

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

FEB 2 7 2018

PPPO-02-4676643-18A

Ms. Robin Green Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-U CONTAINED LANDFILL FOURTH QUARTER CALENDAR YEAR 2017 (OCTOBER–DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FPDP-RPT-0087/V4, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for the fourth quarter calendar year 2017. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of C-746-U Contained Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The report includes groundwater analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results. The report usually contains surface water monitoring data; however, no surface water samples were collected for the quarter because no surface water flow was observed following a rainfall event.

The statistical analyses on the fourth quarter 2017 monitoring well data collected from the C-746-U Landfill were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the fourth quarter calendar year 2017, in accordance with Condition GSTR0001, Standard Requirement 8, of the C-746-U Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Ennife Woodard

Jennifer Woodard Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill 4th Qtr. CY 2017 (October-December) Compliance Monitoring Report

e-copy w/enclosure: april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP cheryl.baker@pad.pppo.gov, FRNP christopher.jung@ky.gov, KDEP curt.walker@pad.pppo.gov, FRNP dave.dollins@lex.doe.gov, PPPO elizabeth.wyatt@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov, FRNP gaye.brewer@ky.gov, KDEP jennifer.blewett@pad.pppo.gov, FRNP jennifer.watson@pad.pppo.gov, FRNP jennifer.woodard@lex.doe.gov, PPPO karen.walker@pad.pppo.gov, FRNP kelly.layne@pad.pppo.gov, FRNP ken.davis@pad.pppo.gov, FRNP kim.knerr@lex.doe.gov, PPPO leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP mike.guffey@ky.gov, KDEP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@swiftstaley.com, SSI stephaniec.brock@ky.gov, KYRHB stefanie.fountain@pad.pppo.gov, FRNP tracey.duncan@lex.doe.gov, PPPO

2

C-746-U Contained Landfill Fourth Quarter Calendar Year 2017 (October–December) **Compliance Monitoring Report** Paducah Gaseous Diffusion Plant, Paducah, Kentucky

> FOUR RIVERS NUCLEAR PARTNERSHIP, uc

This document is approved for public release per review by:

2-26-18

FRNP Classification Support

Date

FPDP-RPT-0087/V4

C-746-U Contained Landfill Fourth Quarter Calendar Year 2017 (October–December) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—February 2018

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

FIGURE	······································	v
TABLES		v
ACRONYMS		ii
1.1 BACK 1.2 MON 1.2.1 1.2.2 1.2.3	CTION GROUND TORING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring RESULTS	1 1 3 3
2.1 STAT 2.1.1 2.1.2 2.1.3	LUATION/STATISTICAL SYNOPSIS ISTICAL ANALYSIS OF GROUNDWATER DATA Upper Continental Recharge System Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer VERIFICATION AND VALIDATION.	8 8 8 8
3. PROFESSIO	DNAL GEOLOGIST AUTHORIZATION 1	1
4. REFERENC	ES	3
APPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORMA-	1
APPENDIX B:	FACILITY INFORMATION SHEETB-	1
APPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS C-	1
APPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENTD-	1
APPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION E-	1
APPENDIX F:	NOTIFICATIONSF-	1
APPENDIX G:	CHART OF MCL AND UTL EXCEEDANCESG-	1
APPENDIX H:	METHANE MONITORING DATA	1

CONTENTS

FIGURE

1. C-746-U Landfill Groundwater Monitoring Well Network	2	,
---	---	---

TABLES

1.	Summary of MCL Exceedances	4
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	. 5
4.	C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters	6
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	6
6.	Monitoring Wells Included in Statistical Analysis	. 8

ACRONYMS

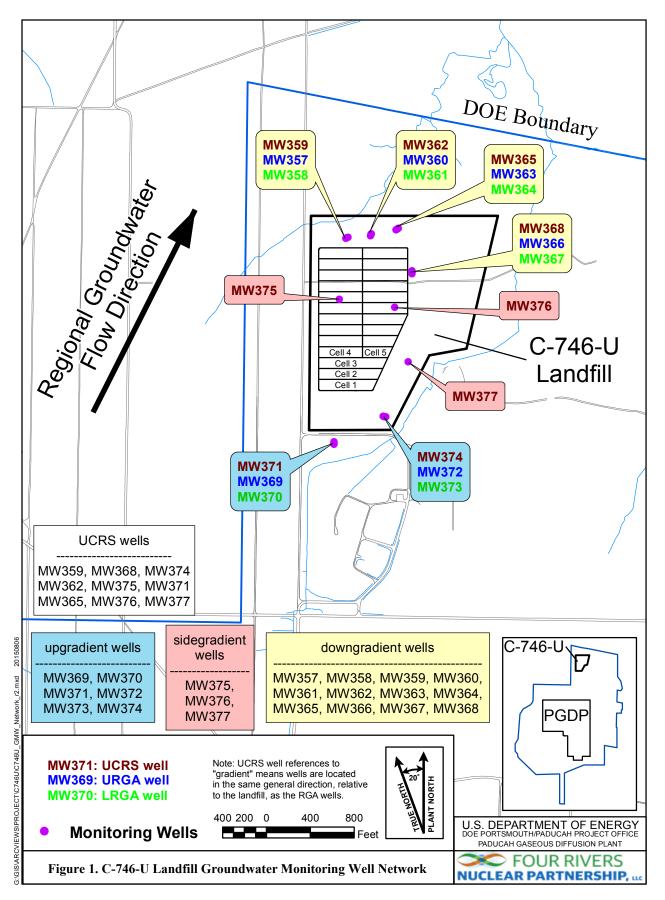
CFR CY KAR KDWM KRS LEL LRGA MCL MW RGA UCRS URGA	Code of Federal Regulations calendar year <i>Kentucky Administrative Regulations</i> Kentucky Division of Waste Management <i>Kentucky Revised Statutes</i> lower explosive limit Lower Regional Gravel Aquifer maximum contaminant level monitoring well Regional Gravel Aquifer Upper Continental Recharge System Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Fourth Quarter Calendar Year 2017 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. No surface water samples were collected for the quarter because no surface water flow was observed following a rainfall event. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 4 and 5. Phases 1, 2, and 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW359, MW368, MW376, and MW377 (all screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan)

(LATA Kentucky 2014) UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2017 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using Four Rivers Nuclear Partnership, LLC, procedure CP4-ES-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 17, 2017, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is northeastward, toward the Ohio River. During October, RGA groundwater flow in the area of the landfill was oriented north to northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in October was 5.88×10^{-4} ft/ft. The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 9.51×10^{-4} ft/ft and 9.27×10^{-4} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.62 to 2.76 ft/day for the URGA and 1.58 to 2.69 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Landfill permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on November 28, 2017. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

No surface water samples were collected for the quarter because no surface water flow was observed following a rainfall event.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Landfill Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL concentrations¹ during the fourth quarter 2017, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW357: Trichloroethene	MW361: Trichloroethene
	MW366: Trichloroethene	MW364: Trichloroethene
	MW369: Trichloroethene	MW370: Beta activity
	MW372: Beta activity	MW373: Trichloroethene

UCRS*	URGA	LRGA	
MW362: Dissolved oxygen,	MW357: Oxidation-reduction	MW361: Oxidation-reduction	
oxidation-reduction potential, sulfate	potential, thorium-230	potential, technetium-99	
MW365: Dissolved oxygen,	MW360: Sodium	MW364: Dissolved oxygen,	
oxidation-reduction potential, sulfate		oxidation-reduction potential,	
		technetium-99	
MW371: Oxidation-reduction	MW363: Oxidation-reduction	MW370: Beta activity,	
potential	potential	oxidation-reduction potential,	
		technetium-99	
MW374: Oxidation-reduction	MW366: Oxidation-reduction	MW373: Oxidation-reduction	
potential	potential	potential	
MW375: Oxidation-reduction	MW369: Oxidation-reduction		
potential, sulfate	potential, technetium-99		
	MW372: Beta activity,		
	oxidation-reduction potential,		
	technetium-99		

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

¹ The term "concentration" may refer to a field measurement result such as pH or oxidation-reduction potential or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW357: Thorium-230	None
MW360: Sodium	

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW357, MW361, MW364, and MW366 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 8; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL, thorium-230 in MW357 and sodium in MW360, do not have an identified source and are considered preliminarily to be Type 2 exceedances, per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. The preliminary Type 2 exceedance in downgradient well MW360 did not have an increasing trend, thus it is considered to be a Type 1 exceedance (not attributable to the landfills).

The Mann-Kendall statistical test indicates that there is an increasing trend of thorium-230 in MW357 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-U Landfill because thorium-230 has very limited solubility and, therefore, if present, other soluble constituents (not detected) also would be expected.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS wells with dissolved oxygen and sulfate values that exceed both the historical and current backgrounds (Table 5). Because these wells are not hydrogeologically downgradient of the C-746-U Landfill, these exceedances are not attributable to C-746-U sources and are considered to be Type 1 exceedances.

Table 4. C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Var(S) ⁴	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
C-746-U Landfill	MW360	Sodium	8	0.05	0.452	2.000	65.33	0.121	0.071	No Trend
	MW357	Thorium- 230	8	0.05	0.031	16.00	65.33	0.131	0.571	Positive Trend

Footnotes:

¹An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴VAR(S) represents the variance of S in the sample set and takes into account statistical ties.

⁵ The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(x_j-x_k)/(j-k)$, where x is a data point and j and k are values of time.

⁶Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is positive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.

⁷ The Mann-Kendall decision operates on two hypotheses, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend. Two different tests were ran to test for positive or negative trends. This table reports the test with the lowest p-value. Note: Statistics generated using XLSTAT.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS	
MW365: Dissolved oxygen, sulfate	
*In the same direction (relative to the landfill) as RGA wells.	

All MCL and UTL exceedances, except for thorium-230 in MW357, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill. The increasing trend for thorium-230 in MW357 does not appear to be landfill-related. Thorium-230 in MW357 will continue to be evaluated in the context of this observation.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2017 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance—an exceedance not exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance was noted as a Type 2 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW359**	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368**	MW366	MW367
MW371***	MW369 (upgradient)	MW370 (upgradient)
MW374***	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376**		
MW377**		

Table 6. Monitoring Wells Included in Statistical Analysis*

*A map showing the monitoring well locations is shown on Figure 1.

**MW359, MW368, MW376, and MW377 had insufficient water to permit a water sample for laboratory analysis.

***In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Dissolved oxygen and sulfate exceeded the current background UTL and are included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 33 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, beta activity, oxidation-reduction potential, sodium, technetium-99, and thorium-230 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Sodium and thorium-230 exceeded the current background UTL and are included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, beta activity, dissolved oxygen, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedances of the current background UTL for any LRGA downgradient wells as summarized in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill Fourth Quarter Calendar Year 2017 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FPDP-RPT-0087/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

PG 113927 K.R. Davis 2-26-18

. Davis

Kenneth R. Davi

PG113927

February 26, 2018 Date

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:		Gaseous Diffusion Plant on DWM Permit Face)	Activity: C-746-	U Contained Landfill	
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	4th Qtr. CY 2017	
Please check the	following as applicable.				
Characte	erization X Quar	rterly Semiannual	Annual	Assessment	
Please check app	licable submittal(s):	X Groundwater	Surfac	ce Water	
		Leachate	X Metha	ne Monitoring	

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 *KAR* 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna K Redfield Deputy Program Manager Four Rivers Nuclear Partnership, LLC

Jennifer Woodard, Paducah Site Lead U.S. Department of Energy

APPENDIX B

FACILITY INFORMATION SHEET

	Groundwater: Octobe	r 2017			Permit	SW07300014, SW07300015,
Sampling Date:	Methane: November 2	2017	County:	McCracken	Nos.	SW07300045
Facility Name: U.S. DOE—Paducah Gaseous Diffusion Plant						
	(As of	ficially show	wn on DWM Permit Face	e)		
Site Address:	5600 Hobbs R	oad	Kevil, Kentucky		42053	
	Street		City/State		Zip	
Phone No: (27	70) 441-6800	Latitude:	N 37° 07' 45"	Longit	ude: W	88° 47' 55"

FACILITY INFORMATION SHEET

OWNER INFORMATION

Facility Owner:	U.S. DOE, Robert E. Edward	ls III, Manager Phone No:	(859) 227-5020	
Contact Person:	Curt B. Walker	Phone No:	(270) 441-5226	
Contact Person Title: Director, Environmental Services Project, Four Rivers Nuclear Partnership, LLC				
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky	42053	
	Street	City/State	Zip	

SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)

Company: GEO C	Consultants, LLC				
Contact Person:	Sam Martin	Phone No: (270) 441-6755			
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky	42053		
	Street	City/State	Zip		
	LABO	DRATORY RECORD #1			
Laboratory <u>GEL Laboratories, LLC</u>		Lab ID No: <u>KY90129</u>			
Contact Person:	Valerie Davis	Phone No: (843) 769-7391			
Mailing Address:	2040 Savage Road	Charleston, South Carolina	29407		
	Street	City/State	Zip		
	LABO	DRATORY RECORD #2			
Laboratory: N/A		Lab ID No: N	J/A		
Contact Person:	N/A	Phone No: _N/A			
Mailing Address:	N/A				
	Street	City/State	Zip		
	LABO	DRATORY RECORD #3			
Laboratory: N/A		Lab ID No:	J/A		
Contact Person:	N/A	Phone No: N/A			
Mailing Address:	N/A				
	Street	City/State	Zip		

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4798	В	8004-47	799	8004-098	31	8004-480	0
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	••)	357		358		359		360	
Sample Sequen	ce #				1		1		1		1	
If sample is a :	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)q	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour:minu	tes)		10/3/2017 10):31	10/4/2017	08:35	NA		10/3/2017 09	9:43
Duplicate ("Y	" or "N") ²				Ν		N		N		N	
Split ("Y" or	"N") ³				Ν		Ν		N		N	
Facility Samp	le ID Number (if applicable)				MW357UG1	-18	MW358U0	G1-18	NA		MW360UG1	-18
Laboratory Sa	mple ID Number (if applicable)		43419500	3	434325	001	NA		43419500	5		
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	ysis	10/9/2017	7	10/10/20	017	NA		10/9/2017	7		
Gradient with	respect to Monitored Unit (UP, DC), NW	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.393		0.462			*	0.134	J
16887-00-6	Chloride(s)	т	mg/L	9056	31.3	*	37.9	*		*	9.41	*
16984-48-8	Fluoride	т	mg/L	9056	0.151		0.121			*	0.359	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.28		0.83			*	0.0734	J
14808-79-8	Sulfate	т	mg/L	9056	46.1		71.4			*	15.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.35		30.38			*	30.35	
s0145	Specific Conductance	т	µMH0/cm	Field	431		538			*	536	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *``*,"* then describe on *``Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	8	8004-4799	9	8004-0981		8004-4800	
Facility's Lo	ocal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.32		322.53			*	322.49	
N238	Dissolved Oxygen	т	mg/L	Field	3.46		2.96			*	1.53	
S0266	Total Dissolved Solids	т	mg/L	160.1	246		281			*	293	
S0296	рн	т	Units	Field	6.12		6.24			*	6.46	
NS215	Eh	т	mV	Field	365		18			*	211	
s0907	Temperature	т	°C	Field	16.83		19.39			*	17.28	
7429-90-5	Aluminum	т	mg/L	6020	0.101		0.0743			*	0.0337	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00372	J		*	0.00335	J
7440-39-3	Barium	т	mg/L	6020	0.0733		0.0579			*	0.144	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.374		0.403			*	0.032	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	26.9		32.7			*	26.3	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00149		0.0153			*	0.00805	
7440-50-8	Copper	т	mg/L	6020	0.000844	J	0.00154			*	0.000427	J
7439-89-6	Iron	т	mg/L	6020	0.325		4.47			*	4.24	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.5		15			*	9.25	
7439-96-5	Manganese	т	mg/L	6020	0.151		0.705			*	0.2	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	81	8004-4800	
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7		Molybdenum	т	mg/L	6020	<0.0005		0.000408	J		*	0.000671	
7440-02-0		Nickel	т	mg/L	6020	0.000697	J	0.00768			*	0.00121	J
7440-09-7		Potassium	т	mg/L	6020	1.72		2.44			*	0.718	
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2		Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4		Silver	т	mg/L	6020	0.000375	J	<0.001			*	<0.001	
7440-23-5		Sodium	т	mg/L	6020	43.9		42.7			*	78.3	
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	*
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1		Uranium	т	mg/L	6020	<0.0002		<0.0002			*	0.00021	
7440-62-2		Vanadium	т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-66-6		Zinc	т	mg/L	6020	0.00408	J	0.00796	J		*	<0.01	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-09	81	8004-4800	
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00505		0.00374			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	3	8004-479	9	8004-09	81	8004-4800	
Facility's Loo	cal Well or Spring Number (e.g., M	1 W-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000196			*	<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.098		<0.0952			*	0.0432	J
12674-11-2	PCB-1016	т	ug/L	8082	<0.098		<0.0952			*	<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.098		<0.0952			*	<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.098		<0.0952			*	<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.098		<0.0952			*	0.0432	J
12672-29-6	PCB-1248	т	ug/L	8082	<0.098		<0.0952			*	<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798		8004-4799)	8004-098	1	8004-4800)
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.098		<0.0952			*	<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.098		<0.0952			*	<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.098		<0.0952			*	<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	2.28	*	2.95	*		*	2.71	*
12587-47-2	Gross Beta	т	pCi/L	9310	28	*	35.8	*		*	3.15	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.304	*	0.391	*		*	0.0953	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.4	*	-0.87	*		*	-1.71	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	44.5	*	44.5	*		*	3.62	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.69	*	1.22	*		*	0.759	*
10028-17-8	Tritium	т	pCi/L	906.0	-157	*	-113	*		*	-28.7	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		30.2			*	13.6	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.186	J		*	0.169	J
S0268	Total Organic Carbon	т	mg/L	9060	1.08	J	2.95			*	2.63	
s0586	Total Organic Halides	т	mg/L	9020	0.0082	J	0.0077	BJ		*	0.0205	

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479	97
Facility's Loo	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	••)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)q	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/3/2017 08	3:02	10/3/2017	08:59	10/4/2017	13:12	10/4/2017 1	2:27
Duplicate ("Y	or "N") ²				Ν		Ν		Ν		N	
Split ("Y" or	"N") ³				Ν		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG1	-18	MW362U	G1-18	MW363U0	G1-18	MW364UG	1-18
Laboratory Sar	nple ID Number (if applicable)				43419500)1	434195	007	434325	003	4343250	05
Date of Analys	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						10/9/20	17	10/10/20)17	10/10/201	17
Gradient with	respect to Monitored Unit (UP, DC	OWN,	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	Ν	DOWN	l
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.419		0.113	J	0.174	J	0.444	
16887-00-6	Chloride(s)	т	mg/L	9056	32	*	6.68	*	30	*	34.1	*
16984-48-8	Fluoride	т	mg/L	9056	0.151		0.327		0.148		0.138	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.07		0.524		4.77		0.988	
14808-79-8	Sulfate	т	mg/L	9056	74.2		26		31.2		72.8	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.33		30.35		30.34		30.36	
s0145	Specific Conductance	т	µMH0/cm	Field	482		721		407		469	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *``*,"* then describe on *``Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796		8004-4797	
Facility's Lo	cal Well or Spring Number (e.g., Mw	-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	322.49		335.72		322.41		321.64	
N238	Dissolved Oxygen	т	mg/L	Field	3.36		5.26		3.1		4.87	
s0266	Total Dissolved Solids	т	mg/L	160.1	273		529		257		277	
s0296	рН	т	Units	Field	6.06		6.83		6.22		6.09	
NS215	Eh	т	mV	Field	372		248		280		291	
s0907	Temperature	т	°C	Field	17.72		16.61		19.44		20.11	
7429-90-5	Aluminum	т	mg/L	6020	0.0516		11.3		0.0465	J	0.0347	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00424	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0567		0.143		0.172		0.0696	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		0.000342	J	<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.136		0.0186		0.0337		0.0142	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	30.3		23.5		27.5		30.5	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.0117		<0.01		0.00634	J
7440-48-4	Cobalt	т	mg/L	6020	0.000504	J	0.00311		0.00197		0.000897	J
7440-50-8	Copper	т	mg/L	6020	0.000788	J	0.00651		0.000921	J	0.000818	J
7439-89-6	Iron	т	mg/L	6020	0.32		6.04		0.326		0.375	
7439-92-1	Lead	т	mg/L	6020	0.000579	J	0.00559		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	13.1		10.9		10.9		13	
7439-96-5	Manganese	т	mg/L	6020	0.0984		0.0323		0.213		0.134	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	ER ¹ , Facility Well/Spring Nu	mber			8004-479	5	8004-098	36	8004-479	6	8004-479	7
Facility's	Local Well or Spring Number	r (e.g., MW-	·1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00101		<0.0005		0.000726	
7440-02-0	Nickel	т	mg/L	6020	<0.002		0.00575		0.0012	J	0.0015	J
7440-09-7	Potassium	Т	mg/L	6020	2.21		1.01		1.65		2.05	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		0.000475	J	<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	46.2		134		37.4		43.1	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.00533		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		0.0174		<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.00344	J	0.0155		<0.01		0.0515	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-098	6	8004-47	96	8004-47	97
Facility's Loo	al Well or Spring Number (e.g.,)	MW-1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00503		<0.001		0.00127		0.00679	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	6	8004-479	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000195		<0.0000194		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.098		0.0731	J	<0.0971	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.098		<0.098		<0.0971	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.098		<0.098		<0.0971	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.098		<0.098		<0.0971	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.098		<0.098		<0.0971	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.098		0.0731	J	<0.0971	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479)7
Facility's Loc	al Well or Spring Number (e.g., M	4W-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.098		<0.098		<0.0971	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.098		<0.098		<0.0971	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.098		<0.098		<0.0971	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.527	*	8.57	*	2.79	*	1.93	*
12587-47-2	Gross Beta	т	pCi/L	9310	28.1	*	3.87	*	13.9	*	35.9	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.671	*	0.527	*	0.292	*	0.364	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.159	*	-0.36	*	2	*	-0.723	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	52.4	*	6.17	*	10.9	*	56.8	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.148	*	0.484	*	0.792	*	0.472	*
10028-17-8	Tritium	т	pCi/L	906.0	-51.8	*	-35.3	*	-94.6	*	-21.5	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	17.5	J	15.6	J	10.9	J	<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		0.171	J	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.17	J	4.24		1.42	J	1.11	J
s0586	Total Organic Halides	т	mg/L	9020	0.00996	J	0.015		0.0155	В	0.00553	J

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-098	4	8004-09	982	8004-47	793	8004-098	3
Facility's Loo	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	.)	365		366		367		368	
Sample Sequen	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour:minu	tes)		10/4/2017 1	1:43	10/4/2017	13:57	10/4/2017	09:35	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW365UG1	-18	MW366U	G1-18	MW367U0	G1-18	NA	
Laboratory Sa	mple ID Number (if applicable)		43432500)7	434325	009	434325	013	NA			
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	ysis	10/10/201	7	10/10/2	017	10/9/20	17	NA			
Gradient with	respect to Monitored Unit (UP, DO), NW	SIDE, UNKN	IOWN)	DOWN		DOW	'N	DOW	N	DOWN	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.482		0.118	J		*
16887-00-6	Chloride(s)	т	mg/L	9056	4.26	*	38.9	*	7.39	*		*
16984-48-8	Fluoride	т	mg/L	9214	0.221		0.154		0.0835	J		*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.463		0.943		0.0531	J		*
14808-79-8	Sulfate	т	mg/L	9056	59.3		56		21.2			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.38		30.3		30.39			*
s0145	Specific Conductance	т	µMH0/cm	Field	382		474		251			*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *``*,"* then describe on *``Written Comments Page."* STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	1	8004-0982	2	8004-4793		8004-0983	}
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	327.35		322.59		322.45			*
N238	Dissolved Oxygen	т	mg/L	Field	5.9		5.09		1.78			*
S0266	Total Dissolved Solids	т	mg/L	160.1	234		257		140			*
50296	рн	т	Units	Field	6.3		6.19		6.07			*
NS215	Eh	т	mV	Field	240		288		107			*
S0907	Temperature	т	°C	Field	21.22		20.17		18.94			*
7429-90-5	Aluminum	т	mg/L	6020	0.0238	J	0.0446	J	0.0497	J		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00219	J	0.00752			*
7440-39-3	Barium	т	mg/L	6020	0.105		0.137		0.147			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	0.00815	J	0.148		0.0195			*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	20.2		33		13.8			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.0015		0.00185		0.00678			*
7440-50-8	Copper	т	mg/L	6020	0.00211		0.000996	J	0.000936	J		*
7439-89-6	Iron	т	mg/L	6020	<0.1		0.368		11.5			*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	9.8		14		7.67			*
7439-96-5	Manganese	т	mg/L	6020	0.00828		0.172		1.62			*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-0983	}
Facility's	's Local Well or Spring Number (e.g., MW-1, MW-2, CONSTITUENT T Unit OF MEASURE '/ Molybdenum T mg/L '/ Molybdenum T mg/L '/ Potassium T mg/L '/ Potassium T mg/L '/ Potassium T mg/L '/ Potassium T mg/L '/ Selenium T mg/L '/ Selenium T mg/L '/ Sodium T mg/L '/ Tantalum T mg/L '/ Thallium T mg/L '/ Uranium T mg/L '/ Zinc T mg/L '/ Vinyl acetate T mg/L '/ Acetone T mg/L '/ Acrolein T mg/L				tc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT			METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7		Molybdenum	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-02-0		Nickel	т	mg/L	6020	0.00554		0.000769	J	0.00292			*
7440-09-7		Potassium	т	mg/L	6020	0.238	J	2.01		2.67			*
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	т	mg/L	6020	<0.005		0.00202	J	<0.005			*
7440-22-4		Silver	т	mg/L	6020	<0.001		0.000405	J	<0.001			*
7440-23-5		Sodium	т	mg/L	6020	48.5		45.9		17			*
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*		*
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	т	mg/L	6020	0.000104	J	<0.0002		<0.0002			*
7440-62-2		Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-66-6		Zinc	т	mg/L	6020	0.00666	J	0.00404	J	0.0116			*
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984		8004-098	2	8004-47	93	8004-0983	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00503		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-479	93	8004-0983	
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000195		<0.0000197			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001	*		*
1336-36-3	PCB,Total	т	ug/L	8082	0.0572	J	<0.1		<0.098			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.1		<0.098			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.1		<0.098			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.1		<0.098			*
53469-21-9	PCB-1242	т	ug/L	8082	0.0572	J	<0.1		<0.098			*
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.1		<0.098			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-0983	
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.1		<0.098			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.1		<0.098			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.1		<0.098			*
12587-46-1	Gross Alpha	т	pCi/L	9310	3.44	*	5.77	*	6.16	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	3.06	*	49.7	*	8.24	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.355	*	0.342	*	0.761	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.23	*	-1.21	*	-0.382	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-1.94	*	50.4	*	9.85	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.152	*	0.568	*	1.01	*		*
10028-17-8	Tritium	т	pCi/L	906.0	-90.5	*	-198	*	-94	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		10.9	J		*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		0.186	J		*
s0268	Total Organic Carbon	т	mg/L	9060	1.93	J	1.34	J	1.31	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.0128	В	0.00726	BJ	0.00526	BJ		*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	4819	8004-4	808
Facility's Loc	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	••)	369		37	0	37	1	372	
Sample Sequence	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/3/2017	08:26	10/3/201	7 09:49	10/3/201	7 09:07	10/3/2017	12:47
Duplicate ("Y	or "N") ²				N		Ν		N		Ν	
Split ("Y" or	"N") ³				N		Ν		N		Ν	
Facility Sampl	le ID Number (if applicable)				MW369U0	G1-18	MW370	JG1-18	MW371U	JG1-18	MW372U	G1-18
Laboratory Sar	mple ID Number (if applicable)		4341950	009	43419	5011	43419	5013	434195	015		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	10/9/20	17	10/9/2	2017	10/9/2	2017	10/9/20)17		
Gradient with	respect to Monitored Unit (UP, DC), NWC	SIDE, UNKN	IOWN)	UP		U	Р	UI	C	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.353		0.413		0.0689	J	0.568	
16887-00-6	Chloride(s)	т	mg/L	9056	30.4	*	33.8	*	4.6	*	48.3	*
16984-48-8	Fluoride	т	mg/L	9056	0.18		0.142		0.28		0.15	
\$0595	Nitrate & Nitrite	т	mg/L	9056	0.794		1.14		0.0572	J	0.971	
14808-79-8	Sulfate	т	mg/L	9056	7.01		18.8		10		57.7	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.33		30.35		30.35		30.35	
s0145	Specific Conductance	т	µMH0/cm	Field	370		438		744		622	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	
Facility's Loo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.06		324.01		340.83		324.09	
N238	Dissolved Oxygen	т	mg/L	Field	2.02		3.78		1.82		1.54	
S0266	Total Dissolved Solids	т	mg/L	160.1	180		216		436		304	
S0296	рн	т	Units	Field	6.12		6.13		6.59		6.22	
NS215	Eh	т	mV	Field	399		392		375		358	
s0907	Temperature	т	°C	Field	18.5		18.72		19.72		20.61	
7429-90-5	Aluminum	т	mg/L	6020	0.13		0.0805		1.29		0.0196	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00262	J	0.00275	J	0.0021	J
7440-39-3	Barium	т	mg/L	6020	0.371		0.244		0.154		0.0573	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0166		0.0341		0.00814	J	0.716	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	15.9		27.9		42.1		46.5	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.00682	J	<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00741		0.00237		<0.001		0.000399	J
7440-50-8	Copper	т	mg/L	6020	0.00131		0.00135		0.00143		0.000635	J
7439-89-6	Iron	т	mg/L	6020	0.291		0.49		0.822		0.432	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	6.72		12		14.8		17.7	
7439-96-5	Manganese	т	mg/L	6020	0.0413		0.174		0.00749		0.0058	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	PDD					8004-482	0	8004-481	8	8004-481	9	8004-480	8
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴		CONSTITUENT		OF	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7		Molybdenum	т	mg/L	6020	<0.0005		0.000687		0.000567		0.000241	J
7440-02-0		Nickel	т	mg/L	6020	0.00562		0.00143	J	0.00195	J	0.000787	J
7440-09-7		Potassium	т	mg/L	6020	0.515		2.57		0.597		2.1	
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	т	mg/L	6020	0.00231	J	<0.005		<0.005		0.0022	J
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	50.3		40.6		105		47.5	
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00164		<0.0002	
7440-62-2		Vanadium	т	mg/L	6020	0.00373	J	<0.01		0.00475	J	<0.01	
7440-66-6		Zinc	т	mg/L	6020	0.00362	J	0.00736	J	0.00439	J	<0.01	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00551		0.003		0.00204		0.00449	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	D	8004-481	8	8004-48	19	8004-480	08
Facility's Loo	cal Well or Spring Number (e.g., M	4W-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000197		<0.0000193		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	0.0475	J	<0.0962		<0.0971		<0.0952	
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	0.0475	J	<0.0962		<0.0971		<0.0952	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER1	D 5OF MEASURE-1IPCB-1254Tug/L-5IPCB-1260Tug/L-4IPCB-1268Tug/L-1Gross AlphaTpCi/L-2Gross BetaTpCi/L-0IIodine-131TpCi/L-3Radium-226TpCi/L-2Strontium-90TpCi/L-7ITechnetium-99TpCi/L-7NThorium-230TpCi/L				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g., M	MW-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT		OF	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.0962		<0.0971		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.64	*	0.072	*	1.64	*	3.27	*
12587-47-2	Gross Beta	т	pCi/L	9310	40.7	*	69	*	1.14	*	132	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.467	*	1.36	*	0.798	*	0.662	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.05	*	-0.297	*	-0.392	*	1.4	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	70.8	*	103	*	3.24	*	195	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.203	*	0.396	*	1.16	*	0.664	*
10028-17-8	Tritium	т	pCi/L	906.0	-101	*	-108	*	-95.9	*	-53.7	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	9.71	J	17.5	J	19.5	J	21.5	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.6	J	1.26	J	2.85		1.42	J
s0586	Total Organic Halides	т	mg/L	9020	0.0162		0.00684	J	0.00614	J	0.013	

