

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

NOV 3 0 2017

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-U CONTAINED LANDFILL THIRD QUARTER CALENDAR YEAR 2017 (JULY-SEPTEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FPDP-RPT-0087/V3, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for the third quarter calendar year 2017. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of C-746-U Contained Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the third quarter 2017 monitoring well data collected from the C-746-U Landfill were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the third quarter calendar year 2017, in accordance with Condition GSTR0001, Standard Requirement 8, of the C-746-U Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

PPPO-02-4567328-18

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Jennifer Woodard Paducah Site Lead

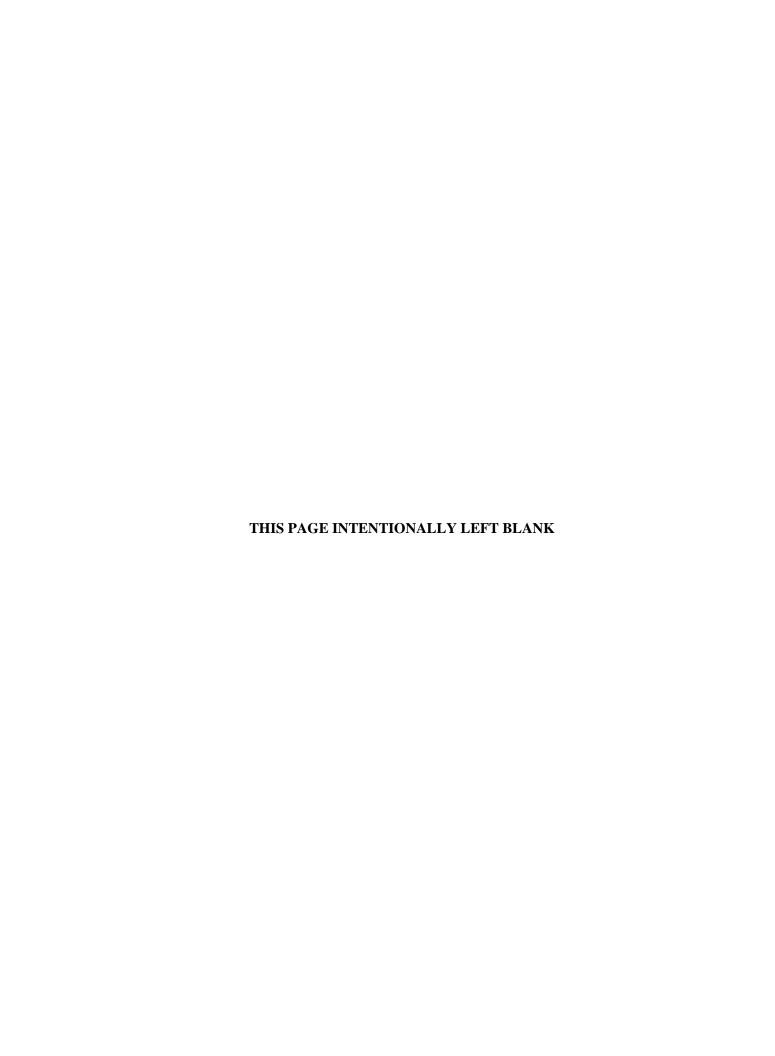
Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill 3rd Qtr CY 2017 (July-September) Compliance Monitoring Report

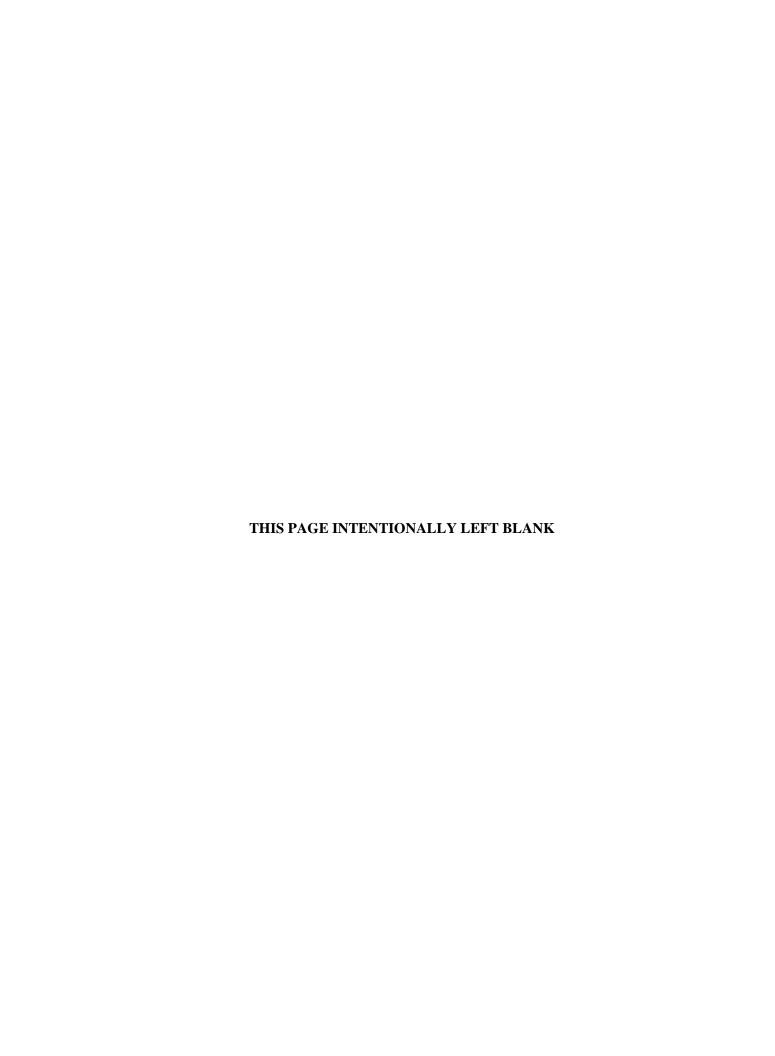
e-copy w/enclosure: april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP cheryl.baker@pad.pppo.gov, FRNP christopher.jung@ky.gov, KDEP curt.walker@pad.pppo.gov, FRNP dave.dollins@lex.doe.gov, PPPO david.veach@pad.pppo.gov, FRNP elizabeth.wyatt@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov, FRNP gaye.brewer@ky.gov, KDEP jennifer.blewett@pad.pppo.gov, FRNP jennifer.watson@pad.pppo.gov, FRNP jennifer.woodard@lex.doe.gov, PPPO karen.walker@pad.pppo.gov, FRNP kelly.layne@pad.pppo.gov, FRNP ken.davis@pad.pppo.gov, FRNP kim.knerr@lex.doe.gov, PPPO leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP mike.guffey@ky.gov, KDEP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@swiftstaley.com, SSI robert.edwards@lex.doe.gov, PPPO stephanie.brock@ky.gov, KYRHB stephanie.fountain@pad.pppo.gov, FRNP tracey.duncan@lex.doe.gov, PPPO

C-746-U Contained Landfill
Third Quarter Calendar Year 2017
(July-September)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

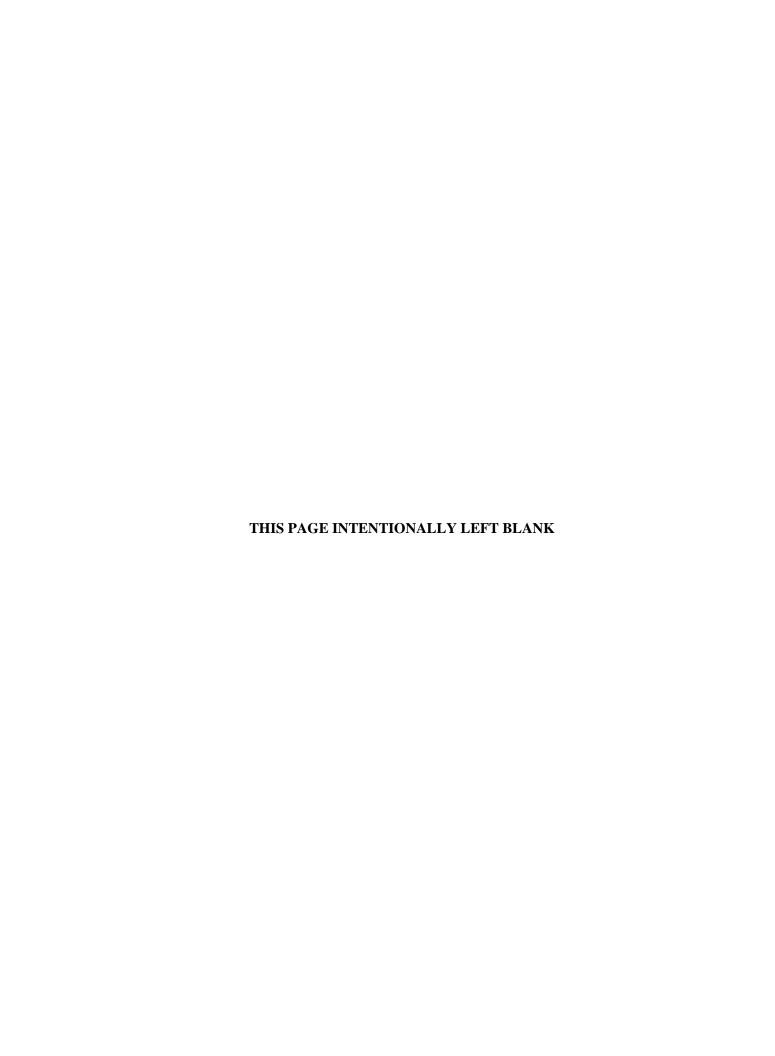

FPDP-RPT-0087/V3

C-746-U Contained Landfill
Third Quarter Calendar Year 2017
(July–September)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—November 2017


U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895


CONTENTS

FI	GURE	S		v
TA	BLES			v
ΑC	CRON	YMS		vii
1.	INTF	RODUC	TION	1
	1.1	BACK	GROUND	1
	1.2		TORING PERIOD ACTIVITIES	
		1.2.1	Groundwater Monitoring	
		1.2.2	Methane Monitoring	
		1.2.3	Surface Water Monitoring	
	1.3	KEY F	RESULTS	
2.	DAT	A EVA	LUATION/STATISTICAL SYNOPSIS	9
	2.1	STATI	STICAL ANALYSIS OF GROUNDWATER DATA	10
		2.1.1	Upper Continental Recharge System	
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	
	2.2	DATA	VERIFICATION AND VALIDATION	
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	13
4.	REFI	ERENC	ES	15
ΑF	PPEND	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PPEND	OIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PPEND	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PPEND	OIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PPEND	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PPEND	OIX F:	NOTIFICATIONS	F-1
ΑF	PPEND	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PPEND	OIX H:	METHANE MONITORING DATA	H-1
ΔΙ	PPFNI	IX I·	SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS	T_1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
2.	C-746-U Landfill Surface Water Monitoring Locations	4
	TABLES	
1.	Summary of MCL Exceedances	5
2.	Exceedances of Statistically Derived Historical Background Concentrations	5
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	8
6.	Monitoring Wells Included in Statistical Analysis	10

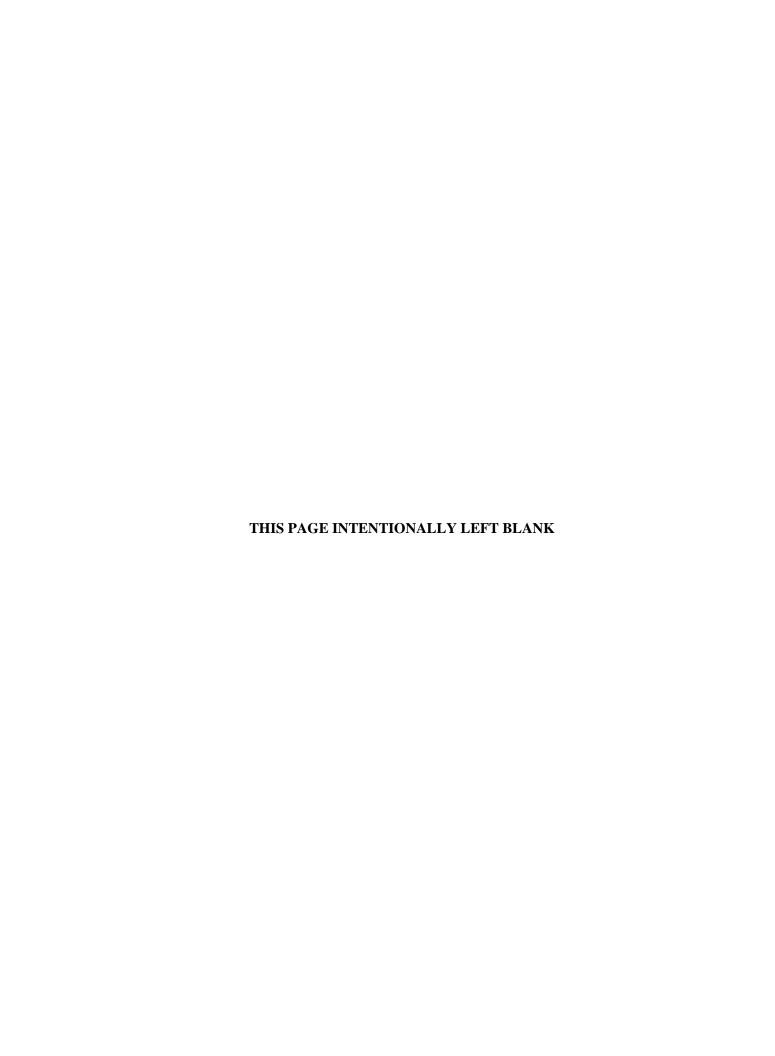
ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit


LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

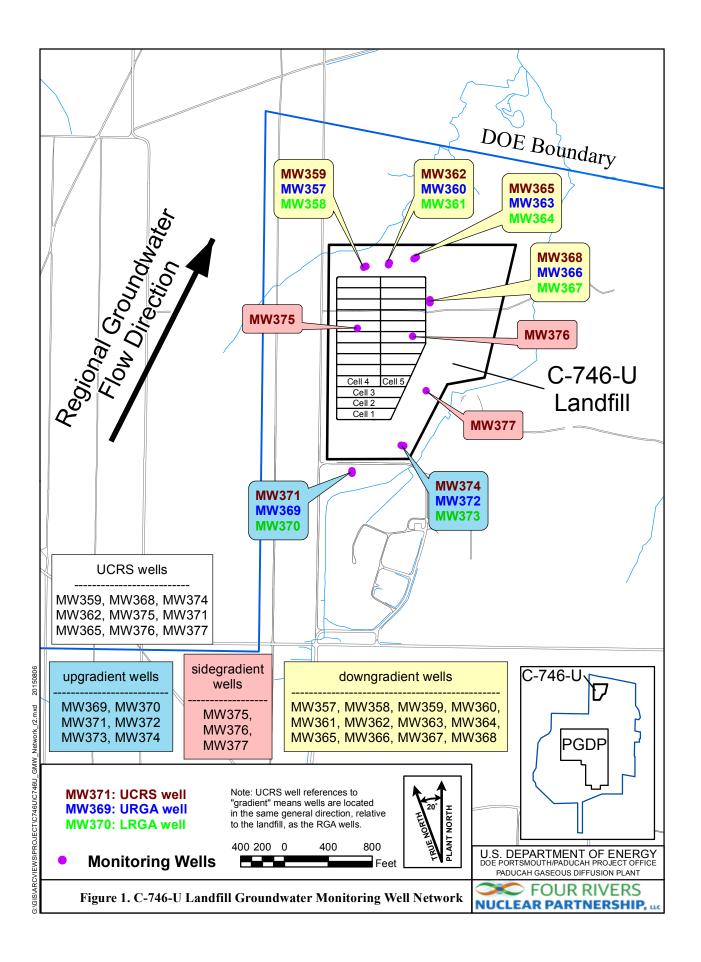
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Third Quarter Calendar Year 2017 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 4. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 4 and 5. Phases 1, 2, and 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for these locations.

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically

is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the third quarter 2017 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using Fluor Federal Services, Inc., procedure CP4-ES-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on July 26, 2017, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is northeastward, toward the Ohio River. During July, RGA groundwater flow in the area of the landfill was oriented northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in July was 3.66×10^4 ft/ft. The hydraulic gradient for the URGA and LRGA at the C-746-U Landfill were 6.68×10^4 ft/ft and 6.79×10^{-4} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.14 to 1.94 ft/day for the URGA and 1.15 to 1.97 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Landfill permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on September 11, 2017. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill. The C-746-U Landfill has an upstream location, L154; a downstream location, L351; and a location capturing runoff from the landfill surface, L150. The parameters identified in the Solid Waste Landfill Permit were analyzed for report only format, pursuant to Permit Condition GMNP0001, Standard Requirement 1. Surface water results are provided in Appendix I.

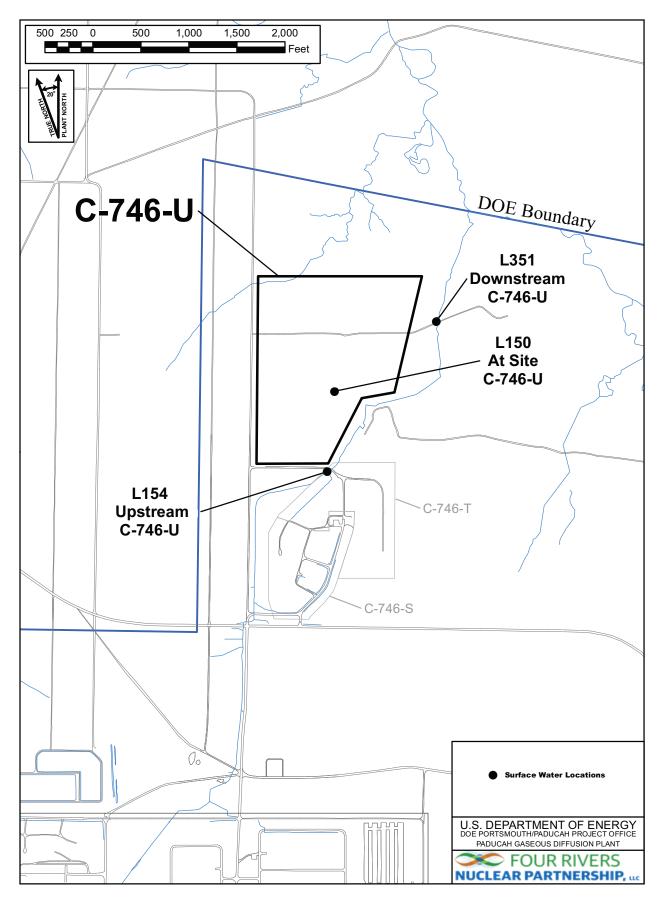


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at thePaducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Landfill permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL concentrations during the third quarter 2017, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW372: Trichloroethene	MW361: Trichloroethene
		MW364: Trichloroethene
		MW370: Beta activity
		MW373: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW362: Dissolved oxygen,	MW360: Sodium	MW361: Oxidation-reduction
oxidation-reduction potential, sulfate		potential
MW365: Dissolved oxygen,	MW363: Oxidation-reduction	MW364: Dissolved oxygen,
oxidation-reduction potential, sulfate	potential	oxidation-reduction potential,
		technetium-99
MW368: Dissolved oxygen,	MW366: Oxidation-reduction	MW367: Oxidation-reduction
magnesium, oxidation-reduction	potential	potential
potential, sulfate		
MW371: Dissolved oxygen,	MW369: Oxidation-reduction	MW370: Beta activity,
oxidation-reduction potential	potential	oxidation-reduction potential,
		technetium-99
MW374: Oxidation-reduction	MW372: Oxidation-reduction	MW373: Oxidation-reduction
potential	potential	potential
MW375: Dissolved oxygen,		
oxidation-reduction potential, sulfate		not reference (relative to the landfill) that is attributed to

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

¹ The term "concentration" may refer to a field measurement result such as pH or oxidation-reduction potential or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

Sidegradient wells: MW375, MW376, MW377

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW360: Sodium	None

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW361 and MW364 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 8; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

The constituent listed in Table 3 that exceeds both the historical UTL and the current UTL, sodium in MW360, does not have an identified source and is considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate this preliminary Type 2 exceedance further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The result is summarized in Table 4. This preliminary Type 2 exceedance in a downgradient well did not have an increasing trend, thus it is considered to be a Type 1 exceedance (not attributable to the landfills).

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS wells with dissolved oxygen, magnesium, and sulfate values that exceed both the historical and current backgrounds (Table 5). Because these wells are not hydrogeologically downgradient of the C-746-U Landfill, these exceedances are not attributable to C-746-U sources and are considered to be Type 1 exceedances.

Table 4. C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Var(S)4	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
C-746-U Landfill	MW360	Sodium	8	0.05	0.548	0.00	65.33	0.05	0.000	No Trend

Footnotes:

Note: Statistics generated using XLSTAT.

¹An alpha of 0.05 represents a 95% confidence interval.

²The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴VAR(S) represents the variance of S in the sample set and takes into account statistical ties.

⁵The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(x_j-x_k)/(j-k)$, where x is a data point and j and k are values of time.

⁶Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is positive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.

 $^{^{7}}$ The Mann-Kendall decision operates on two hypothesis, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend. Two different tests were ran to test for positive or negative trends. This table reports the test with the lowest p-value.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW359: Dissolved oxygen, sulfate
MW362: Sulfate
MW365: Dissolved oxygen, sulfate
MW368: Dissolved oxygen, magnesium, sulfate

^{*}In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2017 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375	,	,
MW376***		
MW377***		

^{*}A map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the UCRS. During the third quarter, dissolved oxygen, magnesium, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Dissolved oxygen, magnesium, and sulfate exceeded the current background UTL and are included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

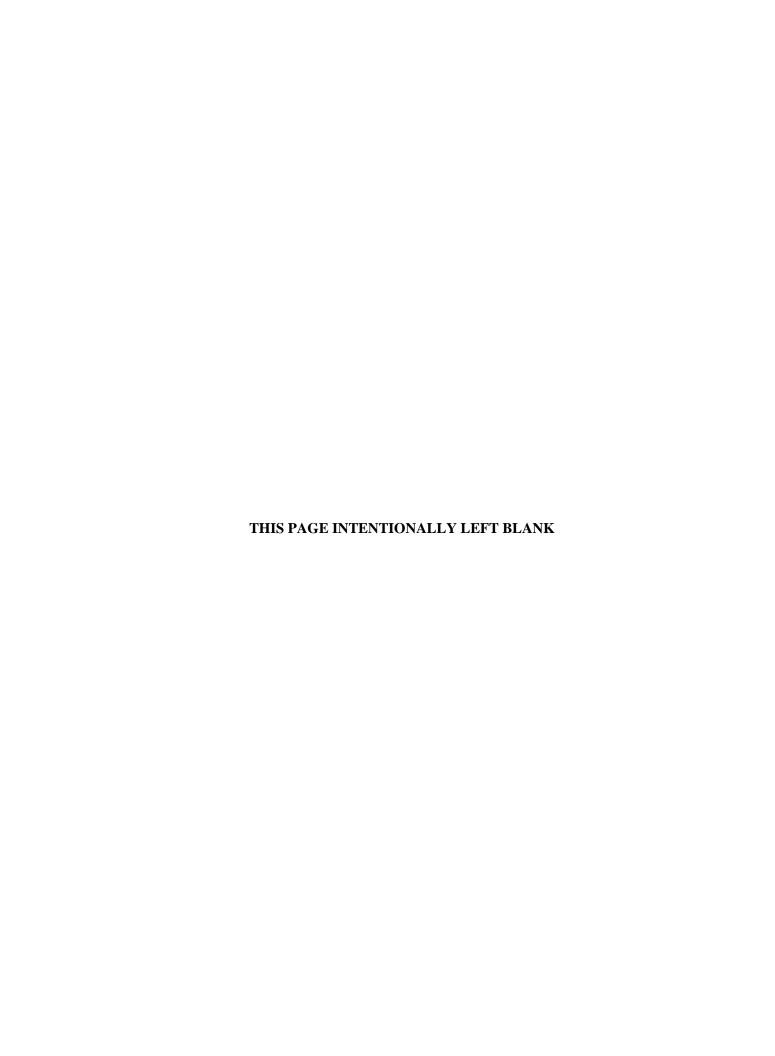
In this quarter, 31 parameters, including those with MCLs, required statistical analysis in the URGA. During the third quarter, oxidation-reduction potential and sodium displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Sodium exceeded the current background UTL and is included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the third quarter, beta activity, dissolved oxygen, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedances of the current background UTL for any LRGA downgradient wells as summarized in Table 3.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}MW376 and MW377 had insufficient water to permit a water sample for laboratory analysis.


2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

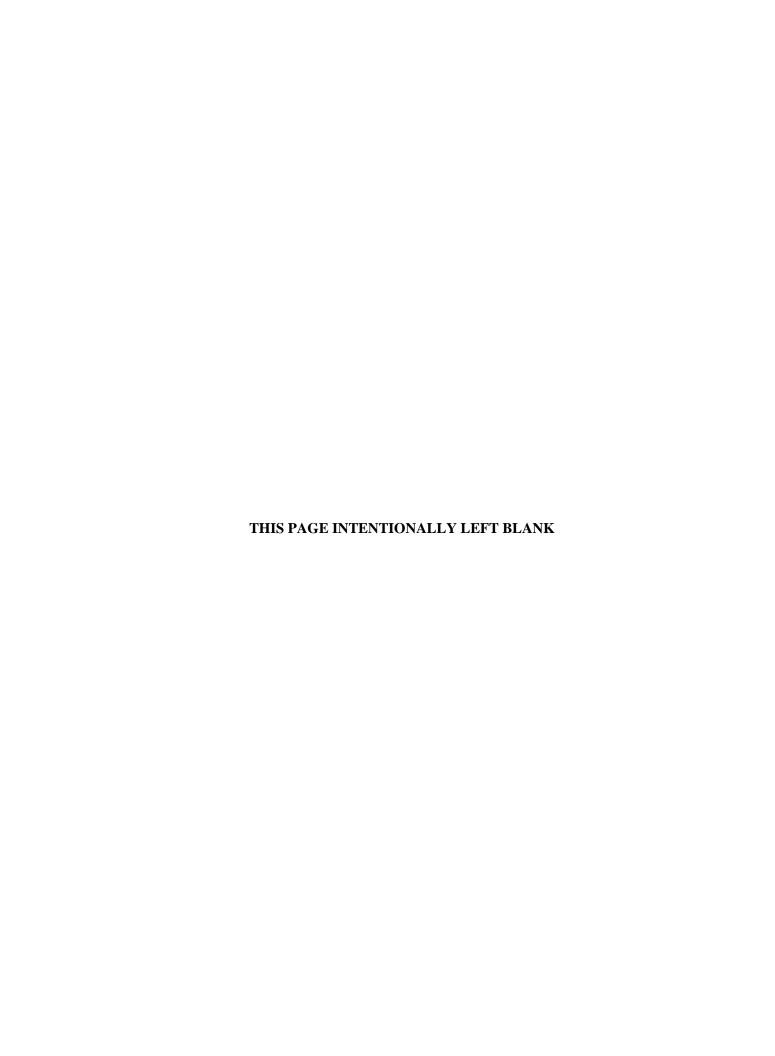
DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

Third Quarter Calendar Year 2017 (July-September)

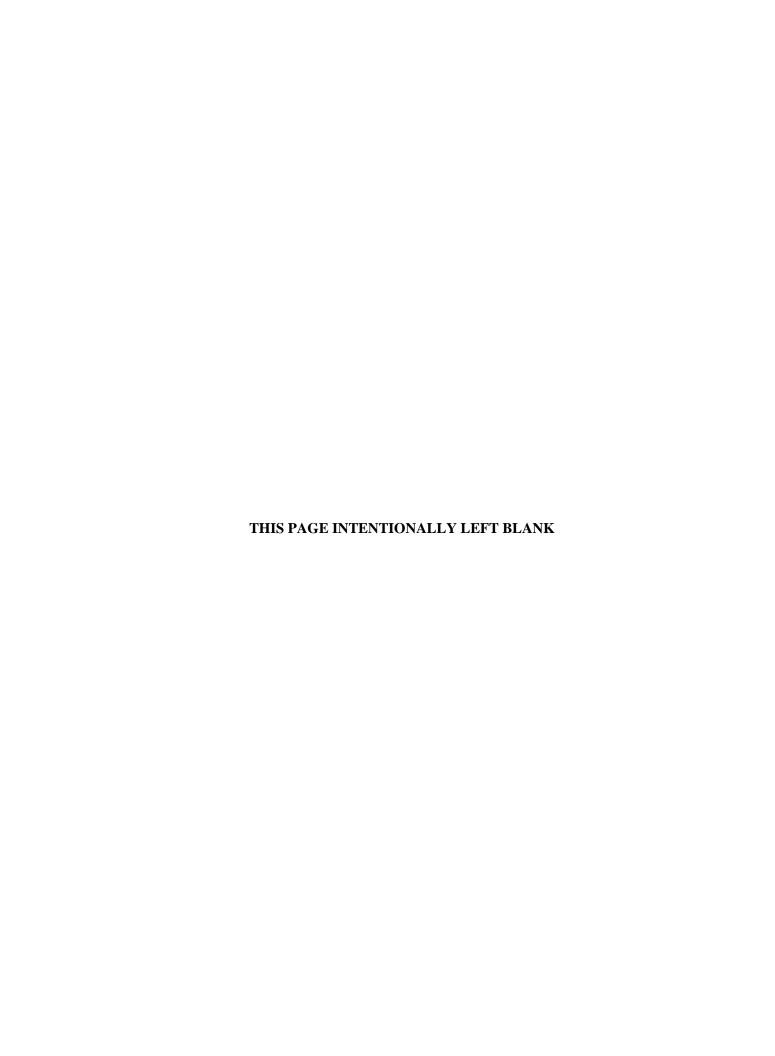
Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FPDP-RPT-0087/V3)

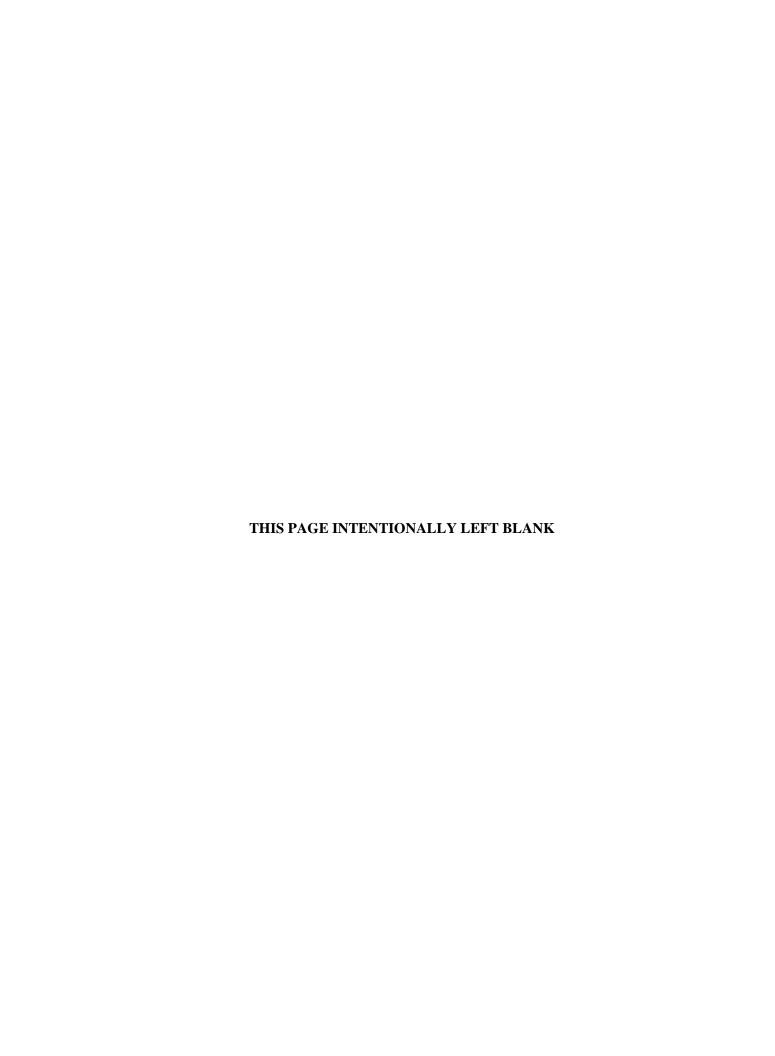

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Remains Professional Constitution of Professi

