

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

MAY 2 0 2016

PPPO-02-3557875-16

Ms. Robin Green Division of Waste Management Kentucky Department for Environmental Protection 200 Fair Oaks Lane, 2nd Floor Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 200 Fair Oaks Lane, 2nd Floor Frankfort, Kentucky 40601

Mr. Allan Shingleton Division of Waste Management Kentucky Department for Environmental Protection 625 Hospital Drive Madisonville, Kentucky 42431

Dear Ms. Green, Mr. Hendricks, and Mr. Shingleton:

C-746-U CONTAINED LANDFILL FIRST QUARTER CALENDAR YEAR 2016 (JANUARY–MARCH) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FPDP-RPT-0025/V1, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for the first quarter calendar year 2016. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of C-746-U Contained Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the first quarter 2016 monitoring well data collected from the C-746-U Landfill were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the first quarter calendar year 2016, in accordance with Condition GSTR0001, Standard Requirement 8, of the C-746-U Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely, nnifa Woodard

Jennifer Woodard Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill 1st Qtr CY 2016 (January–March) Compliance Monitoring Report

e-copy w/enclosure: april.webb@ky.gov, KDEP/Frankfort brian.begley@ky.gov, KDEP/Frankfort dave.dollins@lex.doe.gov, PPPO/PAD ffscorrespondence@ffspaducah.com, FFS/Kevil gary.hines@ffspaducah.com, FFS/Kevil gaye.brewer@ky.gov, KDEP/PAD jennifer.watson@ffspaducah.com, FFS/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD joseph.towarnicky@ffspaducah.com, FFS/Kevil ken.davis@ffspaducah.com, FFS/Kevil leo.williamson@ky.gov, KDEP/Frankfort lisa.crabtree@ffspaducah.com, FFS/Kevil mark.duff@ffspaducah.com, FFS/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@ffspaducah.com, FFS/Kevil pad.rmc@swiftstaley.com, SSI/Kevil reinhard.knerr@lex.doe.gov, PPPO/PAD stephaniec.brock@ky.gov, KYRHB/Frankfort

C-746-U Contained Landfill First Quarter Calendar Year 2016 (January–March) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

FLUOR.

This document is approved for public release per review by: S/r/16 Date FPDP Classification Support

FPDP-RPT-0025/V1

C-746-U Contained Landfill First Quarter Calendar Year 2016 (January–March) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—May 2016

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FLUOR FEDERAL SERVICES, INC., Paducah Deactivation Project managing the Deactivation Project at the Paducah Gaseous Diffusion Plant under Task Order DE-DT0007774

CLEARED FOR PUBLIC RELEASE

FIC	GURE	S		v
TA	BLES			v
AC	CRONY	YMS		. vii
1.	INTR 1.1 1.2	BACK	TION GROUND FORING PERIOD ACTIVITIES	1
		1.2.1 1.2.2 1.2.3	Groundwater Monitoring Methane Monitoring Surface Water Monitoring	1 3
	1.3	KEY R	ESULTS	5
2.	DAT. 2.1		LUATION/STATISTICAL SYNOPSIS STICAL ANALYSIS OF GROUNDWATER DATA Upper Continental Recharge System Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer	8 8 8
	2.2	DATA	VERIFICATION AND VALIDATION	9
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	. 11
4.	REF	ERENCI	ES	. 13
AF	PEND	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A- 1
AF	PEND	OIX B:	FACILITY INFORMATION SHEET	B-1
AF	PEND	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
AF	PEND	DIX D	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AF	PEND	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AF	PEND	OIX F:	NOTIFICATIONS	F-1
AF	PEND	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AF	PEND	OIX H:	METHANE MONITORING DATA	H-1
AF	PEND	IX I:	SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS	.I-1

CONTENTS

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	.2
2.	C-746-U Landfill Surface Water Monitoring Locations	.4

TABLES

1.	Summary of MCL Exceedances	. 5
	Exceedances of Statistically Derived Historical Background Concentrations	
	Exceedances of Current Background UTL in Downgradient Wells	
	Exceedances of Current Background UTL in UCRS Wells	
	Monitoring Wells Included in Statistical Analysis	

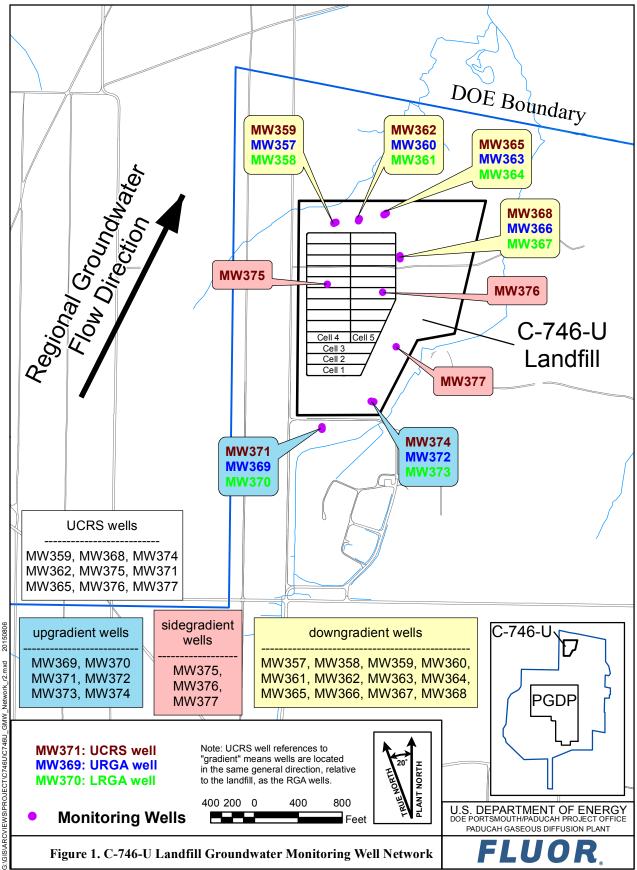
ACRONYMS

CFR	Code of Federal Regulations
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
MCL	maximum contaminant level
MW	monitoring well
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill First Quarter Calendar Year 2016 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4. Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring was conducted in accordance with 401 KAR 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), Technical Application Attachment 12 of the Solid Waste Landfill permit. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 4. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), Technical Application Attachment 24 of the Solid Waste Landfill permit. Surface water results are provided in Appendix I.


1.1 BACKGROUND

The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for these locations.

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but flow in the underlying RGA is lateral. Groundwater flow in the RGA typically is in a north-northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the RGA wells located in the same direction (relative to the landfill) as nearby UCRS wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2016 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using Fluor Federal Services, Inc., procedure CP4-ES-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 26, 2016, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is northeastward, toward the Ohio River. During January, however, the RGA groundwater flow in the area of the landfill was oriented northeast to east. The hydraulic gradient in the vicinity of the C-746-U Landfill in January was 2.22×10^4 ft/ft. The hydraulic gradient for the URGA and LRGA at the C-746-U Landfill were 2.76×10^4 ft/ft and 3.09×10^4 ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.47 to 0.80 ft/day for the URGA and 0.53 to 0.90 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

In accordance with the Explosive Gas Monitoring Program (KEEC 2011), landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on February 29, 2016. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was sampled in accordance with 401 *KAR* 48:300 § 2 and the approved Surface Water Monitoring Plan (PRS 2008). Sampling was performed at three locations monitored for the C-746-U Landfill. The C-746-U Landfill has an upstream location, L154; a downstream location, L351; and a location capturing runoff from the landfill surface, L150. Figure 2 is a map of the surface water monitoring locations. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled, in report only format, pursuant to Permit Condition GMNP0001, Standard Requirement 1. Surface water results are provided in Appendix I.

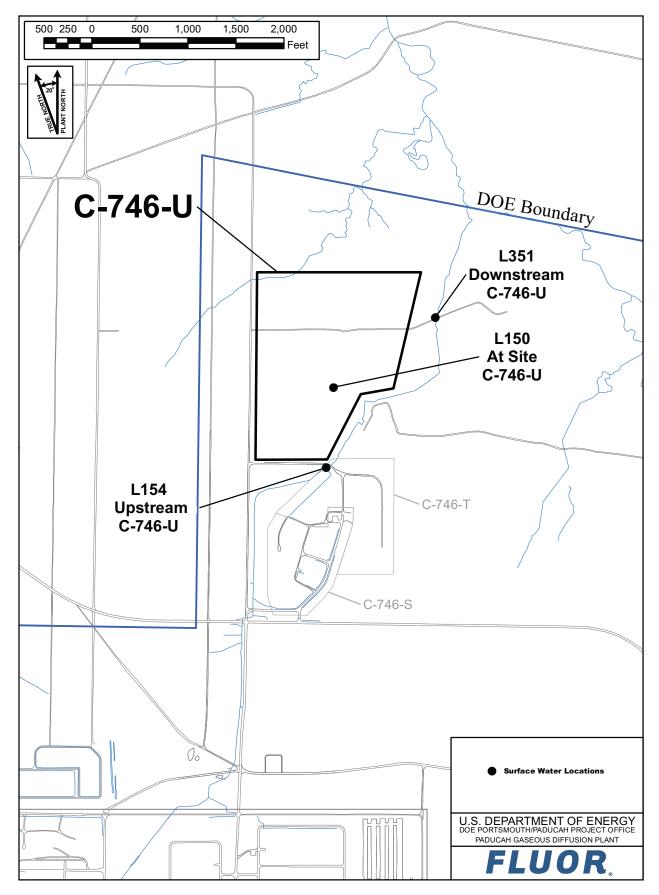


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014). Parameters that had concentrations that exceeded the respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL concentrations¹ during the first quarter 2016, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA	
None	MW357: Trichloroethene	MW364: Trichloroethene	
	MW372: Trichloroethene	MW373: Trichloroethene	

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential, technetium-99
MW362: Sulfate	MW360: Sodium	MW361: Oxidation-reduction
		potential, technetium-99
MW365: Dissolved oxygen,	MW363: Oxidation-reduction	MW364: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential, technetium-99
MW368: Dissolved oxygen,	MW366: Oxidation-reduction	MW367: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential, technetium-99
MW371: Oxidation-reduction	MW369: Oxidation-reduction	MW370: Oxidation-reduction
potential	potential	potential
MW375: Oxidation-reduction	MW372: Calcium, conductivity,	MW373: Oxidation-reduction
potential, sulfate	dissolved solids, magnesium,	potential, technetium-99
	oxidation-reduction potential	

*Gradients in the UCRS are downward. UCRS gradient designations refer to the locations of wells in the same direction, relative to the landfill as the RGA wells. Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA		
None	None		

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW364 and

¹ The term "concentration" may refer to a field measurement result such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW364 and MW357 (downgradient wells), do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL that were developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

The statistical evaluation of current UCRS wells (downgradient) against the current UCRS background UTL identified UCRS wells with sulfate values that exceed both the historical and current background (Table 4). Because these wells are not hydrogeologically downgradient of the C-746-U Landfill, these exceedances are not attributable to C-746-U sources and are considered Type 1 exceedances.