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	2	8004-09	990	8004-09	985	8004-098	38
Facility's Loo	cal Well or Spring Number (e.g., M	w−1	L, MW-2, etc	.)	373		374		375		376	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/3/2017 14	4:20	10/3/2017	13:32	10/3/2017	11:00	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)		MW373UG1	-18	MW374U	G1-18	MW375U0	G1-18	NA			
Laboratory Sar	pratory Sample ID Number (if applicable)					7	434195	019	434195	021	NA	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	10/9/2017	7	10/9/20)17	10/9/20	17	NA			
Gradient with	respect to Monitored Unit (UP, DC) WN	, SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.578		0.811		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	45.6	*	66.7	*	4.53	*		*
16984-48-8	Fluoride	т	mg/L	9056	0.156		0.13		0.28			*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.929		<0.1		1.41			*
14808-79-8	Sulfate	т	mg/L	9056	118		6.78		29.2			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.33		30.34		30.35			*
S0145	Specific Conductance	т	µMH0/cm	Field	742		700		364			*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	3
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
50906	Static Water Level Elevation	т	Ft. MSL	Field	324.1		333.97		329.75			*
N238	Dissolved Oxygen	т	mg/L	Field	1.82		1.12		2.65			*
S0266	Total Dissolved Solids	т	mg/L	160.1	444		376		227			*
50296	рн	т	Units	Field	6.24		6.73		6.42			*
NS215	Eh	т	mV	Field	347		194		386			*
S0907	Temperature	т	°C	Field	19.89		20.67		19.5			*
7429-90-5	Aluminum	т	mg/L	6020	0.0967		0.0581		0.9			*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	0.0021	J	0.00301	J	<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0345		0.146		0.166			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.38		0.0196		0.0118	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	58.5		22		14.1			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		0.00392	J		*
7440-48-4	Cobalt	т	mg/L	6020	0.00464		0.00128		0.00069	J		*
7440-50-8	Copper	т	mg/L	6020	0.00138		0.000585	J	0.00141			*
7439-89-6	Iron	т	mg/L	6020	0.839		1.45		0.976			*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		0.000504	J		*
7439-95-4	Magnesium	т	mg/L	6020	22.3		6.22		5.88			*
7439-96-5	Manganese	т	mg/L	6020	0.215		0.201		0.00928			*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	DescriptionDescriptic					8004-479	2	8004-099	90	8004-098	5	8004-098	38
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	D	OF	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7		Molybdenum	т	mg/L	6020	<0.0005		0.000284	J	0.000391	J		*
7440-02-0		Nickel	т	mg/L	6020	0.00307		0.000816	J	0.00248			*
7440-09-7		Potassium	т	mg/L	6020	2.61		0.453		0.342			*
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	т	mg/L	6020	<0.005		<0.005		0.00284	J		*
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		0.00111			*
7440-23-5		Sodium	т	mg/L	6020	52.7		127		52.8			*
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*		*
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	т	mg/L	6020	<0.0002		0.000107	J	0.000137	J		*
7440-62-2		Vanadium	т	mg/L	6020	<0.01		<0.01		0.00482	J		*
7440-66-6		Zinc	т	mg/L	6020	0.0041	J	<0.01		0.00498	J		*
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-099	C	8004-098	35	8004-09	88
Facility's Loo	cal Well or Spring Number (e.g.,)	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00693		<0.001		0.00169			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	D	8004-098	85	8004-09	988
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000193		<0.0000196			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.0952		<0.0971			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.0952		<0.0971			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.0952		<0.0971			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.0952		<0.0971			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.0952		<0.0971			*
12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.0952		<0.0971			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.0952		<0.0971			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.0952		<0.0971			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.0952		<0.0971			*
12587-46-1	Gross Alpha	т	pCi/L	9310	3.61	*	1.9	*	0.222	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	20.6	*	0.326	*	1.1	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.68	*	0.857	*	0.579	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.84	*	0.171	*	-0.0532	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	29.6	*	4.14	*	1.16	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.453	*	0.158	*	0.57	*		*
10028-17-8	Tritium	т	pCi/L	906.0	-38.7	*	-42.5	*	-89.9	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	15.6	J	39.1		<20			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5			*
S0268	Total Organic Carbon	т	mg/L	9060	1.46	J	2.72		1.29	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.0122		0.021		0.0108			*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-098	9	0000-00	00	0000-000	00	0000-000	0
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	L, MW-2, etc	.)	377		E. BLAN	١K	F. BLAN	к	T. BLANK	(1
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		E		F		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		NA		10/4/2017	08:10	10/4/2017 0	9:40	10/3/2017 0	7:50
Duplicate ("Y	or "N") ²				Ν		N		N		Ν	
Split ("Y" or	"N") ³				Ν		N		N		Ν	
Facility Sampl	ility Sample ID Number (if applicable)						RI1UG1	-18	FB1UG1-	18	TB1UG1-	18
Laboratory Sar	poratory Sample ID Number (if applicable)						4343250	16	4343250	15	43419502	23
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	NA		10/9/20	17	10/9/201	7	10/10/201	17	
Gradient with	respect to Monitored Unit (UP, DC	WN,	, SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."*

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989	9	0000-0000)	0000-0000		0000-0000)
Facility's Lo	ocal Well or Spring Number (e.g., Mw	1-1,	MW-2, BLANK-	F, etc.)	377		E. BLANK	ζ.	F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
S0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.002		<0.002			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	<0.001		0.00121			*
7439-89-6	Iron	т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	SR ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	0
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	К	F. BLANI	ĸ	T. BLANK	1
CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7		Molybdenum	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0		Nickel	т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7		Potassium	т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6		Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5		Sodium	т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7		Tantalum	т	mg/L	6020		*	<0.005	*	<0.005	*		*
7440-28-0		Thallium	т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2		Vanadium	т	mg/L	6020		*	<0.01		<0.01			*
7440-66-6		Zinc	т	mg/L	6020		*	<0.01		<0.01			*
108-05-4		Vinyl acetate	т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260		*	<0.005		0.00235	J	<0.005	
107-02-8		Acrolein	т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-000	0	0000-00	00	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	377		E. BLAN	<	F. BLAN	IK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	0	0000-00	00	0000-00	00
Facility's Loo	cal Well or Spring Number (e.g., M	fw-1	L, MW-2, et	.c.)	377		E. BLAN	<	F. BLAN	١K	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000194		<0.0000198		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0952		<0.0952			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0952		<0.0952			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0952		<0.0952			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0952		<0.0952			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0952		<0.0952			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0952		<0.0952			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-0000)
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	377		E. BLANK		F. BLANI	ĸ	T. BLANK	1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0952		<0.0952			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0952		<0.0952			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0952		<0.0952			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	-0.18	*	2.37	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	3.37	*	2.15	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418		*	0.346	*	-0.093	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*	1.88	*	1.24	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	-2.43	*	-0.468	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	0.383	*	0.316	*		*
10028-17-8	Tritium	т	pCi/L	906.0		*	-90.4	*	-137	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		000-000	00	0000-0000		8004-479	3				
Facility's Loc	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	••)	T. BLANK	ζ2	T. BLAN	K 3	367			
Sample Sequenc	1		1		2							
If sample is a B	Blank, specify Type: (F)ield, (T)rip, ((M)e	thod, or (E)	quipment	Т		Т		NA			
Sample Date an	nd Time (Month/Day/Year hour: minut	tes)		10/3/2017 0)7:30	10/4/2017	08:05	10/4/2017 0	9:35		
Duplicate ("Y"	or "N") ²				Ν		N		Y			/
Split ("Y" or	"N") ³				N		N		N			
Facility Sampl	le ID Number (if applicable)				TB2UG1-	18	TB3UG1	-18	MW367DUG	1-18		/
Laboratory Sam	mple ID Number (if applicable)				43419502	24	4343250)17	43432501	11		/
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	0r	ganics Anal	ysis	10/3/201	7	10/4/2017		10/10/2017		$ \rangle /$	
Gradient with	respect to Monitored Unit (UP, DO	wn,	SIDE, UNKN	IOWN)	NA		NA		DOWN		I Y	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR FQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQI ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056		*		*	0.112	J		
16887-00-6	Chloride(s)	т	mg/L	9056		*		*	7.38	*		
16984-48-8 Fluoride T mg/L 9056						*		*	0.0858	J		
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*	0.0512	J		
14808-79-8	Sulfate	т	mg/L	9056		*		*	21.4		/	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*	30.39		/	
s0145	Specific Conductance	т	µMH0/cm	Field		*		*	251		/	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."*

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKCWA NIIMPEP	, Facility Well/Spring Number			0000-0000		0000-0000		8004-4793		1		
					T. BLANK		T. BLANK 3		367		<u> </u>	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)		- T				r	<u> </u>	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*	322.45			
N238	Dissolved Oxygen	т	mg/L	Field		*		*	1.78			
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*	136			
S0296	рН	т	Units	Field		*		*	6.07			/
NS215	Eh	т	mV	Field		*		*	107			
S0907	Temperature	т	°C	Field		*		*	18.94			/
7429-90-5	Aluminum	т	mg/L	6020		*		*	0.0472	J	$ \rangle /$	
7440-36-0	Antimony	т	mg/L	6020		*		*	<0.003			
7440-38-2	Arsenic	т	mg/L	6020		*		*	0.00738		I X	
7440-39-3	Barium	т	mg/L	6020		*		*	0.144			
7440-41-7	Beryllium	т	mg/L	6020		*		*	<0.0005			
7440-42-8	Boron	т	mg/L	6020		*		*	0.0205		$ \rangle$	
7440-43-9	Cadmium	т	mg/L	6020		*		*	<0.001			
7440-70-2	Calcium	т	mg/L	6020		*		*	13.4			Ν
7440-47-3	Chromium	т	mg/L	6020		*		*	<0.01			
7440-48-4	Cobalt	т	mg/L	6020		*		*	0.00642			
7440-50-8	Copper	т	mg/L	6020		*		*	0.000952	J		
7439-89-6	Iron	т	mg/L	6020		*		*	11.5			
7439-92-1	Lead	т	mg/L	6020		*		*	<0.002			
7439-95-4	Magnesium	т	mg/L	6020		*		*	7.33			
7439-96-5	Manganese	т	mg/L	6020		*		*	1.66			
7439-97-6	Mercury	т	mg/L	7470		*		*	<0.0002		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				0000-000	0	0000-000	00	8004-479	93	Ν	i
Facility's I	local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLANK 3		367			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020		*		*	<0.0005			\square
7440-02-0	Nickel	т	mg/L	6020		*		*	0.00302			17
7440-09-7	Potassium	т	mg/L	6020		*		*	2.61			1/
7440-16-6	Rhodium	т	mg/L	6020		*		*	<0.005			
7782-49-2	Selenium	т	mg/L	6020		*		*	<0.005			/
7440-22-4	Silver	Т	mg/L	6020		*		*	<0.001			
7440-23-5	Sodium	т	mg/L	6020		*		*	16			
7440-25-7	Tantalum	т	mg/L	6020		*		*	<0.005	*	V	
7440-28-0	Thallium	т	mg/L	6020		*		*	<0.002		X	
7440-61-1	Uranium	т	mg/L	6020		*		*	<0.0002			
7440-62-2	Vanadium	т	mg/L	6020		*		*	<0.01			
7440-66-6	Zinc	т	mg/L	6020		*		*	0.0103		/ \	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000		8004-4793			
Facility's Loo	al Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	T. BLANK 3		367		
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			1/
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			/
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			/
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		\setminus	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		X	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			\backslash
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			\backslash
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			$\left \right\rangle$
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-43

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	C	0000-0000		8004-4793		\	
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		367			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			/
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		()	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000195		<0.0000196			
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		\wedge	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001			$\left \right\rangle$
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.098			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.098			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.098			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.098			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.098		/	
12672-29-6	PCB-1248	т	ug/L	8082		*		*	<0.098		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000		8004-4793	8004-4793		
Facility's Loc	al Well or Spring Number (e.g., M	4W-1	L, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK 3		367			
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*	<0.098			\square
11096-82-5	PCB-1260	т	ug/L	8082		*		*	<0.098			17
11100-14-4	PCB-1268	т	ug/L	8082		*		*	<0.098			/
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*	4.8	*		/
12587-47-2	Gross Beta	т	pCi/L	9310		*		*	8.35	*		
10043-66-0	Iodine-131	т	pCi/L			*		*		*		
13982-63-3	Radium-226	т	pCi/L	AN-1418		*		*	1.12	*	$\langle \rangle$	
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*	-0.758	*	V	
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*	-1.54	*	Λ	
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*	0.877	*		
10028-17-8	Tritium	т	pCi/L	906.0		*		*	129	*		
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*	<20			
57-12-5	Cyanide	т	mg/L	9012		*		*	<0.2			\
20461-54-5	Iodide	т	mg/L	300.0		*		*	0.208	J		Ν
s0268	Total Organic Carbon	т	mg/L	9060		*		*	1.39	J		$\left \right\rangle$
\$0586	Total Organic Halides	т	mg/L	9020		*		*	0.00702	BJ		\Box
												\square
												\Box

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring	Facility		-	Burnista
Point	Sample ID	Constituent	Flag	Description
004-4798 MW357	MW357UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.06. Rad error is 2.03.
		Gross beta		TPU is 5.71. Rad error is 3.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.356. Rad error is 0.355.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.54. Rad error is 1.53.
		Technetium-99		TPU is 13.5. Rad error is 12.6.
		Thorium-230		TPU is 1.25. Rad error is 1.2.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 150. Rad error is 150.
8004-4799 MW358	MW358UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.52. Rad error is 2.47.
		Gross beta		TPU is 7.12. Rad error is 3.86.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.375. Rad error is 0.35.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.9. Rad error is 1.9.
		Technetium-99		TPU is 11.3. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.08. Rad error is 1.04.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 147. Rad error is 147.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0981 MW359		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0981 MW359		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description		
3004-0981 MW359		Chloroform		During sampling, the well went dry; therefore, no sample was collected.		
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.		
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.		
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.		
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.		
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.		
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.		
				1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
				1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.		
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.		
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.		
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.		
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.		
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.		
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.		
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.		
		lodomethane		During sampling, the well went dry; therefore, no sample wa collected.		
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.		
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.		
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.		
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.		
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.		
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.		
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.		
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.		
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.		
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.		
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.		

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0981 MW359	·	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4800 MW360	MW360UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.34. Rad error is 2.3.
		Gross beta		TPU is 2.03. Rad error is 1.97.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.277. Rad error is 0.277.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.06. Rad error is 2.06.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.15. Rad error is 1.13.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 145. Rad error is 145.
8004-4795 MW361	MW361UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.52. Rad error is 1.52.
		Gross beta		TPU is 5.96. Rad error is 3.65.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.476. Rad error is 0.475.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.34. Rad error is 1.34.
		Technetium-99		TPU is 13.8. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.682. Rad error is 0.678.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 144. Rad error is 144.
3004-0986 MW362	MW362UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha		TPU is 3.31. Rad error is 2.99.
		Gross beta		TPU is 1.21. Rad error is 0.967.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.474. Rad error is 0.469.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.79. Rad error is 1.79.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.846. Rad error is 0.835.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 143. Rad error is 143.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

273. Rad error is 2.69. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 231. Rad error is 2.29. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 231. Rad error is 2.29. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 231. Rad error is 9.22. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 308. Rad error is 9.27. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 309.4-4797 MW364 MW364UG1-18 Chloride W Post-tigestion spike recovery out of control limits. 8004-4797 MW364 MW364UG1-18 Chloride W Post-tigestion spike recovery out of control limits. 8004-4797 MW364 MW364UG1-18 Chloride W Post-tigestion spike recovery out of control limits. 8004-4797 MW364 MW364UG1-18 Chloride W Post-tigestion spike recovery out of control limits. 8004-4797 Trelis 1.26 Cale error is 1.88. <	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
Gross alpha U Indicates analyterucilie was analyzed for, but not detected. TP 2,73. Red error is 2.69. Gross beta TTU IS 355. Rad error is 2.69. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyterucilie was analyzed for, but not detected. TP 2,73. Rad error is 0,23. Strontium-90 U Indicates analyterucilie was analyzed for, but not detected. TP 2,73. Rad error is 0,877. Technetium-99 U Indicates analyterucilie was analyzed for, but not detected. TP 2,83. Rad error is 0,877. Tritium U Indicates analyterucilie was analyzed for, but not detected. TP 1,98. Rad error is 0,877. 8004-4797 MW364 MW364UG1-18 Chloride Tritium V Indicates analyterucilie was analyzed for, but not detected. TP 1,98. Rad error is 1,88. Gross beta U Iodine-131 Constituent on trequired and not performed. Radium-226 U Indicates analyterucilie was analyzed for, but not detected. TP 1,91. Rad error is 1,88. Gross beta U Indicates analyterucilie was analyzed for, but not detected. TP 0,37. Red error is 1,80. Strontium-90 U Indicates analyterucilie was analyze	8004-4796 MW363	MW363UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
2.73. Rad error is 2.69. TPU is 3.55. Rad error is 2.69. TPU is 3.55. Rad error is 2.69. Analysis of constituent not required and not performed. Radium-226 U Indicates analyterioutide was analyzed for, but not detected. TP 0.341. Rad error is 0.323. Technetium-99 U Indicates analyterioutide was analyzed for, but not detected. TP 2.31. Rad error is 0.29. Technetium-99 U Indicates analyterioutide was analyzed for, but not detected. TP 3.8 Rad error is 0.29. Thorium-230 U Indicates analyterioutide was analyzed for, but not detected. TP 3.8 Rad error is 0.427. Tritium U Indicates analyterioutide was analyzed for, but not detected. TP 3.8 Rad error is 0.427. Tritium U Indicates analyterioutide was analyzed for, but not detected. TP 3.9 Rad error is 139. 3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion spike (MS/MSD) recovery not within control limits Trantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyterioutide was analyzed for, but not detected. TP 1.91. Rad error is 1.88. Gross beta TPU is 6.86. Rad error is 0.36. Iodine-131 Radium-226 U Indicates analyter/iucide was analyzed for, but not detected. TP 1.77. Rad error is 1.86. Indicates analyter/iucide was analyzed for, but not detected. TP 1.77. Rad error is 0.34. 3004-0984 MW365 MW365UG1-18 Chloride W Post-digestion spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyter/iucide was analyzed for, but not detected. TP 1.77. Rad error is 0.88. Tritium U Indicates analyter/iucide was analyzed for, but not detected. TP 0.88. Rad error is 0.88. Tritium U Indicates analyter/iucide was analyzed for, but not detected. TP 1.88. Rad error is 1.99. Tritium U Indicates analyter/iucide was analyzed for, but not detected. TP 1.88. Rad error is 1.97. Trutis 1.97. Rad error is 1.97. Analysis of constituent not required and not performed. Radium-226 U Indicates analyter/iucide was analyzed for, but not detected. TP 1.88. Rad error is 1.97. Analy			Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.31. Rad error is 2.20. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 3.004-4797 MW364 MW364UG1-18 Chloride W Pest-digetion spike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Pest-digetion spike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Pest-digetion spike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Pest-digetion spike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Pest-digetion spike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Pest-digetion spike recovery out of control limits. 3004-4797 Trotium-200 U Indicates analyte/nuclide was analyzed for, but not detected. TP 3004-4797 MW364 MW364UG1-18 Chloride TPU is 1.8. Gross			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 2.73. Rad error is 2.69.
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.341. Rad error is 0.323. Technetium-90 U Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.341. Rad error is 0.873. Thorium-230 U 1 Indicates analyte/nuclide was analyzed for, but not detected. TP 0.388. Rad error is 0.877. Tritium U 1 Indicates analyte/nuclide was analyzed for, but not detected. TP 0.398. Rad error is 0.877. Tritium U 1 Indicates analyte/nuclide was analyzed for, but not detected. TP 0.397. RAD error is 138. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.304-4797 MW364 MW364UG1-18 Chloride W Post-digestion spike recovery out of control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.37. Rad error is 3.68. TPU is 6.86. Rad error is 3.68. Indicates analyte/nuclide was analyzed for, but not detected. TP 0.37. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.37. Rad error is 0.36. Thorium-230 <t< td=""><td></td><td></td><td>Gross beta</td><td></td><td>TPU is 3.55. Rad error is 2.69.</td></t<>			Gross beta		TPU is 3.55. Rad error is 2.69.
0.341. Red error is 0.323. Strontium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.31. Rad error is 2.29. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion splike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion splike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion splike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion splike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion splike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion splike recovery out of control limits. 3004-011 Tantalum N Sample splike (MS/MSD) recovery not within control limits. 3004-0984 MW365 MW365UG1-18 Chloride U Indicates analyte/nuclide was analyzed for, but not detected. TP 3004-0984 MW365 MW365UG1-18 Chloride W Post-digestion splik			lodine-131		Analysis of constituent not required and not performed.
2.31 Rad error is 2.29. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 9.3. Rad error is 0.27. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion spike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion spike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion spike recovery out of control limits. 3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion spike recovery out of control limits. 3004-4797 Tatalum N Sample spike (MS/MSD) recovery not within control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 191. Rad error is 3.66. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.37. Rad error is 1.09. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP <			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.341. Rad error is 0.323.
9.3. Rad error is 9.22. Thorium-230 U Base Rad error is 19.22. Tritium U Indicates analyte/huclide was analyzed for, but not detected. TP 0.898. Rad error is 0.877. Tritium U Indicates analyte/huclide was analyzed for, but not detected. TP 139. Rad error is 0.877. Tritium U Indicates analyte/huclide was analyzed for, but not detected. TP 139. Rad error is 0.877. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross alpha U Indicates analyte/huclide was analyzed for, but not detected. TP 1.91. Rad error is 1.88. Gross beta TPU is 6.86. Rad error is 3.66. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/huclide was analyzed for, but not detected. TP 0.37. Rad error is 0.48. Strontium-90 U Indicates analyte/huclide was analyzed for, but not detected. TP 0.37. Rad error is 0.48. TPU is 6.86. Rad error is 1.09. Thorium-230 U Indicates analyte/huclide was analyzed for, but not detected. TP 0.89. Rad error is 0.48. Tritium U Indicates analyte/huclide was analyzed for, but not detected. TP 0.89. Rad error is 0.48. Tritium U Indicates analyte/huclide was analyzed for, but not detected. TP 0.48. Rad error is 0.88. Tritium U Indicates analyte/huclide was analyzed for, but not detected. TP 148. Rad error is 0.88. Tritium U Indicates analyte/huclide was analyzed for, but not detected. TP 148. Rad error is 0.88. Tritium U Indicates analyte/huclide was analyzed for, but not detected. TP 249. Rad error is 0.88. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross alpha U Indicates analyte/huclide was analyzed for, but not detected. TP 249. Rad error is 0.24. Radium-226 U Indicates analyte/huclide was analyzed for, but not detected. TP 249. Rad error is 0.24. Radium-226 U Indicates analyte/huclide was analyzed for, but not detected. TP 249. Rad error is 0.24. Radium-226 U Indicates analyte/huclide was analyzed for, but not detected. TP 249. Rad error is 0.24. Rad error is 0.24. Radium-226 U Indicates analyte/hucli			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.31. Rad error is 2.29.
0.888. Rad error is 0.877. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery out of control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.91. Rade error is 1.88. Gross beta TPU is 6.86. Rad error is 3.66. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.37. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.77. Rad error is 1.77. Technetium-99 TPU is 12.6. Rad error is 0.8. TPU is 12.6. Rad error is 0.8. 3004-0984 MW365 MW365UG1-18 Chloride W Post-digestion spike recovery out of control limits. 3004-0984 MW365 MW365UG1-18 Chloride W Post-digestion spike recovery out of control limits. 3004-0984 MW365 MW365UG1-18 Chloride W Post-digestion spike recovery out of control limits. 3004-0984 MW365			Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 9.3. Rad error is 9.22.
3004-4797 MW364 MW364UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.91. Rad error is 1.88. Gross beta TPU is 6.86. Rad error is 3.66. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.37. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.37. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.38. Rad error is 0.34. Tru is 12.6. Rad error is 1.77. Technetium-99 TPU is 12.6. Rad error is 1.09. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.89. Rad error is 0.88. 3004-0984 MW365 MW365UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery out of control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61. Technetium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61. Technetium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61. Technetium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.668. Rad error is 8.63. Thorium-230 U Indicates analyte/nuclide was an				-	
Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.91. Rad error is 1.88. Gross beta TPU is 6.86. Rad error is 3.66. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.37. Rad error is 0.34. Strontium-90 U Thoricates analyte/nuclide was analyzed for, but not detected. TP 1.77. Rad error is 1.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.39. Rad error is 0.80. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 3004-0984 MW365 MW365UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.304-0984 MW365 MW365UG1-18 Chloride W Post-digestion spike recovery out of control limits. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62.				-	139. Rad error is 139.
Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.91. Rad error is 1.88. Gross beta Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.37. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.77. Rad error is 0.34. Technetium-99 TPU is 12.6. Rad error is 0.9. Thorium-230 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.77. Rad error is 0.88. 3004-0984 MW365 MW365UG1-18 Chloride Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.68. Rad error is 2.62. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.68. Rad error is 0.44. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.68. Rad error is 2.62. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.68. Rad error is 0.44. Radium-226 U	3004-4797 MW364	MW364UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
1.91. Rad error is 1.88. Gross beta TPU is 6.86. Rad error is 3.66. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.37. Rad error is 0.34. Strontium-90 U Technetium-99 TPU is 12.6. Rad error is 0.34. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.38. Rad error is 0.88. 3004-0984 MW365 MW365 MW365UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross alpha U U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.08. Rad error is 1.97. Lodine-131 Gross beta U U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.08. Rad error is 1.97. Lodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP			Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.37. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.77. Rad error is 1.77. Technetium-99 TPU is 12.6. Rad error is 10.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.89. Rad error is 0.88. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 148. Rad error is 148. 8004-0984 MW365 MW365UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.03. Rad error is 2.62. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.03. Rad error is 1.97. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 0.44. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 0.41. Strontium-90 U In			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.91. Rad error is 1.88.
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP Technetium-99 TPU is 12.6. Rad error is 0.34. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.37. Rad error is 0.38. Trutium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.89. Rad error is 0.88. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.04-0984 MW365 MW365UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.03. Rad error is 1.97. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 1.97. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U			Gross beta		TPU is 6.86. Rad error is 3.66.
0.37. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 1.77. Rad error is 1.77. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.89. Rad error is 0.88. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 148. Rad error is 148. Stood-0984 MW365 MW365UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.03. Rad error is 0.44. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.44. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 0.44. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 0.44. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 0.44. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 0.44. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662.			lodine-131		Analysis of constituent not required and not performed.
1.77. Rad error is 1.77. Technetium-99 Thorium-230 Thrium-230 Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.89. Rad error is 0.88. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 148. Rad error is 148. 8004-0984 MW365 MW365UG1-18 Chloride Tantalum N Sample spike (MS/MSD) recovery out of control limits. Tantalum N Gross alpha U U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62. Gross beta U U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 1.97. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 0.44. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 8.5. Rad error is 0.662. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.37. Rad error is 0.34.
Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. TP 0.89. Rad error is 0.88.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TP 148. Rad error is 148.8004-0984 MW365 MW365UG1-18ChlorideWPost-digestion spike recovery out of control limits.TantalumNSample spike (MS/MSD) recovery not within control limitsGross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62.Gross betaUIndicates analyte/nuclide was analyzed for, but not detected. TP 2.03. Rad error is 1.97.Iodine-131Analysis of constituent not required and not performed.Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TP 2.63. Rad error is 2.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TP 2.63. Rad error is 2.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 2.61.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662.			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.77. Rad error is 1.77.
0.89. Rad error is 0.88. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 148. Rad error is 148. 0004-0984 MW365 MW365UG1-18 Chloride Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.03. Rad error is 1.97. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 8.5. Rad error is 2.61. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662.			Technetium-99		TPU is 12.6. Rad error is 10.9.
3004-0984 MW365 MW365UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.03. Rad error is 1.97. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.44. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 0.64. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662.			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.89. Rad error is 0.88.
TantalumNSample spike (MS/MSD) recovery not within control limitsGross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPGross betaUIndicates analyte/nuclide was analyzed for, but not detected. TPIodine-131Analysis of constituent not required and not performed.Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPO.466. Rad error is 0.44.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TP2.62. Rad error is 2.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TP2.62. Rad error is 2.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TP8.5. Rad error is 8.5.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. TP0.663. Rad error is 0.662.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TP			Tritium	-	
Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TP 2.69. Rad error is 2.62.Gross betaUIndicates analyte/nuclide was analyzed for, but not detected. TP 2.03. Rad error is 1.97.Iodine-131Analysis of constituent not required and not performed.Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.44.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TP 8.5. Rad error is 8.5.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662.	004-0984 MW365	MW365UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
2.69. Rad error is 2.62.Gross betaUIndicates analyte/nuclide was analyzed for, but not detected. TP2.03. Rad error is 1.97.Iodine-131Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TP0.466. Rad error is 0.44.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TP2.62. Rad error is 2.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TP8.5. Rad error is 8.5.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. TP0.663. Rad error is 0.662.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TP			Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
2.03. Rad error is 1.97.Iodine-131Radium-226UStrontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TP0.466. Rad error is 0.44.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TP2.62. Rad error is 2.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TP8.5. Rad error is 8.5.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. TP0.663. Rad error is 0.662.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TP			Gross alpha	-	
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.466. Rad error is 0.44. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 8.5. Rad error is 8.5. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663.				U	
0.466. Rad error is 0.44. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TP 2.62. Rad error is 2.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 8.5. Rad error is 8.5. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662.			lodine-131		Analysis of constituent not required and not performed.
2.62. Rad error is 2.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TP 8.5. Rad error is 8.5. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662.			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.466. Rad error is 0.44.
8.5. Rad error is 8.5. Thorium-230 Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP 0.663. Rad error is 0.662. Indicates analyte/nuclide was analyzed for, but not detected. TP				-	
0.663. Rad error is 0.662. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TP				-	
				-	
			Tritium	U	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0982 MW366	MW366UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha		TPU is 2.95. Rad error is 2.77.
		Gross beta		TPU is 9.55. Rad error is 4.98.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.445. Rad error is 0.416.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 1.77. Rad error is 1.77.
		Technetium-99		TPU is 10.8. Rad error is 9.23.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.775. Rad error is 0.761.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 149. Rad error is 149.
004-4793 MW367	MW367UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha		TPU is 2.78. Rad error is 2.59.
		Gross beta		TPU is 2.93. Rad error is 2.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.667. Rad error is 0.539.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.92. Rad error is 3.92.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 13.2. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.24. Rad error is 1.22.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 143. Rad error is 143.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0983 MW368		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368		Molybdenum	0	During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368	•	Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368	·	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4820 MW369	MW369UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.6. Rad error is 2.58.
		Gross beta		TPU is 8.1. Rad error is 4.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.391. Rad error is 0.384.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.16. Rad error is 1.16.
		Technetium-99		TPU is 15.7. Rad error is 13.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.799. Rad error is 0.798.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 143. Rad error is 143.
3004-4818 MW370	MW370UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.18. Rad error is 2.18.
		Gross beta		TPU is 13.1. Rad error is 6.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.673. Rad error is 0.629.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.88. Rad error is 1.88.
		Technetium-99		TPU is 18.8. Rad error is 14.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.747. Rad error is 0.738.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 149. Rad error is 149.
3004-4819 MW371	MW371UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.83. Rad error is 2.82.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.06. Rad error is 1.04.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.512. Rad error is 0.486.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.51. Rad error is 1.51.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.29. Rad error is 1.26.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 147. Rad error is 147.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4808 MW372	MW372UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.14. Rad error is 3.09.
		Gross beta		TPU is 23.1. Rad error is 8.72.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.472. Rad error is 0.446.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.76. Rad error is 2.75.
		Technetium-99		TPU is 27.7. Rad error is 17.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.865. Rad error is 0.849.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 148. Rad error is 148.
3004-4792 MW373	MW373UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.29. Rad error is 3.23.
		Gross beta		TPU is 4.82. Rad error is 3.45.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.498. Rad error is 0.465.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.94. Rad error is 1.92.
		Technetium-99		TPU is 12.4. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.951. Rad error is 0.941.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 151. Rad error is 151.
3004-0990 MW374	MW374UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.78. Rad error is 2.76.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.13. Rad error is 1.13.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.578. Rad error is 0.522.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.23. Rad error is 2.23.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 10.8. Rad error is 10.8.
		Thorium-230	U 	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.768. Rad error is 0.764.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 153. Rad error is 153.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0985 MW375	MW375UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.58. Rad error is 1.58.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.85. Rad error is 1.84.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.475. Rad error is 0.438.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.64. Rad error is 1.64.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.6. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.853. Rad error is 0.839.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 148.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376	·	Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample war collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377	·	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG1-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.927. Rad error is 0.926.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.32. Rad error is 2.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.473. Rad error is 0.429.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.91. Rad error is 2.89.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 8.33. Rad error is 8.33.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.15. Rad error is 1.14.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 149. Rad error is 148.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG1-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha		TPU is 1.64. Rad error is 1.6.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.26. Rad error is 2.23.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.181. Rad error is 0.176.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.43. Rad error is 2.42.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 7.22. Rad error is 7.22.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.81. Rad error is 0.802.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 154. Rad error is 154.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG1-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG1-18	Zinc	5	Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG1-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG1-18	Zinc	5	Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG1-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG1-18	Zinc		Analysis of constituent not required and not performed.
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
004-4793 MW367	MW367DUG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha		TPU is 2.57. Rad error is 2.44.
		Gross beta		TPU is 3.04. Rad error is 2.72.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.84. Rad error is 0.634.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.22. Rad error is 2.22.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 8.52. Rad error is 8.52.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.13. Rad error is 1.11.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 163. Rad error is 161.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/CONTAINED—QUARTERLY, 4th CY 2017Finds/Unit: KY8-980-008-982/1Facility: U.S. DOE—Paducah Gaseous Diffusion PlantLAB ID: NonePermit Number: SW07300014, SW07300015, SW07300045For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2017 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2017 data used to conduct the statistical analyses were collected in October 2017. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that had exceeded the historical background (using the last eight quarters). The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

