

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

MAY 2 5 2017

PPPO-02-4203352-17A

Ms. Robin Green Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Mr. Allan Shingleton Division of Waste Management Kentucky Department for Environmental Protection 625 Hospital Drive Madisonville, Kentucky 42431

Dear Ms. Green, Mr. Hendricks, and Mr. Shingleton:

C-746-U CONTAINED LANDFILL FIRST QUARTER CALENDAR YEAR 2017 (JANUARY–MARCH) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FPDP-RPT-0087/V1, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for the First Quarter Calendar Year (CY) 2017. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of C-746-U Contained Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the First Quarter 2017 monitoring well data collected from the C-746-U Landfill were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the First Quarter CY17, in accordance with Condition GSTR0001, Standard Requirement 8, of the C-746-U Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely. noife Wordard

/Jennifer Woodard Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill 1st Qtr CY17 (January-March) Compliance Monitoring Report

e-copy w/enclosure: april.webb@ky.gov, KDEP/Frankfort brian.beglev@ky.gov, KDEP/Frankfort christopher.jung@ky.gov, KDEP/Frankfort dave.dollins@lex.doe.gov, PPPO/PAD edward.winner@ky.gov, KDEP/Frankfort ffscorrespondence@ffspaducah.com, FFS/Kevil gaye.brewer@ky.gov, KDEP/PAD jennifer.blewett@ffspaducah.com, FFS/Kevil jennifer.watson@ffspaducah.com, FFS/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD joseph.towarnicky@ffspaducah.com, FFS/Kevil karen.walker@ffspaducah.com, FFS/Kevil kelly.layne@ffspaducah.com, FFS/Kevil ken.davis@ffspaducah.com, FFS/Kevil kim.knerr@lex.doe.gov, PPPO/PAD leo.williamson@ky.gov, KDEP/Frankfort lisa.crabtree@ffspaducah.com, FFS/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@ffspaducah.com, FFS/Kevil pad.rmc@swiftstaley.com, SSI/Kevil stephaniec.brock@ky.gov, KYRHB/Frankfort tracey.duncan@lex.doe.gov, PPPO/PAD

FPDP-RPT-0087/V1

C-746-U Contained Landfill First Quarter Calendar Year 2017 (January–March) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

FLUOR.

This document is approved for public release per review by:

5-18-17 Classification Support Date

FPDP-RPT-0087/V1

C-746-U Contained Landfill First Quarter Calendar Year 2017 (January–March) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—May 2017

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FLUOR FEDERAL SERVICES, INC., Paducah Deactivation Project managing the Deactivation Project at the Paducah Gaseous Diffusion Plant under Task Order DE-DT0007774

FIC	GURES		v
TA	BLES		v
AC	CRONYM		vii
1.	1.1 BA	2 Methane Monitoring	
		RESULTS	
2.	2.1 ST 2. 2. 2.	2 Upper Regional Gravel Aquifer	
3.	PROFES	IONAL GEOLOGIST AUTHORIZATION	
4.	REFERI	ICES	15
AF	PENDIX	: GROUNDWATER, SURFACE WATER, LEACHATE, AND METH MONITORING SAMPLE DATA REPORTING FORM	
AF	PENDIX	: FACILITY INFORMATION SHEET	B-1
AF	PENDIX	: GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMM	1ENTS C-1
AF	PENDIX	: STATISTICAL ANALYSES AND QUALIFICATION STATEMEN	TD-1
AF	PENDIX	: GROUNDWATER FLOW RATE AND DIRECTION	E-1
AF	PENDIX	NOTIFICATIONS	F-1
AF	PENDIX	: CHART OF MCL AND UTL EXCEEDANCES	G-1
AF	PENDIX	: METHANE MONITORING DATA	H-1
AF	PENDIX	SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COM	MENTSI-1

CONTENTS

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
2.	C-746-U Landfill Surface Water Monitoring Locations	4

TABLES

1.	Summary of MCL Exceedances	5
2.	Exceedances of Statistically Derived Historical Background Concentrations	5
3.	Exceedances of Current Background UTL in Downgradient Wells	. 5
4.	C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	. 8
6.	Monitoring Wells Included in Statistical Analysis	10

ACRONYMS

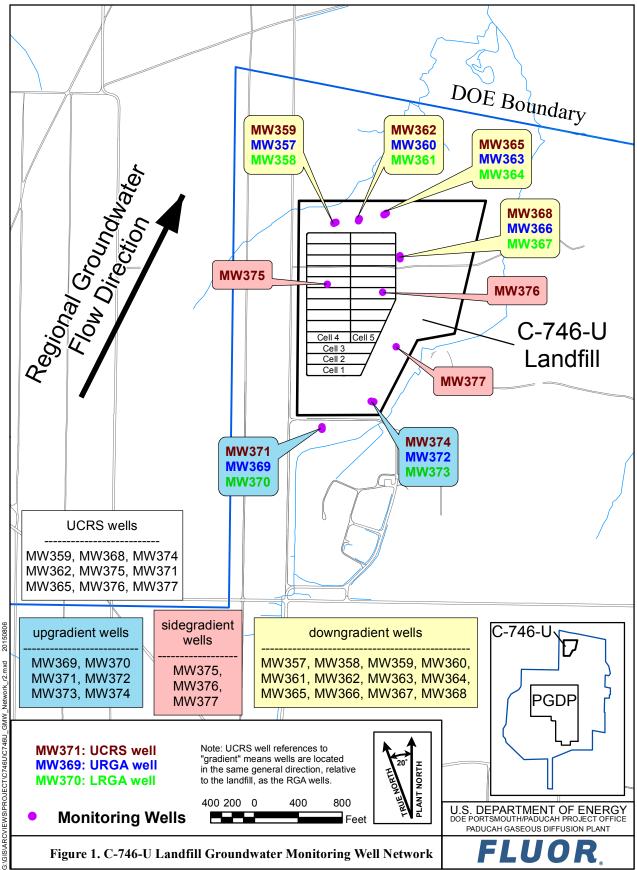
CFR CY KAR KDWM KRS LEL LRGA MCL MW RGA UCRS URGA	Code of Federal Regulations calendar year <i>Kentucky Administrative Regulations</i> Kentucky Division of Waste Management <i>Kentucky Revised Statutes</i> lower explosive limit Lower Regional Gravel Aquifer maximum contaminant level monitoring well Regional Gravel Aquifer Upper Continental Recharge System Upper Regional Gravel Aquifer
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill First Quarter Calendar Year 2017 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 *KAR* 47:030 § 6 and for all permit required parameters listed in 40 *CFR* § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 4. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW359, MW376, and MW377 (all screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for these locations.

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically

is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2017 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using Fluor Federal Services, Inc., procedure CP4-ES-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 24, 2017, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is northeastward, toward the Ohio River. During January, RGA groundwater flow in the area of the landfill was oriented north to northeast. The hydraulic gradient for the RGA and LRGA at the C-746-U Landfill in January was 3.03×10^{-4} ft/ft. The hydraulic gradient for the URGA and LRGA at the C-746-U Landfill were 5.67×10^{-4} ft/ft and 5.97×10^{-4} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.96 to 1.64 ft/day for the URGA and 1.01 to 1.73 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Landfill permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on March 16, 2017. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 *KAR* 48:300 § 2, and the approved *Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill. The C-746-U Landfill has an upstream location, L154; a downstream location, L351; and a location capturing runoff from the landfill surface, L150. The parameters identified in the Solid Waste Landfill Permit were analyzed for report only format, pursuant to Permit Condition GMNP0001, Standard Requirement 1. Surface water results are provided in Appendix I.

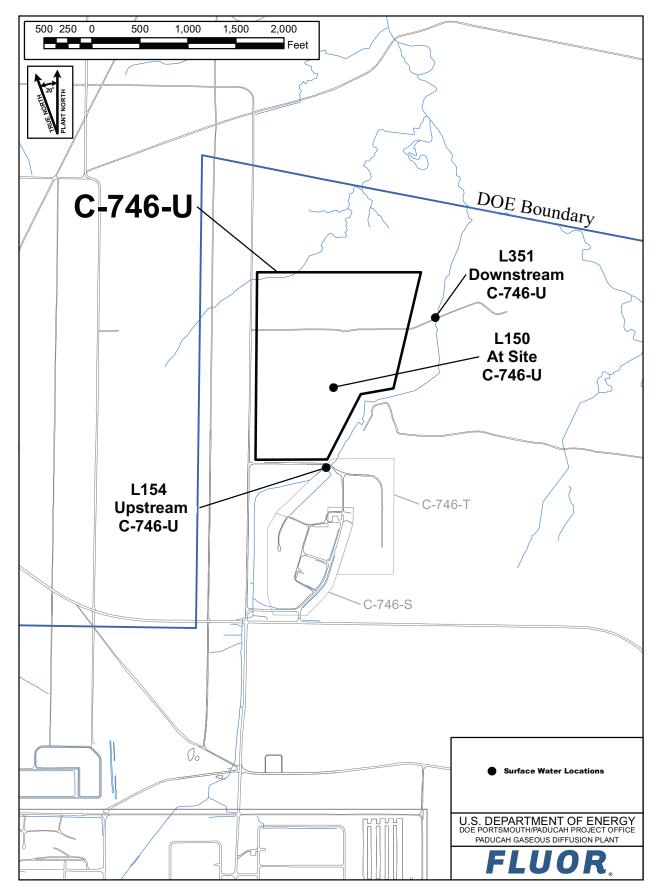


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Contained Kentucky (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Landfill permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL concentrations¹ during the first quarter 2017, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA	
None	MW357: Trichloroethene	MW364: Trichloroethene	
	MW372: Trichloroethene	MW373: Trichloroethene	

UCRS*	URGA	LRGA
MW362: Oxidation-reduction	MW357: Dissolved oxygen,	MW358: Oxidation-reduction
potential, sulfate	oxidation-reduction potential	potential, technetium-99
MW365: Dissolved oxygen,	MW360: Chemical oxygen	MW361: Oxidation-reduction
oxidation-reduction potential, sulfate	demand, oxidation-reduction	potential, technetium-99
	potential, sodium	
MW368: Oxidation-reduction	MW363: Oxidation-reduction	MW364: Oxidation-reduction
potential, sulfate	potential	potential
MW371: Oxidation-reduction	MW366: Oxidation-reduction	MW367: Oxidation-reduction
potential	potential	potential
MW374: Oxidation-reduction	MW369: Oxidation-reduction	MW370: Oxidation-reduction
potential	potential	potential, technetium-99
MW375: Oxidation-reduction	MW372: Oxidation-reduction	MW373: Oxidation-reduction
potential, sulfate	potential	potential

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW360: Chemical oxygen demand, sodium	None
MW357: Dissolved oxygen	

¹ The term "concentration" may refer to a field measurement result such as pH or oxidation-reduction potential or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW357 and MW364 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 8; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

Those constituents listed in Table 3 that exceed both the historical UTL and the current UTL, dissolved oxygen in MW357 and sodium and chemical oxygen demand in MW360, do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All of these preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be Type 1 exceedances (not attributable to the landfills).

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS wells MW362, MW365, and MW368 with sulfate values that exceed both the historical and current backgrounds (Table 5). Because these wells are not hydrogeologically downgradient of the C-746-U Landfill, these exceedances are not attributable to C-746-U sources and are considered to be Type 1 exceedances.

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Var(S)4	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
C-746-U	MW357	Dissolved Oxygen	8	0.05	0.054	14.00	0.000	0.085	0.500	No Trend
Landfills	1000	Chemical Oxygen Demand (COD)	8	0.05	0.447	-2.000	56.67	0.000	-0.081	No Trend
Downgradient Wells	MW360	Sodium	8	0.05	0.054	14.00	0.000	1.696	0.500	No Trend

Footnotes:

¹An alpha of 0.05 represents a 95% confidence interval.

 2 The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴VAR(S) represents the varience of S in the sample set and takes into account statistical ties.

 5 The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(x_{j}\cdot x_{k})/(j\cdot k)$, where x is a data point and j and k are values of time.

⁶Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is postive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.

⁷The Mann-Kendall decision operates on two hypothesis, the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend. Two different tests were ran to test for positive or negative trends. This table reports the test with the lowest p-value.

Note: Statistics generated using XLSTAT

UCRS
MW362: Sulfate
MW365: Sulfate
MW368: Sulfate

Table 5. Exceedances of Current BackgroundUTL in Downgradient UCRS Wells

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2017 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 *KAR* 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance —an exceedance not exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW359***	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376***		
MW377***		

Table 6. Monitoring Wells Included in Statistical Analysis*

*A map showing the monitoring well locations is shown on Figure 1.

**In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

***MW359, MW376, and MW377 had insufficient water to permit a water sample for laboratory analysis.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Sulfate exceeded the current background UTL and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, chemical oxygen demand, dissolved oxygen, oxidation-reduction potential, and sodium displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Chemical oxygen demand, dissolved oxygen, and sodium exceeded the current background UTL and is included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedances of the current background UTL for any LRGA downgradient wells as summarized in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill First Quarter Calendar Year 2017 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FPDP-RPT-0087/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

PG113927 KDevis 5-18-17

ith R. Davis

Kenneth R. Davi

PG113927

May 18, 2017 Date / 2017

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah G	Activity: C-746-	U Contained Landfill					
	(As officially shown of	on DWM Permit Face)						
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	1st Qtr. CY 2017				
Please check the	Please check the following as applicable:							
Charact	Characterization X Quarterly Semiannual Annual Assessment							
Please check app	plicable submittal(s):	X Surfac	ce Water					
		Leachate	X Metha	ne Monitoring				

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 *KAR* 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna E: Redfield, Director, Environmental Management Fluor Federal Services, Inc.

Jennifer Woodard, Paducah Site Lead U.S. Department of Energy

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

	Groundwater: January 2017			SW07300014,
	Surface Water: February 2017		Р	ermit SW07300015,
Sampling Date:	Methane: March 2017	County:	McCracken N	Nos. SW07300045
Facility Name:	U.S. DOE—Paducah Gaseous Di	ffusion Plant		
	(As officially show	vn on DWM Permit Face))	
Site Address:	5501 Hobbs Road	Kevil, Kentucky	ky 42053	
	Street	City/State		Zip
Phone No: (27	70) 441-6800 Latitude:	N 37° 07' 45"	Longitude	e: W 88° 47' 55"

OWNER INFORMATION

Facility Owner:	U.S. DOE, Robert E. Edward	. DOE, Robert E. Edwards III, Manager		(859) 227-5020	
Contact Person:	Myrna E. Redfield		Phone No:	(270) 441-5113	
Contact Person Title: Director, Environmental Management, Fluor Federal Services, Inc.					
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053	
	Street	City/State		Zip	

SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)

Company: GEO C	Consultants, LLC					
Contact Person:	Sam Martin	Phone No: (270) 441-6755				
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky	42053			
	Street	City/State	Zip			
	LABC	DRATORY RECORD #1				
Laboratory <u>GEL L</u>	aboratories, LLC	Lab ID No: <u>KY90129</u>				
Contact Person:	Valerie Davis	Phone No: (843) 769-7391				
Mailing Address:	2040 Savage Road	Charleston, South Carolina	29407			
	Street	City/State	Zip			
	LABO	DRATORY RECORD #2				
Laboratory: N/A		Lab ID No: N/A				
Contact Person:	N/A	Phone No: N/A				
Mailing Address:	N/A					
	Street	City/State	Zip			
LABORATORY RECORD #3						
Laboratory: N/A		Lab ID No: N/A				
Contact Person:	N/A	Phone No: N/A				
Mailing Address:	N/A					
	Street	City/State	Zip			

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

G

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4798	3	8004-47	799	8004-09	81	8004-4800)
Facility's Lo	cal Well or Spring Number (e.g., M	MW-1	, MW-2, etc	.)	357		358		359		360	
Sample Sequen	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/18/2017 07	7:37	1/17/2017	12:08	NA		1/17/2017 1	3:13
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Samp	le ID Number (if applicable)				MW357UG2	-17	MW358U0	G2-17	NA		MW360UG2	-17
Laboratory Sa	mple ID Number (if applicable)				41456900	3	414484	003	NA		41448400	5
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/20/2017	,	1/20/20	17	NA		1/20/2017	7
Gradient with	respect to Monitored Unit (UP, Do	, MWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.389		0.457			*	0.13	J
16887-00-6	Chloride(s)	т	mg/L	9056	33.5		35.8			*	9.44	
16984-48-8	Fluoride	т	mg/L	9056	0.107		0.189			*	0.302	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.37		0.844			*	0.113	
14808-79-8	Sulfate	т	mg/L	9056	50.3		71.2			*	16.4	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.22		30.06			*	30.04	
s0145	Specific Conductance	т	µMH0/cm	Field	440		505			*	511	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798	3	8004-4799	9	8004-0981		8004-4800)
Ī	Facility's Lo	ocal Well or Spring Number (e.g., M	W-1,	MW-2, BLANK-	F, etc.)	357		358		359		360	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.1		322.25			*	322.25	
ľ	N238	Dissolved Oxygen	т	mg/L	Field	5.74		1.23			*	1.2	
Ì	S0266	Total Dissolved Solids	т	mg/L	160.1	250		289			*	270	
Î	s0296	рн	т	Units	Field	6.04		5.83			*	6.41	
Î	NS215	Eh	т	mV	Field	382		350			*	232	
Î	s0907	Temperature	т	°C	Field	12.78		13.83			*	13.28	
2	7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05			*	0.0317	J
^	7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
Î	7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005			*	0.00195	J
Ĩ	7440-39-3	Barium	т	mg/L	6020	0.0733		0.0521			*	0.159	
Ĩ	7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
ľ	7440-42-8	Boron	т	mg/L	6020	0.364		0.464			*	0.0281	
	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
ĺ	7440-70-2	Calcium	т	mg/L	6020	29.5		32.8			*	24.3	
Ī	7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01			*	<0.01	
	7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000328	J		*	0.00992	
	7440-50-8	Copper	т	mg/L	6020	0.000603	J	0.00077	J		*	0.000927	J
ľ	7439-89-6	Iron	т	mg/L	6020	<0.1		0.0746	J		*	2.32	
ľ	7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
ľ	7439-95-4	Magnesium	т	mg/L	6020	13.2		15.5			*	9.28	
Ĩ	7439-96-5	Manganese	т	mg/L	6020	<0.005		0.0565			*	0.196	
	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	1	8004-4800)
	Facility's L	ocal Well or Spring Number (e.	.g., MW-	1, MW-2, e	tc.)	357		358		359		360	
	CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
ľ	7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005			*	0.000456	J
	7440-02-0	Nickel	Т	mg/L	6020	0.000502	J	0.00364			*	0.00135	J
ſ	7440-09-7	Potassium	т	mg/L	6020	1.94		2.39			*	0.688	
ľ	7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
	7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
ſ	7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	
	7440-23-5	Sodium	т	mg/L	6020	47.2		42.3			*	84	
	7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
	7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
	7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.00015	J		*	0.000138	J
	7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01			*	<0.01	
	7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00566	J		*	<0.01	
	108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
	67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
	107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
	71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
	108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
	100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
	108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
Γ	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-4798		8004-479	9	8004-09	81	8004-480	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00541		0.00379			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	8	8004-479	9	8004-09	81	8004-4800)
	Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	357		358		359		360	
	CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
כ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
1	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198	*	<0.0000197	*		*	<0.0000199	*
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082	<0.0971		<0.0971	*		*	0.0678	*J
	12674-11-2	PCB-1016	т	ug/L	8082	<0.0971		<0.0971	*		*	<0.1	*
	11104-28-2	PCB-1221	т	ug/L	8082	<0.0971		<0.0971			*	<0.1	
ſ	11141-16-5	PCB-1232	т	ug/L	8082	<0.0971		<0.0971			*	<0.1	
ſ	53469-21-9	PCB-1242	т	ug/L	8082	<0.0971		<0.0971			*	0.0678	*J
ſ	12672-29-6	PCB-1248	т	ug/L	8082	<0.0971		<0.0971			*	<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-8

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-4800	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0971		<0.0971			*	<0.1	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0971		<0.0971	*		*	<0.1	*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0971		<0.0971			*	<0.1	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.585	*	0.38	*		*	0.531	*
12587-47-2	Gross Beta	т	pCi/L	9310	17.6	*	24.9	*		*	0.0000793	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.346	*	0.593	*		*	0.668	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.71	*	0.905	*		*	3.18	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	43.5	*	47.3	*		*	8.95	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.489	*	0.534	*		*	0.29	*
10028-17-8	Tritium	т	pCi/L	906.0	15	*	85.7	*		*	132	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20			*	63.4	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1	J	2.31			*	1.09	J
s0586	Total Organic Halides	т	mg/L	9020	0.0064	J	0.00712	J		*	0.0127	

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

<u>.</u>

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	' 96	8004-479)7
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, etc)	361		362		363		364	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/17/2017 10	0:07	1/18/2017	11:46	1/18/2017	12:33	1/19/2017 1	2:13
Duplicate ("Y"	or "N") ²				Ν		N		N		Ν	
Split ("Y" or	"N") ³				Ν		N		N		Ν	
Facility Sampl	e ID Number (if applicable)				MW361UG2	2-17	MW362U	G2-17	MW363U0	G2-17	MW364UG	2-17
Laboratory Sam	ple ID Number (if applicable)				41448400	1	414569	005	414569	007	4146750	03
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/20/2017	7	1/20/20	17	1/20/20	17	1/24/201	7
Gradient with	respect to Monitored Unit (UP, DC), NWC	, SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D₅		METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.406		0.132	J	0.141	J	0.416	
16887-00-6	Chloride(s)	т	mg/L	9056	31.3		7.71		29.2		32.5	
16984-48-8	Fluoride	т	mg/L	9056	0.174		0.263		0.13		0.164	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.06		0.607		3.59		1.06	
14808-79-8	Sulfate	т	mg/L	9056	72.9		27.3		25.9		68.4	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		30.25		30.23		29.84	
s0145	Specific Conductance	т	µMH0/cm	Field	492		770		401		471	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796		8004-4797	
Facility's Lo	cal Well or Spring Number (e.g., MV	1-1 , 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.24		334.54		322.03		322.47	
N238	Dissolved Oxygen	т	mg/L	Field	3.61		2.65		1.76		4.18	
50266	Total Dissolved Solids	т	mg/L	160.1	291		414		244		240	
50296	рн	т	Units	Field	6.25		6.54		6.5		6.02	
NS215	Eh	т	mV	Field	334		243		292		378	
50907	Temperature	т	°C	Field	13.44		14		14.17		13.28	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.354		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0555		0.151		0.204		0.066	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.153		0.0126	J	0.0171		0.0102	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	30.3		28.7		29.5		31.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		0.00302	J
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000547	J	0.00133		0.000304	BJ
7440-50-8	Copper	т	mg/L	6020	0.000616	J	0.00155		<0.001		0.000449	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.418		0.0505	J	0.0813	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	13.6		12.9		11.7		13.6	
7439-96-5	Manganese	т	mg/L	6020	0.0022	J	0.0201		0.316		0.00417	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

	AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	6	8004-479)7
	Facility's L	ocal Well or Spring Number (e.	g., MW-	1, MW-2, e	tc.)	361		362		363		364	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00228		<0.0005		0.000824	
	7440-02-0	Nickel	Т	mg/L	6020	<0.002		0.00195	J	0.000957	J	0.00225	
	7440-09-7	Potassium	т	mg/L	6020	2.11		0.459		1.68		2.08	
	7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
2	7440-23-5	Sodium	т	mg/L	6020	45.9		166		41.5		41.6	
∸	7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	*
	7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.00611		<0.0002		<0.0002	*
	7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
	7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		<0.01		0.0401	
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
	100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ſ	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

Ī	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-098	6	8004-47	96	8004-47	97
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	361		362		363		364	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
<u>C-12</u>	75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
2	67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00467		<0.001		0.00053	J	0.0068	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

	AKGWA NUMBER1	, Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-47	96	8004-47	97
	Facility's Lo	ocal Well or Spring Number (e.g.,)	MW-1	, MW-2, et	.c.)	361		362		363		364	
	CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ľ	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ľ	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
2	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
2	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197	*	<0.0000196	*	<0.0000201	*	<0.0000201	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082	<0.1	*	<0.1		0.058	J	<0.1	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.1	*	<0.1		<0.098		<0.1	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.1		<0.098		<0.1	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.1		<0.098		<0.1	
	53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.1		0.058	J	<0.1	
ſ	12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.1		<0.098		<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479)6	8004-479	97
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.1		<0.098		<0.1	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1	*	<0.1		<0.098		<0.1	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.1		<0.098		<0.1	
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.9	*	3.52	*	1.35	*	1.28	*
12587-47-2	Gross Beta	т	pCi/L	9310	24	*	0.72	*	4.28	*	23.6	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.435	*	0.728	*	0.502	*	0.442	*
10098-97-2	Strontium-90	т	pCi/L	905.0	3.41	*	-1.16	*	3.5	*	2.52	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	53.8	*	-3.47	*	10.2	*	45.3	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.126	*	0.817	*	0.404	*	0.488	*
10028-17-8	Tritium	т	pCi/L	906.0	18.8	*	47.1	*	-23	*	43.9	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		9.95	J	<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.02	J	2.82		1.19	J	0.928	J
s0586	Total Organic Halides	т	mg/L	9020	0.00382	J	0.0239		0.0063	J	0.00774	J

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	4793	8004-0	983
Facility's Loc	cal Well or Spring Number (e.g., M	, MW-2, etc	••)	365		36	6	36	57	368		
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		1/18/2017	13:16	1/19/201	7 13:01	1/25/201	7 07:51	1/25/2017	08:54
Duplicate ("Y'	or "N") ²				Ν		Ν		Ν		Ν	
Split ("Y" or	"N") ³				Ν		Ν		Ν		Ν	
Facility Sampl	le ID Number (if applicable)				MW365UG	62-17	MW366	JG2-17	MW3670	JG2-17	MW368U	G2-17
Laboratory Sam	nple ID Number (if applicable)				4145690	009	41467	5005	41505	4001	415054	003
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/20/20	17	1/24/2	2017	1/31/2	2017	1/31/20)17
Gradient with	respect to Monitored Unit (UP, DO)WN,	SIDE, UNKN	IOWN)	DOW	١	DO	WN	DO	WN	DOW	'N
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.476		0.298		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	3.61		38.6		21.8		6.75	
16984-48-8	Fluoride	т	mg/L	9056	0.199		0.159		0.151		0.351	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.694		1.01		0.17	J	0.32	J
14808-79-8	Sulfate	т	mg/L	9056	63.4		49.4		33.8		70.3	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.19		29.84		29.68		29.67	
s0145	Specific Conductance	т	µMH0/cm	Field	389		471		307		539	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793		8004-0983	
Facility's Lo	cal Well or Spring Number (e.g., M	-1 , 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	329.38		322.62		322.87		353.75	
N238	Dissolved Oxygen	т	mg/L	Field	3.01		3.07		1.08		1.78	
S0266	Total Dissolved Solids	т	mg/L	160.1	251		234		183		340	
S0296	рН	т	Units	Field	6.3		6.16		5.89		6.44	
NS215	Eh	т	mV	Field	348		373		320		260	
S0907	Temperature	т	°C	Field	13.72		14.33		14.22		14.67	
7429-90-5	Aluminum	т	mg/L	6020	0.0378	J	<0.05		<0.05		0.645	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00358	BJ	0.00557	В
7440-39-3	Barium	т	mg/L	6020	0.117		0.125		0.191		0.0266	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	<0.015		0.12		0.0311		0.0498	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	23.2		32		22		58.3	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00192		0.000169	BJ	0.00467		0.000287	J
7440-50-8	Copper	т	mg/L	6020	0.0021		0.000448	J	0.000415	J	0.00609	
7439-89-6	Iron	т	mg/L	6020	0.0487	J	0.0927	J	2.68		0.655	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		0.000554	J
7439-95-4	Magnesium	т	mg/L	6020	11.2		13.2		9.44	*	17.1	*
7439-96-5	Manganese	т	mg/L	6020	0.00607		0.00404	J	1.67	В	0.0301	В
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

ſ	AKGWA NUMBEI	R ¹ , Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	3
	Facility's	Local Well or Spring Number (e.g	., MW-	1, MW-2, e	tc.)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
	7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		<0.0005		0.00161	
ľ	7440-02-0	Nickel	т	mg/L	6020	0.00615		0.000945	J	0.0021		0.00209	
	7440-09-7	Potassium	т	mg/L	6020	0.27	J	1.89		2.95		1.05	
	7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
<u> </u>	7440-23-5	Sodium	т	mg/L	6020	54.6		43.1		28.8		41.9	
7	7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005	*	<0.005		<0.005	
	7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7440-61-1	Uranium	т	mg/L	6020	0.000129	J	<0.0002	*	<0.0002		0.000241	
	7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		0.0112	
	7440-66-6	Zinc	т	mg/L	6020	0.00462	J	0.00657	J	0.00685	J	0.00438	J
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
	67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
	100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984		8004-098	2	8004-47	93	8004-098	33
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
C-18	75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
∞	67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
Ĩ	74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
Ĩ	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
Ĩ	74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
Î	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ľ	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	*
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	*
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00436		0.0024		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	4	8004-098	2	8004-479	93	8004-09	83
	Facility's Lo	cal Well or Spring Number (e.g.,	MW-2	1, MW-2, et)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ľ	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ſ	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
<u></u>	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	*
19	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198	*	<0.0000199		<0.0000199		<0.0000199	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	*
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082	0.0675	J	<0.098		<0.1		0.0796	J
	12674-11-2	PCB-1016	Т	ug/L	8082	<0.0952		<0.098		<0.1		<0.103	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.098		<0.1		<0.103	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.098		<0.1		<0.103	
	53469-21-9	PCB-1242	Т	ug/L	8082	0.0675	J	<0.098		<0.1		0.0796	J
	12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.098		<0.1		<0.103	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's I	ocal Well or Spring Number (e.g	., MW-1	L, MW-2, et)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.098		<0.1		<0.103	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.098		<0.1		<0.103	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.098		<0.1		<0.103	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.0758	*	0.822	*	1.53	*	1.17	*
12587-47-2	Gross Beta	т	pCi/L	9310	0.269	*	32.8	*	18.9	*	4.24	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.44	*	0.459	*	1.76	*	0.657	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.932	*	-0.74	*	-3.61	*	0.106	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	5	*	46.7	*	24.9	*	0.238	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.104	*	-0.184	*	0.952	*	0.605	*
10028-17-8	Tritium	т	pCi/L	906.0	-57.1	*	10.8	*	-28.7	*	55.5	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.8	J	1.04	J	0.862	J	1.71	J
s0586	Total Organic Halides	т	mg/L	9020	0.0211		0.00748	J	<0.01		0.0184	