Movember 28, 2017

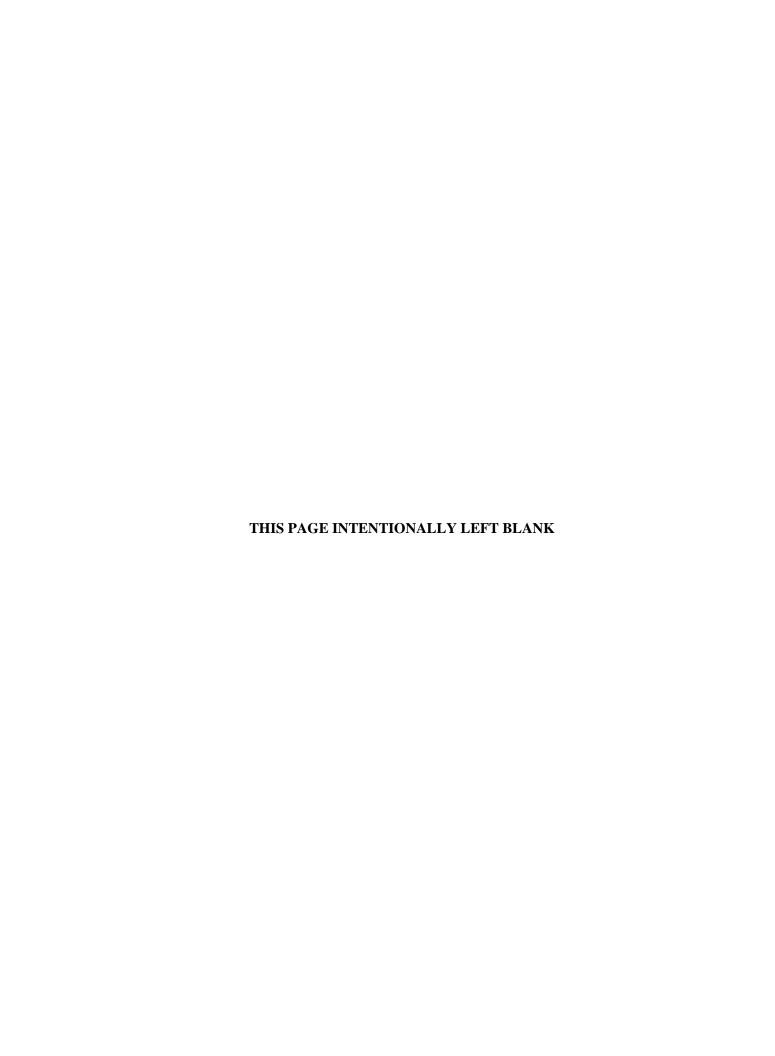

Kenneth R. Davis

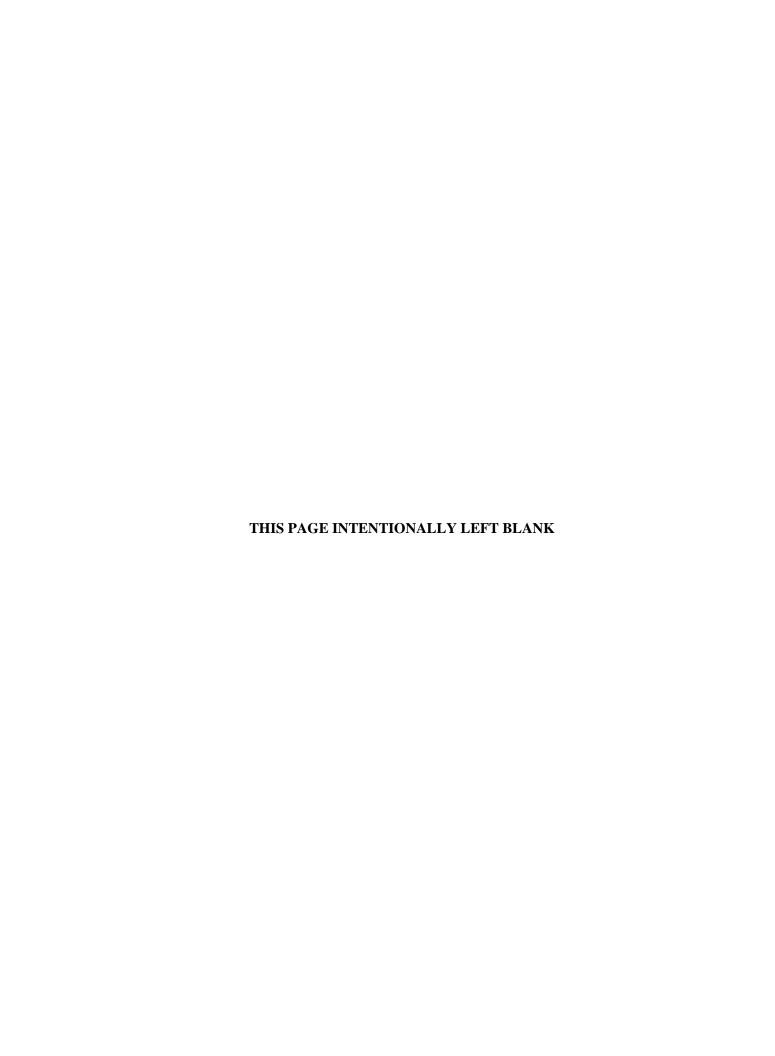
PG113927


4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

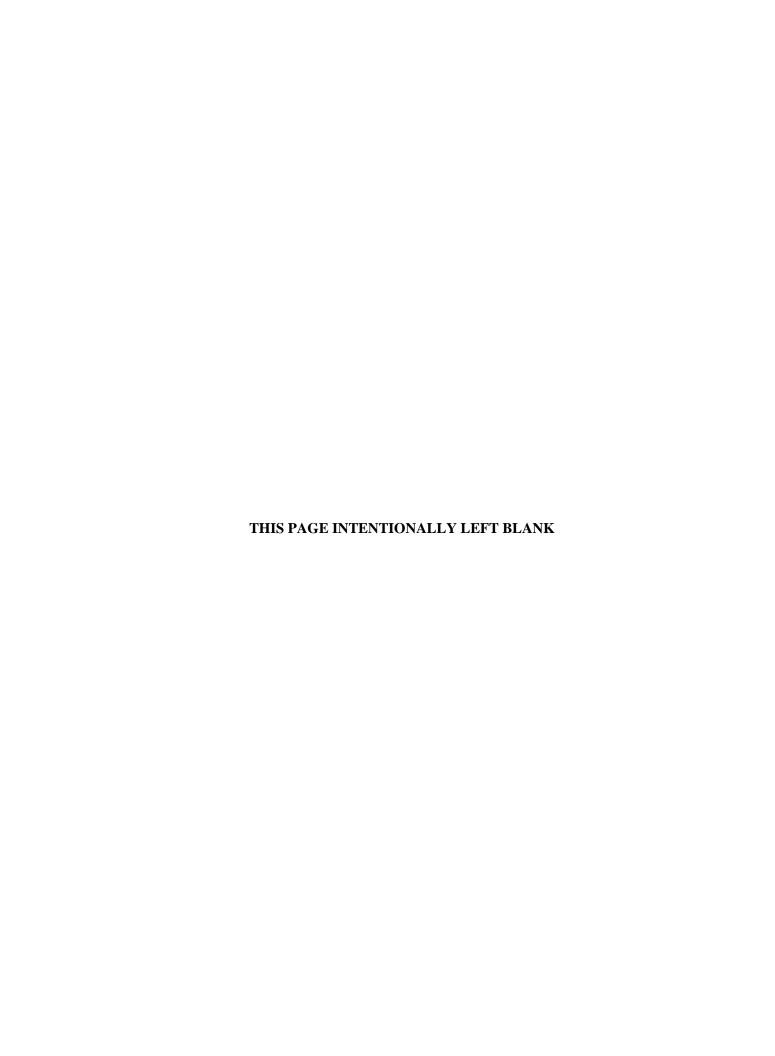

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM


GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah Gas (As officially shown on		Activity: C-740	5-U Contained Landfill
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	3rd Qtr. CY 2017
Please check the	following as applicable:			
Charact	erization X Quarte	rly Semiannual	Annual	Assessment
Please check app	olicable submittal(s):	X Groundwater	X Surf	ace Water
		Leachate	X Met	nane Monitoring
45:160) or by statu jurisdiction of the (48) hours of ma Submitting the lal instruction pages. I certify under pe accordance with a Based on my inqui best of my knowled	nte (Kentucky Revised Statuer Division of Waste Managen king the determination us be report is NOT considered no nalty of law that the docum system designed to assure the ry of the person or persons didge and belief, true, accurate,	I by regulation (Kentucky Was Schapter 224) to conduct grounent. You must report any is ing statistical analyses, directification. Instructions for contification and all attachments were not qualified personnel properly rectly responsible for gathering and complete. I am aware that imprisonment for such violation	undwater and surface of indication of contamination, or completing the form are prepared under my completed and evaluate grather and evaluate grather are significant per prepared under my complete are significant	water monitoring under the nation within forty-eight other similar techniques. attached. Do not submit the direction or supervision in the information submitted.
Sell will	bleshe		lu_	F1/PS
Myrna E. Redfi Deputy Program	•		Date	
	clear Partnership, LLC			
Jennifer Woods	ward, Paducah Site Lead			29/2017

APPENDIX B FACILITY INFORMATION SHEET



FACILITY INFORMATION SHEET

Sampling Data	Groundwater: July 2017 Surface Water: July 2017	Country	McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045			
Sampling Date:	Methane: September 2017	County:	McCracken Nos. SW07300045					
Facility Name: U.S. DOE—Paducah Gaseous Diffusion Plant								
(As officially shown on DWM Permit Face)								
Site Address:	5501 Hobbs Road Kevil, Kentucky 42053							
	Street City/State Zip							
Phone No: (270)	0) 441-6800 Latitude:	N 37° 07' 45"	Longi	tude: W	88° 47' 55"			
	OW	NER INFORMATION						
Facility Owner:	U.S. DOE, Robert E. Edward	s III, Manager	Phone No:	(859) 227	7-5020			
Contact Person:	Curt B. Walker		Phone No:	(270) 441	1-5226			
Contact Person Ti	tle: Director, Environmenta	al Services Project, Four Ri	vers Nuclear Par	rtnership, L	LC			
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053				
	Street	City/State		Zip				
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)								
Company: GEO Contact Person:	O Consultants, LLC Sam Martin		Phone No:	(270) 44	.1-6755			
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky	11101101101	42053	1 0.00			
	Street							
	LAB	ORATORY RECORD #1						
Laboratory GE	L Laboratories, LLC	Lab	ID No: KY90	129				
Contact Person:	Valerie Davis		Phone No:		9-7391			
Mailing Address:	2040 Savage Road	Charleston, South Car		2940				
	Street	City/State		Zij	р			
	LAB	ORATORY RECORD #2						
Laboratory: N/	A	Lab II	O No: N/A					
Contact Person:	N/A		Phone No:	N/A				
Mailing Address:	N/A							
	Street	City/State			Zip			
	LAB	ORATORY RECORD #3						
Laboratory: N/A	A	Lab II	O No: N/A					
Contact Person:	N/A		Phone No:	N/A				
Mailing Address:	N/A							
	Street	City/State			Zip			

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798	3	8004-47	799	8004-09	181	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g., D	MW−1	., MW-2, etc	.)	357		358		359		360	
Sample Sequence	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/25/2017 09	9:16	7/25/2017	12:04	7/25/2017	09:57	7/25/2017 0	8:31
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW357UG4	-17	MW358U0	G4-17	MW359U0	G4-17	MW360UG	4-17
Laboratory Sam	mple ID Number (if applicable)		42886700	3	428867	007	4288670	009	4288670	11		
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysi					,	7/29/20	17	7/29/20	17	7/29/201	7
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOWI	7	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.401		0.473		<0.2		0.125	J
16887-00-6	Chloride(s)	т	mg/L	9056	33.5		38.3		1.09		9.61	
16984-48-8	Fluoride	Т	mg/L	9056	0.154		0.158		0.049	J	0.382	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.16		1.02		1.14		0.211	J
14808-79-8	Sulfate	Т	mg/L	9056	46.6		71.9		47		17.3	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.08		30.07		30.08		30.08	
s0145	Specific Conductance	Т	μ MH0/cm	Field	436		510		240		578	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798	3	8004-4799)	8004-0981		8004-4800)
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.64		325.65		331.6		325.58	
N238	Dissolved Oxygen	т	mg/L	Field	4.73		4.17		5.89		3.44	
s0266	Total Dissolved Solids	т	mg/L	160.1	217		253		141		303	
s0296	рн	т	Units	Field	6.19		6.07		6.07		6.51	
NS215	Eh	т	mV	Field	281		342		325		127	
s0907	Temperature	т	°C	Field	18.22		21		18.33		17.5	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.218		0.0277	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00396	٦
7440-39-3	Barium	т	mg/L	6020	0.0645		0.0457		0.0324		0.164	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.391		0.438		<0.015		0.0302	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	25.6		32.2		6.51		26.7	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000386	J	0.000325	J	0.014	
7440-50-8	Copper	т	mg/L	6020	0.000314	J	0.000403	J	0.00486		<0.001	
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.073	J	0.26		7.9	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.4		14.7		3.64		9.44	
7439-96-5	Manganese	т	mg/L	6020	0.0013	J	0.0351		0.00335	J	0.262	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	D OF MEASURE				8004-479	8	8004-479	99	8004-098	1	8004-480	0	
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	D	OF	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		0.00092	
7440-02-0		Nickel	Т	mg/L	6020	<0.002		0.00336		0.00146	J	0.00181	J
7440-09-7		Potassium	Т	mg/L	6020	1.69		2.33		0.169	J	0.78	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		0.000334	J	0.000832	J	<0.001	
7440-23-5		Sodium	Т	mg/L	6020	40.9		39.2		32.3		79.5	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000091	J	0.000311	
7440-62-2		Vanadium	Т	mg/L	6020	<0.01		<0.01		0.0095	J	<0.01	
7440-66-6		Zinc	Т	mg/L	6020	<0.01		<0.01		0.00427	J	<0.01	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
1330-20-7		Xylenes	Т	mg/L	8260	<0.003	*	<0.003	*	<0.003	*	<0.003	*
100-42-5		Styrene	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-098	81	8004-480	00
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
79-01-6	Ethene, Trichloro-	T	mg/L	8260	0.00407		0.00341		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4799	9	8004-09	31	8004-48	00
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	l, MW-2, et	:c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000195		<0.0000196		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
1336-36-3	PCB,Total	т	ug/L	8082	<0.099	*	<0.098	*	<0.0962	*	<0.0952	*
12674-11-2	PCB-1016	т	ug/L	8082	<0.099	*	<0.098	*	<0.0962	*	<0.0952	*
11104-28-2	PCB-1221	т	ug/L	8082	<0.099		<0.098		<0.0962		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.099		<0.098		<0.0962		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.099		<0.098		<0.0962		<0.0952	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.099		<0.098		<0.0962		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g., I	MW-1	l, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.099		<0.098		<0.0962		<0.0952	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.099	*	<0.098	*	<0.0962	*	<0.0952	*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.099		<0.098		<0.0962		<0.0952	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.7	*	0.6	*	1.17	*	0.7	*
12587-47-2	Gross Beta	Т	pCi/L	9310	23.4	*	31.7	*	4.87	*	1.82	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.311	*	0.209	*	0.186	*	0.201	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.973	*	-1.18	*	1.28	*	-0.0494	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	36.4	*	45.6	*	-3	*	-2.37	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.779	*	-0.161	*	0.0773	*	0.0364	*
10028-17-8	Tritium	Т	pCi/L	906.0	50.5	*	49.5	*	-38.8	*	-79.5	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	15	J	22.1		<20		24.5	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		0.177	J
s0268	Total Organic Carbon	Т	mg/L	9060	0.941	J	1	J	1.52	J	2.87	
s0586	Total Organic Halides	Т	mg/L	9020	0.0129	В	0.046		0.00392	BJ	0.0219	В
				_								

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., N	MW−1	., MW-2, etc	:.)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/24/2017 12	2:03	7/25/2017	07:45	7/20/2017	13:12	7/20/2017 1	3:56
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG4	-17	MW362U	G4-17	MW363U0	G4-17	MW364UG	4-17
Laboratory San	mple ID Number (if applicable)		42874000	3	428867	001	4285370	003	4285370	05		
Date of Analys	of Analysis (Month/Day/Year) For Volatile Organics Analysi					7	7/29/20	17	7/26/20	17	7/26/201	7
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWI	V	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.424		0.129	J	0.131	J	0.413	
16887-00-6	Chloride(s)	Т	mg/L	9056	32.4		6.8		23.4		33.1	
16984-48-8	Fluoride	Т	mg/L	9056	0.133		0.358		0.142		0.123	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.08		0.476		4.77		0.91	
14808-79-8	Sulfate	Т	mg/L	9056	75		29.2		35.3		70.4	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.95		30.07		30.07		30.07	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	483		695		409		467	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796		8004-4797	•
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	325.79		337.77		325.72		325.7	
N238	Dissolved Oxygen	Т	mg/L	Field	3.77		4.3		1.42		4.37	
s0266	Total Dissolved Solids	т	mg/L	160.1	257		533		237		263	
s0296	рН	т	Units	Field	6.09		6.92		6.26		6.17	
NS215	Eh	т	mV	Field	336		310		300		320	
s0907	Temperature	т	°C	Field	20.67		18.28		18.72		19.5	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		14.8		0.0227	*J	<0.05	*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00485	J	<0.005		0.00213	BJ
7440-39-3	Barium	т	mg/L	6020	0.0598		0.155		0.175		0.0659	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		0.000455	J	<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.406		0.0185		0.024		0.0116	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	33.2		20.6		28.4	В	32.7	В
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.0159		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00411		0.0011		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000515	J	0.00826		<0.001		0.000683	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		9.46		0.0495	J	0.0447	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		0.0075		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	14.2	В	9.76		10.4	В	13	В
7439-96-5	Manganese	Т	mg/L	6020	0.00244	J	0.0412		0.232		0.00416	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		0.000292		0.000071	J	0.000067	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	96	8004-479	17
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		0.00164		<0.0005		0.000556	
7440-02-0		Nickel	Т	mg/L	6020	<0.002		0.00785		0.00108	J	0.00118	J
7440-09-7		Potassium	Т	mg/L	6020	1.94		1.31		1.34		1.95	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	0.0034	J	<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	0.000364	J	0.000454	J	<0.001		0.000375	J
7440-23-5		Sodium	т	mg/L	6020	41.7		120		38.6		43.8	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		0.00822		<0.0002		<0.0002	
7440-62-2		Vanadium	Т	mg/L	6020	<0.01		0.0221		0.00395	BJ	<0.01	
7440-66-6		Zinc	Т	mg/L	6020	<0.01		0.0213		<0.01		0.049	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005	*	<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003	*	<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986	6	8004-479	96	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00578		<0.001		0.00086	J	0.00555	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	ô	8004-47	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005	*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196		<0.000195		<0.0000199		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0971		<0.1	*	0.0526	J*	<0.0952	*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0971		<0.1	*	<0.104	*	<0.0952	*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0971		<0.1	*	<0.104		<0.0952	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0971		<0.1	*	<0.104		<0.0952	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0971		<0.1	*	0.0526	J	<0.0952	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0971		<0.1	*	<0.104		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479	97
Facility's Loc	al Well or Spring Number (e.g., 1	∕w-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0971		<0.1	*	<0.104		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0971		<0.1	*	<0.104	*	<0.0952	*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0971		<0.1	*	<0.104		<0.0952	
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.69	*	7.08	*	-0.309	*	2.03	*
12587-47-2	Gross Beta	Т	pCi/L	9310	30.8	*	7.73	*	11.8	*	30.4	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.235	*	1.01	*	-0.0183	*	0.507	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.74	*	1.29	*	1.33	*	-0.702	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	42.8	*	-2.86	*	5.17	*	54.8	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.00577	*	0.881	*	0.11	*	0.162	*
10028-17-8	Tritium	Т	pCi/L	906.0	-16.6	*	27.7	*	-18.2	*	-123	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	26.9		24.5		14.9	J	14.9	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		0.184	J	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.932	J	3.17		1.31	J	0.988	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00886	J	0.0182	В	0.00522	J	<0.01	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	4793	8004-09	983
Facility's Lo	cal Well or Spring Number (e.g., N	w−1	, MW-2, etc	:.)	365		36	66	36	7	368	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/24/2017	07:41	7/24/201	7 10:15	7/24/201	7 08:49	7/24/2017	09:31
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW365UG	94-17	MW366	UG4-17	MW3671	JG4-17	MW368U	G4-17
Laboratory Sa	mple ID Number (if applicable)			4287400	001	42874	10005	42874	0007	428740	009	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	Or	ganics Anal	ysis	7/27/20	17	7/28/2	2017	7/28/2	2017	7/28/20)17
Gradient with	respect to Monitored Unit (UP, DO	, NW	SIDE, UNKN	IOWN)	DOW	1	DO	WN	DOV	٧N	DOW	'N
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.49		0.264		0.154	J
16887-00-6	Chloride(s)	т	mg/L	9056	3.2		37.2		19.7		9.09	
16984-48-8	Fluoride	Т	mg/L	9056	0.248		0.148		0.0944	J	0.251	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.697		0.883		0.0367	J	0.0778	J
14808-79-8	Sulfate	т	mg/L	9056	62.2		61.6		33		155	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.92		29.95		29.93		29.94	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	388		484		317		758	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793		8004-0983	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, i	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	330.71		325.57		325.74		332.94	
N238	Dissolved Oxygen	Т	mg/L	Field	6.82		3.68		2.69		6.81	
s0266	Total Dissolved Solids	т	mg/L	160.1	244		247		140		487	
s0296	рн	Т	Units	Field	6.24		6.09		5.98		6.61	
NS215	Eh	Т	mV	Field	385		326		245		256	
s0907	Temperature	Т	°C	Field	18.28		18.22		18.11		18.22	
7429-90-5	Aluminum	Т	mg/L	6020	0.0709		<0.05		<0.05		0.229	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		0.00225	J	0.00479	J
7440-39-3	Barium	т	mg/L	6020	0.092		0.12		0.178		0.0459	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.00923	J	0.194		0.0351		0.0109	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	20.2		32.5		20.5		67.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00201		<0.001		0.0125		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00188		0.00036	J	0.000347	J	0.000849	J
7439-89-6	Iron	Т	mg/L	6020	0.0492	J	<0.1		3.79		0.155	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	9.45	В	13.6	В	9.85	В	23.9	В
7439-96-5	Manganese	Т	mg/L	6020	0.0473		0.00252	J	1.18		0.0118	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	3
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	0.000207	J	<0.0005		<0.0005		0.00123	
7440-02-0		Nickel	Т	mg/L	6020	0.00527		<0.002		0.00441		0.00122	J
7440-09-7		Potassium	Т	mg/L	6020	0.226	J	1.88		2.9		1.22	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		0.00411	J	<0.005		0.00227	J
7440-22-4		Silver	Т	mg/L	6020	0.000329	J	0.000401	J	<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	46		40.7		23.6		60.4	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	0.000155	J	<0.0002		<0.0002		0.000446	
7440-62-2		Vanadium	Т	mg/L	6020	0.00412	J	<0.01		<0.01		<0.01	
7440-66-6		Zinc	Т	mg/L	6020	0.0045	J	<0.01		0.00822	J	<0.01	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-098	2	8004-47	93	8004-098	33
Facility's Loc	al Well or Spring Number (e.g., 1	MW-1	l, MW-2, et	:c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00041	J	0.00488		0.00196		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-0982	2	8004-479	93	8004-09	83
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.000198		<0.0000199		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
1336-36-3	PCB,Total	Т	ug/L	8082	0.0781	J	<0.0943		<0.0943		0.131	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.1		<0.0943		<0.0943		<0.0971	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.1		<0.0943		<0.0943		<0.0971	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.1		<0.0943		<0.0943		<0.0971	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.0943		<0.0943		<0.0971	
12672-29-6	PCB-1248	Т	ug/L	8082	0.0781	J	<0.0943		<0.0943		0.131	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	cc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.1		<0.0943		<0.0943		<0.0971	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.1		<0.0943		<0.0943		<0.0971	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.1		<0.0943		<0.0943		<0.0971	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.95	*	7.47	*	2.32	*	1.7	*
12587-47-2	Gross Beta	Т	pCi/L	9310	1.94	*	39.6	*	6.97	*	-1.02	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.462	*	0.279	*	0.845	*	0.361	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	6.25	*	-0.887	*	2.09	*	-1.29	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-1.24	*	54.7	*	-5.13	*	-9.25	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.184	*	0.653	*	0.121	*	1.01	*
10028-17-8	Tritium	Т	pCi/L	906.0	153	*	-69.7	*	64.2	*	29.3	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		19.8	J	17.4	J	<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		0.183	J	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.67	J	1.02	J	0.918	J	2.07	
s0586	Total Organic Halides	Т	mg/L	9020	0.0126		0.00916	J	0.0171		0.00986	BJ

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	4819	8004-48	808
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, etc)	369		37	0	37	1	372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	and Time (Month/Day/Year hour: minu	ites)		7/20/2017	07:06	7/20/201	7 08:32	7/20/201	7 07:47	7/20/2017	10:23
Duplicate ("Y	r" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	ole ID Number (if applicable)				MW369UG	64-17	MW370	JG4-17	MW3711	JG4-17	MW372U	G4-17
Laboratory Sa	umple ID Number (if applicable)		4285370	07	42853	7009	42853	7011	428537	013		
Date of Analy	rsis (Month/Day/Year) For <u>Volatil</u>	ganics Anal	ysis	7/26/20	17	7/26/2	2017	7/26/2	2017	7/26/20)17	
Gradient with	respect to Monitored Unit (UP, De	, NWC	, SIDE, UNKN	IOWN)	UP		U	A.	UI	P	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.397		0.407		<0.2		0.605	
16887-00-6	Chloride(s)	Т	mg/L	9056	33.7		34.2		3.42		45.8	
16984-48-8	Fluoride	Т	mg/L	9056	0.161		0.137		0.242		0.152	
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.448		1.17		0.0602	J	0.192	
14808-79-8	Sulfate	T	mg/L	9056	6.26		20.4		14		65.8	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.08		30.1		30.08		30.12	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	367		427		641		585	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820	0	8004-4818	3	8004-4819		8004-4808	1
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.86		326.82		343		326.82	
N238	Dissolved Oxygen	Т	mg/L	Field	1.81		4.26		3.51		0.99	
s0266	Total Dissolved Solids	Т	mg/L	160.1	206		236		420		334	
s0296	Нд	Т	Units	Field	6.2		6.19		6.7		6.24	
NS215	Eh	Т	mV	Field	376		343		364		300	
s0907	Temperature	Т	°C	Field	19.72		18.89		18.94		22.5	
7429-90-5	Aluminum	Т	mg/L	6020	0.228	*	0.137	*	2.33	*	0.0335	*J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00297	BJ	0.00317	BJ	0.00401	BJ	0.00277	BJ
7440-39-3	Barium	Т	mg/L	6020	0.417		0.238		0.138		0.0502	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0117	J	0.0286		0.00573	J	0.89	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	16.9	В	28	В	40.3	В	46.3	В
7440-47-3	Chromium	Т	mg/L	6020	<0.01		0.00736	J	0.00307	J	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00938		0.00344		0.000432	J	0.00119	
7440-50-8	Copper	Т	mg/L	6020	0.00191		0.00162		0.00184		0.000714	J
7439-89-6	Iron	Т	mg/L	6020	1.22		0.873		1.5		0.676	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		0.000846	J	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	6.81	В	11.6	В	13.8	В	17.2	В
7439-96-5	Manganese	Т	mg/L	6020	0.0894		0.268		0.0114		0.0157	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		0.000067	J	<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-482	0	8004-481	8	8004-481	9	8004-480)8
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	Т	mg/L	6020	0.000203	J	0.000547		0.000957		0.000547	
7440-02-0	Nickel	Т	mg/L	6020	0.00989		0.00202		0.00233		0.00114	J
7440-09-7	Potassium	Т	mg/L	6020	0.474		2.31		0.668		1.98	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	0.000379	J	0.000526	J	0.000535	J	<0.001	
7440-23-5	Sodium	т	mg/L	6020	54		40.6		94.7		42.8	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00124		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00704	BJ	0.00521	BJ	0.0129	В	<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.0049	J	0.0116		0.00898	J	0.00542	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00119		0.00078	J	<0.001		0.00569	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	3	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., I	MW-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000196		<0.0000199		<0.0000199		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	0.0914	J*	<0.0962	*	<0.104	*	<0.0962	*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.106	*	<0.0962	*	<0.104	*	<0.0962	*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.106		<0.0962		<0.104		<0.0962	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.106		<0.0962		<0.104		<0.0962	
53469-21-9	PCB-1242	Т	ug/L	8082	0.0914	J	<0.0962		<0.104		<0.0962	
12672-29-6	PCB-1248	T	ug/L	8082	<0.106		<0.0962		<0.104		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.106		<0.0962		<0.104		<0.0962	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.106	*	<0.0962	*	<0.104	*	<0.0962	*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.106		<0.0962		<0.104		<0.0962	
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.75	*	4.25	*	4.55	*	1.08	*
12587-47-2	Gross Beta	Т	pCi/L	9310	26.1	*	84.6	*	3.95	*	21.3	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.727	*	0.63	*	0.454	*	0.293	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.14	*	1.13	*	1.32	*	-0.452	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	34.2	*	120	*	0.41	*	30.2	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.459	*	0.122	*	0.975	*	1.21	*
10028-17-8	Tritium	Т	pCi/L	906.0	-70.5	*	-58.5	*	-69.9	*	-3.84	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	12.7	J	10.4	J	42.2		12.7	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		0.176	J
s0268	Total Organic Carbon	Т	mg/L	9060	1.56	J	1.35	J	2.34		1.51	J
s0586	Total Organic Halides	Т	mg/L	9020	0.021		<0.01		<0.01		0.0154	
					_							

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-09	990	8004-09	985	8004-098	8
Facility's Loc	cal Well or Spring Number (e.g., M	ſW−1	, MW-2, etc	:.)	373		374		375		376	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/20/2017 12	2:24	7/20/2017 11:40		7/20/2017 09:17		NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	plit ("Y" or "N") ³						N		N		N	
Facility Samp	le ID Number (if applicable)		MW373UG4	-17	MW374U	G4-17	MW375U0	G4-17	NA			
Laboratory San	mple ID Number (if applicable)				42853701	428537015		428537017		001	NA	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis.	7/26/2017	7	7/26/20)17	7/26/20	17	NA	
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.566		0.691		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	47.1		56.7		4.49			*
16984-48-8	Fluoride	т	mg/L	9056	0.148		0.178		0.222			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.17		<0.1		1.49			*
14808-79-8	Sulfate	т	mg/L	9056	100		6.31		37.7			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.1		30.11		30.11			*
s0145	Specific Conductance	т	μ MH 0/cm	Field	660		682		357			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-0990)	8004-0985	1	8004-0988	3
Facility's Loc	cal Well or Spring Number (e.g., MW	I-1, 1	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.82		337.39		334.11			*
N238	Dissolved Oxygen	Т	mg/L	Field	3.28		1.95		4.07			*
S0266	Total Dissolved Solids	Т	mg/L	160.1	377		391		254			*
s0296	рн	Т	Units	Field	6.24		6.85		6.48			*
NS215	Eh	Т	mV	Field	309		188		327			*
s0907	Temperature	Т	°C	Field	22.67		21.33		20.22			*
7429-90-5	Aluminum	Т	mg/L	6020	0.193	*	<0.05	*	2.82	*		*
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	Т	mg/L	6020	0.00382	BJ	0.00369	BJ	0.00287	BJ		*
7440-39-3	Barium	Т	mg/L	6020	0.0343		0.156		0.202			*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	Т	mg/L	6020	1.15		0.0252		0.00758	J		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	56.9	В	21.5	В	15.4	В		*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		0.00468	J		*
7440-48-4	Cobalt	Т	mg/L	6020	0.00664		0.00246		0.000842	J		*
7440-50-8	Copper	т	mg/L	6020	0.00213		0.000672	J	0.00177			*
7439-89-6	Iron	Т	mg/L	6020	2.03		2.42		2.09			*
7439-92-1	Lead	Т	mg/L	6020	0.000614	J	<0.002		0.0012	J		*
7439-95-4	Magnesium	Т	mg/L	6020	19.9	В	5.32	В	6.1	В		*
7439-96-5	Manganese	Т	mg/L	6020	0.256		0.437		0.00671			*
7439-97-6	Mercury	Т	mg/L	7470	0.000067	J	<0.0002		0.000067	J		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	38
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	0.000295	J	0.000354	J	0.000544			*
7440-02-0		Nickel	Т	mg/L	6020	0.00232		0.00144	J	0.00323			*
7440-09-7		Potassium	Т	mg/L	6020	2.2		0.433		0.506			*
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		0.0037	J		*
7440-22-4		Silver	Т	mg/L	6020	0.000747	J	0.000331	J	0.000812	J		*
7440-23-5		Sodium	Т	mg/L	6020	45.3		129		58.5			*
7440-25-7		Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*		*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000181	J		*
7440-62-2		Vanadium	Т	mg/L	6020	0.00437	BJ	0.0041	BJ	0.0139	В		*
7440-66-6		Zinc	Т	mg/L	6020	0.00693	J	0.00408	J	0.00974	J		*
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00652		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-0990)	8004-09	85	8004-09	88
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196		<0.000195		<0.00002			*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0952	*	<0.1	*	<0.106	*		*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0952	*	<0.1	*	<0.106	*		*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0952		<0.1		<0.106			*
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0952		<0.1		<0.106			*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0952		<0.1		<0.106			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0952		<0.1		<0.106			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0952		<0.1		<0.106			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0952	*	<0.1	*	<0.106	*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0952		<0.1		<0.106			*
12587-46-1	Gross Alpha	T	pCi/L	9310	5.29	*	2.1	*	3.22	*		*
12587-47-2	Gross Beta	T	pCi/L	9310	16.7	*	3.74	*	2.4	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	AN-1418	0.257	*	0.735	*	0.123	*		*
10098-97-2	Strontium-90	T	pCi/L	905.0	0.135	*	0.758	*	1.06	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	9.12	*	-0.38	*	-1.3	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.765	*	0.0743	*	0.464	*		*
10028-17-8	Tritium	T	pCi/L	906.0	49.6	*	-35.5	*	-26.6	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	14.9	J	28.6		<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060	1.53	J	2.86		1.41	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0146		0.0297		0.0079	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-00	00	0000-00	00	0000-000	0
Facility's Loc	al Well or Spring Number (e.g., N	4W−1	L, MW-2, etc	.)	377		E. BLAN	ΙK	F. BLAN	IK	T. BLANK	. 1
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		Е		F		Т	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		NA		7/25/2017	07:05	7/25/2017 12:10		7/20/2017 0	6:15
Duplicate ("Y"	or "N") ²				N N				N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	acility Sample ID Number (if applicable)						RI1UG4	17	FB1UG4	-17	TB1UG4-	17
Laboratory Sam	Laboratory Sample ID Number (if applicable)						4288670	14	4288670	13	42853701	19
Date of Analys	is (Month/Day/Year) For Volatile	e 01	ganics Anal	ysis	NA		7/29/2017		7/29/2017		7/26/201	7
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN				SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	Т	μ MHO /cm	Field	_	*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989)	0000-0000)	0000-0000		0000-0000)
Facility's Lo	ocal Well or Spring Number (e.g., MV	-1,	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	Т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	<0.001		<0.001			*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	Т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	00
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	. 1
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7		Molybdenum	Т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0		Nickel	Т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7		Potassium	Т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6		Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	Т	mg/L	6020		*	0.000377	J	<0.001			*
7440-23-5		Sodium	Т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7		Tantalum	Т	mg/L	6020		*	<0.005	*	<0.005	*		*
7440-28-0		Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	Т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2		Vanadium	Т	mg/L	6020		*	<0.01		0.00353	J		*
7440-66-6		Zinc	Т	mg/L	6020		*	<0.01		<0.01			*
108-05-4		Vinyl acetate	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260		*	<0.005		<0.005		0.00193	J
107-02-8		Acrolein	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	
1330-20-7		Xylenes	Т	mg/L	8260		*	<0.003	*	<0.003	*	<0.003	
100-42-5		Styrene	Т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	
108-88-3		Toluene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989	١	0000-0000)	0000-00	00	0000-000	00
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	377		E. BLAN	(F. BLAN	IK	T. BLAN	(1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-0000		0000-0000		0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	377		E. BLAN	(F. BLANK		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000197		<0.0000197		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0962	*	<0.0962	*		*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0962	*	<0.0962	*		*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0962		<0.0962			*
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.0962		<0.0962			*
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.0962		<0.0962			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0962		<0.0962			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989	ı	0000-0000		0000-000	0	0000-0000	
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	l, MW-2, et	.c.)	377		E. BLANK		F. BLANK		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.0962		<0.0962			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.0962	*	<0.0962	*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.0962		<0.0962			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	1.2	*	3.94	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	-0.103	*	6.03	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*	0.32	*	0.271	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	0.904	*	-0.595	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	-3.27	*	-5.6	*		*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC		*	1.22	*	1.09	*		*
10028-17-8	Tritium	T	pCi/L	906.0		*	69.5	*	93.9	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	T	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	T	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000		0000-0000		8004-4799					
Facility's Loca	al Well or Spring Number (e.g., M	w−1	L, MW-2, etc	.)	T. BLANK	(2	T. BLAN	К 3	358			
Sample Sequence	#				1		1		2			
If sample is a Bl	ank, specify Type: (F)ield, (T)rip,	Т		Т		NA						
Sample Date and	I Time (Month/Day/Year hour: minu	tes)		7/24/2017 0	7:05	7/25/2017	07:00	7/25/2017 1	2:04		
Duplicate ("Y"	or "N") ²				N		N		Y			
Split ("Y" or "	'N") ³				N		N		N			
Facility Sample	e ID Number (if applicable)				TB2UG4-	17	TB3UG4	-17	MW358DUG	64-17		
Laboratory Samp	ole ID Number (if applicable)				42874001	11	4288670	15	42886700	05	\ /	
Date of Analysi	s (Month/Day/Year) For Volatile	Or	ganics Anal	ysis	7/27/2017		7/29/2017		7/29/2017		\ /	
Gradient with r	respect to Monitored Unit (UP, DC	, NW	, SIDE, UNKN	OWN)	NA		NA		DOWN		Y	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*	0.462			
16887-00-6	Chloride(s)	т	mg/L	9056		*		*	38.2			1\
16984-48-8	Fluoride	Т	mg/L	9056		*		*	0.158			
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*	1			
14808-79-8	Sulfate	т	mg/L	9056		*		*	72			
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*	30.07			
s0145	Specific Conductance	Т	μ MH0/cm	Field		*		*	510		/	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