 $TL = X + (K \times S)$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: $upper TL = X + (K \times S)$ lower TL = X - (K × S)

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2017. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Station	Туре	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a *	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a *	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^a *	SG	UCRS
MW377 ^a *	SG	UCRS

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

^a **NOTE:** The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

 $\textbf{SG:} \ sidegradient \ wells$

*Well was dry this quarter, and a groundwater sample could not be collected.

Parameters	
Aluminum	
Beryllium	
Beta Activity	
Boron	
Bromide	
Calcium	
Chemical Oxygen Demand (COD)	
Chloride	
Cobalt	
Conductivity	
Copper	
Dissolved Oxygen	
Dissolved Solids	
Iodide	
Iron	
Magnesium	
Manganese	
Molybdenum	
Nickel	
Oxidation-Reduction Potential	
PCB, Total	
PCB-1242	
PCB-1248	
pH*	
Potassium	
Radium-226	
Sodium	
Sulfate	
Technetium-99	
Thorium-230	
Total Organic Carbon (TOC)	
Total Organic Halides (TOX)	
Trichloroethene	
Vanadium	
Zinc For pH, the test well results were compared to both an upper and lower TL to determine if the current re	

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	5	5	0	No
1,1,2,2-Tetrachloroethane	5	5	0	No
1,1,2-Trichloroethane	5	5	0	No
1,1-Dichloroethane	5	5	0	No
1,2,3-Trichloropropane	5	5	0	No
1,2-Dibromo-3-chloropropane	5	5	0	No
1,2-Dibromoethane	5	5	0	No
1,2-Dichlorobenzene	5	5	0	No
1,2-Dichloropropane	5	5	0	No
2-Butanone	5	5	0	No
2-Hexanone	5	5	0	No
4-Methyl-2-pentanone	5	5	0	No
Acetone	5	5	0	No
Acrolein	5	5	0	No
Acrylonitrile	5	5	0	No
Aluminum	5	0	5	Yes
Antimony	5	5	0	No
Beryllium	5	4	1	Yes
Boron	5	0	5	Yes
Bromide	5	2	3	Yes
Bromochloromethane	5	5	0	No
Bromodichloromethane	5	5	0	No
Bromoform	5	5	0	No
Bromomethane	5	5	0	No
Calcium	5	0	5	Yes
Carbon disulfide	5	5	0	No
Chemical Oxygen Demand (COD)	5	2	3	Yes
Chloride	5	0	5	Yes
Chlorobenzene	5	5	0	No
Chloroethane	5	5	0	No
Chloroform	5	5	0	No
Chloromethane	5	5	0	No
cis-1,2-Dichloroethene	5	5	0	No
cis-1,3-Dichloropropene	5	5	0	No
Cobalt	5	1	4	Yes
Conductivity	5	0	5	Yes
Copper	5	0	5	Yes
Cyanide	5	5	0	No
Dibromochloromethane	5	5	0	No
Dibromomethane	5	5	0	No
Dimethylbenzene, Total	5	5	0	No
Dissolved Oxygen	5	0	5	Yes
Dissolved Solids	5	0	5	Yes
Ethylbenzene	5	5	0	No
Iodide	5	5	0	No
Iodomethane	5	5	0	No
Iron	5	1	4	Yes
Magnesium	5	0	5	Yes
B			5	Yes
Manganese	5	0		T PS
Manganese Methylene chloride	5	0 5	0	No

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	5	0	5	Yes
Oxidation-Reduction Potential	5	0	5	Yes
PCB, Total	5	4	1	Yes
PCB-1016	5	5	0	No
PCB-1221	5	5	0	No
PCB-1232	5	5	0	No
PCB-1242	5	4	1	Yes
PCB-1248	5	5	0	No
PCB-1254	5	5	0	No
PCB-1260	5	5	0	No
PCB-1268	5	5	0	No
рН	5	0	5	Yes
Potassium	5	0	5	Yes
Radium-226	5	5	0	No
Rhodium	5	5	0	No
Sodium	5	0	5	Yes
Styrene	5	5	0	No
Sulfate	5	0	5	Yes
Tantalum	5	5	0	No
Technetium-99	5	5	0	No
Tetrachloroethene	5	5	0	No
Thallium	5	5	0	No
Thorium-230	5	5	0	No
Toluene	5	5	0	No
Total Organic Carbon (TOC)	5	0	5	Yes
Total Organic Halides (TOX)	5	0	5	Yes
trans-1,2-Dichloroethene	5	5	0	No
trans-1,3-Dichloropropene	5	5	0	No
trans-1,4-Dichloro-2-Butene	5	5	0	No
Trichlorofluoromethane	5	5	0	No
Vanadium	5	2	3	Yes
Vinyl Acetate	5	5	0	No
Zinc	5	1	4	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	0	6	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Beta activity	6	0	6	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	<u> </u>	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	2	4	Yes
Chloride	6			Yes
Chlorobenzene		0	6	
	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
<i>cis</i> -1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	0	6	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	4	2	Yes
Iodomethane	6	6	0	No
Iron	6	0	6	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	4	2	Yes
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	3	3	Yes
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	4	2	Yes
PCB-1248	6	5	1	Yes
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	5	1	Yes
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	5	1	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	0	6	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Beta activity	6	0	6	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	1	5	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	0	6	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	4	2	Yes
Iodomethane	6	6	0	No
Iron	6	0	6	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	3	3	Yes
Nickel	6	1	5	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	5	1	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	1	5	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	2	4	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	0	6	Yes

Exhibit D.5. Tests Summary for Qualified Parameters—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 28, 33, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes trichloroethene that exceeded the MCL in six wells and beta activity in two wells. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

<u>UCRS</u>

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

<u>URGA</u>

This quarter's results identified historical background exceedances for beta activity, oxidation-reduction potential, sodium, technetium-99, and thorium-230.

LRGA

This quarter's results identified historical background exceedances for beta activity, dissolved oxygen, oxidation-reduction potential, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential, Thorium-230	MW361: Oxidation-Reduction Potential, Technetium-99
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Sodium	MW364: Dissolved Oxygen, Oxidation-Reduction Potential, Technetium-99
MW371: Oxidation-Reduction Potential	MW363: Oxidation-Reduction Potential	MW370: Beta activity, Oxidation- Reduction Potential, Technetium-99
MW374: Oxidation-Reduction Potential	MW366: Oxidation-Reduction Potential	MW373: Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate	MW369: Oxidation-Reduction Potential, Technetium-99	
	MW372: Beta activity, Oxidation- Reduction Potential, Technetium-99	

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Beryllium	Tolerance Interval	1.12	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW362 and MW365.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW362, MW365, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
pH	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW362, MW365, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.74	Current results exceed statistically derived historical background concentration in MW372.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

		CV	Results of Tolerance Interval
Parameter	Performed Test	Normality Test*	Test Conducted
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW363, MW366, MW369, and MW372.
PCB, Total	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.36	No exceedance of statistically derived historical background concentration.
PCB-1248	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	Current results exceed statistically derived historical background concentration in MW360.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW369 and MW372.
Thorium-230	Tolerance Interval	1.03	Current results exceed statistically derived historical background concentration in MW357.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Tests Summary for Qualified Parameters for Historical Background—URGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted	
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.	
Beta Activity ¹	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.	
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.	
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.	
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.	
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.	
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.	
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.	
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.	
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.	
Dissolved Oxygen	Tolerance Interval	0.83	Current results exceed statistically derived historical background concentration in MW364.	
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.	
Iodide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.	
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.	
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.	
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.	
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.	

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW361, MW364, MW370, and MW373.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	2.66	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW361, MW364, and MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the upper TL test using historical background, the concentrations were compared to the results of the one-sided upper tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 5, and 4 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (in Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA
Sodium in MW360
Thorium-230 in MW357

<u>UCRS</u>

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that dissolved oxygen and sulfate in MW365 were higher than the current TL this quarter.

<u>URGA</u>

This quarter's results showed an exceedance of sodium in MW360 and thorium-230 in MW357; these wells are located downgradient of the landfill.

<u>LRGA</u>

This quarter's results showed no exceedances in wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted		
Dissolved Oxygen	Tolerance Interval	0.51	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW365, exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.		
Oxidation-Reduction Potential	Tolerance Interval	0.35	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.		
Sulfate	Tolerance Interval	0.59	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW365 and MW375 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.		

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted		
Beta activity	Tolerance Interval	0.90	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.		
Oxidation-Reduction Potential	Tolerance Interval	0.18	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.		
Sodium	Tolerance Interval	0.15	MW360 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.		
Technetium-99	Tolerance Interval	0.83	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.		
Thorium-230	Tolerance Interval	1.78	MW357 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.		

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.64	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Oxygen	Tolerance Interval	0.37	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.22	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.69	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 2.078	K factor**= 2.523	TL(1)= 20.604	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.371	S= 1.678	CV(2) =-4.521	K factor**= 2.523	TL(2)= 3.863	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	2.24	0.806		
4/22/2002	0.2	-1.609		
7/15/2002	0.2	-1.609		
10/8/2002	0.2	-1.609		
1/8/2003	0.2	-1.609		
4/3/2003	0.2	-1.609		
7/9/2003	0.2	-1.609		
10/6/2003	0.2	-1.609		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	21.3	3.059		
1/7/2003	20	2.996		
4/2/2003	4.11	1.413		
7/9/2003	1.41	0.344		
10/7/2003	1.09	0.086		
1/6/2004	0.854	-0.158		
4/7/2004	0.2	-1.609		
7/14/2004	0.2	-1.609		

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW368	Downgradient			
MW376	Sidegradient			

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	11.3	N/A	2.425	NO
MW365	Downgradient	Yes	0.0238	N/A	-3.738	NO
MW371	Upgradient	Yes	1.29	N/A	0.255	NO
MW374	Upgradient	Yes	0.0581	N/A	-2.846	NO
MW375	Sidegradient	Yes	0.9	N/A	-0.105	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Beryllium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 1.125	K factor**= 2.523	TL(1)= 0.009	LL(1)=N/A
Statistics-Transformed Background Data	X= -6.462	S = 0.812	CV(2) =-0.126	K factor**= 2.523	TL(2)= -4.413	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.005	-5.298				
4/22/2002	0.005	-5.298				
7/15/2002	0.005	-5.298				
10/8/2002	0.001	-6.908				
1/8/2003	0.001	-6.908				
4/3/2003	0.001	-6.908				
7/9/2003	0.001	-6.908				
10/6/2003	0.001	-6.908				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.01	-4.605				
1/7/2003	0.001	-6.908				
4/2/2003	0.001	-6.908				
7/9/2003	0.001	-6.908				
10/7/2003	0.001	-6.908				
1/6/2004	0.001	-6.908				
4/7/2004	0.001	-6.908				
7/14/2004	0.001	-6.908				

Dry/Partially Dry Wells						
Well No.	Gradient					
MW359	Downgradient					
MW368	Downgradient					

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	0.00034	2 N/A	-7.981	NO
MW365	Downgradient	No	0.0005	N/A	-7.601	N/A
MW371	Upgradient	No	0.0005	N/A	-7.601	N/A
MW374	Upgradient	No	0.0005	N/A	-7.601	N/A
MW375	Sidegradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.034	S = 1.030	CV(2) =-0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	2	0.693			
4/22/2002	2	0.693			
7/15/2002	2	0.693			
10/8/2002	0.2	-1.609			
1/8/2003	0.2	-1.609			
4/3/2003	0.2	-1.609			
7/9/2003	0.2	-1.609			
10/6/2003	0.2	-1.609			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	2	0.693			
1/7/2003	0.2	-1.609			
4/2/2003	0.2	-1.609			
7/9/2003	0.2	-1.609			
10/7/2003	0.2	-1.609			
1/6/2004	0.2	-1.609			
4/7/2004	0.2	-1.609			
7/14/2004	0.2	-1.609			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	0.0186	N/A	-3.985	NO
MW365	Downgradient	Yes	0.00815	N/A	-4.810	NO
MW371	Upgradient	Yes	0.00814	N/A	-4.811	NO
MW374	Upgradient	Yes	0.0196	N/A	-3.932	NO
MW375	Sidegradient	Yes	0.0118	N/A	-4.440	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison **Bromide** UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.394	S = 0.474	CV(1)= 0.340	K factor**= 2.523	TL(1)= 2.590	LL(1)= N/A
Statistics-Transformed Background	X = 0.279	S = 0.332	CV(2) =1,190	K factor**= 2.523	TL(2)= 1.118	LL(2)=N/A

sult
_
_
_
_

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW359	Downgradient					
MW368	Downgradient					

Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	0.113	NO	-2.180	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	Yes	0.0689	NO	-2.675	N/A
MW374	Upgradient	Yes	0.811	NO	-0.209	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 34.100
 S= 13.637
 CV(1)=0.400
 K factor**= 2.523
 TL(1)= 68.505
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.466
 S= 0.356
 CV(2)=0.103
 K factor**= 2.523
 TL(2)= 4.364
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	17.2	2.845			
4/22/2002	22.4	3.109			
7/15/2002	25.5	3.239			
10/8/2002	26.4	3.273			
1/8/2003	27.2	3.303			
4/3/2003	30.3	3.411			
7/9/2003	25.9	3.254			
10/6/2003	27	3.296			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	67.3	4.209			
1/7/2003	60.6	4.104			
4/2/2003	47.2	3.854			
7/9/2003	34.7	3.547			
10/7/2003	37.1	3.614			
1/6/2004	37.7	3.630			
4/7/2004	32.2	3.472			
7/14/2004	26.9	3.292			

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Г

	utilizing TL(1).
adient	utilizing 11(1).
adient	
lient	

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	23.5	NO	3.157	N/A
MW365	Downgradient	Yes	20.2	NO	3.006	N/A
MW371	Upgradient	Yes	42.1	NO	3.740	N/A
MW374	Upgradient	Yes	22	NO	3.091	N/A
MW375	Sidegradient	Yes	14.1	NO	2.646	N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison **Chemical Oxygen Demand (COD)** UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =72.938	S = 70.749	CV(1)= 0.970	K factor**= 2.523	TL(1)= 251.437	LL(1)= N/A
Statistics-Transformed Background	X= 4.000	S = 0.702	CV(2)=0.175	K factor**= 2.523	TL(2)= 5.770	LL(2)=N/A

Historical Bac		
Upgradient W	ells with Tra	ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	260	5.561
1/7/2003	214	5.366
4/2/2003	147	4.990
7/9/2003	72	4.277
10/7/2003	56	4.025
1/6/2004	68	4.220
4/7/2004	35	3.555
7/14/2004	35	3.555

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Current	Ouarter	Data	

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	15.6	NO	2.747	N/A
MW365	Downgradient	No	20	N/A	2.996	N/A
MW371	Upgradient	Yes	19.5	NO	2.970	N/A
MW374	Upgradient	Yes	39.1	NO	3.666	N/A
MW375	Sidegradient	No	20	N/A	2.996	N/A

utilizing TL(1).

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=91.300 S= 86.959 CV(1)=0.952 **K factor**=** 2.523 TL(1)= 310.697 LL(1)=N/A **Statistics-Background Data Statistics-Transformed Background X=**3.620 S= 1.590 CV(2)=0.439 **K factor**=** 2.523

Historical Background Data from Upgradient Wells with Transformed Resu					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
7/15/2002	8.3	2.116			
10/8/2002	7.6	2.028			
1/8/2003	7.7	2.041			
4/3/2003	8.8	2.175			
7/9/2003	8.1	2.092			
10/6/2003	8.6	2.152			
1/7/2004	7.6	2.028			
4/6/2004	7.6	2.028			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	199.2	5.294			
1/7/2003	199.7	5.297			
4/2/2003	171.8	5.146			
7/9/2003	178.7	5.186			
10/7/2003	175.6	5.168			
1/6/2004	170.4	5.138			
4/7/2004	156.4	5.052			
7/14/2004	144.7	4.975			

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Г

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	t Yes	6.68	NO	1.899	N/A
MW365	Downgradient	t Yes	4.26	NO	1.449	N/A
MW371	Upgradient	Yes	4.6	NO	1.526	N/A
MW374	Upgradient	Yes	66.7	NO	4.200	N/A
MW375	Sidegradient	Yes	4.53	NO	1.511	N/A

utilizing TL(1).

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)Х

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

TL(2)= 7.631 LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 1.314	K factor**= 2.523	TL(1)= 0.031	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.843	S = 1.392	CV(2) =-0.238	K factor**= 2.523	TL(2)= -2.331	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/22/2002	0.025	-3.689				
7/15/2002	0.025	-3.689				
10/8/2002	0.001	-6.908				
1/8/2003	0.001	-6.908				
4/3/2003	0.001	-6.908				
7/9/2003	0.001	-6.908				
10/6/2003	0.001	-6.908				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.01	-4.605				
1/7/2003	0.01	-4.605				
4/2/2003	0.01	-4.605				
7/9/2003	0.00161	-6.432				
10/7/2003	0.001	-6.908				
1/6/2004	0.001	-6.908				
4/7/2004	0.001	-6.908				
7/14/2004	0.001	-6.908				

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	0.00311	N/A	-5.773	NO
MW365	Downgradient	Yes	0.0015	N/A	-6.502	NO
MW371	Upgradient	No	0.001	N/A	-6.908	N/A
MW374	Upgradient	Yes	0.00128	S N/A	-6.661	NO
MW375	Sidegradient	Yes	0.00069	N/A	-7.279	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 918.744 S= 417.257 CV(1)=0.454
 K factor**= 2.523
 TL(1)= 1971.483
 LL(1)=N/A

 Statistics-True for LD L
 Interval in the second second

Statistics-Transformed Background X=6.705 S= 0.550 CV(2)=0.082 Data

Historical Background Data from Upgradient Wells with Transformed Resu				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	541	6.293		
4/22/2002	643	6.466		
7/15/2002	632	6.449		
10/8/2002	631	6.447		
1/8/2003	680	6.522		
4/3/2003	749	6.619		
7/9/2003	734	6.599		
10/6/2003	753	6.624		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
3/18/2002	1007	6.915		
10/8/2002	1680	7.427		
1/7/2003	1715.9	7.448		
4/2/2003	172	5.147		
7/9/2003	1231	7.116		
10/7/2003	1214	7.102		
1/6/2004	1172	7.066		
4/7/2004	1145	7.043		

Dry/Par	tially Dry Wells
Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient		721	NO	6.581	N/A
	Downgradient		382	NO	5.945	N/A
MW371	Upgradient	Yes	744	NO	6.612	N/A
MW374	Upgradient	Yes	700	NO	6.551	N/A
MW375	Sidegradient	Yes	364	NO	5.897	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

K factor=** 2.523 **TL(2)=** 8.092 **LL(2)=**N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.056	S = 0.072	CV(1)= 1.275	K factor**= 2.523	TL(1)= 0.237	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.395	S= 0.915	CV(2) =-0.270	K factor**= 2.523	TL(2)= -1.086	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/22/2002	0.025	-3.689				
7/15/2002	0.05	-2.996				
10/8/2002	0.02	-3.912				
1/8/2003	0.02	-3.912				
4/3/2003	0.02	-3.912				
7/9/2003	0.02	-3.912				
10/6/2003	0.02	-3.912				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.2	-1.609				
1/7/2003	0.2	-1.609				
4/2/2003	0.2	-1.609				
7/9/2003	0.02	-3.912				
10/7/2003	0.02	-3.912				
1/6/2004	0.02	-3.912				
4/7/2004	0.02	-3.912				
7/14/2004	0.02	-3.912				

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Current Quarter Data

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	0.00651	N/A	-5.034	NO
MW365	Downgradient	Yes	0.00211	N/A	-6.161	NO
MW371	Upgradient	Yes	0.00143	N/A	-6.550	NO
MW374	Upgradient	Yes	0.00058	5 N/A	-7.444	NO
MW375	Sidegradient	Yes	0.00141	N/A	-6.564	NO

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.138	S= 0.621	CV(1)= 0.546	K factor**= 2.523	TL(1)= 2.704	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.013	S= 0.577	CV(2) =-43.069	K factor**= 2.523	TL(2)= 1.441	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	2.26	0.815			
4/22/2002	1.15	0.140			
7/15/2002	0.94	-0.062			
10/8/2002	0.74	-0.301			
1/8/2003	2.62	0.963			
4/3/2003	1.5	0.405			
7/9/2003	1.66	0.507			
10/6/2003	1.28	0.247			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
3/18/2002	0.6	-0.511			
10/8/2002	0.67	-0.400			
1/7/2003	0.23	-1.470			
4/2/2003	0.65	-0.431			
7/9/2003	0.92	-0.083			
10/7/2003	0.99	-0.010			
1/6/2004	1.11	0.104			
4/7/2004	0.88	-0.128			

Dry/Partially Dry Wells						
Well No.	Gradient					
MW359	Downgradient					
MW368	Downgradient					
MW376	Sidegradient					
MW377	Sidegradient					

Г

egradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW362	Downgradient	Yes	5.26	YES	1.660	N/A		
MW365	Downgradient	Yes	5.9	YES	1.775	N/A		
MW371	Upgradient	Yes	1.82	NO	0.599	N/A		
MW374	Upgradient	Yes	1.12	NO	0.113	N/A		
MW375	Sidegradient	Yes	2.65	NO	0.975	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW362 MW365

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison **Dissolved Solids** UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=590.000 S= 248.068 CV(1)=0.420 **K factor**=** 2.523 TL(1)= 1215.876 LL(1)=N/A **Statistics-Background Data**

Statistics-Transformed Background X= 6.308 S= 0.383 CV(2)=0.061 Data

Historical Background Data from Upgradient Wells with Transformed Resu						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	274	5.613				
4/22/2002	409	6.014				
7/15/2002	418	6.035				
10/8/2002	424	6.050				
1/8/2003	431	6.066				
4/3/2003	444	6.096				
7/9/2003	445	6.098				
10/6/2003	438	6.082				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	1136	7.035				
1/7/2003	1101	7.004				
4/2/2003	863	6.760				
7/9/2003	682	6.525				
10/7/2003	589	6.378				
1/6/2004	603	6.402				
4/7/2004	601	6.399				
7/14/2004	582	6.366				

Dry/Par	tially Dry Wells
Well No.	Gradient
MW359	Downgradient
MW368	Downgradient
MW376	Sidegradient

Current Ouarter Data

MW377 Sidegradient

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradien	t Yes	529	NO	6.271	N/A
MW365	Downgradien	t Yes	234	NO	5.455	N/A
MW371	Upgradient	Yes	436	NO	6.078	N/A
MW374	Upgradient	Yes	376	NO	5.930	N/A
MW375	Sidegradient	Yes	227	NO	5.425	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)Х

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

K factor=** 2.523 TL(2)= 7.274 LL(2)=N/A

> Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.612	S= 6.487	CV(1)= 0.981	K factor**= 2.523	TL(1)= 22.979	LL(1)= N/A
Statistics-Transformed Background	X= 1.363	S= 1.147	CV(2)= 0.841	K factor**= 2.523	TL(2)= 4.256	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	1.31	0.270					
4/22/2002	0.913	-0.091					
7/15/2002	0.881	-0.127					
10/8/2002	3.86	1.351					
1/8/2003	1.88	0.631					
4/3/2003	3.18	1.157					
7/9/2003	0.484	-0.726					
10/6/2003	2.72	1.001					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	23	3.135					
1/7/2003	13.9	2.632					
4/2/2003	14	2.639					
7/9/2003	14.2	2.653					
10/7/2003	7.92	2.069					
1/6/2004	7.86	2.062					
4/7/2004	4.82	1.573					
7/14/2004	4.87	1.583					

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW362	Downgradient	Yes	6.04	NO	1.798	N/A	
MW365	Downgradient	No	0.1	N/A	-2.303	N/A	
MW371	Upgradient	Yes	0.822	NO	-0.196	N/A	
MW374	Upgradient	Yes	1.45	NO	0.372	N/A	
MW375	Sidegradient	Yes	0.976	NO	-0.024	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =11.347 S =	3.019	CV(1)= 0.266	K factor**= 2.523	TL(1)= 18.963	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.401 S=	0.237	CV(2)= 0.099	K factor**= 2.523	TL(2)= 2.999	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	7.1	1.960					
4/22/2002	9.77	2.279					
7/15/2002	10.4	2.342					
10/8/2002	10.2	2.322					
1/8/2003	10.7	2.370					
4/3/2003	11.9	2.477					
7/9/2003	10.8	2.380					
10/6/2003	10.9	2.389					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	20	2.996					
1/7/2003	16.1	2.779					
4/2/2003	13.1	2.573					
7/9/2003	10.3	2.332					
10/7/2003	11.1	2.407					
1/6/2004	11	2.398					
4/7/2004	9.69	2.271					
7/14/2004	8.49	2.139					

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Current Quarter Data

0	£ =					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	t Yes	10.9	NO	2.389	N/A
MW365	Downgradient	t Yes	9.8	NO	2.282	N/A
MW371	Upgradient	Yes	14.8	NO	2.695	N/A
MW374	Upgradient	Yes	6.22	NO	1.828	N/A
MW375	Sidegradient	Yes	5.88	NO	1.772	N/A

utilizing TL(1).

