Tothestium-99 Tritium Undicates analyte/nuclide was analyzed for 1.23. Rad error is 1.23. Sulfate Worst-digestion spike recovery out of contror 4.24. Rad error is 4.22. Gross beta Undicates analyte/nuclide was analyzed for 4.24. Rad error is 4.25. Undicates analyte/nuclide was analyzed for 4.24. Rad error is 4.25. Undicates analyte/nuclide was analyzed for 4.24. Rad error is 4.25. Undicates analyte/nuclide was analyzed for 4.26. Rad error is 6.45. Undicates analyte/nuclide was analyzed for 6.49. Rad error is 0.179. Strontium-90 Undicates analyte/nuclide was analyzed for 0.18. Rad error is 0.179. Strontium-90 Undicates analyte/nuclide was analyzed for 1.74. Rad error is 1.74. Technetium-99 Thorium-230 Undicates analyte/nuclide was analyzed for 0.18. Rad error is 0.179. Indicates analyte/nuclide was analyzed for 0.18. Rad error is 1.74. Technetium-99 Thorium-230 Undicates analyte/nuclide was analyzed for 1.74. Rad error is 1.74. Technetium-99 Thorium-230 Undicates analyte/nuclide was analyzed for 1.74.			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 127. Rad error is 127.
3.6. Rad error is 3.6. Gross beta Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 0.424. Rad error is 0.419. Strontium-90 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 1.3. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 1.9. Tritium U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 1.9. Tritium U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 123. Rad error is 123. Rad error is 2.23. Gross alpha U Indicates analyte/nuclide was analyzed for, 123. Rad error is 123. Gross beta U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 8.45. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 0.18. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 0.18. Rad error is 0.179. Indicates analyte/nuclide was analyzed for, 0.18. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. TPU is 10.9. Rad error is 10.4. Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. TPU is 10.9. Rad error is 10.4.	004-4808 MW372	MW372UG3-18	Sulfate	W	Post-digestion spike recovery out of control limits.
lodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 0.424. Rad error is 0.419. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 1.3. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 0.934. Tritium U Indicates analyte/nuclide was analyzed for, 1.23. Rad error is 0.934. Tritium U Indicates analyte/nuclide was analyzed for, 1.23. Rad error is 1.23. Rad error is 1.23. Rad error is 1.24. Rad error is 1.25. Gross alpha U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 8.45. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 0.18. Rad error is 0.779. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. TPU is 10.9. Rad error is 10.4.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.6. Rad error is 3.6.
Radium-226 U Indicates analyte/nuclide was analyzed for 0.424. Rad error is 0.419. Strontium-90 U Indicates analyte/nuclide was analyzed for 1.3. Rad error is 1.3. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for 0.938. Rad error is 11.9. Tritium U Indicates analyte/nuclide was analyzed for 0.938. Rad error is 0.934. Tritium U Indicates analyte/nuclide was analyzed for 123. Rad error is 123. Sulfate W Post-digestion spike recovery out of control 123. Rad error is 4.22. Gross alpha U Indicates analyte/nuclide was analyzed for 4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for 8.49. Rad error is 8.45. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for 0.18. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for 1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for 1.74. Rad error is 10.4.			Gross beta		TPU is 9.52. Rad error is 8.84.
Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.3. Rad error is 1.3. TPU is 12.5. Rad error is 11.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 0.934. Tritium U Indicates analyte/nuclide was analyzed for, 123. Rad error is 4.22. Gross alpha U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for, 8.49. Rad error is 8.45. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 0.18. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74.			lodine-131		Analysis of constituent not required and not performed.
1.3. Rad error is 1.3. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 0.938. Rad error is 0.934. Tritium U Indicates analyte/nuclide was analyzed for, 123. Rad error is 123. Sulfate W Post-digestion spike recovery out of contror 4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 4.25. Iodine-131 Analysis of constituent not required and no Radium-226 U Indicates analyte/nuclide was analyzed for, 0.18. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. TPU is 10.9. Rad error is 10.4.			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.424. Rad error is 0.419.
Thorium-230 U Indicates analyte/nuclide was analyzed for 0.938. Rad error is 0.934. Tritium U Indicates analyte/nuclide was analyzed for 123. Rad error is 123. Sulfate W Post-digestion spike recovery out of control 124. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for 4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for 8.49. Rad error is 8.45. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for 0.18. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for 0.18. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for 1.74. Rad error is 1.74. TPU is 10.9. Rad error is 10.4.			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.3. Rad error is 1.3.
O.938. Rad error is 0.934. Tritium U Indicates analyte/nuclide was analyzed for, 123. Rad error is 123. Sulfate Gross alpha U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 4.25. Gross beta U Indicates analyte/nuclide was analyzed for, 8.49. Rad error is 8.45. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 0.18. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74.			Technetium-99		TPU is 12.5. Rad error is 11.9.
123. Rad error is 123. 124. Rad error is 125. 125. Rode error is 126. 126. Rode error is 127. 127. Rad error is 127. 128. Rad error is 128. 129. Post-digestion spike recovery out of control evaluation of control evaluation. 129. Rad error is 129. 129. Rad error			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.938. Rad error is 0.934.
Gross alpha U Indicates analyte/nuclide was analyzed for, 4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for, 8.49. Rad error is 8.45. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, 0.18. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 10.4.			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 123. Rad error is 123.
4.24. Rad error is 4.22. Gross beta U Indicates analyte/nuclide was analyzed for, 8.49. Rad error is 8.45. Iodine-131 Analysis of constituent not required and no Radium-226 U Indicates analyte/nuclide was analyzed for, 0.18. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 10.4.	004-4792 MW373	MW373UG3-18	Sulfate	W	Post-digestion spike recovery out of control limits.
8.49. Rad error is 8.45. Iodine-131 Analysis of constituent not required and no Radium-226 U Indicates analyte/nuclide was analyzed for 0.18. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for 1.74. Rad error is 1.74. Technetium-99 Technetium-99 Technetium-99 U Indicates analyte/nuclide was analyzed for 1.74. Rad error is 1.74. Thorium-230 U Indicates analyte/nuclide was analyzed for 1.74.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.24. Rad error is 4.22.
Radium-226 U Indicates analyte/nuclide was analyzed for, 0.18. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 10.4.			Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.49. Rad error is 8.45.
O.18. Rad error is 0.179. Strontium-90 U Indicates analyte/nuclide was analyzed for, 1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, 1.74. TPU is 10.9. Rad error is 10.4.			lodine-131		Analysis of constituent not required and not performed.
1.74. Rad error is 1.74. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for,			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.18. Rad error is 0.179.
Thorium-230 U Indicates analyte/nuclide was analyzed for,			Strontium-90	U	
			Technetium-99		TPU is 10.9. Rad error is 10.4.
0.473. Rad error is 0.472.			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.473. Rad error is 0.472.
Tritium U Indicates analyte/nuclide was analyzed for, 122. Rad error is 122.			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 122. Rad error is 122.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0990 MW374	MW374UG3-18	Sulfate	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 7.34. Rad error is 7.33.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf 6.73. Rad error is 6.66.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. The 0.599. Rad error is 0.592.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The 2.63. Rad error is 2.6.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. The 9.4. Rad error is 9.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.521. Rad error is 0.521.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The 130. Rad error is 130.
004-0985 MW375	MW375UG3-18	Sulfate	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 2.7. Rad error is 2.7.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 6.41. Rad error is 6.41.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.692. Rad error is 0.689.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 2.57. Rad error is 2.56.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf 10.6. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. The 0.84. Rad error is 0.827.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 129. Rad error is 129.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

	Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample wa collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376	•	Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample war collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa
		Iodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
				

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		Iodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample wa collected.
		Acetone		During sampling, the well went dry; therefore, no sample we collected.
		Acrolein		During sampling, the well went dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample wa collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample we collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377	•	Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample war collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	<u> </u>	1,2-Dichlorobenzene	9	During sampling, the well went dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG3-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 4.17. Rad error is 4.17.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 6.03. Rad error is 6.03.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.279. Rad error is 0.275.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 1.64. Rad error is 1.64.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 9.39. Rad error is 9.36.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 1.06. Rad error is 1.03.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 124. Rad error is 124.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide	W	Post-digestion spike recovery out of control limits.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG3-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 4.42. Rad error is 4.39.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 7.24. Rad error is 7.12.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.217. Rad error is 0.213.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 1.66. Rad error is 1.66.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. The 9.6. Rad error is 9.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.799. Rad error is 0.786.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 123. Rad error is 123.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide	W	Post-digestion spike recovery out of control limits.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG3-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG3-18	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG3-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG3-18	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only


Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG3-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG3-18	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
004-4795 MW361	MW361DUG3-18	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.32. Rad error is 4.31.
		Gross beta		TPU is 8.87. Rad error is 7.86.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.418. Rad error is 0.411.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.73. Rad error is 1.73.
		Technetium-99		TPU is 11.5. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.13. Rad error is 1.12.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 121. Rad error is 121.
		lodide	W	Post-digestion spike recovery out of control limits.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Permit Number: SW07300014, SW07300015, SW07300045

LAB ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2018 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The second quarter 2018 data used to conduct the statistical analyses were collected in April 2018. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that had exceeded the historical background (using the last eight quarters). The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^a *	SG	UCRS
MW377 ^a *	SG	UCRS

^a **NOTE:** The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

^{*}Well was dry this quarter, and a groundwater sample could not be collected

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2018. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

upper $TL = X + (K \times S)$

lower $TL = X - (K \times S)$

D-5

_

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations:

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level
Test with Historical Background

Parameters Aluminum Beta Activity Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential PCB, Total PCB-1242 pH* Potassium Radium-226 Sodium Sulfate Technetium-99 Thorium-230 Total Organic Carbon (TOC) Total Organic Halides (TOX) Trichloroethene Vanadium

Zinc
*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	1	6	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Boron	7	3	4	Yes
Bromide	7	6	1	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	2	5	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
	7	3	4	Yes
Condensitivity	7	0	7	Yes
Conductivity	7	0	7	Yes
Copper Cyanide	7	7	0	
	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane				No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	1	6	Yes
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	3	4	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	6	1	Yes
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	6	1	Yes
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
pН	7	0	7	Yes
Potassium	7	1	6	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	2	5	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Vanadium	7	3	4	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	0	7	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	3	3	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Beta activity	6	2	4	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	1	5	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	2	4	Yes
Conductivity	6	0	6	Yes
Copper	6	1	5	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
25.1.1		Observation	Observation	Analysis?
Molybdenum	6	4	2	Yes
Nickel	6	2	4	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	5	1	Yes
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	5	1	Yes
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	5	1	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	4	2	Yes
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	4	2	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	1	5	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	5	1	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	1	5	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	2	4	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No
Molybdenum	6	4	2	Yes

Exhibit D.5. Tests Summary for Qualified Parameters—LRGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
N* 1 1		Observation	Observation	Analysis?
Nickel	6	2	4	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	4	2	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	0	6	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	4	2	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	0	6	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 27, 32, and 28 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

URGA

This quarter's results identified historical background exceedances for beta activity, oxidation-reduction potential, technetium-99, and thorium-230.

LRGA

This quarter's results identified historical background exceedances for oxidation-reduction potential and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential, Thorium-230	MW358: Oxidation-Reduction Potential
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential
MW368: Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential, Thorium-230	MW367: Oxidation-Reduction Potential, Technetium-99
MW371: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW369: Beta Activity, Oxidation-Reduction Potential, Technetium-99	MW370: Oxidation-Reduction Potential, Technetium-99
MW374: Oxidation-Reduction Potential	MW372: Oxidation-Reduction Potential	MW373: Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate		

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, and MW371.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Tests Summary for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.74	Current results exceed statistically derived historical background concentration in MW369.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.85	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Tests Summary for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
PCB, Total	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.36	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	2.61	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW369.
Thorium-230	Tolerance Interval	1.03	Current results exceed statistically derived historical background concentration in MW357 and MW366.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Tests Summary for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	2.66	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW367 and MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the upper TL test using historical background, the concentrations were compared to the results of the one-sided upper tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 4, and 2 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (in Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW357: Thorium-230	None
MW366: Thorium-230	

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that dissolved oxygen in MW362 and MW365; and sulfate in MW359, MW362, MW365, and MW368 were higher than the current TL this quarter.

URGA

This quarter's results showed an exceedance of thorium-230 in MW357 and MW366; these wells are located downgradient of the landfill.

LRGA

This quarter's results showed no exceedances in wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.49	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW362, MW365, and MW371 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.32	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.57	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW359, MW362, MW365, MW368, MW371, and MW375 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	1.13	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.17	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	1.23	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Thorium-230	Tolerance Interval	1.76	MW357 and MW366 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.18	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.67	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

S = 6.859 CV(1) = 2.078

K factor=** 2.523

TL(1)= 20.604

LL(1)=N/A

Statistics-Transformed Background Data

X= -0.371 **S**= 1.678

CV(2)=-4.521

K factor=** 2.523

TL(2)= 3.863

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.059
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 21.3	3.059
Date Collected 10/8/2002 1/7/2003	Result 21.3 20	3.059 2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 21.3 20 4.11	3.059 2.996 1.413
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 21.3 20 4.11 1.41	3.059 2.996 1.413 0.344
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 21.3 20 4.11 1.41 1.09	3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.046	N/A	-3.079	NO
MW362	Downgradient	Yes	6.02	N/A	1.795	NO
MW365	Downgradient	Yes	0.0237	N/A	-3.742	NO
MW368	Downgradient	Yes	0.658	N/A	-0.419	NO
MW371	Upgradient	Yes	1.62	N/A	0.482	NO
MW374	Upgradient	No	0.05	N/A	-2.996	N/A
MW375	Sidegradient	Yes	0.0611	N/A	-2.795	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-3

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1)=1.238

K factor=** 2.523

TL(1)= 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 10/8/2002	Result 2	0.693
Date Collected 10/8/2002 1/7/2003	Result 2 0.2	0.693 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2 0.2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Q	uarter Data
-----------	-------------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.015	N/A	-4.200	N/A
MW362	Downgradient	Yes	0.0164	N/A	-4.110	NO
MW365	Downgradient	No	0.015	N/A	-4.200	N/A
MW368	Downgradient	Yes	0.00643	N/A	-5.047	NO
MW371	Upgradient	No	0.015	N/A	-4.200	N/A
MW374	Upgradient	Yes	0.0221	N/A	-3.812	NO
MW375	Sidegradient	Yes	0.0112	N/A	-4.492	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-4

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison **Bromide** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394

S = 0.474

CV(1) = 0.340

K factor=** 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.279S = 0.332 CV(2) = 1.190

K factor=** 2.523

TL(2) = 1.118

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.742
Date Collected	Result	` '
Date Collected 10/8/2002	Result 2.1	0.742
Date Collected 10/8/2002 1/7/2003	Result 2.1 2.1	0.742 0.742
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2.1 2.1 1.9	0.742 0.742 0.642
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2.1 2.1 1.9 1	0.742 0.742 0.642 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2.1 2.1 1.9 1 1.9	0.742 0.742 0.642 0.000 0.642

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	No	0.2	N/A	-1.609	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Downgradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.704	NO	-0.351	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-5

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 34.100 **S**= 13.637 **CV(1)**= 0.400

K factor=** 2.523

TL(1) = 68.505

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.466 **S**= 0.356

CV(2)=0.103

K factor=** 2.523

TL(2) = 4.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.209
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 67.3	4.209
Date Collected 10/8/2002 1/7/2003	Result 67.3 60.6	4.209 4.104
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 67.3 60.6 47.2	4.209 4.104 3.854
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 67.3 60.6 47.2 34.7	4.209 4.104 3.854 3.547
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 67.3 60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

ı	Current	Quarter	Data
---	---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	6.48	NO	1.869	N/A
MW362	Downgradient	Yes	21.6	NO	3.073	N/A
MW365	Downgradient	Yes	22	NO	3.091	N/A
MW368	Downgradient	Yes	38.7	NO	3.656	N/A
MW371	Upgradient	Yes	62.5	NO	4.135	N/A
MW374	Upgradient	Yes	21.4	NO	3.063	N/A
MW375	Sidegradient	Yes	13.1	NO	2.573	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-6

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison **Chemical Oxygen Demand (COD)** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 72.938 S = 70.749 CV(1) = 0.970

K factor=** 2.523

TL(1) = 251.437 LL(1) = N/A

Statistics-Transformed Background Data

X = 4.000S = 0.702 CV(2) = 0.175

K factor=** 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.561
Date Collected	Result	` '
Date Collected 10/8/2002	Result 260	5.561
Date Collected 10/8/2002 1/7/2003	Result 260 214	5.561 5.366
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 260 214 147	5.561 5.366 4.990
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 260 214 147 72	5.561 5.366 4.990 4.277
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 260 214 147 72 56	5.561 5.366 4.990 4.277 4.025

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	20.7	NO	3.030	N/A	
MW362	Downgradient	Yes	24.7	NO	3.207	N/A	
			• •		•	3.7/1	

MW365 Downgradient No 20 N/A 2.996 N/A MW368 Downgradient Yes 22.7 NO 3.122 N/A MW371 Upgradient No 20 N/A 2.996 N/A MW374 Upgradient 22.7 3.122 Yes NO N/A MW375 Sidegradient Yes 14.7 NO 2.688 N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-7

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison **Chloride** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

K factor=** 2.523

TL(1)= 310.697 **LL(1)=**N/A

Statistics-Transformed Background Data

S= 1.590 X = 3.620

CV(2) = 0.439

K factor=** 2.523

TL(2) = 7.631

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.294
Date Collected	Result	,
Date Collected 10/8/2002	Result 199.2	5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

|--|

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.989	NO	-0.011	N/A
MW362	Downgradient	Yes	5.9	NO	1.775	N/A
MW365	Downgradient	Yes	2.88	NO	1.058	N/A
MW368	Downgradient	Yes	0.896	NO	-0.110	N/A
MW371	Upgradient	Yes	1.77	NO	0.571	N/A
MW374	Upgradient	Yes	58.4	NO	4.067	N/A
MW375	Sidegradient	Yes	4.36	NO	1.472	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-8

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.009

CV(1) = 1.314

K factor=** 2.523

TL(1) = 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

CV(2) = -0.238

K factor=** 2.523

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.01	-4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.01 0.01	-4.605 -4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.01 0.01 0.001 0.00161	-4.605 -4.605 -4.605 -6.432
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.01 0.01 0.00161 0.001	-4.605 -4.605 -4.605 -6.432 -6.908

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarter	Data
--	---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	Yes	0.00173	N/A	-6.360	NO
MW365	Downgradient	Yes	0.00204	N/A	-6.195	NO
MW368	Downgradient	No	0.001	N/A	-6.908	N/A
MW371	Upgradient	No	0.001	N/A	-6.908	N/A
MW374	Upgradient	Yes	0.00041	4 N/A	-7.790	NO
MW375	Sidegradient	Yes	0.00044	N/A	-7.729	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-9

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison **Conductivity UNITS:** umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor=** 2.523

TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.705 S = 0.550 CV(2) = 0.082

K factor=** 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.915
Date Collected	Result	` ,
Date Collected 3/18/2002	Result 1007	6.915
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9 172	6.915 7.427 7.448 5.147
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
	_	

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	236	NO	5.464	N/A
MW362	Downgradient	Yes	705	NO	6.558	N/A
MW365	Downgradient	Yes	429	NO	6.061	N/A
MW368	Downgradient	Yes	382	NO	5.945	N/A
MW371	Upgradient	Yes	503	NO	6.221	N/A
MW374	Upgradient	Yes	654	NO	6.483	N/A
MW375	Sidegradient	Yes	350	NO	5.858	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-10

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S = 0.072 CV(1) = 1.275

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915

CV(2) = -0.270

K factor=** 2.523

TL(2) = -1.086

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00091	7 N/A	-6.994	NO
MW362	Downgradient	Yes	0.00466	N/A	-5.369	NO
MW365	Downgradient	Yes	0.00164	N/A	-6.413	NO
MW368	Downgradient	Yes	0.00083	1 N/A	-7.093	NO
MW371	Upgradient	Yes	0.00234	N/A	-6.058	NO
MW374	Upgradient	Yes	0.00061	N/A	-7.402	NO
MW375	Sidegradient	Yes	0.000649	9 N/A	-7.340	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-11

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.138

S = 0.621 CV(1) = 0.546

K factor=** 2.523

TL(1)= 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

K factor=** 2.523

TL(2) = 1.441

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Dat	Data	Ouarter	Current
----------------------------	------	---------	---------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	4.39	YES	1.479	N/A
MW362	Downgradient	Yes	6.57	YES	1.883	N/A
MW365	Downgradient	Yes	5.82	YES	1.761	N/A
MW368	Downgradient	Yes	2.17	NO	0.775	N/A
MW371	Upgradient	Yes	7.85	YES	2.061	N/A
MW374	Upgradient	Yes	1.67	NO	0.513	N/A
MW375	Sidegradient	Yes	0.69	NO	-0.371	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362 MW365

MW371

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-12

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 590.000 S = 248.068 CV(1) = 0.420

K factor=** 2.523

TL(1)= 1215.876 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.308 S = 0.383

CV(2) = 0.061

K factor=** 2.523

TL(2) = 7.274

LL(2)=N/A

(2)

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 7.035
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 1136	7.035
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	t Yes	177	NO	5.176	N/A
MW362	Downgradient	t Yes	453	NO	6.116	N/A
MW365	Downgradient	t Yes	269	NO	5.595	N/A
MW368	Downgradient	t Yes	241	NO	5.485	N/A
MW371	Upgradient	Yes	304	NO	5.717	N/A
MW374	Upgradient	Yes	363	NO	5.894	N/A
MW375	Sidegradient	Yes	220	NO	5.394	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-13

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612

S = 6.487

CV(1)=0.981 K factor**= 2.523

TL(1)= 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X= 1.363 **S**= 1.147

CV(2) = 0.841

K factor=** 2.523

TL(2) = 4.256

LL(2)=N/A

(2)

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.135
Date Collected	Result	` ´
Date Collected 10/8/2002	Result 23	3.135
Date Collected 10/8/2002 1/7/2003	Result 23 13.9	3.135 2.632
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 23 13.9 14	3.135 2.632 2.639
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 23 13.9 14 14.2	3.135 2.632 2.639 2.653
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 23 13.9 14 14.2 7.92	3.135 2.632 2.639 2.653 2.069