		(00110		,								
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000		8004-4799			
Facility's Loc	cal Well or Spring Number (e.g., MV	I-1 , I	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	358			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*	325.65			\Box
N238	Dissolved Oxygen	Т	mg/L	Field		*		*	4.17			
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*	283			1
s0296	рн	Т	Units	Field		*		*	6.07			/
NS215	Eh	Т	mV	Field		*		*	342		\ /	
s0907	Temperature	Т	°C	Field		*		*	21		\ /	
7429-90-5	Aluminum	Т	mg/L	6020		*		*	<0.05		\ /	
7440-36-0	Antimony	Т	mg/L	6020		*		*	<0.003		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
7440-38-2	Arsenic	Т	mg/L	6020		*		*	<0.005		X	
7440-39-3	Barium	Т	mg/L	6020		*		*	0.0468		/\	
7440-41-7	Beryllium	Т	mg/L	6020		*		*	<0.0005		/\	
7440-42-8	Boron	Т	mg/L	6020		*		*	0.461		/ \	
7440-43-9	Cadmium	Т	mg/L	6020		*		*	<0.001			
7440-70-2	Calcium	т	mg/L	6020		*		*	32.3			\
7440-47-3	Chromium	Т	mg/L	6020		*		*	<0.01			
7440-48-4	Cobalt	Т	mg/L	6020		*		*	0.000403	J		
7440-50-8	Copper	Т	mg/L	6020		*		*	0.00042	J		
7439-89-6	Iron	Т	mg/L	6020		*		*	0.0704	J		
7439-92-1	Lead	Т	mg/L	6020		*		*	<0.002		<u> </u>	
7439-95-4	Magnesium	Т	mg/L	6020		*		*	14.5			
7439-96-5	Manganese	Т	mg/L	6020		*		*	0.0351			
7439-97-6	Mercury	Т	mg/L	7470		*		*	<0.0002			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number		0000-0000		0000-0000		8004-4799		\			
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	T. BLANK	2	T. BLAN	(3	358			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
7439-98-7	Molybdenum	т	mg/L	6020		*		*	<0.0005			\prod
7440-02-0	Nickel	т	mg/L	6020		*		*	0.00333			17
7440-09-7	Potassium	Т	mg/L	6020		*		*	2.37			7
7440-16-6	Rhodium	Т	mg/L	6020		*		*	<0.005			
7782-49-2	Selenium	Т	mg/L	6020		*		*	<0.005			
7440-22-4	Silver	Т	mg/L	6020		*		*	<0.001			
7440-23-5	Sodium	т	mg/L	6020		*		*	38.3		\ /	
7440-25-7	Tantalum	т	mg/L	6020		*		*	<0.005	*	\/	
7440-28-0	Thallium	т	mg/L	6020		*		*	<0.002		X	
7440-61-1	Uranium	Т	mg/L	6020		*		*	<0.0002			
7440-62-2	Vanadium	Т	mg/L	6020		*		*	<0.01			
7440-66-6	Zinc	т	mg/L	6020		*		*	<0.01		/ /	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			<u> </u>
67-64-1	Acetone	т	mg/L	8260	0.00227	J*	<0.005		<0.005			
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			\prod
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			\coprod
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*		
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003	*	<0.003	*		
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001	*	<0.001	*		\prod
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			1

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000		0000-0000		8004-4799		\			
Facility's Loca	al Well or Spring Number (e.g., N	1W-1	, MW-2, et	c.)	T. BLANK 2	2	T. BLANK	3	358			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2	Tribromomethane	T	mg/L	8260	<0.001		<0.001		<0.001			1/
74-83-9	Methyl bromide	T	mg/L	8260	<0.001		<0.001		<0.001			/
78-93-3	Methyl ethyl ketone	T	mg/L	8260	<0.005		<0.005		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005		<0.005			
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-00-3	Chloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		\ /	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		\bigvee	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		L	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			\
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001			
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001	*		
79-01-6	Ethene, Trichloro-	T	mg/L	8260	<0.001		<0.001		0.00364		/	<u> </u>

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000		0000-0000		8004-4799			$\neg \neg$		
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK	3	358			\neg
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L Z
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*		
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005	*	<0.005		<0.005			
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000196		<0.0000197		\ <i>\</i>	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		Λ	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			
156-60-5	trans-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*		<u> </u>
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*		
1336-36-3	PCB,Total	Т	ug/L	8082		*		*	<0.1	*		
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.1	*		
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.1			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.1			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.1			
12672-29-6	PCB-1248	Т	ug/L	8082		*		*	<0.1		/	$ \overline{} $

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000		0000-0000		8004-4799		1			
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		358			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L Z S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*	<0.1			
11096-82-5	PCB-1260	Т	ug/L	8082		*		*	<0.1	*		I
11100-14-4	PCB-1268	Т	ug/L	8082		*		*	<0.1			1
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*	7.17	*		
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*	32.5	*		1
10043-66-0	Iodine-131	Т	pCi/L			*		*		*	\ /	
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*	-0.0142	*	\/	
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*	-1.15	*	l V	
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*	31.5	*		
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*	0.0935	*		
10028-17-8	Tritium	Т	pCi/L	906.0		*		*	8.31	*	/ \	
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*	15	J		
57-12-5	Cyanide	Т	mg/L	9012		*		*	<0.2			
20461-54-5	Iodide	Т	mg/L	300.0		*		*	<0.5			\mathbb{I}
s0268	Total Organic Carbon	Т	mg/L	9060		*		*	1.08	J		\Box
s0586	Total Organic Halides	Т	mg/L	9020		*		*	0.00948	BJ		
											1/	
											/	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

 $Finds/Unit: \underline{KY8-890-008-982 \ / \ 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4798 MW357	MW357UG4-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPI outside acceptance criteria
		PCB-1260	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPI outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.67. Rad error is 2.65.
		Gross beta		TPU is 5.4. Rad error is 3.83.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.343. Rad error is 0.343.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.7. Rad error is 1.7.
		Technetium-99		TPU is 12.1. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.12. Rad error is 1.1.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 134. Rad error is 133.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4799 MW358	MW358UG4-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPI outside acceptance criteria
		PCB-1260	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPI outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.39. Rad error is 2.39.
		Gross beta		TPU is 6.82. Rad error is 4.45.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.413. Rad error is 0.413.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.955. Rad error is 0.955.
		Technetium-99		TPU is 11.8. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.61. Rad error is 0.609.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 133. Rad error is 133.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-0981 MW35		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
,01 0001 1111100		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RF outside acceptance criteria
		PCB-1260	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RF outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. The 2.29. Rad error is 2.28.
		Gross beta		TPU is 2.48. Rad error is 2.35.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 0.268. Rad error is 0.268.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 2.03. Rad error is 2.02.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 8.94. Rad error is 8.94.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 0.803. Rad error is 0.8.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. To 123. Rad error is 123.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4800 MW360	MW360UG4-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria
		PCB-1260	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.41. Rad error is 2.41.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.72. Rad error is 2.71.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.29. Rad error is 0.29.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.57. Rad error is 1.57.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.91. Rad error is 8.91.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.708. Rad error is 0.705.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 117. Rad error is 117.
004-4795 MW361	MW361UG4-17	Acetone	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		Methyl chloride	L	LCS or LCSD recovery outside of control limits
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits
		2-Hexanone	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.99. Rad error is 2.96.
		Gross beta		TPU is 6.56. Rad error is 4.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.31. Rad error is 0.309.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.963. Rad error is 0.963.
		Technetium-99		TPU is 12. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.763. Rad error is 0.761.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 130. Rad error is 130.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

DO4-0986 MW362 MW362UG4-17 Tantalum Chlorobenzene Xylenes Xylenes Styrene Y1 MS/MSD recovery outside acceptance criteria Xylenes Styrene Y1 MS/MSD recovery outside acceptance criteria Styrene Tetrachloroethene Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria NS/MSD Recovery outside acceptance criteria PCB, Total SY2 Sample surrogate recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria and MS/MSD RPD outside acceptance criteria and MS/MSD RPD acceptance criteria PCB-1221 S Sample surrogate recovery outside acceptance criteria PCB-1232 S Sample surrogate recovery outside acceptance criteria PCB-1248 S Sample surrogate recovery outside acceptance criteria PCB-1254 S Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria PCB-1269 PCB-126	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
Xylenes Y1 MS/MSD recovery outside acceptance criteria Styrene Y1 MS/MSD recovery outside acceptance criteria Tetrachloroethene Y1 MS/MSD recovery outside acceptance criteria Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria PCB, Total SY2 Sample surrogate recovery outside acceptance criteria PCB-1016 SY1Y2 Sample surrogate recovery outside acceptance criteria; PCB-121 S Sample surrogate recovery outside acceptance criteria; PCB-1221 S Sample surrogate recovery outside acceptance criteria; PCB-1232 S Sample surrogate recovery outside acceptance criteria; PCB-1242 S Sample surrogate recovery outside acceptance criteria; PCB-1248 S Sample surrogate recovery outside acceptance criteria PCB-1254 S Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria; PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria; PCB-1268 S Sample surrogate recovery outside acceptance criteria; PCB-1269 SY1Y2		•		<u> </u>	Sample spike (MS/MSD) recovery not within control limits
Styrene Y1 MS/MSD recovery outside acceptance criteria Tetrachloroethene Y1 MS/MSD recovery outside acceptance criteria Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria PCB, Total SY2 Sample surrogate recovery outside acceptance criteria PCB-1016 SY1Y2 Sample surrogate recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria recovery outside acceptance criteria and mS/MSD RPD outside acceptance criteria recovery outside acceptance criteria recovery outside acceptance criteria and probability of the covery outside acceptance criteria and ms/MSD RPD acceptance criteria and m			Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
Tetrachloroethene Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria PCB, Total SY2 Sample surrogate recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria and MS/MSD RPD outside acceptance criteria; recovery outside acceptance criteria PCB-1221 S Sample surrogate recovery outside acceptance criteria PCB-1232 S Sample surrogate recovery outside acceptance criteria PCB-1248 S Sample surrogate recovery outside acceptance criteria PCB-1254 S Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria; recovery outside acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria; recovery outside acceptance criteria. PCB-1268 S Sample surrogate recovery outside acceptance criteria;			Xylenes	Y1	MS/MSD recovery outside acceptance criteria
Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria PCB, Total SY2 Sample surrogate recovery outside acceptance criteria PCB-1016 SY1Y2 Sample surrogate recovery outside acceptance criteria PCB-121 Sample surrogate recovery outside acceptance criteria; recovery outside acceptance criteria a deceptance criteria PCB-1221 Sample surrogate recovery outside acceptance criteria PCB-1232 Sample surrogate recovery outside acceptance criteria PCB-1242 Sample surrogate recovery outside acceptance criteria PCB-1242 Sample surrogate recovery outside acceptance criteria PCB-1248 Sample surrogate recovery outside acceptance criteria PCB-1254 Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria PCB-1268 Sa			Styrene	Y1	MS/MSD recovery outside acceptance criteria
1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria PCB, Total SY2 Sample surrogate recovery outside acceptance criteria PCB-1016 SY1Y2 Sample surrogate recovery outside acceptance criteria PCB-121 Sample surrogate recovery outside acceptance criteria; recovery outside acceptance criteria; recovery outside acceptance criteria and MS/MSD RPD acceptance criteria and MS/MSD RPD acceptance criteria and MS/MSD RPD acceptance criteria PCB-1221 Sample surrogate recovery outside acceptance criteria PCB-1232 Sample surrogate recovery outside acceptance criteria PCB-1242 Sample surrogate recovery outside acceptance criteria PCB-1248 Sample surrogate recovery outside acceptance criteria PCB-1254 Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria PCB-1268 Samp			Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
1,4-Dichlorobenzene PCB, Total PCB, Total SY2 Sample surrogate recovery outside acceptance criteria PCB-1016 SY1Y2 Sample surrogate recovery outside acceptance criteria a MS/MSD RPD outside acceptance criteria PCB-121 S Sample surrogate recovery outside acceptance criteria; recovery outside acceptance criteria; recovery outside acceptance criteria and MS/MSD RPD acceptance criteria PCB-1221 S Sample surrogate recovery outside acceptance criteria PCB-1232 S Sample surrogate recovery outside acceptance criteria PCB-1242 S Sample surrogate recovery outside acceptance criteria PCB-1248 S Sample surrogate recovery outside acceptance criteria PCB-1254 S Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria PCB-1268 PCB-1268 S Sample surrogate recovery outside acceptance criteria PCB-1268 PCB-1268 S Sample surrogate recovery outside acceptance criteria PCB-1269 PCB-1260 PCB-1			Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
PCB, Total SY2 Sample surrogate recovery outside acceptance criteria a MS/MSD RPD outside acceptance criteria a creovery outside acceptance criteria; I recovery outside acceptance criteria and MS/MSD RPD acceptance criteria and MS/MSD RPD acceptance criteria PCB-1221 S Sample surrogate recovery outside acceptance criteria PCB-1232 S Sample surrogate recovery outside acceptance criteria PCB-1242 S Sample surrogate recovery outside acceptance criteria PCB-1254 S Sample surrogate recovery outside acceptance criteria PCB-1254 S Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria PCB-1269 Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance			1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
MS/MSD RPD outside acceptance criteria PCB-1016 SY1Y2 Sample surrogate recovery outside acceptance criteria; recovery outside acceptance criteria and MS/MSD RPD acceptance criteria and MS/MSD RPD acceptance criteria PCB-1221 S Sample surrogate recovery outside acceptance criteria PCB-1232 S Sample surrogate recovery outside acceptance criteria PCB-1242 S Sample surrogate recovery outside acceptance criteria PCB-1248 S Sample surrogate recovery outside acceptance criteria PCB-1254 S Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria; recovery outside acceptance criteria; recovery outside acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria PCB-1268 PCB-1268 S Sample surrogate recovery outside acceptance criteria PCB-1268 PCB-1268 PCB-1269 PCB-1269 PCB-1260 PCB-126			1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
recovery outside acceptance criteria and MS/MSD RPD- acceptance criteria PCB-1221 S Sample surrogate recovery outside acceptance criteria PCB-1232 S Sample surrogate recovery outside acceptance criteria PCB-1242 S Sample surrogate recovery outside acceptance criteria PCB-1248 S Sample surrogate recovery outside acceptance criteria PCB-1254 S Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria; recovery outside acceptance criteria; recovery outside acceptance criteria; recovery outside acceptance criteria; recovery outside acceptance criteria and MS/MSD RPD- acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria; recovery outside acceptanc			PCB, Total	SY2	Sample surrogate recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria
PCB-1232 S Sample surrogate recovery outside acceptance criteria PCB-1242 S Sample surrogate recovery outside acceptance criteria PCB-1248 S Sample surrogate recovery outside acceptance criteria PCB-1254 S Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria; recovery outside acceptance criteria; recovery outside acceptance criteria; recovery outside acceptance criteria and MS/MSD RPD acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria;			PCB-1016	SY1Y2	recovery outside acceptance criteria and MS/MSD RPD outside
PCB-1242 S Sample surrogate recovery outside acceptance criteria PCB-1248 S Sample surrogate recovery outside acceptance criteria PCB-1254 S Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria; I recovery outside acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria; I recovery outside acceptance criter			PCB-1221	S	Sample surrogate recovery outside acceptance criteria
PCB-1248 S Sample surrogate recovery outside acceptance criteria PCB-1254 S Sample surrogate recovery outside acceptance criteria PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria; I recovery outside acceptance criteria; I recovery outside acceptance criteria and MS/MSD RPD acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria PCB-1260 PCB-1260 PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria PCB-1260 PC			PCB-1232	S	Sample surrogate recovery outside acceptance criteria
PCB-1254 S Sample surrogate recovery outside acceptance criteria; I PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria; I recovery outside acceptance criteria and MS/MSD RPD acceptance criteria and MS/MSD RPD acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria Gross alpha TPU is 3.94. Rad error is 3.74. Gross beta TPU is 2.38. Rad error is 2.01. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.584. Rad error is 0.583. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 4.3. Rad error is 4.3. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 12.3. Rad error is 12.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909.			PCB-1242	S	Sample surrogate recovery outside acceptance criteria
PCB-1260 SY1Y2 Sample surrogate recovery outside acceptance criteria; recovery outside acceptance criteria and MS/MSD RPD acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria Gross alpha TPU is 3.94. Rad error is 3.74. Gross beta TPU is 2.38. Rad error is 2.01. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.584. Rad error is 0.583. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 4.3. Rad error is 12.3. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 12.3. Rad error is 12.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909.			PCB-1248	S	Sample surrogate recovery outside acceptance criteria
recovery outside acceptance criteria and MS/MSD RPD acceptance criteria PCB-1268 S Sample surrogate recovery outside acceptance criteria Gross alpha TPU is 3.94. Rad error is 3.74. Gross beta TPU is 2.38. Rad error is 2.01. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.584. Rad error is 0.583. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 4.3. Rad error is 4.3. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 12.3. Rad error is 12.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909.			PCB-1254	S	Sample surrogate recovery outside acceptance criteria
Gross alpha Gross beta TPU is 3.94. Rad error is 3.74. Gross beta TPU is 2.38. Rad error is 2.01. Iodine-131 Analysis of constituent not required and not performed. TPU is 0.584. Rad error is 0.583. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 4.3. Rad error is 4.3. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 12.3. Rad error is 12.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909.			PCB-1260	SY1Y2	recovery outside acceptance criteria and MS/MSD RPD outside
Gross beta TPU is 2.38. Rad error is 2.01. Iodine-131 Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 12.3. Rad error is 12.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 12.3. Rad error is 12.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 12.3. Rad error is 12.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909.			PCB-1268	S	Sample surrogate recovery outside acceptance criteria
lodine-131 Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 4.3. Rad error is 4.3. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 12.3. Rad error is 12.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 12.3. Rad error is 12.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909.			Gross alpha		TPU is 3.94. Rad error is 3.74.
Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 4.3. Rad error is 4.3. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 12.3. Rad error is 12.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909.			Gross beta		TPU is 2.38. Rad error is 2.01.
Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect 4.3. Rad error is 4.3. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 12.3. Rad error is 12.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909.			lodine-131		Analysis of constituent not required and not performed.
4.3. Rad error is 4.3. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect 12.3. Rad error is 12.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909.			Radium-226		TPU is 0.584. Rad error is 0.583.
Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909. Tritium U Indicates analyte/nuclide was analyzed for, but not detect 0.932. Rad error is 0.909.			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 4.3. Rad error is 4.3.
0.932. Rad error is 0.909. Tritium U Indicates analyte/nuclide was analyzed for, but not detec			Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 12.3. Rad error is 12.3.
			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.932. Rad error is 0.909.
			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 131. Rad error is 131.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4796 MW363	MW363UG4-17	Aluminum	N	Sample spike (MS/MSD) recovery not within control limits
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1260	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TR 2.5. Rad error is 2.5.
		Gross beta		TPU is 3.05. Rad error is 2.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.158. Rad error is 0.158.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TR 2.02. Rad error is 2.01.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 12.3. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TR 0.677. Rad error is 0.674.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The 76. Rad error is 76.
004-4797 MW364	MW364UG4-17	Aluminum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1260	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. The 2.69. Rad error is 2.66.
		Gross beta		TPU is 6.01. Rad error is 3.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.441. Rad error is 0.44.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The 2.17. Rad error is 2.17.
		Technetium-99		TPU is 14.5. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. The 0.934. Rad error is 0.931.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 106. Rad error is 105.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	MW365UG4-17	Acetone	Y2	MS/MSD RPD outside acceptance criteria
		2-Hexanone	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 2.72. Rad error is 2.7.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf 1.71. Rad error is 1.67.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.432. Rad error is 0.432.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 4.97. Rad error is 4.88.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 8.52. Rad error is 8.52.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. To 0.809. Rad error is 0.804.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 152. Rad error is 150.
004-0982 MW366	MW366UG4-17	Acetone	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		Methyl chloride	L	LCS or LCSD recovery outside of control limits
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits
		2-Hexanone	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha		TPU is 4.5. Rad error is 4.27.
		Gross beta		TPU is 7.98. Rad error is 4.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.362. Rad error is 0.362.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.55. Rad error is 1.55.
		Technetium-99		TPU is 13.1. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.842. Rad error is 0.827.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 119. Rad error is 119.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4793 MW367	MW367UG4-17	Acetone	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		Methyl chloride	L	LCS or LCSD recovery outside of control limits
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits
		2-Hexanone	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. To 2.78. Rad error is 2.76.
		Gross beta		TPU is 2.88. Rad error is 2.64.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.55. Rad error is 0.549.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.5. Rad error is 2.48.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 9.12. Rad error is 9.12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.701. Rad error is 0.698.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 139. Rad error is 138.
004-0983 MW368	MW368UG4-17	Acetone	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		Methyl chloride	L	LCS or LCSD recovery outside of control limits
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits
		2-Hexanone	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.65. Rad error is 2.63.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.12. Rad error is 1.12.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.379. Rad error is 0.379.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.71. Rad error is 1.71.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 9.42. Rad error is 9.42.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.958. Rad error is 0.933.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 129. Rad error is 129.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4820 MW369	MW369UG4-17	Aluminum	N	Sample spike (MS/MSD) recovery not within control limits
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1260	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3. Rad error is 2.96.
		Gross beta		TPU is 6.39. Rad error is 4.74.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.569. Rad error is 0.568.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.56. Rad error is 1.56.
		Technetium-99		TPU is 14.3. Rad error is 13.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.818. Rad error is 0.808.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 120. Rad error is 120.
004-4818 MW370	MW370UG4-17	Aluminum	N	Sample spike (MS/MSD) recovery not within control limits
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1260	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.52. Rad error is 3.45.
		Gross beta		TPU is 15.6. Rad error is 7.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.473. Rad error is 0.473.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I 1.93. Rad error is 1.92.
		Technetium-99		TPU is 20.6. Rad error is 15.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.778. Rad error is 0.775.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 122. Rad error is 122.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

	mple ID 371UG4-17	Constituent Aluminum Tantalum PCB, Total	Flag N N	Description Sample spike (MS/MSD) recovery not within control limits
			N	
		PCB. Total		Sample spike (MS/MSD) recovery not within control limits
		. 02, . 0.0.	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1260	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.27. Rad error is 3.19.
		Gross beta		TPU is 2. Rad error is 1.89.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.443. Rad error is 0.443.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.09. Rad error is 2.08.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.939. Rad error is 0.914.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 121. Rad error is 121.
3004-4808 MW372 MW3	372UG4-17	Aluminum	N	Sample spike (MS/MSD) recovery not within control limits
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1260	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.37. Rad error is 2.36.
		Gross beta		TPU is 4.39. Rad error is 2.72.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.371. Rad error is 0.371.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.69. Rad error is 1.69.
		Technetium-99		TPU is 13.6. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.05. Rad error is 1.02.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 128. Rad error is 128.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4792 MW373	MW373UG4-17	Aluminum	N	Sample spike (MS/MSD) recovery not within control limits
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1260	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha		TPU is 3.11. Rad error is 2.99.
		Gross beta		TPU is 3.7. Rad error is 2.51.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.335. Rad error is 0.334.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I 1.9. Rad error is 1.9.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 13.4. Rad error is 13.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.865. Rad error is 0.847.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 134. Rad error is 133.
004-0990 MW374	MW374UG4-17	Aluminum	N	Sample spike (MS/MSD) recovery not within control limits
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1260	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 2.92. Rad error is 2.9.
		Gross beta		TPU is 2.01. Rad error is 1.91.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.491. Rad error is 0.49.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 2.09. Rad error is 2.08.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 12.7. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.617. Rad error is 0.614.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 125. Rad error is 125.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0985 MW375	MW375UG4-17	Aluminum	N	Sample spike (MS/MSD) recovery not within control limits
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1260	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha		TPU is 2.13. Rad error is 2.06.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.93. Rad error is 1.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.338. Rad error is 0.337.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.14. Rad error is 2.13.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 12.5. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.982. Rad error is 0.973.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 74.8. Rad error is 74.8.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was
		3. 3.		collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Chloroform	<u></u>	During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample war collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample war collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	,	Molybdenum	3	During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample wa collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

004-0989 MW377	Chloroform Methyl chloride cis-1,2-Dichloroethene Methylene bromide 1,1-Dichloroethane 1,2-Dichloroethane	During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected.
	cis-1,2-Dichloroethene Methylene bromide 1,1-Dichloroethane	During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected.
	Methylene bromide 1,1-Dichloroethane	collected.
	1,1-Dichloroethane	During sampling, the well went dry; therefore, no sample was
	•	collected.
	1.2-Dichloroethane	During sampling, the well went dry; therefore, no sample was collected.
	1,2 DIGITIOTOGUIANG	During sampling, the well went dry; therefore, no sample was collected.
	1,1-Dichloroethylene	During sampling, the well went dry; therefore, no sample was collected.
	1,2-Dibromoethane	During sampling, the well went dry; therefore, no sample was collected.
	1,1,2,2-Tetrachloroethane	During sampling, the well went dry; therefore, no sample was collected.
	1,1,1-Trichloroethane	During sampling, the well went dry; therefore, no sample was collected.
	1,1,2-Trichloroethane	During sampling, the well went dry; therefore, no sample was collected.
	1,1,1,2-Tetrachloroethane	During sampling, the well went dry; therefore, no sample was collected.
	Vinyl chloride	During sampling, the well went dry; therefore, no sample wa collected.
	Tetrachloroethene	During sampling, the well went dry; therefore, no sample wa collected.
	Trichloroethene	During sampling, the well went dry; therefore, no sample was collected.
	Ethylbenzene	During sampling, the well went dry; therefore, no sample wa collected.
	2-Hexanone	During sampling, the well went dry; therefore, no sample wa collected.
	Iodomethane	During sampling, the well went dry; therefore, no sample wa collected.
	Dibromochloromethane	During sampling, the well went dry; therefore, no sample was collected.
	Carbon tetrachloride	During sampling, the well went dry; therefore, no sample was collected.
	Dichloromethane	During sampling, the well went dry; therefore, no sample was collected.
	Methyl Isobutyl Ketone	During sampling, the well went dry; therefore, no sample was collected.
	1,2-Dibromo-3-chloropropane	During sampling, the well went dry; therefore, no sample war collected.
	1,2-Dichloropropane	During sampling, the well went dry; therefore, no sample was collected.
	trans-1,3-Dichloropropene	During sampling, the well went dry; therefore, no sample wa collected.
	cis-1,3-Dichloropropene	During sampling, the well went dry; therefore, no sample wa collected.
	trans-1,2-Dichloroethene	During sampling, the well went dry; therefore, no sample war collected.
	Trichlorofluoromethane	During sampling, the well went dry; therefore, no sample was collected.
	1,2,3-Trichloropropane	During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG4-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RF outside acceptance criteria
		PCB-1260	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RI outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.86. Rad error is 1.85.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.52. Rad error is 1.51.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.39. Rad error is 0.389.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.12. Rad error is 2.11.
		Technetium-99	U 	Indicates analyte/nuclide was analyzed for, but not detected. T 9.19. Rad error is 9.19.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.25. Rad error is 1.22.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 134. Rad error is 134.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG4-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RP outside acceptance criteria
		PCB-1260	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RP outside acceptance criteria
		Gross alpha		TPU is 2.59. Rad error is 2.51.
		Gross beta		TPU is 3.26. Rad error is 3.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.344. Rad error is 0.344.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 1.78. Rad error is 1.78.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 8.93. Rad error is 8.93.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 1.27. Rad error is 1.24.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 141. Rad error is 140.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG4-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG4-17	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG4-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG4-17	Zinc		Analysis of constituent not required and not performed.
		Acetone	Y2	MS/MSD RPD outside acceptance criteria
		2-Hexanone	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG4-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

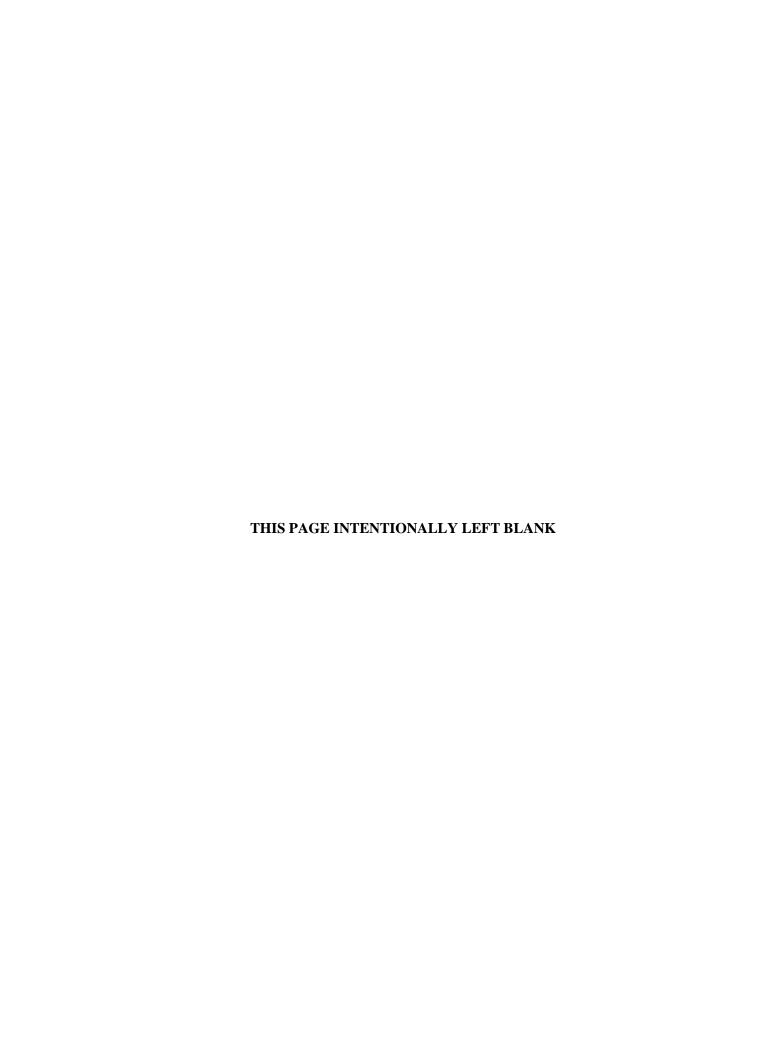
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG4-17	Zinc		Analysis of constituent not required and not performed.
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045


Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4799 MW358	MW358DUG4-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPE outside acceptance criteria
		PCB-1260	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPD outside acceptance criteria
		Gross alpha		TPU is 4.53. Rad error is 4.37.
		Gross beta		TPU is 7.06. Rad error is 4.5.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.328. Rad error is 0.328.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 2.43. Rad error is 2.43.
		Technetium-99		TPU is 11.3. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.72. Rad error is 0.716.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 127. Rad error is 127.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Finds/Unit: KY8-980-008-982/1
LAB ID: None
For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the third quarter 2017 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The third quarter 2017 data used to conduct the statistical analyses were collected in July 2017. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that had exceeded the historical background (using the last eight quarters). The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

lower TL = $X - (K \times S)$

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations:

upper $TL = X + (K \times S)$

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, third quarter 2017. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^a *	SG	UCRS
MW377 ^a *	SG	UCRS

^a **NOTE:** The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

^{*}Well was dry this quarter, and a groundwater sample could not be collected.

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters					
Aluminum					
Beryllium					
Beta Activity					
Boron					
Bromide					
Calcium					
Chemical Oxygen Demand (COD)					
Chloride					
Cobalt					
Conductivity					
Copper					
Dissolved Oxygen					
Dissolved Solids					
Iodide					
Iron					
Magnesium					
Manganese					
Molybdenum					
Nickel					
Oxidation-Reduction Potential					
PCB, Total					
PCB-1242					
PCB-1248					
pH*					
Potassium					
Radium-226					
Sodium					
Sulfate					
Technetium-99					
Total Organic Carbon (TOC)					
Total Organic Halides (TOX)					
Trichloroethene					
Uranium					
Vanadium					
Zinc					

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	1	6	Yes
Antimony	7	7	0	No
Aroclor-1268	7	7	0	No
Beryllium	7	6	1	Yes
Boron	7	3	4	Yes
Bromide	7	4	3	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	4	3	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	1	6	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	0	7	Yes
Magnesium	7	0	7	Yes
Manganese	7	0	7	Yes
Methylene chloride	7	7	0	No

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Molybdenum	7	2	5	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	5	2	Yes
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	7	0	No
PCB-1248	7	5	2	Yes
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
pH	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	5	2	Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	4	3	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Uranium	7	1	6	Yes
Vanadium	7	4	3	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	1	6	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	2	4	Yes
Antimony	6	6	0	No
Aroclor-1268	6	6	0	No
Beryllium	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	0	6	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	2	4	Yes
Conductivity	6	0	6	Yes
Copper	6	2	4	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	3	3	Yes
Iodomethane	6	6	0	No
Iron	6	2	4	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
76.1.1.1		Observation	Observation	Analysis?
Molybdenum	6	3	3	Yes
Nickel	6	2	4	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	4	2	Yes
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	4	2	Yes
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
pH	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	4	2	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	2	4	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Uranium	6	5	1	Yes
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	4	2	Yes
Rold denotes parameters with at least one un		•		

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	6	0	No
Aroclor-1268	6	6	0	No
Beryllium	6	6	0	No
Beta activity	6	0	6	Yes
Boron	6	1	5	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	0	6	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	2	4	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No No
Dibromocnioromethane Dibromomethane	6	6	0	No No
	6	6	0	
Dimethylbenzene, Total	6	0	6	No Voc
Dissolved Oxygen Dissolved Solids	6	0	6	Yes
	6	6	0	Yes
Ethylbenzene				No Voc
Iodide	6	5	1	Yes
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes

Exhibit D.5. Tests Summary for Qualified Parameters—LRGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Methylene chloride	6	6	0	No
Molybdenum	6	3	3	Yes
Nickel	6	1	5	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
pН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	2	4	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	2	4	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Uranium	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	2	4	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 30, 31, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes trichloroethene that exceeded the MCL in four wells and beta activity in one well. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for dissolved oxygen, magnesium, oxidation-reduction potential, and sulfate.

URGA

This quarter's results identified historical background exceedances for oxidation-reduction potential and sodium.

LRGA

This quarter's results identified historical background exceedances for beta activity, dissolved oxygen, oxidation-reduction potential, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

3: Oxidation-Reduction
l
: Oxidation-Reduction
l: Dissolved Oxygen, on-Reduction Potential, ium-99
7: Oxidation-Reduction l
Beta activity, Oxidation- on Potential, Technetium-99 Coxidation-Reduction
i

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Beryllium	Tolerance Interval	1.12	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, and MW375.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW368.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Tests Summary for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1248	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	3.79	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	1.68	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Tests Summary for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW363, MW366, MW369, and MW372.
PCB, Total	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.36	No exceedance of statistically derived historical background concentration.
pH	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	2.61	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	Current results exceed statistically derived historical background concentration in MW360.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	No exceedance of statistically derived historical background concentration.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	Current results exceed statistically derived historical background concentration in MW364.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Tests Summary for Qualified Parameters for Historical Background—LRGA (Continued)

Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	2.66	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW364 and MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the upper TL test using historical background, the concentrations were compared to the results of the one-sided upper tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 4, 2, and 4 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (in Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	
Sodium in MW360	

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that dissolved oxygen in MW359, MW365, and MW368; magnesium in MW368; and sulfate concentrations in four UCRS wells (i.e., MW359, MW362, MW365, and MW368) were higher than the current TL this quarter.

URGA

This quarter's results showed an exceedance of sodium in MW360; this well is located downgradient of the landfill.