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.894	K factor**= 2.523	TL(1)= 0.809	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.873	S = 1.068	CV(2) =-0.570	K factor**= 2.523	TL(2)= 0.821	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	0.063	-2.765					
4/22/2002	0.067	-2.703					
7/15/2002	0.074	-2.604					
10/8/2002	0.0521	-2.955					
1/8/2003	0.0385	-3.257					
4/3/2003	0.0551	-2.899					
7/9/2003	0.0546	-2.908					
10/6/2003	0.0543	-2.913					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	0.596	-0.518					
1/7/2003	0.565	-0.571					
4/2/2003	0.675	-0.393					
7/9/2003	0.397	-0.924					
10/7/2003	0.312	-1.165					
1/6/2004	0.299	-1.207					
4/7/2004	0.329	-1.112					
7/14/2004	0.342	-1.073					

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Г

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW362	Downgradient	Yes	0.0323	NO	-3.433	N/A		
MW365	Downgradient	Yes	0.00828	NO	-4.794	N/A		
MW371	Upgradient	Yes	0.00749	NO	-4.894	N/A		
MW374	Upgradient	Yes	0.201	NO	-1.604	N/A		
MW375	Sidegradient	Yes	0.00928	NO	-4.680	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.006	S= 0.010	CV(1)=1.650	K factor**= 2.523	TL(1)= 0.030	LL(1)= N/A	
Statistics-Transformed Background Data	X= -6.108	S= 1.239	CV(2) =-0.203	K factor**= 2.523	TL(2)= -2.983	LL(2)=N/A	

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	0.025	-3.689					
4/22/2002	0.025	-3.689					
7/15/2002	0.025	-3.689					
10/8/2002	0.001	-6.908					
1/8/2003	0.00121	-6.717					
4/3/2003	0.001	-6.908					
7/9/2003	0.00111	-6.803					
10/6/2003	0.001	-6.908					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	0.00222	-6.110					
1/7/2003	0.00201	-6.210					
4/2/2003	0.00159	-6.444					
7/9/2003	0.00242	-6.024					
10/7/2003	0.001	-6.908					
1/6/2004	0.001	-6.908					
4/7/2004	0.001	-6.908					
7/14/2004	0.001	-6.908					

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Current	Quarter	Data

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradien	t Yes	0.00101	N/A	-6.898	NO
MW365	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW371	Upgradient	Yes	0.00056	7 N/A	-7.475	NO
MW374	Upgradient	Yes	0.00028	4 N/A	-8.167	NO
MW375	Sidegradient	Yes	0.00039	1 N/A	-7.847	NO

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.023	S = 0.022	CV(1)= 0.980	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.349	S = 1.109	CV(2) =-0.255	K factor**= 2.523	TL(2)= -1.552	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	0.05	-2.996			
4/22/2002	0.05	-2.996			
7/15/2002	0.05	-2.996			
10/8/2002	0.0124	-4.390			
1/8/2003	0.005	-5.298			
4/3/2003	0.005	-5.298			
7/9/2003	0.005	-5.298			
10/6/2003	0.005	-5.298			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	0.05	-2.996			
1/7/2003	0.05	-2.996			
4/2/2003	0.05	-2.996			
7/9/2003	0.00794	-4.836			
10/7/2003	0.005	-5.298			
1/6/2004	0.005	-5.298			
4/7/2004	0.005	-5.298			
7/14/2004	0.005	-5.298			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW362	Downgradient	Yes	0.00575	NO	-5.159	N/A		
MW365	Downgradient	Yes	0.00554	NO	-5.196	N/A		
MW371	Upgradient	Yes	0.00195	NO	-6.240	N/A		
MW374	Upgradient	Yes	0.00081	6 NO	-7.111	N/A		
MW375	Sidegradient	Yes	0.00248	NO	-5.999	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	,	J	8			
Statistics-Background Data	X= 22.281	S = 78.889	CV(1)= 3.541	K factor**= 2.523	TL(1)= 221.319	LL(1)=N/A
Statistics-Transformed Background	X= 3.642	S= 1.729	CV(2)= 0.475	K factor**= 2.523	TL(2)= 5.106	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	75	4.317				
4/22/2002	165	5.106				
7/15/2002	65	4.174				
4/3/2003	-19	#Func!				
7/9/2003	114	4.736				
10/6/2003	-22	#Func!				
1/7/2004	20.5	3.020				
4/6/2004	113	4.727				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
3/18/2002	135	4.905				
4/2/2003	-56	#Func!				
7/9/2003	-68	#Func!				
10/7/2003	-50	#Func!				
1/6/2004	-85	#Func!				
4/7/2004	6	1.792				
7/14/2004	-38	#Func!				
10/7/2004	1	0.000				

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				
Current	Quarter Data				
Well No.	Gradient	Dete			
MW362	Downgradient	Ye			
MW365	Downgradient	Ye			

/Doutiolly Duy Walls

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	248	N/A	5.513	YES
MW365	Downgradient	Yes	240	N/A	5.481	YES
MW371	Upgradient	Yes	375	N/A	5.927	YES
MW374	Upgradient	Yes	194	N/A	5.268	YES
MW375	Sidegradient	Yes	386	N/A	5.956	YES
3.7/1 B	1. 1.1	I D				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated
concentration with respect to historical background data

Wells with Exceedances	
MW362	
MW365	
MW371	
MW374	
MW375	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical AnalysisHistorical Background ComparisonPCB, TotalUNITS: UG/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.224	S = 0.207	CV(1)= 0.922	K factor**= 2.523	TL(1)= 0.746	LL(1)= N/A
Statistics-Transformed Background	X= -1.647	S = 0.440	CV(2) =-0.267	K factor**= 2.523	TL(2)= -0.537	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	1	0.000					
4/22/2002	0.17	-1.772					
7/15/2002	0.17	-1.772					
7/9/2003	0.17	-1.772					
10/6/2003	0.17	-1.772					
7/13/2004	0.18	-1.715					
7/25/2005	0.17	-1.772					
4/5/2006	0.18	-1.715					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
7/9/2003	0.17	-1.772					
10/7/2003	0.17	-1.772					
7/14/2004	0.18	-1.715					
7/26/2005	0.17	-1.772					
4/6/2006	0.18	-1.715					
7/10/2006	0.17	-1.772					
10/12/2006	0.17	-1.772					
1/8/2007	0.17	-1.772					

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW362	Downgradient	No	0.098	N/A	-2.323	N/A	
MW365	Downgradient	Yes	0.0572	NO	-2.861	N/A	
MW371	Upgradient	No	0.0971	N/A	-2.332	N/A	
MW374	Upgradient	No	0.0952	N/A	-2.352	N/A	
MW375	Sidegradient	No	0.0971	N/A	-2.332	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical AnalysisHistorical Background ComparisonPCB-1242UNITS: UG/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.159	S = 0.224	CV(1)= 1.409	K factor**= 2.523	TL(1)= 0.726	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.134	S = 0.579	CV(2) =-0.272	K factor**= 2.523	TL(2)= -0.672	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	1	0.000					
4/22/2002	0.11	-2.207					
7/15/2002	0.11	-2.207					
7/9/2003	0.13	-2.040					
10/6/2003	0.09	-2.408					
7/13/2004	0.1	-2.303					
7/25/2005	0.09	-2.408					
4/5/2006	0.1	-2.303					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
7/9/2003	0.13	-2.040					
10/7/2003	0.09	-2.408					
7/14/2004	0.1	-2.303					
7/26/2005	0.1	-2.303					
4/6/2006	0.1	-2.303					
7/10/2006	0.1	-2.303					
10/12/2006	0.1	-2.303					
1/8/2007	0.1	-2.303					

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW368	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Γ

Current Quarter Data

	2					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	t No	0.098	N/A	-2.323	N/A
MW365	Downgradient	t Yes	0.0572	N/A	-2.861	NO
MW371	Upgradient	No	0.0971	N/A	-2.332	N/A
MW374	Upgradient	No	0.0952	N/A	-2.352	N/A
MW375	Sidegradient	No	0.0971	N/A	-2.332	N/A

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.619	S = 0.295	CV(1)= 0.045	K factor**= 2.904	TL(1)= 7.475	LL(1)=5.7635
Statistics-Transformed Background	X= 1.889	S = 0.046	CV(2)= 0.024	K factor**= 2.904	TL(2)= 2.023	LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	6.3	1.841			
4/22/2002	6.5	1.872			
7/15/2002	6.5	1.872			
10/8/2002	6.6	1.887			
1/8/2003	6.6	1.887			
4/3/2003	6.9	1.932			
7/9/2003	6.7	1.902			
10/6/2003	7	1.946			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
3/18/2002	5.75	1.749			
10/8/2002	6.6	1.887			
1/7/2003	6.82	1.920			
4/2/2003	6.86	1.926			
7/9/2003	6.7	1.902			
10/7/2003	6.6	1.887			
1/6/2004	6.9	1.932			
4/7/2004	6.58	1.884			

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW362	Downgradien	t Yes	6.83	NO	1.921	N/A
MW365	Downgradient	t Yes	6.3	NO	1.841	N/A
MW371	Upgradient	Yes	6.59	NO	1.886	N/A
MW374	Upgradient	Yes	6.73	NO	1.907	N/A
MW375	Sidegradient	Yes	6.42	NO	1.859	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.262	S = 0.907	CV(1)= 0.718	K factor**= 2.523	TL(1)= 3.549	LL(1)= N/A
Statistics-Transformed Background	X= -0.023	S= 0.752	CV(2) =-32.218	K factor**= 2.523	TL(2)= 1.874	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	2	0.693			
4/22/2002	2	0.693			
7/15/2002	2	0.693			
10/8/2002	0.408	-0.896			
1/8/2003	0.384	-0.957			
4/3/2003	0.368	-1.000			
7/9/2003	0.587	-0.533			
10/6/2003	0.382	-0.962			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	3.04	1.112			
1/7/2003	2.83	1.040			
4/2/2003	2	0.693			
7/9/2003	1.09	0.086			
10/7/2003	0.802	-0.221			
1/6/2004	0.897	-0.109			
4/7/2004	0.689	-0.373			
7/14/2004	0.716	-0.334			

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	1.01	NO	0.010	N/A
MW365	Downgradient	Yes	0.238	NO	-1.435	N/A
MW371	Upgradient	Yes	0.597	NO	-0.516	N/A
MW374	Upgradient	Yes	0.453	NO	-0.792	N/A
MW375	Sidegradient	Yes	0.342	NO	-1.073	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 183.063 S= 73.222
 CV(1)=0.400
 K factor**= 2.523
 TL(1)= 367.800
 LL(1)=N/A

 Statistics-Transformed Background
 X= 5.146
 S= 0.356
 CV(2)=0.069
 K factor**= 2.523
 TL(2)= 6.044
 LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	336	5.817
1/7/2003	329	5.796
4/2/2003	287	5.659
7/9/2003	181	5.198
10/7/2003	182	5.204
1/6/2004	206	5.328
4/7/2004	182	5.204
7/14/2004	198	5.288

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW368	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	134	NO	4.898	N/A
MW365	Downgradient	Yes	48.5	NO	3.882	N/A
MW371	Upgradient	Yes	105	NO	4.654	N/A
MW374	Upgradient	Yes	127	NO	4.844	N/A
MW375	Sidegradient	Yes	52.8	NO	3.967	N/A

utilizing TL(1).

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.469	S = 3.153	CV(1)= 0.487	K factor**= 2.523	TL(1)= 14.423	LL(1)=N/A
Statistics-Transformed Background	X =1 794	S = 0.357	CV(2)= 0 199	K factor**= 2 523	TL(2)= 2 694	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	5	1.609
1/7/2003	5	1.609
4/2/2003	5	1.609
7/9/2003	5.6	1.723
10/7/2003	5	1.609
1/6/2004	5	1.609
4/7/2004	11.3	2.425
7/14/2004	5	1.609

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	26	YES	3.258	N/A
MW365	Downgradient	Yes	59.3	YES	4.083	N/A
MW371	Upgradient	Yes	10	NO	2.303	N/A
MW374	Upgradient	Yes	6.78	NO	1.914	N/A
MW375	Sidegradient	Yes	29.2	YES	3.374	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW362 MW365 MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 17.631	S = 24.314	CV(1)= 1.379	K factor**= 2.523	TL(1)= 78.977	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.318	S = 0.979	CV(2) =0.422	K factor**= 2.523	TL(2)= 4.788	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	11.1	2.407				
4/22/2002	7	1.946				
7/15/2002	4.1	1.411				
10/8/2002	6	1.792				
1/8/2003	5.3	1.668				
4/3/2003	5.3	1.668				
7/9/2003	2.9	1.065				
10/6/2003	3.2	1.163				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	90	4.500				
1/7/2003	64	4.159				
4/2/2003	25	3.219				
7/9/2003	16	2.773				
10/7/2003	13	2.565				
1/6/2004	10	2.303				
4/7/2004	7.2	1.974				
7/14/2004	12	2.485				

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	4.24	N/A	1.445	NO
MW365	Downgradient	Yes	1.93	N/A	0.658	NO
MW371	Upgradient	Yes	2.85	N/A	1.047	NO
MW374	Upgradient	Yes	2.72	N/A	1.001	NO
MW375	Sidegradient	Yes	1.29	N/A	0.255	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 214.094 S= 231.089 CV(1)=1.079
 K factor**= 2.523
 TL(1)= 797.131
 LL(1)=N/A

Statistics-Transformed Background X=4.867 S= 1.065 CV(2)=0.219 Data

Historical Background Data from Upgradient Wells with Transformed Resu					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	50	3.912			
4/22/2002	105	4.654			
7/15/2002	70	4.248			
10/8/2002	52	3.951			
1/8/2003	20.2	3.006			
4/3/2003	104	4.644			
7/9/2003	34.2	3.532			
10/6/2003	46.1	3.831			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	903	6.806			
1/7/2003	539	6.290			
4/2/2003	295	5.687			
7/9/2003	272	5.606			
10/7/2003	197	5.283			
1/6/2004	330	5.799			
4/7/2004	183	5.209			
7/14/2004	225	5.416			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				

Current	Quarter	Data

MW377 Sidegradient

	£ =					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	15	N/A	2.708	NO
MW365	Downgradient	Yes	12.8	N/A	2.549	NO
MW371	Upgradient	Yes	6.14	N/A	1.815	NO
MW374	Upgradient	Yes	21	N/A	3.045	NO
MW375	Sidegradient	Yes	10.8	N/A	2.380	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

K factor=** 2.523 **TL(2)=** 7.554 **LL(2)=**N/A

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.055	S = 0.072	CV(1)= 1.319	K factor**= 2.523	TL(1)= 0.237	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.438	S= 0.912	CV(2) =-0.265	K factor**= 2.523	TL(2)= -1.138	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	0.025	-3.689			
4/22/2002	0.025	-3.689			
7/15/2002	0.025	-3.689			
10/8/2002	0.02	-3.912			
1/8/2003	0.02	-3.912			
4/3/2003	0.02	-3.912			
7/9/2003	0.02	-3.912			
10/6/2003	0.02	-3.912			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	0.2	-1.609			
1/7/2003	0.2	-1.609			
4/2/2003	0.2	-1.609			
7/9/2003	0.02	-3.912			
10/7/2003	0.02	-3.912			
1/6/2004	0.02	-3.912			
4/7/2004	0.02	-3.912			
7/14/2004	0.02	-3.912			

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW368	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Г

Current Quarter Data

Carrent	Quarter Bata					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	t Yes	0.0174	N/A	-4.051	NO
MW365	Downgradient	t No	0.01	N/A	-4.605	N/A
MW371	Upgradient	Yes	0.00475	N/A	-5.350	NO
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	Yes	0.00482	N/A	-5.335	NO

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.060	S = 0.083	CV(1)= 1.380	K factor**= 2.523	TL(1)= 0.270	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.259	S = 0.840	CV(2) =-0.258	K factor**= 2.523	TL(2)= -1.140	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	0.1	-2.303			
4/22/2002	0.1	-2.303			
7/15/2002	0.1	-2.303			
10/8/2002	0.025	-3.689			
1/8/2003	0.035	-3.352			
4/3/2003	0.035	-3.352			
7/9/2003	0.0376	-3.281			
10/6/2003	0.02	-3.912			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	0.025	-3.689			
1/7/2003	0.35	-1.050			
4/2/2003	0.035	-3.352			
7/9/2003	0.02	-3.912			
10/7/2003	0.02	-3.912			
1/6/2004	0.02	-3.912			
4/7/2004	0.02	-3.912			
7/14/2004	0.02	-3.912			

Dry/Partially Dry Wells					
Well No. Gradient					
MW359	Downgradient				
MW368	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Current Quarter Data

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradient	Yes	0.0155	N/A	-4.167	NO
MW365	Downgradient	Yes	0.00666	N/A	-5.012	NO
MW371	Upgradient	Yes	0.00439	N/A	-5.428	NO
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	Yes	0.00498	N/A	-5.302	NO

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.625	S= 0.774	CV(1)= 1.239	K factor**= 2.523	TL(1)= 2.578	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.973	S = 0.935	CV(2) =-0.961	K factor**= 2.523	TL(2)= 1.386	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	0.255	-1.366			
4/22/2002	0.2	-1.609			
7/15/2002	0.322	-1.133			
10/8/2002	0.2	-1.609			
1/8/2003	0.2	-1.609			
4/3/2003	0.2	-1.609			
7/8/2003	0.2	-1.609			
10/6/2003	0.689	-0.373			
Well Number:	MW372				
Date Collected	Result	LN(Result)			
3/19/2002	2.61	0.959			
4/23/2002	0.2	-1.609			
7/16/2002	1.14	0.131			
10/8/2002	0.862	-0.149			
1/7/2003	2.32	0.842			

0.2

0.2

0.2

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW357	Downgradient	Yes	0.101	N/A	-2.293	NO		
MW360	Downgradient	Yes	0.0337	N/A	-3.390	NO		
MW363	Downgradient	Yes	0.0465	N/A	-3.068	NO		
MW366	Downgradient	Yes	0.0446	N/A	-3.110	NO		
MW369	Upgradient	Yes	0.13	N/A	-2.040	NO		
MW372	Upgradient	Yes	0.0196	N/A	-3.932	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

-1.609

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 15.996	S= 11.899	CV(1)= 0.744	K factor**= 2.523	TL(1)= 46.017	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.497	S = 0.783	CV(2)= 0.314	K factor**= 2.523	TL(2)= 4.473	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	32.5	3.481					
4/22/2002	35.4	3.567					
7/15/2002	12.9	2.557					
10/8/2002	7.59	2.027					
1/8/2003	9.58	2.260					
4/3/2003	6.69	1.901					
7/8/2003	9.1	2.208					
10/6/2003	7.31	1.989					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	28.5	3.350					
4/23/2002	5.37	1.681					
7/16/2002	19.9	2.991					
10/8/2002	38.7	3.656					
1/7/2003	13	2.565					
4/2/2003	3.94	1.371					
7/9/2003	3.56	1.270					
10/7/2003	21.9	3.086					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW357	Downgradient	Yes	28	N/A	3.332	N/A		
MW360	Downgradient	Yes	3.15	N/A	1.147	N/A		
MW363	Downgradient	Yes	13.9	N/A	2.632	N/A		
MW366	Downgradient	Yes	49.7	N/A	3.906	N/A		
MW369	Upgradient	Yes	40.7	N/A	3.706	N/A		
MW372	Upgradient	Yes	132	YES	4.883	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.985	S= 0.825	CV(1)= 0.838	K factor**= 2.523	TL(1)= 3.067	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.430	S = 0.990	CV(2) =-2.302	K factor**= 2.523	TL(2)= 2.068	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	2	0.693					
4/22/2002	2	0.693					
7/15/2002	2	0.693					
10/8/2002	0.2	-1.609					
1/8/2003	0.2	-1.609					
4/3/2003	0.2	-1.609					
7/8/2003	0.2	-1.609					
10/6/2003	0.2	-1.609					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	2	0.693					
4/23/2002	2	0.693					
7/16/2002	2	0.693					

0.492

0.492

0.6

0.57

0.604

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW357	Downgradient	Yes	0.374	NO	-0.983	N/A		
MW360	Downgradient	Yes	0.032	NO	-3.442	N/A		
MW363	Downgradient	Yes	0.0337	NO	-3.390	N/A		
MW366	Downgradient	Yes	0.148	NO	-1.911	N/A		
MW369	Upgradient	Yes	0.0166	NO	-4.098	N/A		
MW372	Upgradient	Yes	0.716	NO	-0.334	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-0.709

-0.709

-0.511

-0.562 -0.504

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002 1 0.000								

Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/8/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW372	
Date Collected	Result	LN(Result)
Date Collected 3/19/2002	Result 1	LN(Result) 0.000
		. ,
3/19/2002	1	0.000
3/19/2002 4/23/2002	1 1	0.000 0.000
3/19/2002 4/23/2002 7/16/2002	1 1 1	0.000 0.000 0.000
3/19/2002 4/23/2002 7/16/2002 10/8/2002	1 1 1 1	0.000 0.000 0.000 0.000
3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	1 1 1 1	0.000 0.000 0.000 0.000 0.000
3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW357	Downgradient	Yes	0.393	NO	-0.934	N/A		
MW360	Downgradient	Yes	0.134	NO	-2.010	N/A		
MW363	Downgradient	Yes	0.174	NO	-1.749	N/A		
MW366	Downgradient	Yes	0.482	NO	-0.730	N/A		
MW369	Upgradient	Yes	0.353	NO	-1.041	N/A		
MW372	Upgradient	Yes	0.568	NO	-0.566	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 32.763	S= 9.391	CV(1)= 0.287	K factor**= 2.523	TL(1)= 56.456	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.449	S = 0.299	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.202	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	29.5	3.384					
4/22/2002	29.8	3.395					
7/15/2002	25.3	3.231					
10/8/2002	21.9	3.086					
1/8/2003	20.9	3.040					
4/3/2003	22.2	3.100					
7/8/2003	22.9	3.131					
10/6/2003	21.7	3.077					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	41.5	3.726					
4/23/2002	43.6	3.775					
7/16/2002	40.4	3.699					
10/8/2002	38.8	3.658					
1/7/2003	41.1	3.716					
4/2/2003	42.9	3.759					
7/9/2003	35.1	3.558					
10/7/2003	46.6	3.842					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	26.9	NO	3.292	N/A	
MW360	Downgradient	Yes	26.3	NO	3.270	N/A	
MW363	Downgradient	Yes	27.5	NO	3.314	N/A	
MW366	Downgradient	Yes	33	NO	3.497	N/A	
MW369	Upgradient	Yes	15.9	NO	2.766	N/A	
MW372	Upgradient	Yes	46.5	NO	3.839	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.938 S = 3.750	CV(1)= 0.104	K factor**= 2.523	TL(1)= 45.399	LL(1)=N/A
Statistics-Transformed Background Data	X = 3.578 S = 0.089	CV(2) =0.025	K factor**= 2.523	TL(2)= 3.803	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	35	3.555					
4/22/2002	35	3.555					
7/15/2002	35	3.555					
10/8/2002	50	3.912					
1/8/2003	35	3.555					
4/3/2003	35	3.555					
7/8/2003	35	3.555					
10/6/2003	35	3.555					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	35	3.555					
4/23/2002	35	3.555					
7/16/2002	35	3.555					
10/8/2002	35	3.555					
1/7/2003	35	3.555					
4/2/2003	35	3.555					
7/9/2003	35	3.555					

10/7/2003

35

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	No	20	N/A	2.996	N/A	
MW360	Downgradient	Yes	13.6	NO	2.610	N/A	
MW363	Downgradient	Yes	10.9	NO	2.389	N/A	
MW366	Downgradient	No	20	N/A	2.996	N/A	
MW369	Upgradient	Yes	9.71	NO	2.273	N/A	
MW372	Upgradient	Yes	21.5	NO	3.068	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =44.119 S = 4	.554	CV(1)=0.103	K factor**= 2.523	TL(1)= 55.607	LL(1)= N/A
Statistics-Transformed Background Data	X =3.782 S = 0	0.099	CV(2)= 0.026	K factor**= 2.523	TL(2)= 4.033	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
7/15/2002	48.3	3.877					
10/8/2002	47.7	3.865					
1/8/2003	45.7	3.822					
4/3/2003	47.4	3.859					
7/8/2003	55.9	4.024					
10/6/2003	47.4	3.859					
1/7/2004	45.5	3.818					
4/7/2004	43.4	3.770					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
7/16/2002	39.8	3.684					
10/8/2002	41	3.714					
1/7/2003	39.4	3.674					
4/2/2003	39.2	3.669					
7/9/2003	39.8	3.684					
10/7/2003	40	3.689					
1/5/2004	43.4	3.770					

42

4/5/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	31.3	NO	3.444	N/A	
MW360	Downgradient	Yes	9.41	NO	2.242	N/A	
MW363	Downgradient	Yes	30	NO	3.401	N/A	
MW366	Downgradient	Yes	38.9	NO	3.661	N/A	
MW369	Upgradient	Yes	30.4	NO	3.414	N/A	
MW372	Upgradient	Yes	48.3	NO	3.877	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.738

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.021	CV(1)= 0.845	K factor**= 2.523	TL(1)= 0.077	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.090	S= 1.006	CV(2) =-0.246	K factor**= 2.523	TL(2)= -1.553	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	0.025	-3.689					
4/22/2002	0.025	-3.689					
7/15/2002	0.025	-3.689					
10/8/2002	0.00938	-4.669					
1/8/2003	0.00548	-5.207					
4/3/2003	0.00587	-5.138					
7/8/2003	0.0541	-2.917					
10/6/2003	0.0689	-2.675					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	0.025	-3.689					
4/23/2002	0.025	-3.689					
7/16/2002	0.025	-3.689					
10/8/2002	0.00158	-6.450					
1/7/2003	0.0147	-4.220					
4/2/2003	0.0116	-4.457					

0.0653

0.00788

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	0.00149	NO	-6.509	N/A	
MW360	Downgradient	Yes	0.00805	NO	-4.822	N/A	
MW363	Downgradient	Yes	0.00197	NO	-6.230	N/A	
MW366	Downgradient	Yes	0.00185	NO	-6.293	N/A	
MW369	Upgradient	Yes	0.00741	NO	-4.905	N/A	
MW372	Upgradient	Yes	0.00039	9 NO	-7.827	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.729

-4.843

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =482.856 S = 57.603	CV(1)= 0.119	K factor**= 2.523	TL(1)= 628.189	LL(1)=N/A
Statistics-Transformed Background	X = 6.173 S = 0.123	CV(2)= 0.020	K factor**= 2.523	TL(2)= 6.484	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number	MW369					

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 508 501 507 495 508.7 515	6.230 6.217 6.229 6.205 6.232 6.244

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	431	NO	6.066	N/A
MW360	Downgradient	Yes	536	NO	6.284	N/A
MW363	Downgradient	Yes	407	NO	6.009	N/A
MW366	Downgradient	Yes	474	NO	6.161	N/A
MW369	Upgradient	Yes	370	NO	5.914	N/A
MW372	Upgradient	Yes	622	NO	6.433	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.010	CV(1)= 0.400	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.742	S = 0.307	CV(2) =-0.082	K factor**= 2.523	TL(2)= -2.967	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/22/2002	0.025	-3.689				
7/15/2002	0.05	-2.996				
10/8/2002	0.02	-3.912				
1/8/2003	0.02	-3.912				
4/3/2003	0.02	-3.912				
7/8/2003	0.02	-3.912				
10/6/2003	0.02	-3.912				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	0.025	-3.689				
4/23/2002	0.025	-3.689				
7/16/2002	0.05	-2.996				
10/8/2002	0.02	-3.912				
1/7/2003	0.02	-3.912				
4/2/2003	0.02	-3.912				