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-48	320	8004-	4818	8004-4	4819	8004-48	808
Facility's Loc	al Well or Spring Number (e.g., M	w−1	L, MW-2, etc	••)	369		37	0	37	1	372	
Sample Sequenc	se #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/18/2017	08:28	1/18/201	7 09:22	1/18/201	7 10:05	1/19/2017	08:53
Duplicate ("Y"	or "N") ²				N		Ν		Ν		Ν	
Split ("Y" or	"N") ³				N		Ν		Ν		Ν	
Facility Sampl	e ID Number (if applicable)				MW369U0	G2-17	MW370	JG2-17	MW3710	JG2-17	MW372U	G2-17
Laboratory Sam	mple ID Number (if applicable)				414569	011	41456	9001	41456	9013	414675	001
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	rganics Anal	ysis	1/20/20	17	1/23/2	2017	1/20/2	2017	1/24/20)17
Gradient with	respect to Monitored Unit (UP, DC	WN,	, SIDE, UNKN	IOWN)	UP		U	Р	UI	P	UP	
CAS RN ⁴	CONSTITUENT	Т Д 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.367		0.463		0.0686	J	0.639	J
16887-00-6	Chloride(s)	т	mg/L	9056	33.6		37.4		4.24		48.1	
16984-48-8	Fluoride	т	mg/L	9056	0.169		0.118		0.241		0.18	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.475	J	1.11		0.227	J	0.0513	J
14808-79-8	Sulfate	т	mg/L	9056	4.95		19.6		13.1		66.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.23		30.25		30.25		29.93	
s0145	Specific Conductance	т	µMH0/cm	Field	390		444		698		595	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

	AKGWA NUMBER ¹	¹ , Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	•
	Facility's Lo	ocal Well or Spring Number (e.g., M	W-1,	MW-2, BLANK-	F, etc.)	369		370		371		372	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.07		323.04		340.71		323.47	
	N238	Dissolved Oxygen	т	mg/L	Field	1.38		3.41		2.41		0.89	
	S0266	Total Dissolved Solids	т	mg/L	160.1	213		240		440		326	
	S0296	рн	т	Units	Field	6.23		6.16		6.62		6.02	
	NS215	Eh	т	mV	Field	381		412		410		263	
	S0907	Temperature	т	°C	Field	13.83		13.94		15.28		14.11	
C-22	7429-90-5	Aluminum	т	mg/L	6020	0.0694		<0.05		1.05		0.0749	
2	7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
	7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00198	BJ	0.00287	BJ	0.00425	J
	7440-39-3	Barium	т	mg/L	6020	0.503		0.266		0.155		0.0446	
	7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
	7440-42-8	Boron	т	mg/L	6020	0.00843	J	0.0313		<0.015		0.983	
	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
	7440-70-2	Calcium	т	mg/L	6020	19.5		32		43.1		47.5	
	7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
	7440-48-4	Cobalt	т	mg/L	6020	0.0107		0.000584	J	0.000206	J	0.000823	BJ
	7440-50-8	Copper	т	mg/L	6020	0.0013		0.000654	J	0.00113		<0.001	
	7439-89-6	Iron	т	mg/L	6020	0.239		0.0548	J	0.596		1.58	
	7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7439-95-4	Magnesium	т	mg/L	6020	8.47		14.4		16.1		18.6	
	7439-96-5	Manganese	т	mg/L	6020	0.157		0.00862		0.0051		0.0202	
	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	ER ¹ , Facility Well/Spring Number				8004-482	0	8004-481	8	8004-481	9	8004-480	8
Facility's	Local Well or Spring Number (e.g	., MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		0.00152		0.000723	
7440-02-0	Nickel	т	mg/L	6020	0.00601		0.000998	J	0.0017	J	0.00148	J
7440-09-7	Potassium	т	mg/L	6020	0.571		2.94		0.657		2.14	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	72		79.9		123		43.4	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		0.000997	J
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00133		<0.0002	*
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00835	J	<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.00389	J	<0.01		<0.01		0.00485	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00497		0.00178		<0.001		0.00712	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820	D	8004-481	8	8004-48	19	8004-48	08
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	369		370		371		372	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
Q	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
25	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000199	*	<0.0000195	*	<0.00002	*	<0.0000199	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082	0.0475	J	<0.1		<0.0962		<0.0952	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.101		<0.1		<0.0962		<0.0952	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.101		<0.1		<0.0962		<0.0952	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.101		<0.1		<0.0962		<0.0952	
	53469-21-9	PCB-1242	т	ug/L	8082	0.0475	J	<0.1		<0.0962		<0.0952	
ſ	12672-29-6	PCB-1248	т	ug/L	8082	<0.101		<0.1		<0.0962		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-26

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.101		<0.1		<0.0962		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.101		<0.1		<0.0962		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.101		<0.1		<0.0962		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	2.72	*	3	*	2.34	*	-0.207	*
12587-47-2	Gross Beta	т	pCi/L	9310	8.82	*	44.8	*	2.22	*	14.2	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.868	*	0.72	*	0.489	*	0.54	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.5	*	2.37	*	2.3	*	-1.59	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	27	*	82.8	*	-1.72	*	24.7	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.00581	*	0.216	*	0.656	*	0.32	*
10028-17-8	Tritium	т	pCi/L	906.0	28.4	*	-10.5	*	24.2	*	59.4	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		0.00176	J	<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.88	J	1.26	J	2.4		2.22	
s0586	Total Organic Halides	т	mg/L	9020	0.0411		0.00954	J	0.00378	J	0.01	

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-09	990	8004-09	985	8004-098	38
Facility's Loo	cal Well or Spring Number (e.g., M	MW-1	L, MW-2, etc	.)	373		374		375		376	
Sample Sequend	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/19/2017 10):23	1/19/2017	09:39	1/25/2017	09:42	NA	
Duplicate ("Y	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG2	-17	MW374U0	G2-17	MW375U0	G2-17	NA	
Laboratory Sar	mple ID Number (if applicable)				41467500	9	414675	011	415054	005	NA	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	rganics Anal	ysis	1/24/2017	,	1/24/20	17	1/31/20	17	NA	
Gradient with	respect to Monitored Unit (UP, DO	JWN,	, SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.601		0.784		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	47.8		65		3.88			*
16984-48-8	Fluoride	т	mg/L	9056	0.193		0.216		0.357			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.11		<0.5		0.793			*
14808-79-8	Sulfate	т	mg/L	9056	110		4.83		30.6			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.89		29.91		29.66			*
s0145	Specific Conductance	т	µMH0/cm	Field	781		722		379			*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-0990)	8004-0985		8004-0988	3
Facility's Lo	cal Well or Spring Number (e.g., M	I-1 , 1	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	323.49		333.85		340.61			*
N238	Dissolved Oxygen	т	mg/L	Field	2.27		1.43		1.59			*
S0266	Total Dissolved Solids	т	mg/L	160.1	413		367		217			*
S0296	рн	т	Units	Field	6.25		6.5		6.62			*
NS215	Eh	т	mV	Field	279		187		275			*
s0907	Temperature	т	°C	Field	14.78		14.83		15.06			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0277	J		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00362	J	0.00211	BJ		*
7440-39-3	Barium	т	mg/L	6020	0.0296		0.166		0.203			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.59		0.0253		0.0124	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	69.6		23.8		16.1			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.000198	BJ	0.00246	В	0.000833	J		*
7440-50-8	Copper	т	mg/L	6020	0.000438	J	<0.001		0.00063	J		*
7439-89-6	Iron	т	mg/L	6020	0.0749	J	3.64		0.232			*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	23.9		6.04		5.7	*		*
7439-96-5	Manganese	т	mg/L	6020	0.00334	J	0.287		0.0138	В		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	38
Ī	Facility's L	ocal Well or Spring Number (e.	g., MW-	1, MW-2, e	tc.)	373		374		375		376	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00047	J	<0.0005			*
ľ	7440-02-0	Nickel	т	mg/L	6020	0.00155	J	0.00186	J	0.00157	J		*
ľ	7440-09-7	Potassium	т	mg/L	6020	2.57		0.584		0.237	J		*
	7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005			*
	7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005			*
	7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001			*
C-29	7440-23-5	Sodium	т	mg/L	6020	58.3		137		64.2			*
9	7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005			*
	7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002			*
	7440-61-1	Uranium	т	mg/L	6020	<0.0002	*	0.000098	*J	<0.0002			*
	7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01			*
	7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		<0.01			*
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.005	*	<0.005	*	<0.005			*
	67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		0.0018	J		*
	107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
	107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			*
	71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			*
	100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-099)	8004-09	85	8004-09	88
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	373		374		375		376	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
C-30	75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
	74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001	*		*
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001	*		*
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00853		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

	AKGWA NUMBER ¹	¹ , Facility Well/Spring Number				8004-479	2	8004-099	0	8004-098	35	8004-09	988
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	373		374		375		376	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
ľ	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
2	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005	*		*
37	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002		<0.0000197		<0.0000199			*
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001	*		*
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	1336-36-3	PCB,Total	т	ug/L	8082	<0.106		<0.1		<0.1			*
	12674-11-2	PCB-1016	т	ug/L	8082	<0.106		<0.1		<0.1			*
	11104-28-2	PCB-1221	т	ug/L	8082	<0.106		<0.1		<0.1			*
	11141-16-5	PCB-1232	т	ug/L	8082	<0.106		<0.1		<0.1			*
	53469-21-9	PCB-1242	т	ug/L	8082	<0.106		<0.1		<0.1			*
ſ	12672-29-6	PCB-1248	т	ug/L	8082	<0.106		<0.1		<0.1			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.106		<0.1		<0.1			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.106		<0.1		<0.1			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.106		<0.1		<0.1			*
12587-46-1	Gross Alpha	т	pCi/L	9310	1.89	*	0.581	*	-0.251	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	15.6	*	1.36	*	0.49	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.332	*	0.728	*	0.751	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.0653	*	-1.64	*	-1.93	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	33.1	*	-7.27	*	-7.56	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.217	*	0.654	*	0.173	*		*
10028-17-8	Tritium	т	pCi/L	906.0	-63.8	*	4.13	*	-3.65	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	14.6	J	26.2		<20			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5			*
S0268	Total Organic Carbon	т	mg/L	9060	1.27	J	2.77		1.5	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.0155		0.0256		0.0169			*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-098	9	0000-00	00	0000-000	00	0000-000	00
Facility's Loo	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	.)	377		E. BLAN	١K	F. BLAN	K	T. BLANK	(1
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		E		F		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		NA		1/19/2017	08:25	1/19/2017 10:28		1/17/2017 0	7:15
Duplicate ("Y	or "N") ²				Ν		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				NA		RI1UG2-	-17	FB1UG2-17		TB1UG2-	17
Laboratory Sar	mple ID Number (if applicable)				NA		4146750)14	4146750	13	41448400)7
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	NA		1/24/20	17	1/24/201	7	1/20/201	7
Gradient with	respect to Monitored Unit (UP, DC	JWN,	SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989	9	0000-0000)	0000-0000		0000-0000)
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
\$0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рН	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.002		<0.002			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	<0.001		<0.001			*
7439-89-6	Iron	т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	00
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	377		E. BLAN	K	F. BLAN	к	T. BLANK	(1
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
	7439-98-7	Molybdenum	т	mg/L	6020		*	<0.0005		<0.0005			*
	7440-02-0	Nickel	т	mg/L	6020		*	<0.002		<0.002			*
	7440-09-7	Potassium	т	mg/L	6020		*	<0.3		<0.3			*
	7440-16-6	Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
	7782-49-2	Selenium	т	mg/L	6020		*	<0.005		<0.005			*
	7440-22-4	Silver	т	mg/L	6020		*	<0.001		<0.001			*
C-35	7440-23-5	Sodium	т	mg/L	6020		*	<0.25		<0.25			*
5	7440-25-7	Tantalum	т	mg/L	6020		*	<0.005	*	<0.005			*
	7440-28-0	Thallium	т	mg/L	6020		*	<0.002		<0.002			*
	7440-61-1	Uranium	т	mg/L	6020		*	<0.0002	*	<0.0002			*
	7440-62-2	Vanadium	т	mg/L	6020		*	<0.01		<0.01			*
	7440-66-6	Zinc	т	mg/L	6020		*	<0.01		<0.01			*
	108-05-4	Vinyl acetate	т	mg/L	8260		*	<0.005	*	<0.005	*	<0.005	
	67-64-1	Acetone	т	mg/L	8260		*	0.00479	J	0.00509		0.00186	J
	107-02-8	Acrolein	т	mg/L	8260		*	<0.005		<0.005		<0.005	
	107-13-1	Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005		<0.005	
	71-43-2	Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	108-90-7	Chlorobenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	1330-20-7	Xylenes	т	mg/L	8260		*	<0.003		<0.003		<0.003	
	100-42-5	Styrene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	108-88-3	Toluene	т	mg/L	8260		*	0.00042	J	0.00041	J	0.00036	J
	74-97-5	Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-0989		0000-000	0	0000-00	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	377		E. BLAN	<	F. BLAN	IK	T. BLAN	∢1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	0.0117		0.0117		0.00406	J
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260		*	0.00072	J	0.00069	J	0.00138	
74-87-3	Methyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number	8004-098	9	0000-0000	C	0000-000	00	0000-00	00			
Facility's Lo	ocal Well or Spring Number (e.g., M)	377		E. BLANK	(F. BLAN	IK	T. BLAN	K 1		
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000199		<0.0000201		<0.0000198	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.101		<0.0943			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.101		<0.0943			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.101		<0.0943			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.101		<0.0943			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.101		<0.0943			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.101		<0.0943			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						0000-0000		0000-000	0	0000-0000)
Facility's Loc	al Well or Spring Number (e.g., M	377		E. BLANK		F. BLAN	к	T. BLANK	1			
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.101		<0.0943			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.101		<0.0943			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.101		<0.0943			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	-0.719	*	-0.497	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	1.79	*	-0.25	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418		*	0.752	*	0.538	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*	-2.81	*	-2.82	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	-6.63	*	-5.44	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	-0.035	*	0.834	*		*
10028-17-8	Tritium	т	pCi/L	906.0		*	151	*	110	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER1	, Facility Well/Spring Number				000-000	00	0000-00	00	0000-000	0	8004-4792	2
Facility's Lo	cal Well or Spring Number (e.g., M	.)	T. BLANK 2		T. BLAN	К 3	T. BLANK	(4	373			
Sample Sequen	ce #	1		1		1		2				
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	Т		Т		Т		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/18/2017 0	7:05	1/19/2017	08:20	1/25/2017 0	7:10	1/19/2017 10):23
Duplicate ("Y	" or "N") ²				N		N		N		Y	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample ID Number (if applicable)					TB2UG2-	17	TB3UG2	-17	TB4UG2	2-17	MW373DUG	62-17
Laboratory Sa	mple ID Number (if applicable)				4145690	15	4146750	15	41505400	7	41467500)7
Date of Analy;	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/20/201	7	1/24/201	7	1/31/201	7	1/24/2017	7
Gradient with	respect to Monitored Unit (UP, DO)WN,	SIDE, UNKN	IOWN)	NA		NA		NA		UP	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*	0.599	
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*	47.7	
16984-48-8	Fluoride	т	mg/L	9056		*		*		*	0.197	
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*	1.12	
14808-79-8	Sulfate	т	mg/L	9056		*		*		*	107	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*	29.89	
s0145	Specific Conductance	т	µMH0/cm	Field		*		*		*	781	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."*

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		0000-000	0	0000-0000	C	0000-0000		8004-4792			
Facility's Lo	Acility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.)						T. BLANK	3	T. BLANK 4	1	373	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*	323.49	
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*	2.27	
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*	389	
s0296	рн	т	Units	Field		*		*		*	6.25	
NS215	Eh	т	mV	Field		*		*		*	279	
S0907	Temperature	т	°C	Field		*		*		*	14.78	
7429-90-5	Aluminum	т	mg/L	6020		*		*		*	<0.05	
7440-36-0	Antimony	т	mg/L	6020		*		*		*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020		*		*		*	<0.005	
7440-39-3	Barium	т	mg/L	6020		*		*		*	0.0285	
7440-41-7	Beryllium	т	mg/L	6020		*		*		*	<0.0005	
7440-42-8	Boron	т	mg/L	6020		*		*		*	1.51	
7440-43-9	Cadmium	т	mg/L	6020		*		*		*	<0.001	
7440-70-2	Calcium	т	mg/L	6020		*		*		*	66.4	
7440-47-3	Chromium	т	mg/L	6020		*		*		*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020		*		*		*	0.00021	BJ
7440-50-8	Copper	т	mg/L	6020		*		*		*	0.000461	J
7439-89-6	Iron	т	mg/L	6020		*		*		*	0.084	J
7439-92-1	Lead	т	mg/L	6020		*		*		*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020		*		*		*	23.4	
7439-96-5	Manganese	т	mg/L	6020		*		*		*	0.00379	J
7439-97-6	Mercury	т	mg/L	7470		*		*		*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

	AKGWA NUMBER	¹ , Facility Well/Spring Number	0000-000	0	000-000	00	0000-000	0	8004-479	92			
	Facility's L	tc.)	T. BLANK	2	T. BLAN	<3	T. BLANK	4	373				
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	7439-98-7	Molybdenum	т	mg/L	6020		*		*		*	<0.0005	
	7440-02-0	Nickel	т	mg/L	6020		*		*		*	0.00152	J
	7440-09-7	Potassium	т	mg/L	6020		*		*		*	2.55	
	7440-16-6	Rhodium	т	mg/L	6020		*		*		*	<0.005	
	7782-49-2	Selenium	т	mg/L	6020		*		*		*	<0.005	
	7440-22-4	Silver	Т	mg/L	6020		*		*		*	<0.001	
	7440-23-5	Sodium	т	mg/L	6020		*		*		*	56.5	
	7440-25-7	Tantalum	т	mg/L	6020		*		*		*	<0.005	*
	7440-28-0	Thallium	т	mg/L	6020		*		*		*	<0.002	
	7440-61-1	Uranium	Т	mg/L	6020		*		*		*	<0.0002	*
	7440-62-2	Vanadium	т	mg/L	6020		*		*		*	<0.01	
	7440-66-6	Zinc	т	mg/L	6020		*		*		*	<0.01	
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	*
	67-64-1	Acetone	т	mg/L	8260	<0.005		0.00465	J	0.00908		<0.005	
	107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		0.00083	J	<0.001	
	1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
	100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-88-3	Toluene	т	mg/L	8260	<0.001		0.00042	J	<0.001		<0.001	
Γ	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

	AKGWA NUMBER ¹ , Facility Well/Spring Number								0000-0000)	0000-000	00	8004-4792	
	Facility's Lo	oca	l Well or Spring Number (e.g., M	T. BLANK 2	2	T. BLANK	3	T. BLANI	〈 4	373				
	CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	75-27-4		Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-25-2		Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-83-9		Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	78-93-3		Methyl ethyl ketone	т	mg/L	8260	<0.005		0.0112		<0.005		<0.005	
	110-57-6		trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	75-15-0		Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
C-42	75-00-3		Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
2	67-66-3		Chloroform	т	mg/L	8260	<0.001		0.00071	J	<0.001		<0.001	
	74-87-3		Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-59-2		cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-95-3		Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-34-3		1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	107-06-2		1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-35-4		1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-93-4		Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
	79-34-5		Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
	71-55-6		Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-00-5		Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	630-20-6		Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-01-4		Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	127-18-4		Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-01-6		Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		0.00874	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number	0000-000)	0000-000	0	0000-000	00	8004-47	92			
Facility's Loc	al Well or Spring Number (e.g., M	T. BLANK	2	T. BLANK	3	T. BLANI	〈 4	373				
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198	*	<0.0000199		<0.0000196		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*	<0.106	
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*	<0.106	
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*	<0.106	
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*	<0.106	
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*	<0.106	
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*	<0.106	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-44

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000		0000-0000)	8004-479	2
Facility's Lo	cal Well or Spring Number (e.g.,	T. BLANK	2	T. BLANK 3		T. BLANK	4	373				
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*	<0.106	
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*	<0.106	
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*	<0.106	
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*	-1.9	*
12587-47-2	Gross Beta	т	pCi/L	9310		*		*		*	11.9	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300		*		*		*	0.201	*
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*		*	0.547	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*		*	32.6	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*		*	0.342	*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*	47	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*	9.95	J
57-12-5	Cyanide	т	mg/L	9012		*		*		*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0		*		*		*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*	1.5	J
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*	0.0118	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4798 MW357	MW357UG2-17	1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.77. Rad error is 1.77.
		Gross beta		TPU is 3.22. Rad error is 1.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.405. Rad error is 0.405.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.08. Rad error is 2.06.
		Technetium-99		TPU is 11.7. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.769. Rad error is 0.758.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 135. Rad error is 135.
004-4799 MW358	MW358UG2-17	1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1260	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.55. Rad error is 1.55.
		Gross beta		TPU is 4.31. Rad error is 1.49.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.423. Rad error is 0.422.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.99. Rad error is 1.99.
		Technetium-99		TPU is 11.7. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.521. Rad error is 0.51.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 129. Rad error is 128.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description					
3004-0981 MW359		Bromide		During sampling, the well went dry; therefore, no sample was collected.					
		Chloride		During sampling, the well went dry; therefore, no sample was collected.					
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.					
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.					
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.					
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.					
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.					
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.					
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.					
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.					
		рН		During sampling, the well went dry; therefore, no sample wa collected.					
		Eh		During sampling, the well went dry; therefore, no sample wa collected.					
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.					
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.					
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.					
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.					
		Barium		During sampling, the well went dry; therefore, no sample wa collected.					
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.					
		Boron		During sampling, the well went dry; therefore, no sample wa collected.					
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.					
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.					
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.					
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.					
		Copper		During sampling, the well went dry; therefore, no sample wa collected.					
		Iron		During sampling, the well went dry; therefore, no sample wa collected.					
							Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.					
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.					
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.					

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0981 MW359		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0981 MW359		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0981 MW359	·	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring	Facility	Q an atitu ant		Description
Point	Sample ID	Constituent	Flag	Description
3004-4800 MW360	MW360UG2-17	1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		PCB, Total	PY2	Difference between results from two GC columns unacceptable AND MS/MSD RPD outside acceptance criteria.
		PCB-1016	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1242	Ρ	Difference between results from two GC columns unacceptable.
		PCB-1260	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.77. Rad error is 1.77.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.21. Rad error is 1.21.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.476. Rad error is 0.475.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.82. Rad error is 2.77.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 9.86. Rad error is 9.81.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.39. Rad error is 0.384.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 131. Rad error is 129.
004-4795 MW361	MW361UG2-17	1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		PCB, Total	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1016	Y2	MS/MSD RPD outside acceptance criteria
		PCB-1260	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.54. Rad error is 1.54.
		Gross beta		TPU is 4.16. Rad error is 1.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.395. Rad error is 0.395.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.26. Rad error is 3.21.
		Technetium-99		TPU is 11.9. Rad error is 10.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.346. Rad error is 0.342.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 126. Rad error is 126.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

3004-0986 MW362	MW362UG2-17	1,2-Dibromo-3-chloropropane Gross alpha	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha		
			U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.03. Rad error is 2.98.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.52. Rad error is 1.52.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.664. Rad error is 0.663.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.3. Rad error is 2.3.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 9.4. Rad error is 9.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.995. Rad error is 0.974.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 127. Rad error is 126.
8004-4796 MW363	MW363UG2-17	1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.7. Rad error is 1.68.
		Gross beta		TPU is 1.32. Rad error is 1.11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.426. Rad error is 0.426.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.5. Rad error is 2.44.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 9.93. Rad error is 9.87.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.798. Rad error is 0.789.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 121. Rad error is 121.
004-4797 MW364	MW364UG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Uranium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.29. Rad error is 2.28.
		Gross beta		TPU is 4.99. Rad error is 3.16.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.396. Rad error is 0.396.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.96. Rad error is 2.94.
		Technetium-99		TPU is 11.8. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.807. Rad error is 0.797.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 128. Rad error is 127.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0984 MW365	MW365UG2-17	1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.27. Rad error is 2.27.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.42. Rad error is 2.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.419. Rad error is 0.419.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.44. Rad error is 1.43.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 9.59. Rad error is 9.57.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.572. Rad error is 0.572.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 129. Rad error is 129.
004-0982 MW366	MW366UG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Uranium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.31. Rad error is 2.31.
		Gross beta		TPU is 6.47. Rad error is 3.44.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	Т	Tracer recovery outside control limits of 30-110%. TPU is 0.39. F error is 0.39.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.76. Rad error is 1.76.
		Technetium-99		TPU is 11.7. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.56. Rad error is 0.559.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 124. Rad error is 124.
004-4793 MW367	MW367UG2-17	Magnesium	Е	Result estimated due to matrix interferences.
		1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Methyl Isobutyl Ketone	Y1	MS/MSD recovery outside acceptance criteria
		1,2,3-Trichloropropane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.78. Rad error is 2.77.
		Gross beta		TPU is 4.7. Rad error is 3.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.682. Rad error is 0.679.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.56. Rad error is 2.56.
		Technetium-99		TPU is 11.7. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.93. Rad error is 2.9.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 152. Rad error is 152.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368	MW368UG2-17	Magnesium	Е	Result estimated due to matrix interferences.
		1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Methyl Isobutyl Ketone	Y1	MS/MSD recovery outside acceptance criteria
		1,2,3-Trichloropropane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.66. Rad error is 2.65.
		Gross beta		TPU is 1.7. Rad error is 1.54.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.447. Rad error is 0.446.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.4. Rad error is 2.4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 10.4. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.66. Rad error is 3.64.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 155. Rad error is 154.
004-4820 MW369	MW369UG2-17	1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.03. Rad error is 3.
		Gross beta		TPU is 2.69. Rad error is 2.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.6. Rad error is 0.599.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.86. Rad error is 1.84.
		Technetium-99		TPU is 12.4. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.7. Rad error is 0.699.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 127. Rad error is 127.
004-4818 MW370	MW370UG2-17	1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.14. Rad error is 2.08.
		Gross beta		TPU is 7.73. Rad error is 1.93.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.529. Rad error is 0.529.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.56. Rad error is 2.53.
		Technetium-99		TPU is 17.6. Rad error is 15.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.779. Rad error is 0.773.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 121. Rad error is 121.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4819 MW371	MW371UG2-17	1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.59. Rad error is 2.56.
		Gross beta		TPU is 1.33. Rad error is 1.27.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.462. Rad error is 0.461.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.37. Rad error is 2.34.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.22. Rad error is 9.22.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.864. Rad error is 0.849.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 120. Rad error is 120.
8004-4808 MW372	MW372UG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Uranium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.13. Rad error is 2.13.
		Gross beta		TPU is 3.65. Rad error is 2.77.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.427. Rad error is 0.426.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.53. Rad error is 2.53.
		Technetium-99		TPU is 12.1. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.893. Rad error is 0.886.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 125. Rad error is 125.
8004-4792 MW373	MW373UG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Uranium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.41. Rad error is 2.39.
		Gross beta		TPU is 3.99. Rad error is 3.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.349. Rad error is 0.348.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.97. Rad error is 1.97.
		Technetium-99		TPU is 12. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.566. Rad error is 0.565.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 125. Rad error is 125.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0990 MW374	MW374UG2-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Uranium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 2.13. Rad error is 2.12.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 2.45. Rad error is 2.44.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.472. Rad error is 0.471.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 1.5. Rad error is 1.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 9.32. Rad error is 9.32.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.23. Rad error is 1.22.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 131. Rad error is 131.
004-0985 MW375	MW375UG2-17	Magnesium	Е	Result estimated due to matrix interferences.
		1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Methyl Isobutyl Ketone	Y1	MS/MSD recovery outside acceptance criteria
		1,2,3-Trichloropropane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.45. Rad error is 2.45.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.88. Rad error is 1.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.532. Rad error is 0.532.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.6. Rad error is 2.6.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 9.87. Rad error is 9.87.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.16. Rad error is 3.14.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 157. Rad error is 157.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description									
8004-0988 MW376		Molybdenum	0	During sampling, the well went dry; therefore, no sample was collected.									
		Nickel		During sampling, the well went dry; therefore, no sample was collected.									
		Potassium		During sampling, the well went dry; therefore, no sample was collected.									
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.									
		Selenium		During sampling, the well went dry; therefore, no sample was collected.									
		Silver		During sampling, the well went dry; therefore, no sample was collected.									
		Sodium		During sampling, the well went dry; therefore, no sample was collected.									
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.									
		Thallium		During sampling, the well went dry; therefore, no sample was collected.									
		Uranium		During sampling, the well went dry; therefore, no sample was collected.									
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.									
		Zinc		During sampling, the well went dry; therefore, no sample was collected.									
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.									
		Acetone		During sampling, the well went dry; therefore, no sample was collected.									
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.									
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.									
		Benzene		During sampling, the well went dry; therefore, no sample was collected.									
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.									
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.									
		Styrene		During sampling, the well went dry; therefore, no sample was collected.									
											Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.									
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.									
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.									
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.									
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.									
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.									
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.									
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.									