UCRS
MW359: Sulfate
MW365: Sulfate
MW368: Sulfate

Table 4. Exceedances of Current Background UTL in UCRS Wells

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2016 groundwater data collected from the C-746-U Contained Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 *KAR* 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 5.

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376***		
MW377***		

Table 5. Monitoring Wells Included in Statistical Analysis*

*A map showing the monitoring well locations is shown on Figure 1.

**In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

***MW376 and MW377 had insufficient water to permit a water sample for laboratory analysis.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Sulfate exceeded the current background UTL and is included on Table 4.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 31 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, and sodium displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedances of the current background UTL for any URGA downgradient wells as summarized in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedances of the current background UTL for any LRGA downgradient wells as summarized in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill First Quarter Calendar Year 2016 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FPDP-RPT-0025/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

R. Davis

Kenneth R. Davis

,

PG1194

May 16, 2Ø16 Date

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET **DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT** SOLID WASTE BRANCH **14 REILLY ROAD** FRANKFORT, KY 40601

Facility Name: U.S. DOE–Paducah Gaseous Diffusion Plant			Activity: C-746-I	U Contained Landfill		
	(As officially shown	on DWM Permit Face)				
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	1st Qtr. CY 2016		
Please check the following as applicable:						
Chara	cterization <u>X</u> Quar	terly Semiannual	Annual	Assessment		
Please check a	pplicable submittal(s):	X Groundwater	X Surfac	e Water		
	_	Leachate	X Metha	ne Monitoring		

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Mark J. Duff, Director, Environmental Management Fluor Federal Services, Inc.

Woodard, Paducah Site Lead Department of Energy

-20-16 Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

	Groundwater: January 2016 Surface Water: February 2016			Permit	SW07300014, SW07300015,	
Sampling Date:	Methane: February 2016	County:	McCracken	Nos.	SW07300045	
Facility Name:	U.S. DOE—Paducah Gaseous D	iffusion Plant				
	(As officially sho	wn on DWM Permit Face	e)			
Site Address:	5501 Hobbs Road	Hobbs Road Kevil, Kentucky 4/		42053		
Street City/State Zip						
Phone No: (270) 441-6800 Latitude: N 37° 07' 45" Lot				tude: W	88° 47' 55"	

OWNER INFORMATION

Facility Owner:	U.S. DOE—Robert E. Edwards III, Acting Manager		Phone No:	(859) 227-5020
Contact Person:	Mark J. Duff		Phone No:	(270) 441-6127
Contact Person Title	: Director, Environmenta	al Management, Fluor Federal	Services, Inc.	
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky	42053	
	Street	City/State		Zip

SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)

Company: GEO G	Consultants, LLC			
Contact Person:	Sam Martin	Pho	ne No: (270) 441-6755	
Mailing Address:	352 Kentucky Avenue	Kevil, Kentucky	42053	
	Street	City/State	Zip	
	LAB	ORATORY RECORD #1		
Laboratory <u>GEL I</u>	Laboratories, LLC Lab ID No: KY90129		KY90129	
Contact Person:	Valerie Davis	Phone No: (843) 769-7391		_
Mailing Address:	2040 Savage Road	Charleston, South Carolina	29047	
	Street	City/State	Zip	
	LAB	ORATORY RECORD #2		
Laboratory:		Lab ID No:		
Contact Person:		Phone No:		
Mailing Address:				
	Street	City/State	Zip	
	LAB	ORATORY RECORD #3		
Laboratory:		Lab ID No:		
Contact Person:		Phone No:		
Mailing Address:				
	Street	City/State	Zip	

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-479	3	8004-47	799	8004-09	981	8004-480	00
Facility's Lo	cal Well or Spring Number (e.g., M	₩-1	, MW-2, etc	.)	357		358		359		360	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour:minu	tes)		1/14/2016 12	2:25	1/14/2016	13:12	1/21/2016	08:10	1/14/2016 1	0:01
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW357UG2	-16	MW358U	G2-16	MW359U0	G2-16	MW360UG	2-16
Laboratory Sa	mple ID Number (if applicable)		38945700	1	389457	003	389926	003	3894570	05		
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	ysis	1/19/2016	6	1/19/20	16	1/27/20	16	1/19/201	6		
Gradient with	respect to Monitored Unit (UP, DO	JWN,	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.391		0.458		<0.2		0.153	J
16887-00-6	Chloride(s)	т	mg/L	9056	29.6		35.5		1.22		10.7	
16984-48-8	Fluoride	т	mg/L	9056	0.141		0.149		<0.1		0.242	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.23		0.858		1.58		0.235	J
14808-79-8	Sulfate	т	mg/L	9056	48		76.4		50.4		23.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.96		29.96		30.23		29.95	
s0145	Specific Conductance	т	µMH0/cm	Field	434		523		305		546	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798	3	8004-4799)	8004-0981		8004-4800)
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.45		325.46		334.25		325.29	
N238	Dissolved Oxygen	т	mg/L	Field	3.49		1.62		4.55		1.7	
s0266	Total Dissolved Solids	т	mg/L	160.1	221		264		261		309	
50296	рН	т	Units	Field	6.34		6.32		6.78		6.58	
NS215	Eh	т	mV	Field	355		404		187		192	
50907	Temperature	т	°C	Field	15.44		15.89		13.67		14.11	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.265	*	0.0258	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00185	J
7440-39-3	Barium	т	mg/L	6020	0.0651	*	0.0501	*	0.0302		0.154	*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.422		0.453		<0.015		0.0328	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	27.4		34.9		8.14		25.5	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000283	J	0.000296	J	0.0171	
7440-50-8	Copper	т	mg/L	6020	<0.001		0.000507	J	0.0012		<0.001	
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0891	J	0.369		2.91	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.6		14.9		4.13		9.26	
7439-96-5	Manganese	т	mg/L	6020	0.00378	J	0.0145		0.00415	J	0.226	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-2

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	81	8004-480	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		0.000176	BJ	0.000395	J
7440-02-0	Nickel	т	mg/L	6020	0.000593	J	0.0028		0.00168	J	0.00171	J
7440-09-7	Potassium	т	mg/L	6020	1.71		2.4		0.177	J	0.731	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00158	J	<0.005		0.00167	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	43.4		41.2		39.3		78	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.000129	J	0.000182	J
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00633	J	<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-09	81	8004-480	00
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00513		0.00413		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-7

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	9	8004-098	81	8004-48	00
Facility's Loc	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000207		<0.0000204		<0.0000206		<0.0000207	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0943		<0.0971		<0.0952		<0.0943	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0943		<0.0971		<0.0952		<0.0943	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0943		<0.0971		<0.0952		<0.0943	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0943		<0.0971		<0.0952		<0.0943	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0943		<0.0971		<0.0952		<0.0943	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0943		<0.0971		<0.0952		<0.0943	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798	·	8004-4799		8004-098	1	8004-480	0
Facility's Loc	al Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0943		<0.0971		<0.0952		<0.0943	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0943		<0.0971		<0.0952		<0.0943	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0943		<0.0971		<0.0952		<0.0943	
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.45	*	0.926	*	1.64	*	-0.563	*
12587-47-2	Gross Beta	т	pCi/L	9310	26.1	*	31.9	*	2.82	*	-1.2	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.425	*	0.497	*	0.566	*	0.561	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.6	*	4.14	*	2.67	*	0.887	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	42.7	*	54.3	*	8.54	*	10.9	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.158	*	0.161	*	-0.0254	*	-0.176	*
10028-17-8	Tritium	т	pCi/L	906.0	-37.7	*	169	*	-28.7	*	129	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.642	J	0.593	J	1.72	J	2.05	
s0586	Total Organic Halides	т	mg/L	9020	0.00592	J	0.00768	J	0.0034	J	0.015	

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479	97
Facility's Loo	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	.)	361		362		363		364	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour:minu	tes)		1/14/2016 09	9:14	1/21/2016	07:02	1/13/2016	08:33	1/13/2016 1	3:40
Duplicate ("Y	" or "N") ²				Ν		N		N		N	
Split ("Y" or	"N") ³				Ν		N		N		N	
Facility Samp	le ID Number (if applicable)				MW361UG2	-16	MW362U	G2-16	MW363U0	G2-16	MW364UG	2-16
Laboratory Sa	mple ID Number (if applicable)		38945700	7	389926	001	389250	001	3892500	03		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	1/19/2016	5	1/27/20)16	1/19/20	16	1/19/201	6		
Gradient with	respect to Monitored Unit (UP, DO	OWN,	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	Ν	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.412		0.129	J	0.188	J	0.405	
16887-00-6	Chloride(s)	т	mg/L	9056	32.8		8.88		28.9		30.6	
16984-48-8	Fluoride	т	mg/L	9056	0.13		0.231		0.172		0.125	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.1		0.62		3.25		0.97	
14808-79-8	Sulfate	т	mg/L	9056	69		15.1		25.4		66.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.94		30.22		30.28		30.16	
s0145	Specific Conductance	т	µMH0/cm	Field	498		798		434		474	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795	5	8004-0986	6	8004-4796		8004-4797	,
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.33		335.23		324.68		324.87	
N238	Dissolved Oxygen	т	mg/L	Field	2.98		2.45		1.43		2.18	
s0266	Total Dissolved Solids	т	mg/L	160.1	269		429		200		236	
50296	рН	т	Units	Field	6.27		6.93		6.46		6.28	
NS215	Eh	т	mV	Field	503		137		455		504	
50907	Temperature	т	°C	Field	14.61		10.94		7.28		13.94	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		2.82	*	<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.051	*	0.121		0.177	В	0.0697	В
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.359		0.0103	J	0.0207		0.00874	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	31		19.4		27.2		28.6	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.00377	J	<0.01		0.00213	J
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00162		0.00107		0.000361	J
7440-50-8	Copper	т	mg/L	6020	<0.001		0.00272		<0.001		<0.001	
7439-89-6	Iron	т	mg/L	6020	<0.1		1.88		0.0737	J	0.0553	J
7439-92-1	Lead	т	mg/L	6020	<0.002		0.00156	J	<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	13.1		8.72		10.8		12.2	
7439-96-5	Manganese	т	mg/L	6020	0.0127		0.0256		0.224		0.0188	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	6	8004-479	7
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7		Molybdenum	т	mg/L	6020	<0.0005		0.000675	В	0.000211	J	0.000286	J
7440-02-0		Nickel	т	mg/L	6020	0.000683	J	0.00298		0.000934	J	0.00344	
7440-09-7		Potassium	т	mg/L	6020	1.85		0.523		1.23		1.9	
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	т	mg/L	6020	0.00156	J	0.00161	J	<0.005		<0.005	
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	42.2		127		37.3		42.9	
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	0.00293	*J	<0.005	*
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	т	mg/L	6020	<0.0002		0.00278		<0.0002		<0.0002	
7440-62-2		Vanadium	т	mg/L	6020	<0.01		0.00594	J	<0.01		<0.01	
7440-66-6		Zinc	т	mg/L	6020	<0.01		0.00686	J	<0.01		0.0373	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-098	6	8004-47	96	8004-47	97
Facility's Loc	cal Well or Spring Number (e.g.,)	MW-1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0054		<0.001		0.00115		0.00521	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	6	8004-47	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000207		<0.0000207		<0.0000206		<0.0000206	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.1		<0.1		<0.0971	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.1		<0.1		<0.0971	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.1		<0.1		<0.0971	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.1		<0.1		<0.0971	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.1		<0.1		<0.0971	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.1		<0.1		<0.0971	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479)6	8004-479)7
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.1		<0.1		<0.0971	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.1		<0.1		<0.0971	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.1		<0.1		<0.0971	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.183	*	3.44	*	-0.393	*	0.845	*
12587-47-2	Gross Beta	т	pCi/L	9310	32.2	*	3.05	*	7.59	*	38.5	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.0999	*	0.727	*	0.361	*	0.405	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.72	*	-1.44	*	-3.79	*	-0.745	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	47.3	*	-0.285	*	15.5	*	51	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.187	*	-0.0657	*	0.0858	*	-0.05	*
10028-17-8	Tritium	т	pCi/L	906.0	-33.2	*	-3.14	*	81.6	*	21.2	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		34.9		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.723	J	2.59		0.854	J	0.623	J
s0586	Total Organic Halides	т	mg/L	9020	0.00432	J	0.011		<0.01		0.00374	J