0.02

0.02

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	0.00084	4 NO	-7.077	N/A
MW360	Downgradient	Yes	0.00042	7 NO	-7.759	N/A
MW363	Downgradient	Yes	0.00092	1 NO	-6.990	N/A
MW366	Downgradient	Yes	0.00099	6 NO	-6.912	N/A
MW369	Upgradient	Yes	0.00131	NO	-6.638	N/A
MW372	Upgradient	Yes	0.00063	5 NO	-7.362	N/A
N/A - Rest	ults identified as l	Non-Detects	during lah	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912 -3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.781	S = 1.351	CV(1)= 0.759	K factor**= 2.523	TL(1)= 5.190	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.228	S = 1.065	CV(2) =4.665	K factor**= 2.523	TL(2)= 2.915	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	5.41	1.688				
4/22/2002	1.57	0.451				
7/15/2002	0.8	-0.223				
10/8/2002	1.09	0.086				
1/8/2003	2.69	0.990				
4/3/2003	2.04	0.713				
7/8/2003	1.19	0.174				
10/6/2003	1.78	0.577				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	3.89	1.358				
4/23/2002	0.05	-2.996				
7/16/2002	1.33	0.285				
10/8/2002	2.66	0.978				
1/7/2003	0.4	-0.916				
4/2/2003	0.91	-0.094				
7/9/2003	1.42	0.351				

1.26

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	3.46	NO	1.241	N/A	
MW360	Downgradient	Yes	1.53	NO	0.425	N/A	
MW363	Downgradient	Yes	3.1	NO	1.131	N/A	
MW366	Downgradient	Yes	5.09	NO	1.627	N/A	
MW369	Upgradient	Yes	2.02	NO	0.703	N/A	
MW372	Upgradient	Yes	1.54	NO	0.432	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.231

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =285.188 S = 44.908	CV(1)= 0.157	K factor**= 2.523	TL(1)= 398.489	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.640 S = 0.175	CV(2)= 0.031	K factor**= 2.523	TL(2)= 6.080	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	173	5.153				
4/22/2002	246	5.505				
7/15/2002	232	5.447				
10/8/2002	275	5.617				
1/8/2003	269	5.595				
4/3/2003	250	5.521				
7/8/2003	295	5.687				
10/6/2003	276	5.620				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	295	5.687				
4/23/2002	322	5.775				
7/16/2002	329 5.796					
10/8/2002	290 5.670					
1/7/2003	316	5.756				
4/2/2003	311	5.740				

347

337

7/9/2003 10/7/2003 Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	246	NO	5.505	N/A	
MW360	Downgradient	Yes	293	NO	5.680	N/A	
MW363	Downgradient	Yes	257	NO	5.549	N/A	
MW366	Downgradient	Yes	257	NO	5.549	N/A	
MW369	Upgradient	Yes	180	NO	5.193	N/A	
MW372	Upgradient	Yes	304	NO	5.717	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

5.849

5.820

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 2.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.693	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 0.693	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	2	0.693			
4/22/2002	2	0.693			
7/15/2002	2	0.693			
10/8/2002	2	0.693			
1/8/2003	2	0.693			
4/3/2003	2	0.693			
7/8/2003	2	0.693			
10/6/2003	2	0.693			
Well Number:	MW372				
Date Collected	Result	LN(Result)			
3/19/2002	2	0.693			
4/23/2002	2	0.693			
7/16/2002	2	0.693			
10/8/2002	2	0.693			
1/7/2003	2	0.693			
4/2/2003	2	0.693			
- / . /	-				

7/9/2003

10/7/2003

2 2 Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	No	0.5	N/A	-0.693	N/A
MW360	Downgradient	Yes	0.169	NO	-1.778	N/A
MW363	Downgradient	Yes	0.171	NO	-1.766	N/A
MW366	Downgradient	No	0.5	N/A	-0.693	N/A
MW369	Upgradient	No	0.5	N/A	-0.693	N/A
MW372	Upgradient	No	0.5	N/A	-0.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.693

0.693

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.385	S= 6.991	CV(1)= 0.947	K factor**= 2.523	TL(1)= 25.024	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.358	S = 1.323	CV(2)= 0.974	K factor**= 2.523	TL(2)= 4.697	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	0.656	-0.422				
4/22/2002	0.695	-0.364				
7/15/2002	7.1	1.960				
10/8/2002	21.5	3.068				
1/8/2003	18.5	2.918				
4/3/2003	14.9	2.701				
7/8/2003	11.3	2.425				

10/6/2003	14.9	2.701
Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	5.95	1.783
4/23/2002	0.792	-0.233
7/16/2002	1.78	0.577
10/8/2002	0.776	-0.254
1/7/2003	3.55	1.267
4/2/2003	5.02	1.613
7/9/2003	10	2.303
10/7/2003	0.733	-0.311

1 4 0

101010000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	0.325	NO	-1.124	N/A
MW360	Downgradient	Yes	4.24	NO	1.445	N/A
MW363	Downgradient	Yes	0.326	NO	-1.121	N/A
MW366	Downgradient	Yes	0.368	NO	-1.000	N/A
MW369	Upgradient	Yes	0.291	NO	-1.234	N/A
MW372	Upgradient	Yes	0.432	NO	-0.839	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

. . .

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.864 S = 3.505	CV(1)= 0.272	K factor**= 2.523	TL(1)= 21.707	LL(1)=N/A
Statistics-Transformed Background Data	X = 2.517 S = 0.290	CV(2)= 0.115	K factor**= 2.523	TL(2)= 3.248	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	11.4	2.434				
4/22/2002	12	2.485				
7/15/2002	10	2.303				
10/8/2002	8.62	2.154				
1/8/2003	7.89	2.066				
4/3/2003	7.97	2.076				
7/8/2003	10.3	2.332				
10/6/2003	9.14	2.213				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	15.7	2.754				
4/23/2002	16.6	2.809				
7/16/2002	15.4	2.734				
10/8/2002	15.8	2.760				
1/7/2003	15.8	2.760				
4/2/2003	16.4	2.797				
7/9/2003	15.2	2.721				

17.6

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	11.5	NO	2.442	N/A
MW360	Downgradient	Yes	9.25	NO	2.225	N/A
MW363	Downgradient	Yes	10.9	NO	2.389	N/A
MW366	Downgradient	Yes	14	NO	2.639	N/A
MW369	Upgradient	Yes	6.72	NO	1.905	N/A
MW372	Upgradient	Yes	17.7	NO	2.874	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.868

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.413	S= 0.274	CV(1)= 0.664	K factor**= 2.523	TL(1)= 1.105	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.226	S= 1.008	CV(2) =-0.822	K factor**= 2.523	TL(2)= 1.317	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	0.034	-3.381			
4/22/2002	0.062	-2.781			
7/15/2002	0.436	-0.830			
10/8/2002	0.867	-0.143			
1/8/2003	0.828	-0.189			
4/3/2003	0.672	-0.397			
7/8/2003	0.321	-1.136			
10/6/2003	0.714	-0.337			
Well Number:	MW372				
Date Collected	Result	LN(Result)			
3/19/2002	0.205	-1.585			
4/23/2002	0.345	-1.064			
7/16/2002	0.21	-1.561			
10/8/2002	0.0539	-2.921			
1/7/2003	0.537	-0.622			
4/2/2003	0.415	-0.879			

0.654

0.254

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	0.151	NO	-1.890	N/A
MW360	Downgradient	Yes	0.2	NO	-1.609	N/A
MW363	Downgradient	Yes	0.213	NO	-1.546	N/A
MW366	Downgradient	Yes	0.172	NO	-1.760	N/A
MW369	Upgradient	Yes	0.0413	NO	-3.187	N/A
MW372	Upgradient	Yes	0.0058	NO	-5.150	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-0.425 -1.370

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.010	S= 0.012	CV(1)= 1.199	K factor**= 2.523	TL(1)= 0.040	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.698	S= 1.607	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.643	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			

Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
X7 11 X7 1	100070	
Well Number:	MW372	
Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	No	0.0005	N/A	-7.601	N/A
MW360	Downgradient	Yes	0.00067	1 N/A	-7.307	NO
MW363	Downgradient	No	0.0005	N/A	-7.601	N/A
MW366	Downgradient	No	0.0005	N/A	-7.601	N/A
MW369	Upgradient	No	0.0005	N/A	-7.601	N/A
MW372	Upgradient	Yes	0.00024	1 N/A	-8.331	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.021	CV(1)= 0.910	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.246	S = 1.075	CV(2) =-0.253	K factor**= 2.523	TL(2)= -1.535	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
W/-11 NI1	MW260

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	()
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	0.00069	7 NO	-7.269	N/A
MW360	Downgradient	Yes	0.00121	NO	-6.717	N/A
MW363	Downgradient	Yes	0.0012	NO	-6.725	N/A
MW366	Downgradient	Yes	0.00076	9 NO	-7.170	N/A
MW369	Upgradient	Yes	0.00562	NO	-5.181	N/A
MW372	Upgradient	Yes	0.00078	7 NO	-7.147	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =74.563	S= 94.243	CV(1)= 1.264	K factor**= 2.523	TL(1)= 312.337	LL(1)=N/A
Statistics-Transformed Background Data	X= 4.554	S = 0.784	CV(2)= 0.172	K factor**= 2.523	TL(2)= 5.371	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	215	5.371			
4/22/2002	110	4.700			
7/15/2002	20	2.996			
1/8/2003	-5	#Func!			
4/3/2003	-18	#Func!			
7/8/2003	-67	#Func!			
10/6/2003	-1	#Func!			
1/7/2004	55	4.007			
Well Number:	MW372				
Date Collected	Result	LN(Result)			
3/19/2002	210	5.347			
4/23/2002	65	4.174			

215

185

45

65

-39

138

Г

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	365	N/A	5.900	YES
MW360	Downgradient	Yes	211	N/A	5.352	NO
MW363	Downgradient	Yes	280	N/A	5.635	YES
MW366	Downgradient	Yes	288	N/A	5.663	YES
MW369	Upgradient	Yes	399	N/A	5.989	YES
MW372	Upgradient	Yes	358	N/A	5.881	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

5.371

5.220

3.807

4.174

#Func! 4.927

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW357	
MW363	
MW366	
MW369	
MW372	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison PCB, Total UNITS: UG/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.390	S = 0.350	CV(1)= 0.897	K factor**= 2.523	TL(1)= 1.272	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.238	S = 0.737	CV(2) =-0.595	K factor**= 2.523	TL(2)= 0.622	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	1	0.000				
4/22/2002	0.17	-1.772				
7/15/2002	0.17	-1.772				
7/8/2003	1.15	0.140				
10/6/2003	0.605	-0.503				

0.42

0.28

0.23

MW372

Result

1

0.17

0.17

0.17

0.17

0.18

0.17

0.18

7/13/2004

7/20/2005

4/4/2006

3/19/2002

4/23/2002

7/16/2002

7/9/2003

10/7/2003

7/14/2004

7/21/2005

4/5/2006

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	No	0.098	N/A	-2.323	N/A
MW360	Downgradient	Yes	0.0432	NO	-3.142	N/A
MW363	Downgradient	Yes	0.0731	NO	-2.616	N/A
MW366	Downgradient	No	0.1	N/A	-2.303	N/A
MW369	Upgradient	Yes	0.0475	NO	-3.047	N/A
MW372	Upgradient	No	0.0952	N/A	-2.352	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-0.868

-1.273

-1.470

0.000

-1.772

-1.772

-1.772

-1.772

-1.715

-1.772 -1.715

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: UG/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.281	S = 0.383	CV(1)= 1.361	K factor**= 2.523	TL(1)= 1.247	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.835	S = 0.938	CV(2) =-0.511	K factor**= 2.523	TL(2)= 0.532	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Wall Number	MW260					

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/8/2003	1.15	0.140
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/20/2005	0.1	-2.303
4/4/2006	0.1	-2.303
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 0.11	0.000 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 0.11 0.11	0.000 -2.207 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003	Result 1 0.11 0.11 0.13	0.000 -2.207 -2.207 -2.040
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003	Result 1 0.11 0.13 0.09	0.000 -2.207 -2.207 -2.040 -2.408
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003 7/14/2004	Result 1 0.11 0.13 0.09 0.1	0.000 -2.207 -2.207 -2.040 -2.408 -2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	No	0.098	N/A	-2.323	N/A
MW360	Downgradient	Yes	0.0432	N/A	-3.142	NO
MW363	Downgradient	No	0.098	N/A	-2.323	N/A
MW366	Downgradient	No	0.1	N/A	-2.303	N/A
MW369	Upgradient	Yes	0.0475	N/A	-3.047	NO
MW372	Upgradient	No	0.0952	N/A	-2.352	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison PCB-1248 UNITS: UG/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.246	S= 0.295	CV(1)= 1.202	K factor**= 2.523	TL(1)= 0.991	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.746	S = 0.699	CV(2) =-0.401	K factor**= 2.523	TL(2)= 0.019	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	1	0.000				
4/22/2002	0.17	-1.772				
7/15/2002	0.17	-1.772				
7/8/2003	0.15	-1.897				
10/6/2003	0.12	-2.120				
7/13/2004	0.12	-2.120				
7/20/2005	0.12	-2.120				
4/4/2006	0.11	-2.207				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	1	0.000				
4/23/2002	0.17	-1.772				
7/16/2002	0.17	-1.772				
7/9/2003	0.15	-1.897				
10/7/2003	0.12	-2.120				
7/14/2004	0.12	-2.120				

0.12

0.12

7/21/2005

4/5/2006

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	No	0.098	N/A	-2.323	N/A
MW360	Downgradient	No	0.0952	N/A	-2.352	N/A
MW363	Downgradient	Yes	0.0731	N/A	-2.616	NO
MW366	Downgradient	No	0.1	N/A	-2.303	N/A
MW369	Upgradient	No	0.1	N/A	-2.303	N/A
MW372	Upgradient	No	0.0952	N/A	-2.352	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.120

-2.120

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.274	S= 0.194	CV(1)= 0.031	K factor**= 2.904	TL(1)= 6.837	LL(1)=5.7114
Statistics-Transformed Background Data	X= 1.836	S = 0.031	CV(2)= 0.017	K factor**= 2.904	TL(2)= 1.925	LL(2)=1.7467

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	6.1	1.808						
4/22/2002	6.1	1.808						
7/15/2002	6.1	1.808						
10/8/2002	6.5	1.872						
1/8/2003	6.5	1.872						

6.6

6.5

6.5

MW372

Result

6.1

6.12

6.1

6.06

6.26

6.15

6.3

6.4

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
Downgradien	t Yes	6.12	NO	1.812	N/A	
Downgradien	t Yes	6.46	NO	1.866	N/A	
Downgradien	t Yes	6.22	NO	1.828	N/A	
Downgradien	t Yes	6.19	NO	1.823	N/A	
Upgradient	Yes	6.12	NO	1.812	N/A	
Upgradient	Yes	6.22	NO	1.828	N/A	
	Gradient Downgradien Downgradien Downgradien Downgradien Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	GradientDetected?ResultDowngradientYes6.12DowngradientYes6.46DowngradientYes6.22DowngradientYes6.19UpgradientYes6.12	GradientDetected?ResultResult >TL(1)? Result <ll(1)?< th="">DowngradientYes6.12NODowngradientYes6.46NODowngradientYes6.22NODowngradientYes6.19NOUpgradientYes6.12NO</ll(1)?<>	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientYes6.12NO1.812DowngradientYes6.46NO1.866DowngradientYes6.22NO1.828DowngradientYes6.19NO1.823UpgradientYes6.12NO1.812	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.887

1.872

1.872

1.808

1.812

1.808

1.802

1.834

1.816

1.841

1.856

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.663	S= 0.488	CV(1)= 0.293	K factor**= 2.523	TL(1)= 2.895	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.456	S = 0.362	CV(2)= 0.794	K factor**= 2.523	TL(2)= 1.368	LL(2)=N/A

r								
Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	2	0.693						
4/22/2002	2.21	0.793						
7/15/2002	2	0.693						
10/8/2002	0.966	-0.035						
1/8/2003	0.727	-0.319						
4/3/2003	0.8	-0.223						
7/8/2003	1.62	0.482						
10/6/2003	1.14	0.131						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	2.04	0.713						
4/23/2002	2.03	0.708						
7/16/2002	2	0.693						
10/8/2002	1.54	0.432						
1/7/2003	1.88	0.631						
4/2/2003	2.09	0.737						
7/9/2003	1.78	0.577						

1.79

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	1.72	NO	0.542	N/A	
MW360	Downgradient	Yes	0.718	NO	-0.331	N/A	
MW363	Downgradient	Yes	1.65	NO	0.501	N/A	
MW366	Downgradient	Yes	2.01	NO	0.698	N/A	
MW369	Upgradient	Yes	0.515	NO	-0.664	N/A	
MW372	Upgradient	Yes	2.1	NO	0.742	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.582

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 45.100	S= 11.875	CV(1)= 0.263	K factor**= 2.523	TL(1)= 75.061	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.780	S= 0.242	CV(2) =0.064	K factor**= 2.523	TL(2)= 4.390	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	35.7	3.575						
4/22/2002	37.6	3.627						
7/15/2002	42.4	3.747						
10/8/2002	66.9	4.203						
1/8/2003	67.9	4.218						
4/3/2003	61.8	4.124						
7/8/2003	45.6	3.820						
10/6/2003	59.1	4.079						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	37.2	3.616						
4/23/2002	38.6	3.653						
7/16/2002	35.6	3.572						
10/8/2002	37.5	3.624						
1/7/2003	34.1	3.529						
4/2/2003	34.4	3.538						
7/9/2003	44.1	3.786						
10/7/2003	43.1	3.764						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	43.9	NO	3.782	N/A	
MW360	Downgradient	Yes	78.3	YES	4.361	N/A	
MW363	Downgradient	Yes	37.4	NO	3.622	N/A	
MW366	Downgradient	Yes	45.9	NO	3.826	N/A	
MW369	Upgradient	Yes	50.3	NO	3.918	N/A	
MW372	Upgradient	Yes	47.5	NO	3.861	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW360

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 45.031	S= 33.919	CV(1)= 0.753	K factor**= 2.523	TL(1)= 130.609	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.420	S = 0.981	CV(2)= 0.287	K factor**= 2.523	TL(2)= 5.894	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	15.5	2.741					
4/22/2002	15.8	2.760					
7/15/2002	13.8	2.625					
10/8/2002	6.9	1.932					
1/8/2003	10.5	2.351					
4/3/2003	10.5	2.351					
7/8/2003	10.9	2.389					
10/6/2003	16.3	2.791					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	71.7	4.272					
4/23/2002	74.7	4.313					
7/16/2002	74.1	4.305					
10/8/2002	70.5	4.256					
1/7/2003	75.8	4.328					
4/2/2003	81.8	4.404					
7/9/2003	83.6	4.426					

88.1

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	46.1	NO	3.831	N/A	
MW360	Downgradient	Yes	15.2	NO	2.721	N/A	
MW363	Downgradient	Yes	31.2	NO	3.440	N/A	
MW366	Downgradient	Yes	56	NO	4.025	N/A	
MW369	Upgradient	Yes	7.01	NO	1.947	N/A	
MW372	Upgradient	Yes	57.7	NO	4.055	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.478

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 20.821	S= 18.044	CV(1)= 0.867	K factor**= 2.523	TL(1)= 66.344	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.770	S= 1.150	CV(2)= 0.415	K factor**= 2.523	TL(2)= 3.972	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	41.7	3.731						
4/22/2002	53.1	3.972						
7/15/2002	18.1	2.896						
10/8/2002	16.4	2.797						
1/8/2003	3.49	1.250						
4/3/2003	9.34	2.234						
7/8/2003	17.5	2.862						
10/6/2003	17	2.833						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	44.8	3.802						
4/23/2002	0.802	-0.221						
7/16/2002	19.8	2.986						
10/8/2002	46.1	3.831						
1/7/2003	-0.973	#Func!						
4/2/2003	9.07	2.205						
7/9/2003	0	#Func!						
10/7/2003	36.9	3.608						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW357	Downgradient	Yes	44.5	NO	3.795	N/A		
MW360	Downgradient	No	3.62	N/A	1.286	N/A		
MW363	Downgradient	No	10.9	N/A	2.389	N/A		
MW366	Downgradient	Yes	50.4	NO	3.920	N/A		
MW369	Upgradient	Yes	70.8	YES	4.260	N/A		
MW372	Upgradient	Yes	195	YES	5.273	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW369 MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Thorium-230 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.143	S= 0.148	CV(1)= 1.032	K factor**= 2.523	TL(1)= 0.517	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.235	S= 0.875	CV(2) =-0.391	K factor**= 2.523	TL(2)= -0.534	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
10/7/2004	0.586	-0.534						
1/12/2005	0.0362	-3.319						
4/7/2005	0.224	-1.496						
7/20/2005	0.029	-3.540						
10/12/2005	0.0719	-2.632						
1/4/2006	0.0753	-2.586						
4/4/2006	0.0972	-2.331						
7/6/2006	0.0491	-3.014						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
10/7/2004	0.252	-1.378						
1/6/2005	0.165	-1.802						
4/13/2005	0.119	-2.129						
7/21/2005	0.122	-2.104						
10/11/2005	0.323	-1.130						
1/5/2006	-0.00656	#Func!						
4/5/2006	0.117	-2.146						
7/10/2006	0.034	-3.381						

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW357	Downgradient	Yes	1.69	N/A	0.525	YES		
MW360	Downgradient	No	0.759	N/A	-0.276	N/A		
MW363	Downgradient	No	0.792	N/A	-0.233	N/A		
MW366	Downgradient	No	0.568	N/A	-0.566	N/A		
MW369	Upgradient	No	-0.203	N/A	#Error	N/A		
MW372	Upgradient	No	0.664	N/A	-0.409	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW357

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.513	S = 4.307	CV(1)= 1.226	K factor**= 2.523	TL(1)= 14.378	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.851	S = 0.828	CV(2)= 0.973	K factor**= 2.523	TL(2)= 2.940	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	1.7	0.531						
4/22/2002	1.6	0.470						
7/15/2002	3.1	1.131						
10/8/2002	17.7	2.874						
1/8/2003	9	2.197						
4/3/2003	4	1.386						
7/8/2003	4.9	1.589						
10/6/2003	2.4	0.875						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	1	0.000						
4/23/2002	1.2	0.182						
7/16/2002	1	0.000						
10/8/2002	1	0.000						
1/7/2003	1.6	0.470						

1.5

3

1.5

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW357	Downgradient	Yes	1.08	N/A	0.077	NO		
MW360	Downgradient	Yes	2.63	N/A	0.967	NO		
MW363	Downgradient	Yes	1.42	N/A	0.351	NO		
MW366	Downgradient	Yes	1.34	N/A	0.293	NO		
MW369	Upgradient	Yes	1.6	N/A	0.470	NO		
MW372	Upgradient	Yes	1.42	N/A	0.351	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.405

1.099

0.405

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 67.963	S= 64.316	CV(1)= 0.946	K factor**= 2.523	TL(1)= 230.231	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.772	S = 1.023	CV(2)= 0.271	K factor**= 2.523	TL(2)= 6.353	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	50	3.912						
4/22/2002	50	3.912						
7/15/2002	81	4.394						
10/8/2002	202	5.308						
1/8/2003	177	5.176						
4/3/2003	93.1	4.534						
7/8/2003	17.5	2.862						
10/6/2003	37.5	3.624						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	184	5.215						
4/23/2002	50	3.912						
7/16/2002	50 3.912							
10/8/2002	50	3.912						
1/7/2003	10	2.303						

12.7

12.6

10

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW357	Downgradient	Yes	8.2	NO	2.104	N/A		
MW360	Downgradient	Yes	20.5	NO	3.020	N/A		
MW363	Downgradient	Yes	15.5	NO	2.741	N/A		
MW366	Downgradient	No	7.26	N/A	1.982	N/A		
MW369	Upgradient	Yes	16.2	NO	2.785	N/A		
MW372	Upgradient	Yes	13	NO	2.565	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.542

2.303

2.534

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.625	S = 3.594	CV(1)= 0.639	K factor**= 2.523	TL(1)= 14.693	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.571	S= 0.565	CV(2)= 0.360	K factor**= 2.523	TL(2)= 2.995	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	11	2.398					

2.773 2.079

1.099

0.693

1.099

1.099

0.693

1.609

1.609

1.386

1.792

1.609

1.792

1.609

1.792

LN(Result)

16

8

3

2

3

3

2

5

5

4

6

5

6

5

6

MW372

Result

4/22/2002

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW357	Downgradient	Yes	5.05	NO	1.619	N/A
MW360	Downgradient	No	1	N/A	0.000	N/A
MW363	Downgradient	Yes	1.27	N/A	0.239	N/A
MW366	Downgradient	Yes	5.03	NO	1.615	N/A
MW369	Upgradient	Yes	5.51	NO	1.707	N/A
MW372	Upgradient	Yes	4.49	N/A	1.502	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.006	CV(1)= 0.259	K factor**= 2.523	TL(1)= 0.039	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.771	S= 0.223	CV(2) =-0.059	K factor**= 2.523	TL(2)= -3.208	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
ens with 1ra	ansiormed Kesuit							
MW369								
Result	LN(Result)							
0.025	-3.689							
0.027	-3.612							
0.025	-3.689							
0.02	-3.912							
0.02	-3.912							
0.02	-3.912							
0.02	-3.912							
0.02	-3.912							
MW372								
Result	LN(Result)							
0.039	-3.244							
0.037	-3.297							
0.025	-3.689							
0.02	-3.912							
0.02	-3.912							
0.02	-3.912							
0.02	-3.912							
0.02	-3.912							
	with Transmission MW369 Result 0.025 0.027 0.025 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.037 0.025 0.02 0.02 0.02 0.02 0.02 0.02 0.02							

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?			
MW357	Downgradient	No	0.01	N/A	-4.605	N/A			
MW360	Downgradient	No	0.01	N/A	-4.605	N/A			
MW363	Downgradient	No	0.01	N/A	-4.605	N/A			
MW366	Downgradient	No	0.01	N/A	-4.605	N/A			
MW369	Upgradient	Yes	0.00373	3 NO	-5.591	N/A			
MW372	Upgradient	No	0.01	N/A	-4.605	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.116	S= 0.173	CV(1)= 1.490	K factor**= 2.523	TL(1)= 0.552	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.729	S= 1.014	CV(2) =-0.371	K factor**= 2.523	TL(2)= -0.172	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	0.1	-2.303						
4/22/2002	0.1	-2.303						

0.1

0.025

0.035

0.035

0.02

0.02

MW372

Result

0.725

0.1

0.1

0.025

0.035

0.035

0.2

0.2

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW357	Downgradient	Yes	0.00408	S N/A	-5.502	NO	
MW360	Downgradient	No	0.01	N/A	-4.605	N/A	
MW363	Downgradient	No	0.01	N/A	-4.605	N/A	
MW366	Downgradient	Yes	0.00404	N/A	-5.512	NO	
MW369	Upgradient	Yes	0.00362	N/A	-5.621	NO	
MW372	Upgradient	No	0.01	N/A	-4.605	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.303

-3.689

-3.352

-3.352

-3.912

-3.912

-0.322

-2.303

-2.303

-3.689

-3.352

-3.352

-1.609 -1.609

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.026	S= 5.626	CV(1)= 2.777	K factor**= 2.523	TL(1)= 16.219	LL(1)=N/A
Statistics-Transformed Background	X= -0.803	S= 1.380	CV(2)=- 1.718	K factor**= 2.523	TL(2)= 2.678	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	4.66	1.539					
4/23/2002	0.2	-1.609					
7/15/2002	0.2	-1.609					
10/8/2002	0.2	-1.609					
1/8/2003	0.2	-1.609					
4/3/2003	0.2	-1.609					
7/9/2003	0.2	-1.609					
10/6/2003	0.2	-1.609					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	22.7	3.122					
4/23/2002	1.46	0.378					
7/16/2002	0.253	-1.374					

0.482

0.608

0.446

0.2

0.2

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW358	Downgradient	Yes	0.0743	N/A	-2.600	NO		
MW361	Downgradient	Yes	0.0516	N/A	-2.964	NO		
MW364	Downgradient	Yes	0.0347	N/A	-3.361	NO		
MW367	Downgradient	Yes	0.0497	N/A	-3.002	NO		
MW370	Upgradient	Yes	0.0805	N/A	-2.519	NO		
MW373	Upgradient	Yes	0.0967	N/A	-2.336	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-0.730

-0.498

-0.807

-1.609

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.815	S = 7.838	CV(1)= 0.799	K factor**= 2.523	TL(1)= 29.591	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.072	S= 0.630	CV(2) =0.304	K factor**= 2.523	TL(2)= 3.662	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	10.1	2.313				
4/23/2002	4.46	1.495				
7/15/2002	6.58	1.884				
10/8/2002	4.9	1.589				
1/8/2003	4.47	1.497				
4/3/2003	8.65	2.158				
7/9/2003	3.66	1.297				
10/6/2003	5.38	1.683				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	15.1	2.715				
4/23/2002	6.26	1.834				
7/16/2002	6.22	1.828				
10/8/2002	4.06	1.401				
1/7/2003	11.2	2.416				
4/2/2003	18.5	2.918				
7/9/2003	13.3	2.588				

34.2

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	35.8	N/A	3.578	N/A	
MW361	Downgradient	Yes	28.1	N/A	3.336	N/A	
MW364	Downgradient	Yes	35.9	N/A	3.581	N/A	
MW367	Downgradient	Yes	8.35	N/A	2.122	N/A	
MW370	Upgradient	Yes	69	YES	4.234	N/A	
MW373	Upgradient	Yes	20.6	N/A	3.025	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.532

Wells with Exceedances MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.140	S= 0.780	CV(1)= 0.684	K factor**= 2.523	TL(1)= 3.108	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.235	S = 1.006	CV(2) =-4.287	K factor**= 2.523	TL(2)= 2.303	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	2	0.693				
4/23/2002	2	0.693				
7/15/2002	2	0.693				
10/8/2002	0.2	-1.609				
1/8/2003	0.2	-1.609				
4/3/2003	0.2	-1.609				
7/9/2003	0.2	-1.609				
10/6/2003	0.2	-1.609				