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG2-17	Bromide	0	Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Uranium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 0.678. Rad error is 0.676.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 2.75. Rad error is 2.73.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.505. Rad error is 0.504.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 2.03. Rad error is 2.03.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 9.33. Rad error is 9.33.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 0.665. Rad error is 0.663.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 135. Rad error is 132.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG2-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.18. Rad error is 2.18.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.1. Rad error is 2.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.411. Rad error is 0.411.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.69. Rad error is 2.69.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 10.1. Rad error is 10.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.07. Rad error is 1.05.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 130. Rad error is 128.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG2-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		C-66		

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG2-17	Zinc		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSI recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG2-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		C-68		

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG2-17	Zinc		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSE recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG2-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		C-70		

C-70

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG2-17	Zinc	- iug	Analysis of constituent not required and not performed.
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG2-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		C-72		

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG2-17	Zinc		Analysis of constituent not required and not performed.
		1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Methyl Isobutyl Ketone	Y1	MS/MSD recovery outside acceptance criteria
		1,2,3-Trichloropropane	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
004-4792 MW373	MW373DUG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Uranium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.7. Rad error is 1.7.
		Gross beta		TPU is 3.21. Rad error is 2.55.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.29. Rad error is 0.29.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.73. Rad error is 1.73.
		Technetium-99		TPU is 14. Rad error is 13.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.814. Rad error is 0.807.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 129. Rad error is 128.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/CONTAINED—QUARTERLY, 1st CY 2017 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2017 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The first quarter 2017 data used to conduct the statistical analyses were collected in January 2017. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that had exceeded the historical background using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the

current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2017. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

Station	Туре	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a *	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^a *	SG	UCRS
MW377 ^a *	SG	UCRS

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

^a **NOTE:** The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter, and a groundwater sample could not be collected.

 Parameters
Acetone
Aluminum
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Conductivity
Copper
Cyanide
Dissolved Oxygen
Dissolved Solids
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
PCB, Total
PCB-1242
pH*
Potassium
Radium-226
Sodium
Sulfate
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Uranium
Vanadium
Zinc

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Butanone	6	6	0	No
	6	6	0	No
4-Methyl-2-pentanone	6	5	1	Yes
Acetone Acrolein	6	5 6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	1	5 0	Yes
Antimony	6	6		No
Aroclor-1268	6	6	0	No
Beryllium	6	6	0	No
Boron	6	2	4	Yes
Bromide	6	3	3	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	4	2	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
<i>cis</i> -1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	0	6	Yes
Conductivity	6	0	6	Yes
Copper	6	1	5	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	0	6	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	2	4	Yes
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	4	2	Yes
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	4	2	Yes
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	3	3	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	6	0	No
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichlorofluoromethane	6	6	0	No
Uranium	6	2	4	Yes
Vanadium	6	4	2	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	4	2	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
	6	6	0	No
Acrylonitrile Aluminum	<u>6</u>	3	3	Yes
Antimony	6	3 6	<u> </u>	<u>Yes</u> No
Aroclor-1268	6	6	0	No
Beryllium	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	5	1	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	2	4	Yes
Conductivity	6	0	6	Yes
Copper	6	2	4	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromoethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Oxygen Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
		▲		
		n	6	Vec
Magnesium Manganese	6 6	0 1	<u>6</u> 5	Yes Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	4	2	Yes
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	3	3	Yes
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	3	3	Yes
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	2	4	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Uranium	6	5	1	Yes
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

1.1.1.2.2:Tetrachloroethane 6 6 0 No 1,1,2:Trichloroethane 6 6 0 No 1,1,2:Trichloroethane 6 6 0 No 1,1:2:Trichloroethane 6 6 0 No 1,2:3:Trichloropropane 6 6 0 No 1,2:Dichloropropane 6 6 0 No 2:Butanone 6 6 0 No Acctone 6 6 0 No Actonician 6 6 0 No Aluminum 6 6 0 No Actonician 6 6 0 No Aluminum 6 6 <	Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1.1.2.2-Tetrachloroethane 6 6 0 No 1.1.2-Lithoroethane 6 6 0 No 1.2-Dithomoethane 6 6 0 No 2-Bitamone 6 6 0 No 4-Methyl-2-pentanone 6 6 0 No Actolein 6 6 0 No Actolein No Actolein 6 6 0 No Actolein No Actolein 6 6 0 No Actolein No Actolein 6 6 0	1 1 1 2-Tetrachloroethane	6			
1,1.2:Trichloroethane 6 6 0 No 1,1.3:Trichloropethane 6 6 0 No 1,2.3:Trichloropethane 6 6 0 No 1,2-Dibtromo-3-chloropropane 6 6 0 No 1,2-Dichloroperpane 6 6 0 No 1,2-Dichloropropane 6 6 0 No 1,2-Dichloropropane 6 6 0 No 2-Butanone 6 6 0 No 2-Hexanone 6 6 0 No Acetone 6 6 0 No Acetone 6 6 0 No Aluminum 6 6 0 No Aluminum 6 6 0 No Aluminum 6 6 0 No Boron 6 6 0 No Bromide 6 6 0 No			-	-	
1.1-Dichloroethane 6 6 0 No 1.2.Dibromo-3-chloropropane 6 6 0 No 1.2-Dibromo-3-chloropropane 6 6 0 No 1.2-Dichloroberzene 6 6 0 No 1.2-Dichloroporgane 6 6 0 No 1.2-Dichloroporgane 6 6 0 No 2-Hexanone 6 6 0 No 2-Hexanone 6 6 0 No Acrolein 6 6 0 No Acrolorin 6 6 0 No Aluminum 6 6 0 No Antimony 6 6 0 No Antimony 6 6 0 No Arcolor-126 6 0 6 0 No Bromide 6 0 6 0 No Bromodichloromethane 6 6				-	
1.2.3-Trichloropropane 6 6 0 No 1.2-Dibromo-3-chloropropane 6 6 0 No 1.2-Dibromoethane 6 6 0 No 1.2-Dibromoethane 6 6 0 No 1.2-Dichloroptopane 6 6 0 No 1.2-Dichloroptopane 6 6 0 No 2-Butanone 6 6 0 No 2-Hexanone 6 6 0 No Acetone 6 6 0 No Arcetor-1268 6 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No<					
1.2-Dibromo-3-chloropropane 6 6 0 No 1.2-Dibloropchanzene 6 6 0 No 1.2-Dibloropchanzene 6 6 0 No 1.2-Dibloropropane 6 6 0 No 2-Butanone 6 6 0 No 2-Hexanone 6 6 0 No 2-Hexanone 6 6 0 No Actolein 6 6 0 No Actolein 6 6 0 No Actolein 6 6 0 No Aluminum 6 6 0 No Actolein 6 6 0 No Autimony 6 6 0 No Bromide 6 0 6 0 No Bromotichoromethane 6 6 0 No Bromotichoromethane 6 6 0 No	,				
1.2-Dibromoethane 6 6 0 No 1.2-Dichloropropane 6 6 0 No 1.2-Dickloropropane 6 6 0 No 2-Butanone 6 6 0 No 2-Hexanone 6 6 0 No 2-Hexanone 6 6 0 No 4-Methyl-2-pentanone 6 6 0 No Acctolein 6 6 0 No Acrylonitrile 6 6 0 No Acrylonitrile 6 6 0 No Arcolor-1268 6 6 0 No Bronide 6 0 6 7 Yes Bronide 6 6 0 No Bronide 6 0 No Bronide 6 0 6 0 No Bronide 6 0 No Bronioform 6 6<					
1,2-Dichloroptopane 6 6 0 No 1,2-Dichloroptopane 6 6 0 No 2-Butanone 6 6 0 No 2-Hexanone 6 6 0 No 4-Methyl-2-pentanone 6 6 0 No Acetone 6 6 0 No Aluminum 6 6 0 No Aluminum 6 6 0 No Aroclor-1268 6 6 0 No Bromide 6 0 6 7 Yes Bromide 6 0 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No <td></td> <td></td> <td></td> <td></td> <td></td>					
1.2-Dichloropropane 6 6 0 No 2-Hexanone 6 6 0 No 2-Hexanone 6 6 0 No 4-Methyl-2-pentanone 6 6 0 No Accrolein 6 6 0 No Actiminum 6 6 0 No Antimony 6 6 0 No Boron 6 0 6 0 No Borono 6 0 6 0 No Bromochloromethane 6 6 0 No <td></td> <td></td> <td></td> <td></td> <td></td>					
2-Butanone 6 6 0 No 2-Hexanone 6 6 0 No 4-Methyl-2-pentanone 6 6 0 No Acetone 6 6 0 No Acetone 6 6 0 No Acrylonitrile 6 6 0 No Aluminum 6 6 0 No Aluminum 6 6 0 No Aroclor-1268 6 6 0 No Beryllium 6 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromoform 6 6 0 No Bromoform 6 6 0 No Bromoform 6 6 0 No Chorobenzene 6 6 0 No Chlorobenzene					
2-Hexanone 6 6 0 No A-ketone 6 6 0 No Acetone 6 6 0 No Acrolein 6 6 0 No Acrolein 6 6 0 No Acrolein 6 6 0 No Aluminum 6 6 0 No Aluminum 6 6 0 No Antimony 6 6 0 No Beryllium 6 6 0 No Boron 6 0 6 Yes Bromokichoromethane 6 6 0 No Bromokichloromethane 6 6 0 No Bromokichloromethane 6 6 0 No Bromokichloromethane 6 6 0 No Carbon disulfide 6 6 0 No Carbon disulfide	* *				
4-Methyl-2-pentanone 6 6 0 No Acctolene 6 6 0 No Acrolein 6 6 0 No Acroleinitile 6 6 0 No Actylonititile 6 6 0 No Autimony 6 6 0 No Ancolor-1268 6 6 0 No Bromide 6 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodital 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 5 1 Yes <td></td> <td></td> <td></td> <td></td> <td></td>					
Acetone 6 6 0 No Acrylonitrile 6 6 0 No Acrylonitrile 6 6 0 No Aluminum 6 6 0 No Atuminum 6 6 0 No Aroclor-1268 6 6 0 No Beryllium 6 6 0 No Boron 6 0 6 Yes Bromokloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Carbon disulfide 6 6 0 No Carbon disulfide 6 6 0 No					
Acrolein 6 6 0 No Acrylonitrile 6 6 0 No Aluminum 6 6 0 No Antimony 6 6 0 No Antimony 6 6 0 No Antimony 6 6 0 No Boron 6 6 0 No Boron 6 0 6 Yes Bromochloromethane 6 6 0 No Bromoform 6 6 0 No Bromochloromethane 6 6 0 No Carbon disulfide 6 0 0 No Carbon disulfide 6 6 0 No Chlo					
Acrylonitrile 6 6 0 No Aluminum 6 6 0 No Antimony 6 6 0 No Aroclor-1268 6 6 0 No Beryllium 6 6 0 No Bromodichloromethane 6 6 0 No Bromonethane 6 6 0 No Bromonethane 6 6 0 No Bromonethane 6 6 0 No Carbon disulfide 6 0 6 Yes Chloride 6 0 6 Qeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee					
Aluminum 6 6 0 No Antimony 6 6 0 No Aroclor-1268 6 6 0 No Beryllium 6 6 0 No Boron 6 0 6 0 No Bromolde 6 0 6 Yes Bromolitoromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 0 No Bromochloromethane 6 6 0 No Calcium Calcium 6 0 No Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No					
Antimony 6 6 0 No Aroclor-1268 6 6 0 No Beryllium 6 6 0 No Boron 6 0 6 Yes Bromochloromethane 6 0 6 Yes Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Bromoform 6 6 0 No Bromotethane 6 6 0 No Bromoform 6 6 0 No Carbon disulfide 6 6 0 No Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No					
Aroclor-1268 6 6 0 No Beryllium 6 6 0 No Broma 6 0 6 Yes Bromide 6 0 6 Yes Bromothoromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Bromomethane 6 6 0 No Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chloromethane 6 6 0 No					
Beryllium 6 6 0 No Bronn 6 0 6 Yes Bromochloromethane 6 0 6 Yes Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromochloromethane 6 6 0 No Bromomethane 6 6 0 No Calcium 6 6 0 No Caltoride 6 6 0 No Chlorobenzene 6 6 0 No Chloroform 6 6 0 No Cisi-1,2-Dichloroptopene 6 6 0 No					
Boron 6 0 6 Yes Bromchloromethane 6 0 6 Yes Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromomethane 6 6 0 No Carbon disulfide 6 6 0 No Charbon degeneenee 6 6 0 No Chlorobenzene 6 6 0 No Chlorothane 6 6 0 No Chlorothane 6 6 0 No Chlorothane 6 6 0 No					
Bromide 6 0 6 Yes Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 5 1 Yes Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chloroptane 6 6 0 No Chloromethane 6 6 0 No Chloroptenene 6 6 0 No Cobat No	•				
Bromochloromethane 6 6 0 No Bromodichloromethane 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Bromomethane 6 6 0 No Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 5 1 Yes Chlorobenzene 6 6 0 No Chlorobenzene Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chlorobenzene <td></td> <td></td> <td></td> <td></td> <td></td>					
Bromodichloromethane 6 6 0 No Bromoform 6 6 0 No Bromomethane 6 6 0 No Bromomethane 6 6 0 No Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 5 1 Yes Chloride 6 0 6 7 Yes Chlorobenzene 6 6 0 No No Chloroterhane 6 6 0 No No Cis-1,3-Dichloroethene 6 6 0 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Bromoform 6 6 0 No Bromomethane 6 6 0 No Carbon disulfide 6 0 6 Yes Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 5 1 Yes Chloride 6 0 6 Yes Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chlorobenzene 6 6 0 No Chlorotform 6 6 0 No cis-1,2-Dichloroethene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes					
Bromomethane 6 6 0 No Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 5 1 Yes Chloride 6 0 6 Yes Chlorobenzene 6 6 0 No Chlorothane 6 6 0 No Cobatt 6 0 6 Yes Copper					
Calcium 6 0 6 Yes Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 5 1 Yes Chloride 6 0 6 Yes Chlorobenzene 6 6 0 No Chloroform 6 6 0 No Chlorobenzene 6 6 0 No Chloroform 6 6 0 No Chlorobenzene 6 6 0 No Cis-1,3-Dichloropropene 6 0 No					
Carbon disulfide 6 6 0 No Chemical Oxygen Demand (COD) 6 5 1 Yes Chloride 6 0 6 Yes Chlorobenzene 6 0 6 Yes Chlorobenzene 6 6 0 No Chloroftane 6 6 0 No Cislat 3 3 Yes Conductivity 6 0 6 2 1 Yes <					
Chemical Oxygen Demand (COD) 6 5 1 Yes Chloride 6 0 6 Yes Chlorobenzene 6 0 6 Yes Chlorobenzene 6 6 0 No Ciss-1,2-Dichloroptopene 6 0 6 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes					
Chloride 6 0 6 Yes Chlorobenzene 6 6 0 No cis-1,2-Dichlorobentene 6 6 0 No cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 0 6 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Dibromochloromethane 6 6 0 No					
Chlorobenzene 6 6 0 No Chloroethane 6 6 0 No Chloroform 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No cis-1,2-Dichloroethene 6 6 0 No cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 5 1 Yes Dibromochloromethane 6 6 0 No Dibromothlane 6 6 0 No Dibromothlane 6 6 0 No Dissolved Oxygen 6 0 6 Yes					
Chloroethane 6 6 0 No Chloroform 6 6 0 No Chloromethane 6 6 0 No Chloromethane 6 6 0 No clioromethane 6 6 0 No cis-1,2-Dichloroethene 6 6 0 No cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 5 1 Yes Dibromochloromethane 6 6 0 No Dibromodethane 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 No No Iodide 6 6 0 No					
Chloroform 6 6 0 No Chloromethane 6 6 0 No cis -1,2-Dichloroethene 6 6 0 No cis -1,2-Dichloropropene 6 6 0 No cis -1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Dibromochloromethane 6 5 1 Yes Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 No No Iodide 6 6 0 No Iodide 6 6 0 No					
Chloromethane 6 6 0 No cis -1,2-Dichloroethene 6 6 0 No cis -1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 5 1 Yes Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dibromodelloromethane 6 6 0 No Dibromomethane 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 No No Idele 6 6 0 No No Idele 6 6 0 No No Idele 6 6 0					
cis-1,2-Dichloroethene 6 6 0 No cis -1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 5 1 Yes Dibromochloromethane 6 6 0 No Dibromochloromethane 6 6 0 No Dibromodetloromethane 6 6 0 No Dibromomethane 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodide 6 6 0 No					
cis-1,3-Dichloropropene 6 6 0 No Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 0 6 Yes Dibromochloromethane 6 5 1 Yes Dibromomethane 6 6 0 No Dibromoduloromethane 6 6 0 No Dibromoduloromethane 6 6 0 No Dibromomethane 6 6 0 No Dissolved Oxygen 6 0 6 Yes Ethylbenzene, Total 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodide 6 6 0 No Iodide 6 6 0 No					
Cobalt 6 3 3 Yes Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 5 1 Yes Dibromochloromethane 6 6 0 No Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dibromomethane 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 1 5 Yes	,				
Conductivity 6 0 6 Yes Copper 6 0 6 Yes Cyanide 6 5 1 Yes Dibromochloromethane 6 6 0 No Dibromomethane 6 6 0 No Dissolved Oxygen 6 0 6 Yes Dissolved Solids 6 0 6 Yes Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iodomethane 6 1 5 Yes	· · · · · · · · · · · · · · · · · · ·		•		
Copper606YesCyanide651YesDibromochloromethane660NoDibromomethane660NoDibromomethane660NoDimethylbenzene, Total660NoDissolved Oxygen606YesDissolved Solids606YesEthylbenzene660NoIodide660NoIodomethane660NoIodomethane615Yes					
Cyanide651YesDibromochloromethane660NoDibromomethane660NoDimethylbenzene, Total660NoDissolved Oxygen606YesDissolved Solids606YesEthylbenzene660NoIodide660NoIodomethane660NoIodomethane660NoIron615Yes	· · · · · ·				
Dibromochloromethane660NoDibromomethane660NoDimethylbenzene, Total660NoDissolved Oxygen606YesDissolved Solids606YesEthylbenzene660NoIodide660NoIodomethane660NoIron615Yes					
Dibromomethane660NoDimethylbenzene, Total660NoDissolved Oxygen606YesDissolved Solids606YesEthylbenzene660NoIodide660NoIodomethane660NoIron615Yes	<u> </u>				
Dimethylbenzene, Total660NoDissolved Oxygen606YesDissolved Solids606YesEthylbenzene660NoIodide660NoIodomethane660NoIron615Yes					
Dissolved Oxygen606YesDissolved Solids606YesEthylbenzene660NoIodide660NoIodomethane660NoIron615Yes					
Dissolved Solids606YesEthylbenzene660NoIodide660NoIodomethane660NoIron615Yes					
Ethylbenzene 6 6 0 No Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 1 5 Yes					
Iodide 6 6 0 No Iodomethane 6 6 0 No Iron 6 1 5 Yes					
Iodomethane 6 6 0 No Iron 6 1 5 Yes	2				
Iron 6 1 5 Yes					
	Magnesium	6	0	6	Yes
Manganese606YesMethylene chloride660No					

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored	Uncensored	Statistical
Malash damaan	(Observation 5	Observation	Analysis?
Molybdenum	6	5	1	Yes
Nickel	6	1	5	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	3	3	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	0	6	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Uranium	6	5	1	Yes
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Exhibit D.5. Tests Summary for Qualified Parameters—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 30, 30, and 28 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes trichloroethene that exceeded the MCL in four wells. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for dissolved oxygen, oxidationreduction potential, and sulfate.

<u>URGA</u>

This quarter's results identified historical background exceedances for chemical oxygen demand, dissolved oxygen, oxidation-reduction potential, and sodium.

LRGA

This quarter's results identified historical background exceedances for oxidation-reduction potential and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW362: Oxidation-Reduction	MW357: Dissolved Oxygen,	MW358: Oxidation-Reduction
Potential, Sulfate	Oxidation-Reduction Potential	Potential, Technetium-99
MW365: Dissolved Oxygen,	MW360: Chemical Oxygen Demand,	MW361: Oxidation-Reduction
Oxidation-Reduction Potential,	Oxidation-Reduction Potential,	Potential, Technetium-99
Sulfate	Sodium	
MW368: Oxidation-Reduction	MW363: Oxidation-Reduction	MW364: Oxidation-Reduction
Potential, Sulfate	Potential	Potential
MW371: Oxidation-Reduction	MW366: Oxidation-Reduction	MW367: Oxidation-Reduction
Potential	Potential	Potential
MW374: Oxidation-Reduction	MW369: Oxidation-Reduction	MW370: Oxidation-Reduction
Potential	Potential	Potential, Technetium-99
MW375: Oxidation-Reduction	MW372: Oxidation-Reduction	MW373: Oxidation-Reduction
Potential, Sulfate	Potential	Potential

Exhibit D.6. Summary of Exceedances of	f Statistically Derived Historica	l Background Concentrations
	- ~ · · · · · · · · · · · · · · · · · ·	

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	2.24	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW365.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW362, MW365, MW368, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	3.79	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW362, MW365, MW368, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	1.68	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Tests Summary for Qualified Parameters for Historical Background—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	Current results exceed statistically derived historical background concentration in MW360.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	Current results exceed statistically derived historical background concentration in MW357.
Dissolved Solids	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
PCB, Total	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.36	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	2.61	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	Current results exceed statistically derived historical background concentration in MW360.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	No exceedance of statistically derived historical background concentration.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Tests Summary for Qualified Parameters for Historical Background—URGA (Con	ntinued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Cyanide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	2.66	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW358, MW361, and MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the results of the one-sided upper tolerance interval test compared to current background, and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 4, and 2 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

Exhibit D.10. Summary of Exceedances (in Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA
Chemical Oxygen Demand in MW360
Dissolved Oxygen in MW357
Sodium in MW360
Southin in NW 500

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that sulfate concentrations in three UCRS wells (i.e., MW362, MW365, and MW368) were higher than the current TL this quarter.

<u>URGA</u>

This quarter's results showed an exceedance of chemical oxygen demand in MW360, dissolved oxygen in MW357, and sodium in MW360; these wells are located downgradient of the landfill.

LRGA

This quarter's results showed no exceedances in wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.61	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.42	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.61	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW362, MW365, MW368, and MW375 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Chemical Oxygen Demand	Tolerance Interval	0.62	MW360 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Oxygen	Tolerance Interval	0.55	MW357 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.43	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.10	MW360 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.29	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.61	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U First Quarter 2017 Statistical Analysis **Historical Background Comparison** Acetone UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 **Statistics-Background Data** X=49.938 S= 111.751 CV(1)=2.238 TL(1)= 331.886 LL(1)=N/A **K factor**=** 2.523 **TL(2)**= 5.746 LL(2)=N/A

Statistics-Transformed Background X= 2.847 S= 1.149 CV(2)=0.404 Data

Historical Background Data from Upgradient Wells with Transformed Resul				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	18	2.890		
4/22/2002	10	2.303		
7/15/2002	10	2.303		
10/8/2002	15	2.708		
1/8/2003	10	2.303		
4/3/2003	10	2.303		
7/9/2003	10	2.303		
10/6/2003	10	2.303		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	200	5.298		
1/7/2003	26	3.258		
4/2/2003	10	2.303		
7/9/2003	10	2.303		
10/7/2003	430	6.064		
1/6/2004	10	2.303		
4/7/2004	10	2.303		
7/14/2004	10	2.303		

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW362	Downgradient	No	5	N/A	1.609	N/A		
MW365	Downgradient	No	5	N/A	1.609	N/A		
MW368	Downgradient	No	5	N/A	1.609	N/A		
MW371	Upgradient	No	5	N/A	1.609	N/A		
MW374	Upgradient	No	5	N/A	1.609	N/A		
MW375	Sidegradient	Yes	1.8	N/A	0.588	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 3.300
 S= 6.859
 CV(1)=2.078 K factor**= 2.523
 TL(1)=20.604 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.371
 S= 1.678
 CV(2)=-4.521 K factor**= 2.523
 TL(2)= 3.863 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	2.24	0.806					
4/22/2002	0.2	-1.609					
7/15/2002	0.2	-1.609					
10/8/2002	0.2	-1.609					
1/8/2003	0.2	-1.609					
4/3/2003	0.2	-1.609					
7/9/2003	0.2	-1.609					
10/6/2003	0.2	-1.609					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	21.3	3.059					
1/7/2003	20	2.996					
4/2/2003	4.11	1.413					
7/9/2003	1.41	0.344					
10/7/2003	1.09	0.086					
1/6/2004	0.854	-0.158					
4/7/2004	0.2	-1.609					
7/14/2004	0.2	-1.609					

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW362	Downgradient	Yes	0.354	N/A	-1.038	NO		
MW365	Downgradient	Yes	0.0378	N/A	-3.275	NO		
MW368	Downgradient	Yes	0.645	N/A	-0.439	NO		
MW371	Upgradient	Yes	1.05	N/A	0.049	NO		
MW374	Upgradient	No	0.05	N/A	-2.996	N/A		
MW375	Sidegradient	Yes	0.0277	N/A	-3.586	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.650 S = 0.805 CV(1) = 1.238 K factor**= 2.523
 TL(1) = 2.681 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.034 S = 1.030 CV(2) = -0.996 K factor**= 2.523
 TL(2) = 1.564 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	2	0.693					
4/22/2002	2	0.693					
7/15/2002	2	0.693					
10/8/2002	0.2	-1.609					
1/8/2003	0.2	-1.609					
4/3/2003	0.2	-1.609					
7/9/2003	0.2	-1.609					
10/6/2003	0.2	-1.609					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	2	0.693					
1/7/2003	0.2	-1.609					
4/2/2003	0.2	-1.609					
7/9/2003	0.2	-1.609					
10/7/2003	0.2	-1.609					
1/6/2004	0.2	-1.609					
4/7/2004	0.2	-1.609					

0.2

Data

7/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW362	Downgradient	Yes	0.0126	N/A	-4.374	NO		
MW365	Downgradient	No	0.015	N/A	-4.200	N/A		
MW368	Downgradient	Yes	0.0498	N/A	-3.000	NO		
MW371	Upgradient	No	0.015	N/A	-4.200	N/A		
MW374	Upgradient	Yes	0.0253	N/A	-3.677	NO		
MW375	Sidegradient	Yes	0.0124	N/A	-4.390	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.394	S = 0.474	CV(1)= 0.340	K factor**= 2.523	TL(1)= 2.590	LL(1)= N/A
Statistics-Transformed Background	X =0.279	S = 0.332	CV(2) =1.190	K factor**= 2.523	TL(2)= 1.118	LL(2)=N/A

Historical Bac Upgradient W	-	ta from insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	2.1	0.742
1/7/2003	2.1	0.742
4/2/2003	1.9	0.642
7/9/2003	1	0.000
10/7/2003	1.9	0.642
1/6/2004	1.9	0.642
4/7/2004	1.8	0.588
7/14/2004	1.6	0.470

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW362	Downgradient	Yes	0.132	NO	-2.025	N/A		
MW365	Downgradient	No	0.2	N/A	-1.609	N/A		
MW368	Downgradient	No	0.2	N/A	-1.609	N/A		
MW371	Upgradient	Yes	0.0686	NO	-2.679	N/A		
MW374	Upgradient	Yes	0.784	NO	-0.243	N/A		
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 34.100
 S= 13.637
 CV(1)=0.400
 K factor**= 2.523
 TL(1)= 68.505
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.466
 S= 0.356
 CV(2)=0.103
 K factor**= 2.523
 TL(2)= 4.364
 LL(2)=N/A

Historical Bac Upgradient W		ta from insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	67.3	4.209
1/7/2003	60.6	4.104
4/2/2003	47.2	3.854
7/9/2003	34.7	3.547
10/7/2003	37.1	3.614
1/6/2004	37.7	3.630
4/7/2004	32.2	3.472
7/14/2004	26.9	3.292

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	28.7	NO	3.357	N/A
MW365	Downgradient	Yes	23.2	NO	3.144	N/A
MW368	Downgradient	Yes	58.3	NO	4.066	N/A
MW371	Upgradient	Yes	43.1	NO	3.764	N/A
MW374	Upgradient	Yes	23.8	NO	3.170	N/A
MW375	Sidegradient	Yes	16.1	NO	2.779	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 72.938 S = 70.749 CV(1) = 0.970 K factor**= 2.523
 TL(1) = 251.437 LL(1) = N/A

 Statistics-Transformed Background
 X = 4.000 S = 0.702 CV(2) = 0.175 K factor**= 2.523
 TL(2) = 5.770 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	35	3.555			
4/22/2002	35	3.555			
7/15/2002	35	3.555			
10/8/2002	35	3.555			
1/8/2003	35	3.555			
4/3/2003	35	3.555			
7/9/2003	35	3.555			
10/6/2003	35	3.555			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	260	5.561			
1/7/2003	214	5.366			
4/2/2003	147	4.990			
7/9/2003	72	4.277			
10/7/2003	56	4.025			
1/6/2004	68	4.220			
4/7/2004	35	3.555			
7/14/2004	35	3.555			

Data

Dry/Partially Dry Wells					
Well	No.	Gradient			
MW	359	Downgradient			
MW	376	Sidegradient			
MW	377	Sidegradient			

Г

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	9.95	NO	2.298	N/A
MW365	Downgradient	No	20	N/A	2.996	N/A
MW368	Downgradient	No	20	N/A	2.996	N/A
MW371	Upgradient	No	20	N/A	2.996	N/A
MW374	Upgradient	Yes	26.2	NO	3.266	N/A
MW375	Sidegradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=91.300
 S=
 86.959
 CV(1)=0.952
 K factor**= 2.523
 TL(1)= 310.697
 LL(1)=N/A

 Statistics-Transformed Background
 X=3.620
 S=
 1.590
 CV(2)=0.439
 K factor**= 2.523
 TL(2)=7.631
 LL(2)=N/A

Historical Bac Upgradient W		ta from Insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	199.2	5.294
1/7/2003	199.7	5.297
4/2/2003	171.8	5.146
7/9/2003	178.7	5.186
10/7/2003	175.6	5.168
1/6/2004	170.4	5.138
4/7/2004	156.4	5.052
7/14/2004	144.7	4.975