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter	Data
--	---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	0.0512	NO	-2.972	N/A
MW362	Downgradient	Yes	3.78	NO	1.330	N/A
MW365	Downgradient	No	0.1	N/A	-2.303	N/A
MW368	Downgradient	Yes	0.439	NO	-0.823	N/A
MW371	Upgradient	Yes	0.963	NO	-0.038	N/A
MW374	Upgradient	Yes	1.11	NO	0.104	N/A
MW375	Sidegradient	Yes	0.126	NO	-2.071	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-14

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.347 **S**= 3.019

CV(1) = 0.266

K factor=** 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.401 **S**= 0.237

CV(2) = 0.099

K factor=** 2.523

TL(2)= 2.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 2.996
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.996 2.779 2.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.95	NO	1.374	N/A
MW362	Downgradient	Yes	9.87	NO	2.289	N/A
MW365	Downgradient	Yes	10.5	NO	2.351	N/A
MW368	Downgradient	Yes	11.4	NO	2.434	N/A
MW371	Upgradient	Yes	10.3	NO	2.332	N/A
MW374	Upgradient	Yes	5.03	NO	1.615	N/A
MW375	Sidegradient	Yes	5.47	NO	1.699	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-15

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.222

Statistics-Background Data

X = 0.248

CV(1)=0.894

K factor=** 2.523

TL(1)= 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X= -1.873 **S**= 1.068

8 CV(2)=-0.570

K factor=** 2.523

TL(2)= 0.821

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.518
Date Collected	Result	,
Date Collected 10/8/2002	Result 0.596	-0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	-0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	-0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	-0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	-0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.005	N/A	-5.298	N/A
MW362	Downgradient	Yes	0.0183	NO	-4.001	N/A
MW365	Downgradient	Yes	0.0525	NO	-2.947	N/A
MW368	Downgradient	Yes	0.00868	3 NO	-4.747	N/A
MW371	Upgradient	Yes	0.0142	NO	-4.255	N/A
MW374	Upgradient	Yes	0.0716	NO	-2.637	N/A
MW375	Sidegradient	Yes	0.005	NO	-5.298	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-16

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

CV(1) = 1.650S = 0.010

K factor=** 2.523

TL(1) = 0.030

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.108 S = 1.239

CV(2) = -0.203

K factor=** 2.523

TL(2) = -2.983

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.00121	-6.717
4/3/2003	0.001	-6.908
7/9/2003	0.00111	-6.803
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -6.110
Date Collected	Result	` '
Date Collected 10/8/2002	Result 0.00222	-6.110
Date Collected 10/8/2002 1/7/2003	Result 0.00222 0.00201	-6.110 -6.210
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.00222 0.00201 0.00159	-6.110 -6.210 -6.444
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.00222 0.00201 0.00159 0.00242	-6.110 -6.210 -6.444 -6.024
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.00222 0.00201 0.00159 0.00242 0.001	-6.110 -6.210 -6.444 -6.024 -6.908

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0005	N/A	-7.601	N/A
MW362	Downgradient	Yes	0.00115	N/A	-6.768	NO
MW365	Downgradient	No	0.0005	N/A	-7.601	N/A
MW368	Downgradient	Yes	0.00075	8 N/A	-7.185	NO
MW371	Upgradient	Yes	0.00031	N/A	-8.079	NO
MW374	Upgradient	Yes	0.00023	7 N/A	-8.347	NO
MW375	Sidegradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-17

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S = 0.022

CV(1)=0.980

K factor=** 2.523

TL(1)= 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349

 $S= 1.109 \quad CV(2)=-0.255$

K factor=** 2.523

TL(2) = -1.552

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	,
Date Collected 10/8/2002	Result 0.05	-2.996
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.005 0.00794	-2.996 -2.996 -2.996 -4.836
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.005 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	Current	Quarter	Data
-----------------------------	---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00076	1 NO	-7.181	N/A
MW362	Downgradient	Yes	0.00303	NO	-5.799	N/A
MW365	Downgradient	Yes	0.00476	NO	-5.348	N/A
MW368	Downgradient	Yes	0.00138	NO	-6.586	N/A
MW371	Upgradient	Yes	0.00164	NO	-6.413	N/A
MW374	Upgradient	Yes	0.00066	3 NO	-7.319	N/A
MW375	Sidegradient	Yes	0.00103	NO	-6.878	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-18

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison **Oxidation-Reduction Potential** UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.281 S = 78.889 CV(1) = 3.541

K factor=** 2.523

TL(1)= 221.319 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.642

S = 1.729

CV(2) = 0.475

K factor=** 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.905
Date Collected	Result	
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	375	N/A	5.927	YES
MW362	Downgradient	Yes	340	N/A	5.829	YES
MW365	Downgradient	Yes	425	N/A	6.052	YES
MW368	Downgradient	Yes	389	N/A	5.964	YES
MW371	Upgradient	Yes	365	N/A	5.900	YES
MW374	Upgradient	Yes	331	N/A	5.802	YES
MW375	Sidegradient	Yes	344	N/A	5.841	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells	with	Exceedances

MW359 MW362 MW365

MW368 MW371

MW374

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-19

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison PCB, Total **UNITS: UG/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.224

S = 0.207

CV(1) = 0.922

K factor=** 2.523

TL(1) = 0.746

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.647 S = 0.440

CV(2) = -0.267

K factor=** 2.523

TL(2) = -0.537

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/9/2003	0.17	-1.772
10/6/2003	0.17	-1.772
7/13/2004	0.18	-1.715
7/25/2005	0.17	-1.772
4/5/2006	0.18	-1.715
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.772
Date Collected	Result	` '
Date Collected 7/9/2003	Result 0.17	-1.772
Date Collected 7/9/2003 10/7/2003	Result 0.17 0.17	-1.772 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.17 0.17 0.18	-1.772 -1.772 -1.715
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.17 0.17 0.18 0.17	-1.772 -1.772 -1.715 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.17 0.17 0.18 0.17 0.18	-1.772 -1.772 -1.715 -1.772 -1.715

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0971	N/A	-2.332	N/A
MW362	Downgradient	No	0.099	N/A	-2.313	N/A
MW365	Downgradient	Yes	0.0335	NO	-3.396	N/A
MW368	Downgradient	No	0.0943	N/A	-2.361	N/A
MW371	Upgradient	No	0.0952	N/A	-2.352	N/A
MW374	Upgradient	No	0.0952	N/A	-2.352	N/A
MW375	Sidegradient	No	0.0952	N/A	-2.352	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.159 S = 0.224

CV(1)=1.409

K factor=** 2.523

TL(1)= 0.726

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.134 S = 0.579

CV(2) = -0.272

K factor=** 2.523

TL(2) = -0.672

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/9/2003	0.13	-2.040
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/25/2005	0.09	-2.408
4/5/2006	0.1	-2.303
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.040
Date Collected	Result	
Date Collected 7/9/2003	Result 0.13	-2.040
Date Collected 7/9/2003 10/7/2003	Result 0.13 0.09	-2.040 -2.408
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.13 0.09 0.1	-2.040 -2.408 -2.303
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.13 0.09 0.1 0.1	-2.040 -2.408 -2.303 -2.303
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.13 0.09 0.1 0.1 0.1	-2.040 -2.408 -2.303 -2.303 -2.303

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0971	N/A	-2.332	N/A
MW362	Downgradient	No	0.099	N/A	-2.313	N/A
MW365	Downgradient	Yes	0.0335	N/A	-3.396	NO
MW368	Downgradient	No	0.0943	N/A	-2.361	N/A
MW371	Upgradient	No	0.0952	N/A	-2.352	N/A
MW374	Upgradient	No	0.0952	N/A	-2.352	N/A
MW375	Sidegradient	No	0.0952	N/A	-2.352	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-21

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S = 0.295

CV(1) = 0.045

K factor=** 2.904

TL(1)= 7.475

LL(1)=5.7635

Statistics-Transformed Background Data

X = 1.889

S = 0.046

CV(2) = 0.024

K factor=** 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result)
Date Collected	Result	` '
Date Collected 3/18/2002	Result 5.75	1.749
Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<>
MW359	Downgradien	t Yes	6.29	NO	1.839	N/A
MW362	Downgradien	t Yes	6.9	NO	1.932	N/A
MW365	Downgradien	t Yes	6.33	NO	1.845	N/A
MW368	Downgradien	t Yes	6.63	NO	1.892	N/A
MW371	Upgradient	Yes	6.1	NO	1.808	N/A
MW374	Upgradient	Yes	6.63	NO	1.892	N/A
MW375	Sidegradient	Yes	6.35	NO	1.848	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-22

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

S = 0.907

CV(1) = 0.718

K factor=** 2.523

TL(1)= 3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

CV(2) = -32.218

K factor=** 2.523

TL(2) = 1.874

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.112
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.3	N/A	-1.204	N/A
MW362	Downgradient	Yes	0.721	NO	-0.327	N/A
MW365	Downgradient	Yes	0.271	NO	-1.306	N/A
MW368	Downgradient	Yes	0.495	NO	-0.703	N/A
MW371	Upgradient	Yes	0.643	NO	-0.442	N/A
MW374	Upgradient	Yes	0.429	NO	-0.846	N/A
MW375	Sidegradient	Yes	0.27	NO	-1.309	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-23

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor=** 2.523

TL(1)= 367.800 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 5.146 **S**= 0.356

CV(2) = 0.069

K factor=** 2.523

TL(2)= 6.044

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.817
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 336	5.817
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter	Data
--	---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	40.7	NO	3.706	N/A
MW362	Downgradient	Yes	138	NO	4.927	N/A
MW365	Downgradient	Yes	51.6	NO	3.944	N/A
MW368	Downgradient	Yes	20.7	NO	3.030	N/A
MW371	Upgradient	Yes	14.6	NO	2.681	N/A
MW374	Upgradient	Yes	108	NO	4.682	N/A
MW375	Sidegradient	Yes	49.3	NO	3.898	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-24

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

S= 3.153 **CV(1)**= 0.487

K factor**= 2.523

TL(1)= 14.423

LL(1)=N/A

Statistics-Transformed Background Data

X= 1.794 **S**= 0.357

CV(2)=0.199

K factor=** 2.523

TL(2) = 2.694

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	,
Date Collected 10/8/2002	Result 5	1.609
Date Collected 10/8/2002 1/7/2003	Result 5 5	1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5	1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5 5 6	1.609 1.609 1.609 1.723
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.723 1.609

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	50.9	YES	3.930	N/A
MW362	Downgradient	Yes	30.6	YES	3.421	N/A
MW365	Downgradient	Yes	65.5	YES	4.182	N/A
MW368	Downgradient	Yes	27.7	YES	3.321	N/A
MW371	Upgradient	Yes	91.6	YES	4.517	N/A
MW374	Upgradient	Yes	7.24	NO	1.980	N/A
MW375	Sidegradient	Yes	25.5	YES	3.239	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362

MW365 MW368

MW371

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-25

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.631 **S**= 24.314 **CV(1)**=1.379

K factor=** 2.523

TL(1)= 78.977 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979

CV(2) = 0.422

K factor=** 2.523

TL(2) = 4.788

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 90	4.500
Date Collected 10/8/2002 1/7/2003	Result 90 64	4.500 4.159
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 90 64 25	4.500 4.159 3.219
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 90 64 25 16	4.500 4.159 3.219 2.773
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.649	N/A	-0.432	NO
MW362	Downgradient	Yes	2.8	N/A	1.030	NO
MW365	Downgradient	Yes	1.52	N/A	0.419	NO
MW368	Downgradient	Yes	1.32	N/A	0.278	NO
MW371	Upgradient	Yes	1.09	N/A	0.086	NO
MW374	Upgradient	Yes	2.46	N/A	0.900	NO
MW375	Sidegradient	Yes	1.1	N/A	0.095	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-26

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor=** 2.523

TL(1)= 797.131 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.867 S = 1

 $S= 1.065 \quad CV(2)=0.219$

K factor=** 2.523

TL(2) = 7.554

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	i Quarter Data	1
XX7 11 X7	C 1' 4	

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	10	N/A	2.303	N/A
MW362	Downgradient	Yes	27.3	N/A	3.307	NO
MW365	Downgradient	Yes	15.3	N/A	2.728	NO
MW368	Downgradient	Yes	5	N/A	1.609	NO
MW371	Upgradient	No	10	N/A	2.303	N/A
MW374	Upgradient	Yes	24.8	N/A	3.211	NO
MW375	Sidegradient	Yes	12.5	N/A	2.526	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-27

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072

CV(1) = 1.319

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912

CV(2) = -0.265

K factor=** 2.523

TL(2) = -1.138

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.01	N/A	-4.605	N/A
MW362	Downgradient	Yes	0.00966	N/A	-4.640	NO
MW365	Downgradient	Yes	0.00371	N/A	-5.597	NO
MW368	Downgradient	Yes	0.00768	N/A	-4.869	NO
MW371	Upgradient	Yes	0.00759	N/A	-4.881	NO
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S= 0.083

CV(1)=1.380

K factor=** 2.523

TL(1)= 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259

S = 0.840

CV(2) = -0.258

K factor=** 2.523

TL(2) = -1.140

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 10/8/2002	Result 0.025	-3.689
Date Collected 10/8/2002 1/7/2003	Result 0.025 0.35	-3.689 -1.050
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.35 0.035	-3.689 -1.050 -3.352
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.025 0.35 0.035 0.02	-3.689 -1.050 -3.352 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.025 0.35 0.035 0.02 0.02	-3.689 -1.050 -3.352 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Qua	rter Data
-------------	-----------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00332	N/A	-5.708	NO
MW362	Downgradient	Yes	0.0103	N/A	-4.576	NO
MW365	Downgradient	Yes	0.00627	N/A	-5.072	NO
MW368	Downgradient	Yes	0.00813	N/A	-4.812	NO
MW371	Upgradient	Yes	0.00749	N/A	-4.894	NO
MW374	Upgradient	Yes	0.00444	N/A	-5.417	NO
MW375	Sidegradient	Yes	0.00516	N/A	-5.267	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-29

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.239**K factor**=** 2.523 **Statistics-Background Data** X = 0.625S = 0.774TL(1) = 2.578LL(1)=N/A **Statistics-Transformed Background** X = -0.973 S = 0.935CV(2) = -0.961**K factor**=** 2.523 TL(2) = 1.386LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.255 -1.3664/22/2002 0.2 -1.6097/15/2002 0.322 -1.13310/8/2002 0.2 -1.6091/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.689 -0.373Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.61 0.959 4/23/2002 0.2 -1.609 7/16/2002 1.14 0.131 10/8/2002 0.862 -0.1492.32 0.842 1/7/2003 4/2/2003 0.2 -1.6097/9/2003 0.2 -1.60910/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	0.0272	N/A	-3.605	NO
	MW360	Downgradient	Yes	0.0813	N/A	-2.510	NO
	MW363	Downgradient	No	0.05	N/A	-2.996	N/A
	MW366	Downgradient	No	0.05	N/A	-2.996	N/A
	MW369	Upgradient	Yes	0.0247	N/A	-3.701	NO
	MW372	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW372 Upgradient

Statistics-Background Data

X= 15.996 **S**= 11.899 **CV(1)**= 0.744

K factor=** 2.523

TL(1)= 46.017

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.497 S = 0.783

CV(2) = 0.314

K factor=** 2.523

TL(2) = 4.473

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 32.5 3.481 4/22/2002 35.4 3.567 7/15/2002 12.9 2.557 10/8/2002 7.59 2.027 1/8/2003 9.58 2.260 4/3/2003 6.69 1.901 7/8/2003 9.1 2.208 10/6/2003 7.31 1.989 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 28.5 3.350 4/23/2002 5.37 1.681 2.991 7/16/2002 19.9 10/8/2002 38.7 3.656 2.565 1/7/2003 13 4/2/2003 3.94 1.371 7/9/2003 1.270 3.56 10/7/2003 21.9 3.086

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

3.040

MW369

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	19.5	N/A	2.970	N/A
MW360	Downgradient	No	4.36	N/A	1.472	N/A
MW363	Downgradient	No	6.75	N/A	1.910	N/A
MW366	Downgradient	Yes	11.4	N/A	2.434	N/A
MW369	Upgradient	Yes	102	YES	4.625	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

20.9

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-31

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.985 S = 0.825 CV(1) = 0.838 K factor**= 2.523 TL(1) = 3.067 LL(1) = N/A Statistics-Transformed Background X = -0.430 S = 0.990 CV(2) = -2.302 K factor**= 2.523 TL(2) = 2.068 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6090.2 1/8/2003 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 0.492 -0.7090.492-0.7091/7/2003 4/2/2003 0.6 -0.5117/9/2003 0.57 -0.562-0.504 10/7/2003 0.604

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.247	NO	-1.398	N/A
MW360	Downgradient	Yes	0.0524	NO	-2.949	N/A
MW363	Downgradient	Yes	0.0299	NO	-3.510	N/A
MW366	Downgradient	Yes	0.142	NO	-1.952	N/A
MW369	Upgradient	Yes	0.0244	NO	-3.713	N/A
MW372	Upgradient	Yes	0.953	NO	-0.048	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-32

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 1 0.000 7/15/2002 0.000 1 10/8/2002 1 0.000 1 1/8/2003 0.000 4/3/2003 1 0.000 7/8/2003 0.000 1 10/6/2003 1 0.000 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.000 1/7/2003 0.0004/2/2003 1 0.000

1

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.303	NO	-1.194	N/A
MW360	Downgradient	Yes	0.278	NO	-1.280	N/A
MW363	Downgradient	Yes	0.161	NO	-1.826	N/A
MW366	Downgradient	Yes	0.481	NO	-0.732	N/A
MW369	Upgradient	Yes	0.407	NO	-0.899	N/A
MW372	Upgradient	Yes	0.572	NO	-0.559	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-33

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison **Calcium** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X= 32.763 **S**= 9.391 CV(1) = 0.287**K factor**=** 2.523 **Statistics-Background Data** TL(1) = 56.456LL(1)=N/A **Statistics-Transformed Background** X = 3.449S = 0.299CV(2) = 0.087LL(2)=N/A

Data

K factor=** 2.523 TL(2) = 4.202

> Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	29.5	3.384
4/22/2002	29.8	3.395
7/15/2002	25.3	3.231
10/8/2002	21.9	3.086
1/8/2003	20.9	3.040
4/3/2003	22.2	3.100
7/8/2003	22.9	3.131
10/6/2003	21.7	3.077
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.726
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 41.5	3.726
Date Collected 3/19/2002 4/23/2002	Result 41.5 43.6	3.726 3.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 41.5 43.6 40.4	3.726 3.775 3.699
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 41.5 43.6 40.4 38.8	3.726 3.775 3.699 3.658
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 41.5 43.6 40.4 38.8 41.1	3.726 3.775 3.699 3.658 3.716

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	20.2	NO	3.006	N/A			
MW360	Downgradient	Yes	23.9	NO	3.174	N/A			
MW363	Downgradient	Yes	26.1	NO	3.262	N/A			
MW366	Downgradient	Yes	31.6	NO	3.453	N/A			
MW369	Upgradient	Yes	28.7	NO	3.357	N/A			
MW372	Upgradient	Yes	49.9	NO	3.910	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-34

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 35.938 S = 3.750 CV(1) = 0.104 K factor** = 2.523
 TL(1) = 45.399 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.578 S = 0.089 CV(2) = 0.025 K factor** = 2.523
 TL(2) = 3.803 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35 3.555 4/22/2002 35 3.555 7/15/2002 35 3.555 10/8/2002 50 3.912 1/8/2003 35 3.555 4/3/2003 35 3.555 7/8/2003 35 3.555 10/6/2003 35 3.555 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 35 3.555 4/23/2002 35 3.555 7/16/2002 35 3.555 10/8/2002 35 3.555 1/7/2003 35 3.555 4/2/2003 35 3.555 7/9/2003 35 3.555 10/7/2003 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	30.7	NO	3.424	N/A
MW360	Downgradient	Yes	30.7	NO	3.424	N/A
MW363	Downgradient	No	20	N/A	2.996	N/A
MW366	Downgradient	Yes	16.7	NO	2.815	N/A
MW369	Upgradient	Yes	24.7	NO	3.207	N/A
MW372	Upgradient	Yes	10.7	NO	2.370	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-35

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 44.119 **S**= 4.554

CV(1) = 0.103

K factor=** 2.523

TL(1)= 55.607

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.782 **S**= 0.099

CV(2) = 0.026

K factor=** 2.523

TL(2) = 4.033

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/15/2002 48.3 3.877 10/8/2002 47.7 3.865 1/8/2003 45.7 3.822 4/3/2003 47.4 3.859 7/8/2003 55.9 4.024 10/6/2003 47.4 3.859 1/7/2004 45.5 3.818 4/7/2004 43.4 3.770 Well Number: MW372 Date Collected LN(Result) Result 7/16/2002 39.8 3.684 10/8/2002 41 3.714 1/7/2003 39.4 3.674 4/2/2003 39.2 3.669 7/9/2003 39.8 3.684 10/7/2003 40 3.689 1/5/2004 43.4 3.770 4/5/2004 42 3.738

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	25.5	NO	3.239	N/A
MW360	Downgradient	Yes	25.3	NO	3.231	N/A
MW363	Downgradient	Yes	23.6	NO	3.161	N/A
MW366	Downgradient	Yes	40.2	NO	3.694	N/A
MW369	Upgradient	Yes	35.5	NO	3.570	N/A
MW372	Upgradient	Yes	43.2	NO	3.766	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-36

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.021 CV(1) = 0.845 K factor** = 2.523
 TL(1) = 0.077 LL(1) = N/A

 Statistics-Transformed Background
 X = -4.090 S = 1.006 CV(2) = -0.246 K factor** = 2.523
 TL(2) = -1.553 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.00938 -4.669 0.00548 1/8/2003 -5.2074/3/2003 0.00587 -5.138 7/8/2003 0.0541 -2.917 10/6/2003 0.0689 -2.675Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.025 -3.6894/23/2002 0.025 -3.689 7/16/2002 0.025 -3.68910/8/2002 0.00158-6.450 0.0147 -4.220 1/7/2003 4/2/2003 0.0116 -4.4577/9/2003 0.0653 -2.7290.00788 -4.843 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	Yes	0.0022	NO	-6.119	N/A
MW363	Downgradient	Yes	0.00102	NO	-6.888	N/A
MW366	Downgradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	Yes	0.00093	5 NO	-6.975	N/A
MW372	Upgradient	Yes	0.00118	NO	-6.742	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-37

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 482.856 S = 57.603 CV(1) = 0.119

K factor=** 2.523

TL(1)= 628.189 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123 CV(2) = 0.020