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	4793	8004-0	983
Facility's Loo	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	••)	365		36	6	36	7	368	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)q	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour:minu	tes)		1/13/2016	09:45	1/14/201	6 08:24	1/14/201	6 07:39	1/21/2016	08:57
Duplicate ("Y	" or "N") ²				N		Ν		Ν		Ν	
Split ("Y" or	"N") ³				N		Ν		Ν		Ν	
Facility Samp	le ID Number (if applicable)		MW365UG	62-16	MW366	JG2-16	MW3670	JG2-16	MW368U	G2-16		
Laboratory Sar	mple ID Number (if applicable)		3892500	005	38945	7009	38945	7011	389926	005		
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	ysis	1/19/20	16	1/19/2	2016	1/19/2	2016	1/27/20	016		
Gradient with	respect to Monitored Unit (UP, DC	SIDE, UNKN	IOWN)	DOW	N	SIE	DE	SIE	DE	SID	Ξ	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.485		0.464		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	3.99		37.3		37		0.94	
16984-48-8	Fluoride	т	mg/L	9056	0.232		0.138		0.121		0.231	
\$0595	Nitrate & Nitrite	т	mg/L	9056	0.612		0.86		0.653		<0.2	
14808-79-8	Sulfate	т	mg/L	9056	62.7		49.1		46.6		28.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.26		29.94		29.94		30.24	
s0145	Specific Conductance	т	µMH0/cm	Field	422		479		457		570	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793		8004-0983	
Facility's Lo	ocal Well or Spring Number (e.g., Mw	1-1 , 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	331.6		335.12		325.12		335.75	
N238	Dissolved Oxygen	т	mg/L	Field	4.5		1.62		1.48		3.44	
S0266	Total Dissolved Solids	т	mg/L	160.1	246		259		203		430	
S0296	рН	т	Units	Field	6.47		6.24		6.1		6.65	
NS215	Eh	т	mV	Field	476		480		459		265	
S0907	Temperature	т	°C	Field	12.11		14.39		13.56		14.56	
7429-90-5	Aluminum	т	mg/L	6020	0.0337	J	<0.05		<0.05		0.491	*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00172	J	0.00739	
7440-39-3	Barium	т	mg/L	6020	0.0981	В	0.138	*	0.178	*	0.0178	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00469	J	0.119		0.0329		0.00621	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	21.1		29		28.2		45.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00158		0.000212	J	0.00157		0.000316	J
7440-50-8	Copper	т	mg/L	6020	0.00176		<0.001		<0.001		0.000856	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0678	J	0.813		0.29	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		0.000514	J
7439-95-4	Magnesium	т	mg/L	6020	9.92		12.1		12.1		18	
7439-96-5	Manganese	т	mg/L	6020	0.0199		0.012		0.438		0.0328	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	33
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7		Molybdenum	т	mg/L	6020	0.000219	J	<0.0005		<0.0005		0.00194	В
7440-02-0		Nickel	т	mg/L	6020	0.00532		0.00105	J	0.00117	J	0.00107	J
7440-09-7		Potassium	т	mg/L	6020	0.23	J	1.8		2.76		1.23	
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	т	mg/L	6020	<0.005		0.00235	J	0.00263	J	<0.005	
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	51.4		42.2		37.9		58	
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	т	mg/L	6020	0.000138	J	<0.0002		<0.0002		0.000324	
7440-62-2		Vanadium	т	mg/L	6020	0.00517	J	<0.01		<0.01		0.0158	
7440-66-6		Zinc	т	mg/L	6020	0.0205		<0.01		<0.01		0.00394	J
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-098	2	8004-47	93	8004-09	33
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00335		0.00403		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1,	Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-479	93	8004-09	83
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000208		<0.0000207		<0.0000206		<0.0000206	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	0.145		<0.0943		<0.0952		0.112	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	0.145		<0.0943		<0.0952		0.112	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's Loc	al Well or Spring Number (e.g., 1	MW -1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.901	*	1.14	*	-0.456	*	3.27	*
12587-47-2	Gross Beta	т	pCi/L	9310	-0.524	*	47	*	48.2	*	5.6	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	1.06	*	0.452	*	0.868	*	0.547	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.12	*	-2.3	*	-0.54	*	-0.785	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	2.52	*	62.7	*	59.1	*	8.77	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.153	*	0.148	*	0.0732	*	0.0184	*
10028-17-8	Tritium	т	pCi/L	906.0	-9.82	*	101	*	48.2	*	-132	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.62	J	0.817	J	0.795	J	1.23	J
s0586	Total Organic Halides	т	mg/L	9020	0.0139		<0.01		0.0145		<0.01	

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	4819	8004-4	808
Facility's Lo	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	369		37	0	37	1	372	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/12/2016	12:46	1/12/201	6 13:56	1/21/201	6 13:56	1/21/2016	5 10:37
Duplicate ("Y	" or "N") ²				N		N		N		Ν	
Split ("Y" or	"N") ³				N		N		Ν		Ν	
Facility Samp	le ID Number (if applicable)				MW369UG	92-16	MW370	JG2-16	MW3710	JG2-16	MW372U	G2-16
Laboratory Sa	mple ID Number (if applicable)		3891180	003	38911	8001	38992	6007	389926	6009		
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	ysis	1/15/20	16	1/15/2	2016	1/27/2	2016	1/27/20	016		
Gradient with	respect to Monitored Unit (UP, DO)WN,	SIDE, UNKN	IOWN)	UP		U	Ρ	UI	Ρ	UP	
CAS RN ⁴	CONSTITUENT	Т Д₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.392		0.472		<0.2		0.608	
16887-00-6	Chloride(s)	т	mg/L	9056	33.1		36.6		4.18		45.5	
16984-48-8	Fluoride	т	mg/L	9056	0.163		0.14		0.236		0.129	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.622		1.19		0.17	J	<0.2	
14808-79-8	Sulfate	т	mg/L	9056	9.98		18.4		10.2		102	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.14		30.17		30.14		30.23	
s0145	Specific Conductance	т	µMH0/cm	Field	387		427		730		700	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *``*,"* then describe on *``Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-482	0	8004-4818	3	8004-4819		8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	324.78		324.76		341.43		325.45	
N238	Dissolved Oxygen	т	mg/L	Field	0.94		3.44		2.03		0.53	
S0266	Total Dissolved Solids	т	mg/L	160.1	207		240		629		530	
50296	рн	т	Units	Field	6.21		6.17		6.7		6.31	
NS215	Eh	т	mV	Field	398		415		254		246	
S0907	Temperature	т	°C	Field	14.94		13.89		15.06		15.83	
7429-90-5	Aluminum	т	mg/L	6020	0.0742		<0.05		21.6	*	0.0308	*J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00726		0.00325	J
7440-39-3	Barium	т	mg/L	6020	0.411		0.197		0.206		0.0454	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		0.00084		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0147	J	0.0291		0.00772	J	1.16	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	18.4		27.6		35.7		60.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		0.0242		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00435		0.000356	J	0.00452		0.000676	J
7440-50-8	Copper	т	mg/L	6020	0.000705	J	<0.001		0.0095		<0.001	
7439-89-6	Iron	т	mg/L	6020	0.113		<0.1		15.1		0.64	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		0.00977		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	7.78		11.8		15.7		23.7	
7439-96-5	Manganese	т	mg/L	6020	0.0235		0.00163	J	0.119		0.0134	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	ER ¹ , Facility Well/Spring Number				8004-482	0	8004-481	8	8004-481	9	8004-480	8
Facility's	Local Well or Spring Number (e.g	1., MW-	1, MW-2, et	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000179	BJ	0.00029	BJ	0.000939	В	0.000697	В
7440-02-0	Nickel	т	mg/L	6020	0.0055		0.000795	J	0.0126		0.000999	J
7440-09-7	Potassium	т	mg/L	6020	0.581		2.34		1.45		2.25	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		0.0027	J	<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		0.00039	J	<0.001	
7440-23-5	Sodium	т	mg/L	6020	55.7		41.2		112		57.7	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		0.000529	J
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00266		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00337	J	<0.01		0.0418		<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		0.0356		0.00547	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-48	08
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00108		0.00093	J	<0.001		0.00987	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482)	8004-481	8	8004-48	19	8004-48	08
Facility's Loo	cal Well or Spring Number (e.g., M	4W-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000207		<0.0000205		<0.000021		<0.0000204	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0962		<0.1		<0.0952		0.0552	J
12674-11-2	PCB-1016	т	ug/L	8082	<0.0962		<0.1		<0.0952		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.1		<0.0952		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0962		<0.1		<0.0952		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0962		<0.1		<0.0952		0.0552	J
12672-29-6	PCB-1248	т	ug/L	8082	<0.0962		<0.1		<0.0952		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-4820		8004-4818	}	8004-481	9	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0962		<0.1		<0.0952		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0962		<0.1		<0.0952		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0962		<0.1		<0.0952		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.891	*	0.342	*	13.8	*	-0.909	*
12587-47-2	Gross Beta	Т	pCi/L	9310	38.6	*	35.4	*	8.94	*	13.9	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.754	*	0.659	*	1.26	*	0.367	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.15	*	-0.403	*	-0.8	*	-1.61	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	52.7	*	32.1	*	10.5	*	18.3	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.182	*	0.248	*	0.376	*	0.122	*
10028-17-8	Tritium	т	pCi/L	906.0	-9.22	*	64.2	*	21.2	*	-20.4	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		19.1	J	<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.29	J	0.852	J	1.96	J	1.29	J
s0586	Total Organic Halides	т	mg/L	9020	0.0254		0.0061	J	0.00348	J	0.00886	J