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	7.71	NO	2.043	N/A
MW365	Downgradient	Yes	3.61	NO	1.284	N/A
MW368	Downgradient	Yes	6.75	NO	1.910	N/A
MW371	Upgradient	Yes	4.24	NO	1.445	N/A
MW374	Upgradient	Yes	65	NO	4.174	N/A
MW375	Sidegradient	Yes	3.88	NO	1.356	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.007	S = 0.009	CV(1)= 1.314	K factor**= 2.523	TL(1)= 0.031	LL(1)= N/A
Statistics-Transformed Background	X =-5.843	S = 1.392	CV(2) =-0.238	K factor**= 2.523	TL(2) = -2.331	LL(2)= N/A

Historical Background Data from					
		ansformed Resul			
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	0.025	-3.689			
4/22/2002	0.025	-3.689			
7/15/2002	0.025	-3.689			
10/8/2002	0.001	-6.908			
1/8/2003	0.001	-6.908			
4/3/2003	0.001	-6.908			
7/9/2003	0.001	-6.908			
10/6/2003	0.001	-6.908			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	0.01	-4.605			
1/7/2003	0.01	-4.605			
4/2/2003	0.01	-4.605			
7/9/2003	0.00161	-6.432			
10/7/2003	0.001	-6.908			
1/6/2004	0.001	-6.908			
4/7/2004	0.001	-6.908			
7/14/2004	0.001	-6.908			

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.00054	7 N/A	-7.511	NO
MW365	Downgradient	Yes	0.00192	N/A	-6.255	NO
MW368	Downgradient	Yes	0.00028	7 N/A	-8.156	NO
MW371	Upgradient	Yes	0.00020	6 N/A	-8.488	NO
MW374	Upgradient	Yes	0.00246	N/A	-6.008	NO
MW375	Sidegradient	Yes	0.00083	3 N/A	-7.090	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 918.744 S= 417.257 CV(1)=0.454
 K factor**= 2.523
 TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background X = 6.705 S= 0.550 CV(2)=0.082 Data

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Date Collected	Result	LN(Result)
3/18/2002	1007	6.915
10/8/2002	1680	7.427
1/7/2003	1715.9	7.448
4/2/2003	172	5.147
7/9/2003	1231	7.116
10/7/2003	1214	7.102
1/6/2004	1172	7.066
4/7/2004	1145	7.043

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 8.092

LL(2)=N/A

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	770	NO	6.646	N/A
MW365	Downgradient	Yes	389	NO	5.964	N/A
MW368	Downgradient	Yes	539	NO	6.290	N/A
MW371	Upgradient	Yes	698	NO	6.548	N/A
MW374	Upgradient	Yes	722	NO	6.582	N/A
MW375	Sidegradient	Yes	379	NO	5.938	N/A

K factor=** 2.523

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.056	S = 0.072	CV(1) =1.275	K factor**= 2.523	TL(1)= 0.237	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.395	S = 0.915	CV(2) =-0.270	K factor**= 2.523	TL(2)= -1.086	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.2	-1.609
1/7/2003	0.2	-1.609
4/2/2003	0.2	-1.609
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912
1/6/2004	0.02	-3.912
4/7/2004	0.02	-3.912
7/14/2004	0.02	-3.912

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.00155	N/A	-6.470	NO
MW365	Downgradient	Yes	0.0021	N/A	-6.166	NO
MW368	Downgradient	Yes	0.00609	N/A	-5.101	NO
MW371	Upgradient	Yes	0.00113	N/A	-6.786	NO
MW374	Upgradient	No	0.001	N/A	-6.908	N/A
MW375	Sidegradient	Yes	0.00063	N/A	-7.370	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.138
 S= 0.621
 CV(1)=0.546 K factor**= 2.523
 TL(1)= 2.704 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.013
 S= 0.577
 CV(2)=-43.069 K factor**= 2.523
 TL(2)= 1.441 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	2.26	0.815		
4/22/2002	1.15	0.140		
7/15/2002	0.94	-0.062		
10/8/2002	0.74	-0.301		
1/8/2003	2.62	0.963		
4/3/2003	1.5	0.405		
7/9/2003	1.66	0.507		
10/6/2003	1.28	0.247		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
3/18/2002	0.6	-0.511		
10/8/2002	0.67	-0.400		
1/7/2003	0.23	-1.470		
4/2/2003	0.65	-0.431		
7/9/2003	0.92	-0.083		
10/7/2003	0.99	-0.010		
1/6/2004	1.11	0.104		
4/7/2004	0.88	-0.128		

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	2.65	NO	0.975	N/A
MW365	Downgradient	Yes	3.01	YES	1.102	N/A
MW368	Downgradient	Yes	1.78	NO	0.577	N/A
MW371	Upgradient	Yes	2.41	NO	0.880	N/A
MW374	Upgradient	Yes	1.43	NO	0.358	N/A
MW375	Sidegradient	Yes	1.59	NO	0.464	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW365

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 590.000 S= 248.068 CV(1)=0.420
 K factor**= 2.523
 TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background X = 6.308 S= 0.383 CV(2)=0.061 Data

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	1136	7.035
1/7/2003	1101	7.004
4/2/2003	863	6.760
7/9/2003	682	6.525
10/7/2003	589	6.378
1/6/2004	603	6.402
4/7/2004	601	6.399
7/14/2004	582	6.366

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 7.274

LL(2)=N/A

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	414	NO	6.026	N/A
MW365	Downgradient	Yes	251	NO	5.525	N/A
MW368	Downgradient	Yes	340	NO	5.829	N/A
MW371	Upgradient	Yes	440	NO	6.087	N/A
MW374	Upgradient	Yes	367	NO	5.905	N/A
MW375	Sidegradient	Yes	217	NO	5.380	N/A

K factor=** 2.523

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 6.612
 S= 6.487
 CV(1)=0.981
 K factor**= 2.523
 TL(1)= 22.979
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.363
 S= 1.147
 CV(2)=0.841
 K factor**= 2.523
 TL(2)= 4.256
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
opgruutent ()		unstormed Result		
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	1.31	0.270		
4/22/2002	0.913	-0.091		
7/15/2002	0.881	-0.127		
10/8/2002	3.86	1.351		
1/8/2003	1.88	0.631		
4/3/2003	3.18	1.157		
7/9/2003	0.484	-0.726		
10/6/2003	2.72	1.001		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	23	3.135		
1/7/2003	13.9	2.632		
4/2/2003	14	2.639		
7/9/2003	14.2	2.653		
10/7/2003	7.92	2.069		
1/6/2004	7.86	2.062		
4/7/2004	4.82	1.573		

4.87

Data

7/14/2004

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.418	NO	-0.872	N/A
MW365	Downgradient	Yes	0.0487	NO	-3.022	N/A
MW368	Downgradient	Yes	0.655	NO	-0.423	N/A
MW371	Upgradient	Yes	0.596	NO	-0.518	N/A
MW374	Upgradient	Yes	3.64	NO	1.292	N/A
MW375	Sidegradient	Yes	0.232	NO	-1.461	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.583

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 11.347
 S= 3.019
 CV(1)=0.266
 K factor**= 2.523
 TL(1)= 18.963
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.401
 S= 0.237
 CV(2)=0.099
 K factor**= 2.523
 TL(2)= 2.999
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	7.1	1.960		
4/22/2002	9.77	2.279		
7/15/2002	10.4	2.342		
10/8/2002	10.2	2.322		
1/8/2003	10.7	2.370		
4/3/2003	11.9	2.477		
7/9/2003	10.8	2.380		
10/6/2003	10.9	2.389		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	20	2.996		
1/7/2003	16.1	2.779		
4/2/2003	13.1	2.573		
7/9/2003	10.3	2.332		
10/7/2003	11.1	2.407		
1/6/2004	11	2.398		
4/7/2004	9.69	2.271		
7/14/2004	8.49	2.139		

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Г

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	12.9	NO	2.557	N/A
MW365	Downgradient	Yes	11.2	NO	2.416	N/A
MW368	Downgradient	Yes	17.1	NO	2.839	N/A
MW371	Upgradient	Yes	16.1	NO	2.779	N/A
MW374	Upgradient	Yes	6.04	NO	1.798	N/A
MW375	Sidegradient	Yes	5.7	NO	1.740	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=0.248
 S=0.222
 CV(1)=0.894
 K factor**= 2.523
 TL(1)=0.809
 LL(1)=N/A

 Statistics-Transformed Background
 X=-1.873
 S= 1.068
 CV(2)=-0.570
 K factor**= 2.523
 TL(2)= 0.821
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	0.063	-2.765		
4/22/2002	0.067	-2.703		
7/15/2002	0.074	-2.604		
10/8/2002	0.0521	-2.955		
1/8/2003	0.0385	-3.257		
4/3/2003	0.0551	-2.899		
7/9/2003	0.0546	-2.908		
10/6/2003	0.0543	-2.913		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	0.596	-0.518		
1/7/2003	0.565	-0.571		
4/2/2003	0.675	-0.393		
7/9/2003	0.397	-0.924		
10/7/2003	0.312	-1.165		
1/6/2004	0.299	-1.207		
4/7/2004	0.329	-1.112		
7/14/2004	0.342	-1.073		

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.0201	NO	-3.907	N/A
MW365	Downgradient	Yes	0.00607	NO	-5.104	N/A
MW368	Downgradient	Yes	0.0301	NO	-3.503	N/A
MW371	Upgradient	Yes	0.0051	NO	-5.279	N/A
MW374	Upgradient	Yes	0.287	NO	-1.248	N/A
MW375	Sidegradient	Yes	0.0138	NO	-4.283	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.006
 S= 0.010
 CV(1)=1.650
 K factor**= 2.523
 TL(1)= 0.030
 LL(1)=N/A

 Statistics-Transformed Background
 X= -6.108
 S= 1.239
 CV(2)=-0.203
 K factor**= 2.523
 TL(2)= -2.983
 LL(2)=N/A

 Data
 Data
 CV(2)=-0.203
 K factor**= 2.523
 TL(2)= -2.983
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
MW371				
Result	LN(Result)			
0.025	-3.689			
0.025	-3.689			
0.025	-3.689			
0.001	-6.908			
0.00121	-6.717			
0.001	-6.908			
0.00111	-6.803			
0.001	-6.908			
MW374				
Result	LN(Result)			
0.00222	-6.110			
0.00201	-6.210			
0.00159	-6.444			
0.00242	-6.024			
0.001	-6.908			
0.001	-6.908			
0.001	-6.908			
0.001	-6.908			
	Answith Transmission MW371 Result 0.025 0.025 0.025 0.001 0.00121 0.001 0.00111 0.001 MW374 Result 0.00222 0.00201 0.00159 0.00242 0.001 0.001 0.001			

Dry/Partially Dry Wells					
Well No. Gradient					
MW359	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW362	Downgradient	Yes	0.00228	N/A	-6.084	NO		
MW365	Downgradient	No	0.0005	N/A	-7.601	N/A		
MW368	Downgradient	Yes	0.00161	N/A	-6.432	NO		
MW371	Upgradient	Yes	0.00152	N/A	-6.489	NO		
MW374	Upgradient	Yes	0.00047	N/A	-7.663	NO		
MW375	Sidegradient	No	0.0005	N/A	-7.601	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.023	S = 0.022	CV(1)= 0.980	K factor**= 2.523	TL(1)= 0.078	LL(1)= N/A
Statistics-Transformed Background	X- _4 349	S - 1 109	CV(2) = -0.255	K factor**- 2 523	TL(2) 1 552	I.I.(2) –N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Opgraulent w	ens with 11a	ansiormed Kesui					
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	0.05	-2.996					
4/22/2002	0.05	-2.996					
7/15/2002	0.05	-2.996					
10/8/2002	0.0124	-4.390					
1/8/2003	0.005	-5.298					
4/3/2003	0.005	-5.298					
7/9/2003	0.005	-5.298					
10/6/2003	0.005	-5.298					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	0.05	-2.996					
1/7/2003	0.05	-2.996					
4/2/2003	0.05	-2.996					
7/9/2003	0.00794	-4.836					
10/7/2003	0.005	-5.298					
1/6/2004	0.005	-5.298					
4/7/2004	0.005	-5.298					
7/14/2004	0.005	-5.298					

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW359	Downgradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW362	Downgradient	Yes	0.00195	NO	-6.240	N/A		
MW365	Downgradient	Yes	0.00615	NO	-5.091	N/A		
MW368	Downgradient	Yes	0.00209	NO	-6.171	N/A		
MW371	Upgradient	Yes	0.0017	NO	-6.377	N/A		
MW374	Upgradient	Yes	0.00186	NO	-6.287	N/A		
MW375	Sidegradient	Yes	0.00157	NO	-6.457	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV** UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=22.281 S= 78.889 CV(1)=3.541 **K factor**=** 2.523 **Statistics-Background Data** TL(1)= 221.319 LL(1)=N/A **K factor**=** 2.523 TL(2)= 5.106 LL(2)=N/A

Statistics-Transformed Background X= 3.642 **S**= 1.729 **CV(2)**=0.475 Data

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	75	4.317					
4/22/2002	165	5.106					
7/15/2002	65	4.174					
4/3/2003	-19	#Func!					
7/9/2003	114	4.736					
10/6/2003	-22	#Func!					
1/7/2004	20.5	3.020					
4/6/2004	113	4.727					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
3/18/2002	135	4.905					
4/2/2003	-56	#Func!					
7/9/2003	-68	#Func!					
10/7/2003	-50	#Func!					
1/6/2004	-85	#Func!					
4/7/2004	6	1.792					
7/14/2004	-38	#Func!					
10/7/2004	1	0.000					

Dry/Par	tially Dry Wells
Well No.	Gradient
MW359	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW362	Downgradient	Yes	243	N/A	5.493	YES		
MW365	Downgradient	Yes	348	N/A	5.852	YES		
MW368	Downgradient	Yes	260	N/A	5.561	YES		
MW371	Upgradient	Yes	410	N/A	6.016	YES		
MW374	Upgradient	Yes	187	N/A	5.231	YES		
MW375	Sidegradient	Yes	275	N/A	5.617	YES		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW362
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW365
concentration with respect to historical background data.	MW368
	MW371
	MW374
	MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonPCB, TotalUNITS: UG/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.224 S = 0.207 CV(1) = 0.922 K factor**= 2.523
 TL(1) = 0.746 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.647 S = 0.440 CV(2) = -0.267 K factor**= 2.523
 TL(2) = -0.537 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	1	0.000					
4/22/2002	0.17	-1.772					
7/15/2002	0.17	-1.772					
7/9/2003	0.17	-1.772					
10/6/2003	0.17	-1.772					
7/13/2004	0.18	-1.715					
7/25/2005	0.17	-1.772					
4/5/2006	0.18	-1.715					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
7/9/2003	0.17	-1.772					
10/7/2003	0.17	-1.772					
7/14/2004	0.18	-1.715					
7/26/2005	0.17	-1.772					
4/6/2006	0.18	-1.715					
7/10/2006	0.17	-1.772					
10/12/2006	0.17	-1.772					
1/8/2007	0.17	-1.772					

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW359	Downgradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW362	Downgradient	No	0.1	N/A	-2.303	N/A		
MW365	Downgradient	Yes	0.0675	NO	-2.696	N/A		
MW368	Downgradient	Yes	0.0796	NO	-2.531	N/A		
MW371	Upgradient	No	0.0962	N/A	-2.341	N/A		
MW374	Upgradient	No	0.1	N/A	-2.303	N/A		
MW375	Sidegradient	No	0.1	N/A	-2.303	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonPCB-1242UNITS: UG/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.159 S = 0.224 CV(1) = 1.409 K factor**= 2.523
 TL(1) = 0.726 LL(1) = N/A

 Statistics-Transformed Background
 X = -2.134 S = 0.579 CV(2) = -0.272 K factor**= 2.523
 TL(2) = -0.672 LL(2) = N/A

		_
Historical Bac		ta from insformed Result
Opgraulent W	chs with 11t	insiormed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/9/2003	0.13	-2.040
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/25/2005	0.09	-2.408
4/5/2006	0.1	-2.303
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/9/2003	0.13	-2.040
10/7/2003	0.09	-2.408
7/14/2004	0.1	-2.303
7/26/2005	0.1	-2.303
4/6/2006	0.1	-2.303
7/10/2006	0.1	-2.303
10/12/2006	0.1	-2.303
1/8/2007	0.1	-2.303

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradient	No	0.1	N/A	-2.303	N/A	
MW365	Downgradient	Yes	0.0675	N/A	-2.696	NO	
MW368	Downgradient	Yes	0.0796	N/A	-2.531	NO	
MW371	Upgradient	No	0.0962	N/A	-2.341	N/A	
MW374	Upgradient	No	0.1	N/A	-2.303	N/A	
MW375	Sidegradient	No	0.1	N/A	-2.303	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.619	S = 0.295	CV(1)= 0.045	K factor**= 2.904	TL(1)= 7.475	LL(1)=5.7635
Statistics-Transformed Background	X =1.889	S = 0.046	CV(2) =0.024	K factor**= 2.904	TL(2)= 2.023	LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	6.3	1.841					
4/22/2002	6.5	1.872					
7/15/2002	6.5	1.872					
10/8/2002	6.6	1.887					
1/8/2003	6.6	1.887					
4/3/2003	6.9	1.932					
7/9/2003	6.7	1.902					
10/6/2003	7	1.946					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
3/18/2002	5.75	1.749					
10/8/2002	6.6	1.887					
1/7/2003	6.82	1.920					
4/2/2003	6.86	1.926					
7/9/2003	6.7	1.902					
10/7/2003	6.6	1.887					
1/6/2004	6.9	1.932					
4/7/2004	6.58	1.884					

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW376	Sidegradient				

MW377 Sidegradient

Г

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>()</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	()	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW362	Downgradien	t Yes	6.54	NO	1.878	N/A	
MW365	Downgradien	t Yes	6.3	NO	1.841	N/A	
MW368	Downgradien	t Yes	6.44	NO	1.863	N/A	
MW371	Upgradient	Yes	6.62	NO	1.890	N/A	
MW374	Upgradient	Yes	6.5	NO	1.872	N/A	
MW375	Sidegradient	Yes	6.62	NO	1.890	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.262 S = 0.907 CV(1) = 0.718 K factor**= 2.523
 TL(1) = 3.549 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.023 S = 0.752 CV(2) = -32.218 K factor**= 2.523
 TL(2) = 1.874 LL(2) = N/A

Historical Background Data from **Upgradient Wells with Transformed Result** Well Number: MW371 Date Collected Result LN(Result) 3/18/2002 0.693 2 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.408-0.896 1/8/2003 0.384 -0.957 4/3/2003 0.368 -1.0007/9/2003 0.587 -0.533 10/6/2003 0.382 -0.962Well Number: **MW374** Date Collected LN(Result) Result 10/8/2002 3.04 1.112 1/7/2003 2.83 1.040 0.693 4/2/2003 2 7/9/2003 0.086 1.09 10/7/2003 0.802 -0.221 0.897 -0.1091/6/2004 4/7/2004 0.689 -0.373-0.334 7/14/2004 0.716

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradient	Yes	0.459	NO	-0.779	N/A	
MW365	Downgradient	Yes	0.27	NO	-1.309	N/A	
MW368	Downgradient	Yes	1.05	NO	0.049	N/A	
MW371	Upgradient	Yes	0.657	NO	-0.420	N/A	
MW374	Upgradient	Yes	0.584	NO	-0.538	N/A	
MW375	Sidegradient	Yes	0.237	NO	-1.440	N/A	

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis **Historical Background Comparison UNITS: pCi/L** Radium-226 UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 13.483 CV(1)=3.787 **K factor**=** 2.523 **Statistics-Background Data X**= 3.560 TL(1)= 37.577 LL(1)=N/A TL(2)= 3.991 LL(2)=N/A

Statistics-Transformed Background X=-1.189 S= 1.742 CV(2)=-1.465 **K factor**=** 2.523 Data

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
7/15/2002	54.1	3.991			
10/8/2002	0.0937	-2.368			
1/8/2003	0.378	-0.973			
10/6/2003	0.179	-1.720			
1/7/2004	0.898	-0.108			
4/6/2004	0.108	-2.226			
7/13/2004	-0.149	#Func!			
10/7/2004	0.154	-1.871			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	0.298	-1.211			
1/7/2003	-0.844	#Func!			
10/7/2003	0.806	-0.216			
1/6/2004	0.0306	-3.487			
4/7/2004	0.35	-1.050			
7/14/2004	0.273	-1.298			
10/7/2004	0.205	-1.585			
1/11/2005	0.0799	-2.527			

Dry/Partially Dry Wells						
Well No.	Gradient					
MW359	Downgradient					
MW376 Sidegradient						
MW377 Sidegradient						
Current Quarter Data						
Well No.	Gradient	Dete				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradient	No	0.728	N/A	-0.317	N/A	
MW365	Downgradient	No	0.44	N/A	-0.821	N/A	
MW368	Downgradient	Yes	0.657	N/A	-0.420	NO	
MW371	Upgradient	No	0.489	N/A	-0.715	N/A	
MW374	Upgradient	Yes	0.728	N/A	-0.317	NO	
MW375	Sidegradient	Yes	0.751	N/A	-0.286	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=183.063 S= 73.222
 CV(1)=0.400
 K factor**= 2.523
 TL(1)= 367.800
 LL(1)=N/A

 Statistics-Transformed Background
 X=5.146
 S= 0.356
 CV(2)=0.069
 K factor**= 2.523
 TL(2)= 6.044
 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** Well Number: MW371 Date Collected Result LN(Result) 3/18/2002 129 4.860 4/22/2002 131 4.875 7/15/2002 127 4.844 10/8/2002 123 4.812 1/8/2003 128 4.852 4/3/2003 144 4.970 7/9/2003 126 4.836 10/6/2003 120 4.787 Well Number: MW374 Date Collected LN(Result) Result 10/8/2002 336 5.817 1/7/2003 329 5.796 4/2/2003 287 5.659 7/9/2003 5.198 181 10/7/2003 182 5.204 1/6/2004 206 5.328

182

198

Data

4/7/2004

7/14/2004

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	166	NO	5.112	N/A
MW365	Downgradient	Yes	54.6	NO	4.000	N/A
MW368	Downgradient	Yes	41.9	NO	3.735	N/A
MW371	Upgradient	Yes	123	NO	4.812	N/A
MW374	Upgradient	Yes	137	NO	4.920	N/A
MW375	Sidegradient	Yes	64.2	NO	4.162	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

5.204

5.288

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.469	S = 3.153	CV(1)= 0.487	K factor**= 2.523	TL(1)= 14.423	LL(1)= N/A
Statistics-Transformed Background	X =1.794	S = 0.357	CV(2)= 0.199	K factor**= 2.523	TL(2)= 2.694	LL(2)=N/A

Historical Bac Upgradient W		ta from insformed Result
10		
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	5	1.609
1/7/2003	5	1.609
4/2/2003	5	1.609
7/9/2003	5.6	1.723
10/7/2003	5	1.609
1/6/2004	5	1.609
4/7/2004	11.3	2.425
7/14/2004	5	1.609

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	27.3	YES	3.307	N/A
MW365	Downgradient	Yes	63.4	YES	4.149	N/A
MW368	Downgradient	Yes	70.3	YES	4.253	N/A
MW371	Upgradient	Yes	13.1	NO	2.573	N/A
MW374	Upgradient	Yes	4.83	NO	1.575	N/A
MW375	Sidegradient	Yes	30.6	YES	3.421	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW362	
MW365	
MW368	
MW375	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=17.631
 S= 24.314
 CV(1)=1.379
 K factor**= 2.523
 TL(1)=78.977
 LL(1)=N/A

 Statistics-Transformed Background
 X=2.318
 S= 0.979
 CV(2)=0.422
 K factor**= 2.523
 TL(2)= 4.788
 LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	90	4.500
1/7/2003	64	4.159
4/2/2003	25	3.219
7/9/2003	16	2.773
10/7/2003	13	2.565
1/6/2004	10	2.303
4/7/2004	7.2	1.974
7/14/2004	12	2.485

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Г

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	2.82	N/A	1.037	NO
MW365	Downgradient	Yes	1.8	N/A	0.588	NO
MW368	Downgradient	Yes	1.71	N/A	0.536	NO
MW371	Upgradient	Yes	2.4	N/A	0.875	NO
MW374	Upgradient	Yes	2.77	N/A	1.019	NO
MW375	Sidegradient	Yes	1.5	N/A	0.405	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 214.094 S= 231.089 CV(1)=1.079
 K factor**= 2.523
 TL(1)=797.131
 LL(1)=N/A

Statistics-Transformed Background X=4.867 S= 1.065 CV(2)=0.219 Data

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	903	6.806
1/7/2003	539	6.290
4/2/2003	295	5.687
7/9/2003	272	5.606
10/7/2003	197	5.283
1/6/2004	330	5.799
4/7/2004	183	5.209
7/14/2004	225	5.416

Dry/Partially Dry Wells				
Well No.	Gradient			
MW359	Downgradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

TL(2)= 7.554

LL(2)=N/A

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradient	Yes	23.9	N/A	3.174	NO	
MW365	Downgradient	Yes	21.1	N/A	3.049	NO	
MW368	Downgradient	Yes	18.4	N/A	2.912	NO	
MW371	Upgradient	Yes	3.78	N/A	1.330	NO	
MW374	Upgradient	Yes	25.6	N/A	3.243	NO	
MW375	Sidegradient	Yes	16.9	N/A	2.827	NO	

K factor=** 2.523

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data		S = 0.012	CV(1)= 1.678	K factor**= 2.523	TL(1)= 0.037	LL(1)= N/A
Statistics-Transformed Background	X= -5.884	S = 1.299	CV(2)= -0.221	K factor**= 2.523	TL(2)= -2.607	LL(2)= N/A

Historical Bac		
Upgradient w	ens with 1 ra	ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.001	-6.908
4/22/2002	0.001	-6.908
7/15/2002	0.001	-6.908
10/8/2002	0.027	-3.612
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.00109	-6.822
10/6/2003	0.001	-6.908
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.0438	-3.128
1/7/2003	0.011	-4.510
4/2/2003	0.00905	-4.705
7/9/2003	0.00694	-4.970
10/7/2003	0.001	-6.908
1/6/2004	0.00315	-5.760
4/7/2004	0.00258	-5.960
7/14/2004	0.0018	-6.320

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradient	Yes	0.00611	N/A	-5.098	NO	
MW365	Downgradient	No	0.00012	9 N/A	-8.956	N/A	
MW368	Downgradient	Yes	0.00024	1 N/A	-8.331	NO	
MW371	Upgradient	Yes	0.00133	N/A	-6.623	NO	
MW374	Upgradient	Yes	0.00009	8 N/A	-9.231	NO	
MW375	Sidegradient	No	0.0002	N/A	-8.517	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonVanadiumUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.055
 S= 0.072
 CV(1)=1.319
 K factor**= 2.523
 TL(1)= 0.237
 LL(1)=N/A

 Statistics-Transformed Background
 X= -3.438
 S= 0.912
 CV(2)=-0.265
 K factor**= 2.523
 TL(2)= -1.138
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/22/2002	0.025	-3.689				
7/15/2002	0.025	-3.689				
10/8/2002	0.02	-3.912				
1/8/2003	0.02	-3.912				
4/3/2003	0.02	-3.912				
7/9/2003	0.02	-3.912				
10/6/2003	0.02	-3.912				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.2	-1.609				
1/7/2003	0.2	-1.609				
4/2/2003	0.2	-1.609				
7/9/2003	0.02	-3.912				
10/7/2003	0.02	-3.912				
1/6/2004	0.02	-3.912				
4/7/2004	0.02	-3.912				
7/14/2004	0.02	-3.912				

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradient	No	0.01	N/A	-4.605	N/A	
MW365	Downgradient	No	0.01	N/A	-4.605	N/A	
MW368	Downgradient	Yes	0.0112	N/A	-4.492	NO	
MW371	Upgradient	Yes	0.00835	N/A	-4.785	NO	
MW374	Upgradient	No	0.01	N/A	-4.605	N/A	
MW375	Sidegradient	No	0.01	N/A	-4.605	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.060	S = 0.083	CV(1)= 1.380	K factor**= 2.523	TL(1)= 0.270	LL(1)= N/A
Statistics-Transformed Background	X =-3.259	S = 0.840	CV(2) =-0.258	K factor**= 2.523	TL(2) = -1,140	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.1	-2.303				
4/22/2002	0.1	-2.303				
7/15/2002	0.1	-2.303				
10/8/2002	0.025	-3.689				
1/8/2003	0.035	-3.352				
4/3/2003	0.035	-3.352				
7/9/2003	0.0376	-3.281				
10/6/2003	0.02	-3.912				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.025	-3.689				
1/7/2003	0.35	-1.050				
4/2/2003	0.035	-3.352				
7/9/2003	0.02	-3.912				
10/7/2003	0.02	-3.912				
1/6/2004	0.02	-3.912				
4/7/2004	0.02	-3.912				
7/14/2004	0.02	-3.912				

Data

Dry/Partially Dry Wells					
Well No. Gradient					
MW359	Downgradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradient	No	0.01	N/A	-4.605	N/A	
MW365	Downgradient	Yes	0.00462	N/A	-5.377	NO	
MW368	Downgradient	Yes	0.00438	N/A	-5.431	NO	
MW371	Upgradient	No	0.01	N/A	-4.605	N/A	
MW374	Upgradient	No	0.01	N/A	-4.605	N/A	
MW375	Sidegradient	No	0.01	N/A	-4.605	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.625	S= 0.774	CV(1)= 1.239	K factor**= 2.523	TL(1)= 2.578	LL(1)= N/A
Statistics-Transformed Background	X =-0.973	S = 0.935	CV(2) =-0.961	K factor**= 2.523	TL(2)= 1.386	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number	MW369

wen Number:	M W 509	
Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.689	-0.373
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.959
Date Collected	Result	
Date Collected 3/19/2002	Result 2.61	0.959
Date Collected 3/19/2002 4/23/2002	Result 2.61 0.2	0.959 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2.61 0.2 1.14	0.959 -1.609 0.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.61 0.2 1.14 0.862	0.959 -1.609 0.131 -0.149
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.61 0.2 1.14 0.862 2.32	0.959 -1.609 0.131 -0.149 0.842
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2.61 0.2 1.14 0.862 2.32 0.2	0.959 -1.609 0.131 -0.149 0.842 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.05	N/A	-2.996	N/A
MW360	Downgradient	Yes	0.0317	N/A	-3.451	NO
MW363	Downgradient	No	0.05	N/A	-2.996	N/A
MW366	Downgradient	No	0.05	N/A	-2.996	N/A
MW369	Upgradient	Yes	0.0694	N/A	-2.668	NO
MW372	Upgradient	Yes	0.0749	N/A	-2.592	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.985	S = 0.825	CV(1)= 0.838	K factor**= 2.523	TL(1)= 3.067	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.430	S= 0.990	CV(2) =-2.302	K factor**= 2.523	TL(2)= 2.068	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
$\mathbf{D} \leftarrow \mathbf{C} \parallel 1 \leftarrow 1$	D 1/				

Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.2	-1.609
XX7 11 X7 1	1011070	
Well Number:	MW372	
Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 3/19/2002	Result 2	0.693
Date Collected 3/19/2002 4/23/2002	Result 2 2	0.693 0.693
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2 2 2	0.693 0.693 0.693
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 2 2 0.492	0.693 0.693 0.693 -0.709
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 2 0.492 0.492	0.693 0.693 0.693 -0.709 -0.709
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2 2 0.492 0.492 0.6	0.693 0.693 0.693 -0.709 -0.709 -0.511

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.364	NO	-1.011	N/A
MW360	Downgradient	Yes	0.0281	NO	-3.572	N/A
MW363	Downgradient	Yes	0.0171	NO	-4.069	N/A
MW366	Downgradient	Yes	0.12	NO	-2.120	N/A
MW369	Upgradient	Yes	0.00843	8 NO	-4.776	N/A
MW372	Upgradient	Yes	0.983	NO	-0.017	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW360

Well Number

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/8/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.389	NO	-0.944	N/A
MW360	Downgradient	Yes	0.13	NO	-2.040	N/A
MW363	Downgradient	Yes	0.141	NO	-1.959	N/A
MW366	Downgradient	Yes	0.476	NO	-0.742	N/A
MW369	Upgradient	Yes	0.367	NO	-1.002	N/A
MW372	Upgradient	Yes	0.639	NO	-0.448	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 32.763	S= 9.391	CV(1)= 0.287	K factor**= 2.523	TL(1)= 56.456	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.449	S = 0.299	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.202	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				

Date Collected	Result	LN(Result)
3/18/2002	29.5	3.384
4/22/2002	29.8	3.395
7/15/2002	25.3	3.231
10/8/2002	21.9	3.086
1/8/2003	20.9	3.040
4/3/2003	22.2	3.100
7/8/2003	22.9	3.131
10/6/2003	21.7	3.077
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.726
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 41.5	3.726
Date Collected 3/19/2002 4/23/2002	Result 41.5 43.6	3.726 3.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 41.5 43.6 40.4	3.726 3.775 3.699
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 41.5 43.6 40.4 38.8	3.726 3.775 3.699 3.658
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 41.5 43.6 40.4 38.8 41.1	3.726 3.775 3.699 3.658 3.716
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 41.5 43.6 40.4 38.8 41.1 42.9	3.726 3.775 3.699 3.658 3.716 3.759

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	29.5	NO	3.384	N/A
MW360	Downgradient	Yes	24.3	NO	3.190	N/A
MW363	Downgradient	Yes	29.5	NO	3.384	N/A
MW366	Downgradient	Yes	32	NO	3.466	N/A
MW369	Upgradient	Yes	19.5	NO	2.970	N/A
MW372	Upgradient	Yes	47.5	NO	3.861	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.938 S = 3.750	CV(1)= 0.104	K factor**= 2.523	TL(1)= 45.399	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.578 S = 0.089	CV(2)= 0.025	K factor**= 2.523	TL(2)= 3.803	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	35	3.555				
4/22/2002	35	3.555				
7/15/2002	35	3.555				
10/8/2002	50	3.912				

35

35

35

35

MW372

Result

35

35

35

35

35

35

35

35

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	20	N/A	2.996	N/A
MW360	Downgradient	Yes	63.4	YES	4.149	N/A
MW363	Downgradient	No	20	N/A	2.996	N/A
MW366	Downgradient	No	20	N/A	2.996	N/A
MW369	Upgradient	No	20	N/A	2.996	N/A
MW372	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

LN(Result)

Wells with Exceedances MW360

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =44.119 S = 4.554	CV(1)= 0.103	K factor**= 2.523	TL(1)= 55.607	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.782 S = 0.099	CV(2)= 0.026	K factor**= 2.523	TL(2)= 4.033	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW369					
Date Collected	Result	LN(Result)				

Date Collected	Result	LN(Result)
7/15/2002	48.3	3.877
10/8/2002	47.7	3.865
1/8/2003	45.7	3.822
4/3/2003	47.4	3.859
7/8/2003	55.9	4.024
10/6/2003	47.4	3.859
1/7/2004	45.5	3.818
4/7/2004	43.4	3.770
Well Number:	1011272	
well Number:	MW372	
Date Collected		LN(Result)
		LN(Result) 3.684
Date Collected	Result	
Date Collected 7/16/2002	Result 39.8	3.684
Date Collected 7/16/2002 10/8/2002	Result 39.8 41	3.684 3.714
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 39.8 41 39.4	3.684 3.714 3.674
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 39.8 41 39.4 39.2	3.684 3.714 3.674 3.669
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 39.8 41 39.4 39.2 39.8	3.684 3.714 3.674 3.669 3.684
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 39.8 41 39.4 39.2 39.8 40	3.684 3.714 3.674 3.669 3.684 3.689

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	33.5	NO	3.512	N/A
MW360	Downgradient	Yes	9.44	NO	2.245	N/A
MW363	Downgradient	Yes	29.2	NO	3.374	N/A
MW366	Downgradient	Yes	38.6	NO	3.653	N/A
MW369	Upgradient	Yes	33.6	NO	3.515	N/A
MW372	Upgradient	Yes	48.1	NO	3.873	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.025	S = 0.021	CV(1)= 0.845	K factor**= 2.523	TL(1)= 0.077	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.090	S = 1.006	CV(2) =-0.246	K factor**= 2.523	TL(2)= -1.553	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW369

wen rumber.	101 00 507	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138
7/8/2003	0.0541	-2.917
10/6/2003	0.0689	-2.675
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.00158	-3.689 -3.689 -3.689 -6.450
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.00158 0.00147	-3.689 -3.689 -3.689 -6.450 -4.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.00158 0.0147 0.0116	-3.689 -3.689 -3.689 -6.450 -4.220 -4.457

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	Yes	0.00992	NO	-4.613	N/A
MW363	Downgradient	Yes	0.00133	NO	-6.623	N/A
MW366	Downgradient	No	0.00016	9 N/A	-8.686	N/A
MW369	Upgradient	Yes	0.0107	NO	-4.538	N/A
MW372	Upgradient	Yes	0.00082	3 NO	-7.103	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =482.856 S = 57.603	CV(1)= 0.119	K factor**= 2.523	TL(1)= 628.189	LL(1)= N/A
Statistics-Transformed Background Data	X = 6.173 S = 0.123	CV(2)= 0.020	K factor**= 2.523	TL(2)= 6.484	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 6.230
Date Collected	Result	
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 508 501 507 495 508.7 515	6.230 6.217 6.229 6.205 6.232 6.244

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	440	NO	6.087	N/A
MW360	Downgradient	Yes	511	NO	6.236	N/A
MW363	Downgradient	Yes	401	NO	5.994	N/A
MW366	Downgradient	Yes	471	NO	6.155	N/A
MW369	Upgradient	Yes	390	NO	5.966	N/A
MW372	Upgradient	Yes	595	NO	6.389	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.025	S = 0.010	CV(1)= 0.400	K factor**= 2.523	TL(1)= 0.050	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.742	S = 0.307	CV(2)= -0.082	K factor**= 2.523	TL(2)= -2.967	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					

wen number.	IVI W 509	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.05	-3.689 -3.689 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.05 0.02	-3.689 -3.689 -2.996 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.05 0.02 0.02	-3.689 -3.689 -2.996 -3.912 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.05 0.02 0.02 0.02 0.02	-3.689 -3.689 -2.996 -3.912 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00060	3 NO	-7.414	N/A
MW360	Downgradient	Yes	0.00092	7 NO	-6.984	N/A
MW363	Downgradient	No	0.001	N/A	-6.908	N/A
MW366	Downgradient	Yes	0.00044	8 NO	-7.711	N/A
MW369	Upgradient	Yes	0.0013	NO	-6.645	N/A
MW372	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.781	S = 1.351	CV(1)= 0.759	K factor**= 2.523	TL(1)= 5.190	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.228	S = 1.065	CV(2) =4.665	K factor**= 2.523	TL(2)= 2.915	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number: MW369					
Date Collected	Result	LN(Result)			
3/18/2002	5.41	1.688			
4/22/2002	1.57	0.451			

-0.223

0.086 0.990

0.713

0.174

0.577

1.358

-2.996

0.285

0.978

-0.916

-0.094

0.351

0.231

LN(Result)

0.8

1.09

2.69

2.04

1.19

1.78

MW372

Result

3.89

0.05

1.33

2.66

0.4

0.91

1.42

1.26

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	5.74	YES	1.747	N/A
MW360	Downgradient	Yes	1.2	NO	0.182	N/A
MW363	Downgradient	Yes	1.76	NO	0.565	N/A
MW366	Downgradient	Yes	3.07	NO	1.122	N/A
MW369	Upgradient	Yes	1.38	NO	0.322	N/A
MW372	Upgradient	Yes	0.89	NO	-0.117	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW357

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 285.188 S = 44.908	CV(1)= 0.157	K factor**= 2.523	TL(1)= 398.489	LL(1)= N/A
Statistics-Transformed Background Data	X =5.640 S = 0.175	CV(2)= 0.031	K factor**= 2.523	TL(2)= 6.080	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

wen number.	IVI VV 309	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.687
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 295 322 329 290 316 311	5.687 5.775 5.796 5.670 5.756 5.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	250	NO	5.521	N/A
MW360	Downgradient	Yes	270	NO	5.598	N/A
MW363	Downgradient	Yes	244	NO	5.497	N/A
MW366	Downgradient	Yes	234	NO	5.455	N/A
MW369	Upgradient	Yes	213	NO	5.361	N/A
MW372	Upgradient	Yes	326	NO	5.787	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.385	S= 6.991	CV(1)= 0.947	K factor**= 2.523	TL(1)= 25.024	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.358	S = 1.323	CV(2)= 0.974	K factor**= 2.523	TL(2)= 4.697	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW369			

Date Collected	Result	LN(Result)
3/18/2002	0.656	-0.422
4/22/2002	0.695	-0.364
7/15/2002	7.1	1.960
10/8/2002	21.5	3.068
1/8/2003	18.5	2.918
4/3/2003	14.9	2.701
7/8/2003	11.3	2.425
10/6/2003	14.9	2.701
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.783
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 5.95	1.783
Date Collected 3/19/2002 4/23/2002	Result 5.95 0.792	1.783 -0.233
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5.95 0.792 1.78	1.783 -0.233 0.577
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5.95 0.792 1.78 0.776	1.783 -0.233 0.577 -0.254
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5.95 0.792 1.78 0.776 3.55	1.783 -0.233 0.577 -0.254 1.267
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.95 0.792 1.78 0.776 3.55 5.02	1.783 -0.233 0.577 -0.254 1.267 1.613

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.1	N/A	-2.303	N/A
MW360	Downgradient	Yes	2.32	NO	0.842	N/A
MW363	Downgradient	Yes	0.0505	NO	-2.986	N/A
MW366	Downgradient	Yes	0.0927	NO	-2.378	N/A
MW369	Upgradient	Yes	0.239	NO	-1.431	N/A
MW372	Upgradient	Yes	1.58	NO	0.457	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.864 S = 3.505	CV(1)= 0.272	K factor**= 2.523	TL(1)= 21.707	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.517 S = 0.290	CV(2)= 0.115	K factor**= 2.523	TL(2)= 3.248	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

Date Collected	Result	LN(Result)
3/18/2002	11.4	2.434
4/22/2002	12	2.485
7/15/2002	10	2.303
10/8/2002	8.62	2.154
1/8/2003	7.89	2.066
4/3/2003	7.97	2.076
7/8/2003	10.3	2.332
10/6/2003	9.14	2.213
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 2.754
Date Collected	Result	· /
Date Collected 3/19/2002	Result 15.7	2.754
Date Collected 3/19/2002 4/23/2002	Result 15.7 16.6	2.754 2.809
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 15.7 16.6 15.4	2.754 2.809 2.734
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 15.7 16.6 15.4 15.8	2.754 2.809 2.734 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 15.7 16.6 15.4 15.8 15.8	2.754 2.809 2.734 2.760 2.760

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	13.2	NO	2.580	N/A
MW360	Downgradient	Yes	9.28	NO	2.228	N/A
MW363	Downgradient	Yes	11.7	NO	2.460	N/A
MW366	Downgradient	Yes	13.2	NO	2.580	N/A
MW369	Upgradient	Yes	8.47	NO	2.137	N/A
MW372	Upgradient	Yes	18.6	NO	2.923	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.413	S= 0.274	CV(1)= 0.664	K factor**= 2.523	TL(1)= 1.105	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.226	S= 1.008	CV(2)= -0.822	K factor**= 2.523	TL(2)= 1.317	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul				
Well Number:	MW369			

Date Collected	Result	LN(Result)
3/18/2002	0.034	-3.381
4/22/2002	0.062	-2.781
7/15/2002	0.436	-0.830
10/8/2002	0.867	-0.143
1/8/2003	0.828	-0.189
4/3/2003	0.672	-0.397
7/8/2003	0.321	-1.136
10/6/2003	0.714	-0.337
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) -1.585
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 0.205	-1.585
Date Collected 3/19/2002 4/23/2002	Result 0.205 0.345	-1.585 -1.064
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.205 0.345 0.21	-1.585 -1.064 -1.561
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.205 0.345 0.21 0.0539	-1.585 -1.064 -1.561 -2.921
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.205 0.345 0.21 0.0539 0.537	-1.585 -1.064 -1.561 -2.921 -0.622
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.205 0.345 0.21 0.0539 0.537 0.415	-1.585 -1.064 -1.561 -2.921 -0.622 -0.879

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.005	N/A	-5.298	N/A
MW360	Downgradient	Yes	0.196	NO	-1.630	N/A
MW363	Downgradient	Yes	0.316	NO	-1.152	N/A
MW366	Downgradient	Yes	0.00404	NO	-5.512	N/A
MW369	Upgradient	Yes	0.157	NO	-1.852	N/A
MW372	Upgradient	Yes	0.0202	NO	-3.902	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.010	S = 0.012	CV(1)= 1.199	K factor**= 2.523	TL(1)= 0.040	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.698	S= 1.607	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.643	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0005	N/A	-7.601	N/A
MW360	Downgradient	Yes	0.00045	6 N/A	-7.693	NO
MW363	Downgradient	No	0.0005	N/A	-7.601	N/A
MW366	Downgradient	No	0.0005	N/A	-7.601	N/A
MW369	Upgradient	No	0.0005	N/A	-7.601	N/A
MW372	Upgradient	Yes	0.00072	3 N/A	-7.232	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.024	S = 0.021	CV(1)= 0.910	K factor**= 2.523	TL(1)= 0.078	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.246	S = 1.075	CV(2) =-0.253	K factor**= 2.523	TL(2)= -1.535	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) -2.996
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00050	2 NO	-7.597	N/A
MW360	Downgradient	Yes	0.00135	NO	-6.608	N/A
MW363	Downgradient	Yes	0.00095	7 NO	-6.952	N/A
MW366	Downgradient	Yes	0.00094	5 NO	-6.964	N/A
MW369	Upgradient	Yes	0.00601	NO	-5.114	N/A
MW372	Upgradient	Yes	0.00148	NO	-6.516	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =74.563	S= 94.243	CV(1)= 1.264	K factor**= 2.523	TL(1)= 312.337	LL(1)= N/A
Statistics-Transformed Background Data	X= 4.554	S = 0.784	CV(2)= 0.172	K factor**= 2.523	TL(2)= 5.371	LL(2)=N/A

Historical Background Data from	
Upgradient Wells with Transformed I	Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	382	N/A	5.945	YES
MW360	Downgradient	Yes	232	N/A	5.447	YES
MW363	Downgradient	Yes	292	N/A	5.677	YES
MW366	Downgradient	Yes	373	N/A	5.922	YES
MW369	Upgradient	Yes	381	N/A	5.943	YES
MW372	Upgradient	Yes	263	N/A	5.572	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW357
concentration with respect to historical background data.	MW360
concentration with respect to instorical background data.	MW363
	MW366
	MW369
	MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonPCB, TotalUNITS: UG/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.390	S = 0.350	CV(1)= 0.897	K factor**= 2.523	TL(1)= 1.272	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.238	S = 0.737	CV(2) =-0.595	K factor**= 2.523	TL(2)= 0.622	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW369

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/8/2003	1.15	0.140
10/6/2003	0.605	-0.503
7/13/2004	0.42	-0.868
7/20/2005	0.28	-1.273
4/4/2006	0.23	-1.470
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · · · · · · · · · · · · · · · ·
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 0.17	0.000 -1.772
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 0.17 0.17	0.000 -1.772 -1.772
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003	Result 1 0.17 0.17 0.17	0.000 -1.772 -1.772 -1.772
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003	Result 1 0.17 0.17 0.17 0.17	0.000 -1.772 -1.772 -1.772 -1.772
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003 7/14/2004	Result 1 0.17 0.17 0.17 0.17 0.18	0.000 -1.772 -1.772 -1.772 -1.772 -1.772 -1.715

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0971	N/A	-2.332	N/A
MW360	Downgradient	Yes	0.0678	NO	-2.691	N/A
MW363	Downgradient	Yes	0.058	NO	-2.847	N/A
MW366	Downgradient	No	0.098	N/A	-2.323	N/A
MW369	Upgradient	Yes	0.0475	NO	-3.047	N/A
MW372	Upgradient	No	0.0952	N/A	-2.352	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonPCB-1242UNITS: UG/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.281	S = 0.383	CV(1)= 1.361	K factor**= 2.523	TL(1)= 1.247	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.835	S = 0.938	CV(2) =-0.511	K factor**= 2.523	TL(2)= 0.532	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/8/2003	1.15	0.140
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/20/2005	0.1	-2.303
4/4/2006	0.1	-2.303
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 0.11	0.000 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 0.11 0.11	0.000 -2.207 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003	Result 1 0.11 0.11 0.13	0.000 -2.207 -2.207 -2.040
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003	Result 1 0.11 0.11 0.13 0.09	0.000 -2.207 -2.207 -2.040 -2.408
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003 7/14/2004	Result 1 0.11 0.13 0.09 0.1	0.000 -2.207 -2.207 -2.040 -2.408 -2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0971	N/A	-2.332	N/A
MW360	Downgradient	Yes	0.0678	N/A	-2.691	NO
MW363	Downgradient	Yes	0.058	N/A	-2.847	NO
MW366	Downgradient	No	0.098	N/A	-2.323	N/A
MW369	Upgradient	Yes	0.0475	N/A	-3.047	NO
MW372	Upgradient	No	0.0952	N/A	-2.352	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.274	S = 0.194	CV(1)= 0.031	K factor**= 2.904	TL(1)= 6.837	LL(1)= 5.7114
Statistics-Transformed Background Data	X= 1.836	S = 0.031	CV(2)= 0.017	K factor**= 2.904	TL(2)= 1.925	LL(2)= 1.7467

	kground Data from Yells with Transformed Result
Well Number:	MW369

Date Collected	Result	LN(Result)
3/18/2002	6.1	1.808
4/22/2002	6.1	1.808
7/15/2002	6.1	1.808
10/8/2002	6.5	1.872
1/8/2003	6.5	1.872
4/3/2003	6.6	1.887
7/8/2003	6.5	1.872
10/6/2003	6.5	1.872
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.808
Date Collected	Result	
Date Collected 3/19/2002	Result 6.1	1.808
Date Collected 3/19/2002 4/23/2002	Result 6.1 6.12	1.808 1.812
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 6.1 6.12 6.1	1.808 1.812 1.808
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.1 6.12 6.1 6.06	1.808 1.812 1.808 1.802
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.1 6.12 6.1 6.06 6.26	1.808 1.812 1.808 1.802 1.834
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 6.1 6.12 6.1 6.06 6.26 6.15	1.808 1.812 1.808 1.802 1.834 1.816

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW357	Downgradien	t Yes	6.04	NO	1.798	N/A	
MW360	Downgradien	t Yes	6.41	NO	1.858	N/A	
MW363	Downgradien	t Yes	6.5	NO	1.872	N/A	
MW366	Downgradien	t Yes	6.16	NO	1.818	N/A	
MW369	Upgradient	Yes	6.23	NO	1.829	N/A	
MW372	Upgradient	Yes	6.02	NO	1.795	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.663	S = 0.488	CV(1)= 0.293	K factor**= 2.523	TL(1)= 2.895	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.456	S = 0.362	CV(2)= 0.794	K factor**= 2.523	TL(2)= 1.368	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	2	0.693					
4/22/2002	2.21	0.793					
7/15/2002	2	0.693					
10/8/2002	0.966	-0.035					
1/8/2003	0.727	-0.319					
4/3/2003	0.8	-0.223					
7/8/2003	1.62	0.482					
10/6/2003	1.14	0.131					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	2.04	0.713					
4/23/2002	2.03	0.708					
7/16/2002	2	0.693					
10/8/2002	1.54	0.432					
1/7/2003	1.88	0.631					

2.09

1.78

1.79

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	1.94	NO	0.663	N/A	
MW360	Downgradient	Yes	0.688	NO	-0.374	N/A	
MW363	Downgradient	Yes	1.68	NO	0.519	N/A	
MW366	Downgradient	Yes	1.89	NO	0.637	N/A	
MW369	Upgradient	Yes	0.571	NO	-0.560	N/A	
MW372	Upgradient	Yes	2.14	NO	0.761	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.737 0.577

0.582

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.398	S = 8.854	CV(1)= 2.605	K factor**= 2.523	TL(1)= 25.736	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.836	S = 1.704	CV(2) =-2.039	K factor**= 2.523	TL(2)= 3.346	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Opgi autent w	ens with 112	instormed Result					
Well Number:	MW369						
Date Collected	Result	LN(Result)					
7/15/2002	28.4	3.346					
10/8/2002	0.167	-1.790					
1/8/2003	0.173	-1.754					
10/6/2003	0.168	-1.784					
1/7/2004	0.702	-0.354					
4/7/2004	0.195	-1.635					
7/13/2004	0.256	-1.363					
10/7/2004	0.228	-1.478					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
7/16/2002	23.5	3.157					
10/8/2002	0.195	-1.635					
1/7/2003	-0.844	#Func!					
10/7/2003	0.349	-1.053					
1/5/2004	0.239	-1.431					
4/5/2004	0.308	-1.178					
7/14/2004	0.147	-1.917					

0.188

10/7/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.346	N/A	-1.061	N/A	
MW360	Downgradient	No	0.668	N/A	-0.403	N/A	
MW363	Downgradient	Yes	0.502	N/A	-0.689	NO	
MW366	Downgradient	Yes	0.459	N/A	-0.779	NO	
MW369	Upgradient	Yes	0.868	N/A	-0.142	NO	
MW372	Upgradient	Yes	0.54	N/A	-0.616	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.671

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =45.100	S = 11.875	CV(1)= 0.263	K factor**= 2.523	TL(1)= 75.061	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.780	S = 0.242	CV(2) =0.064	K factor**= 2.523	TL(2)= 4.390	LL(2)= N/A

Historical Bac Upgradient W		
Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	35.7	3.575
4/22/2002	37.6	3.627
7/15/2002	42.4	3.747
10/8/2002	66.9	4.203
1/8/2003	67.9	4.218
4/3/2003	61.8	4.124
7/8/2003	45.6	3.820
10/6/2003	59.1	4.079
Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	37.2	3.616
4/23/2002	38.6	3.653
7/16/2002	35.6	3.572
10/8/2002	37.5	3.624
1/7/2003	34.1	3.529
4/2/2003	34.4	3.538

44.1

43.1

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	47.2	NO	3.854	N/A	
MW360	Downgradient	Yes	84	YES	4.431	N/A	
MW363	Downgradient	Yes	41.5	NO	3.726	N/A	
MW366	Downgradient	Yes	43.1	NO	3.764	N/A	
MW369	Upgradient	Yes	72	NO	4.277	N/A	
MW372	Upgradient	Yes	43.4	NO	3.770	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.786

3.764

Wells with Exceedances MW360

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 45.031	S= 33.919	CV(1)= 0.753	K factor**= 2.523	TL(1)= 130.609	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.420	S = 0.981	CV(2)= 0.287	K factor**= 2.523	TL(2)= 5.894	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	15.5	2.741				
4/22/2002	15.8	2.760				
7/15/2002	13.8	2.625				
10/8/2002	6.9	1.932				

10.5

10.5

10.9

16.3

MW372

Result

71.7

74.7

74.1

70.5

75.8

81.8

83.6

88.1

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	50.3	NO	3.918	N/A
MW360	Downgradient	Yes	16.4	NO	2.797	N/A
MW363	Downgradient	Yes	25.9	NO	3.254	N/A
MW366	Downgradient	Yes	49.4	NO	3.900	N/A
MW369	Upgradient	Yes	4.95	NO	1.599	N/A
MW372	Upgradient	Yes	66.2	NO	4.193	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.351

2.351

2.389

2.791

4.272

4.313

4.305

4.256

4.328

4.404

4.426 4.478

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonTechnetium-99UNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =20.821	S= 18.044	CV(1)= 0.867	K factor**= 2.523	TL(1)= 66.344	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.770	S= 1.150	CV(2)= 0.415	K factor**= 2.523	TL(2)= 3.972	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	41.7	3.731						
4/22/2002	53.1	3.972						
7/15/2002	18.1	2.896						
10/8/2002	16.4	2.797						
1/8/2003	3.49	1.250						
4/3/2003	9.34	2.234						
7/8/2003	17.5	2.862						
10/6/2003	17	2.833						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	44.8	3.802						
4/23/2002	0.802	-0.221						
7/16/2002	19.8	2.986						
10/8/2002	46.1	3.831						
1/7/2003	-0.973	#Func!						
4/2/2003	9.07	2.205						
7/9/2003	0	#Func!						
10/7/2003	36.9	3.608						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	43.5	NO	3.773	N/A
MW360	Downgradient	No	8.95	N/A	2.192	N/A
MW363	Downgradient	No	10.2	N/A	2.322	N/A
MW366	Downgradient	Yes	46.7	NO	3.844	N/A
MW369	Upgradient	Yes	27	NO	3.296	N/A
MW372	Upgradient	Yes	24.7	NO	3.207	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 3.513	S = 4.307	CV(1)= 1.226	K factor**= 2.523	TL(1)= 14.378	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.851	S = 0.828	CV(2) =0.973	K factor**= 2.523	TL(2)= 2.940	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	1.7	0.531					
4/22/2002	1.6	0.470					
7/15/2002	3.1	1.131					
10/8/2002	17.7	2.874					
1/8/2003	9	2.197					
4/3/2003	4	1.386					
7/8/2003	4.9	1.589					
10/6/2003	2.4	0.875					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	1	0.000					
4/23/2002	1.2	0.182					
7/16/2002	1	0.000					
10/8/2002	1	0.000					
1/7/2003	1.6	0.470					

1.5

3

1.5

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	1	N/A	0.000	NO
MW360	Downgradient	Yes	1.09	N/A	0.086	NO
MW363	Downgradient	Yes	1.19	N/A	0.174	NO
MW366	Downgradient	Yes	1.04	N/A	0.039	NO
MW369	Upgradient	Yes	1.88	N/A	0.631	NO
MW372	Upgradient	Yes	2.22	N/A	0.798	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.405 1.099

0.405

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 67.963	S= 64.316	CV(1)= 0.946	K factor**= 2.523	TL(1)= 230.231	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.772	S = 1.023	CV(2)= 0.271	K factor**= 2.523	TL(2)= 6.353	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.215
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50 10	5.215 3.912 3.912 3.912 2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 184 50 50 50 10 12.7	5.215 3.912 3.912 3.912 2.303 2.542

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	6.4	NO	1.856	N/A	
MW360	Downgradient	Yes	12.7	NO	2.542	N/A	
MW363	Downgradient	Yes	6.3	NO	1.841	N/A	
MW366	Downgradient	Yes	7.48	NO	2.012	N/A	
MW369	Upgradient	Yes	41.1	NO	3.716	N/A	
MW372	Upgradient	Yes	10	NO	2.303	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.625	S= 3.594	CV(1)= 0.639	K factor**= 2.523	TL(1)= 14.693	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.571	S = 0.565	CV(2)= 0.360	K factor**= 2.523	TL(2)= 2.995	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	11	2.398
4/22/2002	16	2.773
7/15/2002	8	2.079
10/8/2002	3	1.099
1/8/2003	2	0.693
4/3/2003	3	1.099
7/8/2003	3	1.099
10/6/2003	2	0.693
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 5	1.609
Date Collected 3/19/2002 4/23/2002	Result 5 5	1.609 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5 5 4	1.609 1.609 1.386
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 5 4 6	1.609 1.609 1.386 1.792
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 5 4 6 5	1.609 1.609 1.386 1.792 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	5.41	NO	1.688	N/A	
MW360	Downgradient	No	1	N/A	0.000	N/A	
MW363	Downgradient	Yes	0.53	N/A	-0.635	N/A	
MW366	Downgradient	Yes	4.36	N/A	1.472	N/A	
MW369	Upgradient	Yes	4.97	N/A	1.603	N/A	
MW372	Upgradient	Yes	7.12	NO	1.963	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.001	S = 0.001	CV(1)= 0.917	K factor**= 2.523	TL(1)= 0.005	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.718	S = 0.528	CV(2) =-0.079	K factor**= 2.523	TL(2)= -5.385	LL(2)= N/A