LRGA

This quarter's results showed no exceedances in wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.55	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW359, MW365, and MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.45	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.33	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.60	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW359, MW362, MW365, MW368, and MW375 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.21	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.14	MW360 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.53	MW370 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Oxygen	Tolerance Interval	0.40	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.23	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.58	MW370 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

S = 6.859

CV(1) = 2.078

K factor=** 2.523

TL(1)= 20.604

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.371 S = 1.678

CV(2) = -4.521

K factor=** 2.523

TL(2) = 3.863

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.059
Date Collected	Result	
Date Collected 10/8/2002	Result 21.3	3.059
Date Collected 10/8/2002 1/7/2003	Result 21.3 20	3.059 2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 21.3 20 4.11	3.059 2.996 1.413
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 21.3 20 4.11 1.41	3.059 2.996 1.413 0.344
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 21.3 20 4.11 1.41 1.09	3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.218	N/A	-1.523	NO
MW362	Downgradient	Yes	14.8	N/A	2.695	NO
MW365	Downgradient	Yes	0.0709	N/A	-2.646	NO
MW368	Downgradient	Yes	0.229	N/A	-1.474	NO
MW371	Upgradient	Yes	2.33	N/A	0.846	NO
MW374	Upgradient	No	0.05	N/A	-2.996	N/A
MW375	Sidegradient	Yes	2.82	N/A	1.037	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison Beryllium** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.002

S = 0.003

CV(1)=1.125

K factor=** 2.523

TL(1) = 0.009

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.462 S = 0.812

CV(2) = -0.126

K factor=** 2.523

TL(2) = -4.413

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.005	-5.298
4/22/2002	0.005	-5.298
7/15/2002	0.005	-5.298
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.001	-4.605 -6.908
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.001 0.001	-4.605 -6.908 -6.908
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.001 0.001 0.001	-4.605 -6.908 -6.908 -6.908
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.001 0.001 0.001 0.001	-4.605 -6.908 -6.908 -6.908

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0005	N/A	-7.601	N/A
MW362	Downgradient	Yes	0.000455	5 N/A	-7.695	NO
MW365	Downgradient	No	0.0005	N/A	-7.601	N/A
MW368	Downgradient	No	0.0005	N/A	-7.601	N/A
MW371	Upgradient	No	0.0005	N/A	-7.601	N/A
MW374	Upgradient	No	0.0005	N/A	-7.601	N/A
MW375	Sidegradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **UCRS Boron**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1) = 1.238

K factor=** 2.523

TL(1) = 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 2	0.693
Date Collected 10/8/2002 1/7/2003	Result 2 0.2	0.693 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.015	N/A	-4.200	N/A
MW362	Downgradient	Yes	0.0185	N/A	-3.990	NO
MW365	Downgradient	No	0.00923	N/A	-4.685	N/A
MW368	Downgradient	No	0.0109	N/A	-4.519	N/A
MW371	Upgradient	Yes	0.00573	N/A	-5.162	NO
MW374	Upgradient	Yes	0.0252	N/A	-3.681	NO
MW375	Sidegradient	Yes	0.00758	N/A	-4.882	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394

S= 0.474 **CV(1)**=0.340

K factor=** 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.279

S = 0.332

CV(2) = 1.190

K factor=** 2.523

TL(2)=1.118

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
	1,1,1,0,7,	LN(Result) 0.742
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 2.1	0.742
Date Collected 10/8/2002 1/7/2003	Result 2.1 2.1	0.742 0.742
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2.1 2.1 1.9	0.742 0.742 0.642
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2.1 2.1 1.9 1	0.742 0.742 0.642 0.000

1.6

7/14/2004

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	Yes	0.129	NO	-2.048	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Downgradient	Yes	0.154	NO	-1.871	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.691	NO	-0.370	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.470

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 34.100 S = 13.637 CV(1) = 0.400

K factor=** 2.523

TL(1) = 68.505 LL(1) = N/A

Statistics-Transformed Background Data

X= 3.466 **S**= 0.356

CV(2) = 0.103

K factor=** 2.523

TL(2) = 4.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.209
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 67.3	4.209
Date Collected 10/8/2002 1/7/2003	Result 67.3 60.6	4.209 4.104
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 67.3 60.6 47.2	4.209 4.104 3.854
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 67.3 60.6 47.2 34.7	4.209 4.104 3.854 3.547
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 67.3 60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

urren	ı Qua	irte	r Da	ııa
 11 3.7				

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	6.51	NO	1.873	N/A
MW362	Downgradient	Yes	20.6	NO	3.025	N/A
MW365	Downgradient	Yes	20.2	NO	3.006	N/A
MW368	Downgradient	Yes	67.2	NO	4.208	N/A
MW371	Upgradient	Yes	40.3	NO	3.696	N/A
MW374	Upgradient	Yes	21.5	NO	3.068	N/A
MW375	Sidegradient	Yes	15.4	NO	2.734	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=72.938 **S**= 70.749 **CV(1)**=0.970

K factor=** 2.523

TL(1) = 251.437 LL(1) = N/A

Statistics-Transformed Background Data

X = 4.000S = 0.702

CV(2) = 0.175

K factor=** 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.561
Date Collected	Result	
Date Collected 10/8/2002	Result 260	5.561
Date Collected 10/8/2002 1/7/2003	Result 260 214	5.561 5.366
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 260 214 147	5.561 5.366 4.990
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 260 214 147 72	5.561 5.366 4.990 4.277
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 260 214 147 72 56	5.561 5.366 4.990 4.277 4.025

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

MW375 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

2.996

N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	20	N/A	2.996	N/A
MW362	Downgradient	Yes	24.5	NO	3.199	N/A
MW365	Downgradient	No	20	N/A	2.996	N/A
MW368	Downgradient	No	20	N/A	2.996	N/A
MW371	Upgradient	Yes	42.2	NO	3.742	N/A
MW374	Upgradient	Yes	28.6	NO	3.353	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

20

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

K factor=** 2.523

TL(1)= 310.697 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.620

CV(2) = 0.439

K factor=** 2.523

TL(2) = 7.631

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.294
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 199.2	5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

S= 1.590

Well No. Gradient Sidegradient MW376 MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	1.09	NO	0.086	N/A
MW362	Downgradient	Yes	6.8	NO	1.917	N/A
MW365	Downgradient	Yes	3.2	NO	1.163	N/A
MW368	Downgradient	Yes	9.09	NO	2.207	N/A
MW371	Upgradient	Yes	3.42	NO	1.230	N/A
MW374	Upgradient	Yes	56.7	NO	4.038	N/A
MW375	Sidegradient	Yes	4.49	NO	1.502	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.009

CV(1) = 1.314

K factor=** 2.523

TL(1) = 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

CV(2) = -0.238

K factor=** 2.523

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	0.025	-3.689	
4/22/2002	0.025	-3.689	
7/15/2002	0.025	-3.689	
10/8/2002	0.001	-6.908	
1/8/2003	0.001	-6.908	
4/3/2003	0.001	-6.908	
7/9/2003	0.001	-6.908	
10/6/2003	0.001	-6.908	
Well Number:	MW374		
Well Number: Date Collected	MW374 Result	LN(Result)	
		LN(Result) -4.605	
Date Collected	Result	` '	
Date Collected 10/8/2002	Result 0.01	-4.605	
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.01	-4.605 -4.605	
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.01 0.01	-4.605 -4.605 -4.605	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.01 0.01 0.00161	-4.605 -4.605 -4.605 -6.432	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.01 0.01 0.00161 0.001	-4.605 -4.605 -4.605 -6.432 -6.908	

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data	Current	Ouarter	Data
----------------------	---------	----------------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00032	5 N/A	-8.032	NO
MW362	Downgradient	Yes	0.00411	N/A	-5.494	NO
MW365	Downgradient	Yes	0.00201	N/A	-6.210	NO
MW368	Downgradient	No	0.001	N/A	-6.908	N/A
MW371	Upgradient	Yes	0.00043	2 N/A	-7.747	NO
MW374	Upgradient	Yes	0.00246	N/A	-6.008	NO
MW375	Sidegradient	Yes	0.00084	2 N/A	-7.080	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor=** 2.523

TL(1)= 1971.483 **LL(1)=**N/A

N/A

N/A

Statistics-Transformed Background Data

X = 6.705 S = 0

S = 0.550 CV(2) = 0.082

K factor=** 2.523

TL(2)= 8.092

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.915
Date Collected	Result	
Date Collected 3/18/2002	Result 1007	6.915
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9 172	6.915 7.427 7.448 5.147
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Current Quarter Data

MW374 Upgradient

MW375 Sidegradient

Yes

Yes

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

6.525

5.878

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	240	NO	5.481	N/A
MW362	Downgradient	Yes	695	NO	6.544	N/A
MW365	Downgradient	Yes	388	NO	5.961	N/A
MW368	Downgradient	Yes	758	NO	6.631	N/A
MW371	Upgradient	Yes	641	NO	6.463	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

NO

682

357

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S = 0.072CV(1) = 1.275 **K factor**=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915

CV(2) = -0.270

K factor=** 2.523

TL(2) = -1.086

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00486	N/A	-5.327	NO
MW362	Downgradient	Yes	0.00826	N/A	-4.796	NO
MW365	Downgradient	Yes	0.00188	N/A	-6.276	NO
MW368	Downgradient	Yes	0.000849	9 N/A	-7.071	NO
MW371	Upgradient	Yes	0.00184	N/A	-6.298	NO
MW374	Upgradient	Yes	0.000672	2 N/A	-7.305	NO
MW375	Sidegradient	Yes	0.00177	N/A	-6.337	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.138

S = 0.621

CV(1)=0.546

K factor=** 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

K factor**= 2.523

TL(2) = 1.441

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Curr	ent Q	uartei	· Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	5.89	YES	1.773	N/A
MW362	Downgradient	Yes	4.3	YES	1.459	N/A
MW365	Downgradient	Yes	6.82	YES	1.920	N/A
MW368	Downgradient	Yes	6.81	YES	1.918	N/A
MW371	Upgradient	Yes	3.51	YES	1.256	N/A
MW374	Upgradient	Yes	1.95	NO	0.668	N/A
MW375	Sidegradient	Yes	4.07	YES	1.404	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362

MW365

MW368

MW371

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 590.000 S = 248.068 CV(1) = 0.420

K factor=** 2.523

TL(1)= 1215.876 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.308

S = 0.383 CV(2) = 0.061

K factor=** 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 7.035
Date Collected	Result	
Date Collected 10/8/2002	Result 1136	7.035
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data	
Wall No	Gradient	Г

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	141	NO	4.949	N/A
MW362	Downgradient	Yes	533	NO	6.279	N/A
MW365	Downgradient	Yes	244	NO	5.497	N/A
MW368	Downgradient	Yes	487	NO	6.188	N/A
MW371	Upgradient	Yes	420	NO	6.040	N/A
MW374	Upgradient	Yes	391	NO	5.969	N/A
MW375	Sidegradient	Yes	254	NO	5.537	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612

S= 6.487 **CV(1)**=0.981

K factor=** 2.523

TL(1)= 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.363

S = 1.147 CV(2) =

CV(2) = 0.841

K factor=** 2.523

TL(2) = 4.256

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.135
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 23	3.135
Date Collected 10/8/2002 1/7/2003	Result 23 13.9	3.135 2.632
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 23 13.9 14	3.135 2.632 2.639
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 23 13.9 14 14.2	3.135 2.632 2.639 2.653
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 23 13.9 14 14.2 7.92	3.135 2.632 2.639 2.653 2.069

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.26	NO	-1.347	N/A
MW362	Downgradient	Yes	9.46	NO	2.247	N/A
MW365	Downgradient	Yes	0.0492	NO	-3.012	N/A
MW368	Downgradient	Yes	0.155	NO	-1.864	N/A
MW371	Upgradient	Yes	1.5	NO	0.405	N/A
MW374	Upgradient	Yes	2.42	NO	0.884	N/A
MW375	Sidegradient	Yes	2.09	NO	0.737	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.347 **S**= 3.019

CV(1)=0.266

K factor=** 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401 S = 0.237

CV(2)=0.099

K factor=** 2.523

TL(2)= 2.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

337 11 37 1	1.000.001	
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 2.996
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.996 2.779 2.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.64	NO	1.292	N/A
MW362	Downgradient	Yes	9.76	NO	2.278	N/A
MW365	Downgradient	Yes	9.45	NO	2.246	N/A
MW368	Downgradient	Yes	23.9	YES	3.174	N/A
MW371	Upgradient	Yes	13.8	NO	2.625	N/A
MW374	Upgradient	Yes	5.32	NO	1.671	N/A
MW375	Sidegradient	Yes	6.1	NO	1.808	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW368

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.248

S= 0.222 **CV(1)**=0.894

K factor=** 2.523

TL(1)= 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.873 **S**= 1.068

068 **CV(2)=**-0.570

K factor=** 2.523

TL(2) = 0.821

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.518
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 0.596	-0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	-0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	-0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	-0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	-0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00335	NO	-5.699	N/A
MW362	Downgradient	Yes	0.0412	NO	-3.189	N/A
MW365	Downgradient	Yes	0.0473	NO	-3.051	N/A
MW368	Downgradient	Yes	0.0118	NO	-4.440	N/A
MW371	Upgradient	Yes	0.0114	NO	-4.474	N/A
MW374	Upgradient	Yes	0.437	NO	-0.828	N/A
MW375	Sidegradient	Yes	0.00671	NO	-5.004	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

S = 0.010

CV(1) = 1.650

K factor=** 2.523

TL(1) = 0.030

LL(1)=N/A

Statistics-Transformed Background Data

X= -6.108 **S**= 1.239

CV(2) = -0.203

K factor=** 2.523

TL(2) = -2.983

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.00121	-6.717
4/3/2003	0.001	-6.908
7/9/2003	0.00111	-6.803
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -6.110
Date Collected	Result	
Date Collected 10/8/2002	Result 0.00222	-6.110
Date Collected 10/8/2002 1/7/2003	Result 0.00222 0.00201	-6.110 -6.210
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.00222 0.00201 0.00159	-6.110 -6.210 -6.444
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.00222 0.00201 0.00159 0.00242	-6.110 -6.210 -6.444 -6.024
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.00222 0.00201 0.00159 0.00242 0.001	-6.110 -6.210 -6.444 -6.024 -6.908

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	t Quarter	Data
---------	-----------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0005	N/A	-7.601	N/A
MW362	Downgradient	Yes	0.00164	N/A	-6.413	NO
MW365	Downgradient	Yes	0.00020	7 N/A	-8.483	NO
MW368	Downgradient	Yes	0.00123	N/A	-6.701	NO
MW371	Upgradient	Yes	0.00095	7 N/A	-6.952	NO
MW374	Upgradient	Yes	0.00035	4 N/A	-7.946	NO
MW375	Sidegradient	No	0.00054	4 N/A	-7.517	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S = 0.022

CV(1)=0.980

K factor=** 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349 S = 1.109

CV(2) = -0.255

K factor=** 2.523

TL(2) = -1.552

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 0.05	-2.996
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.005 0.00794	-2.996 -2.996 -2.996 -4.836
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.005 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298

Dry/Partially Dry Wells

Well No. Gradient

MW376 MW377 Sidegradient

Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00146	NO	-6.529	N/A
MW362	Downgradient	Yes	0.00785	NO	-4.847	N/A
MW365	Downgradient	Yes	0.00527	NO	-5.246	N/A
MW368	Downgradient	Yes	0.00122	NO	-6.709	N/A
MW371	Upgradient	Yes	0.00233	NO	-6.062	N/A
MW374	Upgradient	Yes	0.00144	NO	-6.543	N/A
MW375	Sidegradient	Yes	0.00323	NO	-5.735	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.281 S = 78.889 CV(1) = 3.541

K factor=** 2.523

TL(1)= 221.319 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.642 S = 1.729

CV(2) = 0.475

K factor=** 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.905
Date Collected	Result	
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	325	N/A	5.784	YES
MW362	Downgradient	Yes	310	N/A	5.737	YES
MW365	Downgradient	Yes	385	N/A	5.953	YES
MW368	Downgradient	Yes	256	N/A	5.545	YES
MW371	Upgradient	Yes	364	N/A	5.897	YES
MW374	Upgradient	Yes	188	N/A	5.236	YES
MW375	Sidegradient	Yes	327	N/A	5.790	YES
NT/A D	1, 11, 20, 1, 3	T D	1 1 1 1		1 . 11	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW359
MW362
MW365
MW368
MW371
MW374
MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2017 Statistical Analysis PCB, Total **UNITS: UG/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.224

S = 0.207CV(1)=0.922 **K factor**=** 2.523

TL(1) = 0.746

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.647 S = 0.440

CV(2) = -0.267

K factor=** 2.523

TL(2) = -0.537

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/9/2003	0.17	-1.772
10/6/2003	0.17	-1.772
7/13/2004	0.18	-1.715
7/25/2005	0.17	-1.772
4/5/2006	0.18	-1.715
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.772
Date Collected	Result	
Date Collected 7/9/2003	Result 0.17	-1.772
Date Collected 7/9/2003 10/7/2003	Result 0.17 0.17	-1.772 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.17 0.17 0.18	-1.772 -1.772 -1.715
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.17 0.17 0.18 0.17	-1.772 -1.772 -1.715 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.17 0.17 0.18 0.17 0.18	-1.772 -1.772 -1.715 -1.772 -1.715

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	
-----------------------------	--

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0962	N/A	-2.341	N/A
MW362	Downgradient	No	0.1	N/A	-2.303	N/A
MW365	Downgradient	Yes	0.0781	NO	-2.550	N/A
MW368	Downgradient	Yes	0.131	NO	-2.033	N/A
MW371	Upgradient	No	0.104	N/A	-2.263	N/A
MW374	Upgradient	No	0.1	N/A	-2.303	N/A
MW375	Sidegradient	No	0.106	N/A	-2.244	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison PCB-1248 UNITS: UG/L UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.182

S = 0.219

CV(1) = 1.205

K factor=** 2.523

TL(1) = 0.735

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.944 S = 0.540

CV(2) = -0.278

K factor=** 2.523

TL(2) = -0.581

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/9/2003	0.15	-1.897
10/6/2003	0.12	-2.120
7/13/2004	0.12	-2.120
7/25/2005	0.11	-2.207
4/5/2006	0.12	-2.120
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.897
Date Collected	Result	
Date Collected 7/9/2003	Result 0.15	-1.897
Date Collected 7/9/2003 10/7/2003	Result 0.15 0.12	-1.897 -2.120
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.15 0.12 0.12	-1.897 -2.120 -2.120
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.15 0.12 0.12 0.11	-1.897 -2.120 -2.120 -2.207
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.15 0.12 0.12 0.11 0.12	-1.897 -2.120 -2.120 -2.207 -2.120

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0962	N/A	-2.341	N/A
MW362	Downgradient	No	0.1	N/A	-2.303	N/A
MW365	Downgradient	Yes	0.0781	N/A	-2.550	NO
MW368	Downgradient	Yes	0.131	N/A	-2.033	NO
MW371	Upgradient	No	0.104	N/A	-2.263	N/A
MW374	Upgradient	No	0.1	N/A	-2.303	N/A
MW375	Sidegradient	No	0.106	N/A	-2.244	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S = 0.295

CV(1)=0.045

K factor=** 2.904

TL(1) = 7.475

LL(1)=5.7635

Statistics-Transformed Background Data

X = 1.889

S = 0.046

CV(2) = 0.024

K factor=** 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 5.75	1.749
Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th></th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>		LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW359	Downgradien	t Yes	6.07	NO	1.803	N/A
MW362	Downgradien	t Yes	6.92	NO	1.934	N/A
MW365	Downgradien	t Yes	6.24	NO	1.831	N/A
MW368	Downgradien	t Yes	6.61	NO	1.889	N/A
MW371	Upgradient	Yes	6.7	NO	1.902	N/A
MW374	Upgradient	Yes	6.85	NO	1.924	N/A
MW375	Sidegradient	Yes	6.48	NO	1.869	N/A
NT/A D		T D			1 / 11 /	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

S = 0.907

CV(1) = 0.718

K factor=** 2.523

TL(1) = 3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

752 CV(2) = -32.218

K factor=** 2.523

TL(2)= 1.874

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW359	Downgradient	t Yes	0.169	NO	-1.778	N/A
MW362	Downgradient	t Yes	1.31	NO	0.270	N/A
MW365	Downgradient	t Yes	0.226	NO	-1.487	N/A
MW368	Downgradient	t Yes	1.22	NO	0.199	N/A
MW371	Upgradient	Yes	0.668	NO	-0.403	N/A
MW374	Upgradient	Yes	0.433	NO	-0.837	N/A
MW375	Sidegradient	Yes	0.506	NO	-0.681	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: pCi/L Radium-226

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.560

S= 13.483 **CV(1)**=3.787

K factor=** 2.523

TL(1) = 37.577

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.189 S = 1.742

CV(2) = -1.465

K factor=** 2.523

TL(2) = 3.991

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	54.1	3.991
10/8/2002	0.0937	-2.368
1/8/2003	0.378	-0.973
10/6/2003	0.179	-1.720
1/7/2004	0.898	-0.108
4/6/2004	0.108	-2.226
7/13/2004	-0.149	#Func!
10/7/2004	0.154	-1.871
Well Number:	MW374	
		LN(Result)
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
Well Number: Date Collected 10/8/2002	MW374 Result 0.298	LN(Result) -1.211
Well Number: Date Collected 10/8/2002 1/7/2003	MW374 Result 0.298 -0.844	LN(Result) -1.211 #Func!
Well Number: Date Collected 10/8/2002 1/7/2003 10/7/2003	MW374 Result 0.298 -0.844 0.806	LN(Result) -1.211 #Func! -0.216
Well Number: Date Collected 10/8/2002 1/7/2003 10/7/2003 1/6/2004	MW374 Result 0.298 -0.844 0.806 0.0306	LN(Result) -1.211 #Func! -0.216 -3.487
Well Number: Date Collected 10/8/2002 1/7/2003 10/7/2003 1/6/2004 4/7/2004	MW374 Result 0.298 -0.844 0.806 0.0306 0.35	LN(Result) -1.211 #Func! -0.216 -3.487 -1.050

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.186	N/A	-1.682	N/A
MW362	Downgradient	Yes	1.01	N/A	0.010	NO
MW365	Downgradient	No	0.462	N/A	-0.772	N/A
MW368	Downgradient	No	0.361	N/A	-1.019	N/A
MW371	Upgradient	No	0.454	N/A	-0.790	N/A
MW374	Upgradient	Yes	0.735	N/A	-0.308	NO
MW375	Sidegradient	No	0.123	N/A	-2.096	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor**= 2.523

TL(1)= 367.800 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.146 S = 0.356

CV(2) = 0.069

K factor=** 2.523

TL(2) = 6.044

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.817
Date Collected	Result	` '
Date Collected 10/8/2002	Result 336	5.817
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	32.3	NO	3.475	N/A
MW362	Downgradient	Yes	120	NO	4.787	N/A
MW365	Downgradient	Yes	46	NO	3.829	N/A
MW368	Downgradient	Yes	60.4	NO	4.101	N/A
MW371	Upgradient	Yes	94.7	NO	4.551	N/A
MW374	Upgradient	Yes	129	NO	4.860	N/A
MW375	Sidegradient	Yes	58.5	NO	4.069	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

S= 3.153 **CV(1)**=0.487

K factor=** 2.523

TL(1)= 14.423

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.794 S = 0.357

CV(2)=0.199

K factor=** 2.523

TL(2) = 2.694

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 10/8/2002	Result 5	1.609
Date Collected 10/8/2002 1/7/2003	Result 5	1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5	1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5.6	1.609 1.609 1.609 1.723
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5.6 5	1.609 1.609 1.609 1.723 1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	47	YES	3.850	N/A
MW362	Downgradient	Yes	29.2	YES	3.374	N/A
MW365	Downgradient	Yes	62.2	YES	4.130	N/A
MW368	Downgradient	Yes	155	YES	5.043	N/A
MW371	Upgradient	Yes	14	NO	2.639	N/A
MW374	Upgradient	Yes	6.31	NO	1.842	N/A
MW375	Sidegradient	Yes	37.7	YES	3.630	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362

MW365 MW368

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.631 **S**= 24.314 **CV(1)**=1.379

K factor=** 2.523

TL(1)= 78.977 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979

CV(2) = 0.422

K factor=** 2.523

TL(2) = 4.788

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 90	4.500
Date Collected 10/8/2002 1/7/2003	Result 90 64	4.500 4.159
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 90 64 25	4.500 4.159 3.219
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 90 64 25 16	4.500 4.159 3.219 2.773
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	urre	nt (Zua	rte	r D	ata	
***	11 % T		α	1.			-

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	1.52	N/A	0.419	NO
MW362	Downgradient	Yes	3.17	N/A	1.154	NO
MW365	Downgradient	Yes	1.67	N/A	0.513	NO
MW368	Downgradient	Yes	2.07	N/A	0.728	NO
MW371	Upgradient	Yes	2.34	N/A	0.850	NO
MW374	Upgradient	Yes	2.86	N/A	1.051	NO
MW375	Sidegradient	Yes	1.41	N/A	0.344	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor=** 2.523

TL(1)= 797.131 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.867 S:

 $S= 1.065 \quad CV(2)=0.219$

K factor=** 2.523

TL(2) = 7.554

Because CV(1) is greater than 1, the

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Qua	ırteı	· Data	
	_			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	3.92	N/A	1.366	N/A
MW362	Downgradient	No	18.2	N/A	2.901	N/A
MW365	Downgradient	Yes	12.6	N/A	2.534	NO
MW368	Downgradient	No	9.86	N/A	2.288	N/A
MW371	Upgradient	No	10	N/A	2.303	N/A
MW374	Upgradient	Yes	29.7	N/A	3.391	NO
MW375	Sidegradient	Yes	7.9	N/A	2.067	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.012

CV(1)=1.678

K factor=** 2.523

TL(1) = 0.037

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.884

S= 1.299

CV(2) = -0.221

K factor=** 2.523

TL(2) = -2.607

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.001	-6.908
4/22/2002	0.001	-6.908
7/15/2002	0.001	-6.908
10/8/2002	0.027	-3.612
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.00109	-6.822
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -3.128
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 0.0438	-3.128
Date Collected 10/8/2002 1/7/2003	Result 0.0438 0.011	-3.128 -4.510
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.0438 0.011 0.00905	-3.128 -4.510 -4.705
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.0438 0.011 0.00905 0.00694	-3.128 -4.510 -4.705 -4.970
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.0438 0.011 0.00905 0.00694 0.001	-3.128 -4.510 -4.705 -4.970 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarter	Data
•			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00009	1 N/A	-9.305	NO
MW362	Downgradient	Yes	0.00822	N/A	-4.801	NO
MW365	Downgradient	Yes	0.00015	5 N/A	-8.772	NO
MW368	Downgradient	Yes	0.00044	6 N/A	-7.715	NO
MW371	Upgradient	Yes	0.00124	N/A	-6.693	NO
MW374	Upgradient	No	0.0002	N/A	-8.517	N/A
MW375	Sidegradient	Yes	0.00018	1 N/A	-8.617	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072 CV(1) = 1.319

K factor=** 2.523

TL(1)= 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912

2 **CV**(

CV(2) = -0.265

K factor=** 2.523

TL(2) = -1.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0095	N/A	-4.656	NO
MW362	Downgradient	Yes	0.0221	N/A	-3.812	NO
MW365	Downgradient	Yes	0.00412	N/A	-5.492	NO
MW368	Downgradient	No	0.01	N/A	-4.605	N/A
MW371	Upgradient	No	0.0129	N/A	-4.351	N/A
MW374	Upgradient	No	0.0041	N/A	-5.497	N/A
MW375	Sidegradient	No	0.0139	N/A	-4.276	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.083

CV(1)=1.380

K factor=** 2.523

TL(1) = 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259

S = 0.840

CV(2) = -0.258

K factor=** 2.523

TL(2) = -1.140

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	,
Date Collected 10/8/2002	Result 0.025	-3.689
Date Collected 10/8/2002 1/7/2003	Result 0.025 0.35	-3.689 -1.050
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.35 0.035	-3.689 -1.050 -3.352
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.025 0.35 0.035 0.02	-3.689 -1.050 -3.352 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.025 0.35 0.035 0.02 0.02	-3.689 -1.050 -3.352 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarter	Data
3			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00427	N/A	-5.456	NO
MW362	Downgradient	Yes	0.0213	N/A	-3.849	NO
MW365	Downgradient	Yes	0.0045	N/A	-5.404	NO
MW368	Downgradient	No	0.01	N/A	-4.605	N/A
MW371	Upgradient	Yes	0.00898	N/A	-4.713	NO
MW374	Upgradient	Yes	0.00408	N/A	-5.502	NO
MW375	Sidegradient	Yes	0.00974	N/A	-4.632	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.239**K factor**=** 2.523 Statistics-Background Data X = 0.625S = 0.774TL(1) = 2.578LL(1)=N/A **Statistics-Transformed Background**

Data

X = -0.973 S = 0.935CV(2) = -0.961 **K factor**=** 2.523

TL(2) = 1.386

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.689	-0.373
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.959
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 2.61	0.959
Date Collected 3/19/2002 4/23/2002	Result 2.61 0.2	0.959 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2.61 0.2 1.14	0.959 -1.609 0.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.61 0.2 1.14 0.862	0.959 -1.609 0.131 -0.149
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.61 0.2 1.14 0.862 2.32	0.959 -1.609 0.131 -0.149 0.842

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.05	N/A	-2.996	N/A	
MW360	Downgradient	Yes	0.0277	N/A	-3.586	NO	
MW363	Downgradient	Yes	0.0227	N/A	-3.785	NO	
MW366	Downgradient	No	0.05	N/A	-2.996	N/A	
MW369	Upgradient	Yes	0.228	N/A	-1.478	NO	
MW372	Upgradient	Yes	0.0335	N/A	-3.396	NO	
37/4 D	1. 11 1				1 . 111 .		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.985 S = 0.825 CV(1) = 0.838 K factor** = 2.523
 TL(1) = 3.067 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.430 X = 0.990 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6090.2 1/8/2003 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 0.492 -0.709 1/7/2003 0.492 -0.7094/2/2003 0.6 -0.5117/9/2003 0.57 -0.562

0.604

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.391	NO	-0.939	N/A	
MW360	Downgradient	Yes	0.0302	NO	-3.500	N/A	
MW363	Downgradient	Yes	0.024	NO	-3.730	N/A	
MW366	Downgradient	Yes	0.194	NO	-1.640	N/A	
MW369	Upgradient	Yes	0.0117	NO	-4.448	N/A	
MW372	Upgradient	Yes	0.89	NO	-0.117	N/A	
N/A - Recu	Its identified as N	Jon-Detects	during lab	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-0.504

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 1 0.000 0.000 7/15/2002 1 10/8/2002 1 0.000 1 0.000 1/8/2003 4/3/2003 1 0.000 7/8/2003 0.000 1 10/6/2003 1 0.000 Well Number: MW372 Result Date Collected LN(Result) 3/19/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.000 1/7/2003 0.000 4/2/2003 1 0.000 7/9/2003 0.000 1 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	0.401	NO	-0.914	N/A		
MW360	Downgradient	Yes	0.125	NO	-2.079	N/A		
MW363	Downgradient	Yes	0.131	NO	-2.033	N/A		
MW366	Downgradient	Yes	0.49	NO	-0.713	N/A		
MW369	Upgradient	Yes	0.397	NO	-0.924	N/A		
MW372	Upgradient	Yes	0.605	NO	-0.503	N/A		
N/A - Recu	N/A Pasults identified as Non Datacts during laboratory analysis or data validation and were not							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 32.763 S = 9.391 CV(1) = 0.287 K factor**= 2.523
 TL(1) = 56.456 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.449 S = 0.299 CV(2) = 0.087 K factor**= 2.523
 TL(2) = 4.202 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 29.5 3.384 4/22/2002 29.8 3.395 7/15/2002 25.3 3.231 10/8/2002 21.9 3.086 1/8/2003 20.9 3.040 4/3/2003 22.2 3.100 7/8/2003 22.9 3.131 10/6/2003 21.7 3.077 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 41.5 3.726 4/23/2002 43.6 3.775 7/16/2002 40.4 3.699 10/8/2002 38.8 3.658 1/7/2003 41.1 3.716 4/2/2003 42.9 3.759 7/9/2003 35.1 3.558

46.6

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	25.6	NO	3.243	N/A		
MW360	Downgradient	Yes	26.7	NO	3.285	N/A		
MW363	Downgradient	Yes	28.4	NO	3.346	N/A		
MW366	Downgradient	Yes	32.5	NO	3.481	N/A		
MW369	Upgradient	Yes	16.9	NO	2.827	N/A		
MW372	Upgradient	Yes	46.3	NO	3.835	N/A		
3.T/A D	1. 11 .10 1 3	T D			1. 1.1.2			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.842

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X= 35.938 **S**= 3.750 CV(1)=0.104 **K factor**=** 2.523 **TL(1)=** 45.399 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** X = 3.578 S = 0.089**K factor****= 2.523

Data

CV(2) = 0.025

TL(2) = 3.803

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35 3.555 4/22/2002 35 3.555 7/15/2002 35 3.555 10/8/2002 50 3.912 1/8/2003 35 3.555 4/3/2003 35 3.555 7/8/2003 35 3.555 10/6/2003 35 3.555 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 35 3.555 4/23/2002 35 3.555 7/16/2002 35 3.555 10/8/2002 35 3.555 1/7/2003 35 3.555 4/2/2003 35 3.555 7/9/2003 35 3.555 10/7/2003 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	15	NO	2.708	N/A			
MW360	Downgradient	Yes	24.5	NO	3.199	N/A			
MW363	Downgradient	Yes	14.9	NO	2.701	N/A			
MW366	Downgradient	Yes	19.8	NO	2.986	N/A			
MW369	Upgradient	Yes	12.7	NO	2.542	N/A			
MW372	Upgradient	Yes	12.7	NO	2.542	N/A			
37/4 D	1. 11 .10 1 3	T D			1 . 111 .				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 44.119 S = 4.554 CV(1) = 0.103 K factor** = 2.523
 TL(1) = 55.607 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.782 S = 0.099 CV(2) = 0.026 K factor** = 2.523
 TL(2) = 4.033 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/15/2002 48.3 3.877 10/8/2002 47.7 3.865 1/8/2003 45.7 3.822 4/3/2003 47.4 3.859 7/8/2003 55.9 4.024 10/6/2003 47.4 3.859 1/7/2004 45.5 3.818 4/7/2004 43.4 3.770 Well Number: MW372 Date Collected LN(Result) Result 7/16/2002 39.8 3.684 10/8/2002 41 3.714 1/7/2003 39.4 3.674 4/2/2003 39.2 3.669 7/9/2003 39.8 3.684 10/7/2003 40 3.689 1/5/2004 43.4 3.770 4/5/2004 42 3.738

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	33.5	NO	3.512	N/A			
MW360	Downgradient	Yes	9.61	NO	2.263	N/A			
MW363	Downgradient	Yes	23.4	NO	3.153	N/A			
MW366	Downgradient	Yes	37.2	NO	3.616	N/A			
MW369	Upgradient	Yes	33.7	NO	3.517	N/A			
MW372	Upgradient	Yes	45.8	NO	3.824	N/A			
M/A Dogg	N/A Popults identified as Non Detects during laboratory analysis or data validation and ware not								

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.025 S = 0.021 CV(1) = 0.845

K factor=** 2.523 **TL(1)=** 0.077

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.090 S = 1.006 CV(2) = -0.246

K factor=** 2.523

TL(2) = -1.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.00938 -4.669 0.00548 1/8/2003 -5.2074/3/2003 0.00587 -5.1387/8/2003 0.0541 -2.917 10/6/2003 0.0689 -2.675Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.025 -3.6894/23/2002 0.025 -3.689 7/16/2002 0.025 -3.68910/8/2002 0.00158 -6.450 1/7/2003 0.0147 -4.2204/2/2003 0.0116 -4.4577/9/2003 0.0653 -2.7290.00788 -4.843 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	0.001	N/A	-6.908	N/A		
MW360	Downgradient	Yes	0.014	NO	-4.269	N/A		
MW363	Downgradient	Yes	0.0011	NO	-6.812	N/A		
MW366	Downgradient	No	0.001	N/A	-6.908	N/A		
MW369	Upgradient	Yes	0.00938	3 NO	-4.669	N/A		
MW372	Upgradient	Yes	0.00119) NO	-6.734	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 482.856 **S**= 57.603 **CV(1)**=0.119

K factor=** 2.523

TL(1)= 628.189 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123 CV(2) = 0.020

K factor=** 2.523

TL(2) = 6.484

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	MW369					
Date Collected	Result	LN(Result)					
3/18/2002	388	5.961					
4/22/2002	404	6.001					
7/15/2002	394	5.976					
10/8/2002	403	5.999					
1/8/2003	520	6.254					
4/3/2003	487	6.188					
7/8/2003	478	6.170					
10/6/2003	476	6.165					
Well Number:	MW372						
Well Number: Date Collected	MW372 Result	LN(Result)					
		LN(Result) 6.230					
Date Collected	Result						
Date Collected 3/19/2002	Result 508	6.230					
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217					
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229					
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205					
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	436	NO	6.078	N/A		
MW360	Downgradient	Yes	578	NO	6.360	N/A		
MW363	Downgradient	Yes	409	NO	6.014	N/A		
MW366	Downgradient	Yes	484	NO	6.182	N/A		
MW369	Upgradient	Yes	367	NO	5.905	N/A		
MW372	Upgradient	Yes	585	NO	6.372	N/A		
37/4 5						_		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.400 **K factor**=** 2.523 Statistics-Background Data X = 0.025S = 0.010TL(1) = 0.050LL(1)=N/A **Statistics-Transformed Background**