MW373

Result

2

2

2

0.79

0.807

1.13

1.28

1.24

Well Number:

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).
8 ()

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	0.403	NO	-0.909	N/A	
MW361	Downgradient	Yes	0.136	NO	-1.995	N/A	
MW364	Downgradient	Yes	0.0142	NO	-4.255	N/A	
MW367	Downgradient	Yes	0.0205	NO	-3.887	N/A	
MW370	Upgradient	Yes	0.0341	NO	-3.378	N/A	
MW373	Upgradient	Yes	1.38	NO	0.322	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

LN(Result)

0.693

0.693

0.693

-0.236

-0.214

0.122

0.247

0.215

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)=#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	1	0.000				
4/23/2002	1	0.000				

1

1

1

1

1

1

1

1

1

1

1

1

1

1

MW373

Result

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	0.462	NO	-0.772	N/A	
MW361	Downgradient	Yes	0.419	NO	-0.870	N/A	
MW364	Downgradient	Yes	0.444	NO	-0.812	N/A	
MW367	Downgradient	Yes	0.118	NO	-2.137	N/A	
MW370	Upgradient	Yes	0.413	NO	-0.884	N/A	
MW373	Upgradient	Yes	0.578	NO	-0.548	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

0.0000.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 43.413	S= 13.444	CV(1)= 0.310	K factor**= 2.523	TL(1)= 77.331	LL(1)=N/A
Statistics-Transformed Background	X= 3.723	S= 0.323	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.539	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	34.8	3.550				
4/23/2002	43.4	3.770				
7/15/2002	33.2	3.503				
10/8/2002	29.2	3.374				
1/8/2003	31.3	3.444				
4/3/2003	32.4	3.478				
7/9/2003	22.9	3.131				
10/6/2003	28	3.332				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	61.9	4.126				
4/23/2002	59.2	4.081				
7/16/2002	47.6	3.863				
10/8/2002	46.1	3.831				
1/7/2003	49.2	3.896				
4/2/2003	57.8	4.057				
7/9/2003	52.7	3.965				

64.9

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	32.7	NO	3.487	N/A	
MW361	Downgradient	Yes	30.3	NO	3.411	N/A	
MW364	Downgradient	Yes	30.5	NO	3.418	N/A	
MW367	Downgradient	Yes	13.8	NO	2.625	N/A	
MW370	Upgradient	Yes	27.9	NO	3.329	N/A	
MW373	Upgradient	Yes	58.5	NO	4.069	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.173

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 41.938	S= 24.732	CV(1)= 0.590	K factor**= 2.523	TL(1)= 104.336	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.658	S = 0.339	CV(2)= 0.093	K factor**= 2.523	TL(2)= 4.512	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	35	3.555			
4/23/2002	134	4.898			
7/15/2002	35	3.555			
10/8/2002	35	3.555			
1/8/2003	35	3.555			
4/3/2003	35	3.555			
7/9/2003	35	3.555			
10/6/2003	35	3.555			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
3/18/2002	35	3.555			
4/23/2002	47	3.850			
7/16/2002	35	3.555			
10/8/2002	35	3.555			
1/7/2003	35	3.555			
4/2/2003	35	3.555			

35

35

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	30.2	NO	3.408	N/A
MW361	Downgradient	Yes	17.5	NO	2.862	N/A
MW364	Downgradient	No	20	N/A	2.996	N/A
MW367	Downgradient	Yes	10.9	NO	2.389	N/A
MW370	Upgradient	Yes	17.5	NO	2.862	N/A
MW373	Upgradient	Yes	15.6	NO	2.747	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

3.555

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =45.919 S = 7.524	CV(1)= 0.164	K factor**= 2.523	TL(1)= 64.901	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.814 S= 0.165	CV(2) =0.043	K factor**= 2.523	TL(2)= 4.231	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
7/15/2002	55.5	4.016				
10/8/2002	53.6	3.982				
1/8/2003	52.9	3.968				
4/3/2003	53.6	3.982				
7/9/2003	51.9	3.949				
10/6/2003	53	3.970				
1/7/2004	53	3.970				
4/7/2004	51.6	3.944				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
7/16/2002	40.6	3.704				
10/8/2002	38.8	3.658				
1/7/2003	39	3.664				
4/2/2003	38.4	3.648				
7/9/2003	38.1	3.640				
10/7/2003	38	3.638				

37.9

38.8

1/6/2004

4/7/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	37.9	NO	3.635	N/A
MW361	Downgradient	Yes	32	NO	3.466	N/A
MW364	Downgradient	Yes	34.1	NO	3.529	N/A
MW367	Downgradient	Yes	7.39	NO	2.000	N/A
MW370	Upgradient	Yes	33.8	NO	3.520	N/A
MW373	Upgradient	Yes	45.6	NO	3.820	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.635

3.658

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.027	S= 0.032	CV(1)= 1.165	K factor**= 2.523	TL(1)= 0.108	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.058	S = 1.011	CV(2) =-0.249	K factor**= 2.523	TL(2)= -1.507	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	0.025	-3.689				
4/23/2002	0.025	-3.689				
7/15/2002	0.025	-3.689				
10/8/2002	0.0174	-4.051				
1/8/2003	0.0105	-4.556				
4/3/2003	0.00931	-4.677				
7/9/2003	0.137	-1.988				
10/6/2003	0.0463	-3.073				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/23/2002	0.034	-3.381				
7/16/2002	0.025	-3.689				
10/8/2002	0.00411	-5.494				
1/7/2003	0.00344	-5.672				
4/2/2003	0.00368	-5.605				
7/9/2003	0.0405	-3.206				

0.00843

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	0.0153	N/A	-4.180	NO
MW361	Downgradient	Yes	0.00050	4 N/A	-7.593	NO
MW364	Downgradient	Yes	0.00089	7 N/A	-7.016	NO
MW367	Downgradient	Yes	0.00678	N/A	-4.994	NO
MW370	Upgradient	Yes	0.00237	N/A	-6.045	NO
MW373	Upgradient	Yes	0.00464	N/A	-5.373	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-4.776

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =608.719 S = 156.157	7 CV(1)=0.257	K factor**= 2.523	TL(1)= 1002.702	2 LL(1)=N/A
Statistics-Transformed Background	X =6.380 S = 0.260	CV(2)=0.041	K factor**= 2.523	TL(2)= 7.036	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	406	6.006				
4/23/2002	543	6.297				
7/15/2002	476	6.165				
10/8/2002	441	6.089				
1/8/2003	486	6.186				
4/3/2003	466	6.144				
7/9/2003	479	6.172				
10/6/2003	435	6.075				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	661	6.494				
4/23/2002	801	6.686				
7/16/2002	774	6.652				
10/8/2002	680	6.522				

686.5

763

828

814

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	538	NO	6.288	N/A
MW361	Downgradient	Yes	482	NO	6.178	N/A
MW364	Downgradient	Yes	469	NO	6.151	N/A
MW367	Downgradient	Yes	251	NO	5.525	N/A
MW370	Upgradient	Yes	438	NO	6.082	N/A
MW373	Upgradient	Yes	742	NO	6.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

6.532

6.637

6.719

6.702

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.025	S= 0.010	CV(1)= 0.399	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X =-3.739	S = 0.308	CV(2) =-0.082	K factor**= 2.523	TL(2)= -2.963	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	0.025	-3.689				
4/23/2002	0.025	-3.689				
7/15/2002	0.05	-2.996				
10/8/2002	0.02	-3.912				
1/8/2003	0.02	-3.912				
4/3/2003	0.02	-3.912				
7/9/2003	0.02	-3.912				
10/6/2003	0.02	-3.912				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	0.026	-3.650				
4/23/2002	0.025	-3.689				
7/16/2002	0.05	-2.996				
10/8/2002	0.02	-3.912				
1/7/2003	0.02	-3.912				
4/2/2003	0.02	-3.912				
7/9/2003	0.02	-3.912				

0.02

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	0.00154	NO	-6.476	N/A
MW361	Downgradient	Yes	0.00078	8 NO	-7.146	N/A
MW364	Downgradient	Yes	0.00081	8 NO	-7.109	N/A
MW367	Downgradient	Yes	0.00095	2 NO	-6.957	N/A
MW370	Upgradient	Yes	0.00135	NO	-6.608	N/A
MW373	Upgradient	Yes	0.00138	NO	-6.586	N/A
	1. 11		1 . 11		1 . 1.1	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.387	S = 1.153	CV(1)= 0.831	K factor**= 2.523	TL(1)= 4.295	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.115	S = 1.207	CV(2) =-10.514	K factor**= 2.523	TL(2)= 2.930	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	4.32	1.463					
4/23/2002	1.24	0.215					
7/15/2002	0.75	-0.288					
10/8/2002	0.94	-0.062					
1/8/2003	3.08	1.125					
4/3/2003	1.45	0.372					
7/9/2003	1.22	0.199					
10/6/2003	1.07	0.068					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	3.04	1.112					
4/23/2002	0.03	-3.507					
7/16/2002	0.23	-1.470					
10/8/2002	0.86	-0.151					
1/7/2003	0.21	-1.561					
4/2/2003	1.19	0.174					
7/9/2003	1.1	0.095					

1.46

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	2.96	NO	1.085	N/A
MW361	Downgradient	Yes	3.36	NO	1.212	N/A
MW364	Downgradient	Yes	4.87	YES	1.583	N/A
MW367	Downgradient	Yes	1.78	NO	0.577	N/A
MW370	Upgradient	Yes	3.78	NO	1.330	N/A
MW373	Upgradient	Yes	1.82	NO	0.599	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.378

Wells with Exceedances MW364

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =356.188 S = 106.752	2 CV(1)=0.300	K factor**= 2.523	TL(1)= 625.523	LL(1)=N/A
Statistics-Transformed Background Data	X =5.831 S = 0.311	CV(2) =0.053	K factor**= 2.523	TL(2)= 6.616	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
opgradient w		instormed Result					
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	236	5.464					
4/23/2002	337	5.820					
7/15/2002	266	5.583					
10/8/2002	240	5.481					
1/8/2003	282	5.642					
4/3/2003	238	5.472					
7/9/2003	248	5.513					
10/6/2003	224	5.412					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	427	6.057					
4/23/2002	507	6.229					
7/16/2002	464	6.140					
10/8/2002	408	6.011					
1/7/2003	404	6.001					
4/2/2003	450	6.109					

487

481

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	281	NO	5.638	N/A
MW361	Downgradient	Yes	273	NO	5.609	N/A
MW364	Downgradient	Yes	277	NO	5.624	N/A
MW367	Downgradient	Yes	140	NO	4.942	N/A
MW370	Upgradient	Yes	216	NO	5.375	N/A
MW373	Upgradient	Yes	444	NO	6.096	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

6.188

6.176

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 2.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.693	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 0.693	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	2	0.693					
4/23/2002	2	0.693					
7/15/2002	2	0.693					
10/8/2002	2	0.693					
1/8/2003	2	0.693					
4/3/2003	2	0.693					
7/9/2003	2	0.693					
10/6/2003	2	0.693					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	2	0.693					
4/23/2002	2	0.693					
7/16/2002	2	0.693					
10/8/2002	2	0.693					
1/7/2003	2	0.693					
4/2/2003	2	0.693					
7/9/2003	2	0.693					

10/7/2003

2

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	0.186	NO	-1.682	N/A
MW361	Downgradient	No	0.5	N/A	-0.693	N/A
MW364	Downgradient	No	0.5	N/A	-0.693	N/A
MW367	Downgradient	Yes	0.208	NO	-1.570	N/A
MW370	Upgradient	No	0.5	N/A	-0.693	N/A
MW373	Upgradient	No	0.5	N/A	-0.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.693

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.230	S= 8.841	CV(1)= 0.958	K factor**= 2.523	TL(1)= 31.535	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.942	S= 0.713	CV(2)= 0.367	K factor**= 2.523	TL(2)= 3.740	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
MW370							
Result	LN(Result)						
9.34	2.234						
4.33	1.466						
3.52	1.258						
7.45	2.008						
7.04	1.952						
4.64	1.535						
15.8	2.760						
6.49	1.870						
MW373							
Result	LN(Result)						
37.6	3.627						
19	2.944						
10.7	2.370						
3.75	1.322						
3.87	1.353						
	MW370 Result 9.34 4.33 3.52 7.45 7.04 4.64 15.8 6.49 MW373 Result 37.6 19 10.7 3.75						

3.5

7.72

2.93

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	4.47	NO	1.497	N/A
MW361	Downgradient	Yes	0.32	NO	-1.139	N/A
MW364	Downgradient	Yes	0.375	NO	-0.981	N/A
MW367	Downgradient	Yes	11.5	NO	2.442	N/A
MW370	Upgradient	Yes	0.49	NO	-0.713	N/A
MW373	Upgradient	Yes	0.839	NO	-0.176	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.253

2.044

1.075

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =17.544 S = 5.911	CV(1)= 0.337	K factor**= 2.523	TL(1)= 32.458	LL(1)=N/A
Statistics-Transformed Background Data	X =2.810 S = 0.343	CV(2)= 0.122	K factor**= 2.523	TL(2)= 3.676	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	12.1	2.493					
4/23/2002	15.1	2.715					
7/15/2002	12.4	2.518					
10/8/2002	12.2	2.501					
1/8/2003	11.5	2.442					
4/3/2003	12.3	2.510					
7/9/2003	10	2.303					
10/6/2003	12.1	2.493					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	24.8	3.211					
4/23/2002	22.7	3.122					
7/16/2002	18.8	2.934					
10/8/2002	21.1	3.049					
1/7/2003	19.9	2.991					
4/2/2003	25.5	3.239					
7/9/2003	23.3	3.148					
10/7/2003	26.9	3.292					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	15	NO	2.708	N/A
MW361	Downgradient	Yes	13.1	NO	2.573	N/A
MW364	Downgradient	Yes	13	NO	2.565	N/A
MW367	Downgradient	Yes	7.67	NO	2.037	N/A
MW370	Upgradient	Yes	12	NO	2.485	N/A
MW373	Upgradient	Yes	22.3	NO	3.105	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.080	S= 0.674	CV(1)= 0.624	K factor**= 2.523	TL(1)= 2.780	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.114	S = 0.658	CV(2) =-5.762	K factor**= 2.523	TL(2)= 1.547	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	0.244	-1.411					
4/23/2002	1.82	0.599					
7/15/2002	1.22	0.199					
10/8/2002	0.988	-0.012					
1/8/2003	0.729	-0.316					
4/3/2003	0.637	-0.451					
7/9/2003	2.51	0.920					
10/6/2003	1.05	0.049					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	0.355	-1.036					
4/23/2002	2.16	0.770					
7/16/2002	1.39	0.329					
10/8/2002	0.717	-0.333					
1/7/2003	0.587	-0.533					
4/2/2003	0.545	-0.607					
7/9/2003	1.76	0.565					
10/7/2003	0.57	-0.562					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	0.705	NO	-0.350	N/A	
MW361	Downgradient	Yes	0.0984	NO	-2.319	N/A	
MW364	Downgradient	Yes	0.134	NO	-2.010	N/A	
MW367	Downgradient	Yes	1.66	NO	0.507	N/A	
MW370	Upgradient	Yes	0.174	NO	-1.749	N/A	
MW373	Upgradient	Yes	0.215	NO	-1.537	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.010	S= 0.012	CV(1)= 1.198	K factor**= 2.523	TL(1)= 0.040	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.693	S= 1.604	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.647	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
MW370						
Result	LN(Result)					
0.025	-3.689					
0.025	-3.689					
	ells with Tra MW370 Result 0.025					

-3.689

-6.786 -6.908

-6.908

-6.908

-6.908

-3.689

-3.689

-3.689

-6.908

-6.908

-6.908

-6.908 -6.908

LN(Result)

0.025

0.001

0.001

0.001

0.001

MW373

Result

0.025

0.025

0.025

0.001

0.001

0.001

0.001

0.001

0.00113

7/15/2002

10/8/2002

1/8/2003 4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	0.00040	8 N/A	-7.804	NO
MW361	Downgradient	No	0.0005	N/A	-7.601	N/A
MW364	Downgradient	Yes	0.00072	6 N/A	-7.228	NO
MW367	Downgradient	No	0.0005	N/A	-7.601	N/A
MW370	Upgradient	Yes	0.00068	7 N/A	-7.283	NO
MW373	Upgradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S = 0.022	CV(1)= 0.901	K factor**= 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.239	S= 1.087	CV(2) =-0.256	K factor**= 2.523	TL(2)= -1.497	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Wall Number:	MW370				

well Number:	MW3/0	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· · · · ·
Date Collected 3/18/2002	Result 0.05	-2.996
Date Collected 3/18/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	0.00768	NO	-4.869	N/A	
MW361	Downgradient	No	0.002	N/A	-6.215	N/A	
MW364	Downgradient	Yes	0.0015	NO	-6.502	N/A	
MW367	Downgradient	Yes	0.00302	NO	-5.802	N/A	
MW370	Upgradient	Yes	0.00143	NO	-6.550	N/A	
MW373	Upgradient	Yes	0.00307	NO	-5.786	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =46.688	S= 60.986	CV(1)= 1.306	K factor**= 2.523	TL(1)= 200.555	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.829	S = 1.151	CV(2)= 0.301	K factor**= 2.523	TL(2)= 4.942	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number: MW370					
Date Collected	Result	LN(Result)			
3/17/2002	140	4.942			
4/23/2002	-15	#Func!			

5

49

-35

40

101

105

MW373

Result

140

-20

10

10

67

-29

127

52

7/15/2002

4/3/2003

7/9/2003

10/6/2003

1/7/2004

4/7/2004

3/18/2002

4/23/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	18	N/A	2.890	NO
MW361	Downgradient	Yes	372	N/A	5.919	YES
MW364	Downgradient	Yes	291	N/A	5.673	YES
MW367	Downgradient	Yes	107	N/A	4.673	NO
MW370	Upgradient	Yes	392	N/A	5.971	YES
MW373	Upgradient	Yes	347	N/A	5.849	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.609

3.892

#Func!

3.689

4.615

4.654

4.942

#Func!

2.303

2.303

4.205

#Func!

4.844

3.951

LN(Result)

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

```
Wells with Exceedances
MW361
MW364
MW370
MW373
```

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.283	S= 0.159	CV(1)= 0.025	K factor**= 2.904	TL(1)= 6.745	LL(1)=5.8202
Statistics-Transformed Background Data	X= 1.837	S = 0.025	CV(2)= 0.014	K factor**= 2.904	TL(2)= 1.911	LL(2)=1.7634

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	6.3	1.841					
4/23/2002	6.4	1.856					
7/15/2002	6.3	1.841					
10/8/2002	6.3	1.841					
1/8/2003	6.4	1.856					
4/3/2003	6.5	1.872					
7/9/2003	6.3	1.841					
10/6/2003	6.5	1.872					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	6	1.792					
4/23/2002	6.3	1.841					
7/16/2002	6.45	1.864					
10/8/2002	6.18	1.821					
1/7/2003	6.35	1.848					
4/2/2003	6.14	1.815					
7/9/2003	6.1	1.808					

10/7/2003

6

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW358	Downgradien	t Yes	6.24	NO	1.831	N/A	
MW361	Downgradien	t Yes	6.06	NO	1.802	N/A	
MW364	Downgradien	t Yes	6.09	NO	1.807	N/A	
MW367	Downgradien	t Yes	6.07	NO	1.803	N/A	
MW370	Upgradient	Yes	6.13	NO	1.813	N/A	
MW373	Upgradient	Yes	6.24	NO	1.831	N/A	
NI/A D	1. 11C 1 N	T D ()	1 . 11	, <u>1</u> .	1. 1.1.	1 /	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.792

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.823	S= 0.522	CV(1)= 0.185	K factor**= 2.523	TL(1)= 4.139	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.024	S= 0.167	CV(2)= 0.163	K factor**= 2.523	TL(2)= 1.445	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	3.22	1.169					
4/23/2002	3.43	1.233					
7/15/2002	2.98	1.092					
10/8/2002	2.46	0.900					
1/8/2003	2.41	0.880					
4/3/2003	2.43	0.888					
7/9/2003	2.44	0.892					
10/6/2003	2.48	0.908					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	4.34	1.468					
4/23/2002	3.04	1.112					
7/16/2002	2.93	1.075					
10/8/2002	2.3	0.833					
1/7/2003	2.45	0.896					
4/2/2003	2.7	0.993					
7/9/2003	2.68	0.986					

2.88

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	2.44	NO	0.892	N/A
MW361	Downgradient	Yes	2.21	NO	0.793	N/A
MW364	Downgradient	Yes	2.05	NO	0.718	N/A
MW367	Downgradient	Yes	2.67	NO	0.982	N/A
MW370	Upgradient	Yes	2.57	NO	0.944	N/A
MW373	Upgradient	Yes	2.61	NO	0.959	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.058

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)Х

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.158	S = 5.739	CV(1)= 2.660	K factor**= 2.523	TL(1)= 16.637	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.670	S = 1.833	CV(2) =-2.736	K factor**= 2.523	TL(2)= 3.068	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
7/15/2002	10.1	2.313					
10/8/2002	-0.825	#Func!					
1/8/2003	0.415	-0.879					
10/6/2003	0.52	-0.654					
1/7/2004	1.03	0.030					
4/7/2004	0.434	-0.835					
7/13/2004	0.532	-0.631					
10/7/2004	0.299	-1.207					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
7/16/2002	21.5	3.068					
10/8/2002	0.0327	-3.420					
1/7/2003	-0.844	#Func!					
10/7/2003	0	#Func!					
1/6/2004	0.177	-1.732					
4/7/2004	0.792	-0.233					
7/14/2004	0.327	-1.118					
10/7/2004	0.033	-3.411					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	No	0.391	N/A	-0.939	N/A
MW361	Downgradient	No	0.671	N/A	-0.399	N/A
MW364	Downgradient	No	0.364	N/A	-1.011	N/A
MW367	Downgradient	No	1.12	N/A	0.113	N/A
MW370	Upgradient	Yes	1.36	N/A	0.307	NO
MW373	Upgradient	No	0.68	N/A	-0.386	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 51.544	S = 15.227	CV(1)= 0.295	K factor**= 2.523	TL(1)= 89.962	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.906	S= 0.272	CV(2)= 0.070	K factor**= 2.523	TL(2)= 4.592	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW370							
Date Collected	Result	LN(Result)						
3/17/2002	31.8	3.459						
4/23/2002	50	3.912						
7/15/2002	44.7	3.800						
10/8/2002	40	3.689						
1/8/2003	44.6	3.798						
4/3/2003	41.9	3.735						
7/9/2003	40	3.689						
10/6/2003	38.1	3.640						
Well Number:	MW373							
Date Collected	Result	LN(Result)						
3/18/2002	43.4	3.770						
4/23/2002	79.8	4.380						
7/16/2002	87.7	4.474						
10/8/2002	61.6	4.121						
1/7/2003	59.3	4.083						
4/2/2003	62.1	4.129						
7/9/2003	50.1	3.914						
10/7/2003	49.6	3.904						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	42.7	NO	3.754	N/A
MW361	Downgradient	Yes	46.2	NO	3.833	N/A
MW364	Downgradient	Yes	43.1	NO	3.764	N/A
MW367	Downgradient	Yes	17	NO	2.833	N/A
MW370	Upgradient	Yes	40.6	NO	3.704	N/A
MW373	Upgradient	Yes	52.7	NO	3.965	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =122.381 S = 195.095	5 CV(1)=1.594	K factor**= 2.523	TL(1)= 614.606	LL(1)=N/A
Statistics-Transformed Background Data	X =3.985 S = 1.323	CV(2) =0.332	K factor**= 2.523	TL(2)= 7.322	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	17.4	2.856				
4/23/2002	37.9	3.635				
7/15/2002	15.7	2.754				
10/8/2002	13.4	2.595				
1/8/2003	14.4	2.667				

18.1

9.6

16.5

MW373

Result

163.3

809.6

109.4

110.6

113.7

133

182.1

193.4

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	71.4	N/A	4.268	NO	
MW361	Downgradient	Yes	74.2	N/A	4.307	NO	
MW364	Downgradient	Yes	72.8	N/A	4.288	NO	
MW367	Downgradient	Yes	21.4	N/A	3.063	NO	
MW370	Upgradient	Yes	18.8	N/A	2.934	NO	
MW373	Upgradient	Yes	118	N/A	4.771	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.896

2.262

2.803

5.096

6.697

4.695

4.706

4.734

4.890

5.205

5.265

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.655	S= 13.274	CV(1)= 1.734	K factor**= 2.523	TL(1)= 41.146	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.946	S = 0.939	CV(2) =0.483	K factor**= 2.523	TL(2)= 3.833	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	10.8	2.380					
4/23/2002	8.53	2.144					
7/15/2002	5.09	1.627					
10/8/2002	4.78	1.564					
1/8/2003	-5.12	#Func!					
4/3/2003	5.11	1.631					
7/9/2003	4.25	1.447					
10/6/2003	6.54	1.878					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	16.5	2.803					
4/23/2002	3.49	1.250					
7/16/2002	1.42	0.351					
10/8/2002	-6.06	#Func!					
1/7/2003	-8.41	#Func!					
4/2/2003	26.3	3.270					
7/9/2003	3.06	1.118					
10/7/2003	46.2	3.833					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW358	Downgradient	Yes	44.5	N/A	3.795	NO	
MW361	Downgradient	Yes	52.4	N/A	3.959	YES	
MW364	Downgradient	Yes	56.8	N/A	4.040	YES	
MW367	Downgradient	No	9.85	N/A	2.287	N/A	
MW370	Upgradient	Yes	103	N/A	4.635	YES	
MW373	Upgradient	Yes	29.6	N/A	3.388	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW361 MW364 MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.169	S= 12.072	CV(1)=1.957	K factor**= 2.523	TL(1)= 36.626	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.069	S= 1.014	CV(2)= 0.948	K factor**= 2.523	TL(2)= 3.626	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu						
MW370						
Result	LN(Result)					
1.2	0.182					
4.3	1.459					
2.6	0.956					
2.3	0.833					
3	1.099					
1.2	0.182					
2.6	0.956					
1.7	0.531					
MW373						
Result	LN(Result)					
1.1	0.095					
17.5	2.862					
49	3.892					
2.9	1.065					
3.9	1.361					
2.5	0.916					
1.7	0.531					
	ells with Tra MW370 Result 1.2 4.3 2.6 2.3 3 1.2 2.6 1.7 MW373 Result 1.1 17.5 49 2.9 3.9 2.5					

1.2

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	2.95	N/A	1.082	NO
MW361	Downgradient	Yes	1.17	N/A	0.157	NO
MW364	Downgradient	Yes	1.11	N/A	0.104	NO
MW367	Downgradient	Yes	1.39	N/A	0.329	NO
MW370	Upgradient	Yes	1.26	N/A	0.231	NO
MW373	Upgradient	Yes	1.46	N/A	0.378	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.182

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 79.819	S= 78.470	CV(1)= 0.983	K factor**= 2.523	TL(1)= 277.798	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.971	S = 0.950	CV(2)= 0.239	K factor**= 2.523	TL(2)= 6.368	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Res						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	50	3.912				
4/23/2002	228	5.429				
7/15/2002	88	4.477				
10/8/2002	58	4.060				
1/8/2003	72.4	4.282				
4/3/2003	26.6	3.281				
7/9/2003	16.4	2.797				
10/6/2003	31.1	3.437				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	50	3.912				
4/23/2002	276	5.620				
7/16/2002	177	5.176				
10/8/2002	76	4.331				
1/7/2003	45.9	3.826				
4/2/2003	57.8	4.057				
7/9/2003	10	2.303				

13.9

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	No	7.7	N/A	2.041	N/A
MW361	Downgradient	Yes	9.96	NO	2.299	N/A
MW364	Downgradient	Yes	5.53	NO	1.710	N/A
MW367	Downgradient	No	7.02	N/A	1.949	N/A
MW370	Upgradient	Yes	6.84	NO	1.923	N/A
MW373	Upgradient	Yes	12.2	NO	2.501	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.632

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 12.188	S= 6.950	CV(1)=0.570	K factor**= 2.523	TL(1)= 29.721	LL(1)=N/A
Statistics-Transformed Background Data	X =2.305	S = 0.687	CV(2)= 0.298	K factor**= 2.523	TL(2)= 4.039	LL(2)=N/A

ells with 1 ra	instormed Kesul
MW370	
Result	LN(Result)
19	2.944
17	2.833
15	2.708
18	2.890
17	2.833
18	2.890
15	2.708
16	2.773
MW373	
Result	LN(Result)
5	1.609
25	3.219
3	1.099
4	1.386
6	1.792
5	1.609
6	1.792
6	1.792
	Result 19 17 15 18 17 18 17 18 15 16 MW373 Result 5 25 3 4 6 5 6

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	3.74	N/A	1.319	N/A
MW361	Downgradient	Yes	5.03	NO	1.615	N/A
MW364	Downgradient	Yes	6.79	NO	1.915	N/A
MW367	Downgradient	No	1	N/A	0.000	N/A
MW370	Upgradient	Yes	3	N/A	1.099	N/A
MW373	Upgradient	Yes	6.93	NO	1.936	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.055	S= 0.037	CV(1)= 0.673	K factor**= 2.523	TL(1)= 0.147	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.131	S= 0.691	CV(2) =-0.221	K factor**= 2.523	TL(2)= -1.388	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.1	-2.303
4/23/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/23/2002	0.1	-2.303
7/16/2002	0.1	-2.303