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-09	990	8004-09	985	8004-098	38
Facility's Lo	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	373		374		375		376	
Sample Sequen	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/21/2016 12	2:42	1/21/2016	11:56	1/21/2016	09:50	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG2	-16	MW374U	G2-16	MW375U0	G2-16	NA	
Laboratory Sa	mple ID Number (if applicable)				38992601	3	389926	015	389926	017	NA	
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/27/2016	5	1/27/20	16	1/27/20	16	NA	
Gradient with	respect to Monitored Unit (UP, DO)WN,	SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.595		0.871		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	48.1		71.4		4.54			*
16984-48-8	Fluoride	т	mg/L	9056	0.154		0.163		0.24			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.05		<0.1		1.03			*
14808-79-8	Sulfate	т	mg/L	9056	127		5.63		28.2			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.19		30.19		30.24			*
s0145	Specific Conductance	т	µMH0/cm	Field	793		744		402			*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *``*,"* then describe on *``Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	3
Facility's Lo	cal Well or Spring Number (e.g., Mw	1-1 , 1	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	325.51		332.6		341.38			*
N238	Dissolved Oxygen	т	mg/L	Field	2.24		1.25		1.4			*
s0266	Total Dissolved Solids	т	mg/L	160.1	507		471		309			*
s0296	рН	т	Units	Field	6.39		6.77		6.63			*
NS215	Eh	т	mV	Field	193		139		298			*
s0907	Temperature	т	°C	Field	13.83		14.11		15.22			*
7429-90-5	Aluminum	т	mg/L	6020	0.02	*J	0.089	*	0.0879	*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00264	J	<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0262		0.158		0.181			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.39		0.0117	J	0.00693	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	64.6		20.9		14.3			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		0.00298	J		*
7440-48-4	Cobalt	т	mg/L	6020	0.000922	J	0.00275		0.000635	J		*
7440-50-8	Copper	т	mg/L	6020	<0.001		0.000846	J	0.000562	J		*
7439-89-6	Iron	т	mg/L	6020	0.353		2.45		0.252			*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	25.4		5.75		5.9			*
7439-96-5	Manganese	т	mg/L	6020	0.0459		0.235		0.0115			*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBEI	R ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	38
Facility's 1	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	т	mg/L	6020	<0.0005		0.000353	BJ	0.000424	BJ		*
7440-02-0		Nickel	т	mg/L	6020	0.000676	J	0.00269		0.00256			*
7440-09-7		Potassium	т	mg/L	6020	2.48		0.479		0.264	J		*
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	т	mg/L	6020	<0.005		0.00447	J	0.00271	J		*
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5		Sodium	т	mg/L	6020	58.2		141		70.9			*
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*		*
7440-28-0		Thallium	т	mg/L	6020	<0.002		0.00056	J	<0.002			*
7440-61-1		Uranium	т	mg/L	6020	<0.0002		0.000324		0.000084	J		*
7440-62-2		Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-66-6		Zinc	т	mg/L	6020	<0.01		<0.01		<0.01			*
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00989		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	D	8004-098	35	8004-09	988
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000208		<0.0000206		<0.0000207			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	т	ug/L	8082	<0.0971		<0.099		<0.0943			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0971		<0.099		<0.0943			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0971		<0.099		<0.0943			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0971		<0.099		<0.0943			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0971		<0.099		<0.0943			*
12672-29-6	PCB-1248	т	ug/L	8082	<0.0971		<0.099		<0.0943			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-4792		8004-0990)	8004-098	35	8004-098	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0971		<0.099		<0.0943			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0971		<0.099		<0.0943			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0971		<0.099		<0.0943			*
12587-46-1	Gross Alpha	т	pCi/L	9310	2.09	*	5.75	*	5.64	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	23.7	*	1.42	*	1.56	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.459	*	0.372	*	0.799	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.874	*	4.17	*	2.76	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	46	*	3.55	*	2.69	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.115	*	0.318	*	0.202	*		*
10028-17-8	Tritium	т	pCi/L	906.0	-31.3	*	-55.6	*	41.8	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5			*
S0268	Total Organic Carbon	т	mg/L	9060	1.11	J	2.65		1.28	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.00922	J	0.017		0.00902	J		*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-00	00	0000-000	00	000-000	0
Facility's Loo	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	••)	377		E. BLAN	١K	F. BLAN	K	T. BLANK	(1
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		E		F		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		NA		1/21/2016	06:35	1/21/2016 1	2:45	1/12/2016 0	7:30
Duplicate ("Y	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				NA		RI1UG2-	·16	FB1UG2-	·16	TB1UG2-	16
Laboratory Sar	nple ID Number (if applicable)				NA		3899260	20	3899260	19	38911800)5
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	NA		1/27/20 ⁻	16	1/27/201	6	1/15/201	6
Gradient with	respect to Monitored Unit (UP, DC	OWN,	SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *``*,"* then describe on *``Written Comments Page."*

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989)	0000-0000)	0000-0000		0000-0000	
Facility's Loo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	377		E. BLANK	K	F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
50906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
S0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05	*	<0.05	*		*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.002		<0.002			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	<0.001		<0.001			*
7439-89-6	Iron	т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number	Well or Spring Number (e.g., MW-1, MW-2) CONSTITUENT T D 0F Sybdenum T cybdenum T ckel T cassium T odium T cenium T cver T tium T utalum T unium T				9	0000-000	00	0000-000	0	0000-000)0
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	ĸ	T. BLANK	(1
CAS RN ⁴		CONSTITUENT	D	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0		Nickel	т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7		Potassium	т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6		Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5		Sodium	т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7		Tantalum	т	mg/L	6020		*	<0.005	*	<0.005	*		*
7440-28-0		Thallium	т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2		Vanadium	т	mg/L	6020		*	<0.01		<0.01			*
7440-66-6		Zinc	т	mg/L	6020		*	<0.01		<0.01			*
108-05-4		Vinyl acetate	т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260		*	<0.005		<0.005		<0.005	ſ
107-02-8		Acrolein	т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	ſ
108-90-7		Chlorobenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	ſ
1330-20-7		Xylenes	т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260		*	<0.001		0.00045	J	0.00038	J
74-97-5		Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-000	0	0000-00	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	377		E. BLAN	(F. BLAN	IK	T. BLANI	< 1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-098	9	0000-0000	0	0000-000	00	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g., M	4 W-1	L, MW-2, et	.c.)	377		E. BLANK	<	F. BLAN	IK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000207		<0.0000206		<0.0000206	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0943		<0.0943			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0943		<0.0943			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0943		<0.0943			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0943		<0.0943			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0943		<0.0943			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0943		<0.0943			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-000	00
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	377		E. BLANK		F. BLAN	К	T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0943		<0.0943			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0943		<0.0943			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0943		<0.0943			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	-0.0627	*	-1	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	-1.19	*	3.25	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*	0.206	*	0.178	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	0.39	*	-2.53	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	3.96	*	2.92	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	-0.0691	*	0.121	*		*
10028-17-8	Tritium	т	pCi/L	906.0		*	-17.5	*	-11.7	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number	000-000	00	0000-0000		0000-000	00	8004-4792				
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	L, MW-2, etc	.)	T. BLANK	IK 2 T. BLANK 3		T. BLANK 4		373		
Sample Sequence	ce #				1 1		1		2			
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	т т			т		NA		
Sample Date and Time (Month/Day/Year hour: minutes)						6:45	1/14/2016	06:50	1/21/2016 0	6:30	1/21/2016 12:4	12
Duplicate ("Y	or "N") ²				N		N		N		Y	
Split ("Y" or	"N") ³				Ν		N		N		N	
Facility Sampl	le ID Number (if applicable)				TB2UG2-	16	TB3UG2	-16	TB4UG2-	16	MW373DUG2-	16
Laboratory Sar	mple ID Number (if applicable)				3892500	07	3894570	13	3899260	21	389926011	
Date of Analys	Date of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					6	1/19/2016		1/26/2016		1/27/2016	
Gradient with	respect to Monitored Unit (UP, DC	WN,	, SIDE, UNKN	IOWN)	NA		NA		NA		UP	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*	0.595	
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*	43.7	
16984-48-8	Fluoride	т	mg/L	9056		*		*		*	0.152	
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*	1.02	
14808-79-8	Sulfate	т	mg/L	9056		*		*		*	127	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*	30.19	
S0145	Specific Conductance	т	µMH0/cm	Field		*		*		*	793	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *``*,"* then describe on *``Written Comments Page."*

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000		8004-4792	
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK	4	373	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*	325.51	
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*	2.24	
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*	487	
S0296	рн	т	Units	Field		*		*		*	6.39	
NS215	Eh	т	mV	Field		*		*		*	193	
S0907	Temperature	т	°C	Field		*		*		*	13.83	
7429-90-5	Aluminum	т	mg/L	6020		*		*		*	0.0154	*J
7440-36-0	Antimony	т	mg/L	6020		*		*		*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020		*		*		*	<0.005	
7440-39-3	Barium	т	mg/L	6020		*		*		*	0.0269	
7440-41-7	Beryllium	т	mg/L	6020		*		*		*	<0.0005	
7440-42-8	Boron	т	mg/L	6020		*		*		*	1.42	
7440-43-9	Cadmium	т	mg/L	6020		*		*		*	<0.001	
7440-70-2	Calcium	т	mg/L	6020		*		*		*	68	
7440-47-3	Chromium	т	mg/L	6020		*		*		*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020		*		*		*	0.000737	J
7440-50-8	Copper	т	mg/L	6020		*		*		*	<0.001	
7439-89-6	Iron	т	mg/L	6020		*		*		*	0.31	
7439-92-1	Lead	т	mg/L	6020		*		*		*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020		*		*		*	26.4	
7439-96-5	Manganese	т	mg/L	6020		*		*		*	0.0387	
7439-97-6	Mercury	т	mg/L	7470		*		*		*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	00	0000-000	0	8004-479	2
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLANK	(3	T. BLANK	4	373	
CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7		Molybdenum	т	mg/L	6020		*		*		*	<0.0005	
7440-02-0		Nickel	т	mg/L	6020		*		*		*	0.000696	J
7440-09-7		Potassium	т	mg/L	6020		*		*		*	2.5	
7440-16-6		Rhodium	т	mg/L	6020		*		*		*	<0.005	
7782-49-2		Selenium	т	mg/L	6020		*		*		*	<0.005	
7440-22-4		Silver	т	mg/L	6020		*		*		*	<0.001	
7440-23-5		Sodium	т	mg/L	6020		*		*		*	61.7	
7440-25-7		Tantalum	т	mg/L	6020		*		*		*	<0.005	*
7440-28-0		Thallium	т	mg/L	6020		*		*		*	<0.002	
7440-61-1		Uranium	т	mg/L	6020		*		*		*	<0.0002	
7440-62-2		Vanadium	т	mg/L	6020		*		*		*	<0.01	
7440-66-6		Zinc	т	mg/L	6020		*		*		*	<0.01	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-000	0	0000-00	00	8004-47	92
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK 3		T. BLANK 4		373	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		0.00993	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000)	000-000	0	0000-00	00	8004-47	92
Facility's Loo	cal Well or Spring Number (e.g., M	w -1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK	3	T. BLANK 4		373	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000207		<0.0000205		<0.0000209		<0.0000207	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*	<0.0943	
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*	<0.0943	
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*	<0.0943	
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*	<0.0943	
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*	<0.0943	
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*	<0.0943	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-44