Historical Background Data from	
Upgradient Wells with Transformed Resul	t

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.001	-6.908
4/22/2002	0.001	-6.908
7/15/2002	0.001	-6.908
10/8/2002	0.00355	-5.641
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -6.908
Date Collected	Result	
Date Collected 3/19/2002	Result 0.001	-6.908
Date Collected 3/19/2002 4/23/2002	Result 0.001 0.001	-6.908 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.001 0.001 0.001	-6.908 -6.908 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.001 0.001 0.001 0.00591	-6.908 -6.908 -6.908 -5.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.001 0.001 0.001 0.00591 0.001	-6.908 -6.908 -6.908 -5.131 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.001 0.001 0.001 0.00591 0.001 0.001	-6.908 -6.908 -6.908 -5.131 -6.908 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0002	N/A	-8.517	N/A
MW360	Downgradient	Yes	0.00013	8 NO	-8.888	N/A
MW363	Downgradient	No	0.0002	N/A	-8.517	N/A
MW366	Downgradient	No	0.0002	N/A	-8.517	N/A
MW369	Upgradient	No	0.0002	N/A	-8.517	N/A
MW372	Upgradient	No	0.0002	N/A	-8.517	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.116	S= 0.173	CV(1)= 1.490	K factor**= 2.523	TL(1)= 0.552	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.729	S= 1.014	CV(2)= -0.371	K factor**= 2.523	TL(2)= -0.172	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					

wen Number:	WI W 509	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -0.322
Date Collected	Result	
Date Collected 3/19/2002	Result 0.725	-0.322
Date Collected 3/19/2002 4/23/2002	Result 0.725 0.1	-0.322 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.725 0.1 0.1	-0.322 -2.303 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.725 0.1 0.1 0.025	-0.322 -2.303 -2.303 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.725 0.1 0.1 0.025 0.035	-0.322 -2.303 -2.303 -3.689 -3.352
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.725 0.1 0.1 0.025 0.035 0.035	-0.322 -2.303 -2.303 -3.689 -3.352 -3.352

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.01	N/A	-4.605	N/A
MW360	Downgradient	No	0.01	N/A	-4.605	N/A
MW363	Downgradient	No	0.01	N/A	-4.605	N/A
MW366	Downgradient	Yes	0.00657	N/A	-5.025	NO
MW369	Upgradient	Yes	0.00389	N/A	-5.549	NO
MW372	Upgradient	Yes	0.00485	N/A	-5.329	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Х Mean, X = (sum of background results)/(count of background results)

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.140	S = 0.780	CV(1)= 0.684	K factor**= 2.523	TL(1)= 3.108	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.235	S = 1.006	CV(2) =-4.287	K factor**= 2.523	TL(2)= 2.303	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			
	D 1/			

Date Collected	Result	LN(Result)
3/17/2002	2	0.693
4/23/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
XX7 11 X7 1	1011070	
Well Number:	MW373	
Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 3/18/2002	Result 2	0.693
Date Collected 3/18/2002 4/23/2002	Result 2 2	0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 2 2 2	0.693 0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 2 2 0.79	0.693 0.693 0.693 -0.236
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 2 0.79 0.807	0.693 0.693 0.693 -0.236 -0.214

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.464	NO	-0.768	N/A
MW361	Downgradient	Yes	0.153	NO	-1.877	N/A
MW364	Downgradient	Yes	0.0102	NO	-4.585	N/A
MW367	Downgradient	Yes	0.0311	NO	-3.471	N/A
MW370	Upgradient	Yes	0.0313	NO	-3.464	N/A
MW373	Upgradient	Yes	1.59	NO	0.464	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number	MW370				

wen Number.	WI W 570	
Date Collected	Result	LN(Result)
3/17/2002	1	0.000
4/23/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 1	0.000
Date Collected 3/18/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.457	NO	-0.783	N/A
MW361	Downgradient	Yes	0.406	NO	-0.901	N/A
MW364	Downgradient	Yes	0.416	NO	-0.877	N/A
MW367	Downgradient	Yes	0.298	NO	-1.211	N/A
MW370	Upgradient	Yes	0.463	NO	-0.770	N/A
MW373	Upgradient	Yes	0.601	NO	-0.509	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

C-746-U First Quarter 2017 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =43.413	S = 13.444	CV(1)= 0.310	K factor**= 2.523	TL(1)= 77.331	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.723	S= 0.323	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.539	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	34.8	3.550			
4/23/2002	43.4	3.770			
7/15/2002	33.2	3.503			
10/8/2002	29.2	3.374			
1/8/2003	31.3	3.444			
4/3/2003	32.4	3.478			
7/9/2003	22.9	3.131			
10/6/2003	28	3.332			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
3/18/2002	61.9	4.126			
4/23/2002	59.2	4.081			
7/16/2002	47.6	3.863			
10/8/2002	46.1	3.831			
1/7/2003	49.2	3.896			
4/2/2003	57.8	4.057			
7/9/2003	52.7	3.965			

64.9

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	32.8	NO	3.490	N/A
MW361	Downgradient	Yes	30.3	NO	3.411	N/A
MW364	Downgradient	Yes	31.4	NO	3.447	N/A
MW367	Downgradient	Yes	22	NO	3.091	N/A
MW370	Upgradient	Yes	32	NO	3.466	N/A
MW373	Upgradient	Yes	69.6	NO	4.243	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.173

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Х Mean, X = (sum of background results)/(count of background results)

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonChemical Oxygen Demand (COD)UNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 41.938	S = 24.732	CV(1)= 0.590	K factor**= 2.523	TL(1)= 104.336	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.658	S = 0.339	CV(2)= 0.093	K factor**= 2.523	TL(2)= 4.512	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			

Date Collected	Result	LN(Result)
3/17/2002	35	3.555
4/23/2002	134	4.898
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.555
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 35	3.555
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 35 47 35 35 35 35 35	3.555 3.850 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	20	N/A	2.996	N/A
MW361	Downgradient	No	20	N/A	2.996	N/A
MW364	Downgradient	No	20	N/A	2.996	N/A
MW367	Downgradient	No	20	N/A	2.996	N/A
MW370	Upgradient	No	20	N/A	2.996	N/A
MW373	Upgradient	Yes	14.6	NO	2.681	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =45.919 S = 7.524	CV(1)= 0.164	K factor**= 2.523	TL(1)= 64.901	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.814 S = 0.165	CV(2)= 0.043	K factor**= 2.523	TL(2)= 4.231	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW370

Date Collected	Result	LN(Result)
7/15/2002	55.5	4.016
10/8/2002	53.6	3.982
1/8/2003	52.9	3.968
4/3/2003	53.6	3.982
7/9/2003	51.9	3.949
10/6/2003	53	3.970
1/7/2004	53	3.970
4/7/2004	51.6	3.944
*** 11 ** 1		
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.704
Date Collected	Result	
Date Collected 7/16/2002	Result 40.6	3.704
Date Collected 7/16/2002 10/8/2002	Result 40.6 38.8	3.704 3.658
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 40.6 38.8 39	3.704 3.658 3.664
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 40.6 38.8 39 38.4	3.704 3.658 3.664 3.648
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 40.6 38.8 39 38.4 38.1	3.704 3.658 3.664 3.648 3.640
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 40.6 38.8 39 38.4 38.1 38	3.704 3.658 3.664 3.648 3.640 3.638

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	35.8	NO	3.578	N/A
MW361	Downgradient	Yes	31.3	NO	3.444	N/A
MW364	Downgradient	Yes	32.5	NO	3.481	N/A
MW367	Downgradient	Yes	21.8	NO	3.082	N/A
MW370	Upgradient	Yes	37.4	NO	3.622	N/A
MW373	Upgradient	Yes	47.8	NO	3.867	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.027	S = 0.032	CV(1)= 1.165	K factor**= 2.523	TL(1)= 0.108	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.058	S = 1.011	CV(2) =-0.249	K factor**= 2.523	TL(2)= -1.507	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			

Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.0174	-4.051
1/8/2003	0.0105	-4.556
4/3/2003	0.00931	-4.677
7/9/2003	0.137	-1.988
10/6/2003	0.0463	-3.073
*** ** ** *		
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
	1111070	LN(Result) -3.689
Date Collected	Result	
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.034	-3.689 -3.381
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.034 0.025	-3.689 -3.381 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.034 0.025 0.00411	-3.689 -3.381 -3.689 -5.494
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.034 0.025 0.00411 0.00344	-3.689 -3.381 -3.689 -5.494 -5.672
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.034 0.025 0.00411 0.00344 0.00368	-3.689 -3.381 -3.689 -5.494 -5.672 -5.605

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00032	8 N/A	-8.022	NO
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	No	0.00030	4 N/A	-8.098	N/A
MW367	Downgradient	Yes	0.00467	N/A	-5.367	NO
MW370	Upgradient	Yes	0.00058	4 N/A	-7.446	NO
MW373	Upgradient	No	0.00021	N/A	-8.468	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 608.719 S = 156.157 CV(1) = 0.257 K factor**= 2.523
 TL(1) = 1002.702 LL(1) = N/A

 Statistics-Transformed Background
 X = 6.380 S = 0.260 CV(2) = 0.041 K factor**= 2.523
 TL(2) = 7.036 LL(2) = N/A

	kground Data from ells with Transformed Result
Well Number:	MW370

Data

Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 661 801 774 680 686.5 763	6.494 6.686 6.652 6.522 6.532 6.637

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	505	NO	6.225	N/A		
MW361	Downgradient	Yes	492	NO	6.198	N/A		
MW364	Downgradient	Yes	471	NO	6.155	N/A		
MW367	Downgradient	Yes	307	NO	5.727	N/A		
MW370	Upgradient	Yes	444	NO	6.096	N/A		
MW373	Upgradient	Yes	781	NO	6.661	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.025	S = 0.010	CV(1)= 0.399	K factor**= 2.523	TL(1)= 0.050	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.739	S = 0.308	CV(2)= -0.082	K factor**= 2.523	TL(2)= -2.963	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW370							
Date Collected	Result	LN(Result)						
3/17/2002	0.025	-3.689						
4/23/2002	0.025	-3.689						
7/15/2002	0.05	-2.996						
10/8/2002	0.02	-3.912						
1/8/2003	0.02	-3.912						
4/3/2003	0.02	-3.912						
7/9/2003	0.02	-3.912						
10/6/2003	0.02	-3.912						

10/0/2005	0.02	5.712
Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	0.026	-3.650
4/23/2002	0.025	-3.689
7/16/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/7/2003	0.02	-3.912
4/2/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00077	NO	-7.169	N/A
MW361	Downgradient	Yes	0.00061	6 NO	-7.392	N/A
MW364	Downgradient	Yes	0.00044	9 NO	-7.708	N/A
MW367	Downgradient	Yes	0.00041	5 NO	-7.787	N/A
MW370	Upgradient	Yes	0.00065	4 NO	-7.332	N/A
MW373	Upgradient	Yes	0.00046	1 NO	-7.682	N/A
NT/1 D						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Cyanide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.020	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 0.020	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.912	S = 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= -3.912	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW370							
Date Collected	Result	LN(Result)						
3/17/2002	0.02	-3.912						
4/23/2002	0.02	-3.912						
7/15/2002	0.02	-3.912						
10/8/2002	0.02	-3.912						
1/8/2003	0.02	-3.912						
4/3/2003	0.02	-3.912						
7/9/2003	0.02	-3.912						
10/6/2003	0.02	-3.912						
Well Number:	MW373							
Date Collected	Result	LN(Result)						
3/18/2002	0.02	-3.912						
4/23/2002	0.02	-3.912						
7/16/2002	0.02	-3.912						
10/8/2002	0.02	-3.912						
1/7/2003	0.02	-3.912						
4/2/2003	0.02	-3.912						
7/9/2003	0.02	-3.912						

0.02

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	No	0.2	N/A	-1.609	N/A		
MW361	Downgradient	No	0.2	N/A	-1.609	N/A		
MW364	Downgradient	No	0.2	N/A	-1.609	N/A		
MW367	Downgradient	No	0.2	N/A	-1.609	N/A		
MW370	Upgradient	Yes	0.00176	5 NO	-6.342	N/A		
MW373	Upgradient	No	0.2	N/A	-1.609	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.387	S = 1.153	CV(1)= 0.831	K factor**= 2.523	TL(1)= 4.295	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.115	S = 1.207	CV(2)= -10.514	K factor**= 2.523	TL(2)= 2.930	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW370							
Date Collected	Result	LN(Result)						
3/17/2002	4.32	1.463						
4/23/2002	1.24	0.215						
7/15/2002	0.75	-0.288						

0.94

3.08

1.45

1.22

1.07

MW373

Result

3.04

0.03

0.23

0.86

0.21

1.19

1.1

1.46

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	1.23	NO	0.207	N/A		
MW361	Downgradient	Yes	3.61	NO	1.284	N/A		
MW364	Downgradient	Yes	4.18	NO	1.430	N/A		
MW367	Downgradient	Yes	1.08	NO	0.077	N/A		
MW370	Upgradient	Yes	3.41	NO	1.227	N/A		
MW373	Upgradient	Yes	2.27	NO	0.820	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-0.062

1.125

0.372

0.199

0.068

1.112

-3.507

-1.470

-0.151

-1.561

0.174

0.095

0.378

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 356.188	8 S = 106.752	CV(1)= 0.300	K factor**= 2.523	TL(1)= 625.523	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.831	S = 0.311	CV(2) =0.053	K factor**= 2.523	TL(2)= 6.616	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			
Date Collected	Result	LN(Result)		
3/17/2002	236	5.464		
4/23/2002	337	5.820		

5.583

5.481

5.642

5.472

5.513

5.412

6.057

6.229

6.140

6.011

6.001

6.109

6.188

6.176

LN(Result)

266

240

282

238

248

224

MW373

Result

427

507

464

408

404

450

487

481

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	289	NO	5.666	N/A
MW361	Downgradient	Yes	291	NO	5.673	N/A
MW364	Downgradient	Yes	240	NO	5.481	N/A
MW367	Downgradient	Yes	183	NO	5.209	N/A
MW370	Upgradient	Yes	240	NO	5.481	N/A
MW373	Upgradient	Yes	413	NO	6.023	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =9.230	S= 8.841	CV(1)= 0.958	K factor**= 2.523	TL(1)= 31.535	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.942	S = 0.713	CV(2)= 0.367	K factor**= 2.523	TL(2)= 3.740	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			

Date Collected	Result	LN(Result)
3/17/2002	9.34	2.234
4/23/2002	4.33	1.466
7/15/2002	3.52	1.258
10/8/2002	7.45	2.008
1/8/2003	7.04	1.952
4/3/2003	4.64	1.535
7/9/2003	15.8	2.760
10/6/2003	6.49	1.870
Well Number:	MW373	
wen Rumber.	101 00 375	
Date Collected		LN(Result)
		LN(Result) 3.627
Date Collected	Result	
Date Collected 3/18/2002	Result 37.6	3.627
Date Collected 3/18/2002 4/23/2002	Result 37.6 19	3.627 2.944
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 37.6 19 10.7	3.627 2.944 2.370
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 37.6 19 10.7 3.75	3.627 2.944 2.370 1.322
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 37.6 19 10.7 3.75 3.87	3.627 2.944 2.370 1.322 1.353
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 37.6 19 10.7 3.75 3.87 3.5	3.627 2.944 2.370 1.322 1.353 1.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0746	NO	-2.596	N/A
MW361	Downgradient	No	0.1	N/A	-2.303	N/A
MW364	Downgradient	Yes	0.0813	NO	-2.510	N/A
MW367	Downgradient	Yes	2.68	NO	0.986	N/A
MW370	Upgradient	Yes	0.0548	NO	-2.904	N/A
MW373	Upgradient	Yes	0.084	NO	-2.477	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =17.544 S = 5.911	CV(1)= 0.337	K factor**= 2.523	TL(1)= 32.458	LL(1)= N/A
Statistics-Transformed Background Data	X =2.810 S = 0.343	CV(2)= 0.122	K factor**= 2.523	TL(2)= 3.676	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			
Date Collected	Result	LN(Result)		
3/17/2002	12.1	2.493		
4/23/2002	15.1	2.715		
7/15/2002	12.4	2.518		
10/8/2002	12.2	2.501		
1/8/2003	11.5	2.442		
4/3/2003	12.3	2.510		
7/9/2003	10	2.303		
10/6/2003	12.1	2.493		
Well Number:	MW373			

Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	24.8	3.211
4/23/2002	22.7	3.122
7/16/2002	18.8	2.934
10/8/2002	21.1	3.049
1/7/2003	19.9	2.991
4/2/2003	25.5	3.239
7/9/2003	23.3	3.148
10/7/2003	26.9	3.292

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	15.5	NO	2.741	N/A
MW361	Downgradient	Yes	13.6	NO	2.610	N/A
MW364	Downgradient	Yes	13.6	NO	2.610	N/A
MW367	Downgradient	Yes	9.44	NO	2.245	N/A
MW370	Upgradient	Yes	14.4	NO	2.667	N/A
MW373	Upgradient	Yes	23.9	NO	3.174	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =1.080	S = 0.674	CV(1)= 0.624	K factor**= 2.523	TL(1)= 2.780	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.114	S= 0.658	CV(2) =-5.762	K factor**= 2.523	TL(2)= 1.547	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			
Date Collected	Result	LN(Result)		
3/17/2002	0.244	-1.411		
4/23/2002	1.82	0.599		
7/15/2002	1.22	0.199		
10/8/2002	0.988	-0.012		
1/8/2003	0.729	-0.316		
4/3/2003	0.637	-0.451		
7/9/2003	2.51	0.920		
10/6/2003	1.05	0.049		
Well Number:	MW373			
Date Collected	Result	LN(Result)		

Date Collected	Result	LN(Result)
3/18/2002	0.355	-1.036
4/23/2002	2.16	0.770
7/16/2002	1.39	0.329
10/8/2002	0.717	-0.333
1/7/2003	0.587	-0.533
4/2/2003	0.545	-0.607
7/9/2003	1.76	0.565
10/7/2003	0.57	-0.562

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0565	NO	-2.874	N/A
MW361	Downgradient	Yes	0.0022	NO	-6.119	N/A
MW364	Downgradient	Yes	0.00417	NO	-5.480	N/A
MW367	Downgradient	Yes	1.67	NO	0.513	N/A
MW370	Upgradient	Yes	0.00862	NO	-4.754	N/A
MW373	Upgradient	Yes	0.00379	NO	-5.575	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.010	S = 0.012	CV(1)= 1.198	K factor**= 2.523	TL(1)= 0.040	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.693	S= 1.604	CV(2)= -0.282	K factor**= 2.523	TL(2)= -1.647	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00113	-6.786
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	· · · · ·
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.0005	N/A	-7.601	N/A
MW361	Downgradient	No	0.0005	N/A	-7.601	N/A
MW364	Downgradient	Yes	0.000824	4 N/A	-7.101	NO
MW367	Downgradient	No	0.0005	N/A	-7.601	N/A
MW370	Upgradient	No	0.0005	N/A	-7.601	N/A
MW373	Upgradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.024	S = 0.022	CV(1)= 0.901	K factor**= 2.523	TL(1)= 0.078	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.239	S = 1.087	CV(2) =-0.256	K factor**= 2.523	TL(2)= -1.497	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Marsham MW270

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 3/18/2002	Result 0.05	-2.996
Date Collected 3/18/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00364	NO	-5.616	N/A
MW361	Downgradient	No	0.002	N/A	-6.215	N/A
MW364	Downgradient	Yes	0.00225	NO	-6.097	N/A
MW367	Downgradient	Yes	0.0021	NO	-6.166	N/A
MW370	Upgradient	Yes	0.00099	8 NO	-6.910	N/A
MW373	Upgradient	Yes	0.00155	NO	-6.470	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 46.688	S = 60.986	CV(1)= 1.306	K factor**= 2.523	TL(1)= 200.555	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.829	S = 1.151	CV(2)= 0.301	K factor**= 2.523	TL(2)= 4.942	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Resul

1111270

W7-11 NT-----1-----

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 140 -20 10 10 67 -29	4.942 #Func! 2.303 2.303 4.205 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	350	N/A	5.858	YES
MW361	Downgradient	Yes	334	N/A	5.811	YES
MW364	Downgradient	Yes	378	N/A	5.935	YES
MW367	Downgradient	Yes	320	N/A	5.768	YES
MW370	Upgradient	Yes	412	N/A	6.021	YES
MW373	Upgradient	Yes	279	N/A	5.631	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW358
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW361
concentration with respect to historical background data.	MW364
	MW367
	MW370
	MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.283	S = 0.159	CV(1)= 0.025	K factor**= 2.904	TL(1)= 6.745	LL(1)=5.8202
Statistics-Transformed Background Data	X= 1.837	S= 0.025	CV(2)= 0.014	K factor**= 2.904	TL(2)= 1.911	LL(2)= 1.7634

Historical Bac Upgradient W	0	ta from insformed Result
Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	6.3	1.841
4/23/2002	6.4	1.856
7/15/2002	6.3	1.841
10/8/2002	6.3	1.841
1/8/2003	6.4	1.856
4/3/2003	6.5	1.872
7/9/2003	6.3	1.841
10/6/2003	6.5	1.872
Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	6	1.792
4/23/2002	6.3	1.841
7/16/2002	6.45	1.864
10/8/2002	6.18	1.821

6.35

6.14

6.1

6

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	5.83	NO	1.763	N/A
MW361	Downgradien	t Yes	6.25	NO	1.833	N/A
MW364	Downgradien	t Yes	6.02	NO	1.795	N/A
MW367	Downgradien	t Yes	5.89	NO	1.773	N/A
MW370	Upgradient	Yes	6.16	NO	1.818	N/A
MW373	Upgradient	Yes	6.25	NO	1.833	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.848

1.815

1.808

1.792

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.823	S = 0.522	CV(1)= 0.185	K factor**= 2.523	TL(1)= 4.139	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.024	S= 0.167	CV(2)= 0.163	K factor**= 2.523	TL(2)= 1.445	LL(2)= N/A

Historical Bac Upgradient W	kground Da ells with Tr	ita from ansformed Result
Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	3.22	1.169
4/23/2002	3.43	1.233

1.092

0.900

0.880

0.888

0.892

0.908

1.468

1.112

1.075

0.833

0.896

0.993

0.986

1.058

LN(Result)

2.98

2.46

2.41

2.43

2.44

2.48

MW373

Result

4.34

3.04

2.93

2.3

2.45

2.7

2.68

2.88

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.39	NO	0.871	N/A
MW361	Downgradient	Yes	2.11	NO	0.747	N/A
MW364	Downgradient	Yes	2.08	NO	0.732	N/A
MW367	Downgradient	Yes	2.95	NO	1.082	N/A
MW370	Upgradient	Yes	2.94	NO	1.078	N/A
MW373	Upgradient	Yes	2.57	NO	0.944	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonRadium-226UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.158	S = 5.739	CV(1)= 2.660	K factor**= 2.523	TL(1)= 16.637	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.670	S= 1.833	CV(2) =-2.736	K factor**= 2.523	TL(2)= 3.068	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW370

Date Collected	Result	LN(Result)
7/15/2002	10.1	2.313
10/8/2002	-0.825	#Func!
1/8/2003	0.415	-0.879
10/6/2003	0.52	-0.654
1/7/2004	1.03	0.030
4/7/2004	0.434	-0.835
7/13/2004	0.532	-0.631
10/7/2004	0.299	-1.207
***	1 (11) 270	
Well Number:	MW373	
Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.068
Date Collected	Result	
Date Collected 7/16/2002	Result 21.5	3.068
Date Collected 7/16/2002 10/8/2002	Result 21.5 0.0327	3.068 -3.420
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 21.5 0.0327 -0.844	3.068 -3.420 #Func!
Date Collected 7/16/2002 10/8/2002 1/7/2003 10/7/2003	Result 21.5 0.0327 -0.844 0	3.068 -3.420 #Func! #Func!
Date Collected 7/16/2002 10/8/2002 1/7/2003 10/7/2003 1/6/2004	Result 21.5 0.0327 -0.844 0 0.177	3.068 -3.420 #Func! #Func! -1.732
Date Collected 7/16/2002 10/8/2002 1/7/2003 10/7/2003 1/6/2004 4/7/2004	Result 21.5 0.0327 -0.844 0 0.177 0.792	3.068 -3.420 #Func! #Func! -1.732 -0.233

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.593	N/A	-0.523	N/A
MW361	Downgradient	No	0.435	N/A	-0.832	N/A
MW364	Downgradient	Yes	0.442	N/A	-0.816	NO
MW367	Downgradient	Yes	1.76	N/A	0.565	NO
MW370	Upgradient	Yes	0.72	N/A	-0.329	NO
MW373	Upgradient	No	0.332	N/A	-1.103	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =51.544	S = 15.22	7 CV(1) =0.295	K factor**= 2.523	TL(1)= 89.962	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.906	S= 0.272	CV(2)= 0.070	K factor**= 2.523	TL(2)= 4.592	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					

Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640

Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.770
Date Collected	Result	
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 43.4 79.8 87.7 61.6 59.3 62.1	3.770 4.380 4.474 4.121 4.083 4.129

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	42.3	NO	3.745	N/A	
MW361	Downgradient	Yes	45.9	NO	3.826	N/A	
MW364	Downgradient	Yes	41.6	NO	3.728	N/A	
MW367	Downgradient	Yes	28.8	NO	3.360	N/A	
MW370	Upgradient	Yes	79.9	NO	4.381	N/A	
MW373	Upgradient	Yes	58.3	NO	4.066	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =122.38	1 S = 195.095	5 CV(1)= 1.594	K factor**= 2.523	TL(1)= 614.606	LL(1)= N/A
Statistics-Transformed Background	X= 3.985	S = 1.323	CV(2)= 0.332	K factor**= 2.523	TL(2)= 7.322	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				

Data

)

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	71.2	N/A	4.265	NO	
MW361	Downgradient	Yes	72.9	N/A	4.289	NO	
MW364	Downgradient	Yes	68.4	N/A	4.225	NO	
MW367	Downgradient	Yes	33.8	N/A	3.520	NO	
MW370	Upgradient	Yes	19.6	N/A	2.976	NO	
MW373	Upgradient	Yes	110	N/A	4.700	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.655	S= 13.274	CV(1)= 1.734	K factor**= 2.523	TL(1)= 41.146	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.946	S= 0.939	CV(2)= 0.483	K factor**= 2.523	TL(2)= 3.833	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW370							
Date Collected	Result	LN(Result)						
3/17/2002	10.8	2.380						
4/23/2002	8.53	2.144						
7/15/2002	5.09	1.627						
10/8/2002	4.78	1.564						
1/8/2003	-5.12	#Func!						
4/3/2003	5.11	1.631						
7/9/2003	4.25	1.447						
10/6/2003	6.54	1.878						
Well Number:	MW373							
Date Collected	Result	LN(Result)						
3/18/2002	16.5	2.803						
4/23/2002	3.49	1.250						
7/16/2002	1.42	0.351						
10/8/2002	-6.06	#Func!						
1/7/2003	-8.41	#Func!						
4/2/2003	26.3	3.270						
7/9/2003	3.06	1.118						

46.2

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	47.3	N/A	3.857	YES	
MW361	Downgradient	Yes	53.8	N/A	3.985	YES	
MW364	Downgradient	Yes	45.3	N/A	3.813	NO	
MW367	Downgradient	Yes	24.9	N/A	3.215	NO	
MW370	Upgradient	Yes	82.8	N/A	4.416	YES	
MW373	Upgradient	Yes	33.1	N/A	3.500	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.833

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

```
Wells with Exceedances
MW358
MW361
MW370
```

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.169	S = 12.072	CV(1)= 1.957	K factor**= 2.523	TL(1)= 36.626	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.069	S = 1.014	CV(2)= 0.948	K factor**= 2.523	TL(2)= 3.626	LL(2)= N/A

Historical Bac Upgradient W		ata from ansformed Result
Well Number:	MW370	
Data Collected	Decult	I N(Posult)

Date Collected	Result	LN(Result)
3/17/2002	1.2	0.182
4/23/2002	4.3	1.459
7/15/2002	2.6	0.956
10/8/2002	2.3	0.833
1/8/2003	3	1.099
4/3/2003	1.2	0.182
7/9/2003	2.6	0.956
10/6/2003	1.7	0.531
XX7 11 X7 1	1 011050	
Well Number:	MW373	
Date Collected		LN(Result)
		LN(Result) 0.095
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 1.1	0.095
Date Collected 3/18/2002 4/23/2002	Result 1.1 17.5	0.095 2.862
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1.1 17.5 49	0.095 2.862 3.892
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1.1 17.5 49 2.9	0.095 2.862 3.892 1.065
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1.1 17.5 49 2.9 3.9	0.095 2.862 3.892 1.065 1.361

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.31	N/A	0.837	NO
MW361	Downgradient	Yes	1.02	N/A	0.020	NO
MW364	Downgradient	Yes	0.928	N/A	-0.075	NO
MW367	Downgradient	Yes	0.862	N/A	-0.149	NO
MW370	Upgradient	Yes	1.26	N/A	0.231	NO
MW373	Upgradient	Yes	1.5	N/A	0.405	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 79.819	S = 78.470	CV(1)= 0.983	K factor**= 2.523	TL(1)= 277.798	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.971	S = 0.950	CV(2)= 0.239	K factor**= 2.523	TL(2)= 6.368	LL(2)= N/A

Historical Bac Upgradient W	kground Da ells with Tr	ta from ansformed Result
Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429

4.477

4.060 4.282

3.281

2.797

3.437

3.912

5.620

5.176

4.331

3.826

4.057

2.303

2.632

LN(Result)

88

58

72.4

26.6

16.4

31.1

MW373

Result

50

276

177

76

45.9

57.8

10

13.9

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	7.12	NO	1.963	N/A
MW361	Downgradient	Yes	3.82	NO	1.340	N/A
MW364	Downgradient	Yes	7.74	NO	2.046	N/A
MW367	Downgradient	No	10	N/A	2.303	N/A
MW370	Upgradient	Yes	9.54	NO	2.255	N/A
MW373	Upgradient	Yes	15.5	NO	2.741	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 12.188	S = 6.950	CV(1)= 0.570	K factor**= 2.523	TL(1)= 29.721	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.305	S = 0.687	CV(2)= 0.298	K factor**= 2.523	TL(2)= 4.039	LL(2)= N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	19	2.944
4/23/2002	17	2.833
7/15/2002	15	2.708
10/8/2002	18	2.890
1/8/2003	17	2.833
4/3/2003	18	2.890