K factor=** 2.523

TL(2)= 6.484

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	` ´
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	351	NO	5.861	N/A
MW360	Downgradient	Yes	444	NO	6.096	N/A
MW363	Downgradient	Yes	407	NO	6.009	N/A
MW366	Downgradient	Yes	478	NO	6.170	N/A
MW369	Upgradient	Yes	425	NO	6.052	N/A
MW372	Upgradient	Yes	614	NO	6.420	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-38

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.010CV(1) = 0.400**K factor**=** 2.523 **Statistics-Background Data** X = 0.025TL(1) = 0.050LL(1)=N/A **Statistics-Transformed Background** X = -3.742 S = 0.307CV(2) = -0.082**K factor****= 2.523 TL(2) = -2.967LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6897/15/2002 0.05 -2.996 10/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.9127/8/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.025 -3.6894/23/2002 0.025 -3.689 0.05 -2.996 7/16/2002 10/8/2002 0.02 -3.912 0.02-3.912 1/7/2003 -3.912 4/2/2003 0.02 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	0.00061	8 NO	-7.389	N/A
	MW360	Downgradient	Yes	0.00134	NO	-6.615	N/A
	MW363	Downgradient	Yes	0.00037	6 NO	-7.886	N/A
	MW366	Downgradient	No	0.001	N/A	-6.908	N/A
	MW369	Upgradient	Yes	0.00321	NO	-5.741	N/A
	MW372	Upgradient	Yes	0.00079	3 NO	-7.140	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-39

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.781
 S= 1.351
 CV(1)=0.759
 K factor**= 2.523
 TL(1)= 5.190
 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.228
 S= 1.065
 CV(2)=4.665
 K factor**= 2.523
 TL(2)= 2.915
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 5.41 1.688 4/22/2002 1.57 0.451 7/15/2002 -0.2230.8 10/8/2002 1.09 0.086 0.990 1/8/2003 2.69 4/3/2003 2.04 0.713 7/8/2003 0.174 1.19 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.996 7/16/2002 1.33 0.285 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.916 4/2/2003 0.91 -0.0947/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	4.45	NO	1.493	N/A
MW360	Downgradient	Yes	1.89	NO	0.637	N/A
MW363	Downgradient	Yes	1.32	NO	0.278	N/A
MW366	Downgradient	Yes	2.19	NO	0.784	N/A
MW369	Upgradient	Yes	1.27	NO	0.239	N/A
MW372	Upgradient	Yes	1.22	NO	0.199	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-40

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 285.188 **S**= 44.908 **CV(1)**= 0.157

K factor**= 2.523

TL(1)= 398.489 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

K factor=** 2.523

TL(2) = 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 173 5.153 4/22/2002 246 5.505 7/15/2002 232 5.447 10/8/2002 275 5.617 1/8/2003 269 5.595 4/3/2003 250 5.521 7/8/2003 295 5.687 10/6/2003 276 5.620 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 295 5.687 4/23/2002 322 5.775 7/16/2002 329 5.796 10/8/2002 290 5.670 5.756 1/7/2003 316 4/2/2003 311 5.740 7/9/2003 347 5.849 10/7/2003 337 5.820

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	210	NO	5.347	N/A
MW360	Downgradient	Yes	241	NO	5.485	N/A
MW363	Downgradient	Yes	239	NO	5.476	N/A
MW366	Downgradient	Yes	271	NO	5.602	N/A
MW369	Upgradient	Yes	281	NO	5.638	N/A
MW372	Upgradient	Yes	356	NO	5.875	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-41

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=7.385
 S= 6.991
 CV(1)=0.947
 K factor**= 2.523
 TL(1)= 25.024
 LL(1)=N/A

 Statistics-Transformed Background
 X=1.358
 S= 1.323
 CV(2)=0.974
 K factor**= 2.523
 TL(2)= 4.697
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.656 -0.422 4/22/2002 0.695 -0.3647/15/2002 1.960 7.1 10/8/2002 21.5 3.068 1/8/2003 18.5 2.918 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 1.78 0.577 10/8/2002 0.776 -0.2543.55 1.267 1/7/2003 4/2/2003 5.02 1.613 7/9/2003 10 2.303 0.733 10/7/2003 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0444	NO	-3.115	N/A
MW360	Downgradient	Yes	0.594	NO	-0.521	N/A
MW363	Downgradient	Yes	0.0664	NO	-2.712	N/A
MW366	Downgradient	No	0.1	N/A	-2.303	N/A
MW369	Upgradient	Yes	0.0697	NO	-2.664	N/A
MW372	Upgradient	Yes	0.0669	NO	-2.705	N/A
MW357 MW360 MW363 MW366 MW369	Downgradient Downgradient Downgradient Downgradient Upgradient	Yes Yes Yes No Yes	0.0444 0.594 0.0664 0.1 0.0697	NO NO NO N/A NO	-3.115 -0.521 -2.712 -2.303 -2.664	N/A N/A N/A N/A N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-42

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 12.864 S = 3.505 CV(1) = 0.272 K factor** = 2.523
 TL(1) = 21.707 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.517 X = 0.290 X = 0.290

Data

Upgradient Wells with Transformed Result

Historical Background Data from

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11.4 2.434 4/22/2002 12 2.485 7/15/2002 10 2.303 10/8/2002 8.62 2.154 1/8/2003 7.89 2.066 4/3/2003 7.97 2.076 7/8/2003 10.3 2.332 10/6/2003 9.14 2.213 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 15.7 2.754 4/23/2002 16.6 2.809 7/16/2002 15.4 2.734 10/8/2002 15.8 2.760 15.8 2.760 1/7/2003 4/2/2003 16.4 2.797 7/9/2003 15.2 2.721 10/7/2003 17.6 2.868

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	8.65	NO	2.158	N/A
	MW360	Downgradient	Yes	10.1	NO	2.313	N/A
	MW363	Downgradient	Yes	10.5	NO	2.351	N/A
	MW366	Downgradient	Yes	13.5	NO	2.603	N/A
	MW369	Upgradient	Yes	12.6	NO	2.534	N/A
	MW372	Upgradient	Yes	19.4	NO	2.965	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-43

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.413 S = 0.274 CV(1) = 0.664 K factor** = 2.523
 TL(1) = 1.105 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.226 S = 1.008 CV(2) = -0.822 CV(

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.034 -3.3814/22/2002 0.062 -2.7817/15/2002 0.436 -0.83010/8/2002 0.867-0.1431/8/2003 0.828 -0.1894/3/2003 0.672 -0.3977/8/2003 0.321 -1.136 10/6/2003 0.714 -0.337Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.205 -1.585 4/23/2002 0.345 -1.064 7/16/2002 0.21 -1.56110/8/2002 0.0539 -2.921 0.537 -0.622 1/7/2003 -0.879 4/2/2003 0.415 7/9/2003 0.654 -0.425-1.370 10/7/2003 0.254

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

l	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW357	Downgradient	Yes	0.0198	NO	-3.922	N/A
	MW360	Downgradient	Yes	0.0263	NO	-3.638	N/A
	MW363	Downgradient	Yes	0.266	NO	-1.324	N/A
	MW366	Downgradient	Yes	0.0097	NO	-4.636	N/A
	MW369	Upgradient	Yes	0.0127	NO	-4.366	N/A
	MW372	Upgradient	Yes	0.00775	5 NO	-4.860	N/A
	37/4 D	1. 11 1				1 . 111	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-44

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.010 S = 0.012

CV(1)=1.199

K factor=** 2.523

TL(1)= 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X= -5.698 **S**= 1.607

CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.643

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.001-6.908 0.001 1/8/2003 -6.9084/3/2003 0.001 -6.9087/8/2003 0.001 -6.908 10/6/2003 0.001 -6.908Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.025 -3.6894/23/2002 0.025 -3.689 7/16/2002 0.025 -3.68910/8/2002 0.001 -6.908 0.001 -6.908 1/7/2003 4/2/2003 0.001 -6.908 7/9/2003 0.00105 -6.859 0.001 10/7/2003 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0005	N/A	-7.601	N/A
MW360	Downgradient	Yes	0.000234	4 N/A	-8.360	NO
MW363	Downgradient	No	0.0005	N/A	-7.601	N/A
MW366	Downgradient	No	0.0005	N/A	-7.601	N/A
MW369	Upgradient	No	0.0005	N/A	-7.601	N/A
MW372	Upgradient	Yes	0.000358	8 N/A	-7.935	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-45

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024 S = 0.021

CV(1)=0.910

K factor=** 2.523

TL(1)= 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.246 S = 1.075

= 1.075 **CV(2)**=-0.253

K factor=** 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.05 -2.9964/22/2002 0.05 -2.9967/15/2002 0.05 -2.99610/8/2002 0.005-5.298 1/8/2003 0.005 -5.2984/3/2003 0.005 -5.2987/8/2003 0.013 -4.343 10/6/2003 0.0104 -4.566 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.05 -2.996 4/23/2002 0.05 -2.996 7/16/2002 0.05 -2.99610/8/2002 0.005-5.298 -5.298 1/7/2003 0.005 4/2/2003 0.005 -5.298 7/9/2003 0.019 -3.96310/7/2003 0.005 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

-6.630

N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.002	N/A	-6.215	N/A
MW360	Downgradient	Yes	0.00115	S NO	-6.768	N/A
MW363	Downgradient	Yes	0.00107	NO NO	-6.840	N/A
MW366	Downgradient	No	0.002	N/A	-6.215	N/A
MW369	Upgradient	Yes	0.00122	. NO	-6.709	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

0.00132

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Upgradient

Yes

MW372

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-46

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 74.563 **S**= 94.243 **CV(1)**= 1.264

K factor=** 2.523

TL(1)= 312.337 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784 CV(2) = 0.172

K factor=** 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	` ,
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

	Current Quarter Data								
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
•	MW357	Downgradient	Yes	399	N/A	5.989	YES		
	MW360	Downgradient	Yes	340	N/A	5.829	YES		
	MW363	Downgradient	Yes	437	N/A	6.080	YES		
	MW366	Downgradient	Yes	258	N/A	5.553	YES		
	MW369	Upgradient	Yes	397	N/A	5.984	YES		
	MW372	Upgradient	Yes	348	N/A	5.852	YES		
	27/4 75						_		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedance	S
-----------------------	---

MW360 MW363

MW357

MW366

MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-47

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison PCB, Total **UNITS: UG/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.897**K factor**=** 2.523 **Statistics-Background Data** X = 0.390S = 0.350TL(1)=1.272LL(1)=N/A **Statistics-Transformed Background**

Data

X = -1.238 S = 0.737CV(2) = -0.595 **K factor**=** 2.523 TL(2) = 0.622 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 0.17 -1.7727/15/2002 -1.772 0.17 7/8/2003 1.15 0.140 0.605 -0.503 10/6/2003 7/13/2004 0.42 -0.8687/20/2005 0.28 -1.2734/4/2006 0.23 -1.470Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.000 4/23/2002 0.17 -1.772 -1.7727/16/2002 0.17 7/9/2003 0.17 -1.77210/7/2003 0.17-1.772 7/14/2004 0.18 -1.7157/21/2005 0.17 -1.772 -1.715 4/5/2006 0.18

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW357	Downgradient	No	0.1	N/A	-2.303	N/A
	MW360	Downgradient	No	0.098	N/A	-2.323	N/A
	MW363	Downgradient	Yes	0.0474	NO	-3.049	N/A
	MW366	Downgradient	No	0.0971	N/A	-2.332	N/A
	MW369	Upgradient	No	0.0952	N/A	-2.352	N/A
	MW372	Upgradient	No	0.0962	N/A	-2.341	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: UG/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.281 S = 0.383 CV(1) = 1.361 K factor**= 2.523 TL(1) = 1.247 LL(1) = N/A

Statistics-Transformed Background Data

X= -1.835 **S**= 0.938 **CV(2)**= -0.511

K factor**= 2.523 **TL(2)**= 0.532 **Ll**

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 0.11 -2.2077/15/2002 -2.207 0.11 7/8/2003 1.15 0.140 0.09 -2.40810/6/2003 7/13/2004 0.1 -2.3037/20/2005 0.1 -2.303 4/4/2006 0.1 -2.303Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 0.11 -2.2077/16/2002 0.11 -2.2077/9/2003 0.13 -2.040 10/7/2003 0.09 -2.408-2.303 7/14/2004 0.1

0.1

0.1

7/21/2005

4/5/2006

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.1	N/A	-2.303	N/A
MW360	Downgradient	No	0.098	N/A	-2.323	N/A
MW363	Downgradient	Yes	0.0474	N/A	-3.049	NO
MW366	Downgradient	No	0.0971	N/A	-2.332	N/A
MW369	Upgradient	No	0.0952	N/A	-2.352	N/A
MW372	Upgradient	No	0.0962	N/A	-2.341	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.303 -2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-49

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.274 S = 0.194 CV(1) = 0.031 K factor**= 2.904
 TL(1) = 6.837 LL(1) = 5.7114

 Statistics-Transformed Background Data
 X = 1.836 X = 0.031 X = 0.031</th

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 7/15/2002 6.1 1.808 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 6.26 1.834 1/7/2003 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841 10/7/2003 6.4 1.856

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>			
MW357	Downgradien	t Yes	6.09	NO	1.807	N/A			
MW360	Downgradien	t Yes	6.49	NO	1.870	N/A			
MW363	Downgradien	t Yes	5.98	NO	1.788	N/A			
MW366	Downgradien	t Yes	6.19	NO	1.823	N/A			
MW369	Upgradient	Yes	6.34	NO	1.847	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

1.821

N/A

6.18

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW372 Upgradient

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-50

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.663 S = 0.488 CV(1) = 0.293 K factor**= 2.523 TL(1) = 2.895 LL(1) = N/A Statistics-Transformed Background X = 0.456 S = 0.362 CV(2) = 0.794 K factor**= 2.523 TL(2) = 1.368 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 4/22/2002 2.21 0.793 7/15/2002 2 0.693 10/8/2002 0.966 -0.0351/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 1.62 0.482 10/6/2003 1.14 0.131 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 0.693 7/16/2002 10/8/2002 1.54 0.432 1.88 0.631 1/7/2003 4/2/2003 2.09 0.737 7/9/2003 1.78 0.577 10/7/2003 1.79 0.582

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	1.35	NO	0.300	N/A	
MW360	Downgradient	Yes	0.964	NO	-0.037	N/A	
MW363	Downgradient	Yes	1.29	NO	0.255	N/A	
MW366	Downgradient	Yes	1.9	NO	0.642	N/A	
MW369	Upgradient	Yes	1.59	NO	0.464	N/A	
MW372	Upgradient	Yes	2.19	NO	0.784	N/A	
M/A Dagu	Ita identified on I	Van Dataata	dunina 1a1		. data validatia	m and viana nat	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-51

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 3.398 S = 8.854 CV(1) = 2.605 K factor**= 2.523 TL(1) = 25.736 LL(1) = N/A Statistics-Transformed Background X = -0.836 S = 1.704 CV(2) = -2.039 K factor**= 2.523 TL(2) = 3.346 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/15/2002 28.4 3.346 10/8/2002 0.167 -1.790-1.7541/8/2003 0.173 10/6/2003 0.168 -1.7840.702 -0.3541/7/2004 4/7/2004 0.195 -1.6357/13/2004 0.256 -1.363 10/7/2004 0.228 -1.478Well Number: MW372 Date Collected Result LN(Result) 7/16/2002 23.5 3.157 10/8/2002 0.195 -1.635 #Func! 1/7/2003 -0.84410/7/2003 0.349 -1.0530.239 -1.431 1/5/2004 -1.178 4/5/2004 0.308 7/14/2004 0.147 -1.91710/7/2004 0.188 -1.671

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.412	N/A	-0.887	N/A	
MW360	Downgradient	Yes	0.694	N/A	-0.365	NO	
MW363	Downgradient	No	0.0999	N/A	-2.304	N/A	
MW366	Downgradient	No	0.0575	N/A	-2.856	N/A	
MW369	Upgradient	No	-0.19	N/A	#Error	N/A	
MW372	Upgradient	No	0.258	N/A	-1.355	N/A	
NT/A D	1, 11, 2011	T D	1 . 11		1 . 11	1 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-52

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 45.100 **S**= 11.875 **CV(1)**= 0.263

K factor=** 2.523 **TL(1)=** 75.061

Statistics-Transformed Background Data

X = 3.780 S = 0.242 CV(2) = 0.064

K factor=** 2.523

TL(2)= 4.390

LL(2)=N/A

LL(1)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35.7 3.575 4/22/2002 37.6 3.627 7/15/2002 42.4 3.747 10/8/2002 66.9 4.203 1/8/2003 67.9 4.218 4/3/2003 61.8 4.124 7/8/2003 45.6 3.820 10/6/2003 59.1 4.079 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 37.2 3.616 4/23/2002 38.6 3.653 7/16/2002 35.6 3.572 10/8/2002 37.5 3.624 3.529 1/7/2003 34.1 4/2/2003 34.4 3.538 7/9/2003 44.1 3.786

43.1

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	37.7	NO	3.630	N/A		
MW360	Downgradient	Yes	56.9	NO	4.041	N/A		
MW363	Downgradient	Yes	38.1	NO	3.640	N/A		
MW366	Downgradient	Yes	45.1	NO	3.809	N/A		
MW369	Upgradient	Yes	49.2	NO	3.896	N/A		
MW372	Upgradient	Yes	46.4	NO	3.837	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.764

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-53

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.031 S = 33.919 CV(1) = 0.753

K factor=** 2.523

TL(1)= 130.609

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.420 **S**= 0.981

CV(2) = 0.287

K factor=** 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	15.5	2.741
4/22/2002	15.8	2.760
7/15/2002	13.8	2.625
10/8/2002	6.9	1.932
1/8/2003	10.5	2.351
4/3/2003	10.5	2.351
7/8/2003	10.9	2.389
10/6/2003	16.3	2.791
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.272
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 71.7	4.272
Date Collected 3/19/2002 4/23/2002	Result 71.7 74.7	4.272 4.313
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 71.7 74.7 74.1	4.272 4.313 4.305
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 71.7 74.7 74.1 70.5	4.272 4.313 4.305 4.256
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 71.7 74.7 74.1 70.5 75.8	4.272 4.313 4.305 4.256 4.328

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	32.3	NO	3.475	N/A		
MW360	Downgradient	Yes	19.9	NO	2.991	N/A		
MW363	Downgradient	Yes	38	NO	3.638	N/A		
MW366	Downgradient	Yes	56.1	NO	4.027	N/A		
MW369	Upgradient	Yes	24	NO	3.178	N/A		
MW372	Upgradient	Yes	78.2	NO	4.359	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-54

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison **Technetium-99** UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 20.821 S = 18.044 CV(1) = 0.867

K factor=** 2.523

TL(1)= 66.344

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.770 S = 1.150 CV(2) = 0.415

K factor=** 2.523

TL(2)= 3.972

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369		
Date Collected	Result	LN(Result)	
3/18/2002	41.7	3.731	
4/22/2002	53.1	3.972	
7/15/2002	18.1	2.896	
10/8/2002	16.4	2.797	
1/8/2003	3.49	1.250	
4/3/2003	9.34	2.234	
7/8/2003	17.5	2.862	
10/6/2003	17	2.833	
Well Number:	MW372		
Well Number: Date Collected	MW372 Result	LN(Result)	
		LN(Result) 3.802	
Date Collected	Result		
Date Collected 3/19/2002	Result 44.8	3.802	
Date Collected 3/19/2002 4/23/2002	Result 44.8 0.802	3.802 -0.221	
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 44.8 0.802 19.8	3.802 -0.221 2.986	
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 44.8 0.802 19.8 46.1	3.802 -0.221 2.986 3.831	
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 44.8 0.802 19.8 46.1 -0.973	3.802 -0.221 2.986 3.831 #Func!	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW357	Downgradient	Yes	32.3	NO	3.475	N/A
	MW360	Downgradient	No	10.9	N/A	2.389	N/A
	MW363	Downgradient	No	15.2	N/A	2.721	N/A
	MW366	Downgradient	Yes	62.1	NO	4.129	N/A
	MW369	Upgradient	Yes	142	YES	4.956	N/A
	MW372	Upgradient	Yes	36.6	NO	3.600	N/A
	NT/A D	1. 11 .10 1 3	T D			1 . 111	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW369

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Thorium-230 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.143 S = 0.148

CV(1)=1.032 K f

K factor=** 2.523

TL(1) = 0.517

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.235 S = 0.875

0.875 **CV(2)=**-0.391

K factor=** 2.523

TL(2) = -0.534

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369		
Date Collected	Result	LN(Result)	
10/7/2004	0.586	-0.534	
1/12/2005	0.0362	-3.319	
4/7/2005	0.224	-1.496	
7/20/2005	0.029	-3.540	
10/12/2005	0.0719	-2.632	
1/4/2006	0.0753	-2.586	
4/4/2006	0.0972	-2.331	
7/6/2006	0.0491	-3.014	
Well Number:	MW372		
Well Number: Date Collected	MW372 Result	LN(Result)	
		LN(Result) -1.378	
Date Collected	Result	` '	
Date Collected 10/7/2004	Result 0.252	-1.378	
Date Collected 10/7/2004 1/6/2005	Result 0.252 0.165	-1.378 -1.802	
Date Collected 10/7/2004 1/6/2005 4/13/2005	Result 0.252 0.165 0.119	-1.378 -1.802 -2.129	
Date Collected 10/7/2004 1/6/2005 4/13/2005 7/21/2005	Result 0.252 0.165 0.119 0.122	-1.378 -1.802 -2.129 -2.104	
Date Collected 10/7/2004 1/6/2005 4/13/2005 7/21/2005 10/11/2005	Result 0.252 0.165 0.119 0.122 0.323	-1.378 -1.802 -2.129 -2.104 -1.130	

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	2.15	N/A	0.765	YES
MW360	Downgradient	No	0.646	N/A	-0.437	N/A
MW363	Downgradient	No	0.7	N/A	-0.357	N/A
MW366	Downgradient	Yes	2.8	N/A	1.030	YES
MW369	Upgradient	No	0.0378	N/A	-3.275	N/A
MW372	Upgradient	No	-0.178	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW357 MW366

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-56

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison **Total Organic Carbon (TOC)** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.226**K factor**=** 2.523 **TL(1)=** 14.378 **Statistics-Background Data** X = 3.513S = 4.307LL(1)=N/A **Statistics-Transformed Background** X = 0.851