AKGWA NUMBER1	, Facility Well/Spring Number				0000-000	0	0000-0000		0000-000	C	8004-479	2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		T. BLANK	4	373	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*	<0.0943	
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*	<0.0943	
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*	<0.0943	
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*	2.55	*
12587-47-2	Gross Beta	т	pCi/L	9310		*		*		*	25.6	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300		*		*		*	0.321	*
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*		*	-1.64	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*		*	50.3	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		*	0.14	*
10028-17-8	Tritium	т	pCi/L	906.0		*		*		*	12.3	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*	<20	
57-12-5	Cyanide	Т	mg/L	9012		*		*		*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0		*		*		*	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*	1.12	J
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*	0.0141	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4798 MW357	MW357UG2-16	Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.16. Rad error is 2.16.
		Gross beta		TPU is 5.6. Rad error is 3.54.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.375. Rad error is 0.374.
		Strontium-90		TPU is 1.75. Rad error is 1.75.
		Technetium-99		TPU is 12.8. Rad error is 11.9.
		Thorium-230		TPU is 0.374. Rad error is 0.37.
		Tritium		TPU is 135. Rad error is 135.
004-4799 MW358	MW358UG2-16	Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.54. Rad error is 2.53.
		Gross beta		TPU is 6.76. Rad error is 4.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.389. Rad error is 0.388.
		Strontium-90		TPU is 2.84. Rad error is 2.76.
		Technetium-99		TPU is 13.6. Rad error is 12.2.
		Thorium-230		TPU is 0.377. Rad error is 0.373.
		Tritium		TPU is 145. Rad error is 142.
004-0981 MW359	MW359UG2-16	Aluminum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.86. Rad error is 2.84.
		Gross beta		TPU is 2.1. Rad error is 2.04.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.45. Rad error is 0.45.
		Strontium-90		TPU is 3.65. Rad error is 3.62.
		Technetium-99		TPU is 13.5. Rad error is 13.5.
		Thorium-230		TPU is 0.332. Rad error is 0.331.
		Tritium		TPU is 131. Rad error is 131.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4800 MW360	MW360UG2-16	Barium	X	Other specific flags and footnotes may be required to proper define the results.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.2. Rad error is 2.2.
		Gross beta		TPU is 1.97. Rad error is 1.97.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.386. Rad error is 0.386.
		Strontium-90		TPU is 2.46. Rad error is 2.46.
		Technetium-99		TPU is 10.8. Rad error is 10.8.
		Thorium-230		TPU is 0.202. Rad error is 0.202.
		Tritium		TPU is 145. Rad error is 143.
004-4795 MW361	MW361UG2-16	Barium	х	Other specific flags and footnotes may be required to proper define the results.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.44. Rad error is 2.44.
		Gross beta		TPU is 6.72. Rad error is 4.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.227. Rad error is 0.227.
		Strontium-90		TPU is 2.81. Rad error is 2.8.
		Technetium-99		TPU is 13. Rad error is 11.9.
		Thorium-230		TPU is 0.378. Rad error is 0.373.
		Tritium		TPU is 135. Rad error is 135.
004-0986 MW362	MW362UG2-16	Aluminum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 3.18. Rad error is 3.12.
		Gross beta		TPU is 2.33. Rad error is 2.27.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.562. Rad error is 0.562.
		Strontium-90		TPU is 3.59. Rad error is 3.59.
		Technetium-99		TPU is 13.5. Rad error is 13.5.
		Thorium-230		TPU is 0.338. Rad error is 0.337.
		Tritium		TPU is 135. Rad error is 135.
004-4796 MW363	MW363UG2-16	Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.28. Rad error is 2.28.
		Gross beta		TPU is 3.51. Rad error is 3.27.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.328. Rad error is 0.327.
		Strontium-90		TPU is 3.58. Rad error is 3.58.
		Technetium-99		TPU is 11. Rad error is 10.8.
		Thorium-230		TPU is 0.433. Rad error is 0.43.
		Tritium		TPU is 141. Rad error is 140.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4797 MW364	MW364UG2-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.67. Rad error is 2.67.
		Gross beta		TPU is 7.79. Rad error is 4.66.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.414. Rad error is 0.414.
		Strontium-90		TPU is 2.19. Rad error is 2.19.
		Technetium-99		TPU is 13.2. Rad error is 12.
		Thorium-230		TPU is 0.409. Rad error is 0.409.
		Tritium		TPU is 137. Rad error is 137.
004-0984 MW365	MW365UG2-16	Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.02. Rad error is 2.02.
		Gross beta		TPU is 1.87. Rad error is 1.87.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.577. Rad error is 0.575.
		Strontium-90		TPU is 1.83. Rad error is 1.82.
		Technetium-99		TPU is 10.5. Rad error is 10.5.
		Thorium-230		TPU is 0.418. Rad error is 0.417.
		Tritium		TPU is 136. Rad error is 136.
004-0982 MW366	MW366UG2-16	Barium	х	Other specific flags and footnotes may be required to proper define the results.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.84. Rad error is 2.82.
		Gross beta		TPU is 9.08. Rad error is 4.94.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.354. Rad error is 0.353.
		Strontium-90		TPU is 1.73. Rad error is 1.73.
		Technetium-99		TPU is 14.2. Rad error is 12.4.
		Thorium-230		TPU is 0.461. Rad error is 0.457.
		Tritium		TPU is 141. Rad error is 140.
004-4793 MW367	MW367UG2-16	Barium	Х	Other specific flags and footnotes may be required to proper define the results.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.31. Rad error is 2.31.
		Gross beta		TPU is 9.18. Rad error is 4.81.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.538. Rad error is 0.537.
		Strontium-90		TPU is 2.3. Rad error is 2.3.
		Technetium-99		TPU is 13.5. Rad error is 11.9.
		Thorium-230		TPU is 0.374. Rad error is 0.371.
		Tritium		TPU is 140. Rad error is 140.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368	MW368UG2-16	Aluminum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 3.13. Rad error is 3.08.
		Gross beta		TPU is 2.39. Rad error is 2.19.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.49. Rad error is 0.49.
		Strontium-90		TPU is 2.92. Rad error is 2.92.
		Technetium-99		TPU is 14.5. Rad error is 14.4.
		Thorium-230		TPU is 0.461. Rad error is 0.459.
		Tritium		TPU is 130. Rad error is 130.
8004-4820 MW369	MW369UG2-16	Gross alpha		TPU is 2.63. Rad error is 2.62.
		Gross beta		TPU is 7.65. Rad error is 4.38.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.506. Rad error is 0.505.
		Strontium-90		TPU is 1.47. Rad error is 1.47.
		Technetium-99		TPU is 14.6. Rad error is 13.4.
		Thorium-230		TPU is 0.455. Rad error is 0.451.
		Tritium		TPU is 139. Rad error is 139.
8004-4818 MW370	MW370UG2-16	Gross alpha		TPU is 2.36. Rad error is 2.35.
		Gross beta		TPU is 7.47. Rad error is 4.62.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.434. Rad error is 0.434.
		Strontium-90		TPU is 2.31. Rad error is 2.31.
		Technetium-99		TPU is 13.2. Rad error is 12.7.
		Thorium-230		TPU is 0.418. Rad error is 0.412.
		Tritium		TPU is 142. Rad error is 141.
8004-4819 MW371	MW371UG2-16	Aluminum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 5.26. Rad error is 4.75.
		Gross beta		TPU is 2.98. Rad error is 2.57.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.661. Rad error is 0.659.
		Strontium-90		TPU is 2.84. Rad error is 2.84.
		Technetium-99		TPU is 13.4. Rad error is 13.4.
		Thorium-230		TPU is 0.437. Rad error is 0.429.
		Tritium		TPU is 133. Rad error is 133.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4808 MW372	MW372UG2-16	Aluminum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.24. Rad error is 2.24.
		Gross beta		TPU is 3.71. Rad error is 2.94.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.395. Rad error is 0.395.
		Strontium-90		TPU is 2.19. Rad error is 2.19.
		Technetium-99		TPU is 13.8. Rad error is 13.6.
		Thorium-230		TPU is 0.398. Rad error is 0.394.
		Tritium		TPU is 130. Rad error is 130.
3004-4792 MW373	MW373UG2-16	Aluminum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.84. Rad error is 2.82.
		Gross beta		TPU is 5.18. Rad error is 3.46.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.437. Rad error is 0.437.
		Strontium-90		TPU is 2.83. Rad error is 2.83.
		Technetium-99		TPU is 15.6. Rad error is 14.7.
		Thorium-230		TPU is 0.356. Rad error is 0.352.
		Tritium		TPU is 130. Rad error is 130.
3004-0990 MW374	MW374UG2-16	Aluminum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 3.75. Rad error is 3.63.
		Gross beta		TPU is 1.78. Rad error is 1.76.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.371. Rad error is 0.371.
		Strontium-90		TPU is 3.56. Rad error is 3.5.
		Technetium-99		TPU is 13.2. Rad error is 13.2.
		Thorium-230		TPU is 0.383. Rad error is 0.376.
		Tritium		TPU is 128. Rad error is 128.
3004-0985 MW375	MW375UG2-16	Aluminum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 3.64. Rad error is 3.52.
		Gross beta		TPU is 2.19. Rad error is 2.17.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.551. Rad error is 0.55.
		Strontium-90		TPU is 3.71. Rad error is 3.68.
		Technetium-99		TPU is 13.4. Rad error is 13.4.
		Thorium-230		TPU is 0.361. Rad error is 0.356.

C-49

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description		
3004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.		
		Chloride		During sampling, the well went dry; therefore, no sample was collected.		
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.		
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.		
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.		
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.		
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.		
				Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.		
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.		
		рН		During sampling, the well went dry; therefore, no sample was collected.		
		Eh		During sampling, the well went dry; therefore, no sample was collected.		
		Temperature		During sampling, the well went dry; therefore, no sample was collected.		
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.		
		Antimony		During sampling, the well went dry; therefore, no sample was collected.		
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.		
		Barium		During sampling, the well went dry; therefore, no sample was collected.		
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.		
		Boron		During sampling, the well went dry; therefore, no sample was collected.		
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.		
		Calcium		During sampling, the well went dry; therefore, no sample was collected.		
		Chromium		During sampling, the well went dry; therefore, no sample was collected.		
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.		
		Copper		During sampling, the well went dry; therefore, no sample was collected.		
		Iron		During sampling, the well went dry; therefore, no sample was collected.		
		Lead		During sampling, the well went dry; therefore, no sample was collected.		
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.		
		Manganese		During sampling, the well went dry; therefore, no sample was collected.		
		Mercury		During sampling, the well went dry; therefore, no sample was collected.		