0.025

0.035

0.035

0.0234

0.02

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW358	Downgradient	Yes	0.00796	NO	-4.833	N/A
MW361	Downgradient	Yes	0.00344	NO	-5.672	N/A
MW364	Downgradient	Yes	0.0515	NO	-2.966	N/A
MW367	Downgradient	Yes	0.0116	NO	-4.457	N/A
MW370	Upgradient	Yes	0.00736	NO	-4.912	N/A
MW373	Upgradient	Yes	0.0041	NO	-5.497	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.689

-3.352

-3.352

-3.755 -3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U Fourth Quarter 2017 Statistical Analysis **Current Background Comparison** UCRS **Dissolved Oxygen** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.528	S= 1.279	CV(1)= 0.506	K factor**= 2.523	TL(1)= 5.756	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.806	S = 0.513	CV(2) =0.637	K factor**= 2.523	TL(2)= 2.102	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradien	t Yes	5.26	NO	1.660	N/A
MW365	Downgradien	t Yes	5.9	YES	1.775	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW365

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

10/13/2015	1.78	0.577
1/21/2016	2.03	0.708
4/7/2016	4.79	1.567
7/18/2016	3.65	1.295
10/19/2016	2.2	0.788
1/18/2017	2.41	0.880
4/18/2017	3.43	1.233
7/20/2017	3.51	1.256
Well Number:	MW374	
Date Collected	Result	LN(Result)
Date Collected 10/14/2015	Result 1.1	LN(Result) 0.095
		. ,
10/14/2015	1.1	0.095
10/14/2015 1/21/2016	1.1 1.25	0.095 0.223
10/14/2015 1/21/2016 4/7/2016	1.1 1.25 5.01	0.095 0.223 1.611
10/14/2015 1/21/2016 4/7/2016 7/18/2016	1.1 1.25 5.01 1	0.095 0.223 1.611 0.000
10/14/2015 1/21/2016 4/7/2016 7/18/2016 10/19/2016	1.1 1.25 5.01 1 3.39	0.095 0.223 1.611 0.000 1.221
10/14/2015 1/21/2016 4/7/2016 7/18/2016 10/19/2016 1/19/2017	1.1 1.25 5.01 1 3.39 1.43	0.095 0.223 1.611 0.000 1.221 0.358

Current Background Data from Upgradient

LN(Result)

MW371

Result

Wells with Transformed Result

Well Number: Date Collected

C-746-U Fourth Quarter 2017 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =289.000 S = 101.323	CV(1)= 0.351	K factor**= 2.523	TL(1)= 544.637	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.606 S = 0.362	CV(2) =0.065	K factor**= 2.523	TL(2)= 6.520	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW362	Downgradien	t Yes	248	NO	5.513	N/A
MW365	Downgradien	t Yes	240	NO	5.481	N/A
MW371	Upgradient	Yes	375	NO	5.927	N/A
MW374	Upgradient	Yes	194	NO	5.268	N/A
MW375	Sidegradient	Yes	386	NO	5.956	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-4

Date Collected	Result	LN(Result)
10/13/2015	393	5.974
1/21/2016	254	5.537
4/7/2016	295	5.687
7/18/2016	441	6.089
10/19/2016	370	5.914
1/18/2017	410	6.016
4/18/2017	257	5.549
7/20/2017	364	5.897
Well Number:	MW374	
Date Collected	Result	LN(Result)
Date Collected 10/14/2015	Result 449	LN(Result) 6.107
		()
10/14/2015	449	6.107
10/14/2015 1/21/2016	449 139	6.107 4.934
10/14/2015 1/21/2016 4/7/2016	449 139 250	6.107 4.934 5.521
10/14/2015 1/21/2016 4/7/2016 7/18/2016	449 139 250 193	6.107 4.934 5.521 5.263
10/14/2015 1/21/2016 4/7/2016 7/18/2016 10/19/2016	449 139 250 193 241	6.107 4.934 5.521 5.263 5.485

Current Background Data from Upgradient

MW371

Wells with Transformed Result

Well Number:

C-746-U Fourth Quarter 2017 Statistical Analysis **Current Background Comparison** UCRS Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.685 S =	= 6.301	CV(1)= 0.590	K factor**= 2.523	TL(1)= 26.582	LL(1)=N/A
Statistics-Transformed Background Data	X =2.229 S =	= 0.529	CV(2)= 0.238	K factor**= 2.523	TL(2)= 3.565	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected LN(Result) Result 10/13/2015 19.5 2.970 1/21/2016 10.2 2.322 4/7/2016 10.9 2.389 7/18/2016 27.6 3.318 10/19/2016 14.8 2.695 1/18/2017 13.1 2.573 4/18/2017 13.9 2.632 7/20/2017 14 2.639 Well Number: MW374 Date Collected LN(Result) Result 10/14/2015 1.842 6.31 1/21/2016 5.63 1.728 4/7/2016 5.74 1.747 7/18/2016 6.25 1.833 6.18 10/19/2016 1.821 1/19/2017 4.83 1.575 4/18/2017 5.71 1.742 7/20/2017 6.31 1.842

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?			
MW362	Downgradien	t Yes	26	NO	3.258	N/A			
MW365	Downgradien	t Yes	59.3	YES	4.083	N/A			
MW375	Sidegradient	Yes	29.2	YES	3.374	N/A			

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW365 MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

C-746-U Fourth Quarter 2017 Statistical AnalysisCurrent Background ComparisonBeta activityUNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 23.837	S= 21.493	CV(1)= 0.902	K factor**= 2.523	TL(1)= 78.063	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.871	S= 0.783	CV(2) =0.273	K factor**= 2.523	TL(2)= 4.847	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
10/13/2015	28	3.332
1/12/2016	38.6	3.653
4/7/2016	11.3	2.425
7/14/2016	22.3	3.105
10/19/2016	57	4.043
1/18/2017	8.82	2.177
4/18/2017	9.12	2.210
7/20/2017	26.1	3.262
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.464
Date Collected	Result	
Date Collected 10/13/2015	Result 86.8	4.464
Date Collected 10/13/2015 1/21/2016	Result 86.8 13.9	4.464 2.632
Date Collected 10/13/2015 1/21/2016 4/7/2016	Result 86.8 13.9 4.15	4.464 2.632 1.423
Date Collected 10/13/2015 1/21/2016 4/7/2016 7/18/2016	Result 86.8 13.9 4.15 21.5	4.464 2.632 1.423 3.068
Date Collected 10/13/2015 1/21/2016 4/7/2016 7/18/2016 10/19/2016	Result 86.8 13.9 4.15 21.5 9.61	4.464 2.632 1.423 3.068 2.263

Current Background Data from Upgradient

Wells with Transformed Result

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW372	Upgradient	Yes	132	YES	4.883	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison C-746-U Fourth Quarter 2017 Statistical Analysis **UNITS: mV** URGA **Oxidation-Reduction Potential**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =306.625 S = 56.313	CV(1)= 0.184	K factor**= 2.523	TL(1)= 448.703	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.710 S = 0.180	CV(2) =0.032	K factor**= 2.523	TL(2)= 6.165	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW369 Date Collected LN(Result) Result 10/13/2015 382 5.945 1/12/2016 5.986 398 4/7/2016 302 5.710 7/14/2016 323 5.778 10/19/2016 365 5.900 1/18/2017 381 5.943 4/18/2017 271 5.602 7/20/2017 5.930 376 Well Number: MW372 Date Collected LN(Result) Result 10/13/2015 294 5.684 1/21/2016 246 5.505 4/7/2016 259 5.557 7/18/2016 248 5.513 10/19/2016 242 5.489 1/19/2017 263 5.572 4/18/2017 256 5.545 7/20/2017 300 5.704

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?				
MW357	Downgradien	t Yes	365	NO	5.900	N/A				
MW363	Downgradien	t Yes	280	NO	5.635	N/A				
MW366	Downgradien	t Yes	288	NO	5.663	N/A				
MW369	Upgradient	Yes	399	NO	5.989	N/A				
MW372	Upgradient	Yes	358	NO	5.881	N/A				

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

C-746-U Fourth Quarter 2017 Statistical Analysis **Current Background Comparison** URGA Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 54.800	S= 8.082	CV(1)= 0.147	K factor**= 2.523	TL(1)= 75.190	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.994	S= 0.146	CV(2) =0.037	K factor**= 2.523	TL(2)= 4.362	LL(2)=N/A

MW360 Downgradient Yes

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

4.361

N/A

Well Number:	MW369	
Date Collected	Result	LN(Result)
10/13/2015	48.3	3.877
1/12/2016	55.7	4.020
4/7/2016	66.8	4.202
7/14/2016	58.9	4.076
10/19/2016	52.2	3.955
1/18/2017	72	4.277
4/18/2017	62	4.127
7/20/2017	54	3.989
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.076
Date Collected	Result	. ,
Date Collected 10/13/2015	Result 58.9	4.076
Date Collected 10/13/2015 1/21/2016	Result 58.9 57.7	4.076 4.055
Date Collected 10/13/2015 1/21/2016 4/7/2016	Result 58.9 57.7 57.9	4.076 4.055 4.059
Date Collected 10/13/2015 1/21/2016 4/7/2016 7/18/2016	Result 58.9 57.7 57.9 48.5	4.076 4.055 4.059 3.882
Date Collected 10/13/2015 1/21/2016 4/7/2016 7/18/2016 10/19/2016	Result 58.9 57.7 57.9 48.5 49.7	4.076 4.055 4.059 3.882 3.906

Current Background Data from Upgradient

Wells with Transformed Result

Current	Quarter Data	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?

YES

78.3

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW360

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical Analysis **Current Background Comparison Technetium-99** URGA **UNITS: pCi/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 31.157	S= 25.783	CV(1)= 0.828	K factor**= 2.523	TL(1)= 96.208	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.101	S = 0.895	CV(2)= 0.289	K factor**= 2.523	TL(2)= 5.361	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW369	Upgradient	Yes	70.8	NO	4.260	N/A		
MW372	Upgradient	Yes	195	YES	5.273	N/A		

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

10/15/2015	10.7	5.011
1/12/2016	52.7	3.965
4/7/2016	13.4	2.595
7/14/2016	10.7	2.370
10/19/2016	83.3	4.422
1/18/2017	27	3.296
4/18/2017	9.22	2.221
7/20/2017	34.2	3.532
Well Number:	MW372	
Date Collected	Result	LN(Result)
Date Collected 10/13/2015	Result 89.5	LN(Result) 4.494
		<pre> /</pre>
10/13/2015	89.5	4.494
10/13/2015 1/21/2016	89.5 18.3	4.494 2.907
10/13/2015 1/21/2016 4/7/2016	89.5 18.3 3.34	4.494 2.907 1.206
10/13/2015 1/21/2016 4/7/2016 7/18/2016	89.5 18.3 3.34 35.4	4.494 2.907 1.206 3.567
10/13/2015 1/21/2016 4/7/2016 7/18/2016 10/19/2016	89.5 18.3 3.34 35.4 10.3	4.494 2.907 1.206 3.567 2.332

Current Background Data from Upgradient

LN(Result)

3.844

MW369

Result

46.7

Wells with Transformed Result

Well Number: Date Collected

10/13/2015

C-746-U Fourth Quarter 2017 Statistical Analysis **Current Background Comparison** Thorium-230 URGA **UNITS: pCi/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.218	S = 0.388	CV(1)= 1.781	K factor**= 2.523	TL(1)= 1.197	LL(1)=N/A
Statistics-Transformed Background	X = -1.359	S = 0.948	CV(2) = -0.698	K factor**= 2 523	TL(2) = 0.191	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
10/13/2015	-0.445	#Func!			
1/12/2016	0.182	-1.704			
4/7/2016	0.243	-1.415			
7/14/2016	0.151	-1.890			
10/19/2016	0.0272	-3.605			
1/18/2017	-0.00581	#Func!			
4/18/2017	0.679	-0.387			
7/20/2017	0.459	-0.779			
Well Number:	MW372				
Date Collected	Result	LN(Result)			
10/13/2015	-0.381	#Func!			
1/21/2016	0.122	-2.104			
4/7/2016	0.365	-1.008			
7/18/2016	-0.025	#Func!			
10/19/2016	0.286	-1.252			
1/19/2017	0.32	-1.139			
4/18/2017	0.298	-1.211			

Data

7/20/2017

1.21

Because CV(1) is greater than 1, the
natural logarithm of background and
test well results were calculated
utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	?
MW357	Downgradier	nt Yes	1.69	N/A	0.525	YES	-

Conclusion of Statistical Analysis on Current Data

0.191

Wells with Exceedances MW357

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Г

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

C-746-U Fourth Quarter 2017 Statistical Analysis **Current Background Comparison** LRGA **Beta activity UNITS: pCi/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 33.600	S= 21.384	CV(1)= 0.636	K factor**= 2.523	TL(1)= 87.552	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.337	S = 0.611	CV(2)= 0.183	K factor**= 2.523	TL(2)= 4.878	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

4.234

N/A

Well Number:	MW370	
Date Collected	Result	LN(Result)
10/13/2015	33.1	3.500
1/12/2016	35.4	3.567
4/7/2016	48.6	3.884
7/18/2016	58	4.060
10/19/2016	19.1	2.950
1/18/2017	44.8	3.802
4/18/2017	65.7	4.185
7/20/2017	84.6	4.438
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 2.370
Date Collected	Result	
Date Collected 10/13/2015	Result 10.7	2.370
Date Collected 10/13/2015 1/21/2016	Result 10.7 25.6	2.370 3.243
Date Collected 10/13/2015 1/21/2016 4/7/2016	Result 10.7 25.6 29.2	2.370 3.243 3.374
Date Collected 10/13/2015 1/21/2016 4/7/2016 7/18/2016	Result 10.7 25.6 29.2 18.1	2.370 3.243 3.374 2.896
Date Collected 10/13/2015 1/21/2016 4/7/2016 7/18/2016 10/19/2016	Result 10.7 25.6 29.2 18.1 17.8	2.370 3.243 3.374 2.896 2.879

Current Background Data from Upgradient

Wells with Transformed Result

Current	t Quarter D	ata					
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN((Result)	LN(Result)	>TL(2)?

NO

Yes

69

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

MW370

Upgradient

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical AnalysisCurrent Background ComparisonDissolved OxygenUNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.498	S= 1.300	CV(1)= 0.372	K factor**= 2.523	TL(1)= 6.777	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.189	S = 0.366	CV(2) =0.307	K factor**= 2.523	TL(2)= 2.112	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW370	
Date Collected	Result	LN(Result)
10/13/2015	4.29	1.456
1/12/2016	3.44	1.235
4/7/2016	5.97	1.787
7/18/2016	3.48	1.247
10/19/2016	4.01	1.389
1/18/2017	3.41	1.227
4/18/2017	3.99	1.384
7/20/2017	4.26	1.449
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.688
Date Collected	Result	. ,
Date Collected 10/13/2015	Result 1.99	0.688
Date Collected 10/13/2015 1/21/2016	Result 1.99 2.24	0.688 0.806
Date Collected 10/13/2015 1/21/2016 4/7/2016	Result 1.99 2.24 6.26	0.688 0.806 1.834
Date Collected 10/13/2015 1/21/2016 4/7/2016 7/18/2016	Result 1.99 2.24 6.26 2.39	0.688 0.806 1.834 0.871
Date Collected 10/13/2015 1/21/2016 4/7/2016 7/18/2016 10/19/2016	Result 1.99 2.24 6.26 2.39 1.81	0.688 0.806 1.834 0.871 0.593

Current Background Data from Upgradient

Wells with Transformed Result

Current Quarter Data	

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW364	Downgradien	t Yes	4.87	NO	1.583	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =334.813 S = 74.133	CV(1)= 0.221	K factor**= 2.523	TL(1)= 521.851	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.790 S = 0.228	CV(2)= 0.039	K factor**= 2.523	TL(2)= 6.366	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW370 Date Collected LN(Result) Result 10/13/2015 416 6.031 1/12/2016 6.028 415 4/7/2016 318 5.762 7/18/2016 483 6.180 10/19/2016 402 5.996 1/18/2017 412 6.021 4/18/2017 278 5.628 7/20/2017 343 5.838 Well Number: MW373 Date Collected Result LN(Result) 10/13/2015 312 5.743 1/21/2016 193 5.263 4/7/2016 278 5.628 7/18/2016 337 5.820 10/19/2016 322 5.775 1/19/2017 279 5.631 4/18/2017 260 5.561 7/20/2017 309 5.733

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?			
MW361	Downgradien	t Yes	372	NO	5.919	N/A			
MW364	Downgradien	t Yes	291	NO	5.673	N/A			
MW370	Upgradient	Yes	392	NO	5.971	N/A			
MW373	Upgradient	Yes	347	NO	5.849	N/A			

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Fourth Quarter 2017 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 50.714	S = 34.903	CV(1)= 0.688	K factor**= 2.523	TL(1)= 138.774	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.686	S= 0.741	CV(2)= 0.201	K factor**= 2.523	TL(2)= 5.556	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW370 Date Collected LN(Result) Result 10/13/2015 50.5 3.922 1/12/2016 32.1 3.469 92 4.522 4/7/2016 7/18/2016 93.2 4.535 10/19/2016 31.7 3.456 1/18/2017 82.8 4.416 4/18/2017 99.1 4.596 7/20/2017 120 4.787 Well Number: MW373 Date Collected Result LN(Result) 10/13/2015 15.9 2.766 1/21/2016 50.3 3.918 4/7/2016 31.2 3.440 7/18/2016 23.7 3.165 2.991 10/19/2016 19.9 1/19/2017 33.1 3.500 4/18/2017 26.8 3.288 7/20/2017 9.12 2.210

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?			
MW361	Downgradient	t Yes	52.4	NO	3.959	N/A			
MW364	Downgradient	t Yes	56.8	NO	4.040	N/A			
MW370	Upgradient	Yes	103	NO	4.635	N/A			

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

21 February 2018

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5501 Hobbs Road Kevil, KY 42053

Subject: Fourth Quarter Statistical Analysis for the C-746-S&T and C-746-U Landfills

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed Mann-Kendall statistical analysis I performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an environmental microbiologist, with a Ph.D. in Engineering Science, I have over 10 years of experience reviewing and analyzing geochemical results associated with environmental sampling and investigation activities. For this project, statistical analysis was performed on historical background and current background data using a coded database provided by FRNP, LLC. Additionally, Mann-Kendall trend tests were conducted using XL Stat, a publically available and widely used commercial product. In the production of the Mann-Kendall Results, XL Stat provides values for alpha, p-value, the Mann-Kendall Statistic (S), variance of S, Sen's slope, and Kendall's correction. For the generation of the Historical Background Comparison Report, Current Background Comparison Report, and the Mann-Kendall statistical analyses, my work was observed and reviewed by a Senior Principal with Geosyntec Consultants.

Statistical analyses conducted on the fourth quarter 2017 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Andre Roche

Andrea Rocha, Ph.D. Senior Staff Scientist

engineers | scientists | innovators

21 February 2018

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5501 Hobbs Road Kevil, KY 42053

Subject: Fourth Quarter Statistical Analysis for the C-746-S&T and C-746-U Landfills

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed Mann-Kendall statistical analysis that I checked and on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an environmental scientist, with a Ph.D. in Life Sciences, I have over 35 years of experience reviewing and analyzing environmental chemistry data associated with environmental sampling, investigation, and remediation activities. For the generation of the Historical Background Comparison Report, Current Background Comparison Report, and the Mann-Kendall statistical analyses, I have experience with the method and other parametric and nonparametric statistical methods to a level of expertise that allows me to provide peer and senior review of the analysis.

For this project, the statistical analyses conducted on the fourth quarter 2017 monitoring well data collected from the C-746-S&T and C-746-U Landfills were in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Deare Haves

Duane Graves, Ph.D., BCES Senior Principal

APPENDIX E

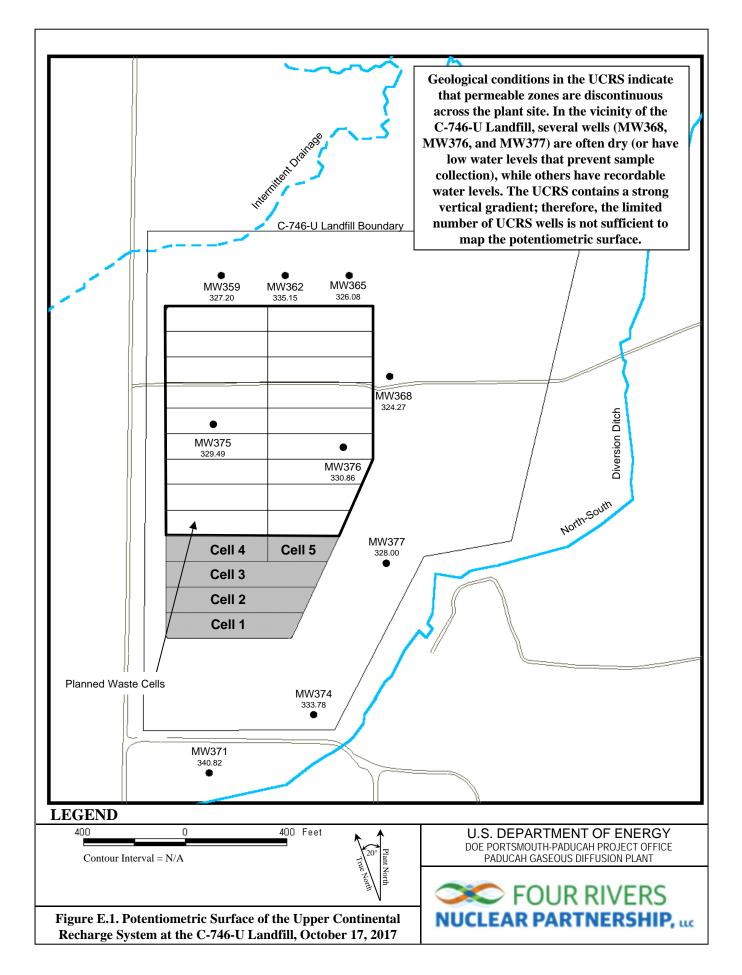
GROUNDWATER FLOW RATE AND DIRECTION

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/CONTAINED—QUARTERLY, 4th CY 2017 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

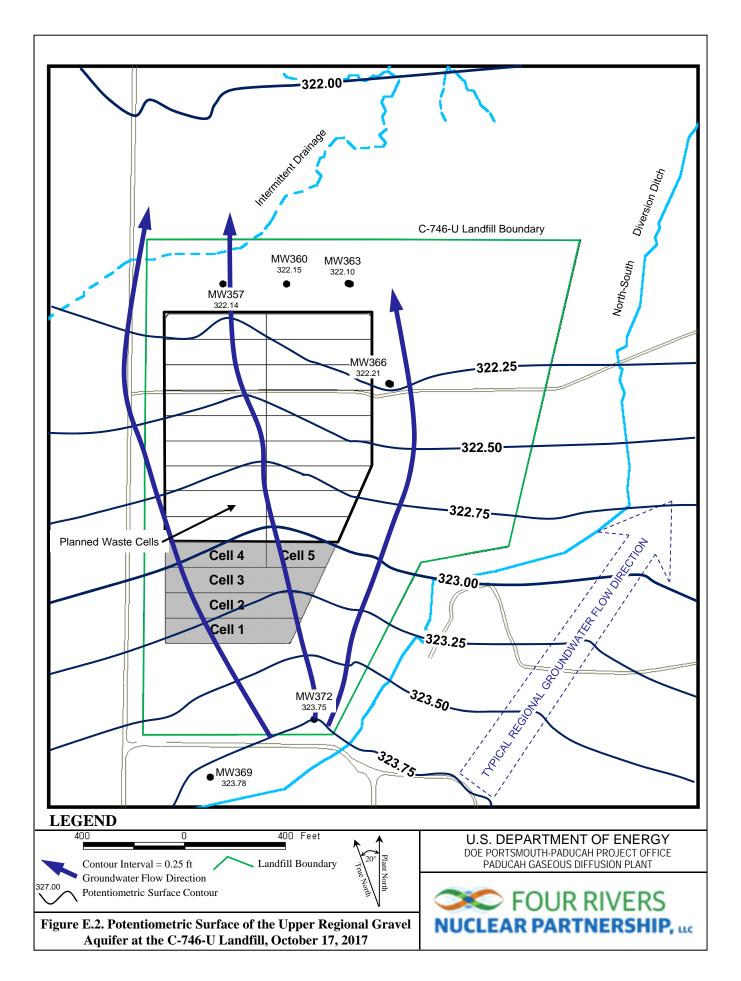
Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

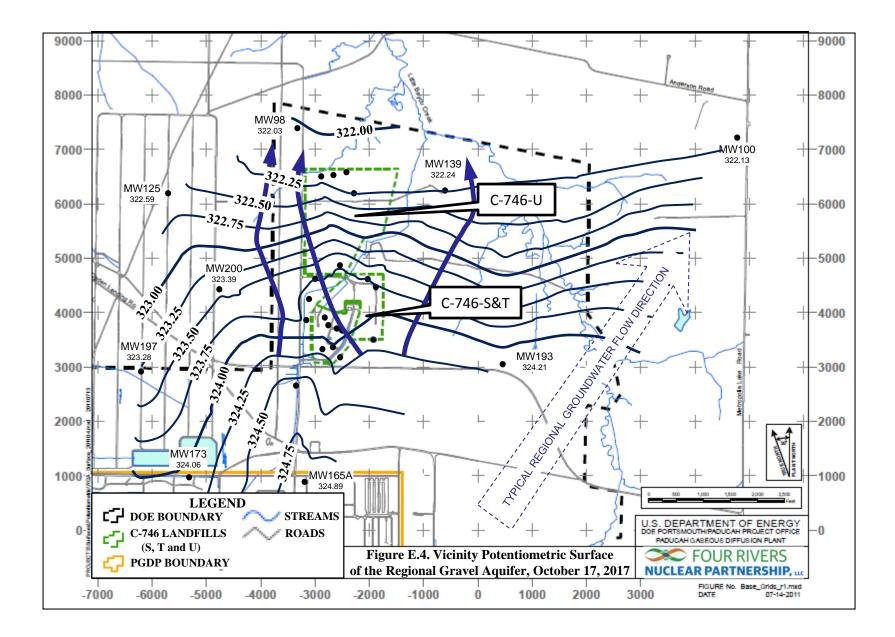

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 *KAR* 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2017 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on October 17, 2017. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW359, MW368, MW376, and MW377 had insufficient water to permit sampling for laboratory analysis.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 9.51×10^{-4} feet (ft)/ft and 9.27×10^{-4} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradients are shown in Table E.2.


The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for October 2017, the groundwater flow direction in the immediate area of the landfill is north to northeastward.