Data

X = -3.742 S = 0.307CV(2) = -0.082 **K factor**=** 2.523 TL(2) = -2.967

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6890.05 -2.996 7/15/2002 10/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.912 7/8/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.025 -3.6894/23/2002 0.025 -3.689 -2.9967/16/2002 0.05 10/8/2002 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	0.000314	4 NO	-8.066	N/A			
MW360	Downgradient	No	0.001	N/A	-6.908	N/A			
MW363	Downgradient	No	0.001	N/A	-6.908	N/A			
MW366	Downgradient	Yes	0.00036	NO	-7.929	N/A			
MW369	Upgradient	Yes	0.00191	NO	-6.261	N/A			
MW372	Upgradient	Yes	0.000714	4 NO	-7.245	N/A			
		_							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.759**K factor**=** 2.523 Statistics-Background Data X = 1.781S = 1.351TL(1) = 5.190LL(1)=N/A **Statistics-Transformed Background** X = 0.228S = 1.065CV(2) = 4.665

Data

K factor=** 2.523 TL(2) = 2.915

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.688 5.41 4/22/2002 1.57 0.451 -0.223 7/15/2002 0.8 10/8/2002 1.09 0.086 0.990 1/8/2003 2.69 4/3/2003 2.04 0.713 7/8/2003 0.174 1.19 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.9967/16/2002 1.33 0.285 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.9164/2/2003 0.91 -0.0947/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	4.73	NO	1.554	N/A			
MW360	Downgradient	Yes	3.44	NO	1.235	N/A			
MW363	Downgradient	Yes	1.42	NO	0.351	N/A			
MW366	Downgradient	Yes	3.68	NO	1.303	N/A			
MW369	Upgradient	Yes	1.81	NO	0.593	N/A			
MW372	Upgradient	Yes	0.99	NO	-0.010	N/A			
		_							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 285.188 S = 44.908 CV(1) = 0.157

K factor=** 2.523

TL(1)= 398.489 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

K factor=** 2.523

TL(2) = 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 173 5.153 4/22/2002 246 5.505 7/15/2002 232 5.447 10/8/2002 275 5.617 1/8/2003 269 5.595 4/3/2003 250 5.521 7/8/2003 295 5.687 10/6/2003 276 5.620 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 295 5.687 4/23/2002 322 5.775 7/16/2002 329 5.796 10/8/2002 290 5.670 1/7/2003 316 5.756 4/2/2003 311 5.740 7/9/2003 347 5.849 10/7/2003 337 5.820

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	217	NO	5.380	N/A		
MW360	Downgradient	Yes	303	NO	5.714	N/A		
MW363	Downgradient	Yes	237	NO	5.468	N/A		
MW366	Downgradient	Yes	247	NO	5.509	N/A		
MW369	Upgradient	Yes	206	NO	5.328	N/A		
MW372	Upgradient	Yes	334	NO	5.811	N/A		
27/4 75								

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 2.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 2.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 0.693 S = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = 0.693 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2 0.693 2 0.693 7/15/2002 10/8/2002 2 0.693 2 1/8/2003 0.693 2 4/3/2003 0.693 7/8/2003 2 0.693 2 10/6/2003 0.693 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 2 0.693 2 1/7/2003 0.693 4/2/2003 2 0.693 7/9/2003 2 0.693

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.5	N/A	-0.693	N/A	
MW360	Downgradient	Yes	0.177	NO	-1.732	N/A	
MW363	Downgradient	Yes	0.184	NO	-1.693	N/A	
MW366	Downgradient	No	0.5	N/A	-0.693	N/A	
MW369	Upgradient	No	0.5	N/A	-0.693	N/A	
MW372	Upgradient	Yes	0.176	NO	-1.737	N/A	
3.7/4 D							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.693

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 7.385 S = 6.991 CV(1) = 0.947 K factor**= 2.523 TL(1) = 25.024 LL(1) = N/A Statistics-Transformed Background X = 1.358 S = 1.323 CV(2) = 0.974 K factor**= 2.523 TL(2) = 4.697 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.656 -0.422 4/22/2002 0.695 -0.3641.960 7/15/2002 7.1 10/8/2002 21.5 3.068 1/8/2003 18.5 2.918 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 1.78 0.577 10/8/2002 0.776 -0.2541/7/2003 3.55 1.267 4/2/2003 5.02 1.613 7/9/2003 10 2.303 10/7/2003 0.733 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.1	N/A	-2.303	N/A	
MW360	Downgradient	Yes	7.9	NO	2.067	N/A	
MW363	Downgradient	Yes	0.0495	NO	-3.006	N/A	
MW366	Downgradient	No	0.1	N/A	-2.303	N/A	
MW369	Upgradient	Yes	1.22	NO	0.199	N/A	
MW372	Upgradient	Yes	0.676	NO	-0.392	N/A	
NI/A D	1, 11 (C 1 N				1 . 111 .		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison Magnesium** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.272**K factor**=** 2.523 Statistics-Background Data X = 12.864 S = 3.505TL(1) = 21.707LL(1)=N/A **Statistics-Transformed Background**

Data

X = 2.517 S = 0.290CV(2) = 0.115 **K factor**=** 2.523 TL(2) = 3.248

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11.4 2.434 4/22/2002 12 2.485 10 7/15/2002 2.303 10/8/2002 8.62 2.154 1/8/2003 7.89 2.066 4/3/2003 7.97 2.076 7/8/2003 10.3 2.332 10/6/2003 9.14 2.213 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 15.7 2.754 4/23/2002 16.6 2.809 7/16/2002 15.4 2.734 10/8/2002 15.8 2.760 1/7/2003 15.8 2.760 4/2/2003 2.797 16.4

15.2

17.6

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	11.4	NO	2.434	N/A
MW360	Downgradient	Yes	9.44	NO	2.245	N/A
MW363	Downgradient	Yes	10.4	NO	2.342	N/A
MW366	Downgradient	Yes	13.6	NO	2.610	N/A
MW369	Upgradient	Yes	6.81	NO	1.918	N/A
MW372	Upgradient	Yes	17.2	NO	2.845	N/A
NI/A D	1, 11, 2011 3	T . T			1 . 111 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.721

2.868

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.664 **K factor**=** 2.523 Statistics-Background Data X = 0.413S = 0.274TL(1)=1.105LL(1)=N/A **Statistics-Transformed Background** X = -1.226 S = 1.008CV(2) = -0.822

Data

K factor=** 2.523

TL(2) = 1.317

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.034 -3.3814/22/2002 0.062 -2.7817/15/2002 0.436 -0.83010/8/2002 0.867-0.143-0.189 1/8/2003 0.828 4/3/2003 0.672 -0.3977/8/2003 0.321 -1.136 10/6/2003 0.714 -0.337Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.205 -1.5854/23/2002 0.345 -1.064 7/16/2002 0.21 -1.56110/8/2002 0.0539 -2.921 1/7/2003 0.537 -0.6224/2/2003 0.415 -0.8797/9/2003 0.654 -0.425-1.370 10/7/2003 0.254

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0013	NO	-6.645	N/A
MW360	Downgradient	Yes	0.262	NO	-1.339	N/A
MW363	Downgradient	Yes	0.232	NO	-1.461	N/A
MW366	Downgradient	Yes	0.00252	NO	-5.983	N/A
MW369	Upgradient	Yes	0.0894	NO	-2.415	N/A
MW372	Upgradient	Yes	0.0157	NO	-4.154	N/A
NI/A D	1. 11 1	T D			1 . 111 .	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.010 S = 0.012

CV(1)=1.199

K factor=** 2.523

TL(1)= 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X= -5.698 **S**= 1.607

CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.643

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.001-6.908 0.001 1/8/2003 -6.9084/3/2003 0.001 -6.9087/8/2003 0.001 -6.908 10/6/2003 0.001 -6.908Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.025 -3.6894/23/2002 0.025 -3.689 7/16/2002 0.025 -3.68910/8/2002 0.001 -6.908 1/7/2003 0.001 -6.9084/2/2003 0.001 -6.9087/9/2003 0.00105 -6.8590.001 10/7/2003 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	No	0.0005	N/A	-7.601	N/A			
MW360	Downgradient	Yes	0.00092	N/A	-6.991	NO			
MW363	Downgradient	No	0.0005	N/A	-7.601	N/A			
MW366	Downgradient	No	0.0005	N/A	-7.601	N/A			
MW369	Upgradient	Yes	0.000203	3 N/A	-8.502	NO			
MW372	Upgradient	Yes	0.000547	7 N/A	-7.511	NO			
NI/A D	1, 11 ,:C 1 NT	ъ			4 . 4.4	1 .			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.024 S = 0.021

1 **CV(1)**=0.910

K factor=** 2.523

TL(1)= 0.078 **LL(1)**=N/A

Statistics-Transformed Background Data

X = -4.246 S = 1.075

CV(2) = -0.253

K factor=** 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	No	0.002	N/A	-6.215	N/A			
MW360	Downgradient	Yes	0.00181	NO	-6.314	N/A			
MW363	Downgradient	Yes	0.00108	NO	-6.831	N/A			
MW366	Downgradient	No	0.002	N/A	-6.215	N/A			
MW369	Upgradient	Yes	0.00989	NO	-4.616	N/A			
MW372	Upgradient	Yes	0.00114	NO	-6.777	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 74.563 **S**= 94.243 **CV(1)**=1.264

K factor=** 2.523

TL(1)= 312.337 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784 CV(2) = 0.172

K factor=** 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	281	N/A	5.638	YES
MW360	Downgradient	Yes	127	N/A	4.844	NO
MW363	Downgradient	Yes	300	N/A	5.704	YES
MW366	Downgradient	Yes	326	N/A	5.787	YES
MW369	Upgradient	Yes	376	N/A	5.930	YES
MW372	Upgradient	Yes	300	N/A	5.704	YES
NI/A D	1, 11, 10, 1	T D	1 . 11		1 / 11 /	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW357 MW363

MW366

MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison PCB, Total UNITS: UG/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.390 S = 0.350 CV(1) = 0.897 K factor** = 2.523
 TL(1) = 1.272 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.238 S = 0.737 CV(2) = -0.595 K factor** = 2.523
 TL(2) = 0.622 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 0.17 -1.772-1.7727/15/2002 0.17 7/8/2003 1.15 0.140 0.605 -0.503 10/6/2003 7/13/2004 0.42 -0.8687/20/2005 0.28 -1.2734/4/2006 0.23 -1.470Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.000 4/23/2002 0.17 -1.772-1.7727/16/2002 0.17 7/9/2003 0.17 -1.772-1.772 10/7/2003 0.17 7/14/2004 0.18 -1.715 7/21/2005 0.17 -1.772-1.715 4/5/2006 0.18

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.099	N/A	-2.313	N/A
MW360	Downgradient	No	0.0952	N/A	-2.352	N/A
MW363	Downgradient	Yes	0.0526	NO	-2.945	N/A
MW366	Downgradient	No	0.0943	N/A	-2.361	N/A
MW369	Upgradient	Yes	0.0914	NO	-2.393	N/A
MW372	Upgradient	No	0.0962	N/A	-2.341	N/A
M/A Dogg	Ita identified on N	Jon Dotoots	during lob	orotory analysis or	data validation	n and ware not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2017 Statistical Analysis **PCB-1242 UNITS: UG/L URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.361 **K factor**=** 2.523 Statistics-Background Data X = 0.281S = 0.383TL(1)=1.247LL(1)=N/A **Statistics-Transformed Background** X = -1.835 S = 0.938

Data

CV(2) = -0.511

K factor=** 2.523

TL(2) = 0.532

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 0.11 -2.2077/15/2002 -2.207 0.11 7/8/2003 1.15 0.140 0.09 -2.40810/6/2003 7/13/2004 0.1 -2.3037/20/2005 0.1 -2.303 4/4/2006 0.1 -2.303Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.000 4/23/2002 0.11 -2.2077/16/2002 0.11 -2.2077/9/2003 0.13 -2.040 10/7/2003 0.09 -2.408-2.303 7/14/2004 0.1 7/21/2005 -2.3030.1 -2.303 4/5/2006 0.1

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	No	0.099	N/A	-2.313	N/A			
MW360	Downgradient	No	0.0952	N/A	-2.352	N/A			
MW363	Downgradient	Yes	0.0526	N/A	-2.945	NO			
MW366	Downgradient	No	0.0943	N/A	-2.361	N/A			
MW369	Upgradient	Yes	0.0914	N/A	-2.393	NO			
MW372	Upgradient	No	0.0962	N/A	-2.341	N/A			
3.7/4 D	1. 11 1				1. 1.1.				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.274 S = 0.194 CV(1) = 0.031 K factor** = 2.904
 TL(1) = 6.837 LL(1) = 5.7114

 Statistics-Transformed Background Data
 X = 1.836 X = 0.031 X = 0.031</t

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 7/15/2002 6.1 1.808 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 1/7/2003 6.26 1.834 4/2/2003 6.15 1.816

6.3

6.4

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradien	t Yes	6.19	NO	1.823	N/A
MW360	Downgradien	t Yes	6.51	NO	1.873	N/A
MW363	Downgradien	t Yes	6.26	NO	1.834	N/A
MW366	Downgradien	t Yes	6.09	NO	1.807	N/A
MW369	Upgradient	Yes	6.2	NO	1.825	N/A
MW372	Upgradient	Yes	6.24	NO	1.831	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.841

1.856

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.663 S = 0.488 CV(1) = 0.293 K factor**= 2.523 TL(1) = 2.895 LL(1) = N/A Statistics-Transformed Background X = 0.456 S = 0.362 CV(2) = 0.794 K factor**= 2.523 TL(2) = 1.368 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2.21 0.793 7/15/2002 2 0.693 10/8/2002 0.966 -0.0351/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 1.62 0.482 10/6/2003 1.14 0.131 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 7/16/2002 2 0.693 10/8/2002 1.54 0.432 1/7/2003 1.88 0.631 4/2/2003 2.09 0.737 7/9/2003 1.78 0.577 10/7/2003 1.79 0.582

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	1.69	NO	0.525	N/A
MW360	Downgradient	Yes	0.78	NO	-0.248	N/A
MW363	Downgradient	Yes	1.34	NO	0.293	N/A
MW366	Downgradient	Yes	1.88	NO	0.631	N/A
MW369	Upgradient	Yes	0.474	NO	-0.747	N/A
MW372	Upgradient	Yes	1.98	NO	0.683	N/A
M/A Dagu	Ita idantified on N	Jon Datasta	ما ما ماسراه	omotomy omolyssis om	data validation	n and rrans not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 3.398 S = 8.854 CV(1) = 2.605 K factor** = 2.523
 TL(1) = 25.736 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.836 S = 1.704 CV(2) = -2.039 K factor** = 2.523
 TL(2) = 3.346 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/15/2002	28.4	3.346
10/8/2002	0.167	-1.790
1/8/2003	0.173	-1.754
10/6/2003	0.168	-1.784
1/7/2004	0.702	-0.354
4/7/2004	0.195	-1.635
7/13/2004	0.256	-1.363
10/7/2004	0.228	-1.478
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.157
Date Collected	Result	
Date Collected 7/16/2002	Result 23.5	3.157
Date Collected 7/16/2002 10/8/2002	Result 23.5 0.195	3.157 -1.635
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 23.5 0.195 -0.844	3.157 -1.635 #Func!
Date Collected 7/16/2002 10/8/2002 1/7/2003 10/7/2003	Result 23.5 0.195 -0.844 0.349	3.157 -1.635 #Func! -1.053
Date Collected 7/16/2002 10/8/2002 1/7/2003 10/7/2003 1/5/2004	Result 23.5 0.195 -0.844 0.349 0.239	3.157 -1.635 #Func! -1.053 -1.431

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Curre	Current Quarter Data									
Well N	o. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW35	7 Downgradien	t Yes	0.311	N/A	-1.168	NO				
MW36	0 Downgradien	t No	0.201	N/A	-1.604	N/A				
MW36	3 Downgradien	t No	-0.0183	N/A	#Error	N/A				
MW36	6 Downgradien	t No	0.279	N/A	-1.277	N/A				
MW36	9 Upgradient	Yes	0.727	N/A	-0.319	NO				
MW37	2 Upgradient	No	0.293	N/A	-1.228	N/A				
37/1 5	1 11 10 1									

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison Sodium** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 45.100 S = 11.875 CV(1) = 0.263**K factor**=** 2.523 Statistics-Background Data TL(1) = 75.061LL(1)=N/A **Statistics-Transformed Background** X = 3.780

Data

S = 0.242CV(2) = 0.064 **K factor****= 2.523

TL(2) = 4.390

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35.7 3.575 4/22/2002 37.6 3.627 7/15/2002 42.4 3.747 10/8/2002 66.9 4.203 1/8/2003 67.9 4.218 4/3/2003 61.8 4.124 7/8/2003 45.6 3.820 10/6/2003 59.1 4.079 Well Number: MW372 Result Date Collected LN(Result) 3/19/2002 37.2 3.616 4/23/2002 38.6 3.653 7/16/2002 35.6 3.572 10/8/2002 37.5 3.624 1/7/2003 34.1 3.529 4/2/2003 34.4 3.538 7/9/2003 44.1 3.786 10/7/2003 43.1 3.764

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	40.9	NO	3.711	N/A
MW360	Downgradient	Yes	79.5	YES	4.376	N/A
MW363	Downgradient	Yes	38.6	NO	3.653	N/A
MW366	Downgradient	Yes	40.7	NO	3.706	N/A
MW369	Upgradient	Yes	54	NO	3.989	N/A
MW372	Upgradient	Yes	42.8	NO	3.757	N/A
NI/A D	.14. : .14:£:1 N	T D-44-	J 1 . 1 .		4-41:4-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW360

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 45.031 **S**= 33.919 **CV(1)**=0.753

K factor=** 2.523

TL(1)= 130.609 **LL(**1

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.420 S = 0.981

CV(2) = 0.287

K factor=** 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	15.5	2.741
4/22/2002	15.8	2.760
7/15/2002	13.8	2.625
10/8/2002	6.9	1.932
1/8/2003	10.5	2.351
4/3/2003	10.5	2.351
7/8/2003	10.9	2.389
10/6/2003	16.3	2.791
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.272
Date Collected	Result	
Date Collected 3/19/2002	Result 71.7	4.272
Date Collected 3/19/2002 4/23/2002	Result 71.7 74.7	4.272 4.313
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 71.7 74.7 74.1	4.272 4.313 4.305
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 71.7 74.7 74.1 70.5	4.272 4.313 4.305 4.256
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 71.7 74.7 74.1 70.5 75.8	4.272 4.313 4.305 4.256 4.328

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	46.6	NO	3.842	N/A
MW360	Downgradient	Yes	17.3	NO	2.851	N/A
MW363	Downgradient	Yes	35.3	NO	3.564	N/A
MW366	Downgradient	Yes	61.6	NO	4.121	N/A
MW369	Upgradient	Yes	6.26	NO	1.834	N/A
MW372	Upgradient	Yes	65.8	NO	4.187	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 20.821 S = 18.044 CV(1) = 0.867 K factor** = 2.523
 TL(1) = 66.344 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.770 S = 1.150 CV(2) = 0.415 K factor** = 2.523
 TL(2) = 3.972 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	41.7	3.731
4/22/2002	53.1	3.972
7/15/2002	18.1	2.896
10/8/2002	16.4	2.797
1/8/2003	3.49	1.250
4/3/2003	9.34	2.234
7/8/2003	17.5	2.862
10/6/2003	17	2.833
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.802
Date Collected	Result	, ,
Date Collected 3/19/2002	Result 44.8	3.802
Date Collected 3/19/2002 4/23/2002	Result 44.8 0.802	3.802 -0.221
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 44.8 0.802 19.8	3.802 -0.221 2.986
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 44.8 0.802 19.8 46.1	3.802 -0.221 2.986 3.831
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 44.8 0.802 19.8 46.1 -0.973	3.802 -0.221 2.986 3.831 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	36.4	NO	3.595	N/A
MW360	Downgradient	No	-2.37	N/A	#Error	N/A
MW363	Downgradient	No	5.17	N/A	1.643	N/A
MW366	Downgradient	Yes	54.7	NO	4.002	N/A
MW369	Upgradient	Yes	34.2	NO	3.532	N/A
MW372	Upgradient	Yes	30.2	NO	3.408	N/A
NI/A D	.14. : .14:£:1 N	.I D.44.	J 1 - 1-		3-41:3-4:	4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 3.513 S = 4.307 CV(1) = 1.226 K factor** = 2.523 TL(1) = 14.378 LL(1) = N/A

Statistics-Transformed Background Data

X= 0.851 **S**= 0.828 **CV(2)**= 0.973

K factor**= 2.523 **TL(2)**= 2.940

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.531 1.7 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 9 1/8/2003 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1.2 0.182 0.000 7/16/2002 1 10/8/2002 1 0.000 1/7/2003 1.6 0.470 4/2/2003 1.5 0.405 7/9/2003 3 1.099

1.5

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.941	N/A	-0.061	NO
MW360	Downgradient	Yes	2.87	N/A	1.054	NO
MW363	Downgradient	Yes	1.31	N/A	0.270	NO
MW366	Downgradient	Yes	1.02	N/A	0.020	NO
MW369	Upgradient	Yes	1.56	N/A	0.445	NO
MW372	Upgradient	Yes	1.51	N/A	0.412	NO
37/4 D	1. 11 .:0 1 3				1 . 111	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.405

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

K factor=** 2.523

TL(1)= 230.231 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.772 S = 1.023 CV(2) = 0.271

K factor=** 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.215
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50	5.215 3.912 3.912 3.912 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Downgradient	No	12.9	N/A	2.557	N/A
Downgradient	No	21.9	N/A	3.086	N/A
Downgradient	Yes	5.22	NO	1.652	N/A
Downgradient	Yes	9.16	NO	2.215	N/A
Upgradient	Yes	21	NO	3.045	N/A
Upgradient	Yes	15.4	NO	2.734	N/A
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient No Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient No 12.9 Downgradient No 21.9 Downgradient Yes 5.22 Downgradient Yes 9.16 Upgradient Yes 21	GradientDetected?ResultResult >TL(1)?DowngradientNo12.9N/ADowngradientNo21.9N/ADowngradientYes5.22NODowngradientYes9.16NOUpgradientYes21NO	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientNo12.9N/A2.557DowngradientNo21.9N/A3.086DowngradientYes5.22NO1.652DowngradientYes9.16NO2.215UpgradientYes21NO3.045

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 5.625 S = 3.594 CV(1) = 0.639 K factor**= 2.523 TL(1) = 14.693 LL(1) = N/A Statistics-Transformed Background X = 1.571 S = 0.565 CV(2) = 0.360 K factor**= 2.523 TL(2) = 2.995 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11 2.398 4/22/2002 16 2.773 2.079 7/15/2002 8 10/8/2002 3 1.099 2 1/8/2003 0.693 4/3/2003 3 1.099 7/8/2003 3 1.099 2 10/6/2003 0.693 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 5 1.609 4/23/2002 5 1.609 7/16/2002 4 1.386 10/8/2002 1.792 6 1/7/2003 5 1.609 4/2/2003 6 1.792 7/9/2003 5 1.609 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	4.07	N/A	1.404	N/A
MW360	Downgradient	No	1	N/A	0.000	N/A
MW363	Downgradient	Yes	0.86	N/A	-0.151	N/A
MW366	Downgradient	Yes	4.88	N/A	1.585	N/A
MW369	Upgradient	Yes	1.19	N/A	0.174	N/A
MW372	Upgradient	Yes	5.69	NO	1.739	N/A
M/A Decu	ulte identified as N	Von Detects	during lak	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** Uranium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.917 **K factor**=** 2.523 Statistics-Background Data X = 0.001S = 0.001TL(1) = 0.005LL(1)=N/A **Statistics-Transformed Background** X = -6.718 S = 0.528CV(2) = -0.079

Data

K factor=** 2.523

TL(2) = -5.385

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.001 -6.9084/22/2002 0.001 -6.9087/15/2002 0.001 -6.90810/8/2002 0.00355 -5.641 -6.908 0.001 1/8/2003 4/3/2003 0.001 -6.9087/8/2003 0.001 -6.908 10/6/2003 0.001 -6.908Well Number: MW372 Result Date Collected LN(Result) 3/19/2002 0.001 -6.908 4/23/2002 0.001 -6.908 7/16/2002 0.001 -6.90810/8/2002 0.00591 -5.131 1/7/2003 0.001 -6.9084/2/2003 0.001 -6.9087/9/2003 0.001 -6.908 10/7/2003 0.001 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0002	N/A	-8.517	N/A
MW360	Downgradient	Yes	0.00031	1 NO	-8.076	N/A
MW363	Downgradient	No	0.0002	N/A	-8.517	N/A
MW366	Downgradient	No	0.0002	N/A	-8.517	N/A
MW369	Upgradient	No	0.0002	N/A	-8.517	N/A
MW372	Upgradient	No	0.0002	N/A	-8.517	N/A
NT/A D	1. 11 .10 1 3				1 . 111 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 0.116 **S**= 0.173 **CV(1)**= 1.490

K factor=** 2.523

TL(1)= 0.552 **LL(1)=**N/A

Statistics-Transformed Background Data

X = -2.729 S = 1.014 CV(2) = -0.371

K factor=** 2.523

TL(2) = -0.172

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.1 -2.3034/22/2002 0.1 -2.3037/15/2002 0.1 -2.30310/8/2002 0.025 -3.6890.035 1/8/2003 -3.3524/3/2003 0.035 -3.3527/8/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.725 -0.3224/23/2002 0.1 -2.3037/16/2002 0.1 -2.30310/8/2002 0.025 -3.689 1/7/2003 0.035 -3.3524/2/2003 0.035 -3.3527/9/2003 0.2 -1.609

0.2

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.01	N/A	-4.605	N/A
MW360	Downgradient	No	0.01	N/A	-4.605	N/A
MW363	Downgradient	No	0.01	N/A	-4.605	N/A
MW366	Downgradient	No	0.01	N/A	-4.605	N/A
MW369	Upgradient	Yes	0.0049	N/A	-5.319	NO
MW372	Upgradient	Yes	0.00542	2 N/A	-5.218	NO
NT/A D	1. 11 .10 1 3					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.026 S = 5.626 CV(1) = 2.777

K factor=** 2.523

TL(1)= 16.219 **LL(1)**=N/A

Statistics-Transformed Background Data

X = -0.803 S = 1.380

CV(2) = -1.718

K factor=** 2.523

TL(2)= 2.678

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.66	1.539
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.122
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 22.7	3.122
Date Collected 3/18/2002 4/23/2002	Result 22.7 1.46	3.122 0.378
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 22.7 1.46 0.253	3.122 0.378 -1.374
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 22.7 1.46 0.253 0.482	3.122 0.378 -1.374 -0.730
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 22.7 1.46 0.253 0.482 0.608	3.122 0.378 -1.374 -0.730 -0.498

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	0.05	N/A	-2.996	N/A	
MW361	Downgradient	No	0.05	N/A	-2.996	N/A	
MW364	Downgradient	No	0.05	N/A	-2.996	N/A	
MW367	Downgradient	No	0.05	N/A	-2.996	N/A	
MW370	Upgradient	Yes	0.137	N/A	-1.988	NO	
MW373	Upgradient	Yes	0.193	N/A	-1.645	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 9.815 S = 7.838 CV(1) = 0.799 K factor**= 2.523
 TL(1) = 29.591 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.072 S = 0.630 CV(2) = 0.304 K factor**= 2.523
 TL(2) = 3.662 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 10.1 2.313 4/23/2002 4.46 1.495 7/15/2002 6.58 1.884 10/8/2002 4.9 1.589 4.47 1/8/2003 1.497 4/3/2003 8.65 2.158 7/9/2003 1.297 3.66 10/6/2003 5.38 1.683 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 15.1 2.715 4/23/2002 6.26 1.834 7/16/2002 6.22 1.828 10/8/2002 4.06 1.401 1/7/2003 11.2 2.416 4/2/2003 18.5 2.918 7/9/2003 13.3 2.588 10/7/2003 34.2 3.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	32.5	N/A	3.481	N/A	
MW361	Downgradient	Yes	30.8	N/A	3.428	N/A	
MW364	Downgradient	Yes	30.4	N/A	3.414	N/A	
MW367	Downgradient	Yes	6.97	N/A	1.942	N/A	
MW370	Upgradient	Yes	84.6	YES	4.438	N/A	
MW373	Upgradient	Yes	16.7	N/A	2.815	N/A	
N/A - Resu	Its identified as N	Von-Detects	during lab	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.140
 S= 0.780
 CV(1)=0.684
 K factor**= 2.523
 TL(1)= 3.108
 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.235
 S= 1.006
 CV(2)=-4.287
 K factor**= 2.523
 TL(2)= 2.303
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.693 2. 4/23/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6090.2 1/8/2003 -1.6094/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 0.79 -0.236 1/7/2003 0.807 -0.2144/2/2003 1.13 0.122 7/9/2003 0.247 1.28 10/7/2003 1.24 0.215

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.461	NO	-0.774	N/A		
MW361	Downgradient	Yes	0.406	NO	-0.901	N/A		
MW364	Downgradient	Yes	0.0116	NO	-4.457	N/A		
MW367	Downgradient	No	0.0351	N/A	-3.350	N/A		
MW370	Upgradient	Yes	0.0286	NO	-3.554	N/A		
MW373	Upgradient	Yes	1.15	NO	0.140	N/A		
N/A Pagu	Ita identified on N	Jon Dotoots	during lob	orotory analysis or	data validation	and ware not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.000 4/23/2002 1 0.000 0.000 7/15/2002 1 10/8/2002 1 0.000 1 0.000 1/8/2003 4/3/2003 1 0.000 7/9/2003 0.000 1 10/6/2003 1 0.000 Well Number: MW373 Result Date Collected LN(Result) 3/18/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.000 1/7/2003 0.000 4/2/2003 1 0.000 7/9/2003 0.000 1 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.473	NO	-0.749	N/A	
MW361	Downgradient	Yes	0.424	NO	-0.858	N/A	
MW364	Downgradient	Yes	0.413	NO	-0.884	N/A	
MW367	Downgradient	Yes	0.264	NO	-1.332	N/A	
MW370	Upgradient	Yes	0.407	NO	-0.899	N/A	
MW373	Upgradient	Yes	0.566	NO	-0.569	N/A	
NI/A Dogg	Ita idantified as N	Van Dataata	المام منسيل		data validatio	n and rrans not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison Calcium** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 43.413 S = 13.444 CV(1) = 0.310**K factor**=** 2.523 Statistics-Background Data TL(1) = 77.331LL(1)=N/A **Statistics-Transformed Background**

Data

X = 3.723 S = 0.323CV(2) = 0.087 **K factor**=** 2.523 TL(2) = 4.539 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 34.8 3.550 4/23/2002 43.4 3.770 7/15/2002 33.2 3.503 10/8/2002 29.2 3.374 1/8/2003 31.3 3.444 4/3/2003 32.4 3.478 7/9/2003 22.9 3.131 10/6/2003 28 3.332 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 61.9 4.126 4/23/2002 59.2 4.081 7/16/2002 47.6 3.863 10/8/2002 46.1 3.831 1/7/2003 49.2 3.896 4/2/2003 57.8 4.057 7/9/2003 52.7 3.965 10/7/2003 64.9 4.173

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	32.3	NO	3.475	N/A	
MW361	Downgradient	Yes	33.2	NO	3.503	N/A	
MW364	Downgradient	Yes	32.7	NO	3.487	N/A	
MW367	Downgradient	Yes	20.5	NO	3.020	N/A	
MW370	Upgradient	Yes	28	NO	3.332	N/A	
MW373	Upgradient	Yes	56.9	NO	4.041	N/A	
NT/A D	1. 11 .10 1 3	T . D			1. 1.1.		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 41.938 **S**= 24.732 **CV(1)**=0.590

K factor=** 2.523

TL(1)= 104.336 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 3.658 **S**= 0.339

CV(2) = 0.093

K factor=** 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 35 3.555 4/23/2002 134 4.898 7/15/2002 35 3.555 10/8/2002 35 3.555 1/8/2003 35 3.555 4/3/2003 35 3.555 7/9/2003 35 3.555 10/6/2003 35 3.555 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 35 3.555 4/23/2002 47 3.850 7/16/2002 35 3.555 10/8/2002 35 3.555 1/7/2003 35 3.555 4/2/2003 35 3.555 7/9/2003 35 3.555 10/7/2003 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	22.1	NO	3.096	N/A	
MW361	Downgradient	Yes	26.9	NO	3.292	N/A	
MW364	Downgradient	Yes	14.9	NO	2.701	N/A	
MW367	Downgradient	Yes	17.4	NO	2.856	N/A	
MW370	Upgradient	Yes	10.4	NO	2.342	N/A	
MW373	Upgradient	Yes	14.9	NO	2.701	N/A	
NI/A D	.14. : .14:£:1 N	T D-44-	J 1 . 1 .		4-41:4-4:		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2017 Statistical Analysis **Chloride** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 45.919 S = 7.524Statistics-Background Data

CV(1)=0.164

K factor=** 2.523

TL(1)= 64.901

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.814 S = 0.165

CV(2) = 0.043

K factor=** 2.523

TL(2) = 4.231

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/15/2002	55.5	4.016
10/8/2002	53.6	3.982
1/8/2003	52.9	3.968
4/3/2003	53.6	3.982
7/9/2003	51.9	3.949
10/6/2003	53	3.970
1/7/2004	53	3.970
4/7/2004	51.6	3.944
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.704
Date Collected	Result	` ′
Date Collected 7/16/2002	Result 40.6	3.704
Date Collected 7/16/2002 10/8/2002	Result 40.6 38.8	3.704 3.658
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 40.6 38.8 39	3.704 3.658 3.664
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 40.6 38.8 39 38.4	3.704 3.658 3.664 3.648
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 40.6 38.8 39 38.4 38.1	3.704 3.658 3.664 3.648 3.640

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	38.3	NO	3.645	N/A		
MW361	Downgradient	Yes	32.4	NO	3.478	N/A		
MW364	Downgradient	Yes	33.1	NO	3.500	N/A		
MW367	Downgradient	Yes	19.7	NO	2.981	N/A		
MW370	Upgradient	Yes	34.2	NO	3.532	N/A		
MW373	Upgradient	Yes	47.1	NO	3.852	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2017 Statistical Analysis Cobalt UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.027S = 0.032CV(1) = 1.165TL(1) = 0.108LL(1)=N/A **Statistics-Transformed Background**

Data

X = -4.058 S = 1.011CV(2) = -0.249 **K factor**=** 2.523

TL(2) = -1.507LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.0174 -4.0510.0105 1/8/2003 -4.5564/3/2003 0.00931 -4.6777/9/2003 0.137 -1.988 10/6/2003 0.0463 -3.073Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/23/2002 0.034 -3.381 7/16/2002 0.025 -3.68910/8/2002 0.00411 -5.494 1/7/2003 0.00344 -5.672-5.605 4/2/2003 0.00368 7/9/2003 0.0405 -3.2060.00843 -4.776 10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarter Data					
_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
_	MW358	Downgradient	Yes	0.000403	3 N/A	-7.817	NO
	MW361	Downgradient	No	0.001	N/A	-6.908	N/A
	MW364	Downgradient	No	0.001	N/A	-6.908	N/A
	MW367	Downgradient	Yes	0.0125	N/A	-4.382	NO
	MW370	Upgradient	Yes	0.00344	N/A	-5.672	NO
	MW373	Upgradient	Yes	0.00664	N/A	-5.015	NO
	NT/A D	1: 11 ::0 1 3					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 608.719 S = 156.157 CV(1) = 0.257

K factor**= 2.523

TL(1)= 1002.702 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor=** 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
cii i tuinooi.	IVI VV 3 / 3	
Date Collected	Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	` '
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	510	NO	6.234	N/A	
MW361	Downgradient	Yes	483	NO	6.180	N/A	
MW364	Downgradient	Yes	467	NO	6.146	N/A	
MW367	Downgradient	Yes	317	NO	5.759	N/A	
MW370	Upgradient	Yes	427	NO	6.057	N/A	
MW373	Upgradient	Yes	660	NO	6.492	N/A	
NI/A D	1, 11 ,1C 1 N	T . D			1 . 111		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.010 CV(1) = 0.399 K factor** = 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.739 S = 0.308 CV(2) = -0.082 K factor** = 2.523
 TL(2) = -2.963 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6890.05 -2.996 7/15/2002 10/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.912 7/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.026 -3.6504/23/2002 0.025 -3.689 -2.9967/16/2002 0.05 10/8/2002 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00042	NO	-7.775	N/A
MW361	Downgradient	Yes	0.000513	5 NO	-7.571	N/A
MW364	Downgradient	Yes	0.000683	3 NO	-7.289	N/A
MW367	Downgradient	Yes	0.00034	7 NO	-7.966	N/A
MW370	Upgradient	Yes	0.00162	NO	-6.425	N/A
MW373	Upgradient	Yes	0.00213	NO	-6.152	N/A
M/A Door	.14. : .14:£:1 N	I D-44-	J	4 1 !	3-41:3-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.387

 $S= 1.153 \quad CV(1)=0.831$

K factor**= 2.523

TL(1) = 4.295

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.115 S = 1.207

CV(2) = -10.514

K factor=** 2.523

TL(2)= 2.930

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/18/2002	Result 3.04	1.112
Date Collected 3/18/2002 4/23/2002	Result 3.04 0.03	1.112 -3.507
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 3.04 0.03 0.23	1.112 -3.507 -1.470
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.04 0.03 0.23 0.86	1.112 -3.507 -1.470 -0.151
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.04 0.03 0.23 0.86 0.21	1.112 -3.507 -1.470 -0.151 -1.561

landfill.