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376	•	Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG2-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 1.95. Rad error is 1.95.
		Gross beta		TPU is 1.44. Rad error is 1.44.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.297. Rad error is 0.297.
		Strontium-90		TPU is 2.89. Rad error is 2.89.
		Technetium-99		TPU is 14. Rad error is 14.
		Thorium-230		TPU is 0.286. Rad error is 0.285.
		Tritium		TPU is 130. Rad error is 130.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG2-16	Bromide	Tiug	Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 1.48. Rad error is 1.48.
		Gross beta		TPU is 2.84. Rad error is 2.79.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.315. Rad error is 0.315.
		Strontium-90		TPU is 2.53. Rad error is 2.53.
		Technetium-99		TPU is 12.7. Rad error is 12.7.
		Thorium-230		TPU is 0.32. Rad error is 0.317.
		Tritium		TPU is 135. Rad error is 135.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG2-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG2-16	Zinc	0	Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG2-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG2-16	Zinc	0	Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG2-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG2-16	Zinc	Flay	Analysis of constituent not required and not performed.
	100002 10	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
				, , ,
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG2-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG2-16	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
3004-4792 MW373	MW373DUG2-16	Aluminum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.96. Rad error is 2.93.
		Gross beta		TPU is 5.35. Rad error is 3.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.367. Rad error is 0.367.
		Strontium-90		TPU is 3.07. Rad error is 3.06.
		Technetium-99		TPU is 15.8. Rad error is 14.8.
		Thorium-230		TPU is 0.339. Rad error is 0.335.
		Tritium		TPU is 134. Rad error is 134.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/CONTAINED—QUARTERLY, 1st CY 2016 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2016 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The first quarter 2016 data used to conduct the statistical analyses were collected in January 2016. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that had exceeded the historical background using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the

current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation: TL = $X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters by groundwater system from the available data set and the statistical test performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2016. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a well is sampled on two different dates, the most current available data are used. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Station	Туре	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^a *	SG	UCRS
MW377 ^a *	SG	UCRS

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

aNOTE: The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

 $SG: {\it sidegradient wells} \\$

*Well was dry this quarter and a groundwater sample could not be collected.

Parameters	
Aluminum	
Beryllium	
Boron	
Bromide	
Calcium	
Chemical Oxygen Demand (COD)
Chloride	
Cobalt	
Conductivity	
Copper	
Dissolved Oxygen	
Dissolved Solids	
Iron	
Magnesium	
Manganese	
Molybdenum	
Nickel	
Oxidation-Reduction Poter	ntial
PCB, Total	
PCB-1242	
pH*	
Potassium	
Radium-226	
Sodium	
Sulfate	
Tantalum	
Technetium-99	
Total Organic Carbon (TC	OC)
Total Organic Halides (TC	DX)
Trichloroethene	
Uranium	
Vanadium	
Zinc	

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1.2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Acrylonitrile	7	0	7	Yes
	7	7	0	No
Antimony Aroclor-1268	7	7	0	No
	7		<u> </u>	Yes
Beryllium Data Activity	7	6 7	0	No
Beta Activity			-	
Boron	7	1	6	Yes
Bromide	7	5	2	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	7	0	No
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	0	7	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	1	6	Yes
Magnesium	7	0	7	Yes
Manganese	7	0	7	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Methylene chloride	7	7	0	No
Molybdenum	7	5	2	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	5	2	Yes
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	5	2	Yes
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	2	5	Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Uranium	7	0	7	Yes
Vanadium	7	2	5	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	3	4	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored	Uncensored	Statistical
1,1,1,2-Tetrachloroethane	6	Observation	Observation	Analysis?
1,1,2,2-Tetrachloroethane	6	6	0	No No
1,1,2-Trichloroethane	6	6	0	No
		6		
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	3	3	Yes
Antimony	6	6	0	No
Aroclor-1268	6	6	0	No
Beryllium	6	6	0	No
Beta Activity	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	5	1	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	1	5	Yes
Conductivity	6	0	6	Yes
Copper	6	5	1	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodinethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
manganese	U	V	U	105

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Methylene chloride	6	6	0	No
Molybdenum	6	4	2	Yes
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	5	1	Yes
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	5	1	Yes
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
pH	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	4	2	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	5	1	Yes
Technetium-99	6	3	3	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	2	4	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Uranium	6	6	0	No
Vanadium	6	5	1	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	5	1	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Butanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	5	1	Yes
Antimony	6	6	0	No
Aroclor-1268	6	6	0	No
Beryllium	6	6	0	No
Beta Activity	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	5	1	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	1	5	Yes
Conductivity	6	0	6	Yes
Copper	6	5	1	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	2	4	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes

Exhibit D.5.	Summary of	Censored, and	Uncensored Data—	-LRGA
--------------	------------	---------------	------------------	-------

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Methylene chloride	6	6	0	No
Molybdenum	6	5	1	Yes
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	4	2	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	0	6	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Uranium	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	5	1	Yes

Exhibit D.5. Tests Summary for Qualified Parameters—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 29, 31, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes one constituent (i.e., trichloroethene) that exceeded an MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

<u>UCRS</u>

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

<u>URGA</u>

This quarter's results identified historical background exceedances for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, and sodium.

LRGA

This quarter's results identified historical background exceedances for oxidation-reduction potential and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW359: Dissolved Oxygen,	MW357: Oxidation-Reduction	MW358: Oxidation-Reduction
Oxidation-Reduction Potential, Sulfate	Potential	Potential, Technetium-99
MW362: Sulfate	MW360: Sodium	MW361: Oxidation-Reduction
WIW J02. Sunac	WWWWWW	Potential, Technetium-99
MW365: Dissolved Oxygen,	MW363: Oxidation-Reduction	MW364: Oxidation-Reduction
Oxidation-Reduction Potential, Sulfate	Potential	Potential, Technetium-99
MW368: Dissolved Oxygen,	MW366: Oxidation-Reduction	MW367: Oxidation-Reduction
Oxidation-Reduction Potential, Sulfate	Potential	Potential, Technetium-99
MW371: Oxidation-Reduction Potential	MW369: Oxidation-Reduction	MW370: Oxidation-Reduction
WWWWWWWWWWWWWWWWWWWWWWWWW	Potential	Potential
MW375: Oxidation-Reduction Potential,	MW372: Calcium, Conductivity,	MW373: Oxidation-Reduction
Sulfate	Dissolved Solids, Magnesium,	Potential, Technetium-99
Suitate	Oxidation-Reduction Potential	

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Beryllium	Tolerance Interval	1.12	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW365, and MW368.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW365, MW368, MW371, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	3.79	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	1.68	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Tests Summary for Qualified Parameters for Historical Background—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW372.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW363, MW366, MW369, and MW372.
PCB, Total	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.36	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	2.61	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	Current results exceed statistically derived historical background concentration in MW360.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Tantalum	Tolerance Interval	1.25	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	No exceedance of statistically derived historical background concentration.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted		
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.		
Potassium	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.		
Radium-226	Tolerance Interval	2.66	No exceedance of statistically derived historical background concentration.		
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.		
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.		
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, and MW373.		
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.		
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.		
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.		
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.		

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the results of the one-sided upper tolerance interval test compared to current background, and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 6, and 2 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

URGA	LRGA
None	None

Exhibit D.10. Summary of Exceedances (in Downgradient Wells) of the TL Calculated Using Current Background Concentrations

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that sulfate concentrations in four UCRS wells (i.e., MW359, MW365, MW368, and MW375) were higher than the current TL this quarter.

<u>URGA</u>

This quarter's results showed no exceedances of the current TL in wells located downgradient of the landfill.

LRGA

This quarter's results showed no exceedances of the current TL in wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for	r Qualified Parameters for	Current Background—UCRS
----------------------------------	----------------------------	-------------------------

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.60	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.32	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Sulfate	Tolerance Interval	0.54	MW359, MW365, MW368, and MW375 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted		
Calcium	Tolerance Interval	0.58	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.		
Conductivity	Tolerance Interval	0.35	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.		
Dissolved Solids	Tolerance Interval	0.41	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.		
Magnesium	Tolerance Interval	0.53	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.		
Oxidation-Reduction Potential	Tolerance Interval	0.51	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.		
Sodium	Tolerance Interval	0.32	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.		

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.22	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Technetium-99	Tolerance Interval	0.44	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.300	S = 6.859	CV(1)= 2.078	K factor**= 2.523	TL(1)= 20.604	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.371	S = 1.678	CV(2) =-4.521	K factor**= 2.523	TL(2)= 3.863	LL(2)= N/A

	Historical Background Data from Upgradient Wells with Transformed Result					
Upgradient W	ells with Tra	ansformed Result				
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	2.24	0.806				
4/22/2002	0.2	-1.609				
7/15/2002	0.2	-1.609				
10/8/2002	0.2	-1.609				
1/8/2003	0.2	-1.609				
4/3/2003	0.2	-1.609				
7/9/2003	0.2	-1.609				
10/6/2003	0.2	-1.609				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	21.3	3.059				
1/7/2003	20	2.996				
4/2/2003	4.11	1.413				
7/9/2003	1.41	0.344				
10/7/2003	1.09	0.086				
1/6/2004	0.854	-0.158				
4/7/2004	0.2	-1.609				
7/14/2004	0.2	-1.609				

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.265	N/A	-1.328	NO
MW362	Downgradient	Yes	2.82	N/A	1.037	NO
MW365	Downgradient	Yes	0.0337	N/A	-3.390	NO
MW368	Sidegradient	Yes	0.491	N/A	-0.711	NO
MW371	Upgradient	Yes	21.6	N/A	3.073	NO
MW374	Upgradient	Yes	0.089	N/A	-2.419	NO
MW375	Sidegradient	Yes	0.0879	N/A	-2.432	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonBerylliumUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.002	S = 0.003	CV(1)= 1.125	K factor**= 2.523	TL(1)= 0.009	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.462	S = 0.812	CV(2) =-0.126	K factor**= 2.523	TL(2)= -4.413	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul			
Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	0.005	-5.298	
4/22/2002	0.005	-5.298	
7/15/2002	0.005	-5.298	
10/8/2002	0.001	-6.908	
1/8/2003	0.001	-6.908	
4/3/2003	0.001	-6.908	
7/9/2003	0.001	-6.908	
10/6/2003	0.001	-6.908	
Well Number:	MW374		
Date Collected	Result	LN(Result)	
10/8/2002	0.01	-4.605	
1/7/2003	0.001	-6.908	
4/2/2003	0.001	-6.908	
7/9/2003	0.001	-6.908	
10/7/2003	0.001	-6.908	
1/6/2004	0.001	-6.908	
4/7/2004	0.001	-6.908	
7/14/2004	0.001	-6.908	