Data

S = 0.828CV(2) = 0.973 **K factor****= 2.523 TL(2) = 2.940 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.7 0.531 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 9 1/8/2003 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1.2 0.182 0.000 7/16/2002 1 10/8/2002 1 0.000 1/7/2003 1.6 0.470 4/2/2003 1.5 0.405 7/9/2003 3 1.099

1.5

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.492	N/A	-0.709	NO	
MW360	Downgradient	Yes	1.29	N/A	0.255	NO	
MW363	Downgradient	Yes	0.696	N/A	-0.362	NO	
MW366	Downgradient	Yes	0.745	N/A	-0.294	NO	
MW369	Upgradient	Yes	1.29	N/A	0.255	NO	
MW372	Upgradient	Yes	0.849	N/A	-0.164	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.405

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-57

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 67.963 **S**= 64.316 **CV(1)**= 0.946

K factor=** 2.523

TL(1)= 230.231 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.772 S = 1.023 CV(2) = 0.271

K factor=** 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369		
Date Collected	Result	LN(Result)	
3/18/2002	50	3.912	
4/22/2002	50	3.912	
7/15/2002	81	4.394	
10/8/2002	202	5.308	
1/8/2003	177	5.176	
4/3/2003	93.1	4.534	
7/8/2003	17.5	2.862	
10/6/2003	37.5	3.624	
Well Number:	MW372		
Well Number: Date Collected	MW372 Result	LN(Result)	
		LN(Result) 5.215	
Date Collected	Result	` ,	
Date Collected 3/19/2002	Result 184	5.215	
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912	
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912	
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912	
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50	5.215 3.912 3.912 3.912 2.303	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	4.78	NO	1.564	N/A
MW360	Downgradient	Yes	7.78	NO	2.052	N/A
MW363	Downgradient	No	10	N/A	2.303	N/A
MW366	Downgradient	Yes	9.04	NO	2.202	N/A
MW369	Upgradient	Yes	3.98	NO	1.381	N/A
MW372	Upgradient	Yes	5.96	NO	1.785	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 5.625 S = 3.594 CV(1) = 0.639 K factor**= 2.523 TL(1) = 14.693 LL(1) = N/A Statistics-Transformed Background X = 1.571 S = 0.565 CV(2) = 0.360 K factor**= 2.523 TL(2) = 2.995 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 2.398 4/22/2002 16 2.773 7/15/2002 8 2.079 10/8/2002 3 1.099 2 1/8/2003 0.693 4/3/2003 3 1.099 7/8/2003 3 1.099 2 10/6/2003 0.693 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 5 1.609 4/23/2002 5 1.609 7/16/2002 4 1.386 10/8/2002 1.792 5 1/7/2003 1.609 4/2/2003 6 1.792 7/9/2003 5 1.609 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data								
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
•	MW357	Downgradient	Yes	5.3	NO	1.668	N/A		
	MW360	Downgradient	Yes	2.36	N/A	0.859	N/A		
	MW363	Downgradient	Yes	2.57	N/A	0.944	N/A		
	MW366	Downgradient	Yes	4.1	N/A	1.411	N/A		
	MW369	Upgradient	Yes	1.07	N/A	0.068	N/A		
	MW372	Upgradient	Yes	7.88	NO	2.064	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-59

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.006 CV(1) = 0.259 K factor** = 2.523
 TL(1) = 0.039 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.771 S = 0.223 CV(2) = -0.059 K factor** = 2.523
 TL(2) = -3.208 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.027 -3.6127/15/2002 0.025 -3.68910/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.9127/8/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.039 -3.244 4/23/2002 0.037 -3.2970.025 7/16/2002 -3.68910/8/2002 0.02 -3.912 0.02 -3.912 1/7/2003 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	0.01	N/A	-4.605	N/A		
MW360	Downgradient	No	0.01	N/A	-4.605	N/A		
MW363	Downgradient	No	0.01	N/A	-4.605	N/A		
MW366	Downgradient	No	0.01	N/A	-4.605	N/A		
MW369	Upgradient	Yes	0.00366	5 NO	-5.610	N/A		
MW372	Upgradient	Yes	0.00362	2 NO	-5.621	N/A		
						_		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 0.116 **S**= 0.173 **CV(1)**= 1.490

K factor=** 2.523

TL(1)= 0.552 **LL(1)**=N/A

Statistics-Transformed Background Data

X = -2.729 S = 1.014 CV(2) = -0.371

K factor=** 2.523

TL(2) = -0.172

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.1 -2.3034/22/2002 0.1 -2.3037/15/2002 0.1 -2.30310/8/2002 0.025 -3.6890.035 1/8/2003 -3.352 4/3/2003 0.035 -3.352 7/8/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.725 -0.3224/23/2002 0.1 -2.303 7/16/2002 0.1 -2.30310/8/2002 0.025 -3.6890.035-3.352 1/7/2003 0.035 4/2/2003 -3.352 7/9/2003 0.2 -1.60910/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0058	N/A	-5.150	NO
MW360	Downgradient	Yes	0.00409	N/A	-5.499	NO
MW363	Downgradient	No	0.01	N/A	-4.605	N/A
MW366	Downgradient	Yes	0.00345	N/A	-5.669	NO
MW369	Upgradient	Yes	0.00665	N/A	-5.013	NO
MW372	Upgradient	Yes	0.00689	N/A	-4.978	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-61

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.026 S = 5.626

CV(1) = 2.777

K factor=** 2.523

TL(1)= 16.219

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.803 S = 1.380

1.380 **CV(2)=**-1.718

K factor=** 2.523

TL(2)= 2.678

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 4.66 1.539 4/23/2002 0.2 -1.6097/15/2002 0.2 -1.60910/8/2002 0.2 -1.6090.2 1/8/2003 -1.6094/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 22.7 3.122 4/23/2002 1.46 0.378 -1.3747/16/2002 0.253 10/8/2002 0.482 -0.7300.608-0.4981/7/2003 4/2/2003 0.446 -0.8077/9/2003 0.2 -1.60910/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

N(Result) LN	I(Result) >TL(2)
-2.996	N/A
-3.844	NO
2.996	N/A
2.996	N/A
2.996	N/A
-2.996	N/A
	2.996 3.844 2.996 2.996 2.996

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-62

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison UNITS: mg/L **LRGA Boron**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.684**K factor**=** 2.523 **Statistics-Background Data** X = 1.140S = 0.780TL(1) = 3.108LL(1)=N/A **Statistics-Transformed Background** X = -0.235 S = 1.006CV(2) = -4.287**K factor**=** 2.523 TL(2) = 2.303LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.693 4/23/2002 2 0.693 2 7/15/2002 0.693 10/8/2002 0.2 -1.6090.2 1/8/2003 -1.6094/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 0.79 -0.2360.807 -0.2141/7/2003 4/2/2003 1.13 0.122 7/9/2003 1.28 0.247 10/7/2003 1.24 0.215

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data								
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
•	MW358	Downgradient	Yes	0.428	NO	-0.849	N/A		
	MW361	Downgradient	Yes	0.322	NO	-1.133	N/A		
	MW364	Downgradient	Yes	0.0112	NO	-4.492	N/A		
	MW367	Downgradient	Yes	0.053	NO	-2.937	N/A		
	MW370	Upgradient	Yes	0.0285	NO	-3.558	N/A		
	MW373	Upgradient	Yes	1.18	NO	0.166	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 0.000 4/23/2002 1 0.000 7/15/2002 1 0.000 10/8/2002 1 0.000 1 1/8/2003 0.000 4/3/2003 1 0.000 7/9/2003 1 0.000 10/6/2003 1 0.000 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.000 1/7/2003 0.0004/2/2003 1 0.000 7/9/2003 1 0.000 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.459	NO	-0.779	N/A
MW361	Downgradient	Yes	0.429	NO	-0.846	N/A
MW364	Downgradient	Yes	0.412	NO	-0.887	N/A
MW367	Downgradient	Yes	0.467	NO	-0.761	N/A
MW370	Upgradient	Yes	0.43	NO	-0.844	N/A
MW373	Upgradient	Yes	0.58	NO	-0.545	N/A
NI/A D	1, 11, 2011	T D.	1 ' 11		1 4 11 1 41	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-64

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 43.413 **S**= 13.444 **CV(1)**= 0.310

K factor=** 2.523 **TL(1)=** 77.331

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.723 S = 0.323 CV(2) = 0.087

K factor=** 2.523

TL(2)= 4.539

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 34.8 3.550 4/23/2002 43.4 3.770 7/15/2002 33.2 3.503 10/8/2002 29.2 3.374 1/8/2003 31.3 3.444 4/3/2003 32.4 3.478 7/9/2003 22.9 3.131 10/6/2003 28 3.332 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 61.9 4.126 4/23/2002 59.2 4.081 7/16/2002 47.6 3.863 10/8/2002 46.1 3.831 49.2 3.896 1/7/2003 4/2/2003 57.8 4.057 7/9/2003 52.7 3.965

64.9

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	32.1	NO	3.469	N/A
MW361	Downgradient	Yes	30.2	NO	3.408	N/A
MW364	Downgradient	Yes	29.2	NO	3.374	N/A
MW367	Downgradient	Yes	31.6	NO	3.453	N/A
MW370	Upgradient	Yes	28.5	NO	3.350	N/A
MW373	Upgradient	Yes	53.2	NO	3.974	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.173

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-65

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 41.938 **S**= 24.732 **CV(1)**= 0.590

K factor**= 2.523

TL(1)= 104.336 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 3.658 **S**= 0.339

CV(2) = 0.093

K factor=** 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	35	3.555
4/23/2002	134	4.898
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	` ´
Date Collected 3/18/2002	Result 35	3.555
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	32.7	NO	3.487	N/A
MW361	Downgradient	Yes	26.7	NO	3.285	N/A
MW364	Downgradient	Yes	10.7	NO	2.370	N/A
MW367	Downgradient	Yes	18.7	NO	2.929	N/A
MW370	Upgradient	No	20	N/A	2.996	N/A
MW373	Upgradient	Yes	24.7	NO	3.207	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 45.919 **S**= 7.524

CV(1)=0.164 **K factor****= 2.523

TL(1)= 64.901

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.814 **S**= 0.165

CV(2) = 0.043

K factor=** 2.523

TL(2)= 4.231

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/15/2002 4.016 55.5 10/8/2002 53.6 3.982 1/8/2003 52.9 3.968 4/3/2003 53.6 3.982 7/9/2003 51.9 3.949 10/6/2003 53 3.970 1/7/2004 53 3.970 4/7/2004 51.6 3.944 Well Number: MW373 Date Collected LN(Result) Result 7/16/2002 40.6 3.704 10/8/2002 38.8 3.658 1/7/2003 39 3.664 4/2/2003 38.4 3.648 7/9/2003 38.1 3.640 10/7/2003 38 3.638 1/6/2004 37.9 3.635 4/7/2004 38.8 3.658

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	38.9	NO	3.661	N/A
MW361	Downgradient	Yes	34.7	NO	3.547	N/A
MW364	Downgradient	Yes	33.4	NO	3.509	N/A
MW367	Downgradient	Yes	39.5	NO	3.676	N/A
MW370	Upgradient	Yes	35.6	NO	3.572	N/A
MW373	Upgradient	Yes	43.1	NO	3.764	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-67

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.027 S = 0.032 CV(1) = 1.165 K factor** = 2.523
 TL(1) = 0.108 LL(1) = N/A

 Statistics-Transformed Background
 X = -4.058 S = 1.011 CV(2) = -0.249 K factor** = 2.523
 TL(2) = -1.507 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.0174 -4.051 0.0105 1/8/2003 -4.556 4/3/2003 0.00931 -4.6777/9/2003 0.137 -1.988 10/6/2003 0.0463 -3.073Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/23/2002 0.034 -3.381 0.025 7/16/2002 -3.68910/8/2002 0.00411 -5.494 0.00344-5.672 1/7/2003 -5.605 4/2/2003 0.00368 7/9/2003 0.0405 -3.2060.00843 -4.776 10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Į	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW358	Downgradient	Yes	0.00275	N/A	-5.896	NO
	MW361	Downgradient	No	0.001	N/A	-6.908	N/A
	MW364	Downgradient	No	0.001	N/A	-6.908	N/A
	MW367	Downgradient	Yes	0.00045	5 N/A	-7.695	NO
	MW370	Upgradient	Yes	0.00041	N/A	-7.799	NO
	MW373	Upgradient	No	0.001	N/A	-6.908	N/A
	27/4 7	1. 11 10 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 608.719 S = 156.157 CV(1) = 0.257

K factor=** 2.523

TL(1)= 1002.702 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor=** 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	` '
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	495	NO	6.205	N/A
MW361	Downgradient	Yes	462	NO	6.136	N/A
MW364	Downgradient	Yes	467	NO	6.146	N/A
MW367	Downgradient	Yes	472	NO	6.157	N/A
MW370	Upgradient	Yes	445	NO	6.098	N/A
MW373	Upgradient	Yes	662	NO	6.495	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-69

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.010 CV(1) = 0.399 K factor** = 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background Data
 X = -3.739 S = 0.308 CV(2) = -0.082 K factor** = 2.523
 TL(2) = -2.963 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.05 -2.996 10/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.9127/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.026 -3.6504/23/2002 0.025 -3.689 0.05 -2.996 7/16/2002 10/8/2002 0.02 -3.9120.02 -3.912 1/7/2003 -3.912 4/2/2003 0.02 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Į	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW358	Downgradient	Yes	0.00118	NO	-6.742	N/A
	MW361	Downgradient	Yes	0.00123	NO	-6.701	N/A
	MW364	Downgradient	Yes	0.00052	4 NO	-7.554	N/A
	MW367	Downgradient	Yes	0.00063	1 NO	-7.368	N/A
	MW370	Upgradient	Yes	0.00066	1 NO	-7.322	N/A
	MW373	Upgradient	Yes	0.00049	8 NO	-7.605	N/A
	3.7/A D	1 11 10 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-70

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.387 S = 1.153

CV(1)=0.831

K factor=** 2.523

TL(1)= 4.295

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.115 S = 1.207

CV(2) = -10.514

K factor=** 2.523

TL(2) = 2.930

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/18/2002	Result 3.04	1.112
Date Collected 3/18/2002 4/23/2002	Result 3.04 0.03	1.112 -3.507
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 3.04 0.03 0.23	1.112 -3.507 -1.470
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.04 0.03 0.23 0.86	1.112 -3.507 -1.470 -0.151
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.04 0.03 0.23 0.86 0.21	1.112 -3.507 -1.470 -0.151 -1.561

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.25	NO	0.223	N/A
MW361	Downgradient	Yes	3.51	NO	1.256	N/A
MW364	Downgradient	Yes	3.9	NO	1.361	N/A
MW367	Downgradient	Yes	1.81	NO	0.593	N/A
MW370	Upgradient	Yes	3.18	NO	1.157	N/A
MW373	Upgradient	Yes	2.78	NO	1.022	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-71

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 356.188 S = 106.752 CV(1) = 0.300

K factor=** 2.523

TL(1)= 625.523 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor=** 2.523

TL(2)= 6.616

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.057
Date Collected	Result	
Date Collected 3/18/2002	Result 427	6.057
Date Collected 3/18/2002 4/23/2002	Result 427 507	6.057 6.229
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427 507 464	6.057 6.229 6.140
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427 507 464 408	6.057 6.229 6.140 6.011
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427 507 464 408 404	6.057 6.229 6.140 6.011 6.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	274	NO	5.613	N/A
MW361	Downgradient	Yes	286	NO	5.656	N/A
MW364	Downgradient	Yes	266	NO	5.583	N/A
MW367	Downgradient	Yes	280	NO	5.635	N/A
MW370	Upgradient	Yes	236	NO	5.464	N/A
MW373	Upgradient	Yes	386	NO	5.956	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-72

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 9.230
 S= 8.841
 CV(1)= 0.958
 K factor**= 2.523
 TL(1)= 31.535
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.942
 S= 0.713
 CV(2)= 0.367
 K factor**= 2.523
 TL(2)= 3.740
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 7/15/2002 1.258 3.52 10/8/2002 7.45 2.008 7.04 1/8/2003 1.952 4/3/2003 4.64 1.535 7/9/2003 15.8 2.760 10/6/2003 6.49 1.870 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 7/16/2002 10.7 2.370 10/8/2002 3.75 1.322 1/7/2003 1.353 3.87 4/2/2003 3.5 1.253 7/9/2003 7.72 2.044 10/7/2003 2.93 1.075

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.31	NO	0.270	N/A
MW361	Downgradient	Yes	0.0998	NO	-2.305	N/A
MW364	Downgradient	No	0.1	N/A	-2.303	N/A
MW367	Downgradient	Yes	0.735	NO	-0.308	N/A
MW370	Upgradient	No	0.1	N/A	-2.303	N/A
MW373	Upgradient	Yes	0.0668	NO	-2.706	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-73

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.544 **S**= 5.911 **CV(1)**= 0.337

K factor=** 2.523

TL(1)= 32.458

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.810 **S**= 0.343

CV(2)=0.122

K factor=** 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 12.1 2.493 4/23/2002 15.1 2.715 7/15/2002 12.4 2.518 10/8/2002 12.2 2.501 1/8/2003 11.5 2.442 4/3/2003 12.3 2.510 7/9/2003 10 2.303 10/6/2003 12.1 2.493 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 24.8 3.211 4/23/2002 22.7 3.122 7/16/2002 18.8 2.934 10/8/2002 21.1 3.049 19.9 2.991 1/7/2003 4/2/2003 25.5 3.239 7/9/2003 23.3 3.148 10/7/2003 26.9 3.292

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	14.7	NO	2.688	N/A
MW361	Downgradient	Yes	13.2	NO	2.580	N/A
MW364	Downgradient	Yes	13.2	NO	2.580	N/A
MW367	Downgradient	Yes	12.6	NO	2.534	N/A
MW370	Upgradient	Yes	12.7	NO	2.542	N/A
MW373	Upgradient	Yes	20.6	NO	3.025	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-74

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.624**K factor**=** 2.523 **Statistics-Background Data** X = 1.080S = 0.674TL(1) = 2.780LL(1)=N/A **Statistics-Transformed Background** X = -0.114 S = 0.658CV(2) = -5.762**K factor**=** 2.523 TL(2) = 1.547LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.244 -1.411 0.599 4/23/2002 1.82 7/15/2002 0.199 1.22 10/8/2002 0.988 -0.012 -0.3161/8/2003 0.729 4/3/2003 0.637 -0.4517/9/2003 2.51 0.920 0.049 10/6/2003 1.05 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.355 -1.036 4/23/2002 2.16 0.770 0.329 7/16/2002 1.39 10/8/2002 0.717 -0.333 0.587 -0.5331/7/2003 4/2/2003 0.545 -0.6077/9/2003 1.76 0.565 10/7/2003 0.57 -0.562

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.114	NO	-2.172	N/A
MW361	Downgradient	Yes	0.0505	NO	-2.986	N/A
MW364	Downgradient	Yes	0.00823	NO	-4.800	N/A
MW367	Downgradient	Yes	0.0649	NO	-2.735	N/A
MW370	Upgradient	Yes	0.00452	NO	-5.399	N/A
MW373	Upgradient	Yes	0.00864	NO	-4.751	N/A
NI/A D	1 11 10 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-75

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 0.010 **S**= 0.012

CV(1)=1.198

K factor=** 2.523

TL(1)= 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X= -5.693 **S**= 1.604

1.604 **CV(2)=**-0.282

MW370 Upgradient

MW373

Upgradient

No

No

K factor=** 2.523

TL(2) = -1.647

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.00113-6.786 0.001 1/8/2003 -6.9084/3/2003 0.001 -6.9087/9/2003 0.001 -6.908 10/6/2003 0.001 -6.908Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/23/2002 0.025 -3.689 7/16/2002 0.025 -3.68910/8/2002 0.001 -6.908 0.001 -6.908 1/7/2003 4/2/2003 0.001 -6.9087/9/2003 0.001 -6.90810/7/2003 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

-7.601

-7.601

N/A

N/A

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	0.00021	3 N/A	-8.454	NO
	MW361	Downgradient	No	0.0005	N/A	-7.601	N/A
	MW364	Downgradient	Yes	0.00038	2 N/A	-7.870	NO
	MW367	Downgradient	No	0.0005	N/A	-7.601	N/A

0.0005

0.0005

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

N/A

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-76

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.022 CV(1) = 0.901 K factor** = 2.523
 TL(1) = 0.078 LL(1) = N/A

 Statistics-Transformed Background
 X = -4.239 S = 1.087 CV(2) = -0.256 K factor** = 2.523
 TL(2) = -1.497 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.05 -2.996 4/23/2002 0.05 -2.9967/15/2002 0.05 -2.99610/8/2002 0.005 -5.298 -5.298 0.005 1/8/2003 4/3/2003 0.005 -5.2987/9/2003 0.0264 -3.634 10/6/2003 0.00971 -4.635Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.05 -2.996 4/23/2002 0.05 -2.996 -2.996 7/16/2002 0.05 10/8/2002 0.005 -5.298 0.005-5.298 1/7/2003 -5.298 4/2/2003 0.005 7/9/2003 0.0112 -4.492 0.005 -5.298 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0131	NO	-4.335	N/A
MW361	Downgradient	No	0.002	N/A	-6.215	N/A
MW364	Downgradient	Yes	0.00084	8 NO	-7.073	N/A
MW367	Downgradient	Yes	0.00132	NO	-6.630	N/A
MW370	Upgradient	Yes	0.00079	7 NO	-7.135	N/A
MW373	Upgradient	No	0.002	N/A	-6.215	N/A
NI/A D	1, 11, 2011	T D	1 1 1 1	. 1 .	1 / 11 /	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-77

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 46.688 **S**= 60.986 **CV(1)**= 1.306

K factor=** 2.523

TL(1)= 200.555 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 3.829 **S**= 1.151

CV(2) = 0.301

K factor=** 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.942
Date Collected	Result	` '
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	223	N/A	5.407	YES
MW361	Downgradient	Yes	403	N/A	5.999	YES
MW364	Downgradient	Yes	434	N/A	6.073	YES
MW367	Downgradient	Yes	409	N/A	6.014	YES
MW370	Upgradient	Yes	368	N/A	5.908	YES
MW373	Upgradient	Yes	350	N/A	5.858	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW361

MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

MW370 Upgradient

MW373 Upgradient

Yes

Yes

6.1

6.18

 Statistics-Background Data
 X = 6.283 S = 0.159 CV(1) = 0.025 K factor**= 2.904
 TL(1) = 6.745 LL(1) = 5.8202