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	4.17	NO	1.428	N/A
MW361	Downgradient	Yes	3.77	NO	1.327	N/A
MW364	Downgradient	Yes	4.37	YES	1.475	N/A
MW367	Downgradient	Yes	2.69	NO	0.990	N/A
MW370	Upgradient	Yes	4.26	NO	1.449	N/A
MW373	Upgradient	Yes	3.28	NO	1.188	N/A
3.7/4 D	1, 11, 20 1 3	T . D			1. 1.1.2	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW364

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 356.188 S = 106.752 CV(1) = 0.300

K factor=** 2.523

TL(1)= 625.523 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor=** 2.523

TL(2) = 6.616

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.057
Date Collected	Result	,
Date Collected 3/18/2002	Result 427	6.057
Date Collected 3/18/2002 4/23/2002	Result 427 507	6.057 6.229
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427 507 464	6.057 6.229 6.140
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427 507 464 408	6.057 6.229 6.140 6.011
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427 507 464 408 404	6.057 6.229 6.140 6.011 6.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	283	NO	5.645	N/A
MW361	Downgradient	Yes	257	NO	5.549	N/A
MW364	Downgradient	Yes	263	NO	5.572	N/A
MW367	Downgradient	Yes	140	NO	4.942	N/A
MW370	Upgradient	Yes	236	NO	5.464	N/A
MW373	Upgradient	Yes	377	NO	5.932	N/A
37/4 D	1. 11 1				1 . 11 1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 2.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 2.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 0.693 S = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = 0.693 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.693 2. 4/23/2002 2 0.693 0.693 7/15/2002 2 10/8/2002 2 0.693 2 1/8/2003 0.693 2 4/3/2003 0.693 7/9/2003 2 0.693 2 10/6/2003 0.693 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 2 0.693 2 1/7/2003 0.693 4/2/2003 2 0.693

2

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.5	N/A	-0.693	N/A
MW361	Downgradient	No	0.5	N/A	-0.693	N/A
MW364	Downgradient	No	0.5	N/A	-0.693	N/A
MW367	Downgradient	Yes	0.183	NO	-1.698	N/A
MW370	Upgradient	No	0.5	N/A	-0.693	N/A
MW373	Upgradient	No	0.5	N/A	-0.693	N/A
N/A - Resi	ilte identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.693

0.693

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2017 Statistical Analysis UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.958 **K factor**=** 2.523 Statistics-Background Data X = 9.230**S**= 8.841 TL(1) = 31.535LL(1)=N/A **Statistics-Transformed Background** X = 1.942 S = 0.713

Data

CV(2) = 0.367

K factor=** 2.523

TL(2) = 3.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 1.258 7/15/2002 3.52 10/8/2002 7.45 2.008 7.04 1/8/2003 1.952 4/3/2003 4.64 1.535 7/9/2003 15.8 2.760 10/6/2003 6.49 1.870 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 7/16/2002 10.7 2.370 10/8/2002 3.75 1.322 1/7/2003 3.87 1.353 4/2/2003 3.5 1.253 7/9/2003 7.72 2.044 10/7/2003 2.93 1.075

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.073	NO	-2.617	N/A
MW361	Downgradient	No	0.1	N/A	-2.303	N/A
MW364	Downgradient	Yes	0.0447	NO	-3.108	N/A
MW367	Downgradient	Yes	3.79	NO	1.332	N/A
MW370	Upgradient	Yes	0.873	NO	-0.136	N/A
MW373	Upgradient	Yes	2.03	NO	0.708	N/A
NI/A D	14- 1141C - 1 N	I D-44-	J 1 - 1-		3-41:3-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.544 **S**= 5.911 **CV(1)**=0.337

K factor=** 2.523

TL(1) = 32.458

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.810 **S**= 0.343

CV(2)=0.122

K factor=** 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 12.1 2.493 4/23/2002 15.1 2.715 7/15/2002 12.4 2.518 10/8/2002 12.2 2.501 1/8/2003 11.5 2.442 4/3/2003 12.3 2.510 7/9/2003 10 2.303 10/6/2003 12.1 2.493 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 24.8 3.211 4/23/2002 22.7 3.122 7/16/2002 18.8 2.934 10/8/2002 3.049 21.1 1/7/2003 19.9 2.991 4/2/2003 25.5 3.239 7/9/2003 23.3 3.148 10/7/2003 26.9 3.292

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	14.7	NO	2.688	N/A
MW361	Downgradient	Yes	14.2	NO	2.653	N/A
MW364	Downgradient	Yes	13	NO	2.565	N/A
MW367	Downgradient	Yes	9.85	NO	2.287	N/A
MW370	Upgradient	Yes	11.6	NO	2.451	N/A
MW373	Upgradient	Yes	19.9	NO	2.991	N/A
3.7/4 D	1. 11 .:0 1 3:	T . D			1 . 111 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.624 **K factor**=** 2.523 Statistics-Background Data X = 1.080S = 0.674TL(1) = 2.780LL(1)=N/A **Statistics-Transformed Background**

Data

X = -0.114 S = 0.658CV(2) = -5.762 **K factor**=** 2.523

TL(2) = 1.547

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.244 -1.411 0.599 4/23/2002 1.82 0.199 7/15/2002 1.22 10/8/2002 0.988 -0.012 -0.316 1/8/2003 0.729 4/3/2003 0.637 -0.4517/9/2003 2.51 0.920 0.049 10/6/2003 1.05 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.355 -1.036 4/23/2002 2.16 0.770 0.329 7/16/2002 1.39 10/8/2002 0.717 -0.333 1/7/2003 0.587 -0.5334/2/2003 0.545 -0.6077/9/2003 0.565 1.76 10/7/2003 0.57 -0.562

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW358	Downgradient	Yes	0.0351	NO	-3.350	N/A
	MW361	Downgradient	Yes	0.00244	NO	-6.016	N/A
	MW364	Downgradient	Yes	0.00416	NO	-5.482	N/A
	MW367	Downgradient	Yes	1.18	NO	0.166	N/A
	MW370	Upgradient	Yes	0.268	NO	-1.317	N/A
	MW373	Upgradient	Yes	0.256	NO	-1.363	N/A
	27/4 75						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.010 S = 0.012

CV(1)=1.198

K factor=** 2.523

TL(1) = 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X= -5.693 **S**= 1.604

CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.647

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00113	-6.786
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.0005	N/A	-7.601	N/A
MW361	Downgradient	No	0.0005	N/A	-7.601	N/A
MW364	Downgradient	Yes	0.000556	6 N/A	-7.495	NO
MW367	Downgradient	No	0.0005	N/A	-7.601	N/A
MW370	Upgradient	Yes	0.000547	7 N/A	-7.511	NO
MW373	Upgradient	Yes	0.000295	5 N/A	-8.129	NO
NT/A D	1, 11 ,10 1 N				1 . 11	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.022 CV(1) = 0.901 K factor** = 2.523
 TL(1) = 0.078 LL(1) = N/A

 Statistics-Transformed Background
 X = -4.239 S = 1.087 CV(2) = -0.256 K factor** = 2.523
 TL(2) = -1.497 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.05 -2.9964/23/2002 0.05 -2.9967/15/2002 0.05 -2.99610/8/2002 0.005 -5.2980.005 1/8/2003 -5.2984/3/2003 0.005 -5.2987/9/2003 0.0264 -3.634 10/6/2003 0.00971 -4.635Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.05 -2.996 4/23/2002 0.05 -2.996 7/16/2002 0.05 -2.99610/8/2002 0.005 -5.298 1/7/2003 0.005 -5.2984/2/2003 0.005 -5.2987/9/2003 0.0112 -4.492 0.005 -5.298 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00336	o NO	-5.696	N/A
MW361	Downgradient	. No	0.002	N/A	-6.215	N/A
MW364	Downgradient	Yes	0.00118	NO NO	-6.742	N/A
MW367	Downgradient	Yes	0.00441	NO	-5.424	N/A
MW370	Upgradient	Yes	0.00202	. NO	-6.205	N/A
MW373	Upgradient	Yes	0.00232	. NO	-6.066	N/A
N/A Decu	Ite identified as N	Von Detects	during lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 46.688 **S**= 60.986 **CV(1)**=1.306

K factor=** 2.523

TL(1)= 200.555 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.829

 $S= 1.151 \quad CV(2)=0.301$

K factor=** 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	342	N/A	5.835	YES
MW361	Downgradient	Yes	336	N/A	5.817	YES
MW364	Downgradient	Yes	320	N/A	5.768	YES
MW367	Downgradient	Yes	245	N/A	5.501	YES
MW370	Upgradient	Yes	343	N/A	5.838	YES
MW373	Upgradient	Yes	309	N/A	5.733	YES
37/4 5	1 11 10 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW361

MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.283 S = 0.159 CV(1) = 0.025 K factor**= 2.904
 TL(1) = 6.745 LL(1) = 5.8202

 Statistics-Transformed Background Data
 X = 1.837 X = 0.025 X = 0.025</th

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 6.3 1.841 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 1/7/2003 6.35 1.848 4/2/2003 6.14 1.815 7/9/2003 1.808 6.1 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.07	NO	1.803	N/A
MW361	Downgradien	t Yes	6.09	NO	1.807	N/A
MW364	Downgradien	t Yes	6.17	NO	1.820	N/A
MW367	Downgradien	t Yes	5.98	NO	1.788	N/A
MW370	Upgradient	Yes	6.19	NO	1.823	N/A
MW373	Upgradient	Yes	6.24	NO	1.831	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2017 Statistical Analysis **Potassium** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.185 **K factor**=** 2.523 Statistics-Background Data X = 2.823S = 0.522TL(1) = 4.139LL(1)=N/A **Statistics-Transformed Background** X = 1.024S = 0.167CV(2) = 0.163

Data

K factor=** 2.523

TL(2) = 1.445

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.22 1.169 4/23/2002 3.43 1.233 1.092 7/15/2002 2.98 10/8/2002 2.46 0.900 2.41 1/8/2003 0.8804/3/2003 2.43 0.888 7/9/2003 2.44 0.892 10/6/2003 2.48 0.908 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 4.34 1.468 4/23/2002 3.04 1.112 7/16/2002 2.93 1.075 10/8/2002 2.3 0.833 1/7/2003 2.45 0.896 4/2/2003 2.7 0.993 7/9/2003 0.986 2.68 10/7/2003 2.88 1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.37	NO	0.863	N/A
MW361	Downgradient	Yes	1.94	NO	0.663	N/A
MW364	Downgradient	Yes	1.95	NO	0.668	N/A
MW367	Downgradient	Yes	2.9	NO	1.065	N/A
MW370	Upgradient	Yes	2.31	NO	0.837	N/A
MW373	Upgradient	Yes	2.2	NO	0.788	N/A
NI/A Dogg	lta idantified on N	Jon Dotooto	ما در سنس م	omotomi omolivska om	data validatio	a and ryons not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 2.158 S = 5.739 CV(1) = 2.660 K factor** = 2.523
 TL(1) = 16.637 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.670 X = 1.833 X = -0.670 X = -0

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/15/2002 2.313 10.1 10/8/2002 -0.825#Func! 0.415 -0.879 1/8/2003 10/6/2003 0.52 -0.6541.03 0.030 1/7/2004 4/7/2004 0.434 -0.8357/13/2004 0.532 -0.631 10/7/2004 0.299 -1.207Well Number: MW373 Date Collected Result LN(Result) 7/16/2002 21.5 3.068 10/8/2002 0.0327 -3.420-0.8441/7/2003 #Func! 0 #Func! 10/7/2003 1/6/2004 0.177 -1.7324/7/2004 0.792 -0.2337/14/2004 0.327 -1.118 0.033 10/7/2004 -3.411

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Cı	urrent	Quarter Data					
We	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
M	W358	Downgradient	No	0.209	N/A	-1.565	N/A
M	W361	Downgradient	Yes	0.235	N/A	-1.448	NO
M	W364	Downgradient	Yes	0.507	N/A	-0.679	NO
M	W367	Downgradient	Yes	0.845	N/A	-0.168	NO
M	W370	Upgradient	Yes	0.63	N/A	-0.462	NO
M	W373	Upgradient	No	0.257	N/A	-1.359	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 51.544 **S**= 15.227 **CV(1)**=0.295

K factor=** 2.523

TL(1)= 89.962

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.906 S

S = 0.272 CV(2) = 0.070

K factor=** 2.523

TL(2) = 4.592

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 31.8 3.459 4/23/2002 50 3.912 44.7 7/15/2002 3.800 10/8/2002 40 3.689 44.6 1/8/2003 3.798 4/3/2003 41.9 3.735 7/9/2003 40 3.689 10/6/2003 38.1 3.640 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 43.4 3.770 4/23/2002 79.8 4.380 7/16/2002 87.7 4.474 10/8/2002 4.121 61.6 1/7/2003 59.3 4.083 4/2/2003 62.1 4.129 7/9/2003 50.1 3.914 10/7/2003 49.6 3.904

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	39.2	NO	3.669	N/A
MW361	Downgradient	Yes	41.7	NO	3.731	N/A
MW364	Downgradient	Yes	43.8	NO	3.780	N/A
MW367	Downgradient	Yes	23.6	NO	3.161	N/A
MW370	Upgradient	Yes	40.6	NO	3.704	N/A
MW373	Upgradient	Yes	45.3	NO	3.813	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2017 Statistical Analysis **Sulfate** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 122.381 **S**= 195.095 **CV(1)**=1.594

K factor=** 2.523

TL(1)= 614.606 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.985 S = 1.323 CV(2) = 0.332

K factor=** 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.096
Date Collected	Result	
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	72	N/A	4.277	NO
MW361	Downgradient	Yes	75	N/A	4.317	NO
MW364	Downgradient	Yes	70.4	N/A	4.254	NO
MW367	Downgradient	Yes	33	N/A	3.497	NO
MW370	Upgradient	Yes	20.4	N/A	3.016	NO
MW373	Upgradient	Yes	100	N/A	4.605	NO
NI/A D	.14. : 14:C: . 1 N	I D-44-	J 1 - 1-		3-41:3-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 7.655 S = 13.274 CV(1) = 1.734 K factor** = 2.523
 TL(1) = 41.146 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.946 X = 0.939 X = 0.483 X = 0.483 X = 0.939 X = 0.939 X = 0.483 X = 0.939 X

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 10.8 2.380 4/23/2002 8.53 2.144 7/15/2002 5.09 1.627 10/8/2002 4.78 1.564 1/8/2003 -5.12#Func! 4/3/2003 5.11 1.631 7/9/2003 4.25 1.447 10/6/2003 6.54 1.878 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 16.5 2.803 4/23/2002 3.49 1.250 7/16/2002 1.42 0.351 10/8/2002 -6.06 #Func! 1/7/2003 -8.41 #Func! 4/2/2003 26.3 3.270 7/9/2003 3.06 1.118 10/7/2003 46.2 3.833

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	45.6	N/A	3.820	NO
MW361	Downgradient	Yes	42.8	N/A	3.757	NO
MW364	Downgradient	Yes	54.8	N/A	4.004	YES
MW367	Downgradient	No	-5.13	N/A	#Error	N/A
MW370	Upgradient	Yes	120	N/A	4.787	YES
MW373	Upgradient	No	9.12	N/A	2.210	N/A
27/4 75	1 11 10 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW364 MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.169 S = 12.072 CV(1) = 1.957 K factor** = 2.523 TL(1) = 36.626 LL(1) = N/A

Statistics-Transformed Background Data

X= 1.069 **S**= 1.014 **CV(2)**= 0.948

K factor=** 2.523

TL(2)= 3.626

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.2 0.182 4/23/2002 4.3 1.459 0.956 7/15/2002 2.6 10/8/2002 2.3 0.8331/8/2003 3 1.099 4/3/2003 1.2 0.182 7/9/2003 2.6 0.956 10/6/2003 1.7 0.531 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1.1 0.095 4/23/2002 17.5 2.862 49 7/16/2002 3.892 10/8/2002 2.9 1.065 1/7/2003 3.9 1.361 4/2/2003 2.5 0.916 7/9/2003 1.7 0.531 10/7/2003 1.2 0.182

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarter Data					
_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
-	MW358	Downgradient	Yes	1.08	N/A	0.077	NO
	MW361	Downgradient	Yes	0.932	N/A	-0.070	NO
	MW364	Downgradient	Yes	0.988	N/A	-0.012	NO
	MW367	Downgradient	Yes	0.918	N/A	-0.086	NO
	MW370	Upgradient	Yes	1.35	N/A	0.300	NO
	MW373	Upgradient	Yes	1.53	N/A	0.425	NO
		1 11 10 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

K factor=** 2.523

TL(1)= 277.798 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.971 S = 0.950 CV(2) = 0.239

K factor=** 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	46	NO	3.829	N/A	
MW361	Downgradient	Yes	8.86	NO	2.182	N/A	
MW364	Downgradient	No	10	N/A	2.303	N/A	
MW367	Downgradient	Yes	17.1	NO	2.839	N/A	
MW370	Upgradient	No	10	N/A	2.303	N/A	
MW373	Upgradient	Yes	14.6	NO	2.681	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 12.188
 S= 6.950
 CV(1)=0.570
 K factor**= 2.523
 TL(1)= 29.721
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.305
 S= 0.687
 CV(2)=0.298
 K factor**= 2.523
 TL(2)= 4.039
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 19 2.944 4/23/2002 17 2.833 15 7/15/2002 2.708 10/8/2002 18 2.890 17 1/8/2003 2.833 4/3/2003 18 2.890 7/9/2003 15 2.708 10/6/2003 16 2.773 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 7/16/2002 3 1.099 10/8/2002 4 1.386 1/7/2003 6 1.792

5

6

6

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	3.64	N/A	1.292	N/A
MW361	Downgradient	Yes	5.78	NO	1.754	N/A
MW364	Downgradient	Yes	5.55	NO	1.714	N/A
MW367	Downgradient	Yes	1.96	N/A	0.673	N/A
MW370	Upgradient	Yes	0.78	N/A	-0.248	N/A
MW373	Upgradient	Yes	6.52	NO	1.875	N/A
M/A Page	ulte identified as N	Jon Detects	during lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.609

1.792

1.792

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.055 S = 0.037 CV(1) = 0.673 K factor**= 2.523
 TL(1) = 0.147 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.131 S = 0.691 CV(2) = -0.221 K factor**= 2.523
 TL(2) = -1.388 LL(2) = N/A

Data

Upgradient Wells with Transformed Result

Historical Background Data from

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.1 -2.3034/23/2002 0.1 -2.3037/15/2002 0.1 -2.30310/8/2002 0.025 -3.6890.035 1/8/2003 -3.3524/3/2003 0.035 -3.3527/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.1 -2.303 4/23/2002 0.1 -2.3037/16/2002 0.1 -2.30310/8/2002 0.025 -3.689 1/7/2003 0.035 -3.352 4/2/2003 0.035 -3.3527/9/2003 0.0234 -3.755 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

ļ	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW358	Downgradient	No	0.01	N/A	-4.605	N/A
	MW361	Downgradient	No	0.01	N/A	-4.605	N/A
	MW364	Downgradient	Yes	0.049	NO	-3.016	N/A
	MW367	Downgradient	Yes	0.00822	NO	-4.801	N/A
	MW370	Upgradient	Yes	0.0116	NO	-4.457	N/A
	MW373	Upgradient	Yes	0.00693	NO	-4.972	N/A
	37/4 75						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-U Third Quarter 2017 Statistical Analysis Dissolved Oxygen UNITS: mg/L

Current Background Comparison
UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.399	S = 1.329	CV(1) =0.554	K factor**= 2.523	TL(1)= 5.751	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.724	S = 0.584	CV(2)= 0.807	K factor**= 2.523	TL(2)= 2.198	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 7/14/2015 2.73 1.004 10/13/2015 1.78 0.577 1/21/2016 2.03 0.708 4/7/2016 4.79 1.567 7/18/2016 3.65 1.295 10/19/2016 2.2 0.788 1/18/2017 2.41 0.880 4/18/2017 3.43 1.233 Well Number: MW374 Date Collected Result LN(Result) 7/13/2015 0.67 -0.40010/14/2015 1.1 0.095 1/21/2016 1.25 0.223 4/7/2016 5.01 1.611 7/18/2016 1 0.000 10/19/2016 3.39 1.221 1/19/2017 1.43 0.358 4/18/2017 1.52 0.419

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	5.89	YES	1.773	N/A
MW362	Downgradien	t Yes	4.3	NO	1.459	N/A
MW365	Downgradien	t Yes	6.82	YES	1.920	N/A
MW368	Downgradien	t Yes	6.81	YES	1.918	N/A
MW371	Upgradient	Yes	3.51	NO	1.256	N/A
MW375	Sidegradient	Yes	4.07	NO	1.404	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW359 MW365 MW368

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis

Current Background Comparison UNITS: mg/L

Magnesium

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.051 S = 4.548CV(1) = 0.453

S= 0.481

K factor=** 2.523

TL(1)= 21.526

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.203

CV(2) = 0.218

K factor**= 2.523

TL(2)= 3.417

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/14/2015	13.3	2.588
10/13/2015	14.5	2.674
1/21/2016	15.7	2.754
4/7/2016	12.8	2.549
7/18/2016	13.4	2.595
10/19/2016	15	2.708
1/18/2017	16.1	2.779
4/18/2017	14.2	2.653

4/18/2017	14.2	2.653
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/13/2015	6	1.792
10/14/2015	6.4	1.856
1/21/2016	5.75	1.749
4/7/2016	5.38	1.683
7/18/2016	5.33	1.673
10/19/2016	5.83	1.763
1/19/2017	6.04	1.798
4/18/2017	5.08	1.625

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

V	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW368	Downgradien	t Yes	23.9	YES	3.174	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 294.250 **S**= 98.119 **CV(1)**=0.333

K factor=** 2.523

TL(1)= 541.803 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.629 S = 0.349 CV(2) = 0.062

K factor=** 2.523

TL(2) = 6.510

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 7/14/2015 368 5.908 10/13/2015 393 5.974 1/21/2016 254 5.537 4/7/2016 295 5.687 7/18/2016 6.089 441 10/19/2016 370 5.914 1/18/2017 410 6.016 4/18/2017 257 5.549 Well Number: MW374 Date Collected Result LN(Result) 7/13/2015 268 5.591 10/14/2015 449 6.107 1/21/2016 139 4.934 4/7/2016 250 5.521 7/18/2016 193 5.263 10/19/2016 241 5.485 1/19/2017 187 5.231

193

4/18/2017

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) > TL(2)
MW359	Downgradien	t Yes	325	NO	5.784	N/A
MW362	Downgradien	t Yes	310	NO	5.737	N/A
MW365	Downgradien	t Yes	385	NO	5.953	N/A
MW368	Downgradien	t Yes	256	NO	5.545	N/A
MW371	Upgradient	Yes	364	NO	5.897	N/A
MW374	Upgradient	Yes	188	NO	5.236	N/A
MW375	Sidegradient	Yes	327	NO	5.790	N/A

Conclusion of Statistical Analysis on Current Data

5.263

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 10.968
 S= 6.604
 CV(1)=0.602 K factor**= 2.523
 TL(1)=27.629 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.244
 S= 0.553
 CV(2)=0.246 K factor**= 2.523
 TL(2)=3.640 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Data

Well Number: MW371 Date Collected Result LN(Result) 7/14/2015 18.9 2.939 10/13/2015 19.5 2.970 1/21/2016 10.2 2.322 4/7/2016 10.9 2.389 7/18/2016 3.318 27.6 10/19/2016 14.8 2.695 2.573 1/18/2017 13.1 4/18/2017 13.9 2.632 Well Number: MW374 Date Collected Result LN(Result) 7/13/2015 5.93 1.780 10/14/2015 6.31 1.842 1/21/2016 5.63 1.728 4/7/2016 5.74 1.747 7/18/2016 6.25 1.833 10/19/2016 6.18 1.821 1/19/2017 4.83 1.575 4/18/2017 5.71 1.742

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	47	YES	3.850	N/A
MW362	Downgradien	t Yes	29.2	YES	3.374	N/A
MW365	Downgradien	t Yes	62.2	YES	4.130	N/A
MW368	Downgradien	t Yes	155	YES	5.043	N/A
MW375	Sidegradient	Yes	37.7	YES	3.630	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances
MW359
MW362
MW365
MW368
MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 303.750 **S**= 63.650 **CV(1)**= 0.210

K factor=** 2.523

TL(1)= 464.338 LL(1

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.696 S = 0.205 CV(2) = 0.036

K factor=** 2.523

TL(2) = 6.213

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/14/2015	410	6.016
10/13/2015	382	5.945
1/12/2016	398	5.986
4/7/2016	302	5.710
7/14/2016	323	5.778
10/19/2016	365	5.900
1/18/2017	381	5.943
4/18/2017	271	5.602
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.394
Date Collected	Result	
Date Collected 7/13/2015	Result 220	5.394
Date Collected 7/13/2015 10/13/2015	Result 220 294	5.394 5.684
Date Collected 7/13/2015 10/13/2015 1/21/2016	Result 220 294 246	5.394 5.684 5.505
Date Collected 7/13/2015 10/13/2015 1/21/2016 4/7/2016	Result 220 294 246 259	5.394 5.684 5.505 5.557
Date Collected 7/13/2015 10/13/2015 1/21/2016 4/7/2016 7/18/2016	Result 220 294 246 259 248	5.394 5.684 5.505 5.557 5.513

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradien	t Yes	281	NO	5.638	N/A
MW363	Downgradien	t Yes	300	NO	5.704	N/A
MW366	Downgradien	t Yes	326	NO	5.787	N/A
MW369	Upgradient	Yes	376	NO	5.930	N/A
MW372	Upgradient	Yes	300	NO	5.704	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis

Analysis Current Background Comparison UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Sodium

X= 56.313 **S**= 7.655

S= 0.136

CV(1)=0.136

K factor=** 2.523

TL(1) = 75.627

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.022

CV(2)=0.034

K factor**= 2.523

TL(2) = 4.366

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369				
Date Collected	Result	LN(Result)			
7/14/2015	57.7	4.055			
10/13/2015	48.3	3.877			
1/12/2016	55.7	4.020			
4/7/2016	66.8	4.202			
7/14/2016	58.9	4.076			
10/19/2016	52.2	3.955			
1/18/2017	72	4.277			
4/18/2017	62	4.127			

4/10/2017	02	4.127
Well Number:	MW372	
Date Collected	Result	LN(Result)
7/13/2015	63.3	4.148
10/13/2015	58.9	4.076
1/21/2016	57.7	4.055
4/7/2016	57.9	4.059
7/18/2016	48.5	3.882
10/19/2016	49.7	3.906
1/19/2017	43.4	3.770
4/18/2017	48	3.871

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW360	Downgradien	t Vec	70.5	VEC	4 376	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW360

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Beta activity UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 30.888 S = 16.331 CV(1) = 0.529

S = 0.530

K factor=** 2.523

TL(1)= 72.090

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.300

CV(2) = 0.161

K factor=** 2.523

TL(2)= 4.639

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/14/2015	36.1	3.586
10/13/2015	33.1	3.500
1/12/2016	35.4	3.567
4/7/2016	48.6	3.884
7/18/2016	58	4.060
10/19/2016	19.1	2.950
1/18/2017	44.8	3.802
4/18/2017	65.7	4.185

4/18/2017	65.7	4.185
Well Number:	MW373	
Date Collected	Result	LN(Result)
7/13/2015	21.8	3.082
10/13/2015	10.7	2.370
1/21/2016	25.6	3.243
4/7/2016	29.2	3.374
7/18/2016	18.1	2.896
10/19/2016	17.8	2.879
1/19/2017	15.6	2.747
4/18/2017	14.6	2.681

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current (Quarter Data
-----------	--------------

1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
	MW370	Ungradient	Yes	84 6	YES	4 438	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Dissolved Oxygen UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 3.378	S = 1.335	CV(1) = 0.395	K factor**= 2.523	TL(1)= 6.747	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.148	S = 0.380	CV(2)= 0.331	K factor**= 2.523	TL(2)= 2.107	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/14/2015 3.63 1.289 10/13/2015 4.29 1.456 1/12/2016 3.44 1.235 4/7/2016 5.97 1.787 1.247 7/18/2016 3.48 10/19/2016 4.01 1.389 1/18/2017 3.41 1.227 4/18/2017 1 38/

4/16/2017	3.99	1.364
Well Number:	MW373	
Date Collected	Result	LN(Result)
7/13/2015	2	0.693
10/13/2015	1.99	0.688
1/21/2016	2.24	0.806
4/7/2016	6.26	1.834
7/18/2016	2.39	0.871
10/19/2016	1.81	0.593
1/19/2017	2.27	0.820
4/18/2017	2.87	1.054

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

urrent Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW364	Downgradien	t Yes	4.37	NO	1.475	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 347.563 S = 81.515 CV(1) = 0.235

K factor**= 2.523 **TL(1)**= 553.224

4 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.823 S = 0.247 CV(2) = 0.042

K factor=** 2.523

TL(2) = 6.447

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/14/2015 388 5.961 10/13/2015 416 6.031 1/12/2016 415 6.028 4/7/2016 318 5.762 6.180 7/18/2016 483 10/19/2016 402 5.996 1/18/2017 412 6.021 4/18/2017 278 5.628 Well Number: MW373 Date Collected Result LN(Result) 7/13/2015 468 6.148 10/13/2015 312 5.743

193

278

337

322

279

260

1/21/2016

4/7/2016

7/18/2016 10/19/2016

1/19/2017

4/18/2017

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradien	t Yes	342	NO	5.835	N/A
MW361	Downgradien	t Yes	336	NO	5.817	N/A
MW364	Downgradien	t Yes	320	NO	5.768	N/A
MW367	Downgradien	t Yes	245	NO	5.501	N/A
MW370	Upgradient	Yes	343	NO	5.838	N/A
MW373	Upgradient	Yes	309	NO	5.733	N/A

Conclusion of Statistical Analysis on Current Data

5.263

5.628

5.820

5.775

5.631

5.561

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2017 Statistical Analysis **Technetium-99** UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 48.744 S = 28.228 CV(1) = 0.579

K factor=** 2.523

TL(1)= 119.963 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.731

S = 0.577CV(2) = 0.155 **K** factor**= 2.523

TL(2) = 5.186

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/14/2015 60.3 4.099 10/13/2015 50.5 3.922 1/12/2016 32.1 3.469 4/7/2016 92 4.522 4.535 7/18/2016 93.2 10/19/2016 31.7 3.456 1/18/2017 4.416 82.8 4/18/2017 99.1 4.596

Well Number:	MW373	
Date Collected	Result	LN(Result)
7/13/2015	37.3	3.619
10/13/2015	15.9	2.766
1/21/2016	50.3	3.918
4/7/2016	31.2	3.440
7/18/2016	23.7	3.165
10/19/2016	19.9	2.991
1/19/2017	33.1	3.500
4/18/2017	26.8	3.288

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL(2)
MW364	Downgradien	t Yes	54.8	NO	4.004	N/A
MW370	Upgradient	Yes	120	YES	4.787	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

November 20, 2017

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the third quarter 2017 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Blewett

28 November 2017

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 551 Hobbs Road Kevil, KY 42053

Subject: Mann-Kendall Statistical Analysis

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed Mann-Kendall statistical analysis I performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an environmental microbiologist, with a Ph.D. in Engineering Science, I have over 10 years of experience reviewing and analyzing geochemical results associated with environmental sampling and investigation activities. For the generation of the Mann-Kendall statistical analyses, my work was observed and reviewed by a Senior Principal with Geosyntec Consultants.

For this project, the Mann-Kendall statistical analyses conducted on the Third Quarter 2017 monitoring well data collected from C-746-S&T and C-746-U Landfills were performed using the XLSTAT statistical software program. This work was conducted in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Andrea Rocha, Ph.D., Senior

Andre Riche

Staff Scientist

180A Market Place Boulevard Knoxville, TN 37922 PH 865.330.0037 www.geosyntec.com

29 November 2017

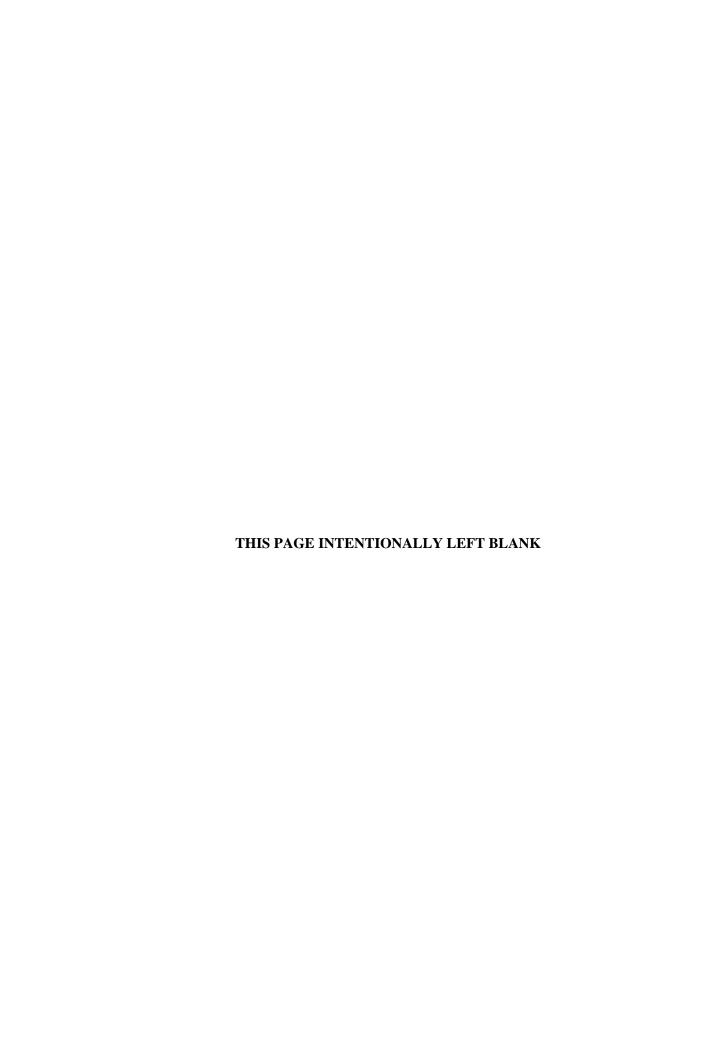
Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 551 Hobbs Road Kevil, KY 42053

Subject: Mann-Kendall Statistical Analysis

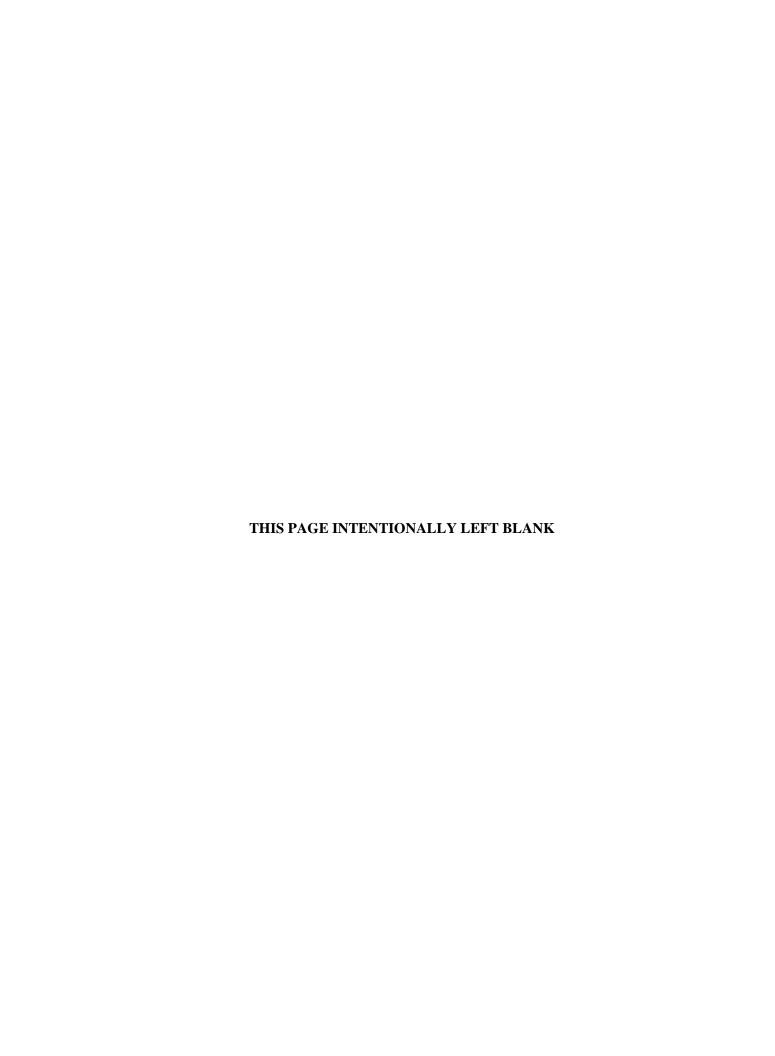
Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed Mann-Kendall statistical analysis that I checked and on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an environmental scientist, with a Ph.D. in Life Sciences, I have over 35 years of experience reviewing and analyzing environmental chemistry data associated with environmental sampling, investigation, and remediation activities. For the generation of the Mann-Kendall statistical analyses, I have experience with the method and other parametric and nonparametric statistical methods to a level of expertise that allows me to provide peer and senior review of the analysis.