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0005	N/A	-7.601	N/A
MW362	Downgradient	No	0.0005	N/A	-7.601	N/A
MW365	Downgradient	No	0.0005	N/A	-7.601	N/A
MW368	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW371	Upgradient	Yes	0.00084	N/A	-7.082	NO
MW374	Upgradient	No	0.0005	N/A	-7.601	N/A
MW375	Sidegradient	No	0.0005	N/A	-7.601	N/A
N/A - Resu	ilts identified as N	Non-Detects	during lab	oratory analysis or	data validatio	on and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.034	S = 1.030	CV(2) =-0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Bac		
Upgradient w	ells with 1 ra	ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	2	0.693
1/7/2003	0.2	-1.609
4/2/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/7/2003	0.2	-1.609
1/6/2004	0.2	-1.609
4/7/2004	0.2	-1.609
7/14/2004	0.2	-1.609

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.015	N/A	-4.200	N/A
MW362	Downgradient	Yes	0.0103	N/A	-4.576	NO
MW365	Downgradient	Yes	0.00469	N/A	-5.362	NO
MW368	Sidegradient	Yes	0.00621	N/A	-5.082	NO
MW371	Upgradient	Yes	0.00772	N/A	-4.864	NO
MW374	Upgradient	Yes	0.0117	N/A	-4.448	NO
MW375	Sidegradient	Yes	0.00693	N/A	-4.972	NO
N/A - Resu	ults identified as l	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.394	S = 0.474	CV(1)= 0.340	K factor**= 2.523	TL(1)= 2.590	LL(1)= N/A
Statistics-Transformed Background	X = 0.279	S = 0.332	CV(2) =1.190	K factor**= 2.523	TL(2) = 1.118	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	1	0.000			
4/22/2002	1	0.000			
7/15/2002	1	0.000			
10/8/2002	1	0.000			

Data

1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	2.1	0.742
1/7/2003	2.1	0.742
4/2/2003	1.9	0.642
4/2/2003 7/9/2003	1.9 1	0.642 0.000
7/9/2003	1	0.000
7/9/2003 10/7/2003	1 1.9	0.000 0.642

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	Yes	0.129	NO	-2.048	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Sidegradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.871	NO	-0.138	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 34.100
 S= 13.637
 CV(1)=0.400
 K factor**= 2.523
 TL(1)= 68.505
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.466
 S= 0.356
 CV(2)=0.103
 K factor**= 2.523
 TL(2)= 4.364
 LL(2)=N/A

Historical Bac Upgradient W		ta from insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	67.3	4.209
10/8/2002 1/7/2003	67.3 60.6	
		4.209
1/7/2003	60.6	4.209 4.104
1/7/2003 4/2/2003	60.6 47.2	4.209 4.104 3.854
1/7/2003 4/2/2003 7/9/2003	60.6 47.2 34.7	4.209 4.104 3.854 3.547
1/7/2003 4/2/2003 7/9/2003 10/7/2003	60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

Data

Dry/Par	Dry/Partially Dry Wells					
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	8.14	NO	2.097	N/A
MW362	Downgradient	t Yes	19.4	NO	2.965	N/A
MW365	Downgradient	t Yes	21.1	NO	3.049	N/A
MW368	Sidegradient	Yes	45.2	NO	3.811	N/A
MW371	Upgradient	Yes	35.7	NO	3.575	N/A
MW374	Upgradient	Yes	20.9	NO	3.040	N/A
MW375	Sidegradient	Yes	14.3	NO	2.660	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=91.300
 S=
 86.959
 CV(1)=0.952
 K factor**= 2.523
 TL(1)= 310.697
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.620
 S=
 1.590
 CV(2)=0.439
 K factor**= 2.523
 TL(2)= 7.631
 LL(2)=N/A

Historical Bac	kground Da	ta from
		ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	199.2	5.294
1/7/2003	199.7	5.297
4/2/2003	171.8	5.146
7/9/2003	178.7	5.186
10/7/2003	175.6	5.168
1/6/2004	170.4	5.138
4/7/2004	156.4	5.052
7/14/2004	144.7	4.975

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	1.22	NO	0.199	N/A
MW362	Downgradient	Yes	8.88	NO	2.184	N/A
MW365	Downgradient	Yes	3.99	NO	1.384	N/A
MW368	Sidegradient	Yes	0.94	NO	-0.062	N/A
MW371	Upgradient	Yes	4.18	NO	1.430	N/A
MW374	Upgradient	Yes	71.4	NO	4.268	N/A
MW375	Sidegradient	Yes	4.54	NO	1.513	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.007	S = 0.009	CV(1)= 1.314	K factor**= 2.523	TL(1)= 0.031	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.843	S = 1.392	CV(2) =-0.238	K factor**= 2.523	TL(2)= -2.331	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.01	-4.605
1/7/2003	0.01	-4.605
4/2/2003	0.01	-4.605
7/9/2003	0.00161	-6.432
10/7/2003	0.001	-6.908
1/6/2004	0.001	-6.908
4/7/2004	0.001	-6.908
7/14/2004	0.001	-6.908

Dry/Par	Dry/Partially Dry Wells				
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00029	6 N/A	-8.125	NO
MW362	Downgradient	Yes	0.00162	N/A	-6.425	NO
MW365	Downgradient	Yes	0.00158	N/A	-6.450	NO
MW368	Sidegradient	Yes	0.00031	6 N/A	-8.060	NO
MW371	Upgradient	Yes	0.00452	N/A	-5.399	NO
MW374	Upgradient	Yes	0.00275	N/A	-5.896	NO
MW375	Sidegradient	Yes	0.00063	5 N/A	-7.362	NO
			U	oratory analysis or		on and were not

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 918.744 S= 417.257 CV(1)=0.454
 K factor**= 2.523
 TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background X=6.705 S= 0.550 CV(2)=0.082 Data

Historical Bac Upgradient W		
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Date Collected	Result	LN(Result)
3/18/2002	1007	6.915
10/8/2002	1680	7.427
1/7/2003	1715.9	7.448
4/2/2003	172	5.147
7/9/2003	1231	7.116
10/7/2003	1214	7.102
1/6/2004	1172	7.066
4/7/2004	1145	7.043

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

K factor=** 2.523 **TL(2)=** 8.092 **LL(2)=**N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	305	NO	5.720	N/A
MW362	Downgradient	Yes	798	NO	6.682	N/A
MW365	Downgradient	Yes	422	NO	6.045	N/A
MW368	Sidegradient	Yes	570	NO	6.346	N/A
MW371	Upgradient	Yes	730	NO	6.593	N/A
MW374	Upgradient	Yes	744	NO	6.612	N/A
MW375	Sidegradient	Yes	402	NO	5.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.056	S = 0.072	CV(1)= 1.275	K factor**= 2.523	TL(1)= 0.237	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.395	S = 0.915	CV(2) =-0.270	K factor**= 2.523	TL(2)= -1.086	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3.689				
4/22/2002	0.025	-3.689				
7/15/2002	0.05	-2.996				
10/8/2002	0.02	-3.912				
1/8/2003	0.02	-3.912				
4/3/2003	0.02	-3.912				
7/9/2003	0.02	-3.912				
10/6/2003	0.02	-3.912				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.2	-1.609				
1/7/2003	0.2	-1.609				
4/2/2003	0.2	-1.609				
7/9/2003	0.02	-3.912				
10/7/2003	0.02	-3.912				
1/6/2004	0.02	-3.912				
4/7/2004	0.02	-3.912				
7/14/2004	0.02	-3.912				

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0012	N/A	-6.725	NO
MW362	Downgradient	Yes	0.00272	N/A	-5.907	NO
MW365	Downgradient	Yes	0.00176	N/A	-6.342	NO
MW368	Sidegradient	Yes	0.00085	6 N/A	-7.063	NO
MW371	Upgradient	Yes	0.0095	N/A	-4.656	NO
MW374	Upgradient	Yes	0.00084	6 N/A	-7.075	NO
MW375	Sidegradient	Yes	0.00056	2 N/A	-7.484	NO
			U	oratory analysis or		on and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.138 S = 0.621 CV(1) = 0.546 K factor**= 2.523
 TL(1) = 2.704 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.013 S = 0.577 CV(2) = -43.069 K factor**= 2.523
 TL(2) = 1.441 LL(2) = N/A

 Data
 CV(2) = -43.069 K factor**= 2.523
 TL(2) = 1.441 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Resu					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	2.26	0.815			
4/22/2002	1.15	0.140			
7/15/2002	0.94	-0.062			
10/8/2002	0.74	-0.301			
1/8/2003	2.62	0.963			
4/3/2003	1.5	0.405			
7/9/2003	1.66	0.507			
10/6/2003	1.28	0.247			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
3/18/2002	0.6	-0.511			
10/8/2002	0.67	-0.400			
1/7/2003	0.23	-1.470			
4/2/2003	0.65	-0.431			
7/9/2003	0.92	-0.083			
10/7/2003	0.99	-0.010			
1/6/2004	1.11	0.104			
4/7/2004	0.88	-0.128			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	4.55	YES	1.515	N/A
MW362	Downgradient	Yes	2.45	NO	0.896	N/A
MW365	Downgradient	Yes	4.5	YES	1.504	N/A
MW368	Sidegradient	Yes	3.44	YES	1.235	N/A
MW371	Upgradient	Yes	2.03	NO	0.708	N/A
MW374	Upgradient	Yes	1.25	NO	0.223	N/A
MW375	Sidegradient	Yes	1.4	NO	0.336	N/A
N/A - Resu	Its identified as I	Non-Detects	during lat	ooratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW359 MW365 MW368

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 590.000 S= 248.068 CV(1)=0.420 K factor**= 2.523 TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background X=6.308 S= 0.383 CV(2)=0.061 Data

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	274	5.613				
4/22/2002	409	6.014				
7/15/2002	418	6.035				
10/8/2002	424	6.050				
1/8/2003	431	6.066				
4/3/2003	444	6.096				
7/9/2003	445	6.098				
10/6/2003	438	6.082				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	1136	7.035				
1/7/2003	1101	7.004				
4/2/2003	863	6.760				
7/9/2003	682	6.525				
10/7/2003	589	6.378				
1/6/2004	603	6.402				
4/7/2004	601	6.399				
7/14/2004	582	6.366				

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377 Sidegradient						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 7.274

LL(2)=N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	261	NO	5.565	N/A
MW362	Downgradient	Yes	429	NO	6.061	N/A
MW365	Downgradient	Yes	246	NO	5.505	N/A
MW368	Sidegradient	Yes	430	NO	6.064	N/A
MW371	Upgradient	Yes	629	NO	6.444	N/A
MW374	Upgradient	Yes	471	NO	6.155	N/A
MW375	Sidegradient	Yes	309	NO	5.733	N/A

K factor=** 2.523

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.612	S = 6.487	CV(1)= 0.981	K factor**= 2.523	TL(1)= 22.979	LL(1)= N/A
Statistics-Transformed Background	X= 1.363	S = 1.147	CV(2)= 0.841	K factor**= 2.523	TL(2)= 4.256	LL(2)= N/A

-		
Historical Bac Upgradient W		a from nsformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	23	3.135
1/7/2003	13.9	2.632
4/2/2003	14	2.639
7/9/2003	14.2	2.653
10/7/2003	7.92	2.069
1/6/2004	7.86	2.062
4/7/2004	4.82	1.573
7/14/2004	4.87	1.583