 Statistics-Transformed Background Data
 X = 1.837 X = 0.025 X = 0.025</th

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 6.3 1.841 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 6.35 1.848 1/7/2003 4/2/2003 6.14 1.815 7/9/2003 1.808 6.1 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1.808

1.821

N/A

N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.08	NO	1.805	N/A
MW361	Downgradien	t Yes	5.87	NO	1.770	N/A
MW364	Downgradien	t Yes	6.13	NO	1.813	N/A
MW367	Downgradien	t Yes	6.11	NO	1.810	N/A

NO

NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-79

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison **Potassium** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.185**K factor**=** 2.523 TL(1) = 4.139**Statistics-Background Data** X = 2.823S = 0.522LL(1)=N/A **Statistics-Transformed Background** X = 1.024S = 0.167CV(2) = 0.163**K factor****= 2.523 TL(2) = 1.445LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.22 1.169 4/23/2002 3.43 1.233 1.092 7/15/2002 2.98 10/8/2002 2.46 0.900 2.41 1/8/2003 0.880 4/3/2003 2.43 0.888 7/9/2003 2.44 0.892 10/6/2003 2.48 0.908 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 4.34 1.468 4/23/2002 3.04 1.112 1.075 7/16/2002 2.93 10/8/2002 2.3 0.833 2.45 0.896 1/7/2003 4/2/2003 2.7 0.993 7/9/2003 0.986 2.68 10/7/2003 2.88 1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.37	NO	0.863	N/A
MW361	Downgradient	Yes	1.85	NO	0.615	N/A
MW364	Downgradient	Yes	2.03	NO	0.708	N/A
MW367	Downgradient	Yes	2.74	NO	1.008	N/A
MW370	Upgradient	Yes	2.56	NO	0.940	N/A
MW373	Upgradient	Yes	2.39	NO	0.871	N/A
NI/A D	1. 11 .10 1 3	T 15			1 . 111	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-80

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 2.158 S = 5.739 CV(1) = 2.660 K factor** = 2.523
 TL(1) = 16.637 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.670 X = -

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/15/2002 10.1 2.313 10/8/2002 -0.825#Func! 0.415 -0.879 1/8/2003 10/6/2003 0.52 -0.6541.03 0.030 1/7/2004 4/7/2004 0.434 -0.8357/13/2004 0.532 -0.631 10/7/2004 0.299 -1.207Well Number: MW373 Date Collected Result LN(Result) 7/16/2002 21.5 3.068 10/8/2002 0.0327 -3.420-0.844#Func! 1/7/2003 10/7/2003 0 #Func! 0.177-1.732 1/6/2004 -0.233 4/7/2004 0.792 7/14/2004 0.327 -1.118 10/7/2004 0.033 -3.411

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.531	N/A	-0.633	NO
MW361	Downgradient	No	0.295	N/A	-1.221	N/A
MW364	Downgradient	No	0.0741	N/A	-2.602	N/A
MW367	Downgradient	Yes	1.35	N/A	0.300	NO
MW370	Upgradient	No	0.166	N/A	-1.796	N/A
MW373	Upgradient	No	-0.0404	N/A	#Error	N/A
37/4 5	1. 11 .10 1 3					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 51.544 **S**= 15.227 **CV(1)**= 0.295

K factor=** 2.523 **TL(1)=** 89.962

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.906 S = 0.272 CV(2) = 0.070

K factor**= 2.523

TL(2)= 4.592

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.770
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	42.4	NO	3.747	N/A		
MW361	Downgradient	Yes	43.6	NO	3.775	N/A		
MW364	Downgradient	Yes	42.6	NO	3.752	N/A		
MW367	Downgradient	Yes	36.9	NO	3.608	N/A		
MW370	Upgradient	Yes	42.1	NO	3.740	N/A		
MW373	Upgradient	Yes	47.9	NO	3.869	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison **Sulfate** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 122.381 S = 195.095 CV(1) = 1.594

K factor=** 2.523

TL(1)= 614.606 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.985 S = 1.323 CV(2) = 0.332

K factor=** 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.096
Date Collected	Result	,
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	68.1	N/A	4.221	NO	
MW361	Downgradient	Yes	62.5	N/A	4.135	NO	
MW364	Downgradient	Yes	69.8	N/A	4.246	NO	
MW367	Downgradient	Yes	58.3	N/A	4.066	NO	
MW370	Upgradient	Yes	21.1	N/A	3.049	NO	
MW373	Upgradient	Yes	89.5	N/A	4.494	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-83

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 7.655
 S= 13.274 CV(1)=1.734
 K factor**= 2.523
 TL(1)= 41.146
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.946
 S= 0.939 CV(2)=0.483
 K factor**= 2.523
 TL(2)= 3.833
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 10.8 2.380 4/23/2002 8.53 2.144 7/15/2002 5.09 1.627 10/8/2002 4.78 1.564 1/8/2003 -5.12#Func! 4/3/2003 5.11 1.631 7/9/2003 4.25 1.447 10/6/2003 6.54 1.878 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 16.5 2.803 4/23/2002 3.49 1.250 7/16/2002 1.42 0.351 10/8/2002 -6.06 #Func! #Func! 1/7/2003 -8.41 4/2/2003 26.3 3.270 7/9/2003 3.06 1.118 10/7/2003 46.2 3.833

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	42.9	N/A	3.759	NO	
MW361	Downgradient	Yes	39.9	N/A	3.686	NO	
MW364	Downgradient	Yes	42.1	N/A	3.740	NO	
MW367	Downgradient	Yes	60.2	N/A	4.098	YES	
MW370	Upgradient	Yes	107	N/A	4.673	YES	
MW373	Upgradient	Yes	30.2	N/A	3.408	NO	
NT/A D	1, 11, 2011	T D.	1 . 11	. 1 .	1 . 11	1 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW367 MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

 D1-84

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.169 S = 12.072 CV(1) = 1.957 K factor** = 2.523 TL(1) = 36.626 LL(1) = N/A

Statistics-Transformed Background Data

X= 1.069 **S**= 1.014 **CV(2)**= 0.948

K factor=** 2.523

TL(2)= 3.626

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.2 0.182 4/23/2002 4.3 1.459 7/15/2002 0.956 2.6 10/8/2002 2.3 0.8331/8/2003 3 1.099 4/3/2003 1.2 0.182 7/9/2003 2.6 0.956 10/6/2003 1.7 0.531 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1.1 0.095 4/23/2002 17.5 2.862 49 7/16/2002 3.892 10/8/2002 2.9 1.065 1/7/2003 3.9 1.361 4/2/2003 2.5 0.916 7/9/2003 1.7 0.531 10/7/2003 1.2 0.182

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.996	N/A	-0.004	NO	
MW361	Downgradient	Yes	0.851	N/A	-0.161	NO	
MW364	Downgradient	Yes	0.798	N/A	-0.226	NO	
MW367	Downgradient	Yes	0.677	N/A	-0.390	NO	
MW370	Upgradient	Yes	1.07	N/A	0.068	NO	
MW373	Upgradient	Yes	1.09	N/A	0.086	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-85

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison **Total Organic Halides (TOX)** UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

K factor=** 2.523

TL(1)= 277.798 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.971 S = 0.950 CV(2) = 0.239

K factor=** 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	` '
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	5.32	NO	1.671	N/A	
MW361	Downgradient	Yes	11.5	NO	2.442	N/A	
MW364	Downgradient	Yes	9.5	NO	2.251	N/A	
MW367	Downgradient	Yes	8.24	NO	2.109	N/A	
MW370	Upgradient	No	10	N/A	2.303	N/A	
MW373	Upgradient	Yes	13.2	NO	2.580	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 12.188
 S= 6.950
 CV(1)=0.570
 K factor**= 2.523
 TL(1)= 29.721
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.305
 S= 0.687
 CV(2)=0.298
 K factor**= 2.523
 TL(2)= 4.039
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 19 2.944 4/23/2002 17 2.833 7/15/2002 15 2.708 10/8/2002 18 2.890 17 1/8/2003 2.833 4/3/2003 18 2.890 7/9/2003 15 2.708 10/6/2003 16 2.773 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 7/16/2002 3 1.099 10/8/2002 4 1.386 6 1.792 1/7/2003 4/2/2003 5 1.609 7/9/2003 1.792 6 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Ŀ	Current Quarter Data								
V	Vell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
N	MW358	Downgradient	Yes	6.02	NO	1.795	N/A		
N	MW361	Downgradient	Yes	14.7	NO	2.688	N/A		
N	MW364	Downgradient	Yes	6.93	NO	1.936	N/A		
N	MW367	Downgradient	Yes	5.92	NO	1.778	N/A		
N	MW370	Upgradient	Yes	0.6	N/A	-0.511	N/A		
ľ	MW373	Upgradient	Yes	7.71	NO	2.043	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.008CV(1) = 0.324**K factor**=** 2.523 **Statistics-Background Data** X = 0.024TL(1) = 0.044LL(1)=N/A **Statistics-Transformed Background** X = -3.749 S = 0.265

Data

CV(2) = -0.071

K factor=** 2.523 TL(2) = -3.080

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.035 -3.352 4/23/2002 0.033 -3.4110.025 -3.689 7/15/2002 10/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.9127/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 0.048 -3.037 4/23/2002 0.025 -3.689 0.025 7/16/2002 -3.68910/8/2002 0.02 -3.912 0.02 -3.912 1/7/2003 -3.912 4/2/2003 0.02 7/9/2003 0.02 -3.912

0.02

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Downgradient	No	0.01	N/A	-4.605	N/A		
Downgradient	No	0.01	N/A	-4.605	N/A		
Downgradient	No	0.01	N/A	-4.605	N/A		
Downgradient	No	0.01	N/A	-4.605	N/A		
Upgradient	Yes	0.00355	5 NO	-5.641	N/A		
Upgradient	Yes	0.00376	5 NO	-5.583	N/A		
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient No Downgradient No Downgradient No Downgradient No Upgradient Yes	Gradient Detected? Result Downgradient No 0.01 Downgradient No 0.01 Downgradient No 0.01 Downgradient No 0.01 Upgradient Yes 0.00355	GradientDetected?ResultResult >TL(1)?DowngradientNo0.01N/ADowngradientNo0.01N/ADowngradientNo0.01N/ADowngradientNo0.01N/AUpgradientYes0.00355NO	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientNo0.01N/A-4.605DowngradientNo0.01N/A-4.605DowngradientNo0.01N/A-4.605DowngradientNo0.01N/A-4.605UpgradientYes0.00355NO-5.641		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-88

C-746-U Second Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.673**K factor**=** 2.523 **Statistics-Background Data** X = 0.055S = 0.037TL(1) = 0.147LL(1)=N/A **Statistics-Transformed Background** X = -3.131 S = 0.691CV(2) = -0.221**K factor****= 2.523 TL(2) = -1.388LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.1 -2.3034/23/2002 0.1 -2.3037/15/2002 0.1 -2.30310/8/2002 0.025 -3.6890.035 1/8/2003 -3.352 4/3/2003 0.035 -3.352 7/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.1 -2.303 4/23/2002 0.1 -2.303 7/16/2002 0.1 -2.30310/8/2002 0.025 -3.6890.035-3.352 1/7/2003 4/2/2003 0.035 -3.352 7/9/2003 0.0234 -3.755 0.02 -3.912 10/7/2003

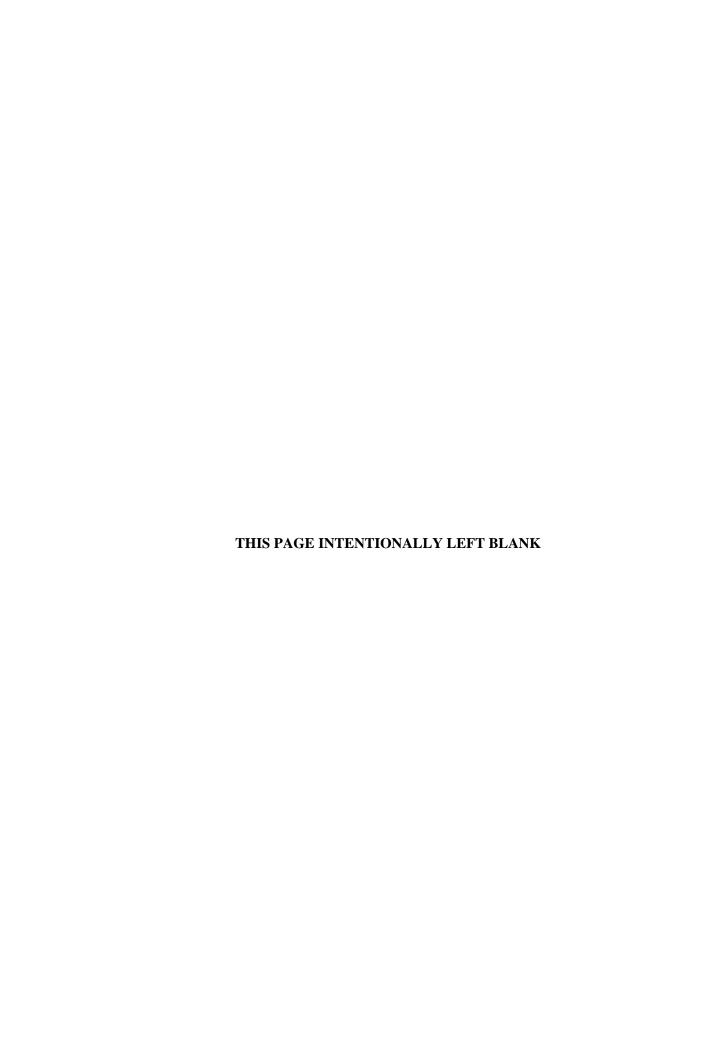
Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Downgradient	Yes	0.00745	NO	-4.900	N/A		
Downgradient	Yes	0.00489	NO	-5.321	N/A		
Downgradient	Yes	0.0494	NO	-3.008	N/A		
Downgradient	Yes	0.00502	NO	-5.294	N/A		
Upgradient	Yes	0.00456	NO NO	-5.390	N/A		
Upgradient	Yes	0.006	NO	-5.116	N/A		
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 0.00745 Downgradient Yes 0.00489 Downgradient Yes 0.0494 Downgradient Yes 0.00502 Upgradient Yes 0.00456	Gradient Detected? Result Result >TL(1)? Downgradient Yes 0.00745 NO Downgradient Yes 0.00489 NO Downgradient Yes 0.0494 NO Downgradient Yes 0.00502 NO Upgradient Yes 0.00456 NO	Gradient Detected? Result Result >TL(1)? LN(Result) Downgradient Yes 0.00745 NO -4.900 Downgradient Yes 0.00489 NO -5.321 Downgradient Yes 0.0494 NO -3.008 Downgradient Yes 0.00502 NO -5.294 Upgradient Yes 0.00456 NO -5.390		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.


Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-89

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-U Second Quarter 2018 Statistical Analysis Dissolved Oxygen UNITS: mg/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 2.589 S = 1.261 CV(1) = 0.487 K factor**= 2.523 TL(1) = 5.771 LL(1) = N/A Statistics-Transformed Background X = 0.835 S = 0.506 CV(2) = 0.605 K factor**= 2.523 TL(2) = 2.111 LL(2) = N/A Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 4/7/2016 4.79 1.567 7/18/2016 3.65 1.295 10/19/2016 2.2 0.788 1/18/2017 2.41 0.880 4/18/2017 3.43 1.233 7/20/2017 3.51 1.256 10/3/2017 1.82 0.599 1/22/2018 1.030 2.8 Well Number: MW374 Date Collected Result LN(Result) 4/7/2016 5.01 1.611 7/18/2016 1 0.000 10/19/2016 3.39 1.221 0.358 1/19/2017 1.43 4/18/2017 1.52 0.419 7/20/2017 1.95 0.668 10/3/2017 1.12 0.113

1.39

1/22/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	4.39	NO	1.479	N/A
MW362	Downgradien	t Yes	6.57	YES	1.883	N/A
MW365	Downgradien	t Yes	5.82	YES	1.761	N/A
MW371	Upgradient	Yes	7.85	YES	2.061	N/A

Conclusion of Statistical Analysis on Current Data

0.329

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW362 MW365 MW371

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-3

C-746-U Second Quarter 2018 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 281.438 **S**= 88.975 **CV(1)**= 0.316

K factor=** 2.523

TL(1)= 505.921 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.594 S = 0.313 CV(2) = 0.056

K factor**= 2.523

TL(2)= 6.382

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 4/7/2016 295 5.687 7/18/2016 441 6.089 10/19/2016 370 5.914 1/18/2017 410 6.016 4/18/2017 257 5.549 7/20/2017 364 5.897 10/3/2017 375 5.927 1/22/2018 339 5.826 Well Number: MW374 Date Collected Result LN(Result) 4/7/2016 250 5.521 7/18/2016 193 5.263 10/19/2016 241 5.485 5.231 1/19/2017 187 4/18/2017 193 5.263 7/20/2017 188 5.236 10/3/2017 194 5.268

206

1/22/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	375	NO	5.927	N/A
MW362	Downgradien	t Yes	340	NO	5.829	N/A
MW365	Downgradien	t Yes	425	NO	6.052	N/A
MW368	Downgradien	t Yes	389	NO	5.964	N/A
MW371	Upgradient	Yes	365	NO	5.900	N/A
MW374	Upgradient	Yes	331	NO	5.802	N/A
MW375	Sidegradient	Yes	344	NO	5.841	N/A

Conclusion of Statistical Analysis on Current Data

5.328

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.215 **S**= 5.797

CV(1)=0.567

K factor**= 2.523

TL(1)= 24.840

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.204

 $S = 0.484 \quad CV(2) = 0.220$

K factor**= 2.523

TL(2)= 3.426

LL(2)=N/A

L(2)

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
4/7/2016	10.9	2.389
7/18/2016	27.6	3.318
10/19/2016	14.8	2.695
1/18/2017	13.1	2.573
4/18/2017	13.9	2.632
7/20/2017	14	2.639
10/3/2017	10	2.303
1/22/2018	11	2.398
Well Number:	MW374	

1/22/2018	11	2.398
Well Number:	MW374	
Date Collected	Result	LN(Result)
4/7/2016	5.74	1.747
7/18/2016	6.25	1.833
10/19/2016	6.18	1.821
1/19/2017	4.83	1.575
4/18/2017	5.71	1.742
7/20/2017	6.31	1.842
10/3/2017	6.78	1.914
1/22/2018	6.34	1.847

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL
MW359	Downgradien	t Yes	50.9	YES	3.930	N/A
MW362	Downgradien	t Yes	30.6	YES	3.421	N/A
MW365	Downgradien	t Yes	65.5	YES	4.182	N/A
MW368	Downgradien	t Yes	27.7	YES	3.321	N/A
MW371	Upgradient	Yes	91.6	YES	4.517	N/A
MW375	Sidegradient	Yes	25.5	YES	3.239	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances	
MW359	
MW362	
MW365	
MW368	
MW371	
MW375	

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Beta activity UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 27.531 S = 31.056 CV(1) = 1.128

K factor=** 2.523

TL(1)= 105.885 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 2.936

S= 0.851 CV(2)=0.290 **K** factor**= 2.523

TL(2) = 5.083

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 4/7/2016 11.3 2.425 7/14/2016 22.3 3.105 10/19/2016 57 4.043 1/18/2017 8.82 2.177 4/18/2017 9.12 2.210 7/20/2017 26.1 3.262 10/3/2017 40.7 3.706 1/22/2018 32 3.466

Well Number:	MW372	
Date Collected	Result	LN(Result)
4/7/2016	4.15	1.423
7/18/2016	21.5	3.068
10/19/2016	9.61	2.263
1/19/2017	14.2	2.653
4/18/2017	8.69	2.162
7/20/2017	21.3	3.059
10/3/2017	132	4.883
1/22/2018	21.7	3.077

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Upgradient	Yes	102	N/A	4.625	NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-6

C-746-U Second Quarter 2018 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 310.250 S = 53.675 CV(1) = 0.173

K factor=** 2.523

TL(1)= 445.672 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.723S = 0.172CV(2) = 0.030 **K** factor**= 2.523

TL(2) = 6.157

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 4/7/2016 302 5.710 7/14/2016 323 5.778 10/19/2016 365 5.900 1/18/2017 381 5.943 4/18/2017 271 5.602 7/20/2017 376 5.930 10/3/2017 399 5.989 1/22/2018 346 5.846

Well Number:	MW372	
Date Collected	Result	LN(Result)
4/7/2016	259	5.557
7/18/2016	248	5.513
10/19/2016	242	5.489
1/19/2017	263	5.572
4/18/2017	256	5.545
7/20/2017	300	5.704
10/3/2017	358	5.881
1/22/2018	275	5.617

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) > TL(2)
MW357	Downgradien	t Yes	399	NO	5.989	N/A
MW360	Downgradien	t Yes	340	NO	5.829	N/A
MW363	Downgradien	t Yes	437	NO	6.080	N/A
MW366	Downgradien	t Yes	258	NO	5.553	N/A
MW369	Upgradient	Yes	397	NO	5.984	N/A
MW372	Upgradient	Yes	348	NO	5.852	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-7

C-746-U Second Quarter 2018 Statistical Analysis **Technetium-99** UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 38.326 S = 47.287 CV(1) = 1.234

K factor=** 2.523

TL(1)= 157.631

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.153

S= 1.005 CV(2) = 0.319 **K** factor**= 2.523

TL(2) = 5.688

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 4/7/2016 13.4 2.595 7/14/2016 10.7 2.370 10/19/2016 83.3 4.422 1/18/2017 27 3.296 4/18/2017 9.22 2.221 7/20/2017 34.2 3.532 10/3/2017 70.8 4.260 1/22/2018 3.658 38.8

Well Number:	MW372	
Date Collected	Result	LN(Result)
4/7/2016	3.34	1.206
7/18/2016	35.4	3.567
10/19/2016	10.3	2.332
1/19/2017	24.7	3.207
4/18/2017	9.55	2.257
7/20/2017	30.2	3.408
10/3/2017	195	5.273
1/22/2018	17.3	2.851

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW369	Ungradient	Yes	142	N/A	4 956	NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-8

C-746-U Second Quarter 2018 Statistical Analysis

Current Background Comparison

Thorium-230 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.270	S = 0.475	CV(1)= 1.762	K factor**= 2.523	TL(1)= 1.469	LL(1)= N/A
Statistics-Transformed Background	X = -1.097	S = 0.977	CV(2)= -0.891	K factor**= 2.523	TL(2)= 0.191	LL(2)=N/A