							Raw Data		*Corrected Data	
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
			-	(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/17/2017	7:27	MW357	URGA	368.99	30.35	0.01	46.84	322.15	46.85	322.14
10/17/2017	7:25	MW358	LRGA	369.13	30.35	0.01	46.99	322.14	47.00	322.13
10/17/2017	7:26	MW359	UCRS	369.11	30.35	0.01	41.90	327.21	41.91	327.20
10/17/2017	7:30	MW360	URGA	362.30	30.35	0.01	40.14	322.16	40.15	322.15
10/17/2017	7:28	MW361	LRGA	361.54	30.35	0.01	39.42	322.12	39.43	322.11
10/17/2017	7:29	MW362	UCRS	362.04	30.35	0.01	26.88	335.16	26.89	335.15
10/17/2017	7:38	MW363	URGA	368.84	30.35	0.01	46.73	322.11	46.74	322.10
10/17/2017	7:40	MW364	LRGA	368.45	30.35	0.01	46.35	322.10	46.36	322.09
10/17/2017	7:39	MW365	UCRS	368.37	30.35	0.01	42.28	326.09	42.29	326.08
10/17/2017	7:44	MW366	URGA	369.19	30.35	0.01	46.97	322.22	46.98	322.21
10/17/2017	7:42	MW367	LRGA	369.66	30.35	0.01	47.38	322.28	47.39	322.27
10/17/2017	7:43	MW368	UCRS	369.27	30.35	0.01	44.99	324.28	45.00	324.27
10/17/2017	7:58	MW369	URGA	364.48	30.36	0.00	40.70	323.78	40.70	323.78
10/17/2017	7:56	MW370	LRGA	365.35	30.36	0.00	41.61	323.74	41.61	323.74
10/17/2017	7:57	MW371	UCRS	364.88	30.36	0.00	24.06	340.82	24.06	340.82
10/17/2017	7:55	MW372	URGA	359.66	30.36	0.00	35.91	323.75	35.91	323.75
10/17/2017	7:53	MW373	LRGA	359.95	30.36	0.00	36.21	323.74	36.21	323.74
10/17/2017	7:54	MW374	UCRS	359.71	30.36	0.00	25.93	333.78	25.93	333.78
10/17/2017	7:48	MW375	UCRS	370.53	30.35	0.01	41.03	329.50	41.04	329.49
10/17/2017	7:50	MW376	UCRS	370.61	30.35	0.01	39.74	330.87	39.75	330.86
10/17/2017	7:51	MW377	UCRS	365.92	30.35	0.01	37.91	328.01	37.92	328.00
Initial Barom Elev = elevat	tion		30.36							
amsl = above										
BP = barome	-									
DTW = deptl										
URGA = Upp			-							
LRGA = Low	-		-							
UCRS = Upp				m						
*Assumes a l	barometr	ic efficienc	y of 1.0							

 Table E.1. C-746-U Landfill Fourth Quarter 2017 (October) Water Levels

	ft/ft
Beneath Landfill—Upper RGA	$9.51 imes10^{-4}$
Beneath Landfill—Lower RGA	$9.27 imes10^{-4}$
Vicinity	$5.88 imes10^{-4}$

Table E.3.	C-746-U Landf	ill Groundwater	• Flow Rate
Table Las.	C-740-0 Lanui	m Orvanu water	I IOW Mate

Hydraulic Co	nductivity (K)	Specific	Discharge (q)	Average I	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.689	2.43×10^{-4}	2.76	$9.74 imes 10^{-4}$
425	0.150	0.404	1.43×10^{-4}	1.62	$5.71 imes 10^{-4}$
Lower RGA	L				
725	0.256	0.672	2.37×10^{-4}	2.69	9.49×10^{-4}
425	0.150	0.394	1.39×10^{-4}	1.58	$5.56 imes 10^{-4}$

APPENDIX F

NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the fourth quarter 2017 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid* Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW360 MW369, MW372
Lower Regional Gravel Aquifer	Technetium-99	MW361, MW364, MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

11/13/2017

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL PERMIT NUMBER 073-00045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4798	MW357	Trichloroethene	8260B	5.05	ug/L	5
8004-4795	MW361	Trichloroethene	8260B	5.03	ug/L	5
8004-4797	MW364	Trichloroethene	8260B	6.79	ug/L	5
8004-0982	MW366	Trichloroethene	8260B	5.03	ug/L	5
8004-4820	MW369	Trichloroethene	8260B	5.51	ug/L	5
8004-4818	MW370	Beta activity	9310	69	pCi/L	50
8004-4808	MW372	Beta activity	9310	132	pCi/L	50
8004-4792	MW373	Trichloroethene	8260B	6.93	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

Groundwater Flow System	T			UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*									Ļ
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*			*		4					
Quarter 3, 2004	-					*										*					
Quarter 3, 2005 Quarter 4, 2005	-					*															
ALPHA ACTIVITY	-					*															
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2009																					
ALUMINUM																					
Quarter 3, 2003											*										
BETA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 4, 2005																					
Quarter 1, 2006	1																				
Quarter 2, 2006	1	I			l	l	l	l									L				
Quarter 3, 2006	1																				
Quarter 4, 2006																					
Quarter 1, 2007	_																				
Quarter 2, 2007										_											
Quarter 3, 2007	_																				
Quarter 4, 2007																					
Quarter 1, 2008	_																				
Quarter 2, 2008 Quarter 3, 2008	-													-		-					
Quarter 4, 2008	-																				
Quarter 1, 2009	-																				
Quarter 2, 2009										-											
Quarter 3, 2009	-															_	_				
Quarter 4, 2009																					
Quarter 1, 2009										_											
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013	1	I			l	l	l	l									L				
Quarter 3, 2013	1																				
Quarter 4, 2013	1	I	L	<u> </u>	L	L	L	L	L			L	<u> </u>	L			L		L		└──
Quarter 1, 2014																					
Quarter 4, 2014		<u> </u>	<u> </u>	<u> </u>					<u> </u>			<u> </u>	<u> </u>	<u> </u>					<u> </u>		⊢
Quarter 1, 2015																					
Quarter 2, 2015 Quarter 4, 2015	-																				
Quarter 4, 2015 Quarter 3, 2016	-																				
Quarter 3, 2016 Quarter 4, 2016	+																				
Quarter 2, 2017	+	<u> </u>																			<u> </u>
Quarter 2, 2017 Quarter 3, 2017	1																				
Quarter 4, 2017	1	1																			<u> </u>
BROMIDE		1																			
Quarter 2, 2004													*								
CALCIUM																					
Quarter 3, 2003										*											
Quarter 2, 2005	1	1									1				1		1	1			*
Quarter 3, 2006	1	1													*						
Quarter 2, 2008															*						
Quarter 3, 2009															*						
Quarter 5, 2009	_																				

Chart of MCL and Hist	orical UTL Exceedances for the C-7	746-U Contained Landfill (Cont	inued)
Chart of WICL and Hist	orital UTL Exceedances for the C-7	40-0 Contained Landini (Cont	inucu)

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM																					
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011																					* *
Quarter 4, 2011															*	-					* *
Quarter 1, 2012															*						* *
Quarter 2, 2012															*						*
Quarter 3, 2012 Quarter 4, 2012															*						*
Quarter 1, 2012															*						*
Quarter 2, 2013															*						Ŧ
Quarter 3, 2013															*						*
Quarter 4, 2013															*						Ŧ
Quarter 2, 2013															*						*
Quarter 3, 2014															*						*
Quarter 4, 2014															*						-
Quarter 2, 2015															*						
Quarter 3, 2015															*			1			
Quarter 4, 2015															*						
Quarter 1, 2016		1										1		1	*		1	1	1		
Quarter 2, 2016															*						
Quarter 2, 2017	*																				
CARBON DISULFIDE																					
Quarter 3, 2003										*											
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006						*															
Quarter 3, 2010		*									*										
Quarter 4, 2010														*							
Quarter 1, 2011															*						
CHEMICAL OXYGEN DEMA	ND																				
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*					-				*	*					*					
Quarter 4, 2003						*				*	*										
Quarter 3, 2004						-				*					-	-					
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
Quarter 4, 2016											ч.					-		*			
Quarter 1, 2017											*										
CHLORIDE	_																			*	
				L					<u> </u>	<u> </u>	<u> </u>				*		<u> </u>			*	
Quarter 1, 2006															*						
Quarter 2, 2014													*	*	<u>ч</u>	*	4	*		*	
Quarter 2, 2014 COBALT	*						*	_		1											
Quarter 2, 2014 COBALT Quarter 3, 2003	*						*			*	*		Ŧ		*	*	*	*		-	
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004	*						*			*	*		<u>т</u>	*	*	*	*	*		-	
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016	*						*			*	*		т 		*	*	*	*			
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY	*						*				*		<u>т</u>	*	*	*	*	*			
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002	*						*			*	*		*	*	*	*	*	* 			
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003	*						*			* *			*	*	*	*	*	* 			
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003	*						*			* * *	*		т 	*	*	*	*	* 			
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003	*						*			* * *			т 	*	*	* 	*	本			
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004	*						*			* * * *				*	*		*	* 			
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 2, 2003	*						*			* * * * * *				*	*		*				
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 2, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2003 Quarter 2, 2004 Quarter 3, 2004	*						*			* * * *				*			*				
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005	*						*			* * * * * *				*	*		*				
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2005	*					*	*			* * * * * *				*					*		
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005	*					*	*			* * * * * *				*	*			*	*		
Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2005	*					*	*			* * * * * *				*	**				*		

		S 375	S 376	S 3777		D 362	D 365			D 366	D 360	D 363	D 357	U 369	U 372 * * * * * * * * * * * * * * * * * * *	D 367	D 361	D 364	D 358	U 370	
CONDUCTIVITY Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 3, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2013								371	374	366	360	363	357	369	* * * * * * * * * *	367	361	364	358	370	
Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2013															* * * * * * * * *						
Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013															* * * * * * * * *						
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2012															* * * * * * * *						
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2012															* * * * * * *						
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 7, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013															* * * * * *						
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2013															* * * * * *						
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013															* * * * *						
Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013															* * * *						
Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013															* * *						
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 7, 2012 Quarter 3, 2012 Quarter 4, 2013															*						
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 7, 2011 Quarter 7, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 4, 2012 Quarter 4, 2013															*						
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013																					
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2001 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2013															*						
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013																					1
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013															*						
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 7, 2012 Quarter 3, 2012 Quarter 4, 2013															*						
Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 7, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013															*						
Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013															*						
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013															*						
Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013															*						
Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013															*						
Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013															*						
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013		1													*						
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013														*	*						
Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013														*	*						
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013															*						
Quarter 1, 2013 Quarter 2, 2013																					
Quarter 2, 2013															*						
															*						
Unarter 5, 2015															*						
															*						
Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014																					
Quarter 3, 2014															*						
Quarter 4, 2014															*						
Quarter 1, 2015 Quarter 2, 2015															*						
															*						
Quarter 3, 2015															*						
Quarter 4, 2015 Quarter 1, 2016															*						
															*						<u> </u>
Quarter 2, 2016 Quarter 3, 2016															*						
DISSOLVED OXYGEN															不						
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*	不				*											
Quarter 4, 2003					*					*											
					*																
Quarter 1, 2004 Quarter 2, 2004	_				*			*								*					
Quarter 1, 2005	_				*			Ť								Ť					
Quarter 1, 2005 Quarter 2, 2005	_				*			*													
Quarter 1, 2005	_				*			Ť									 				
Quarter 2, 2006	_			-	*			*													
Quarter 3, 2006	_				*			*													
Quarter 3, 2006 Quarter 4, 2006	_				*			Ť	*												
Quarter 2, 2007	_				*			*	Ť												
Quarter 2, 2007 Quarter 3, 2007	_				*			*	*												
Quarter 1, 2008	_				*			*	Ŧ										*		
Quarter 1, 2008 Quarter 2, 2008	_		 		*			*	*								 	 	Ť		
Quarter 3, 2008	_							*	Ŧ												
Quarter 1, 2009	_			-			*	*													
Quarter 1, 2009 Quarter 2, 2009	_				*		Ŧ	*	*												
Quarter 2, 2009 Quarter 3, 2009	_				т [.]	*		*	*												
Quarter 3, 2009 Quarter 1, 2010	_				*	*	*	*	ጥ												
Quarter 1, 2010 Quarter 2, 2010	_				*	*	Ť	*	*											*	*
	_				*	* *		Ť	Ť											Ψ	Ť
Quarter 3, 2010	_				*	*	*					*								*	
Quarter 4, 2010	_					*	*					*								*	
Quarter 1, 2011	_				<u>*</u>	*	*	*	*					*							
Quarter 2, 2011		L	L	L	*	*	*	*	*					*				L		_	_

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)	

Groundwater Flow System				UCR								URG						LRG			
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
DISSOLVED OXYGEN																_					
Quarter 3, 2011						*	.		*												
Quarter 1, 2012 Quarter 2, 2012	*			*	*	*	*	*	*												
Quarter 2, 2012 Quarter 3, 2012	*			不	Ŧ	*		*	*												
Quarter 4, 2012						Ŧ			*												
Quarter 1, 2012						*			*												
Quarter 2, 2013						-	*		*												
Quarter 3, 2013	*				*		*	*	*												
Quarter 4, 2013									*											*	
Quarter 2, 2014	*				*	*	*	*	*									*			
Quarter 3, 2014	*				*	*	*														
Quarter 4, 2014					.	*	ч.	ч и													<u> </u>
Quarter 2, 2015	-				*	*	*	*													l
Quarter 3, 2015 Quarter 4, 2015	*				*	*	*	*													
Quarter 1, 2016	*				*	Ŧ	*														
Quarter 2, 2016	*	*			*	*	*	*	*											*	*
Quarter 3, 2016					*	*	*	*					*								
Quarter 4, 2016						*			*												
Quarter 1, 2017							*						*								
Quarter 2, 2017	*				*	*	*	*													
Quarter 3, 2017	*	*			*	*	*	*										*			
Quarter 4, 2017						*	*											*			
DISSOLVED SOLIDS Quarter 4, 2002										*											
Quarter 1, 2002 Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003							*			*	*										
Quarter 4, 2003										*											
Quarter 3, 2005						*															
Quarter 4, 2006															*						
Quarter 1, 2007						-									*						
Quarter 2, 2007															*						
Quarter 4, 2008															*						<u> </u>
Quarter 1, 2009	-														*						-
Quarter 2, 2009 Quarter 3, 2009															*						-
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						-
Quarter 4, 2011 Quarter 1, 2012	-													*	*						-
Quarter 1, 2012 Quarter 2, 2012	-													*	*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013	1														*						
Quarter 2, 2013	L														*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
Quarter 4, 2014															*						
Quarter 2, 2015 Quarter 3, 2015	1														*						
Quarter 3, 2013 Quarter 4, 2015	1														*						
Quarter 1, 2015	1														*						
IODIDE	1																				
Quarter 2, 2003	L															*		L			
Quarter 3, 2003	*									*											
Quarter 4, 2003							*														
Quarter 3, 2010						*		*					*				*				
IODINE-131																		_			
Quarter 3, 2010	1																				

Groundwater Flow System	1			UCR	S							URG	βA					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
IODOMETHANE																					
Quarter 4, 2003						*															
IRON																					
Quarter 4, 2002						*															
Quarter 3, 2003																*					
Quarter 4, 2003										*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005															*						*
Quarter 3, 2005						*															*
Quarter 2, 2006															*						*
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2008															*						
Quarter 2, 2009															*						
Quarter 3, 2009	I														*						
Quarter 4, 2009	1														*	I					
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 2, 2014															*						
Quarter 4, 2014															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016	*																				
Quarter 4, 2016	*																				
Quarter 2, 2017	*																				
Quarter 3, 2017	*																				
MANGANESE																					
Quarter 3, 2002										*		*									
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2002						-1-	-1-			*		*									
Quarter 3, 2003										*		*	*			*	*	*	*		
Quarter 4, 2003										*	*	*	*				*	*			
Quarter 1, 2003										*	*	*				*	*	*			
Quarter 2, 2004							*			*	*	*				Ŧ	Ŧ	*			
Quarter 3, 2004							*			*	*	*				*		Ŧ			
Quarter 3, 2004 Quarter 4, 2004							Ŧ			*	Ť	*				*					
Quarter 4, 2004 Quarter 1, 2005	1									*		*				Ť					
Quarter 1, 2005 Quarter 2, 2005	1									*		*									
Quarter 2, 2005 Quarter 3, 2005	1									*		*				*					
Quarter 3, 2005 Quarter 4, 2005	1									*		*				*					
Quarter 4, 2005 Quarter 1, 2006	1									*						*					
							*			*		*									
Quarter 2, 2006	1						*			*		*				*					
Quarter 3, 2006	-															*					
Quarter 4, 2006	1									*						I					
Quarter 1, 2007							J.			*											
0	1	1					*			*											
Quarter 2, 2007	1																				
Quarter 3, 2007																					
Quarter 3, 2007 Quarter 3, 2008							*														
Quarter 3, 2007																					

Groundwater Flow System		-		UCR		-					F	URG					-	LRO			
Gradient	D	S	S	S	D	D	D	U 271	U 274	D	D	D	D	U	U	D	D	D	D 259	U 270	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	37
MANGANESE	-						*														_
Quarter 3, 2009							*														
Quarter 3, 2011							*							-							
Quarter 2, 2016									*					*							
Quarter 3, 2016	_								*												
NICKEL	_																				
Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTEN	IAITA																			
Quarter 4, 2002																	*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004													*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005			ſ		*	*		*			*	*	*	ſ	[I	*		*	*	*
Quarter 4, 2005	1	*						*					*				*			*	Γ
Quarter 1, 2006	1	1	1		*			*	*				1	1		1	*	1	1		*
Quarter 2, 2006	1	1	1		*		*	*					*	1		1	*	1	1	*	
Quarter 3, 2006	1	1			*			*					*			1	*	1		*	F
Quarter 4, 2006	1	1			*		*	-		*		*	*				*	1		*	*
Quarter 1, 2000	1	*			*		-0	*		-17		-17	*				*	1		*	ہ لا
Quarter 1, 2007 Ouarter 2, 2007	-	Ŧ			*			Ŧ					*				*			*	*
C	-				*			*		-			Ŧ				*			*	- 1
Quarter 3, 2007	_				Ŧ			Ŧ													
Quarter 4, 2007	_				4			4				46	44				*		44	*	*
Quarter 1, 2008	_				*			*				*	*						*	*	
Quarter 2, 2008	_				*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2010	-	Ŧ				*	Ŧ	*	Ŧ	*	*	*	*	*		*	*	*	*	*	-
	-	*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2011	_	*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011	_										ىلە								木		
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	L
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*	ſ		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013	1	*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014	1	*	1					*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*	l –	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*			*	*	*	*	*	*		*	*	*	-	*	*	*	*	*	*
Quarter 4, 2014	1	*			-	*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 1, 2014	1	*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
· · ·	- ⁻	*			*	*	т	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*	*			*	*	*														_
Quarter 4, 2015	*				.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*	*			*		*	*		*		*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	*	*		L	*	*	*	*	*	*	<u> </u>	*	*	*	*	*	*	*	*	*	÷
Quarter 3, 2016	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	¥
Quarter 4, 2016	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	×
Quarter 1, 2017	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
				1		*	*	*	*	*		*	*	*	*		*	*		*	×
Quarter 4, 2017		*				不	不	*	不	T		T.	T.	T.				T.		T	

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)
Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
PCB, TOTAL																					
Quarter 4, 2003												J.					*				
Quarter 3, 2004	-						*					*									
Quarter 3, 2005 Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004	1						L					*				I			L		L
Quarter 2, 2006	1		l		l	l	*					*			L	I	L		l		┝──
Quarter 1, 2007	1	L	L		L	L	*	L	L		L	L	L	L		I		L	L	L	<u> </u>
Quarter 2, 2007	1						*														⊢
Quarter 3, 2007							*														⊢
Quarter 2, 2008							* *	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>							L
Quarter 4, 2008							* *														<u> </u>
Quarter 3, 2009	-						* *														
Quarter 1, 2010 Quarter 2, 2010							*														
Quarter 2, 2010 Quarter 4, 2010							* *														
PCB-1242							*														
Quarter 3, 2006							*			_		*									
Quarter 4, 2006							Ŧ			*		Ŧ									
Quarter 1, 2008							*			-1-											
Quarter 2, 2012							*														
PCB-1248							-														
Quarter 2, 2008							*														
PCB-1260																					
Quarter 2, 2006							*														
pH																					
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*			_						*					Ĺ
Quarter 3, 2005						*												*	*		
Quarter 4, 2005						*										4			*		
Quarter 3, 2006														J.		*					
Quarter 2, 2011														*							
Quarter 3, 2011 Quarter 4, 2011														*							
Quarter 1, 2012														*		*	*				
Quarter 1, 2012 Quarter 2, 2012	+											*				-	*				<u> </u>
Quarter 1, 2012	+									*		*				*					<u> </u>
Quarter 3, 2015	1											-17				-	*				<u> </u>
Quarter 2, 2016	1																			*	*
Quarter 3, 2016	1																			*	
Quarter 2, 2017	1															1	*	1			<u> </u>
POTASSIUM																					
Quarter 1, 2014																*					
RADIUM-228																					
Quarter 2, 2005																					
Quarter 4, 2005	L																				
SELENIUM																					
Quarter 4, 2003																					

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)
--

Groundwater Flow System				UCR								URG						LRG			
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SODIUM										4	40		4								
Quarter 3, 2002	_									*	*		*	*							
Quarter 4, 2002 Quarter 1, 2003										*	*			*							
Quarter 2, 2003										*	*										
Quarter 3, 2003										-	*										
Quarter 1, 2007											*										
Quarter 1, 2012														*							
Quarter 1, 2014															*						
Quarter 3, 2014											*										<u> </u>
Quarter 4, 2014											*										
Quarter 4, 2015											*										
Quarter 1, 2016 Quarter 2, 2016	-										* *										
Quarter 3, 2016											*										-
Quarter 4, 2016											*										
Quarter 1, 2017											*										
Quarter 2, 2017											*										
Quarter 3, 2017											*										
Quarter 4, 2017											*										
STRONTIUM-90							-														
Quarter 4, 2008																					
SULFATE							*														
Quarter 1, 2003 Quarter 2, 2003	+					*	*														
Quarter 3, 2003	*					*	-74				-						1				
Quarter 4, 2003					*		*										1				
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												<u> </u>
Quarter 2, 2005					*	.14	*		*						*						
Quarter 3, 2005	_				*	*	*								*						
Quarter 4, 2005 Quarter 1, 2006	-				*				*						不						
Quarter 2, 2006					Ŧ	*	*		*						*						-
Quarter 3, 2006						-1-	*		-1-												
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 4, 2007		*																			L
Quarter 1, 2008		*			*		*		*												<u> </u>
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008	_	*			*	*	*														
Quarter 4, 2008 Quarter 1, 2009		*				Ť	*														
Quarter 1, 2009 Quarter 2, 2009	1	*			*	*	*				-						1				
Quarter 3, 2009	1	*			*	*	*								*		1				
Quarter 4, 2009	L	*			*	*									*						
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010		*			*	*	*								*						<u> </u>
Quarter 3, 2010	_	*			*	*	*					ļ	ļ	ļ	*			ļ			┝───
Quarter 4, 2010		*				*	*			<u> </u>					*						
Quarter 1, 2011 Quarter 2, 2011		*			*	*	*			<u> </u>		<u> </u>	<u> </u>	<u> </u>	*			<u> </u>			
Quarter 2, 2011 Quarter 3, 2011	+	* *			*	* *	*	*							*						
Quarter 5, 2011 Quarter 4, 2011	-	*				*	Ť	*							*						
Quarter 1, 2012		*					*	*							*		1				
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*					<u> </u>				*						<u> </u>
Quarter 2, 2013	<u> </u>	*	L	L					L		L	L	L	L	*		<u> </u>	L	L		<u> </u>
Quarter 3, 2013	*	*		*	*	*	*								*						
Quarter 4, 2013		*													*						
Quarter 1, 2014 Quarter 2, 2014	*	*			*		*	*		<u> </u>		<u> </u>	<u> </u>	<u> </u>	*			<u> </u>			
Quarter 2, 2014 Quarter 3, 2014	*	* *			* *	*	*	* *							*						
Quarter 4, 2014	Ť	*			Ť	*	Ť	Ť							*						
Quarter 1, 2015		*																			
		<u> </u>			_	_		_		-										-	

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)	

Groundwater Flow System	T			UCR	S							URG	A			1		LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SULFATE																					
Quarter 2, 2015	*	*			*	-	*								*						
Quarter 3, 2015	<u>т</u>	*			*	* *	J.	* *							*						
Quarter 4, 2015	*	*			*	* *	*	*													
Quarter 1, 2016 Quarter 2, 2016	*	*			*	*	*														
Quarter 3, 2016	*	*			*	*	*	*													
Quarter 4, 2016	*	*			Ŧ	*	*	*													
Quarter 1, 2017	*	*				*	*														
Quarter 2, 2017	*	*			*	*	*														
Quarter 3, 2017	*	*			*	*	*														
Quarter 4, 2017		*				*	*														
TECHNETIUM-99																					
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003																	*				
Quarter 4, 2003	I	I			L	L	L	L			L					I	*		L	L	*
Quarter 1, 2004	<u> </u>	<u> </u>					<u> </u>								* *	 	*		<u> </u>		* *
Quarter 2, 2004															* *						* *
Quarter 3, 2004	-	<u> </u>				<u> </u>		<u> </u>							*		*				*
Quarter 4, 2004 Quarter 3, 2005															ボ		*				木
Quarter 3, 2005 Quarter 1, 2006	1		-	-					-						*		*	-			*
Quarter 1, 2006 Quarter 2, 2006	1	*							*							-	1				* *
Quarter 3, 2006	1															1					*
Quarter 4, 2006	1														*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007															*		*	*			
Quarter 4, 2007										*					*				*		*
Quarter 1, 2008															*					*	*
Quarter 2, 2008							*	*						*		*			*		
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*			J.	J.		
Quarter 4, 2009										*					*	*	*	*	*		
Quarter 2, 2010 Quarter 3, 2010	-									*					*	*	*	*	*		
Quarter 4, 2010	-									*					*			*			
Quarter 1, 2011		*								*							*	-1-			
Quarter 2, 2011		-1-								-1-						*	*	*	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012								*										*			
Quarter 3, 2012																	*	*			
Quarter 4, 2012	L														*			*			*
Quarter 1, 2013																		*			*
Quarter 2, 2013																					*
Quarter 3, 2013										*											*
Quarter 4, 2013	1	I			l	L		L			l				*	 	*	*		l	*
Quarter 1, 2014	1	I			l	L		L			l				*	 	*	*		l	
Quarter 2, 2014																I		*			
Quarter 3, 2014		<u> </u>													ىبر		*	*	*		<u> </u>
Quarter 4, 2014															*			*			
Quarter 1, 2015 Quarter 2, 2015	-	<u> </u>				<u> </u>		<u> </u>							*	*	<u> </u>	*			
Quarter 2, 2015 Quarter 3, 2015	1															*		*	*	*	-
Quarter 3, 2015 Quarter 4, 2015	1														*	-	*			*	-
Quarter 1, 2015	1														-17	*	*	*	*	-17	*
Quarter 2, 2016	1	1														*	*	*	*	*	
Quarter 3, 2016	1																*		*	*	
Quarter 4, 2016	1	1					1			*				*		İ –	*	*	1		
Quarter 1, 2017	1															İ	*		*	*	
Quarter 2, 2017	1	1	1	1					1							1	1	l		*	
Quarter 3, 2017	Ĭ	1														I	1	*		*	
	1													*	*	1	*	*		*	
Quarter 4, 2017														T			T	Ŧ			

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
THORIUM-230																					
Quarter 4, 2015																*					
Quarter 2, 2016	4									*		44				-			44		<u> </u>
Quarter 4, 2016 Quarter 4, 2017	*											*	*			*			*		<u> </u>
TOLUENE													•								
Quarter 2, 2014										*				*		-					
TOTAL ORGANIC CARBON																					
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003											*										
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										<u> </u>
Quarter 1, 2004						ىك				J.	*				4	4			4		<u> </u>
Quarter 3, 2005						*				*					*	*		÷	*		<u> </u>
Quarter 4, 2005						木												*	*		<u> </u>
Quarter 1, 2006 TOTAL ORGANIC HALIDES																			不		
Quarter 4, 2002										*											
Quarter 1, 2002										*											
Quarter 1, 2003 Quarter 2, 2003										*											├ ──
Quarter 1, 2004										-						*					
TRICHLOROETHENE																					
Quarter 3, 2002																					
Quarter 4, 2002																					
Quarter 1, 2003																					
Quarter 2, 2003																					
Quarter 3, 2003																					
Quarter 4, 2003						-															
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004	_																				
Quarter 4, 2004																					
Quarter 1, 2005																				-	
Quarter 2, 2005																					
Quarter 3, 2005																					
Quarter 4, 2005															-					-	
Quarter 1, 2006 Quarter 2, 2006															-						
Quarter 3, 2006																					
Quarter 4, 2006																				-	
Quarter 1, 2007																					Ē
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009		<u> </u>		L												L			L		
Quarter 3, 2009						_					_		_	_			_				
Quarter 4, 2009																					
Quarter 1, 2010																——					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010															-		<u> </u>				
Quarter 2, 2011 Quarter 3, 2011																					
Quarter 3, 2011 Quarter 4, 2011															-						
Quarter 1, 2012																					
Quarter 2, 2012													-				-		-		
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2012																					
Quarter 2, 2013																					
Quarter 3, 2013																					
Quarter 4, 2013																					
· · · · · · · · · · · · · · · · · · ·				-	-				-	-	-	1	_	1	_	-		1			
Quarter 1, 2013																					_
																					-

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System	UCRS						URGA					LRGA									
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2014																					
Quarter 4, 2014																					
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 3, 2015																					
Quarter 4, 2015																					
Quarter 1, 2016																					
Quarter 2, 2016																					
Quarter 3, 2016																					
Quarter 4, 2016																					
Quarter 1, 2017																					
Quarter 2, 2017																					
Quarter 3, 2017																					
Quarter 4, 2017																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an elevated concentration (i.e., a statistical exceedance).																					
MCL Exceedance																					
UCRS Upper Continental Recharge System																					
URGA Upper Regional Gravel Aquifer																					
LRGA Lower Regional Gravel Aquifer																					

APPENDIX H

METHANE MONITORING DATA

C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT Permit #: 073-00045 McCracken County, Kentucky

Date:	11/28/2017	Time:	9:00 am	Monitor:	r: Tammy Smith							
Weather Conditions: Sunny with 59 degrees												
Monitoring Equipment: RAE Systems, Multi-RAE, Serial# 7970												
	Reading (% LEL)											
C-746-U1	Checked at floor lev	el				0						
C-746-U2	Checked at floor lev	el				0						
C-746-U-T-14	Checked at floor lev	el				0						
C-746-U15	Checked at floor lev	el				0						
MG1	Dry casing					0						
MG2	Dry casing					0						
MG3	Dry casing					0						
MG4	Dry casing					0						
Suspect or Problem Ar						N/A						
Remarks:												
İ												
Performed	by:	ammy	Smith		11/	28/2017						
	Performed by: Jammy Smith 11/2 Signature											

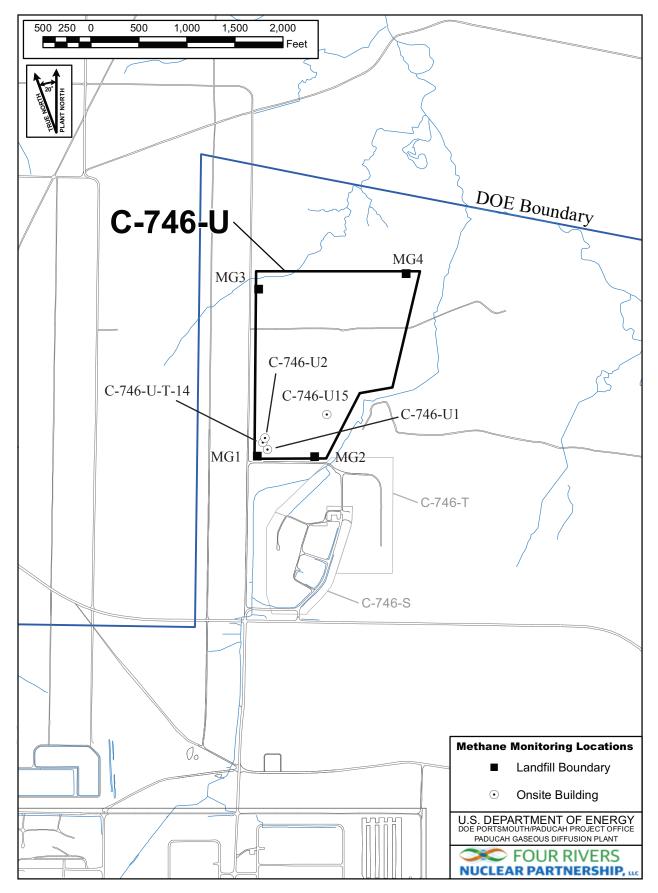


Figure H.1. C-746-U Methane Monitoring Locations