For this project, the Mann-Kendall statistical analyses conducted on the Third Quarter 2017 monitoring well data collected from C-746-S&T and C-746-U Landfills were performed using the XLSTAT statistical software program. This work was conducted in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,


Duane Graves, Ph.D., BCES

Deare Haves

Senior Principal

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED—QUARTERLY, 3rd CY 2017

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2017 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on July 26, 2017. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 6.68×10^{-4} ft/ft and 6.79×10^{-4} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 3.66×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for July 2017, the groundwater flow direction in the immediate area of the landfill is northeastward.

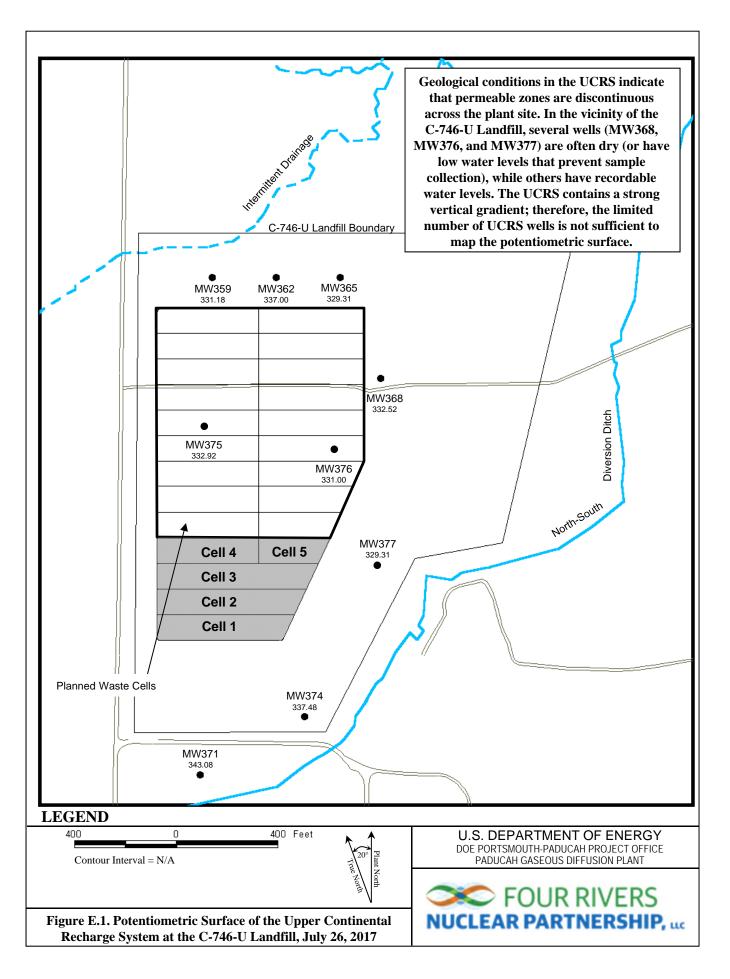


Table E.1. C-746-U Landfill Third Quarter 2017 (July) Water Levels

C-746-U Landfill (July 2017) Water Levels										
							Raw Data		*Corrected Data	
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
7/26/2017	9:33	MW357	URGA	368.99	30.06	0.01	43.23	325.76	43.24	325.75
7/26/2017	9:35	MW358	LRGA	369.13	30.06	0.01	43.39	325.74	43.40	325.73
7/26/2017	9:34	MW359	UCRS	369.11	30.06	0.01	37.92	331.19	37.93	331.18
7/26/2017	9:31	MW360	URGA	362.30	30.06	0.01	36.57	325.73	36.58	325.72
7/26/2017	9:29	MW361	LRGA	361.54	30.06	0.01	35.83	325.71	35.84	325.70
7/26/2017	9:30	MW362	UCRS	362.04	30.06	0.01	25.03	337.01	25.04	337.00
7/26/2017	9:42	MW363	URGA	368.83	30.06	0.01	43.16	325.67	43.17	325.66
7/26/2017	9:40	MW364	LRGA	367.75	30.06	0.01	42.17	325.58	42.18	325.57
7/26/2017	9:41	MW365	UCRS	368.37	30.06	0.01	39.05	329.32	39.06	329.31
7/26/2017	9:45	MW366	URGA	369.27	30.06	0.01	43.42	325.85	43.43	325.84
7/26/2017	9:44	MW367	LRGA	369.66	30.06	0.01	43.83	325.83	43.84	325.82
7/26/2017	9:43	MW368	UCRS	369.27	30.06	0.01	36.74	332.53	36.75	332.52
7/26/2017	9:54	MW369	URGA	364.48	30.06	0.01	37.49	326.99	37.50	326.98
7/26/2017	9:56	MW370	LRGA	365.35	30.06	0.01	38.38	326.97	38.39	326.96
7/26/2017	9:55	MW371	UCRS	364.88	30.06	0.01	21.79	343.09	21.80	343.08
7/26/2017	9:57	MW372	URGA	359.66	30.06	0.01	32.72	326.94	32.73	326.93
7/26/2017	9:59	MW373	LRGA	359.95	30.06	0.01	33.02	326.93	33.03	326.92
7/26/2017	9:58	MW374	UCRS	359.71	30.06	0.01	22.22	337.49	22.23	337.48
7/26/2017	10:02	MW375	UCRS	370.53	30.06	0.01	37.60	332.93	37.61	332.92
7/26/2017	10:04	MW376	UCRS	370.61	30.06	0.01	39.60	331.01	39.61	331.00
7/26/2017	10:00	MW377	UCRS	365.92	30.06	0.01	36.60	329.32	36.61	329.31

Initial Barometric Pressure

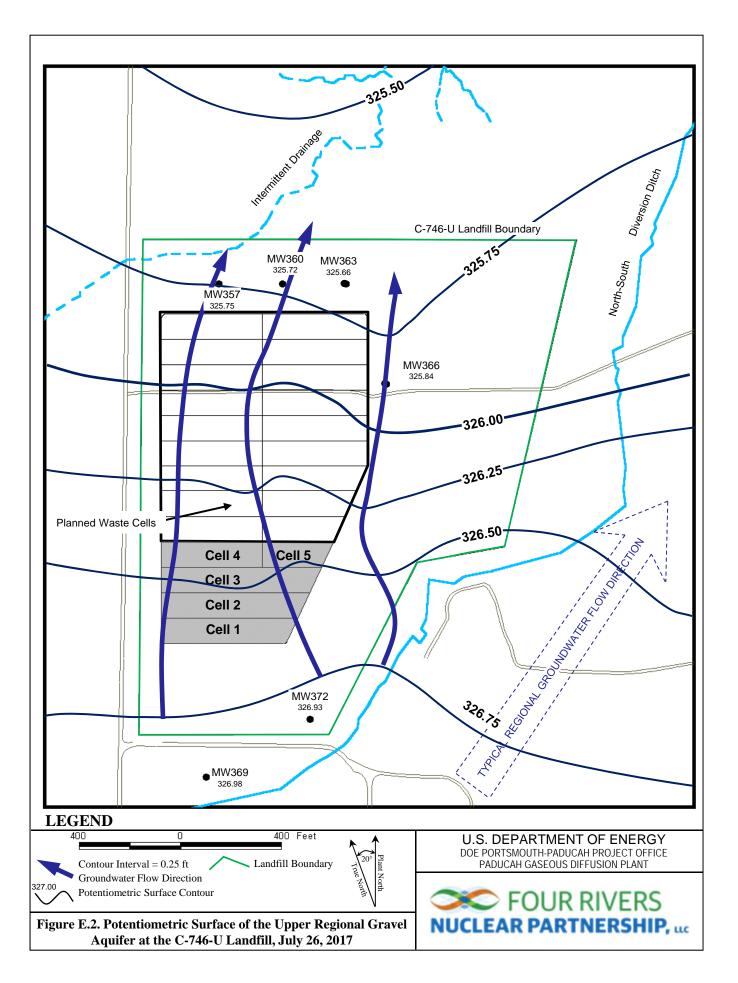
30.07

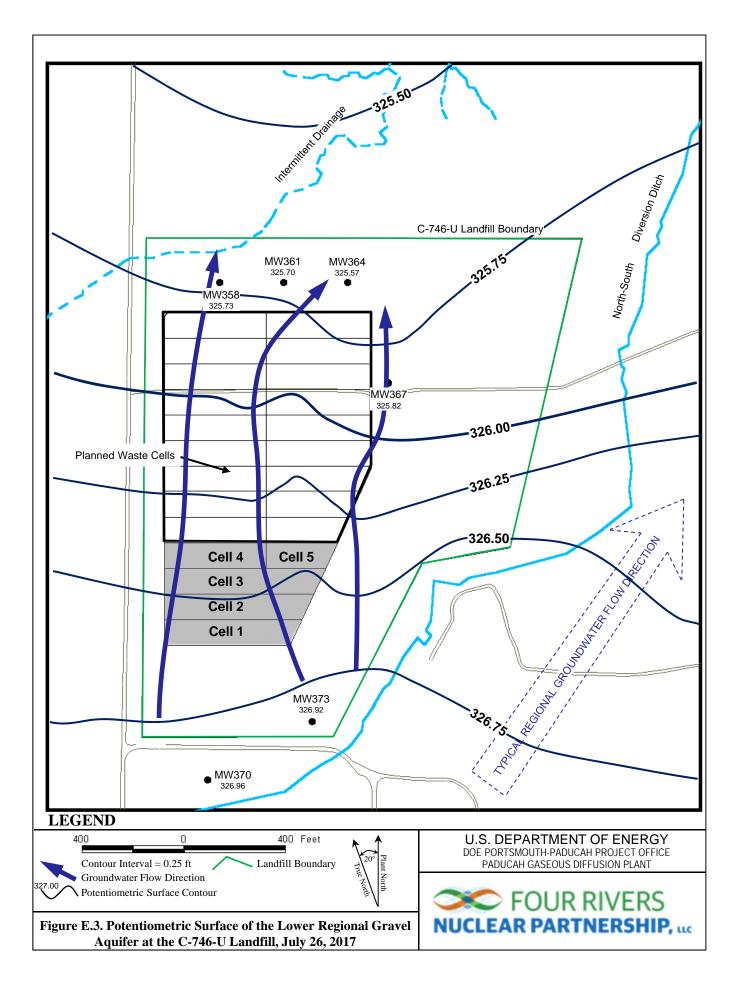
Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer


LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

ND = No Data acquired

*Assumes a barometric efficiency of 1.0

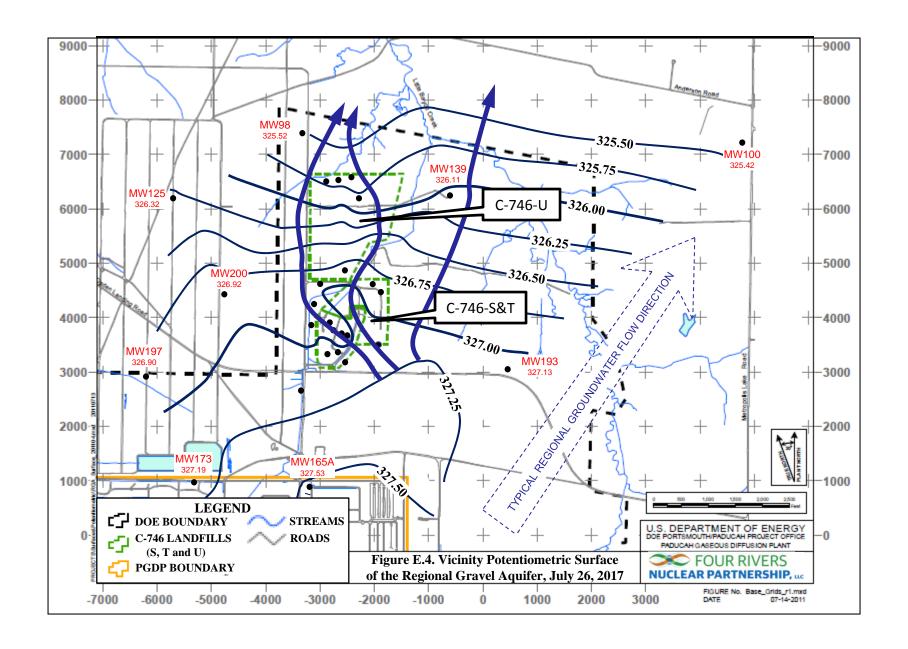
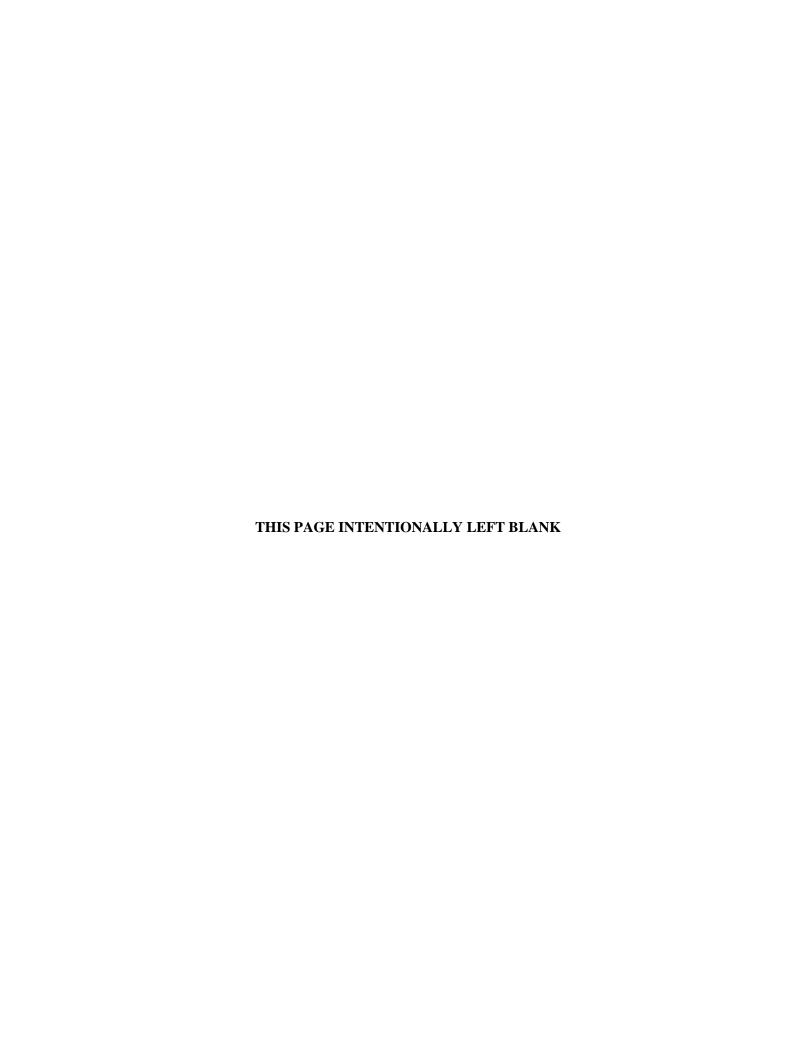



Table E.2. C-746-U Landfill Hydraulic Gradients

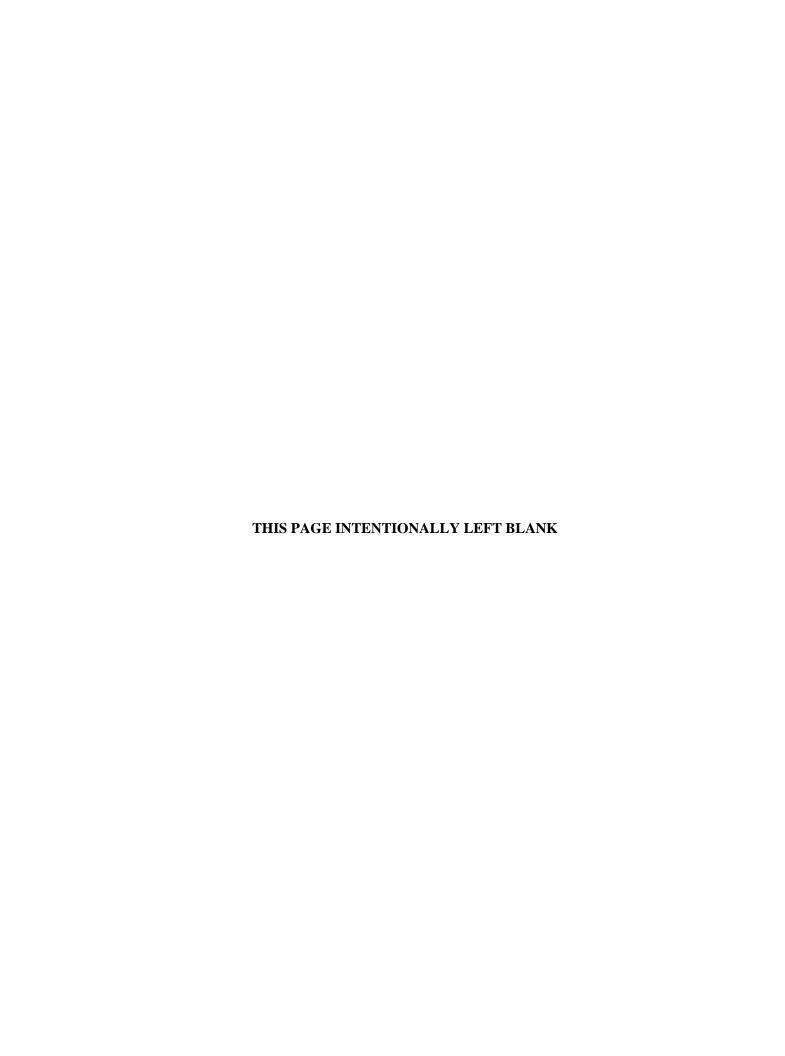

	ft/ft
Beneath Landfill—Upper RGA	6.68×10^{-4}
Beneath Landfill—Lower RGA	6.79×10^{-4}
Vicinity	3.66×10^{-4}

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	Discharge (q)	Average	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.484	1.71×10^{-4}	1.94	6.84×10^{-4}
425	0.150	0.284	1.00×10^{-4}	1.14	4.01×10^{-4}
Lower RGA					
725	0.256	0.492	1.74×10^{-4}	1.97	6.95×10^{-4}
425	0.150	0.289	1.02×10^{-4}	1.15	4.07×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the third quarter 2017 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Sodium	MW360
Lower Regional Gravel Aquifer	Technetium-99	MW364, MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

8/28/2017

Fluor Federal Services PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL PERMIT NUMBER 073-00045

MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4795	MW361	Trichloroethene	8260B	5.78	ug/L	5
8004-4797	MW364	Trichloroethene	8260B	5.55	ug/L	5
8004-4818	MW370	Beta activity	9310	84.6	pCi/L	50
8004-4808	MW372	Trichloroethene	8260B	5.69	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	6.52	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

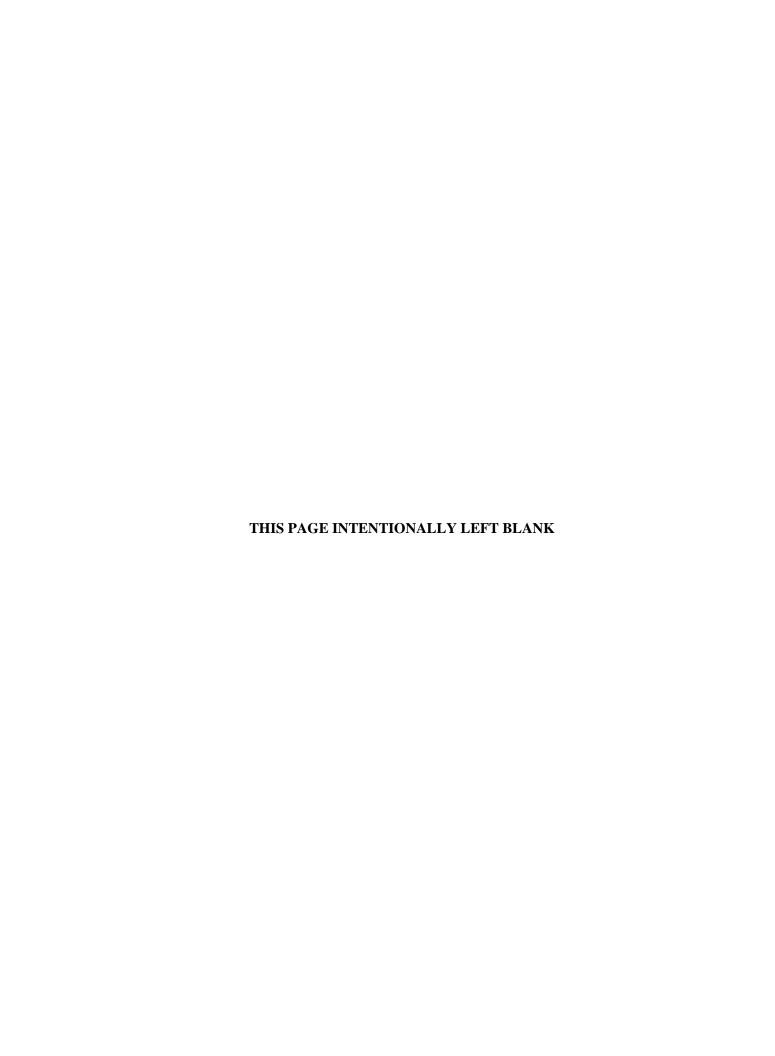


Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill

Groundwater Flow System	I			UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364		370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*			*							
Quarter 3, 2004						*										*					
Quarter 3, 2005						*															<u> </u>
Quarter 4, 2005						*															<u> </u>
ALPHA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004																					Ь—
Quarter 3, 2009						_															—
ALUMINUM																					
Quarter 3, 2003											*										—
BETA ACTIVITY																					
Quarter 1, 2004																					_
Quarter 2, 2004	 	<u> </u>								-	<u> </u>	<u> </u>	-	<u> </u>	-	!	<u> </u>	<u> </u>			
Quarter 3, 2004	-	-								-	-	-		-	-	1	-	-			
Quarter 4, 2004 Quarter 4, 2005	 	<u> </u>								-	<u> </u>	<u> </u>	-	<u> </u>	Ħ	!	<u> </u>	<u> </u>			
Quarter 4, 2005 Quarter 1, 2006	1	1									-	1		1		1	-	1			
Quarter 1, 2006 Quarter 2, 2006		 								_	 	 		 		-	 	 			
Quarter 3, 2006 Quarter 3, 2006		 								_	 	 		 		-	 	 			
Quarter 4, 2006															i						
Quarter 1, 2007																					
Quarter 2, 2007															ī						
Quarter 3, 2007																					-
Quarter 4, 2007										Ħ					ī						
Quarter 1, 2008															ī						_
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 4, 2011															-						
Quarter 1, 2012																					<u> </u>
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013																					
Quarter 3, 2013																					
Quarter 4, 2013																					
Quarter 1, 2014																					<u> </u>
Quarter 4, 2014															-						Ь—
Quarter 1, 2015																					<u> </u>
Quarter 2, 2015																					Ь—
Quarter 4, 2015	<u> </u>	<u> </u>									<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>		_	Н—
Quarter 3, 2016	<u> </u>	<u> </u>									<u> </u>	<u> </u>		-			<u> </u>	<u> </u>			Н—
Quarter 4, 2016	 	<u> </u>									<u> </u>	<u> </u>				!	<u> </u>	<u> </u>		_	
Quarter 2, 2017	-	 								<u> </u>	 	 		 		 	 	 		-	
Quarter 3, 2017 BROMIDE																					
Quarter 2, 2004													*								
CALCIUM													不								
										*											
Quarter 3, 2003 Quarter 2, 2005										不						-					*
Quarter 2, 2005 Quarter 3, 2006															*	-					~
Quarter 3, 2006 Quarter 2, 2008															*	-					
Quarter 2, 2008 Quarter 3, 2009		 								_	 	 		 	*	-	 	 			
Quarter 3, 2009 Quarter 4, 2009															*	-					\vdash
Quarter 4, 2009										_				L	т						

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System	1			UCR	S							URG	ξA					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM																					
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011	-														*						
Quarter 3, 2011	-																				*
Quarter 4, 2011	-														*						*
Quarter 1, 2012 Quarter 2, 2012	1														*						*
Quarter 3, 2012	1														*						*
Quarter 4, 2012															*						-
Quarter 1, 2013															*						*
Quarter 2, 2013															*						
Quarter 3, 2013															*						*
Quarter 4, 2013															*						
Quarter 2, 2014															*						*
Quarter 3, 2014															*						*
Quarter 4, 2014															*						
Quarter 2, 2015															*						
Quarter 3, 2015	1	<u> </u>												<u> </u>	*						
Quarter 4, 2015	1	<u> </u>	<u> </u>	<u> </u>			<u> </u>							<u> </u>	*			<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 1, 2016	-														*						
Quarter 2, 2016															*						
Quarter 2, 2017	*																				
CARBON DISULFIDE										*											
Quarter 3, 2003	-						*			不											
Quarter 2, 2005 Quarter 3, 2005	1					*	不														
Quarter 4, 2005	1					*															
Quarter 1, 2006	1					*															
Quarter 2, 2006	1					*															
Quarter 3, 2010		*									*										
Quarter 4, 2010														*							
Quarter 1, 2011															*						
CHEMICAL OXYGEN DEMA	AND																				
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003	-					*				*	*										
Quarter 3, 2004 Quarter 3, 2005	-					*				*					*	*			*		
Quarter 4, 2005	1					*				*					*	*		*	*		
Quarter 1, 2006	1					т.												*	*		
Quarter 4, 2016																		*	-11		
Quarter 1, 2017											*										
CHLORIDE																					
Quarter 1, 2006																				*	
Quarter 2, 2014			L	L			L				L				*		L	L	L	L	
COBALT																					
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	
Quarter 1, 2004	1		<u> </u>	<u> </u>			<u> </u>				<u> </u>			*	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Quarter 2, 2016	_		<u> </u>	<u> </u>			<u> </u>			_	<u> </u>			*	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	
CONDUCTIVITY																					
Quarter 4, 2002	1-	 								*			-	1							
Quarter 1, 2003 Quarter 2, 2003	1-	-								*	*			-							
Quarter 2, 2003 Quarter 4, 2003	1	1								*	<i>™</i>			1							_
Quarter 1, 2004	1	1	1	1	-		1	-		*	1			1	1		1	1	1	1	<u> </u>
Quarter 1, 2004 Quarter 2, 2004	1		1	1			1			*	1			 	1		1	1	1	1	
Quarter 3, 2004	1	H								*				<u> </u>							
Quarter 1, 2005	1		1	1			1			<u> </u>	1				*		1	1	1	1	
Quarter 2, 2005	f														*						
	1					*													*		
Quarter 3, 2005								_	_				_		_						
Quarter 4, 2005															*			*			
															*			*			

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System	1			UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY																					
Quarter 2, 2006															*						
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007	1														*						
Quarter 3, 2007															*						
Quarter 4, 2007	-														*						
Quarter 1, 2008 Quarter 2, 2008	1														*						
Quarter 3, 2008	1														*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014	1														*						
Quarter 3, 2014	1														*						
Quarter 4, 2014 Quarter 1, 2015	1														*						
Quarter 1, 2015 Quarter 2, 2015	1														*						
Quarter 3, 2015										_					*						
Quarter 4, 2015	1														*						
Quarter 1, 2016															*						
Quarter 2, 2016	1														*						
Quarter 3, 2016															*						
DISSOLVED OXYGEN																					
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*					*											
Quarter 4, 2003					*																
Quarter 1, 2004					*																
Quarter 2, 2004	1							*								*					
Quarter 1, 2005					*																
Quarter 2, 2005	L							*							L		L		L		
Quarter 1, 2006					*																
Quarter 2, 2006					*			*													
Quarter 3, 2006					*			*													
Quarter 4, 2006					*				*												
Quarter 2, 2007					*			*													
Quarter 3, 2007					*			*	*												
Quarter 1, 2008	1				*			.											*		
Quarter 2, 2008	<u> </u>							*	*												
Quarter 3, 2008	┞						<u> </u>	*													
Quarter 1, 2009	┞						*	<u> </u>	L.												
Quarter 2, 2009	1		<u> </u>		*	L	<u> </u>	*	*				<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Quarter 3, 2009	1				at-	*		*	*												
Quarter 1, 2010	1				*	AF-	*	AP.	, .												. ·
Quarter 2, 2010	┞				*	*		*	*											*	*
Quarter 3, 2010	1		<u> </u>		*	*	L	<u> </u>				L	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	L	
Quarter 4, 2010	┞						*					*								*	
Quarter 1, 2011	1				at-	*		AP.	, .												
Quarter 2, 2011			Щ		*	*	*	*	*	Щ			Щ	*	Щ	_	Щ	Щ	Щ	Щ	

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System	Т			UCF	RS							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
DISSOLVED OXYGEN																					
Quarter 3, 2011	_					*		<u> </u>	*												<u> </u>
Quarter 1, 2012	<u> </u>						*		*												<u> </u>
Quarter 2, 2012	*			*	*	*		*	*												<u> </u>
Quarter 3, 2012	₩					*		-	*												<u> </u>
Quarter 4, 2012 Quarter 1, 2013	+-					*		-	*												<u> </u>
Quarter 2, 2013	+-					*	*		*												\vdash
Quarter 3, 2013	*				*		*	*	*												
Quarter 4, 2013	1							1	*											*	
Quarter 2, 2014	*				*	*	*	*	*									*			
Quarter 3, 2014	*				*	*	*														
Quarter 4, 2014						*															
Quarter 2, 2015					*	*	*	*													
Quarter 3, 2015					*	*		*													<u> </u>
Quarter 4, 2015	*					*	*	<u> </u>													<u> </u>
Quarter 1, 2016	*				*		*														L_
Quarter 2, 2016	*	*			*	*	*	*	*											*	*
Quarter 3, 2016	₩	<u> </u>	-	-	*	*	*	*	- No				*	<u> </u>				<u> </u>	<u> </u>	$\vdash \vdash$	<u> </u>
Quarter 4, 2016	+-	 	-	-		*	طو	 	*				مند			 	<u> </u>	 			<u> </u>
Quarter 1, 2017	*	 	-	-	- V-	- V	*	- VE					*			 	<u> </u>	 		\vdash	<u> </u>
Quarter 2, 2017 Quarter 3, 2017	*	*			*	*	*	*										*			<u> </u>
DISSOLVED SOLIDS	*	不			不	不	不	不										不			
Quarter 4, 2002										*											
Quarter 1, 2003	+							<u> </u>		*											
Quarter 1, 2003 Quarter 2, 2003	+							-		*											
Quarter 3, 2003	+						*			*	*										
Quarter 4, 2003	1									*											
Quarter 3, 2005						*															
Quarter 4, 2006	1														*						
Quarter 1, 2007															*						
Quarter 2, 2007	1														*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						<u> </u>
Quarter 2, 2009															*						<u> </u>
Quarter 3, 2009	—							ـــــ							*						<u> </u>
Quarter 4, 2009	—							ـــــ							*						<u> </u>
Quarter 1, 2010	₩							<u> </u>							*						<u> </u>
Quarter 2, 2010	₩							-							*						<u> </u>
Quarter 3, 2010 Quarter 4, 2010	╆														*						\vdash
Quarter 1, 2011	+							 							*						
Quarter 2, 2011	+							<u> </u>							*						
Quarter 3, 2011	+														*						
Quarter 4, 2011	1	t					1	 							*	1		t			
Quarter 1, 2012	1					1		<u> </u>					1	*	*	1			1	\Box	
Quarter 2, 2012	1														*						*
Quarter 3, 2012	1														*						*
Quarter 4, 2012	1														*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013								<u> </u>							*						_
Quarter 4, 2013	1					<u> </u>		Щ					<u> </u>	<u> </u>	*	<u> </u>			<u> </u>	Ш	<u> </u>
Quarter 1, 2014	ـــــ	<u> </u>				<u> </u>	<u> </u>	Ь—					<u> </u>	<u> </u>	*			<u> </u>	<u> </u>	igsqcup	<u> </u>
Quarter 2, 2014	₩	ļ					<u> </u>	₩							*	.	<u> </u>	ļ		Ш	├
Quarter 4, 2014	₩	<u> </u>	-	-			<u> </u>	₩							*			<u> </u>		$\vdash \vdash$	<u> </u>
Quarter 2, 2015	+-	-				-	-	 					-		*			-	-	$\vdash \vdash$	\vdash
Quarter 3, 2015 Quarter 4, 2015	+-	-				-	-	├					-	-	*	1		-	-	$\vdash \vdash$	\vdash
Quarter 4, 2015 Quarter 1, 2016	+-	1					1	 							*	-	-	1		\vdash	├─
IODIDE															T						
Quarter 2, 2003																*					
Quarter 3, 2003	*					1		 		*			1	1					1	\vdash	
Quarter 4, 2003	†						*	\vdash													
Quarter 3, 2010	1	t				*	†	*					*			1	*	t			
IODINE-131	-																				
Quarter 3, 2010																					