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/7/2016	0.243	-1.415
7/14/2016	0.151	-1.890
10/19/2016	0.0272	-3.605
1/18/2017	-0.00581	#Func!
4/18/2017	0.679	-0.387
7/20/2017	0.459	-0.779
10/3/2017	-0.203	#Func!
1/22/2018	-0.923	#Func!
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -1.008
Date Collected	Result	
Date Collected 4/7/2016	Result 0.365	-1.008
Date Collected 4/7/2016 7/18/2016	Result 0.365 -0.025	-1.008 #Func!
Date Collected 4/7/2016 7/18/2016 10/19/2016	Result 0.365 -0.025 0.286	-1.008 #Func! -1.252
Date Collected 4/7/2016 7/18/2016 10/19/2016 1/19/2017	Result 0.365 -0.025 0.286 0.32	-1.008 #Func! -1.252 -1.139
Date Collected 4/7/2016 7/18/2016 10/19/2016 1/19/2017 4/18/2017	Result 0.365 -0.025 0.286 0.32 0.298	-1.008 #Func! -1.252 -1.139 -1.211

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

URGA

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Ouarter	Data
Current	Qual ttl	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW357	Downgradien	t Yes	2.15	N/A	0.765	YES
MW366	Downgradien	t Yes	2.8	N/A	1.030	YES

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW357 MW366

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2018 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 342.938 **S**= 60.295 **CV(1)**=0.176

K factor**= 2.523

TL(1)= 495.063 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.824 S = 0.171 CV(2) = 0.029

K factor**= 2.523

TL(2) = 6.255

LL(2)=N/A

L(2)

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 4/7/2016 318 5.762 7/18/2016 483 6.180 10/19/2016 5.996 402 1/18/2017 412 6.021 4/18/2017 278 5.628 7/20/2017 343 5.838 10/3/2017 392 5.971 1/22/2018 334 5.811 Well Number: MW373 Date Collected Result LN(Result) 4/7/2016 278 5.628 7/18/2016 337 5.820

322

279

2.60

309

347

393

10/19/2016

1/19/2017

4/18/2017

7/20/2017

10/3/2017

1/22/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW358	Downgradien	t Yes	223	NO	5.407	N/A
MW361	Downgradien	t Yes	403	NO	5.999	N/A
MW364	Downgradien	t Yes	434	NO	6.073	N/A
MW367	Downgradien	t Yes	409	NO	6.014	N/A
MW370	Upgradient	Yes	368	NO	5.908	N/A
MW373	Upgradient	Yes	350	NO	5.858	N/A

Conclusion of Statistical Analysis on Current Data

5.775

5.631

5.561

5.733

5.849

5.974

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-10

C-746-U Second Quarter 2018 Statistical Analysis **Technetium-99** UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 55.870 S = 37.129 CV(1) = 0.665

K factor=** 2.523

TL(1)= 149.546 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.778

S = 0.761CV(2) = 0.202 **K** factor**= 2.523

TL(2) = 5.698

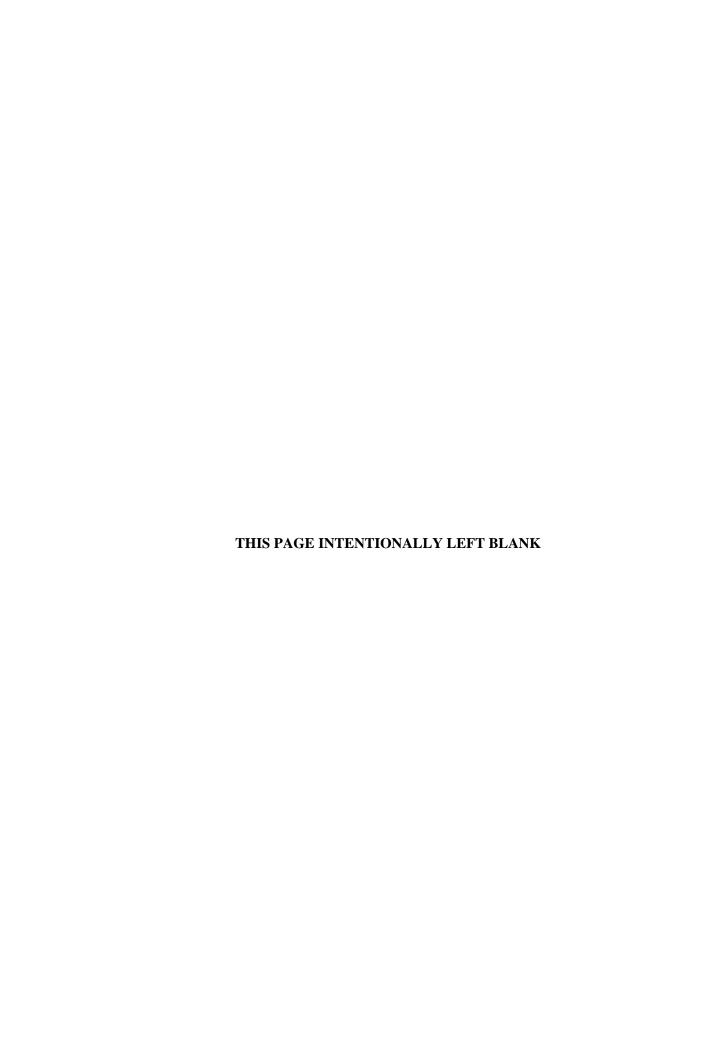
LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 4/7/2016 92 4.522 7/18/2016 93.2 4.535 10/19/2016 31.7 3.456 1/18/2017 82.8 4.416 4/18/2017 99.1 4.596 7/20/2017 120 4.787 10/3/2017 103 4.635

1/22/2018	73.9	4.303
Well Number:	MW373	
Date Collected	Result	LN(Result)
4/7/2016	31.2	3.440
7/18/2016	23.7	3.165
10/19/2016	19.9	2.991
1/19/2017	33.1	3.500
4/18/2017	26.8	3.288
7/20/2017	9.12	2.210
10/3/2017	29.6	3.388
1/22/2018	24.8	3.211

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).


Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW367	Downgradien	t Yes	60.2	NO	4.098	N/A
MW370	Upgradient	Yes	107	NO	4.673	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-11

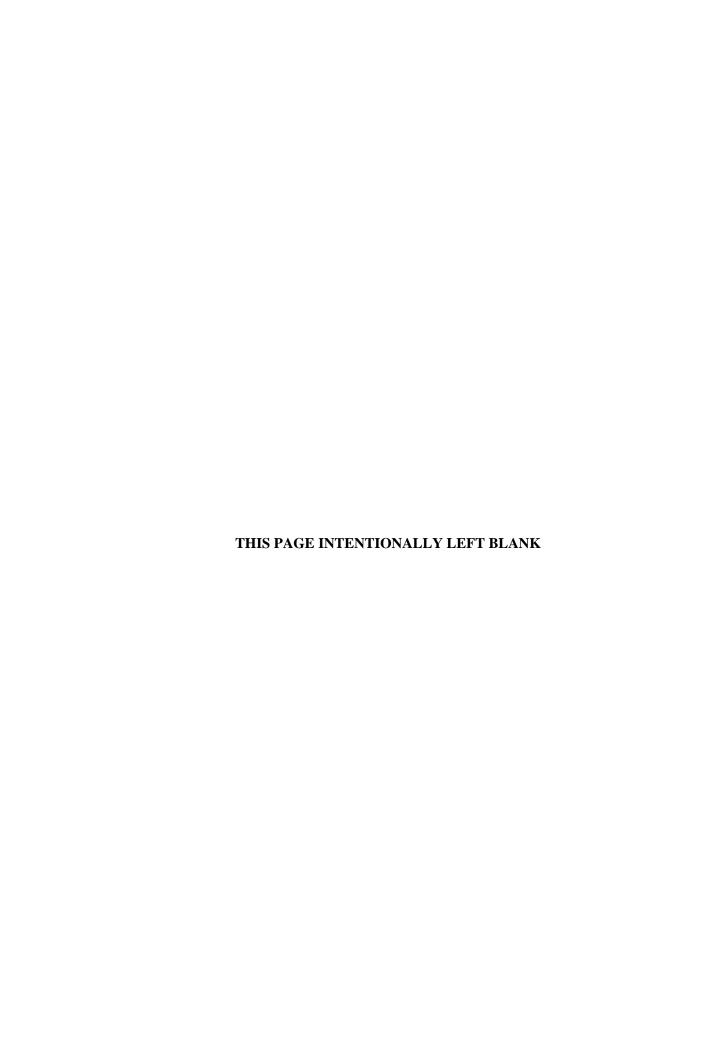
ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

July 17, 2018

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:


This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an Environmental Scientist, with a bachelor's degree in science, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the second quarter 2018 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Watson

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED—QUARTERLY, 2nd CY 2018

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2018 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on April 25, 2018. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling for laboratory analysis.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 4.72×10^{-4} ft/ft and 3.85×10^{-4} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 3.59×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for April 2018, the groundwater flow direction in the immediate area of the landfill ranges from northeastward to southeastward. While this varies from typical regional flow, the fluctuation in flow has occurred at least twice during April (2011 and 2015) over the last seven years.

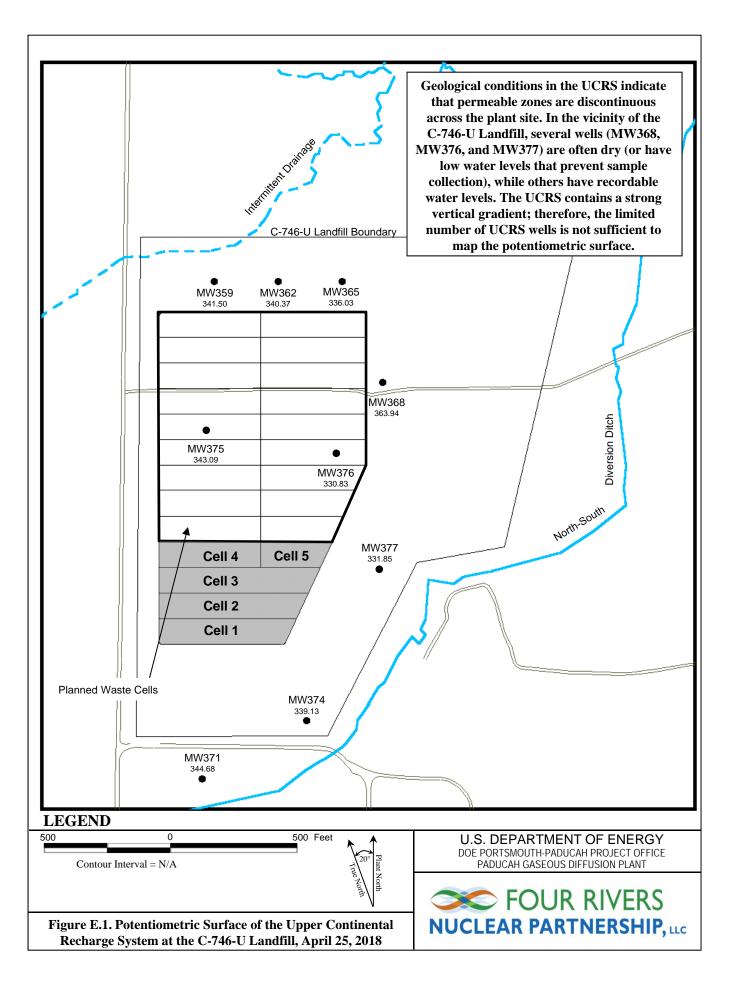


Table E.1. C-746-U Landfill Second Quarter 2018 (April) Water Levels

			C-7	46-U Landfill (A	April 2018) Water Lev	els			
							Rav	v Data	*Corre	cted Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/25/2018	10:14	MW357	URGA	368.99	30.03	-0.02	40.60	328.39	40.58	328.41
4/25/2018	10:12	MW358	LRGA	369.13	30.03	-0.02	40.74	328.39	40.72	328.41
4/25/2018	10:13	MW359	UCRS	369.11	30.03	-0.02	27.63	341.48	27.61	341.50
4/25/2018	10:17	MW360	URGA	362.30	30.03	-0.02	33.95	328.35	33.93	328.37
4/25/2018	10:19	MW361	LRGA	361.54	30.03	-0.02	33.19	328.35	33.17	328.37
4/25/2018	10:18	MW362	UCRS	362.04	30.03	-0.02	21.69	340.35	21.67	340.37
4/25/2018	10:10	MW363	URGA	368.84	30.03	-0.02	40.54	328.30	40.52	328.32
4/25/2018	10:08	MW364	LRGA	368.45	30.03	-0.02	40.26	328.19	40.24	328.21
4/25/2018	10:09	MW365	UCRS	368.37	30.03	-0.02	32.36	336.01	32.34	336.03
4/25/2018	10:04	MW366	URGA	369.27	30.03	-0.02	40.99	328.28	40.97	328.30
4/25/2018	10:06	MW367	LRGA	369.66	30.03	-0.02	41.41	328.25	41.39	328.27
4/25/2018	10:05	MW368	UCRS	369.27	30.03	-0.02	5.35	363.92	5.33	363.94
4/25/2018	9:04	MW369	URGA	364.48	30.01	0.00	36.27	328.21	36.27	328.21
4/25/2018	9:06	MW370	LRGA	365.35	30.01	0.00	37.15	328.20	37.15	328.20
4/25/2018	9:05	MW371	UCRS	364.88	30.01	0.00	20.20	344.68	20.20	344.68
4/25/2018	9:01	MW372	URGA	359.52	30.01	0.00	31.52	328.00	31.52	328.00
4/25/2018	8:59	MW373	LRGA	359.95	30.01	0.00	31.83	328.12	31.83	328.12
4/25/2018	9:00	MW374	UCRS	359.71	30.01	0.00	20.58	339.13	20.58	339.13
4/25/2018	9:55	MW375	UCRS	370.53	30.03	-0.02	27.46	343.07	27.44	343.09
4/25/2018	9:53	MW376	UCRS	370.61	30.03	-0.02	39.80	330.81	39.78	330.83
4/25/2018	9:51	MW377	UCRS	365.92	30.01	0.00	34.07	331.85	34.07	331.85

Initial Barometric Pressure

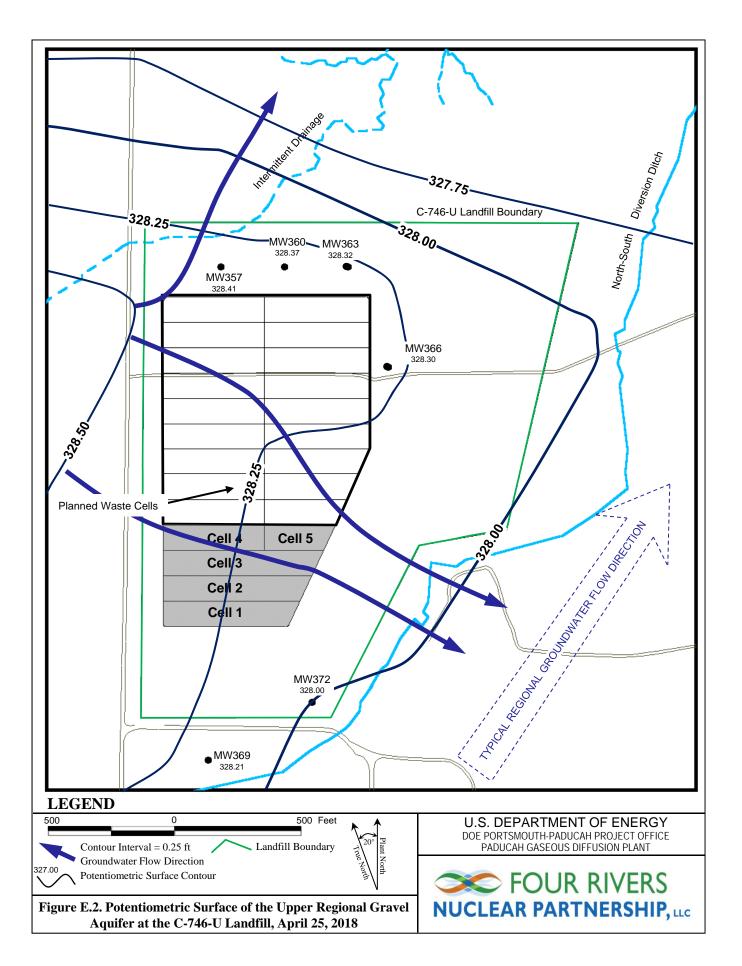
Pressure

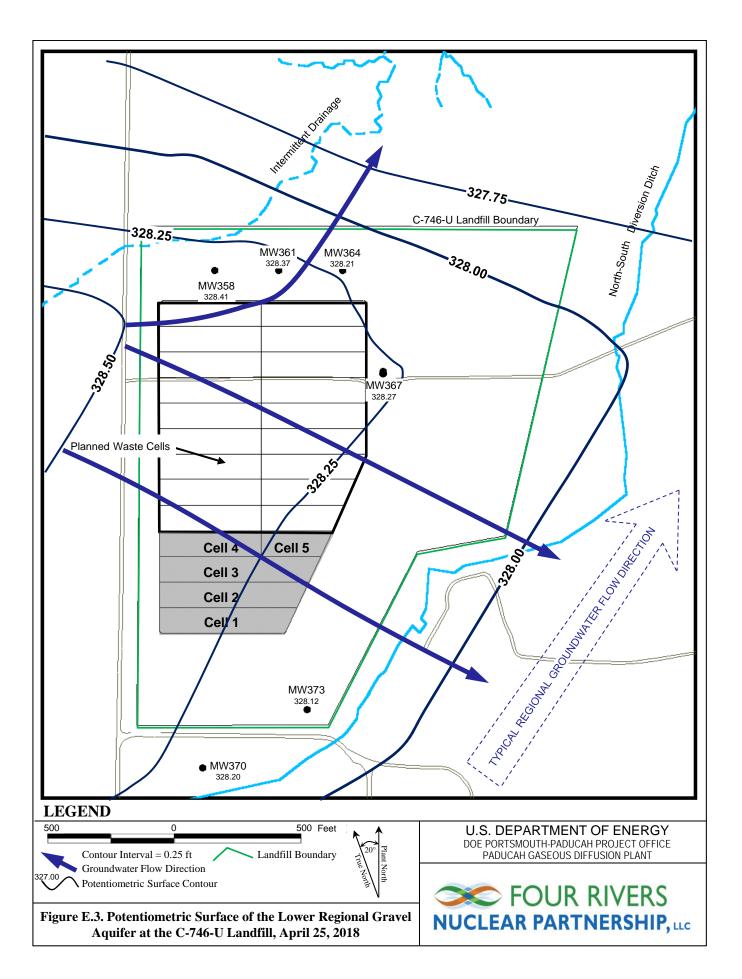
30.01

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

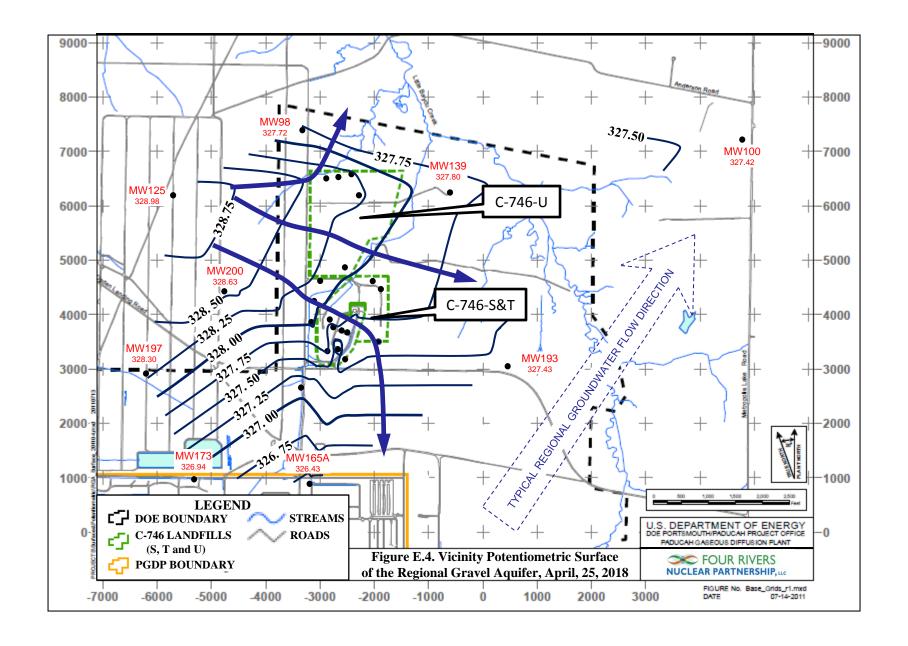
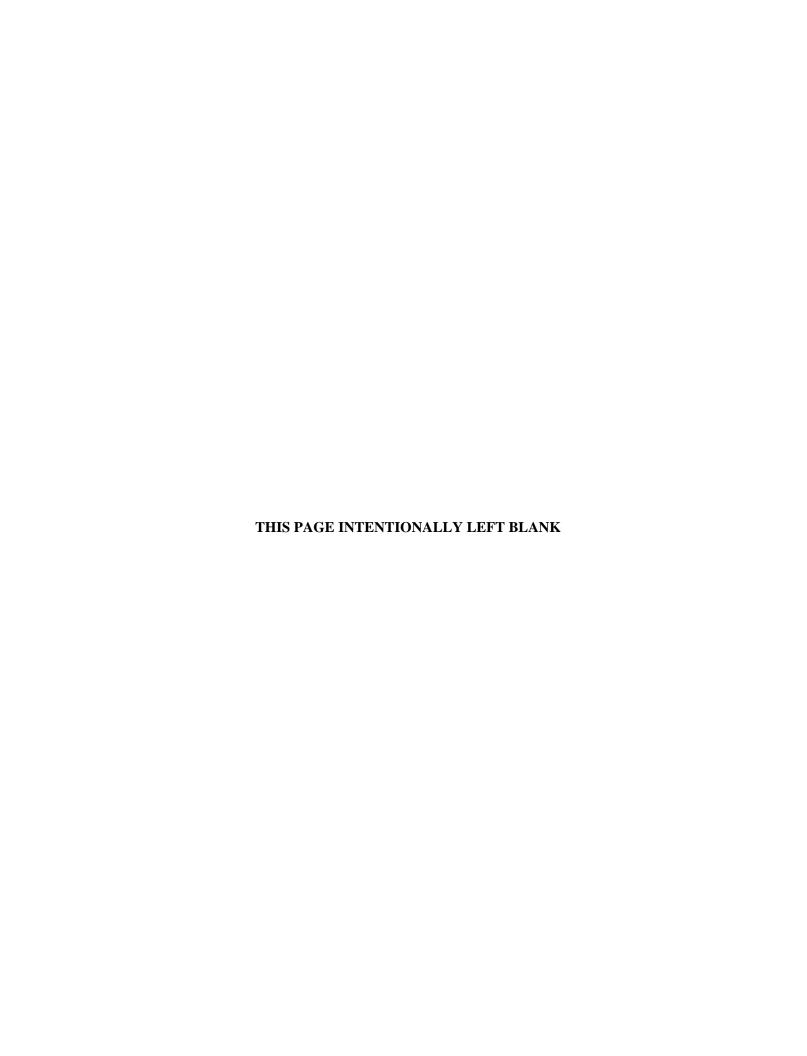