15

16

MW373

Result

5

25

3

4

6

5

6

6

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	3.79	N/A	1.332	N/A
MW361	Downgradient	Yes	4.67	N/A	1.541	N/A
MW364	Downgradient	Yes	6.8	NO	1.917	N/A
MW367	Downgradient	Yes	2.4	N/A	0.875	N/A
MW370	Upgradient	Yes	1.78	N/A	0.577	N/A
MW373	Upgradient	Yes	8.74	NO	2.168	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.708

2.773

1.609

3.219

1.099

1.386

1.792

1.609

1.792

1.792

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.002	S = 0.001	CV(1)= 0.783	K factor**= 2.523	TL(1)= 0.005	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.645	S= 0.564	CV(2) =-0.085	K factor**= 2.523	TL(2)= -5.222	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.001	-6.908
4/23/2002	0.001	-6.908
7/15/2002	0.001	-6.908
10/8/2002	0.00398	-5.526
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -6.908
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 0.001	-6.908
Date Collected 3/18/2002 4/23/2002	Result 0.001 0.001	-6.908 -6.908
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.001 0.001 0.001	-6.908 -6.908 -6.908
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.001 0.001 0.001 0.00405	-6.908 -6.908 -6.908 -5.509
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.001 0.001 0.001 0.00405 0.00413	-6.908 -6.908 -6.908 -5.509 -5.489
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.001 0.001 0.001 0.00405 0.00413 0.001	-6.908 -6.908 -6.908 -5.509 -5.489 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00015	NO	-8.805	N/A
MW361	Downgradient	No	0.0002	N/A	-8.517	N/A
MW364	Downgradient	No	0.0002	N/A	-8.517	N/A
MW367	Downgradient	No	0.0002	N/A	-8.517	N/A
MW370	Upgradient	No	0.0002	N/A	-8.517	N/A
MW373	Upgradient	No	0.0002	N/A	-8.517	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.055	S = 0.037	CV(1)= 0.673	K factor**= 2.523	TL(1)= 0.147	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.131	S= 0.691	CV(2)= -0.221	K factor**= 2.523	TL(2)= -1.388	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW370				

Date Collected	Result	LN(Result)
3/17/2002	0.1	-2.303
4/23/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
	1111070	LN(Result) -2.303
Date Collected	Result	
Date Collected 3/18/2002	Result 0.1	-2.303
Date Collected 3/18/2002 4/23/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.1 0.1 0.1	-2.303 -2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.1 0.1 0.1 0.25	-2.303 -2.303 -2.303 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.1 0.1 0.1 0.025 0.035	-2.303 -2.303 -2.303 -3.689 -3.352
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.1 0.1 0.1 0.025 0.035 0.035	-2.303 -2.303 -2.303 -3.689 -3.352 -3.352

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00566	NO	-5.174	N/A
MW361	Downgradient	No	0.01	N/A	-4.605	N/A
MW364	Downgradient	Yes	0.0401	NO	-3.216	N/A
MW367	Downgradient	Yes	0.00685	NO	-4.984	N/A
MW370	Upgradient	No	0.01	N/A	-4.605	N/A
MW373	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-U First Quarter 2017 Statistical AnalysisCurrent Background ComparisonDissolved OxygenUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.380	S = 1.459	CV(1)= 0.613	K factor**= 2.523	TL(1)= 6.060	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.676	S= 0.661	CV(2) =0.978	K factor**= 2.523	TL(2)= 2.342	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1/21/2015	1.79	0.582
4/13/2015	4.44	1.491
7/14/2015	2.73	1.004
10/13/2015	1.78	0.577
1/21/2016	2.03	0.708
4/7/2016	4.79	1.567
7/18/2016	3.65	1.295
10/19/2016	2.2	0.788
Well Number:	MW374	
wen Number.	IVI VV 574	
Date Collected	Result	LN(Result)
		LN(Result) -0.416
Date Collected	Result	· /
Date Collected 1/21/2015	Result 0.66	-0.416
Date Collected 1/21/2015 4/9/2015	Result 0.66 1.59	-0.416 0.464
Date Collected 1/21/2015 4/9/2015 7/13/2015	Result 0.66 1.59 0.67	-0.416 0.464 -0.400
Date Collected 1/21/2015 4/9/2015 7/13/2015 10/14/2015	Result 0.66 1.59 0.67 1.1	-0.416 0.464 -0.400 0.095
Date Collected 1/21/2015 4/9/2015 7/13/2015 10/14/2015 1/21/2016	Result 0.66 1.59 0.67 1.1 1.25	-0.416 0.464 -0.400 0.095 0.223

Current Background Data from Upgradient

LN(Result)

Wells with Transformed Result

Well Number: Date Collected

01/0015

MW371

Result

1 70

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW365	Downgradier	nt Yes	3.01	NO	1.102	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 359.000 S = 151.599	CV(1)= 0.422	K factor**= 2.523	TL(1)= 741.483	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.804 S = 0.414	CV(2)= 0.071	K factor**= 2.523	TL(2)= 6.850	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	t Yes	243	NO	5.493	N/A
MW365	Downgradient	t Yes	348	NO	5.852	N/A
MW368	Downgradient	t Yes	260	NO	5.561	N/A
MW371	Upgradient	Yes	410	NO	6.016	N/A
MW374	Upgradient	Yes	187	NO	5.231	N/A
MW375	Sidegradient	Yes	275	NO	5.617	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

6.652

5.951

5.908

5.974

5.537

5.687

6.089

5.914

6.273

5.979

5.591

6.107

4.934

5.521

5.263

5.485

LN(Result)

MW371

Result

774

384

368

393

254

295

441

370

MW374

Result

530

395

268

449

139

250

193

241

Wells with Transformed Result

Well Number:

Date Collected

1/21/2015

4/13/2015

7/14/2015

10/13/2015

1/21/2016

4/7/2016

7/18/2016

10/19/2016

1/21/2015

4/9/2015

7/13/2015

10/14/2015

1/21/2016

4/7/2016

7/18/2016

10/19/2016

Well Number:

Date Collected

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisCurrent Background ComparisonSulfateUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.716 S = 6.540	CV(1)= 0.610	K factor**= 2.523	TL(1)= 27.216	LL(1)= N/A
Statistics-Transformed Background Data	X =2.226 S = 0.536	CV(2)= 0.241	K factor**= 2.523	TL(2)= 3.578	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected Result LN(Result) 1/21/2015 9.23 2.222 4/13/2015 13.2 2.580 2.939 7/14/2015 18.9 10/13/2015 19.5 2.970 1/21/2016 10.2 2.322 4/7/2016 10.9 2.389 7/18/2016 27.6 3.318 10/19/2016 14.8 2.695 Well Number: MW374 Date Collected Result LN(Result) 1/21/2015 5.39 1.685 4/9/2015 5.7 1.740 7/13/2015 5.93 1.780 10/14/2015 6.31 1.842 1/21/2016 5.63 1.728 4/7/2016 1.747 5.74 7/18/2016 6.25 1.833 10/19/2016 6.18 1.821

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW362	Downgradient	t Yes	27.3	YES	3.307	N/A		
MW365	Downgradient	t Yes	63.4	YES	4.149	N/A		
MW368	Downgradient	t Yes	70.3	YES	4.253	N/A		
MW375	Sidegradient	Yes	30.6	YES	3.421	N/A		

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances
MW362
MW365
MW368
MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisCurrent Background ComparisonChemical Oxygen Demand (COD)UNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =23.928	S = 14.942	CV(1)= 0.624	K factor**= 2.523	TL(1)= 61.626	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.064	S= 0.448	CV(2)= 0.146	K factor**= 2.523	TL(2)= 4.194	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
1/13/2015	20	2.996
4/13/2015	20	2.996
7/14/2015	20	2.996
10/13/2015	20	2.996
1/12/2016	20	2.996
4/7/2016	20	2.996
7/14/2016	37.1	3.614
10/19/2016	23	3.135
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 2.086
Date Collected	Result	· · · · ·
Date Collected 1/21/2015	Result 8.05	2.086
Date Collected 1/21/2015 4/9/2015	Result 8.05 23	2.086 3.135
Date Collected 1/21/2015 4/9/2015 7/13/2015	Result 8.05 23 20	2.086 3.135 2.996
Date Collected 1/21/2015 4/9/2015 7/13/2015 10/13/2015	Result 8.05 23 20 20	2.086 3.135 2.996 2.996
Date Collected 1/21/2015 4/9/2015 7/13/2015 10/13/2015 1/21/2016	Result 8.05 23 20 20 20	2.086 3.135 2.996 2.996 2.996

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW369

C 11

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW360	Downgradien	t Yes	63.4	YES	4.149	N/A		

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW360

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisCurrent Background ComparisonDissolved OxygenUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.959	S= 1.069	CV(1)= 0.546	K factor**= 2.523	TL(1)= 4.657	LL(1)= N/A
Statistics-Transformed Background Data	X =0.520	S = 0.590	CV(2)= 1.133	K factor**= 2.523	TL(2)= 2.008	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1.188 0.548 -0.062	Current	Current Quarter Data							
1.054 0.875 1.102	Well No. MW357	Gradient Downgradien		Result 5.74	Result >TL(1)? YES	LN(Result) 1.747	LN(Result) >TL(2) N/A		
LN(Result) 0.365									

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

0.140

1.218

0.166

-0.274

0.542

-0.635

1.399

0.122

0.577

MW369

Result

1.15

3.38

3.28

1.73

0.94

2.87

2.4

3.01

MW372

Result

1.44

1.18

0.76

1.72

0.53

4.05

1.13

1.78

Wells with Transformed Result

Well Number:

Date Collected

1/13/2015

4/13/2015

7/14/2015

10/13/2015

1/12/2016

4/7/2016

7/14/2016

10/19/2016

1/21/2015

4/9/2015

7/13/2015

10/13/2015

1/21/2016

4/7/2016

7/18/2016

10/19/2016

Well Number:

Date Collected

Wells with Exceedances MW357

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =365.500 S = 158.459	CV(1)= 0.434	K factor**= 2.523	TL(1)= 765.292	LL(1)= N/A
Statistics-Transformed Background Data	X =5.833 S = 0.361	CV(2)= 0.062	K factor**= 2.523	TL(2)= 6.744	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradien	t Yes	382	NO	5.945	N/A		
MW360	Downgradien	t Yes	232	NO	5.447	N/A		
MW363	Downgradien	t Yes	292	NO	5.677	N/A		
MW366	Downgradien	t Yes	373	NO	5.922	N/A		
MW369	Upgradient	Yes	381	NO	5.943	N/A		
MW372	Upgradient	Yes	263	NO	5.572	N/A		

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW369

Date Collected	Result	LN(Result)
1/13/2015	779	6.658
4/13/2015	404	6.001
7/14/2015	410	6.016
10/13/2015	382	5.945
1/12/2016	398	5.986
4/7/2016	302	5.710
7/14/2016	323	5.778
10/19/2016	365	5.900
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.541
Date Collected	Result	· · · · · ·
Date Collected 1/21/2015	Result 693	6.541
Date Collected 1/21/2015 4/9/2015	Result 693 283	6.541 5.645
Date Collected 1/21/2015 4/9/2015 7/13/2015	Result 693 283 220	6.541 5.645 5.394
Date Collected 1/21/2015 4/9/2015 7/13/2015 10/13/2015	Result 693 283 220 294	6.541 5.645 5.394 5.684
Date Collected 1/21/2015 4/9/2015 7/13/2015 10/13/2015 1/21/2016	Result 693 283 220 294 246	6.541 5.645 5.394 5.684 5.505
Date Collected 1/21/2015 4/9/2015 7/13/2015 10/13/2015 1/21/2016 4/7/2016	Result 693 283 220 294 246 259	6.541 5.645 5.394 5.684 5.505 5.557

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical Analysis **Current Background Comparison URGA** Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =55.638 S = 5.74	42 CV(1)= 0.103	K factor**= 2.523	TL(1)= 70.125	LL(1)= N/A
Statistics-Transformed Background Data	X =4.014 S = 0.10	04 CV(2) =0.026	K factor**= 2.523	TL(2)= 4.276	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

7/14/2015 57.7 4.055	
10/13/2015 48.3 3.877	
1/12/2016 55.7 4.020	Current Quarter Data
4/7/2016 66.8 4.202	
7/14/2016 58.9 4.076	Well No. Gradient De
10/19/2016 52.2 3.955	MW360 Downgradient
Well Number: MW372	
Well Number: MW372 Date Collected Result LN(Result)	-
	-
Date Collected Result LN(Result)	-
Date CollectedResultLN(Result)1/21/201555.74.020	-
Date Collected Result LN(Result) 1/21/2015 55.7 4.020 4/9/2015 60.5 4.103	_
Date Collected Result LN(Result) 1/21/2015 55.7 4.020 4/9/2015 60.5 4.103 7/13/2015 63.3 4.148	-

LN(Result)

3.955

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW360	Downgradier	nt Yes	84	YES	4.431	N/A		

Conclusion of Statistical Analysis on Current Data

3.882

3.906

Current Background Data from Upgradient

MW369

Result

52.2

48.5

49.7

Wells with Transformed Result

Well Number:

Date Collected

1/13/2015

7/18/2016

10/19/2016

Wells with Exceedances MW360

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results) Х

C-746-U First Quarter 2017 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 390.37	5 S= 113	3.590 CV(1)= 0.291	K factor**= 2.523	TL(1)= 676.962	LL(1)= N/A
Statistics-Transformed Background Data	X= 5.929	S = 0.2	88 CV(2) =0.049	K factor**= 2.523	TL(2)= 6.655	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradien	t Yes	350	NO	5.858	N/A	
MW361	Downgradien	t Yes	334	NO	5.811	N/A	
MW364	Downgradien	t Yes	378	NO	5.935	N/A	
MW367	Downgradien	t Yes	320	NO	5.768	N/A	
MW370	Upgradient	Yes	412	NO	6.021	N/A	
MW373	Upgradient	Yes	279	NO	5.631	N/A	

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

6.538

5.940

5.961

6.031

6.028

5.762

6.180

5.996

5.817

6.229

6.148

5.743

5.263

5.628

5.820

5.775

LN(Result)

MW370

Result

691

380

388

416

415

318

483

402

MW373

Result

336

507

468

312

193

278

337

322

Wells with Transformed Result

Well Number:

Date Collected

1/13/2015

4/13/2015

7/14/2015

10/13/2015

1/12/2016

4/7/2016

7/18/2016

10/19/2016

Well Number:

Date Collected

1/21/2015

4/9/2015

7/13/2015

10/13/2015

1/21/2016

4/7/2016

7/18/2016

10/19/2016

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2017 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 39.769	S = 24.212	CV(1)= 0.609	K factor**= 2.523	TL(1)= 100.856	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.532	S = 0.555	CV(2)= 0.157	K factor**= 2.523	TL(2)= 4.932	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	47.3	NO	3.857	N/A	
MW361	Downgradient	Yes	53.8	NO	3.985	N/A	
MW370	Upgradient	Yes	82.8	NO	4.416	N/A	

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.695

3.040 4.099

3.922

3.469

4.522

4.535

3.456

3.360

3.517

3.619

2.766

3.918

3.440

3.165

2.991

LN(Result)

MW370

Result

14.8

20.9

60.3

50.5

32.1

92

93.2

31.7

MW373

Result

28.8

33.7

37.3

15.9

50.3

31.2

23.7

19.9

Wells with Transformed Result

Well Number:

Date Collected

1/13/2015

4/13/2015

7/14/2015

10/13/2015

1/12/2016

4/7/2016

7/18/2016

10/19/2016

1/21/2015

4/9/2015

7/13/2015

10/13/2015

1/21/2016

4/7/2016

7/18/2016

10/19/2016

Well Number:

Date Collected

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

April 25, 2017

Ms. Kelly Layne Fluor Federal Services, Inc. 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Fluor Federal Services, Inc.

For this project, the statistical analyses conducted on the first quarter 2017 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

2. Blevett

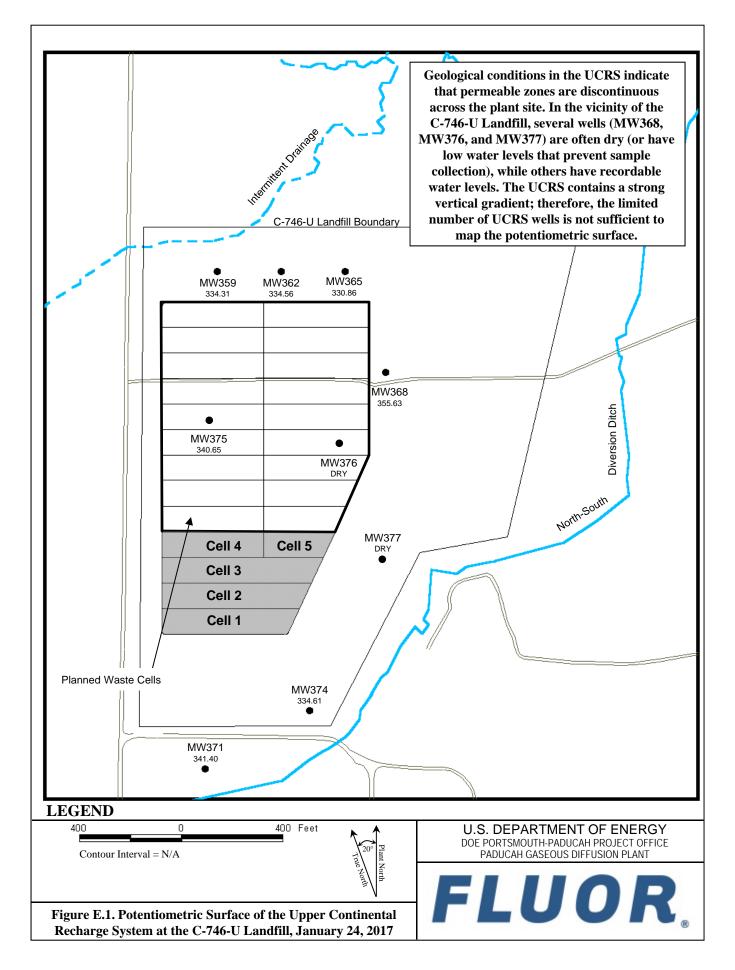
Jennifer R. Blewett

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

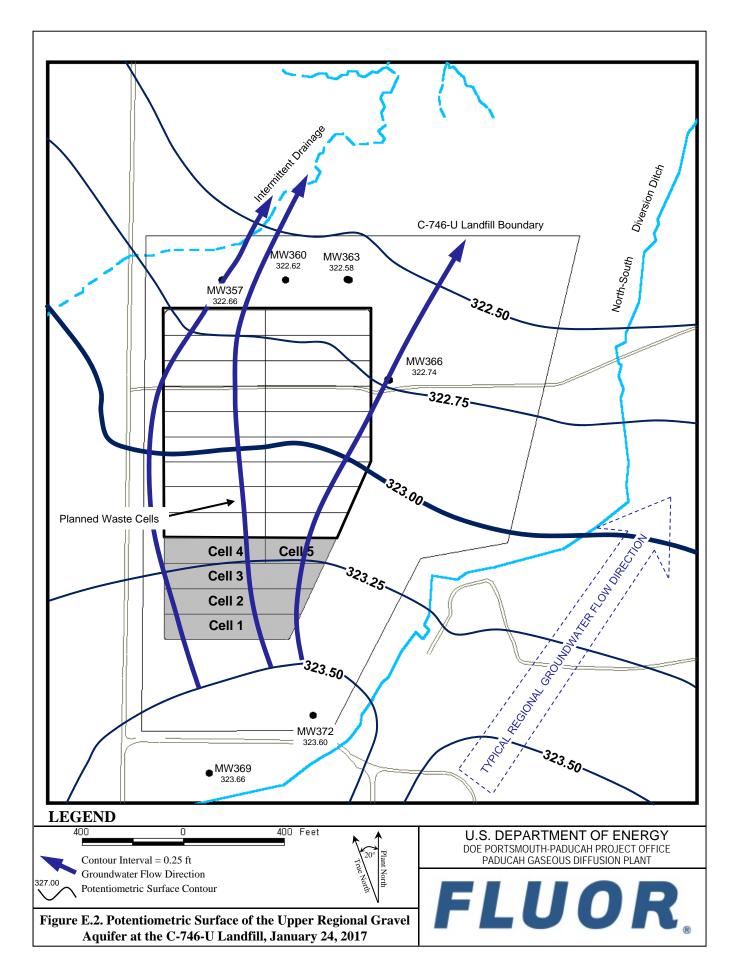
RESIDENTIAL/CONTAINED—QUARTERLY, 1st CY 2017 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

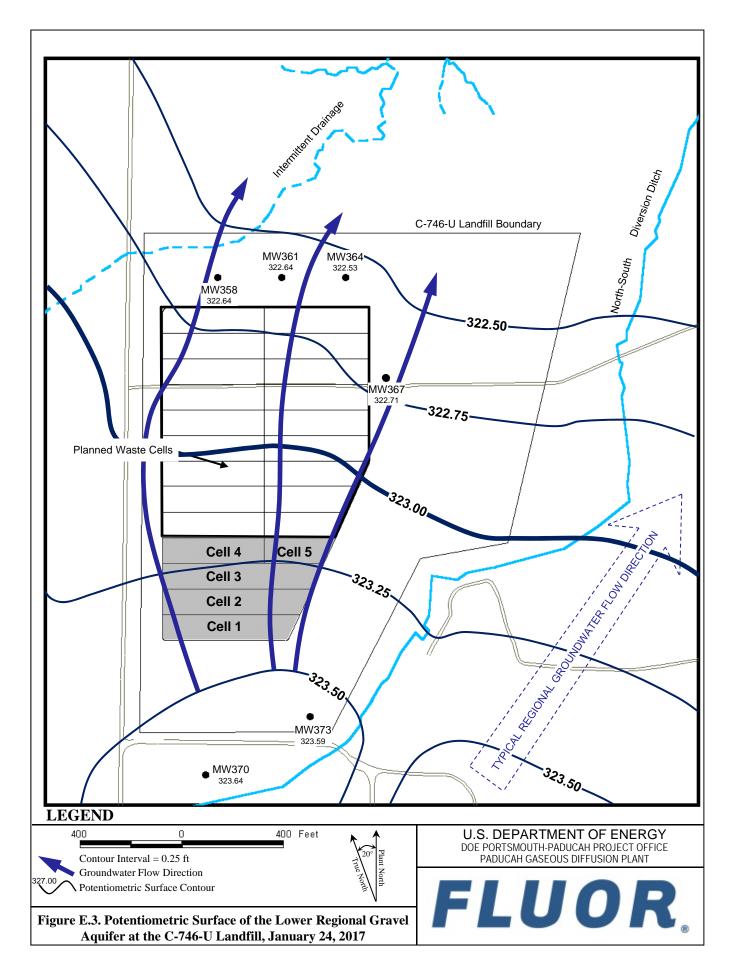
GROUNDWATER FLOW RATE AND DIRECTION

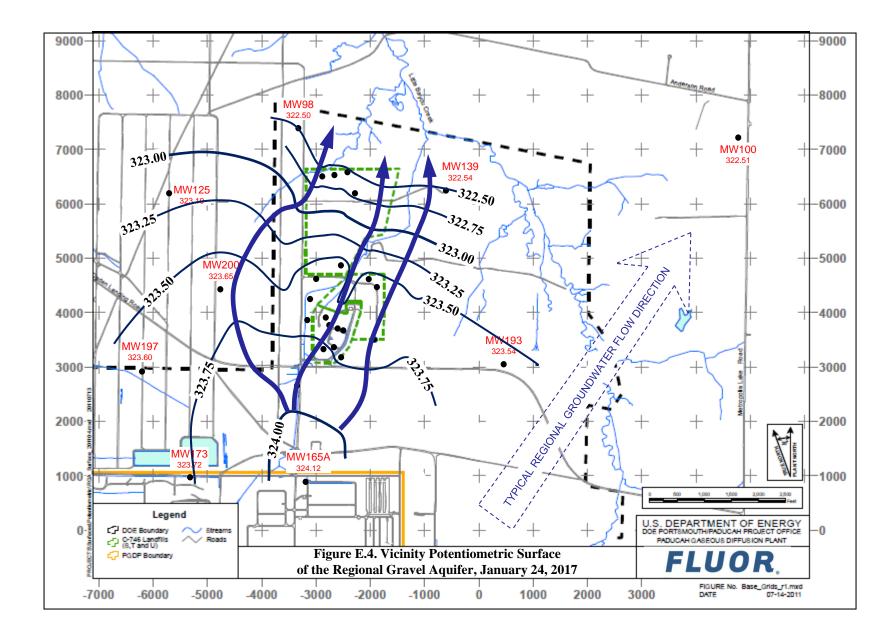

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 *KAR* 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2017 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on January 24, 2017. As shown on Figure E.1, Upper Continental Recharge System (UCRS) wells MW376 and MW377 had insufficient water to permit water level measurement during this reporting period.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 5.67×10^{-4} ft/ft and 5.97×10^{-4} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 3.03×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.


The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.


Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for January 2017, the groundwater flow direction in the immediate area of the landfill is north to northeast.



			C-74	6-U Landfill (Ja	anuary 201	7) Water Lo	evels			
				X	·	/		w Data	*Corre	ected Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ O)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/24/2017	9:10	MW357	URGA	368.99	29.93	-0.01	46.34	322.65	46.33	322.66
1/24/2017	9:07	MW358	LRGA	369.13	29.93	-0.01	46.50	322.63	46.49	322.64
1/24/2017	9:09	MW359	UCRS	369.11	29.93	-0.01	34.81	334.30	34.80	334.31
1/24/2017	9:03	MW360	URGA	362.30	29.93	-0.01	39.69	322.61	39.68	322.62
1/24/2017	9:06	MW361	LRGA	361.54	29.93	-0.01	38.91	322.63	38.90	322.64
1/24/2017	9:05	MW362	UCRS	362.04	29.93	-0.01	27.49	334.55	27.48	334.56
1/24/2017	8:55	MW363	URGA	368.83	29.92	0.00	46.25	322.58	46.25	322.58
1/24/2017	8:51	MW364	LRGA	367.75	29.92	0.00	45.22	322.53	45.22	322.53
1/24/2017	8:53	MW365	UCRS	368.37	29.92	0.00	37.51	330.86	37.51	330.86
1/24/2017	8:59	MW366	URGA	369.27	29.92	0.00	46.53	322.74	46.53	322.74
1/24/2017	8:55	MW367	LRGA	369.66	29.92	0.00	46.95	322.71	46.95	322.71
1/24/2017	8:57	MW368	UCRS	369.27	29.92	0.00	13.64	355.63	13.64	355.63
1/24/2017	9:20	MW369	URGA	364.48	29.93	-0.01	40.83	323.65	40.82	323.66
1/24/2017	9:22	MW370	LRGA	365.35	29.93	-0.01	41.72	323.63	41.71	323.64
1/24/2017	9:21	MW371	UCRS	364.88	29.93	-0.01	23.49	341.39	23.48	341.40
1/24/2017	9:20	MW372	URGA	359.66	29.93	-0.01	36.07	323.59	36.06	323.60
1/24/2017	9:17	MW373	LRGA	359.95	29.93	-0.01	36.37	323.58	36.36	323.59
1/24/2017	9:18	MW374	UCRS	359.71	29.93	-0.01	25.11	334.60	25.10	334.61
1/24/2017	9:15	MW375	UCRS	370.53	29.93	-0.01	29.89	340.64	29.88	340.65
1/24/2017	9:13	MW376	UCRS	370.61	29.93		DRY		DRY	
1/24/2017	9:11	MW377	UCRS	365.92	29.93		DRY		DRY	
Initial Barometric Pressure29.92Elev = elevationamsl = above mean sea levelDDboxe mean sea level										
BP = barometric pressure										
DTW = depth to water in feet below datum										
URGA = Upper Regional Gravel Aquifer										
	LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System									
-	-		marge Syst	em						
ND = No D	-									
*Assumes a	baromet	tric efficien	cy of 1.0							

Table E.1. C-746-U Landfill First Quarter 2017 (January) Water Levels

	ft/ft
Beneath Landfill—Upper RGA	$5.67 imes 10^{-4}$
Beneath Landfill—Lower RGA	$5.97 imes10^{-4}$
Vicinity	$3.03 imes 10^{-4}$

Table E.2. C-746-U Landfill Hydraulic Gradients

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Conductivity (K)		Specifi	c Discharge (q)	Average Linear Velocity (v)		
ft/day	cm/s	ft/day cm/s		ft/day	cm/s	
Upper RGA						
725	0.256	0.411	1.45×10^{-4}	1.64	$5.80 imes 10^{-4}$	
425	0.150	0.241	$8.50 imes 10^{-5}$	0.963	$3.40 imes 10^{-4}$	
Lower RGA						
725	0.256	0.432	1.53×10^{-4}	1.73	$6.11 imes 10^{-4}$	
425	0.150	0.254	$8.95 imes 10^{-5}$	1.01	$3.58 imes 10^{-4}$	

APPENDIX F

NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the first quarter 2017 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Sodium	MW360
Lower Regional Gravel Aquifer	Technetium-99	MW358, MW361, MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

2/28/2017

Fluor Federal Services PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL PERMIT NUMBER 073-00045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4798	MW357	Trichloroethene	8260B	5.41	ug/L	5
8004-4797	MW364	Trichloroethene	8260B	6.8	ug/L	5
8004-4808	MW372	Trichloroethene	8260B	7.12	ug/L	5
8004-4792	MW373	Trichloroethene Trichloroethene	8260B 8260B	8.74 8.53	ug/L ug/L	5 5

NOTE 1: These levels are defined in 401 KAR 47:030.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