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System	I			UCR	S							URG	: A					LRG	A		
Gradient Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359		365	371	374	366	360	363	357	369	372	367	361	364	358		373
IODOMETHANE		- 10			-							-							-		
Quarter 4, 2003						*															
IRON						-11															
Quarter 4, 2002						*															
	1					不										3 <u>k</u>					\vdash
Quarter 3, 2003	ļ									*						*					
Quarter 4, 2003										*											—
Quarter 1, 2004	<u> </u>									*						*					├
Quarter 2, 2004	<u> </u>									*											<u> </u>
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005															*						*
Quarter 3, 2005						*															*
Quarter 2, 2006															*						*
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2008	l														*						
Quarter 2, 2009															*						
Quarter 3, 2009	1		1	1	1		1								*			1	1		
	H							-				-	-		*	1					
Quarter 4, 2009 Quarter 1, 2010	 		1	1	1		1	-				-	-		*	-		1	1		
	├		<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	 				 	 	-		 	-	<u> </u>	<u> </u>		
Quarter 2, 2010	 							 				 	 		*	!					
Quarter 3, 2010	 		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>				<u> </u>	<u> </u>		*			<u> </u>	<u> </u>		
Quarter 1, 2011	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>				<u> </u>	<u> </u>		*	<u> </u>		<u> </u>	<u> </u>		⊢
Quarter 2, 2011	<u> </u>		ļ	ļ	ļ		ļ	ļ				ļ	ļ		*				ļ		\vdash
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013	<u> </u>														*						
Quarter 2, 2013															*						
Quarter 3, 2013	t														*						
Quarter 4, 2013	1														*						
Quarter 2, 2014	1														*						-
	1														*						\vdash
Quarter 4, 2014	-																	-			\vdash
Quarter 2, 2015	!														*						-
Quarter 3, 2015															*						—
Quarter 4, 2015	<u> </u>														*						<u> </u>
Quarter 1, 2016															*						ш
Quarter 2, 2016															*						
Quarter 3, 2016	*																				
Quarter 4, 2016	*																				
Quarter 2, 2017	*																				
Quarter 3, 2017	*																				
MANGANESE																					
Quarter 3, 2002										*		*									
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2003	Ī									*		*									
Quarter 3, 2003	t									*		*	*			*	*	*	*		
Quarter 4, 2003	1		1	1	1		1			*	*	*	*			<u> </u>	*	*	Ė		
Quarter 1, 2004	t		1	1	1		1	1		*	*	*	<u> </u>			*	*	*	1		
Quarter 1, 2004 Quarter 2, 2004	1		1	1	1		*	-		*	*	*	-			Ψ.	₩.	*	1		
	├		 	 	 	-	*	 			*		 	-	-	<u>.</u>	-	- 本	 		
Quarter 3, 2004	 		 	 	 		*	 		*	不	*	 			*		 	 		
Quarter 4, 2004	├		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		*		*	<u> </u>		<u> </u>	*	<u> </u>	<u> </u>	<u> </u>		\vdash
Quarter 1, 2005	 		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		*		*	<u> </u>					<u> </u>	<u> </u>		
Quarter 2, 2005	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		*		*	<u> </u>					<u> </u>	<u> </u>		⊢
Quarter 3, 2005			ļ	ļ	ļ		ļ	ļ		*		*	ļ			*			ļ		—
Quarter 4, 2005										*						*					<u> </u>
Quarter 1, 2006										*											
Quarter 2, 2006	L^{-}		L	L	L		*	L		*		*	L		L	$L^{-\!\!-\!\!-\!\!-\!\!-\!\!-\!\!-\!\!-\!\!-\!\!-\!\!-\!\!-\!\!-\!\!$	L	L	L		∟
Quarter 3, 2006										*						*					
Quarter 4, 2006	Ī									*											
Quarter 1, 2007	i –									*											
Quarter 2, 2007	t						*			*						1					
Quarter 3, 2007	t		l -	l -	l -		*	l -		<u> </u>		l -	l -			1		l	l -		
Quarter 3, 2007 Quarter 3, 2008	1		-	-	-		*	-				-	-					-	-		
	 		1	1	1		*	-				-	-			-		1	1		
Quarter 4, 2008	_						不	_		_		_	_		_	_	_	_			

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System	1			UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
MANGANESE																					
Quarter 3, 2009							*														
Quarter 3, 2011							*														
Quarter 2, 2016														*							
Quarter 3, 2016									*												
NICKEL																					
Quarter 3, 2003	<u> </u>	<u> </u>								*											
OXIDATION-REDUCTION PO	OTEN	TIA	L																		
Quarter 4, 2002																	*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*				4													-			
Quarter 4, 2003					*								4				4	-			4
Quarter 2, 2004					¥			.					*	.	4		*			4	*
Quarter 3, 2004					*			*				.	*	*	*		*			*	*
Quarter 4, 2004												*					4			*	*
Quarter 1, 2005	!	<u> </u>		<u> </u>		<u> </u>		*		-		<u> </u>	*				*	<u> </u>	<u> </u>	*	不
Quarter 2, 2005	-				*	*		*			*	*	*				*		*	*	*
Quarter 3, 2005 Quarter 4, 2005	1	*		-	- 本	**		*		-	ボ	**	*				*	 	**	*	π'
Quarter 4, 2005 Quarter 1, 2006	-	*		 	*	 		*	*	_		 	*				*	 	 	₩.	*
Quarter 1, 2006 Quarter 2, 2006	-	 		 	*	 	*	*	*	_		 	*				*	 	 	*	*
Quarter 2, 2006 Quarter 3, 2006	-	 		 	*	 	*	*		_		 	*				*	 	 	*	
Quarter 3, 2006 Quarter 4, 2006	-	 		 	*	 	*	*		*		*	*				*	 	 	*	*
Quarter 1, 2007	1	*			*		т.	*		Ê		<u> </u>	*				*			*	*
Quarter 2, 2007		т.			*			71					*				*			*	*
Quarter 3, 2007					*			*					-11				*			*	-11
Quarter 4, 2007					***			***									*			*	*
Quarter 1, 2008					*			*				*	*				-11-		*	*	-11
Quarter 2, 2008					*			*		*		-11-	*	*				*	-11-	*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*	-			*	*		*	*
Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011						*		*		*	*	*	*	*		*	*	*	*	*	
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*		ļ	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2014		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 1, 2015		*		<u> </u>		*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015		*			*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	*		ļ		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*	*			*		*	*		*		*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	*	*		<u> </u>	*	*	*	*	*	*	44.	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2016	*	*		ļ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2017	*	*		ļ	şi.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System				UCR	S							URG	ξA					LRG	Α		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359			371		366	360		357	369	372	367	361	364		370	373
PCB, TOTAL																					
Quarter 4, 2003																	*				
Quarter 3, 2004												*									
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004							984					*									
Quarter 2, 2006							*	<u> </u>				*		<u> </u>		<u> </u>					
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*	<u> </u>		<u> </u>		<u> </u>	-	<u> </u>		—					<u> </u>
Quarter 2, 2008	-						*	 		-				 							
Quarter 4, 2008							*														
Quarter 3, 2009							*	1						1							
Quarter 1, 2010							*	1						1							
Quarter 2, 2010 Quarter 4, 2010							*														
PCB-1242							*														
Quarter 3, 2006							*					*									
Quarter 4, 2006			<u> </u>				-T			*		-T						<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 1, 2008							*	1		<u> </u>				1							
Quarter 1, 2008 Quarter 2, 2012							*	1						1							
PCB-1248																					
Quarter 2, 2008							*														
PCB-1260																					
Quarter 2, 2006							*														
рН																					
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005						*												*	*		
Quarter 4, 2005						*													*		
Quarter 3, 2006																*					
Quarter 2, 2011								ļ						*							
Quarter 3, 2011														*							
Quarter 4, 2011														*							
Quarter 1, 2012												L.				*	*				
Quarter 2, 2012										,		*				42.					
Quarter 1, 2013										*		*				*	ų.				
Quarter 3, 2015																	*			ų.	44-
Quarter 2, 2016								1						1						*	*
Quarter 3, 2016																	JI.			*	
Quarter 2, 2017																	*				
POTASSIUM Overter 1, 2014																*					
Quarter 1, 2014																*					
RADIUM-228																					
Quarter 2, 2005							-	<u> </u>		-						-					-
Quarter 4, 2005																					
SELENIUM Overtor 4, 2002																					
Quarter 4, 2003									_	_			_			_		_			

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SODIUM Quarter 3, 2002										*	*		*								
Quarter 4, 2002										*	*		т.	*							
Quarter 1, 2003										*											
Quarter 2, 2003										*	*										
Quarter 3, 2003											*										
Quarter 1, 2007											*										
Quarter 1, 2012														*							
Quarter 1, 2014															*						
Quarter 3, 2014											*										
Quarter 4, 2014											*										
Quarter 4, 2015											*										
Quarter 1, 2016 Quarter 2, 2016											*										
Quarter 3, 2016 Quarter 3, 2016											*										
Quarter 4, 2016											*										
Quarter 1, 2017											*										
Quarter 2, 2017											*										
Quarter 3, 2017		1					1		1		*	1	1	1			1	1		1	
STRONTIUM-90																					
Quarter 4, 2008																					
SULFATE																					
Quarter 1, 2003							*														
Quarter 2, 2003						*	*														
Quarter 3, 2003	*					*															
Quarter 4, 2003		ļ			*		*				ļ		ļ	<u> </u>			ļ	ļ		ļ	
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*		J												
Quarter 1, 2005					*	*	*		*						*						
Quarter 2, 2005					*	*	*		不						不						
Quarter 3, 2005 Quarter 4, 2005					*	T	T								*						
Quarter 1, 2006					*				*						т-						
Quarter 2, 2006					***	*	*		*						*						
Quarter 3, 2006						-11	*		-11												
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 4, 2007		*																			
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008		*				*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009	<u> </u>	*			*	*	*	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ų.		<u> </u>	<u> </u>		<u> </u>	
Quarter 3, 2009	-	*			*	*	*								*						
Quarter 4, 2009	1	*			*	*	JE.	-	 		 	 	 	 	*		 	 		 	
Quarter 1, 2010 Quarter 2, 2010		*			*	*	*	-							*						
Quarter 2, 2010 Quarter 3, 2010	1	*			*	*	*	1	1	1	1	1	1	1	*		1	1		1	
Quarter 4, 2010		*				*	*	1	1		1	1	1	1	*		1	1		1	
Quarter 1, 2011		*									1		1				1	1		1	
Quarter 2, 2011		*			*	*	*	1							*						
Quarter 3, 2011		*				*	*	*							*						
Quarter 4, 2011		*				*									*						
Quarter 1, 2012		*					*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*					<u> </u>	<u> </u>	<u> </u>		ļ	<u> </u>	ļ	ļ	*		ļ	ļ		ļ	
Quarter 3, 2013	*	*		*	*	*	*								*						
Quarter 4, 2013	<u> </u>	*					<u> </u>	*		<u> </u>	<u> </u>		<u> </u>								
Quarter 1, 2014		*					<u> </u>	*		<u> </u>	<u> </u>		<u> </u>								
Quarter 2, 2014	*	*			*	914	*	*							*						
Quarter 3, 2014	*	*			*	*	*	*	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	*		<u> </u>	<u> </u>		<u> </u>	
Quarter 4, 2014	-	*				*		-													
Quarter 1, 2015	*	*			*		*	-	 		 	 	 	 	*		 	 		 	
Quarter 2, 2015	本	不			不		不	_		_	_		_		不	_	_	_		_	

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System	I			UCR	RS							URG	A			I		LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SULFATE																					
Quarter 3, 2015		*			*	*		*							*						
Quarter 4, 2015	*	*				*	*	*													
Quarter 1, 2016	*	*			*	*	*												<u> </u>		
Quarter 2, 2016	*	*			*	*	*		ш	L'											
Quarter 3, 2016	*	*			*	*	*	*		<u> </u>								<u> </u>	<u> </u>	<u> </u>	
Quarter 4, 2016	*	*				*	*	*	igspace												
Quarter 1, 2017	*	*			4	*	*		 	┢									-		
Quarter 2, 2017	*	*			*	*	*		\vdash												
Quarter 3, 2017 TECHNETIUM-99	*	不			不	不	不														
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*		\vdash				*			*	*	*	*		*
Quarter 3, 2003													-				*				-
Quarter 4, 2003																	*		†		*
Quarter 1, 2004															*		*		†		*
Quarter 2, 2004									\Box						*						*
Quarter 3, 2004															*						*
Quarter 4, 2004															*		*				*
Quarter 3, 2005																	*				
Quarter 1, 2006															*						*
Quarter 2, 2006		*							*										للل		*
Quarter 3, 2006																					*
Quarter 4, 2006	<u> </u>	ļ							Ш	<u> </u>					*				Щ	Ш	*
Quarter 1, 2007																			<u> </u>		*
Quarter 2, 2007									ш	L'			*		*					*	
Quarter 3, 2007								<u> </u>		L					*		*	*	L	<u> </u>	
Quarter 4, 2007									Ш	*					*				*	ala	*
Quarter 1, 2008	!							414	ш					444	*				-14	*	*
Quarter 2, 2008	1						*	*	<u> </u>	┝				*	4	*		-	*		
Quarter 3, 2008	1							-	₩	*					*		*	-	*		
Quarter 4, 2008									\vdash	*							不		不		
Quarter 1, 2009 Quarter 2, 2009	1							-		不								*	 		
Quarter 3, 2009	1							*	$\vdash\vdash$	*					*			· *			
Quarter 4, 2009	1									*					*			*	*		
Quarter 2, 2010	1								\vdash	*					<u> </u>	*	*	*	*		
Quarter 3, 2010										*					*	_	-	-	-		
Quarter 4, 2010									\vdash	<u> </u>								*			
Quarter 1, 2011		*							\vdash	*							*				
Quarter 2, 2011		1							\vdash							*	*	*	*		
Quarter 1, 2012																	*	*	†		
Quarter 2, 2012								*	\Box									*			
Quarter 3, 2012									\Box								*	*			
Quarter 4, 2012															*			*			*
Quarter 1, 2013																		*			*
Quarter 2, 2013																					*
Quarter 3, 2013										*											*
Quarter 4, 2013															*		*	*			*
Quarter 1, 2014															*		*	*	للل		
Quarter 2, 2014	1								igsqcup	└								*	ــــــــــــــــــــــــــــــــــــــ		
Quarter 3, 2014	<u> </u>							<u> </u>	ш	<u> </u>							*	*	*	Ш	
Quarter 4, 2014	<u> </u>	<u> </u>						<u> </u>	ш	└					*			<u> </u>	₩	Щ	
Quarter 1, 2015	!	ļ						—	ш	<u> </u>					*	,1.		*	<u> </u>	Щ	
Quarter 2, 2015	1			<u> </u>			<u> </u>	<u> </u>	igspace	<u> </u>	<u> </u>					*		4-	4.	<u></u>	
Quarter 3, 2015	 	-		<u> </u>			<u> </u>	 	$\vdash \vdash$	-	<u> </u>				ų.	<u> </u>	Ψ.	*	*	*	
Quarter 4, 2015	 	-						 	$\vdash \vdash$	-					*	- JL	*	40	40	*	410
Quarter 1, 2016	 			1			!	-	$\vdash \vdash$!					*	*	*	*	طو	*
Quarter 2, 2016	1-	 		<u> </u>			<u> </u>	-	₩	 	<u> </u>				-	*	*	*	*	*	-
Quarter 3, 2016 Quarter 4, 2016	1	-		-	 		-	 	₩	*	-			*		1	*	*	不	不	
Quarter 4, 2016 Quarter 1, 2017	1	1		-			-	 	$\vdash \vdash$	不	-			不		1	*	- 不	*	*	
Quarter 1, 2017 Quarter 2, 2017	1			 			1		$\vdash \vdash$	\vdash	1					1	ボ		T.	*	
Quarter 2, 2017 Quarter 3, 2017	 	 	<u> </u>			<u> </u>		 	╁	H				<u> </u>	 	1	<u> </u>	*	\vdash	*	
THORIUM-230																		*		*	
Quarter 4, 2015																*					
Quarter 2, 2016	1			1			1		\vdash	*	1									\vdash	
	*	 		1				t	\vdash	F		*				*		t	*	\vdash	
Ouarter 4, 2016										. '					i						
Quarter 4, 2016 TOLUENE	-																				
Quarter 4, 2016 TOLUENE Quarter 2, 2014	•									*				*							

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

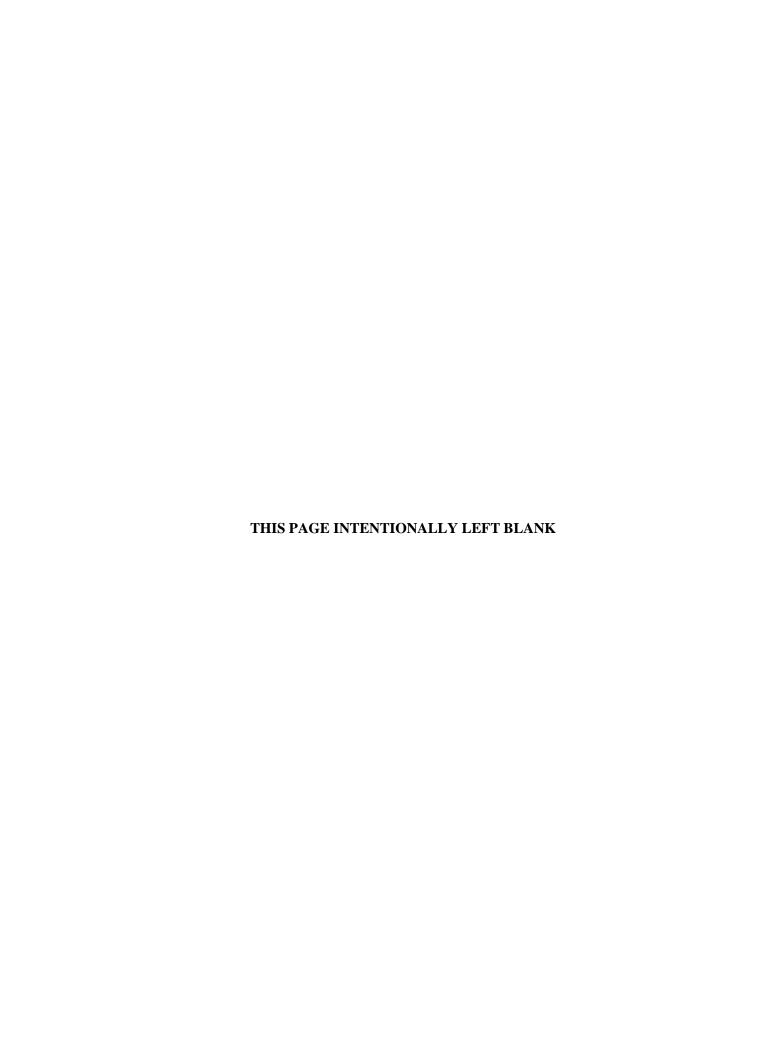
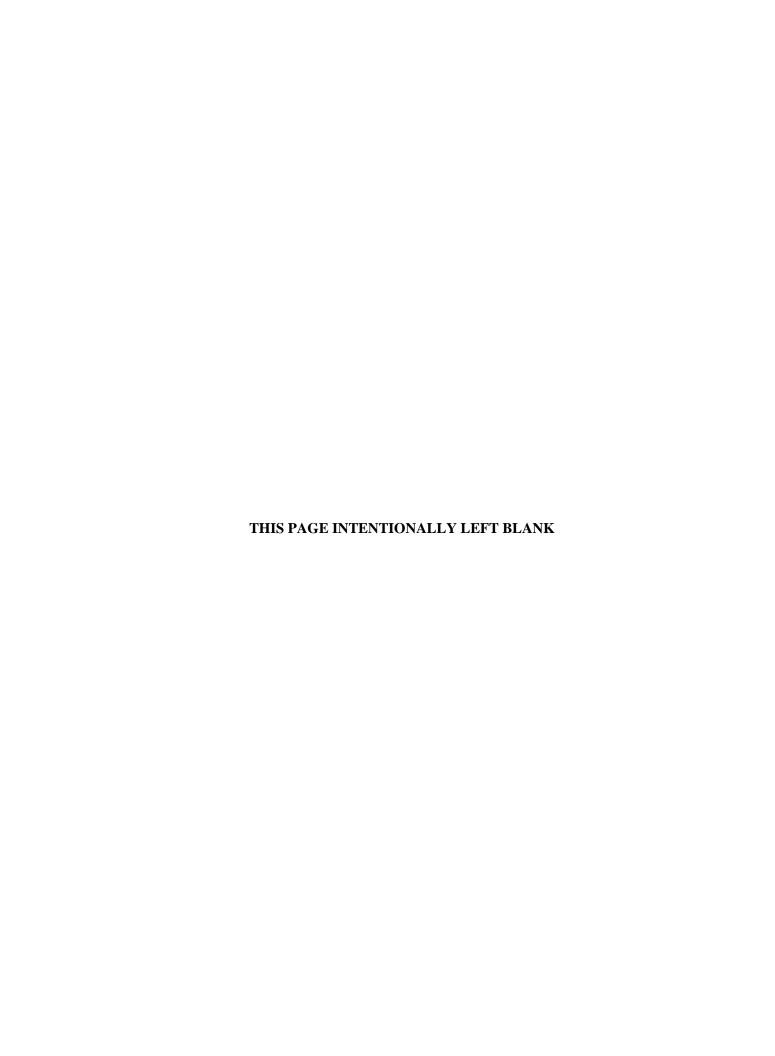

TOTAL ORGANIC CARBON Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2006 TOTAL ORGANIC HALIDES Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 1, 2002 Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2002 Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004	S 375	S 376	S 377	D 359	D 362 *	D 365	U 371	U 374	D 366 * * * *	D 360 * * *	D 363 *	D 357	U 369 * *	U 372	D 367	D 361	D 364	D 358	370	U 373 ∗
TOTAL ORGANIC CARBON Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 TOTAL ORGANIC HALIDES Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 2, 2003 Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004	375	376	377	359	*	365	371	374	*	* * *		357	*	372	367	361	364	358	370	
Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 TOTAL ORGANIC HALIDES Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2002 Quarter 3, 2002 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004									*	*	*									*
Quarter 4, 2002 Quarter 1, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 TOTAL ORGANIC HALIDES Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 7, 2003 Quarter 3, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004									*	*	*									*
Quarter 1, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 TOTAL ORGANIC HALIDES Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2002 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004									*	*			*			-				
Quarter 3, 2003 ** Quarter 4, 2003 Quarter 1, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 TOTAL ORGANIC HALIDES Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2000 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004										*										
Quarter 4, 2003 Quarter 1, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 TOTAL ORGANIC HALIDES Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 7, 2003 Quarter 1, 2003 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004															4	\vdash				
Quarter 1, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 TOTAL ORGANIC HALIDES Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004									不						*	\vdash				
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 TOTAL ORGANIC HALIDES Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004										*						\vdash				
Quarter 4, 2005 Quarter 1, 2006 TOTAL ORGANIC HALIDES Quarter 4, 2002 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004									*	不				*	*	\vdash		*		
Quarter 1, 2006 TOTAL ORGANIC HALIDES Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004									т.					т.	Ψ.		*	*		
TOTAL ORGANIC HALIDES Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004																		*		
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004																				
Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 TRICHLOROETHENE Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004									*											
Quarter 1, 2004 TRICHLOROETHENE Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004									*											
TRICHLOROETHENE Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004			l -						*											
Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004															*					
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004																				
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004																				
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004																				
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004	<u> </u>	<u> </u>														ш				
Quarter 4, 2003 Quarter 1, 2004		ļ	ļ													ш				
Quarter 1, 2004		ļ	ļ													ш				•
		<u> </u>	<u> </u>													ш			_	
White 2 2004	<u> </u>	<u> </u>	<u> </u>												<u> </u>	igspace			_	
Quarter 2, 2004	<u> </u>	<u> </u>	<u> </u>													igspace			•	
Quarter 3, 2004	<u> </u>	<u> </u>												_		Щ			_	_
Quarter 4, 2004	-													_		$\vdash \vdash$			-	_
Quarter 1, 2005																<u> </u>			_	_
Quarter 2, 2005	-															$\vdash \vdash$			_	
Quarter 3, 2005																\vdash			_	-
Quarter 4, 2005	<u> </u>													_		\vdash			_	
Quarter 1, 2006	-															\vdash			_	-
Quarter 2, 2006	-																			=
Quarter 3, 2006	1															\vdash			-	i
Quarter 4, 2006	1															\vdash				
Quarter 1, 2007	-															\vdash			_	
Quarter 2, 2007 Quarter 3, 2007	-													=		\vdash				i
Quarter 4, 2007	1															\vdash				=
Quarter 1, 2008	1															\vdash				
Quarter 1, 2008 Quarter 2, 2008	1																			
Quarter 3, 2008	1																			ī
Quarter 4, 2008	1													-						ī
Quarter 1, 2009																				
Quarter 2, 2009														Ŧ						
Quarter 3, 2009														T						
Quarter 4, 2009																				
Ouarter 1, 2010																				
Quarter 2, 2010																				
Quarter 3, 2010																				
Quarter 4, 2010																				
Quarter 2, 2011																				
Quarter 3, 2011																				
Quarter 4, 2011	L	L																		
Quarter 1, 2012																				
Quarter 2, 2012																				
Quarter 3, 2012																				
Quarter 4, 2012																				
Quarter 1, 2013																igsqcut				
Quarter 2, 2013																				
Quarter 3, 2013	<u> </u>	<u> </u>	ļ													ш				
Quarter 4, 2013	<u> </u>	<u> </u>	ļ													ш				
Quarter 1, 2014	<u> </u>	<u> </u>														لـــا				
Quarter 2, 2014	<u> </u>	<u> </u>																		
Quarter 3, 2014		<u> </u>														ш		_		_
Quarter 4, 2014		<u> </u>														ш				
Quarter 1, 2015		<u> </u>														ш				
Quarter 2, 2015	<u> </u>	1																		
		_	_	_											Щ		ليا	_	_	_

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)


Groundwater Flow System				UCR	S							URG	A					LRG	Α		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2015																					
Quarter 4, 2015																					
Quarter 1, 2016																					
Quarter 2, 2016																					
Quarter 3, 2016																					
Quarter 4, 2016																					
Quarter 1, 2017																					
Quarter 2, 2017																					
Quarter 3, 2017																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
k Statistical test results indicate an elevated concentration (i.e., a statistical exceedance).																					

■ MCL Exceedance

MCL Exceedance
UCRS Upper Continental Recharge System
URGA Upper Regional Gravel Aquifer
LRGA Lower Regional Gravel Aquifer

APPENDIX H METHANE MONITORING DATA

C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

Date: 9/11/2	017	Time:	12:30	Monitor:	Tammy Smith
Weather Condition		***************************************			
	74 degrees, winds ou	t of the N	IE at 13 mph		
Monitoring Equipm					
KAE Systems, Mui	ti-RAE, Serial# 4497-5				
	Monit	toring Loc	cation		Reading (% LEL)
C-746-U1	Checked at floor level				0
C-746-U2	Checked at floor level				0
C-746-U-T-14	Checked at floor level				0
C-746-U15	Checked at floor level				0
MG1	Dry casing		-		0
MG2	Dry casing				0
MG3	Dry casing				0
MG4	Dry casing				0
Suspect or Problem Areas	No problems noted				N/A
Remarks:					
Performed by:	<u>Jamm</u> Signat	rep L	ruith		9/11/2017
	Signat	ure			Date

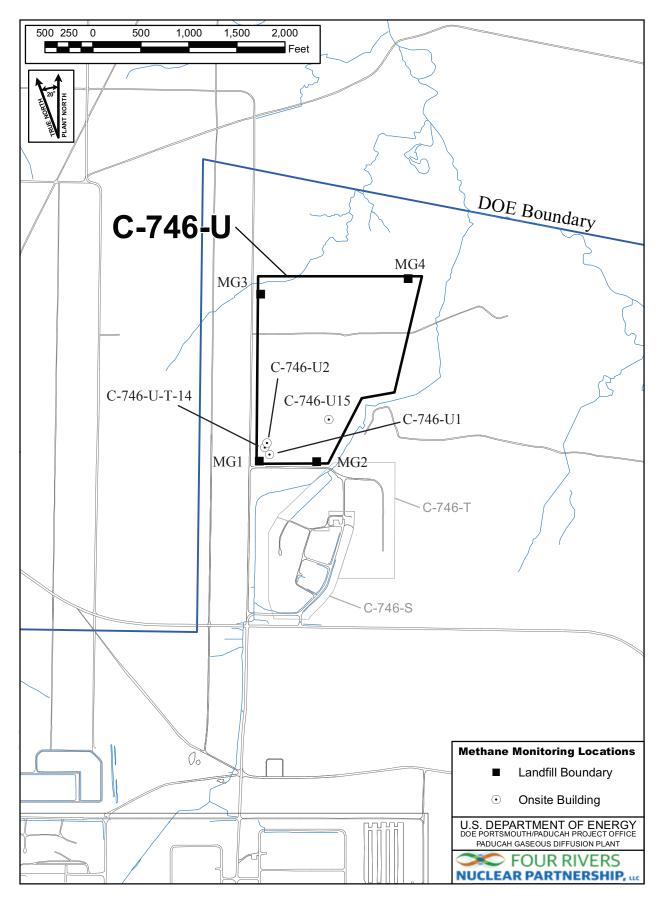
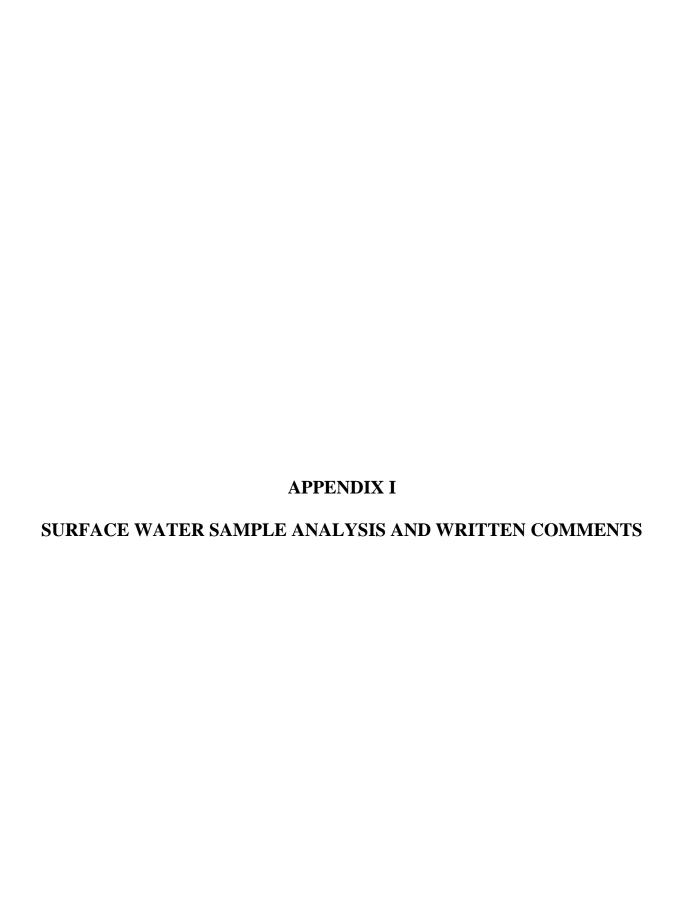



Figure H.1. C-746-U Methane Monitoring Locations

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	REAM", or "D	OWNSTREAM")	L150 AT SITE		L154 UPSTRE	AM	L351 DOWNSTF	REAM		/	
Sample Sequer	ıce	#				1		1		1			
If sample is	a Bl	ank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		7/5/2017 13:4	6	7/5/2017 13:5	66	7/5/2017 13:28			
Duplicate (")	?" c	or "N") ¹				N		N		N			$\overline{}$
Split ('Y' o	: "N	I") ²				N		N		N			
Facility Samp	Facility Sample ID Number (if applicable)							L154US4-17	7	L351US4-17		\ /	
Laboratory Sa	oratory Sample ID Number (if applicable)							427264002		427264003	3	\ /	
Date of Analy	te of Analysis (Month/Day/Year)							7/14/2017		7/18/2017		\ /	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	Т	MGD	Field	1.13		0.17		0.14	*	/ \	
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	3.14		1.73		0.786		/ \	
14808-79-8	0	Sulfate	Т	mg/L	300.0	13.3		1.75		2.62			\setminus
7439-89-6	0	Iron	Т	mg/L	200.8	1.31		0.899		0.891			$ \cdot $
7440-23-5	0	Sodium	Т	mg/L	200.8	1.4		1.02		1.67			
s0268	0	Organic Carbon ⁶	Т	mg/L	9060	16.6		17.2		9.12			
s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	Т	mg/L	410.4	80.8		108		45.8			

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

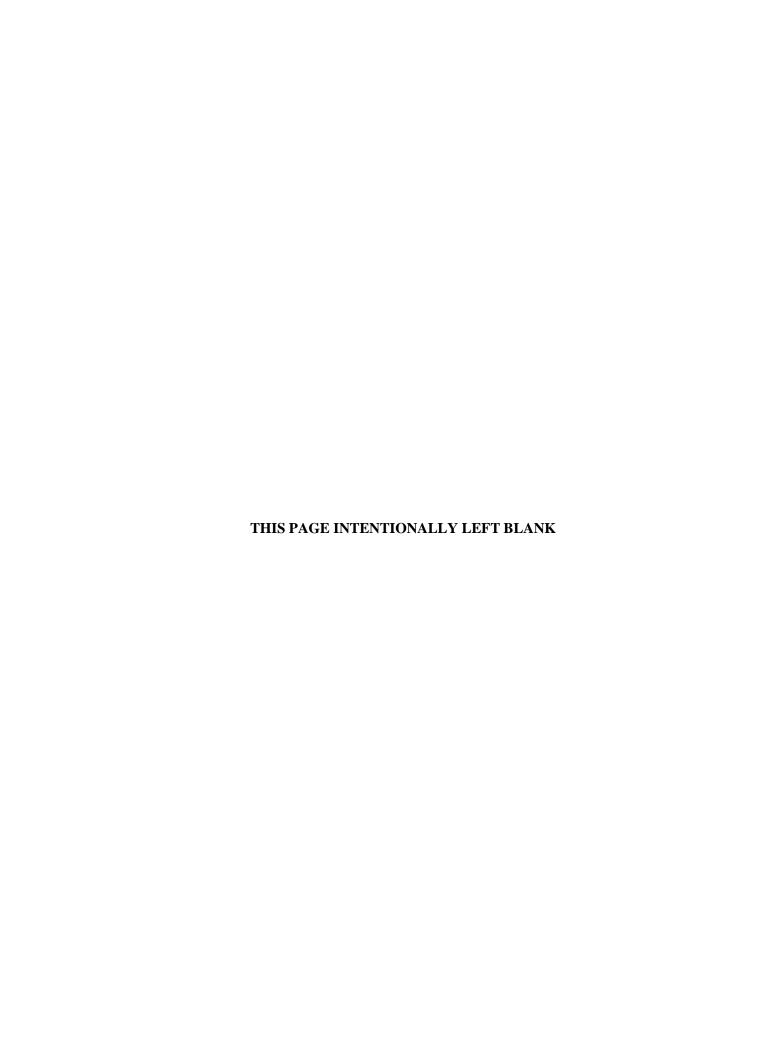
Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	: (KPDES Discharge Number, or	ד" :	JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	REAM		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A
s0145	1	Specific Conductance	Т	µmho/cm	Field	136		58		131			\int
s0270	0	Total Suspended Solids	Т	mg/L	160.2	150	*	35.6	*	54.8	*		
s0266	0	Total Dissolved Solids	Т	mg/L	160.1	193	*	143	*	82.9	*		
s0269	0	Total Solids	Т	mg/L	SM-2540 B 17	420		138		122			
s0296	0	рН	Т	Units	Field	8.17		7.27		7.44			
7440-61-1		Uranium	т	mg/L	200.8	0.00082		0.000414		0.00829		\	
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	1.13	*	6.27	*	7.85	*	\	
12587-47-2		Gross Beta (β)	т	pCi/L	9310	15.8	*	6.61	*	13.3	*	V	
												Λ	
													\
													\setminus
													oxed
													\Box
												/	I \

RESIDENTIAL/CONTAINED – QUARTERLY


Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitor Point	ing Facility Sample ID	Constituent	Flag	Description
L150	L150US4-17	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.13. Rad error is 5.13.
1.454	1.454110.4.47	Beta activity		TPU is 7.73. Rad error is 7.3.
L154	L154US4-17	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.97. Rad error is 5.88.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.64. Rad error is 5.53.
L351	L351US4-17	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.15. Rad error is 6.
		Beta activity		TPU is 6.06. Rad error is 5.63.
		Flow	*	Field notes show there was an obstruction that affected flow rate.