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	4.72× 10 ⁻⁴
Beneath Landfill—Lower RGA	3.85×10^{-4}
Vicinity	3.59×10^{-4}

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	c Discharge (q)	Average Linear Velocity (v)						
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s					
Upper RGA										
725	0.256	0.342	1.21×10^{-4}	1.37	4.83×10^{-4}					
425	0.150	0.200	7.08×10^{-5}	0.802	2.83×10^{-4}					
Lower RGA										
725	0.256	0.279	9.85×10^{-5}	1.12	3.94×10^{-4}					
425	0.150	0.164	5.77×10^{-5}	0.654	2.31×10^{-4}					

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the second quarter 2018 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Technetium-99	MW369
Lower Regional Gravel Aquifer	Technetium-99	MW367, MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

5/22/2018

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

SOLID WASTE PERMIT NUMBER SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4798	MW357	Trichloroethene	8260B	5.3	ug/L	5
8004-4799	MW358	Trichloroethene	8260B	6.02	ug/L	5
8004-4795	MW361	Trichloroethene Trichloroethene	8260B 8260B	14.7 9.34	ug/L ug/L	5 5
8004-4797	MW364	Trichloroethene	8260B	6.93	ug/L	5
8004-4793	MW367	Trichloroethene	8260B	5.92	ug/L	5
8004-4820	MW369	Beta activity	9310	102	pCi/L	50
8004-4808	MW372	Trichloroethene	8260B	7.88	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	7.71	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill

Groundwater Flow System	I			UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002	-									*	*	*									
Quarter 1, 2003 Quarter 2, 2003											*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*			*							
Quarter 3, 2004						*										*					
Quarter 3, 2005						*															
Quarter 4, 2005						*															
ALPHA ACTIVITY																					
Quarter 1, 2004						_															
Quarter 2, 2004	1					-															
Quarter 3, 2009 ALUMINUM						_															
Quarter 3, 2003											*										
BETA ACTIVITY											т										
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006	<u> </u>																				
Quarter 3, 2006	<u> </u>																				_
Quarter 4, 2006																					_
Quarter 1, 2007	!																				_
Quarter 2, 2007	!									_											
Quarter 3, 2007																					
Quarter 4, 2007 Quarter 1, 2008										H											
Quarter 2, 2008	1									-					-						
Quarter 3, 2008														_		-					
Quarter 4, 2008																					
Quarter 1, 2009	1																				
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012 Quarter 2, 2012	1									H								W"W			
Quarter 3, 2012	1																	Moodill			
Quarter 4, 2012										_											
Quarter 1, 2013																					=
Quarter 3, 2013																					
Quarter 4, 2013	1																				
Quarter 1, 2014																					
Quarter 4, 2014																					
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 4, 2015																					
Quarter 3, 2016																					
Quarter 4, 2016																					
Quarter 2, 2017	!	ļ	ļ	ļ					<u> </u>			ļ	<u> </u>	<u> </u>			ļ	ļ	ļ	_	
Quarter 3, 2017	1														-		-			-	
Quarter 4, 2017	₽—	<u> </u>	<u> </u>	<u> </u>					<u> </u>			<u> </u>	<u> </u>	<u> </u>			-	<u> </u>	 		
Quarter 1, 2018	\vdash	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	-		<u> </u>	-	-	<u> </u>	<u> </u>			-	-	<u> </u>			
Quarter 2, 2018 BROMIDE																					
Ouarter 2, 2004													*								
CALCIUM													_								
Quarter 3, 2003										*											
Quarter 2, 2005	l																				*
Quarter 3, 2006	t														*						
	Ť														*						
Quarter 2, 2008																					
Quarter 3, 2009															*						

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System				UCR	S							URG	A			I		LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375		377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358		373
CALCIUM																					
Quarter 4, 2009															*						
Quarter 1, 2010	<u> </u>														*						<u> </u>
Quarter 2, 2010															*						
Quarter 3, 2010	-														*						-
Quarter 1, 2011 Quarter 2, 2011															*						
Quarter 3, 2011															т.						*
Quarter 4, 2011	l														*						*
Quarter 1, 2012															*						*
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						*
Quarter 2, 2013	<u> </u>														*						<u> </u>
Quarter 3, 2013	!														*						*
Quarter 4, 2013															*						.
Quarter 2, 2014 Quarter 3, 2014	-														*						*
Quarter 4, 2014															*						不
Quarter 2, 2015	t		1	1	1	1	1				1	1			*	1	1	1	1	1	<u> </u>
Quarter 3, 2015	t														*						<u> </u>
Quarter 4, 2015															*						
Quarter 1, 2016	t														*						
Quarter 2, 2016	1														*	1					
Quarter 2, 2017	*																				
Quarter 1, 2018	*																				
CARBON DISULFIDE																					
Quarter 3, 2003										*											
Quarter 2, 2005							*														<u> </u>
Quarter 3, 2005						*															—
Quarter 4, 2005						*															├
Quarter 1, 2006						*															
Quarter 2, 2006 Quarter 3, 2010		*				不					*										
Quarter 4, 2010		*									不			*							
Quarter 1, 2011	t													T	*						
CHEMICAL OXYGEN DEMA	ND																				
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003						*				*	*										—
Quarter 3, 2004	!									*					NI.	J.					-
Quarter 3, 2005						*				*					*	*		*	*		
Quarter 4, 2005	1					木												木	*		-
Quarter 1, 2006 Quarter 4, 2016	1		1	<u> </u>	<u> </u>	1	1				<u> </u>	1	_	<u> </u>	 	1	<u> </u>	*	*	<u> </u>	\vdash
Quarter 1, 2017	t										*							<u> </u>			
CHLORIDE																					
Quarter 1, 2006																				*	
Quarter 2, 2014	L														*						
COBALT																					
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	
Quarter 1, 2004														*							
Quarter 2, 2016														*							_
CONDUCTIVITY																					
Quarter 4, 2002	!		<u> </u>	<u> </u>	<u> </u>	ļ	ļ			*	<u> </u>	ļ			ļ	!	<u> </u>				
Quarter 1, 2003	1									*	.				-						<u> </u>
Quarter 2, 2003 Quarter 4, 2003	 		 			*	*	 		-	-	 									
Quarter 4, 2003 Quarter 1, 2004	1		-	-	-	-	-			*	-	-		-		-	-	-	-	-	<u> </u>
Quarter 1, 2004 Quarter 2, 2004	H		 			*	 	 				 									
Quarter 2, 2004 Quarter 3, 2004	H	 								*			 		-	1					
Quarter 1, 2005	t		1			1	1			-		1			*	1					
Quarter 2, 2005	t		1			1	1					1			*	1					
Quarter 3, 2005	t					*													*		
Quarter 4, 2005															*			*			
Quarter 1, 2006															*						

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System Gradient Monitoring Well CONDUCTIVITY Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007	D 368	S 375	S	UCR S	D	D	ъ	т.	v-				r				_	LRG		_	-
CONDUCTIVITY Quarter 2, 2006 Quarter 3, 2006	368	375				D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Quarter 2, 2006 Quarter 3, 2006		,	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 3, 2006																					
															*						
Quarter 1 2007															*						
															*						
Quarter 2, 2007															*						
Quarter 3, 2007															*						
Quarter 4, 2007															*						
Quarter 1, 2008															*						
Quarter 2, 2008															*						\vdash
Quarter 3, 2008															*						\vdash
Quarter 4, 2008															*						\vdash
Quarter 1, 2009	1														*						\vdash
Quarter 2, 2009 Quarter 3, 2009	1														*						\vdash
Quarter 4, 2009	1														*						\vdash
	1														*						\vdash
Quarter 1, 2010 Quarter 2, 2010	1														*						\vdash
Quarter 3, 2010															*						\vdash
Quarter 4, 2010	1					-	-	-		1			-	\vdash	*			-			\vdash
Quarter 1, 2011	1														*						
Quarter 2, 2011	1														*						
Quarter 3, 2011	1														*						
Quarter 4, 2011	t														*						
Quarter 1, 2012	t													*	*						
Quarter 2, 2012	t														*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
Quarter 3, 2014															*						
Quarter 4, 2014															*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016															*						
DISSOLVED OXYGEN																					
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*					*											
Quarter 4, 2003					*																
Quarter 1, 2004	<u> </u>				*																ш
Quarter 2, 2004	<u> </u>				M-			*								*					$oxed{oxed}$
Quarter 1, 2005	 				*	<u> </u>	<u> </u>						<u> </u>			—		<u> </u>			$\vdash\vdash$
Quarter 2, 2005	 					<u> </u>	<u> </u>	*					<u> </u>			—		<u> </u>			$\vdash\vdash$
Quarter 1, 2006	 				*								-								\vdash
Quarter 2, 2006	 				*			*					-								\vdash
Quarter 3, 2006	 				*			*	- V				-								\vdash
Quarter 4, 2006	 				*			.	*		-			\vdash							\vdash
Quarter 2, 2007	 				*			*	- V		-			\vdash							\vdash
Quarter 1, 2007	 				*	<u> </u>	<u> </u>	不	*	-			<u> </u>	\vdash				<u> </u>	*		\vdash
Quarter 1, 2008 Quarter 2, 2008	1				T			*	*	-									不		-
Quarter 2, 2008 Quarter 3, 2008	1-							*	T					\vdash							
Quarter 1, 2009	1-						*	*													
Quarter 1, 2009 Quarter 2, 2009	1-				*		*	*	*	-				\vdash							
Quarter 3, 2009	1				Ψ.	*		*	*					\vdash							
Quarter 1, 2010	1				*	Ψ.	*	Ψ.	π.					\vdash							
Quarter 2, 2010	1				*	*	~	*	*				-					-		*	*
Quarter 2, 2010 Quarter 3, 2010	1-				*	*		*	T											T	不
Quarter 4, 2010	1-				*	*	*			_		*		\vdash						*	
Quarter 4, 2010 Quarter 1, 2011	1-					*	*			-		*		\vdash						*	
Quarter 2, 2011	1				*	*	*	*	*					*							
Quarter 2, 2011	_				Ψ.	π'	Ψ.	Ψ.	π.					Ψ.							

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System				UCR	S							URG	A			<u> </u>		LRG	A		
Gradient Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358		373
DISSOLVED OXYGEN																					
Quarter 3, 2011						*			*												
Quarter 1, 2012							*		*												
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012						*															
Quarter 4, 2012									*												
Quarter 1, 2013						*	34		*												
Quarter 2, 2013	*				*		*	*	*												
Quarter 3, 2013 Quarter 4, 2013	*				*		*	木	*											*	
Quarter 4, 2013 Quarter 2, 2014	*				*	*	*	*	*									*		不	
Quarter 3, 2014	*				*	*	*	т.	т.									т-			
Quarter 4, 2014						*	-														
Quarter 2, 2015					*	*	*	*													
Quarter 3, 2015					*	*		*													
Quarter 4, 2015	*					*	*														
Quarter 1, 2016	*				*		*														
Quarter 2, 2016	*	*			*	*	*	*	*											*	*
Quarter 3, 2016					*	*	*	*					*								
Quarter 4, 2016						*			*		<u> </u>	<u> </u>	L	<u> </u>				<u> </u>	<u> </u>		<u> </u>
Quarter 1, 2017					L	L	*	L			<u> </u>	<u> </u>	*	<u> </u>				<u> </u>	<u> </u>		
Quarter 2, 2017	*				*	*	*	*	-		<u> </u>	<u> </u>	ļ	<u> </u>		!	ļ		<u> </u>		
Quarter 3, 2017	*	*			*	*	*	*										*			
Quarter 4, 2017						*	*											*			
Quarter 1, 2018					*	*	*	*												*	
Quarter 2, 2018 DISSOLVED SOLIDS					*	*	*	*													
Quarter 4, 2002										*											
Quarter 4, 2002 Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003							*			*	*										
Quarter 4, 2003										*	-1-										
Quarter 3, 2005						*															
Quarter 4, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011 Quarter 3, 2011							-				-	-	-	-	*	-		-	-		-
Quarter 3, 2011 Quarter 4, 2011							-		1		-	-	-	-	*	1		-	-		-
Quarter 1, 2012			 	 	 	 		 						*	*	1	 			 	
Quarter 2, 2012							1	1			 	 	-	~	*	1	1	 	 		*
Quarter 3, 2012															*						*
Quarter 4, 2012															*	1					
Quarter 1, 2013													1		*	1					
Quarter 2, 2013													İ		*						
Quarter 3, 2013															*	1					
Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
Quarter 4, 2014															*						
Quarter 2, 2015															*						
Quarter 3, 2015							<u> </u>				<u> </u>	<u> </u>		<u> </u>	*			<u> </u>	<u> </u>		
Quarter 4, 2015							ļ				ļ	ļ	<u> </u>	ļ	*	<u> </u>		ļ	ļ		
Quarter 1, 2016															*						
IODIDE																					
Quarter 2, 2003	,ı.							-		J.						*	-				<u> </u>
Quarter 3, 2003	*						<u>.</u>	-	-	*	<u> </u>	<u> </u>	<u> </u>	<u> </u>		!	-	<u> </u>	<u> </u>		<u> </u>
Quarter 4, 2003						JL.	*	JI.			 	 	- VI	 		 	JI.	 	 		-
Quarter 3, 2010						*		*					*				*				
IODINE-131																					
Quarter 3, 2010	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_		_	_	_

Grantent D S S S D D D D D D	Groundwater Flow System				UCR	S							URG	A					LRG	A		
ODDMETIANE		D	S	S			D	D	U	U	D	D	D	D	U	U	D	D			U	U
Quarter 4, 2003		368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
MACAS																						
Quarter 4, 2002 Q							*															
Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2007 Quarter 2, 2008 Quarter 1, 2007 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 1, 2011 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2007 Quarter 3, 200																						
Quarter 1, 2003							*															
Quarter 1, 2004																						
Quarter 2, 2004 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2011 Quarter 3, 2010 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 4, 2018 Quarter 4, 2019 Quarter 4,		1																				
Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2009 Quarter 2,	-	1				-				-		-	-				*					
Ounter 2, 2005 Ounter 2, 2006 Ounter 2, 2009 Ounter 2, 2000 Ounter 2, 2001 Ounter 2, 2010																						
MAGNESIMN Quarter 2, 2005											不						*					
Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2009 Quarter 2, 2000 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2006 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 3,																	不					
Quarter 1, 2005																*						*
Quarter 1, 2006	-						*									Ψ						
Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2001 Quarter 4, 2000 Quarter 4,							-11									*						
Quarter 1, 2007																						-1-
Quarter 2.008																						
Quarter 2, 2009																						
Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2002 Quarter 3, 2007 Quarter 2, 2004 Quarter 2, 2007 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2007 Quarter 5, 2007 Quarter 6, 2007 Quarter 6, 200																						
Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2000 Quarter 4,																						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2012 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2007 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2007																						
Quarter 2, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Representation of the second of																*						
Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2007 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2004 Quarter 3, 2005 Quarter 1, 2004 Quarter 3, 2005 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007																*						
Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2001 Quarter 3, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 200	Quarter 3, 2010															*						
Quarter 3, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 200	Quarter 1, 2011																					
Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 A Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 5, 2017 A Quarter 6, 2017 A Quarter 7, 2018 MANGANESE Quarter 3, 2007 Quarter 3, 2004 A A A A A A A A A A A A A	Quarter 2, 2011	匚																				
Quarter 1, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 White Advances of the American Company of the American																						
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 3, 2017 * Quarter 1, 2018 Quarter 3, 2017 * Quarter 1, 2018 Quarter 3, 2007 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 3, 2007 Quarter 1, 2006 Quarter 3, 2007 Quarter 1, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 3, 2007 Quarter 1, 2006 Quarter 2, 2007 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007	× /																					
Quarter 3, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 1, 2018 MANGANESE MANGANESE MANGANESE MANGANESE Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 4, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 2, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 1, 2006 Quarter 2, 2007 Quarter 3, 2008 ** ** ** ** ** ** ** ** **																						
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 4, 2017 * * * * * * * * * * * * * * * * * * *																						
Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 * * * * * * * * * * * * * * * * * *																						
Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 3, 2002 Quarter 3, 2002 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2008																						
Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017 X Quarter 2, 2017 X Quarter 2, 2017 X Quarter 2, 2017 Quarter 3, 2017 X Quarter 2, 2018 X MANGANESE Quarter 2, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2003 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2008 X X X X X X X X X X X X X X X X X X																						
Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 * Quarter 4, 2017 * Quarter 1, 2018 * Quarter 1, 2018 * Quarter 1, 2018 * Quarter 2, 2017 * Quarter 1, 2018 * Quarter 3, 2007 Quarter 3, 2002 * * * * * * * * * * * * * * * * *																						
Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 5, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 8, 2015 Quarter 1, 2016 Quarter 9, 2016 Quarter 2, 2016 Quarter 3, 2016 Manage 1, 2016 Manage 2, 2017 Quarter 2, 2017 Quarter 1, 2018 Manage 2, 2017 Quarter 1, 2018 Manage 2, 2017 Quarter 2, 2007 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2008		1				-				-		-	-									
Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 1, 2018 MANNANDSE Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007																						
Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 3, 2017 * Quarter 2, 2017 * Quarter 3, 2017 * Quarter 3, 2017 * Quarter 3, 2018 * * * * * * * * * * * * * * * * * * *																						
Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Regularer 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Regularer 4, 2016 Quarter 3, 2017 Regularer 3, 2017 Regularer 3, 2017 Regularer 3, 2017 Regularer 3, 2018 Regularer 3, 2002 Regularer 3, 2002 Regularer 3, 2002 Regularer 3, 2002 Regularer 3, 2003 Regularer 3, 2003 Regularer 4, 2004 Regularer 4, 2005 Regularer 4, 2006 Regularer 3, 2007 Regularer 4, 2006 Regularer 3, 2007 Regularer 4, 2007 Regularer 4, 2006 Regularer 3, 2007 Regularer 3, 2008 Regularer 3, 2007 Regularer 3, 2008 Regularer 3, 2008 Regularer 3, 2007 Regularer 3, 2008 Regularer 3, 2007 Regularer 3, 2008 Regulare		1				-				-		-	-									
Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Regularer 4, 2016 Quarter 3, 2016 Quarter 3, 2017 Regularer 1, 2018 RANGANESE Quarter 1, 2002 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008																						
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 MANGANESE Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007																						
Quarter 2, 2016 Quarter 3, 2016																						
Quarter 3, 2016																						
Quarter 4, 2016		*														-						
Quarter 2, 2017																						
Quarter 3, 2017 *		_																				
Quarter 1, 2018 *		*																				
Quarter 3, 2002 *		_																				
Quarter 4, 2002 *	MANGANESE																					
Quarter 4, 2002 Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2008											*		*									
Quarter 3, 2003	Quarter 4, 2002		*				*	*			*		*		*							
Quarter 4, 2003	Quarter 2, 2003										*		*									
Quarter 1, 2004 # * * * * Quarter 2, 2004 * * * * * Quarter 3, 2004 * * * * * Quarter 4, 2004 * * * * * Quarter 1, 2005 * * * * Quarter 2, 2005 * * * * Quarter 3, 2005 * * * * Quarter 4, 2005 * * * * Quarter 1, 2006 * * * Quarter 1, 2006 * * * Quarter 2, 2006 * * * * Quarter 3, 2006 * * * * Quarter 4, 2006 * * * * Quarter 1, 2007 * * * Quarter 2, 2007 * * * Quarter 3, 2007 * * * Quarter 3, 2008 * * *	Quarter 3, 2003										*		*	*			*	*	*	*		
Quarter 2, 2004														*								
Quarter 3, 2004 * * * * *																	*	*				
Quarter 4, 2004 # # # # Quarter 1, 2005 # # # # Quarter 2, 2005 # # # # Quarter 3, 2005 # # # # Quarter 4, 2005 # # # # Quarter 1, 2006 # # # # Quarter 2, 2006 # # # # Quarter 3, 2006 # # # # Quarter 1, 2007 # # # # Quarter 2, 2007 # # # # Quarter 3, 2007 # # # # Quarter 3, 2008 # # # #																			*			
Quarter 1, 2005 # # # #								*				*										
Quarter 2, 2005 # # # #																	*					
Quarter 3, 2005 * * * * Quarter 4, 2005 * * * * Quarter 1, 2006 * * * * Quarter 2, 2006 * * * * Quarter 3, 2006 * * * * Quarter 4, 2006 * * * * Quarter 1, 2007 * * * * Quarter 2, 2007 * * * * Quarter 3, 2007 * * * * Quarter 3, 2008 * * * *		!			<u> </u>	<u> </u>				<u> </u>		<u> </u>		-	ļ							<u> </u>
Quarter 4, 2005 * * * Quarter 1, 2006 * * * Quarter 2, 2006 * * * Quarter 3, 2006 * * * Quarter 4, 2006 * * * Quarter 1, 2007 * * * Quarter 2, 2007 * * * Quarter 3, 2007 * * * Quarter 3, 2008 * * *		1-			<u> </u>	<u> </u>				<u> </u>		<u> </u>		-	-		J .					
Quarter 1, 2006 # # # Quarter 2, 2006 # # # Quarter 3, 2006 # # # Quarter 4, 2006 # # # Quarter 1, 2007 # # # Quarter 2, 2007 # # # Quarter 3, 2007 # # # Quarter 3, 2008 # # #		<u> </u>			<u> </u>	<u> </u>				<u> </u>		<u> </u>	*									
Quarter 2, 2006 * * * * Quarter 3, 2006 * * * * Quarter 4, 2006 * * * * Quarter 1, 2007 * * * * Quarter 2, 2007 * * * * Quarter 3, 2007 * * * * Quarter 3, 2008 * * * *		 	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Quarter 3, 2006 # # Quarter 4, 2006 # Quarter 1, 2007 # Quarter 2, 2007 # Quarter 3, 2007 # Quarter 3, 2008 #	-	 			<u> </u>	-		*		-		-	ىلا									<u> </u>
Quarter 4, 2006 # Quarter 1, 2007 # Quarter 2, 2007 # Quarter 3, 2007 # Quarter 3, 2008 #		1-			 	 		*		 		 	*	-	-		. Mr.					
Quarter 1, 2007 * * Quarter 2, 2007 * * Quarter 3, 2007 * * Quarter 3, 2008 * *		 			 	 				 		 	 	-	-		木					
Quarter 2, 2007 * * Quarter 3, 2007 * Quarter 3, 2008 *		 			 	 				 		 	 	-	-							
Quarter 3, 2007 Quarter 3, 2008 * Quarter 3, 2008		1—	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	*	_	<u> </u>		<u> </u>	<u> </u>	-	1	-	-	_	-	-	-	_
Quarter 3, 2008 *		├		<u> </u>		<u> </u>	<u> </u>			<u> </u>	ᅏ	<u> </u>	<u> </u>			<u> </u>			<u> </u>	<u> </u>	<u> </u>	
	Quarter 5, 2007	1			-	-				-		-	-									-
Quater 4, 2000					ı	l	i i	不	i	ı		l	ı	1	1	i		Ī	1	i i	i	
	Quarter 3, 2008	1						*														