Groundwater Flow System				UCR	s							URG	ΞA					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*				_					
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*									
Quarter 3, 2003	*					44	*			*	*	*		44	*			*			
Quarter 4, 2003						*	*				*			*		*					
Quarter 3, 2004 Quarter 3, 2005						*										不					1
Quarter 4, 2005	-					*															
ALPHA ACTIVITY						<u>т</u>															
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2009																					
ALUMINUM																					
Quarter 3, 2003											*										
BETA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004	I																				
Quarter 3, 2004	<u> </u>																				
Quarter 4, 2004	1																<u> </u>				
Quarter 4, 2005	 																				
Quarter 1, 2006	1		<u> </u>									<u> </u>	<u> </u>	<u> </u>							_
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007 Quarter 2, 2007										-											
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2007																					_
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					1
Quarter 1, 2009																					
Quarter 2, 2009						-															
Quarter 3, 2009																_					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010															_						
Quarter 4, 2010										_						_					
Quarter 2, 2011																					
Quarter 4, 2011 Quarter 1, 2012																					
Quarter 2, 2012	-																				
Quarter 3, 2012																					
Ouarter 4, 2012										_											
Quarter 1, 2013																					
Quarter 3, 2013	1																1				
Quarter 4, 2013	L																				
Quarter 1, 2014																					
Quarter 4, 2014																					
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 4, 2015	<u> </u>																				
Quarter 3, 2016	1													L							
Quarter 4, 2016																					
BROMIDE													J.L.								
Quarter 2, 2004													*								
CALCIUM Quarter 2, 2002										*						_					
Quarter 3, 2003 Quarter 2, 2005	1									*											*
Quarter 2, 2005 Quarter 3, 2006	<u> </u>														*						*
Quarter 3, 2008 Quarter 2, 2008	1														*						
Quarter 3, 2009	1														*						
Quarter 4, 2009	1														*						

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM																					
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						*
Quarter 3, 2011 Quarter 4, 2011															*						*
Quarter 1, 2012															*						*
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						*
Quarter 2, 2013															*						
Quarter 3, 2013															*						*
Quarter 4, 2013															*						
Quarter 2, 2014															*						*
Quarter 3, 2014															*						*
Quarter 4, 2014															*						
Quarter 2, 2015					ļ										*						ļ
Quarter 3, 2015															*						
Quarter 4, 2015															* *						
Quarter 1, 2016															* *						<u> </u>
Quarter 2, 2016															*						
CARBON DISULFIDE										*											
Quarter 3, 2003 Quarter 2, 2005							*		<u> </u>	*											
Quarter 2, 2005 Quarter 3, 2005						*	木														
Quarter 4, 2005						*															
Quarter 1, 2005						*															
Quarter 2, 2006						*															
Quarter 3, 2010		*				Ŧ					*										
Quarter 4, 2010														*							
Quarter 1, 2011														-	*						
CHEMICAL OXYGEN DEMA	ND																				
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003						*				*	*										
Quarter 3, 2004										*											
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																		J.	*		
Quarter 4, 2016											*							*			<u> </u>
Quarter 1, 2017 CHLORIDE											*										
Quarter 1, 2006																				*	
Quarter 1, 2006 Quarter 2, 2014															*					Ŧ	
COBALT															Ŧ						
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	
Quarter 1, 2004														*							
Quarter 2, 2016														*							
CONDUCTIVITY																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*	*										
Quarter 4, 2003										*											
Quarter 1, 2004										*											
Quarter 2, 2004										*											
										*											
Quarter 3, 2004															*						
Quarter 1, 2005														1	*		1	1			1
Quarter 1, 2005 Quarter 2, 2005															Ŧ						
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005						*													*		
Quarter 1, 2005 Quarter 2, 2005						*									*			*	*		

Groundwater Flow System	1			UCR	S							URG	LA .					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359		365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY																					
Quarter 2, 2006															*						
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						L
Quarter 3, 2007															*						L
Quarter 4, 2007															*						
Quarter 1, 2008															*						
Quarter 2, 2008															*						
Quarter 3, 2008 Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010	I														*		1				
Quarter 4, 2010	I														*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012								-							*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
Quarter 3, 2014															*						
Quarter 4, 2014 Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016															*						
DISSOLVED OXYGEN																					
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*					*											
Quarter 4, 2003					*																
Quarter 1, 2004					*																
Quarter 2, 2004								*								*					
Quarter 1, 2005					*																
Quarter 2, 2005								*													
Quarter 1, 2006					*																
Quarter 2, 2006					*			*													
Quarter 3, 2006					*			*													L
Quarter 4, 2006					*				*									-			
Quarter 2, 2007					*			*	44												
Quarter 3, 2007					*			*	*										J.		
Quarter 1, 2008					*			*	*										*		
Quarter 2, 2008 Quarter 3, 2008								*	*												
Quarter 3, 2008 Quarter 1, 2009							*	Ť													
Quarter 1, 2009 Quarter 2, 2009					*		T	*	*												
Quarter 3, 2009					T.	*		*	*												
Quarter 1, 2010					*		*	T.	Ŧ												
Quarter 2, 2010	1				*	*		*	*								-			*	*
Quarter 3, 2010	1				*	*															
Quarter 4, 2010	1						*					*					-			*	
Quarter 1, 2010	1					*											-				
Quarter 2, 2011	1				*	*	*	*	*					*							
Xuario 2, 2011	L	L			T.	Ŧ	1	T [*]	Ť				L	T.		L	L	L			<u> </u>

Groundwater Flow System	I			UCR	s					I		URG	λ			I		LRG	ξA		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
DISSOLVED OXYGEN																					
Quarter 3, 2011						*			*												
Quarter 1, 2012							*		*												
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012						*															
Quarter 4, 2012						ال ا			*												
Quarter 1, 2013						*	*		*												
Quarter 2, 2013 Quarter 3, 2013	*				*		*	*	*												
Quarter 4, 2013	Ť				Ŧ		Ŧ	Ŧ	*											*	
Quarter 2, 2013	*				*	*	*	*	*									*		Ŧ	
Quarter 3, 2014	*				*	*	*	-	-									-			
Quarter 4, 2014						*															
Quarter 2, 2015					*	*	*	*													
Quarter 3, 2015					*	*		*													
Quarter 4, 2015	*					*	*														
Quarter 1, 2016	*				*		*														
Quarter 2, 2016	*	*			*	*	*	*	*											*	*
Quarter 3, 2016	<u> </u>				*	*	*	*	*				*			I					
Quarter 4, 2016						*	J.		*				J.								
Quarter 1, 2017 DISSOLVED SOLIDS							*						*								
Quarter 4, 2002										*											
Quarter 1, 2002										*											
Quarter 2, 2003										*											
Quarter 3, 2003							*			*	*										
Quarter 4, 2003							-			*	-										
Quarter 3, 2005						*															
Quarter 4, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010 Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2010															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013	<u> </u>														* *						
Quarter 3, 2013	<u> </u>								<u> </u>						* *						
Quarter 4, 2013 Quarter 1, 2014	1														* *						┝──┦
Quarter 1, 2014 Quarter 2, 2014	1								-						* *						┝──┤
Quarter 4, 2014	1														*						
Quarter 2, 2015	1								1	1					*	1					
Quarter 3, 2015	1								1	l					*	1					
Quarter 4, 2015	1		1					1		1	1			1	*	1	l	1	1		
Quarter 1, 2016															*						
IODIDE																					
Quarter 2, 2003																*					
Quarter 3, 2003	*				L		<u> </u>			*					L	I					\vdash
Quarter 4, 2003	<u> </u>	L	L			<u> </u>	*	<u> </u>	<u> </u>	I		L	<u> </u>	L		I	<u> </u>		L		
Quarter 3, 2010						*		*					*				*				
IODINE-131																					
Quarter 3, 2010	1		L						I	L	L			L		L	L		L		<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)	

Groundwater Flow System				UCR	s							URG	βA					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
IODOMETHANE																					
Quarter 4, 2003						*															
IRON																					
Quarter 4, 2002						*															
Quarter 3, 2003										_						*					
Quarter 4, 2003										*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*						-					
Quarter 3, 2004										*						*					
Quarter 3, 2005 MAGNESIUM																*					
Quarter 2, 2005															*						*
Quarter 3, 2005						*									Ŧ						*
Quarter 2, 2005						Ŧ									*						*
Quarter 3, 2006															*						Ŧ
Quarter 1, 2007															*						
Quarter 2, 2008															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010		1		1								1	1	1	*			1			
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013								-							*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 2, 2014															*						
Quarter 4, 2014															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016	*																				
Quarter 4, 2016	*																				
MANGANESE										44		44									_
Quarter 3, 2002		J.				÷	F.			*		*		J.							
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2003										*		*	*			*	*	*	*		
Quarter 3, 2003 Ouarter 4, 2003										*	*	*	*			不	*	*	Ŧ		
Quarter 1, 2003										*	*	*	不			*	*	*			
Quarter 2, 2004							*			*	*	*				Ŧ	Ŧ	*			
Quarter 3, 2004							*			*	*	*				*		Ŧ			
Ouarter 4, 2004							Ŧ			*	Ŧ	*				*					
Quarter 1, 2005										*		*				Ŧ					
Quarter 2, 2005										*		*									
Quarter 3, 2005										*		*				*					
Quarter 4, 2005								<u> </u>		*						*					
Quarter 1, 2006										*						-					
Quarter 2, 2006							*			*		*									
Quarter 3, 2006										*						*					
Quarter 4, 2006										*											
Quarter 1, 2007										*											
		1		1			*			*		1	1	1				1			
										-		1		1							
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007							*														
Quarter 2, 2007							*														
Quarter 2, 2007 Quarter 3, 2007																	-				

Groundwater Flow System				UCF	RS							URG	ĞΑ					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
MANGANESE																					
Quarter 3, 2009							*														
Quarter 3, 2011							*														\vdash
Quarter 2, 2016									.					*							\vdash
Quarter 3, 2016									*												\square
NICKEL Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTE	NTTA	т							不											
Quarter 4, 2002																	*		*		
Quarter 1, 2002	1																*		*		
Ouarter 2, 2003																			*		
Quarter 3, 2003	*																		-		
Quarter 4, 2003					*																
Quarter 2, 2004	1												*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006					*			*	*								*				*
Quarter 2, 2006	Į				*		*	*					*				*			*	
Quarter 3, 2006					*		44	*		44		46	*				*			*	-
Quarter 4, 2006		J.			*		*	J.		*		*	*				*			*	*
Quarter 1, 2007		*			*			*					*				*			*	*
Quarter 2, 2007					*			*					*				*			*	*
Quarter 3, 2007 Quarter 4, 2007					*			*									*			*	*
Quarter 1, 2007 Quarter 1, 2008					*			*				*	*				*		*	*	*
Quarter 1, 2008 Quarter 2, 2008					*			*		*		*	*	*				*	*	*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008	1							*	-1-	*		*	*				*	*	-1-	*	*
Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011						*		*		*	*	*	*	*		*	*	*	*	*	
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011	Į	*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011	Į	*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012	54	*		44	44	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*	J.		J.	*	-	*		* *	*	-	* *	*	*
Quarter 4, 2012 Ouarter 1, 2013		*				*		* *	*	*	*	* *	*	*		*	* *	*	不	*	*
Quarter 1, 2013 Quarter 2, 2013	1	*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	* *	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013	—	*			-	*	-	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2013	1	*		-	-		-	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*			*	*	*	*	*	*	-	*	*	*		*	*	*	*	*	*
Quarter 4, 2014	1	*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 1, 2015	1	*		1	1	*	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015		*			*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*	*			*		*	*		*		*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 3, 2016	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2017	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Groundwater Flow System				UCR	s							URG	βA					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
PCB, TOTAL																					
Quarter 4, 2003																	*				
Quarter 3, 2004	ļ											*									
Quarter 3, 2005							*														
Quarter 2, 2006	ļ —						*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007 Quarter 3, 2007							*														
Quarter 3, 2007 Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010	-						*														
Quarter 2, 2010	-						*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004												*									
Quarter 2, 2006	1	1					*					*				1					
Quarter 1, 2007	1	1					*					-				1					
Quarter 2, 2007	İ	i					*									1					
Quarter 3, 2007							*														
Quarter 2, 2008	I						*									1	[
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242																					
Quarter 3, 2006							*					*									
Quarter 4, 2006										*											
Quarter 1, 2008							*														
Quarter 2, 2012							*														
PCB-1248																					
Quarter 2, 2008							*														
PCB-1260																					
Quarter 2, 2006							*														
pH																					
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005						*												*	*		
Quarter 4, 2005						*										44			*		
Quarter 3, 2006														<u>т</u>		*					
Quarter 2, 2011														*							
Quarter 3, 2011														* *							
Quarter 4, 2011														*		J.	J.				
Quarter 1, 2012												يلار				*	*				\vdash
Quarter 2, 2012										*		*				*					\vdash
Quarter 1, 2013 Quarter 3, 2015										*		ボ				*	*				\vdash
																	*			*	*
Quarter 2, 2016 Quarter 3, 2016														-						*	*
			-		-														-	*	
POTASSIUM										_						*					
Quarter 1, 2014 RADIUM-228										-						*					
Quarter 2, 2005																					
Quarter 2, 2005 Quarter 4, 2005									-												\vdash
Quarter 4, 2003	L	L		L																	
SELENIUM Quarter 4, 2003																					

Groundwater Flow System				UCR	S							URG	ΞA					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SODIUM																					
Quarter 3, 2002										*	*		*								
Quarter 4, 2002										*	*			*							
Quarter 1, 2003										*											
Quarter 2, 2003										*	*										
Quarter 3, 2003											*										
Quarter 1, 2007											*										
Quarter 1, 2012														*							
Quarter 1, 2014															*						
Quarter 3, 2014											*										<u> </u>
Quarter 4, 2014											*										<u> </u>
Quarter 4, 2015											* *										
Quarter 1, 2016											*										
Quarter 2, 2016											*										
Quarter 3, 2016											*										
Quarter 4, 2016											*										
Quarter 1, 2017 STRONTIUM-90											*					_					
Quarter 4, 2008																					-
SULFATE																					
Quarter 1, 2003							*					-				-					
Quarter 2, 2003	1					*	*														
Quarter 3, 2003	*					*	*														
Quarter 4, 2003					*	-44	*														1
Quarter 1, 2003	1				*	*	*														1
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005															*						
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006						-	*								_						
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 4, 2007		*																			
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008		*				*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*									*						
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010		*			*	*	*								*						
Quarter 3, 2010		*			*	*	*								*						
Quarter 4, 2010		*				*	*								*						
Quarter 1, 2011	I	*																			L
Quarter 2, 2011	I	*			*	*	*								*						┝──
Quarter 3, 2011	<u> </u>	*				*	*	*							*						\vdash
Quarter 4, 2011	I	*				*						ļ			*		ļ				\square
Quarter 1, 2012		*					*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012	L	*	l	l	l	*		l		l		ļ			*				l	l	—
Quarter 4, 2012	L	*	l	l	l			l		l		ļ			*				l	l	—
Quarter 1, 2013	<u> </u>	*	L	L	L	*	<u> </u>	L		L	<u> </u>	L	<u> </u>	<u> </u>	*			<u> </u>	L	L	—
Quarter 2, 2013	<u> </u>	*	L	L	L	<u> </u>	<u> </u>	L		L	<u> </u>	L	<u> </u>	<u> </u>	*			<u> </u>	L	L	—
Quarter 3, 2013	*	*		*	*	*	*								*						┝──
Quarter 4, 2013	<u> </u>	*	L	L	L	L	<u> </u>	L		L	<u> </u>	L	<u> </u>	<u> </u>	*			<u> </u>	L	L	—
Quarter 1, 2014	<u> </u>	*	L	L	L	L	<u> </u>	L		L	<u> </u>	L	<u> </u>	<u> </u>	*			<u> </u>	L	L	—
Quarter 2, 2014	*	*			*		*	*		L	<u> </u>				*						—
Quarter 3, 2014	*	*			*	*	*	*		ļ	<u> </u>				*						—
Quarter 4, 2014		*	ļ	ļ	ļ	*															—
							1		1		1	1	1	1			1				1
Quarter 1, 2015 Quarter 2, 2015	*	*			*		*								*						

Gradient D S S S Monitoring Well 368 375 376 377 SULFATE Image: Construction of the second	D 359 *	2	D D	U	D	D	D	-						A		
SULFATE * Quarter 3, 2015 * Quarter 1, 2015 * Quarter 2, 2016 * Quarter 3, 2016 * Quarter 4, 2016 * Quarter 3, 2016 * Quarter 4, 2016 * Quarter 4, 2016 * Quarter 4, 2001 * Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 3, 2006 * Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2008 Quarter 3, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2010		~		0		D	D	D	U	U	D	D	D	D	U	U
Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 2, 2016 * * Quarter 3, 2016 * * Quarter 4, 2016 * * Quarter 1, 2017 * * Quarter 4, 2002 - - Quarter 4, 2003 - - Quarter 3, 2003 - - Quarter 1, 2004 - - Quarter 2, 2003 - - Quarter 3, 2004 - - Quarter 4, 2004 - - Quarter 3, 2005 - - Quarter 4, 2006 - - Quarter 3, 2006 - - Quarter 4, 2006 - - Quarter 3, 2007 - - Quarter 4, 2008 - - Quarter 3, 2008 - - Quarter 4, 2008 - - Quarter 4, 2008 - - Quarter 1, 2008 - - Quarter 1, 2010 - - <td< th=""><th>*</th><th>3</th><th>362 365</th><th>374</th><th>366</th><th>360</th><th>363</th><th>357</th><th>369</th><th>372</th><th>367</th><th>361</th><th>364</th><th>358</th><th>370</th><th>373</th></td<>	*	3	362 365	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 4, 2015 * * Quarter 1, 2016 * * * Quarter 3, 2016 * * * Quarter 4, 2016 * * * Quarter 1, 2017 * * * Quarter 4, 2002 - - Quarter 1, 2017 * * * TECHNETIUM-99 - - - Quarter 4, 2002 - - - Quarter 3, 2003 - - - Quarter 4, 2003 - - - Quarter 3, 2004 - - - Quarter 3, 2004 - - - Quarter 3, 2005 - - - Quarter 3, 2006 * - - Quarter 4, 2006 - - - Quarter 3, 2007 - - - Quarter 4, 2007 - - - Quarter 1, 2008 - - - Quarter 2, 2008 - - - Quarter 3, 2009	*															
Quarter 1, 2016 # # Quarter 2, 2016 # # # Quarter 3, 2016 # # # Quarter 4, 2016 # # # Quarter 1, 2017 # # # Quarter 1, 2007 # # # Quarter 2, 2003			*							*						
Quarter 1, 2016 * * * Quarter 3, 2016 * * * Quarter 4, 2016 * * * Quarter 4, 2016 * * * Quarter 1, 2017 * * * TECHNETIUM-99			* *													
Quarter 3, 2016 * * * Quarter 4, 2016 * * * Quarter 1, 2017 * * * TECHNETIUM-99	*		* *													
Quarter 4, 2016 * * * Quarter 1, 2017 * * * TECHNETIUM-99	*		* *													
Quarter 1, 2017 * * TECHNETIUM-99	*		* *													
TECHNETUM-99 Quarter 4, 2002 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2011 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2014 <t< td=""><td>+</td><td></td><td>* *</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	+		* *													
Quarter 4, 2002		-	* *		_											_
Quarter 2, 2003		-										*	*	*		
Quarter 3, 2003			*					*			*	*	*	*		*
Quarter 4, 2003			4					Ŧ			Ŧ	*	*	Ŧ		T
Quarter 1, 2004	+											*				*
Quarter 2, 2004	+									*		*				*
Quarter 3, 2004										*		-				*
Quarter 4, 2004										*						*
Quarter 3, 2005										*		*				*
Quarter 1, 2006 * Quarter 2, 2006 * Quarter 3, 2006		-										*				
Quarter 2, 2006 $*$ Quarter 3, 2006		-								*						*
Quarter 3, 2006		-		*												*
Quarter 4, 2006		-														*
Quarter 1, 2007		-								*						*
Quarter 2, 2007		-														*
Quarter 3, 2007		-						*		*					*	
Quarter 4, 2007		-								*		*	*			
Quarter 2, 2008		-			*					*				*		*
Quarter 2, 2008										*					*	*
Quarter 4, 2008			*						*		*			*		
Quarter 4, 2008		-								*						
Quarter 2, 2009		-			*							*		*		
Quarter 2, 2009					*											
Quarter 4, 2009													*			
Quarter 2, 2010					*					*						
Quarter 3, 2010 Image: Constraint of the system of the					*					*			*	*		
Quarter 3, 2010 Image: Constraint of the system of the					*						*	*	*	*		
Quarter 1, 2011 * Quarter 2, 2011					*					*						
Quarter 2, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 4, 2016													*			
Quarter 1, 2012					*							*				
Quarter 2, 2012											*	*	*	*		
Quarter 3, 2012												*	*			
Quarter 4, 2012													*			
Quarter 1, 2013		_										*	*			
Quarter 2, 2013		_								*			*			*
Quarter 3, 2013		_											*			*
Quarter 4, 2013		_														*
Quarter 1, 2014					*											*
Quarter 2, 2014										*		*	*			*
Quarter 3, 2014										*		*	*			
Quarter 4, 2014	\vdash	_											*			
Quarter 1, 2015	\vdash	_										*	*	*		
Quarter 2, 2015	\vdash	_								*						
Quarter 3, 2015	\vdash	_								*			*			
Quarter 4, 2015	\vdash	_									*					
Quarter 1, 2016	\vdash	_											*	*	*	
Quarter 2, 2016	\vdash	_								*	46	*	46	ىك	*	-1-
Quarter 3, 2016 Quarter 4, 2016	\vdash	_									*	*	*	*	ىك	*
Quarter 4, 2016	\vdash	_									*	*	*	*	*	
	\vdash	_			بنو				4			*	ىلىر	*	*	
Unarter 2017	+				*				*			¢	*	ىلى	ىلى	
												*		*	*	
THORIUM-230											ىلو					
Quarter 4, 2015	┢──┤				*						*					
Quarter 2, 2016	┢──┤				ボ		*				*			*		
Qualiter 1, 2010	\vdash						不				ボ			不		
TOLUENE		1			*				<u>.</u>							
Quarter 2, 2014		Ē		<u> </u>	*	<u> </u>			*			_				_

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TOTAL ORGANIC CARBON	-																				
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003	*									L.	*					Ψ					
Quarter 3, 2003	不									*	*					*					
Quarter 4, 2003 Quarter 1, 2004										Ŧ	*										
Quarter 3, 2005						*				*	т				*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
TOTAL ORGANIC HALIDES	5																				
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 1, 2004																*					
TRICHLOROETHENE										_										-	
Quarter 3, 2002 Quarter 4, 2002														-						-	
Quarter 1, 2002 Quarter 1, 2003																				-	
Quarter 1, 2003 Quarter 2, 2003																					-
Quarter 3, 2003																					
Quarter 4, 2003	1																				
Quarter 1, 2005	1	l										l									
Quarter 2, 2004	1	1									1	1									
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005								-													
Quarter 3, 2005																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					-
Quarter 3, 2006 Quarter 4, 2006																				-	
Quarter 1, 2007																					
Quarter 2, 2007																				-	
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009								-													
Quarter 2, 2009																					
Quarter 3, 2009						_	_				_		_	_			_				
Quarter 4, 2009																					
Quarter 1, 2010 Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011													_								
Quarter 3, 2011	İ –		1	1										1			1	1			
Quarter 4, 2011	1	l										1									
Quarter 1, 2012	L											L									
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013	I																L				
Quarter 2, 2013	I	ļ										ļ									
Quarter 3, 2013	I																				
Quarter 4, 2013	I									ļ											
Quarter 1, 2014																					
Quarter 2, 2014 Quarter 3, 2014										l									-		
Quarter 3, 2014 Quarter 4, 2014																					
Quarter 1, 2014 Quarter 1, 2015																					
Quarter 2, 2015																					
		<u>ا</u>	L	L					<u> </u>	_	·	<u>ا</u>	L	L		-	L	L			

Groundwater Flow System				UCF	RS							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2015																					
Quarter 4, 2015																					
Quarter 1, 2016																					
Quarter 2, 2016																					
Quarter 3, 2016																					
Quarter 4, 2016																					
Quarter 1, 2017																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an elev	ated co	ncentra	tion (i.	.e., a st	atistica	l excee	dance)														
MCL Exceedance																					
UCRS Upper Continental Recharge System																					
URGA Upper Regional Gravel Aquifer																					
LRGA Lower Regional Gravel Aquifer																					

APPENDIX H

METHANE MONITORING DATA

03/16/2017C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT Permit #: 073-00045 McCracken County, Kentucky

Date:	03/16/2017	Time:	09:40am	Monitor:	Tammy Smith					
	Weather Conditions: Partly sunny at 37* with winds out of the SE									
Monitoring	Monitoring Equipment: RAE Systems, Multi Rae 4494-5									
	Mon	itoring Lo	cation		Reading (% LEL)					
C-746-U1	Checked at floor level				0					
C-746-U2	Checked at floor level				0					
C-746-U-T-14	Checked at floor level	•	· · · · · · · · · · · · · · · · · · ·		0					
C-746-U15	Checked at floor level				0					
MG1	Dry casing				0					
MG2	Dry casing				0					
MG3	Dry casing				0					
MG4	Dry casing	۰.			0					
Suspect or Problem Ar					N/A					
Remarks:	·									
Performed	by: Jamme Sight	A.,	Smith		03/16/2017					
	Signa	ature			Date					

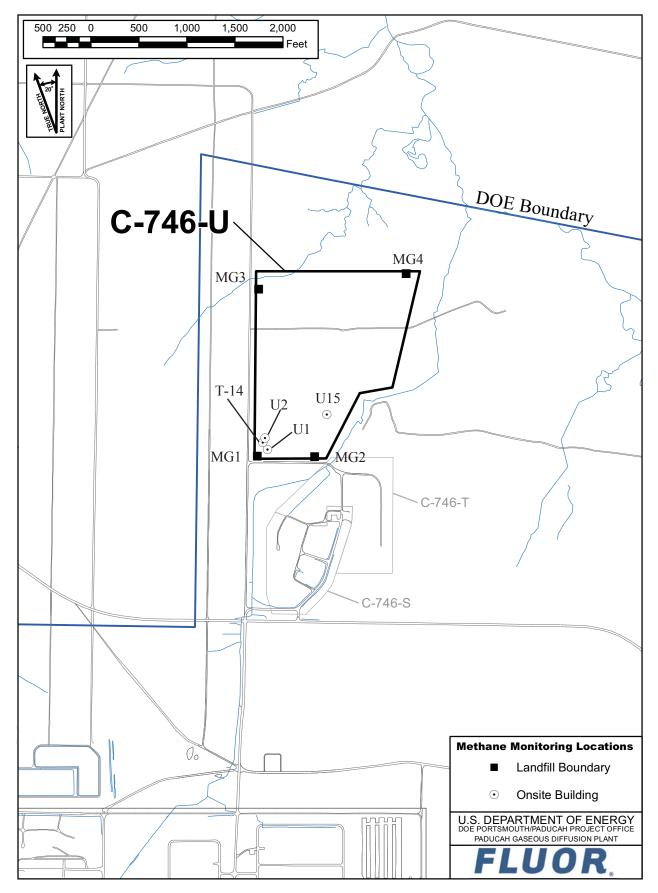


Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I

SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS

Division of Waste Management **RESIDENTIAL/CONTAINED-QUARTERLY** Solid Waste Branch Permit Number: 073-00045 14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

For Official Use Only

LAB ID: None

SURFACE WATER SAMPLE ANALYSIS (5)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "Do	OWNSTREAM")	L150 AT SITE	Ξ	L154 UPSTRE	AM	L351 DOWNST	REAM		
Sample Sequer	nce	#				1		1		1			
If sample is a	a Bl	ank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	Sample Date and Time (Month/Day/Year hour:minutes)							2/7/2017 12:2	!1	2/7/2017 11:	55		
Duplicate ("Y" or "N") ¹								N		N			
Split ('Y' or "N") ²								N		N			7
Facility Sample ID Number (if applicable)								L154US2-17	,	L351US2-1	7		/
Laboratory Sample ID Number (if applicable)								415936002		415936003	3		
Date of Analysis (Month/Day/Year)								2/27/2017		2/27/2017			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷
A200-00-0	0	Flow	т	MGD	Field	0.04		0.24		0.28			
16887-00-6	2	Chloride(s)	т	mg/L	300.0	3.07		5.61		4.15			
14808-79-8	0	Sulfate	т	mg/L	300.0	16.2		24.5		10.6			
7439-89-6	0	Iron	т	mg/L	200.8	1.72		2.06		1.73			
7440-23-5	0	Sodium	т	mg/L	200.8	2.12		4.87		4.5			
S0268	0	Organic Carbon ⁶	т	mg/L	9060	26.8		18.8		9.26			
S0097	0	BOD ⁶	т	mg/L	not applicable		*		*		*	/	
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	95.6		72.3		42.1		/	

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

Page 2 of 2

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	: (KPDES Discharge Number, or	DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNSTREAM						
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S	DETECTED VALUE OR PQL ⁵	FLAG7
s0145	1	Specific Conductance	т	µmho/cm	Field	181		224		240			Γ
S0270	0	Total Suspended Solids	т	mg/L	160.2	26.7		44.6		60.2			
S0266	0	Total Dissolved Solids	т	mg/L	160.1	187		189		156			
S0269	0	Total Solids	т	mg/L	SM-2540 B 17	215		229		219			
S0296	0	рН	т	Units	Field	7.27		7.34		7.1			
7440-61-1		Uranium	т	mg/L	200.8	0.00234		0.00639		0.0264			
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	5.25	*	7.2	*	19.1	*		
12587-47-2		Gross Beta (β)	т	pCi/L	9310	3.11	*	12.4	*	32.6	*	V	
												Λ	
													\downarrow
												/	

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L150	L150US2-17	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.62. Rad error is 6.56.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.34. Rad error is 7.32.
L154	L154US2-17	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.95. Rad error is 6.84.
		Beta activity		TPU is 7.92. Rad error is 7.65.
L351	L351US2-17	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 9.71. Rad error is 9.19.
		Beta activity		TPU is 10.7. Rad error is 9.3.