Groundwater Flow System				UCR	S							URG	A					LRG	SA		\neg
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
MANGANESE																					
Quarter 3, 2009							*														
Quarter 3, 2011							*							.							
Quarter 2, 2016									*					*							
Quarter 3, 2016 NICKEL									~												
Quarter 3, 2003										*											
OXIDATION-REDUCTION PO	TEN	ΤΙΔΙ								_											
Ouarter 4, 2002	<u> </u>	11111	Ī														*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004													*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006					*			*	*								*				*
Quarter 2, 2006					*		*	*					*				*			*	
Quarter 3, 2006					*			*					*				*			*	
Quarter 4, 2006					*		*			*		*	*				*			*	*
Quarter 1, 2007		*			*			*					*				*			*	*
Quarter 2, 2007			<u> </u>	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>			<u> </u>		*		<u> </u>		*			*	*
Quarter 3, 2007					*			*									*			*	
Quarter 4, 2007																	*			*	*
Quarter 1, 2008					*			*				*	*						*	*	
Quarter 2, 2008					*			*	-1.	*		-1.	*	*			-1.	*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009					140		*	*		*		*	*				- 14	*		*	- 14
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*			.	*	*	*	*	*		*	*			*	*	*	*	*	*
Quarter 1, 2010		*			*	- Ju	*	*		*	- JL	*	*			*	*	*	4	*	<u>.</u>
Quarter 2, 2010		*			*	*	.		- V	*	*	*	*	.	*	*	*		*	*	*
Quarter 4, 2010		*			*	*	*	*	*	*	*	*	*	*	不	*	*	*	*	*	*
Quarter 4, 2010 Quarter 1, 2011	-	不				*	不	*	不	*	*	*	*	*	-	*	*	*	*	*	·
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*			т.	*	т.	*	*	*	т.	*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*	~	*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012	~	*		т.	т.	*	-	*	~	*	т.	*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*			*	*	*	*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2014		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 1, 2015		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015		*			*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*	*			*		*	*		*		*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 3, 2016	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2017	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017	*	*	ļ	ļ	*	*	*	*	*	*	ļ	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2017	L.	*			L_	*	*	*	*	*		*	*	*	*	L.	*	*		*	*
Quarter 1, 2018	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*		*	*
Quarter 2, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Groundwater Flow System	1			UCR	S					Г		URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375		377	359	362	365		374	366	360	363		369	372		361	364		370	
PCB, TOTAL																					
Quarter 4, 2003																	*				
Quarter 3, 2004												*									
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004	1—	<u> </u>					<u>.</u>	<u> </u>			<u> </u>	*		<u> </u>			<u> </u>	<u> </u>			
Quarter 2, 2006	ऻ	<u> </u>					*	<u> </u>			<u> </u>	*		<u> </u>			<u> </u>	<u> </u>			
Quarter 1, 2007	1						*														
Quarter 2, 2007	1						*														
Quarter 3, 2007							*														
Quarter 2, 2008	1						*														
Quarter 4, 2008	1						*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242																					
Quarter 3, 2006							*					*									
Quarter 4, 2006										*											
Quarter 1, 2008							*														
Quarter 2, 2012							*														
PCB-1248																					
Quarter 2, 2008	_						*														
PCB-1260																					
Quarter 2, 2006							*														
pH										14											
Quarter 3, 2002	1									*											
Quarter 4, 2002	_									*											
Quarter 1, 2003	1									*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*						140					
Quarter 4, 2003	1						*									*					
Quarter 1, 2004	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	JL.	*	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>		*	<u> </u>	طو	JL.		<u> </u>
Quarter 3, 2005	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	*	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	*	*		<u> </u>
Quarter 4, 2005	1-	 			-	*	-	-			-	 	-	-			 	 	*		-
Quarter 3, 2006	1-	 			-		-	-			-	-	-	JL.		*	 	-			-
Quarter 2, 2011	1-	-			-		-	-			-	-	-	*			 	-			-
Quarter 3, 2011	Ͱ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>		<u> </u>
Quarter 4, 2011	1-	-			-		-	-			-	-	-	*		JL.	طو	-			-
Quarter 1, 2012	1—	 						 			 	طو		 		*	*	 			
Quarter 2, 2012	1—	 						 		*	 	*		 		*	 	 			
Quarter 1, 2013	1	 						 		木	 	木		 		木	*	 			
Quarter 3, 2015	1—	 						 			 	 		 		-	木	 		JI.	JI.
Quarter 2, 2016	1	 						 			 	 		 			 	 		*	*
Quarter 3, 2016	1	 						 			 	 		 			*	 		*	
Quarter 2, 2017																	木				
POTASSIUM																JI.					
Quarter 1, 2014																*					
RADIUM-228																					
Quarter 2, 2005	Ͱ	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		-	<u> </u>	-	<u> </u>				<u> </u>	-	<u> </u>		<u> </u>
Quarter 4, 2005	1					•				<u> </u>		•						•			
SELENIUM																					
Quarter 4, 2003	1									_						_					

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SODIUM Quarter 3, 2002										*	*		*								
Quarter 4, 2002										*	*		т.	*						 	
Quarter 1, 2003										*											
Quarter 2, 2003										*	*										
Quarter 3, 2003											*										
Quarter 1, 2007											*										
Quarter 1, 2012														*							
Quarter 1, 2014											44				*						
Quarter 3, 2014 Quarter 4, 2014											*										
Quarter 4, 2015											*									-	<u> </u>
Quarter 1, 2016											*										
Quarter 2, 2016											*										
Quarter 3, 2016											*										
Quarter 4, 2016											*										
Quarter 1, 2017											*										
Quarter 2, 2017											*										
Quarter 3, 2017											*										
Quarter 4, 2017						<u> </u>	<u> </u>		<u> </u>		*	<u> </u>		<u> </u>			<u> </u>	<u> </u>			<u> </u>
Quarter 1, 2018											*									_	
STRONTIUM-90																					
Quarter 4, 2008							•														
SULFATE Ouarter 1, 2003							*														
Quarter 1, 2003 Quarter 2, 2003		 				*	*		 			 		 			 	 		\vdash	
Quarter 2, 2003 Quarter 3, 2003	*	1				*	_ T		1			1		1			1	1		\vdash	
Quarter 4, 2003	-10				*	-4-	*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005															*						
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006							*														<u> </u>
Quarter 1, 2007							*														
Quarter 2, 2007 Quarter 3, 2007							*													-	-
Quarter 4, 2007		*					<u> </u>													-	<u> </u>
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008		*				*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*	L.		<u> </u>			<u> </u>		<u> </u>	*			<u> </u>		Щ.	<u> </u>
Quarter 1, 2010		*			*	*	*				-	<u> </u>			*					igspace	<u> </u>
Quarter 2, 2010		*			*	*	*				-	<u> </u>			*					igspace	<u> </u>
Quarter 4, 2010		*			*	*	*					 	-		*				-	-	<u> </u>
Quarter 4, 2010 Quarter 1, 2011		*				*	*		-			1		-	*		-	-		₩	
Quarter 1, 2011 Quarter 2, 2011		*			*	*	*		 			 		 	*		 	 		 	
Quarter 3, 2011		*			-1-	*	*	*	l -					l -	*		l -	l -		\vdash	
Quarter 4, 2011		*				*									*						
Quarter 1, 2012		*					*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*							<u> </u>			<u> </u>		<u> </u>	*		<u> </u>	<u> </u>			<u> </u>
Quarter 3, 2013	*	*		*	*	*	*		<u> </u>			<u> </u>		<u> </u>	*		<u> </u>	<u> </u>			<u> </u>
Quarter 4, 2013		*				<u> </u>	<u> </u>		<u> </u>			<u> </u>		<u> </u>	*		<u> </u>	<u> </u>		Щ.	<u> </u>
Quarter 1, 2014	11.	*			ų.	 	112	,,,	 		-	 	-	 	*		<u> </u>	 	-	igwdow	<u> </u>
Quarter 2, 2014	*	*			*	ىدر	*	*	<u> </u>		-	 	-	<u> </u>	*		<u> </u>	<u> </u>	-	igspace	ऻ—
Quarter 3, 2014	*	*			*	*	*	*	 		-	1		 	*		 	 		—	
Quarter 4, 2014 Quarter 1, 2015	-	*	-	-		*	<u> </u>		<u> </u>	-	-	 	-	<u> </u>	<u> </u>	-	-	<u> </u>	-	-	
Quarter 1, 2015	_	・ボ								_		_				_				_	_

Groundwater Flow System				UCR	RS							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well SULFATE	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2, 2015	*	*			*		*								*						
Quarter 3, 2015		*			*	*		*							*						
Quarter 4, 2015	*	*				*	*	*													
Quarter 1, 2016	*	*			*	*	*														
Quarter 2, 2016	*	*			*	*	*	44													—
Quarter 3, 2016	*	*			*	*	*	*													—
Quarter 4, 2016 Quarter 1, 2017	*	*				*	*	不													
Quarter 2, 2017	*	*			*	*	*														
Quarter 3, 2017	*	*			*	*	*														
Quarter 4, 2017		*				*	*														
Quarter 1, 2018	*	*			*	*	*														
Quarter 2, 2018	*	*			*	*	*	*													
TECHNETIUM-99																					
Quarter 4, 2002													L				*	*	*		.
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003																	*				*
Quarter 4, 2003 Quarter 1, 2004	 	 		 			 					 	 		*	 	*	 		$\vdash\vdash$	*
Quarter 2, 2004	1	1		1			1					1	1		*	1		1		\vdash	*
Quarter 3, 2004															*					\vdash	*
Quarter 4, 2004	1	1											1		*	1	*			Н	*
Quarter 3, 2005	1															1	*			П	
Quarter 1, 2006															*						*
Quarter 2, 2006		*							*												*
Quarter 3, 2006																					*
Quarter 4, 2006															*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	\vdash
Quarter 3, 2007															*		*	*	-1-		
Quarter 4, 2007										*					*				*	<u>.</u>	*
Quarter 1, 2008 Quarter 2, 2008							*	*						*	*	*			*	*	*
Quarter 3, 2008							不	*						*	*	不			*		-
Quarter 4, 2008										*					•		*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010																		*			\vdash
Quarter 1, 2011		*								*							*		-1-		\vdash
Quarter 2, 2011																*	*	*	*		
Quarter 1, 2012								<u>ж</u>									*	*			
Quarter 2, 2012	-	-		-			-	*				-	-			 	*	*		\vdash	
Quarter 3, 2012 Quarter 4, 2012	1		 			 								 	*	1	*	*		\vdash	*
Quarter 1, 2013															<u> </u>			*		\vdash	*
Quarter 2, 2013																1				П	*
Quarter 3, 2013	1									*						1				П	*
Quarter 4, 2013															*		*	*			*
Quarter 1, 2014															*		*	*			
Quarter 2, 2014																	L_	*			
Quarter 3, 2014		<u> </u>		<u> </u>			<u> </u>					<u> </u>	<u> </u>				*	*	*	Ш	
Quarter 4, 2014	!	ļ		<u> </u>	ļ		<u> </u>		-		-	<u> </u>	<u> </u>		*	!	<u> </u>	11.	ļ	Ш	
Quarter 1, 2015	 	 		 	-		 					 	 		*	*	 	*	-	$\vdash\vdash$	
Quarter 2, 2015 Quarter 3, 2015	 	-		-			-					-	-			木	-	*	*	*	
Quarter 3, 2015 Quarter 4, 2015	1	1		<u> </u>	 	_	<u> </u>		1	—	1	<u> </u>	1	_	*	1	*	- T	*	*	
Quarter 1, 2016	1	1		l -			l -					l -	1		*	*	*	*	*	T	*
Quarter 2, 2016	1															*	*	*	*	*	
Quarter 3, 2016																T .	*		*	*	$\overline{}$
Quarter 4, 2016	1									*				*		1	*	*		П	
Quarter 1, 2017																	*		*	*	
Quarter 2, 2017																				*	
Quarter 3, 2017																		*		*	
Quarter 4, 2017														*	*		*	*		*	$oxed{\Box}$
Quarter 1, 2018				<u> </u>			<u> </u>					<u> </u>		L				<u> </u>		*	—
Quarter 2, 2018	_					_				_				*	_	*	_			*	

Groundwater Flow System	l			UCR	S							URG	A			1		LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375		377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
THORIUM-230																					
Quarter 4, 2015																*					
Quarter 2, 2016										*		- 14							14		
Quarter 4, 2016	*											*	JL.			*			*		
Quarter 4, 2017 Quarter 2, 2018										*			*								
TOLUENE										_			_								
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON																					
Quarter 3, 2002	П									*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003											*										
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										
Quarter 1, 2004											*										
Quarter 3, 2005		<u> </u>				*				*					*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
Overton 4, 2002										,¥Ł											
Quarter 4, 2002 Quarter 1, 2003	 	 	<u> </u>	-	<u> </u>	-	<u> </u>	<u> </u>		*	<u> </u>	-	-	<u> </u>	<u> </u>	 	<u> </u>	 	 		
Quarter 1, 2003 Quarter 2, 2003	 	1	 		 		 	 		*	 			 							
Quarter 1, 2004	1	 				 				Ť			 			*					
TRICHLOROETHENE																-					
Quarter 3, 2002																					
Quarter 4, 2002	1	<u> </u>																		=	
Quarter 1, 2003																					
Quarter 2, 2003																					
Quarter 3, 2003																					
Quarter 4, 2003																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																				_	_
Quarter 2, 2005																				-	_
Quarter 3, 2005																					_
Quarter 4, 2005																				_	_
Quarter 1, 2006																					-
Quarter 2, 2006		-																			i
Quarter 3, 2006 Quarter 4, 2006																				-	=
Quarter 1, 2007																					
Quarter 2, 2007																				-	Ī
Quarter 3, 2007																					-
Quarter 4, 2007																					Ŧ
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009		<u> </u>	<u> </u>		<u> </u>								-								•
Quarter 1, 2010	!	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>			<u> </u>		_	<u> </u>		!	<u> </u>	<u> </u>	<u> </u>		•
Quarter 2, 2010		<u> </u>											-								-
Quarter 3, 2010	 	<u> </u>	<u> </u>	-	<u> </u>		<u> </u>	<u> </u>			<u> </u>			<u> </u>		!	<u> </u>	<u> </u>	<u> </u>		-
Quarter 4, 2010	_	<u> </u>	 	-	 		 	 			 			 		_	 	 			-
Quarter 2, 2011 Quarter 3, 2011	1	1	-		-		-	-			-			-		-	-	-			
Quarter 3, 2011 Quarter 4, 2011	 	 	 	-	 		 	 			 			 		1	 	 	-		i
Quarter 4, 2011 Quarter 1, 2012	1	 				 										1			W"W		=
Quarter 2, 2012	1	\vdash				 							Ε-			1	-				i
Quarter 3, 2012																					ī
Quarter 4, 2012		t																			Ŧ
Quarter 1, 2013		<u> </u>											-								ī
Quarter 2, 2013													=								
Quarter 3, 2013	1	l											Ŧ			1					
Quarter 4, 2013																					
	1	1														l					
Quarter 1, 2014																					
Quarter 1, 2014 Quarter 2, 2014																					

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2014																					
Quarter 4, 2014																					
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 3, 2015																					
Quarter 4, 2015																					
Quarter 1, 2016																					
Quarter 2, 2016																					
Quarter 3, 2016																					
Quarter 4, 2016																					
Quarter 1, 2017																					•
Quarter 2, 2017																					
Quarter 3, 2017																					•
Quarter 4, 2017																					
Quarter 1, 2018																					
Quarter 2, 2018																					•
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an elevate	ed conce	entratio	n (i.e.,	a statis	tical ex	ceedan	ce).														
■ MCL Exceedance																					

Previously reported as an MCL exceedance; however, result was equal to MCL UCRS Upper Continental Recharge System

URGA Upper Regional Gravel Aquifer LRGA Lower Regional Gravel Aquifer

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

Date:	5/29/2018	Time:	0900am	Monitor:	Robert Kirby
Weather Co Mostly cloud	nditions: dy at 82 degrees with scatte	ered shower	s		
Monitoring I RAE System	Equipment: ns, Multi-RAE, Serial# 7971				
	Mon	itoring Loca	tion		Reading (% LEL)
C-746-U1	Checked at floor level				0
C-746-U2	Checked at floor level				0
C-746-U-T-14	Checked at floor level		DATAS		0
C-746-U15	Checked at floor level				0
MG1	Dry casing				0
MG2	Dry casing				0
MG3	Dry casing				0
MG4	Dry casing				0
Suspect or Problem Are	eas No problems noted				N/A
Remarks:					
Performed k	1	ny Smi	th	57	129/18
	Signa	tare			Date

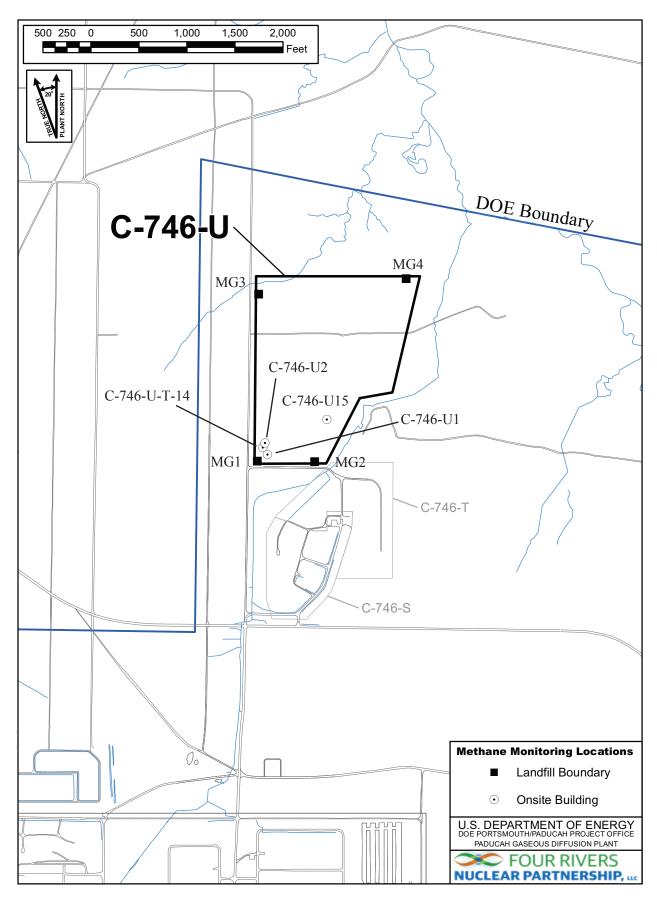


Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	PST	REAM", or "Do	OWNSTREAM")	L150 AT SITE		L154 UPSTRE	AM	L351 DOWNST	REAM		
Sample Sequer	ce	#				1		1		1			
If sample is a	a Bl	ank, specify Type: (F)ield, (r)ri	.p, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	ınd	Time (Month/Day/Year hour: m	inut	ces)		4/14/2018 09:0	01	4/14/2018 09:	12	4/14/2018 08	:45		
Duplicate ("Y	?" c	or "N") ¹				N		N		N			=
Split ('Y' or	. "N	T") ²				N		N		N			7
Facility Samp	le	ID Number (if applicable)				L150US3-18	3	L154US3-18	3	L351US3-1	8		П
Laboratory Sa	mpl	e ID Number (if applicable)				448154001		448154002		448154003	3		,
Date of Analy	rsis	(Month/Day/Year)				4/24/2018		4/24/2018		4/24/2018			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	Т	MGD	Field	0.31		3.52		6.51			
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	0.838		1.94		1.49			$\sqrt{}$
14808-79-8	0	Sulfate	Т	mg/L	300.0	5.22		4.35		6.79			
7439-89-6	0	Iron	Т	mg/L	200.8	1.6		2.37		2.04			\mathbb{T}
7440-23-5	0	Sodium	т	mg/L	200.8	0.998		3.11		2.64			T
S0268	0	Organic Carbon ⁶	т	mg/L	9060	13.4		16.5		13.8			
s0097	0	BOD ⁶	т	mg/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	69.9	*B	68.3	*B	65.2	*B		

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	: (KPDES Discharge Number, or	ד" :	JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	REAM		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G						
s0145	1	Specific Conductance	Т	µmho/cm	Field	116		123		125			
s0270	0	Total Suspended Solids	Т	mg/L	160.2	41.2		46.8		86			
s0266	0	Total Dissolved Solids	Т	mg/L	160.1	131	В	137	В	137	В		
s0269	0	Total Solids	Т	mg/L	SM-2540 B 17	157	*	170	*	191	*		
s0296	0	рН	Т	Units	Field	7.38		7.33		7.31			
7440-61-1		Uranium	т	mg/L	200.8	0.000489		0.00252		0.00312		\ /	
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	3.8	*	0.136	*	9.96	*		
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	7.7	*	8.07	*	4.98	*		
												X	
													\
													\perp
													oxed
													oxdot
												/	igwdap
												/	ı \

RESIDENTIAL/CONTAINED – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L150	L150US3-18	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limit
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.16. Rad error is 4.12.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.41. Rad error is 5.26.
L154	L154US3-18	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limit
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.22. Rad error is 4.22.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.87. Rad error is 6.74.
L351	L351US3-18	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limit
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.37. Rad error is 7.18.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.63. Rad error is 6.56.