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377 Sidegradient						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.369	NO	-0.997	N/A
MW362	Downgradient	Yes	1.88	NO	0.631	N/A
MW365	Downgradient	No	0.1	N/A	-2.303	N/A
MW368	Sidegradient	Yes	0.29	NO	-1.238	N/A
MW371	Upgradient	Yes	15.1	NO	2.715	N/A
MW374	Upgradient	Yes	2.45	NO	0.896	N/A
MW375	Sidegradient	Yes	0.252	NO	-1.378	N/A
NI/A D	1. 1.1	T D				1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=11.347
 S= 3.019
 CV(1)=0.266
 K factor**= 2.523
 TL(1)= 18.963
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.401
 S= 0.237
 CV(2)=0.099
 K factor**= 2.523
 TL(2)= 2.999
 LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	20	2.996
1/7/2003	16.1	2.779
4/2/2003	13.1	2.573
7/9/2003	10.3	2.332
10/7/2003	11.1	2.407
1/6/2004	11	2.398
4/7/2004	9.69	2.271
7/14/2004	8.49	2.139

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	4.13	NO	1.418	N/A
MW362	Downgradient	Yes	8.72	NO	2.166	N/A
MW365	Downgradient	Yes	9.92	NO	2.295	N/A
MW368	Sidegradient	Yes	18	NO	2.890	N/A
MW371	Upgradient	Yes	15.7	NO	2.754	N/A
MW374	Upgradient	Yes	5.75	NO	1.749	N/A
MW375	Sidegradient	Yes	5.9	NO	1.775	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.248	S = 0.222	CV(1) =0.894	K factor**= 2.523	TL(1)= 0.809	LL(1)=N/A
Statistics-Transformed Background	X = -1.873	S = 1.068	CV(2) =-0.570	K factor**= 2.523	TL(2)= 0.821	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.596	-0.518
1/7/2003	0.565	-0.571
4/2/2003	0.675	-0.393
7/9/2003	0.397	-0.924
10/7/2003	0.312	-1.165
1/6/2004	0.299	-1.207
4/7/2004	0.329	-1.112
7/14/2004	0.342	-1.073

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	0.00415	NO	-5.485	N/A
MW362	Downgradient	t Yes	0.0256	NO	-3.665	N/A
MW365	Downgradient	t Yes	0.0199	NO	-3.917	N/A
MW368	Sidegradient	Yes	0.0328	NO	-3.417	N/A
MW371	Upgradient	Yes	0.119	NO	-2.129	N/A
MW374	Upgradient	Yes	0.235	NO	-1.448	N/A
MW375	Sidegradient	Yes	0.0115	NO	-4.465	N/A
N/A - Resu	ults identified as l	Non-Detects	during lab	oratory analysis or	r data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonMolybdenumUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.006	S = 0.010	CV(1)= 1.650	K factor**= 2.523	TL(1)= 0.030	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.108	S = 1.239	CV(2) =-0.203	K factor**= 2.523	TL(2)= -2.983	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	0.025	-3.689			
4/22/2002	0.025	-3.689			
7/15/2002	0.025	-3.689			
10/8/2002	0.001	-6.908			
1/8/2003	0.00121	-6.717			
4/3/2003	0.001	-6.908			
7/9/2003	0.00111	-6.803			
10/6/2003	0.001	-6.908			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	0.00222	-6.110			
1/7/2003	0.00201	-6.210			
4/2/2003	0.00159	-6.444			
7/9/2003	0.00242	-6.024			
10/7/2003	0.001	-6.908			
1/6/2004	0.001	-6.908			
4/7/2004	0.001	-6.908			
7/14/2004	0.001	-6.908			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Quarter Data	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	Gradient	Detectica.	rtebure	1005ult > 12(1).	Li ((itesuit)	$\operatorname{Ent}(\operatorname{Itestall}) > \operatorname{IE}(2)$
MW359	Downgradient	No	0.00017	6 N/A	-8.645	N/A
MW362	Downgradient	No	0.00067	5 N/A	-7.301	N/A
MW365	Downgradient	Yes	0.00021	9 N/A	-8.426	NO
MW368	Sidegradient	Yes	0.00194	N/A	-6.245	NO
MW371	Upgradient	No	0.00093	9 N/A	-6.971	N/A
MW374	Upgradient	No	0.00035	3 N/A	-7.949	N/A
MW375	Sidegradient	No	0.00042	4 N/A	-7.766	N/A
			0	oratory analysis or		n and were not

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data		•	•	K factor**= 2.523		
Statistics-Transformed Background	X = -4 349	S = 1 109	CV(2) = -0.255	K factor**= 2,523	TL(2)= -1 552	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Opgraulent W		ansiormed Result				
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.05	-2.996				
4/22/2002	0.05	-2.996				
7/15/2002	0.05	-2.996				
10/8/2002	0.0124	-4.390				
1/8/2003	0.005	-5.298				
4/3/2003	0.005	-5.298				
7/9/2003	0.005	-5.298				
10/6/2003	0.005	-5.298				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.05	-2.996				
1/7/2003	0.05	-2.996				
4/2/2003	0.05	-2.996				
7/9/2003	0.00794	-4.836				
10/7/2003	0.005	-5.298				
1/6/2004	0.005	-5.298				
4/7/2004	0.005	-5.298				

0.005

Data

7/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	0.00168	NO	-6.389	N/A	
MW362	Downgradient	Yes	0.00298	NO	-5.816	N/A	
MW365	Downgradient	Yes	0.00532	NO	-5.236	N/A	
MW368	Sidegradient	Yes	0.00107	NO	-6.840	N/A	
MW371	Upgradient	Yes	0.0126	NO	-4.374	N/A	
MW374	Upgradient	Yes	0.00269	NO	-5.918	N/A	
MW375	Sidegradient	Yes	0.00256	NO	-5.968	N/A	
N/A - Resu	Its identified as I	Non-Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-5.298

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis **Historical Background Comparison UNITS: mV Oxidation-Reduction Potential** UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X= 22.281 **S**= 78.889 **CV(1)**= 3.541 **K factor**=** 2.523 TL(1)= 221.319 LL(1)=N/A **Statistics-Background Data K factor**=** 2.523 TL(2)= 5.106 LL(2)=N/A

Statistics-Transformed Background S= 1.729 **X**= 3.642 **CV(2)**=0.475 Data

Г

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	75	4.317				
4/22/2002	165	5.106				
7/15/2002	65	4.174				
4/3/2003	-19	#Func!				
7/9/2003	114	4.736				
10/6/2003	-22	#Func!				
1/7/2004	20.5	3.020				
4/6/2004	113	4.727				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
3/18/2002	135	4.905				
4/2/2003	-56	#Func!				
7/9/2003	-68	#Func!				
10/7/2003	-50	#Func!				
1/6/2004	-85	#Func!				
4/7/2004	6	1.792				
7/14/2004	-38	#Func!				
10/7/2004	1	0.000				

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	187	N/A	5.231	YES	
MW362	Downgradient	Yes	137	N/A	4.920	NO	
MW365	Downgradient	Yes	476	N/A	6.165	YES	
MW368	Sidegradient	Yes	265	N/A	5.580	YES	
MW371	Upgradient	Yes	254	N/A	5.537	YES	
MW374	Upgradient	Yes	139	N/A	4.934	NO	
MW375	Sidegradient	Yes	298	N/A	5.697	YES	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW359
MW365
MW368
MW371
MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)Х

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonPCB, TotalUNITS: UG/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.224 S = 0.207 CV(1) = 0.922 K factor**= 2.523
 TL(1) = 0.746 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.647 S = 0.440 CV(2) = -0.267 K factor**= 2.523
 TL(2) = -0.537 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result								
MW371								
Result	LN(Result)							
1	0.000							
0.17	-1.772							
0.17	-1.772							
0.17	-1.772							
0.17	-1.772							
0.18	-1.715							
0.17	-1.772							
0.18	-1.715							
MW374								
Result	LN(Result)							
0.17	-1.772							
0.17	-1.772							
0.18	-1.715							
0.17	-1.772							
0.18	-1.715							
0.17	-1.772							
0.17	-1.772							
0.17	-1.772							
	ells with Tra MW371 Result 1 0.17 0.17 0.17 0.17 0.17 0.18 MW374 Result 0.17 0.17 0.18 0.17 0.18 0.17 0.17 0.18 0.17 0.17 0.18 0.17 0.17 0.18 0.17 0.17 0.18 0.17 0.17 0.18 0.17 0.17 0.18 0.17 0.18 0.17 0.17 0.18 0.17 0.17 0.18 0.17 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.17 0.18 0.17							

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.0952	N/A	-2.352	N/A
MW362	Downgradient	t No	0.1	N/A	-2.303	N/A
MW365	Downgradient	t Yes	0.145	NO	-1.931	N/A
MW368	Sidegradient	Yes	0.112	NO	-2.189	N/A
MW371	Upgradient	No	0.0952	N/A	-2.352	N/A
MW374	Upgradient	No	0.099	N/A	-2.313	N/A
MW375	Sidegradient	No	0.0943	N/A	-2.361	N/A
NI/A Dam	14- 14	N D	J			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonPCB-1242UNITS: UG/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.159	S = 0.224	CV(1)= 1.409	K factor**= 2.523	TL(1)= 0.726	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.134	S = 0.579	CV(2) =-0.272	K factor**= 2.523	TL(2)= -0.672	LL(2)= N/A

Historical Bac Upgradient W	0	ta from ansformed Resu
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/9/2003	0.13	-2.040
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/25/2005	0.09	-2.408
4/5/2006	0.1	-2.303
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/9/2003	0.13	-2.040
10/7/2003	0.09	-2.408
7/14/2004	0.1	-2.303
7/26/2005	0.1	-2.303
4/6/2006	0.1	-2.303
7/10/2006	0.1	-2.303
10/12/2006	0.1	-2.303
1/8/2007	0.1	-2.303

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0952	N/A	-2.352	N/A
MW362	Downgradient	No	0.1	N/A	-2.303	N/A
MW365	Downgradient	Yes	0.145	N/A	-1.931	NO
MW368	Sidegradient	Yes	0.112	N/A	-2.189	NO
MW371	Upgradient	No	0.0952	N/A	-2.352	N/A
MW374	Upgradient	No	0.099	N/A	-2.313	N/A
MW375	Sidegradient	No	0.0943	N/A	-2.361	N/A
N/A Deer	Its identified as I	Jan Dataata	dumin a lak	anatami analizia a	, data validatio	n and more not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.619	S = 0.295	CV(1)= 0.045	K factor**= 2.904	TL(1)= 7.475	LL(1)=5.7635
Statistics-Transformed Background Data	X= 1.889	S = 0.046	CV(2)= 0.024	K factor**= 2.904	TL(2)= 2.023	LL(2)= 1.7548

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	6.3	1.841		
4/22/2002	6.5	1.872		
7/15/2002	6.5	1.872		
10/8/2002	6.6	1.887		
1/8/2003	6.6	1.887		
4/3/2003	6.9	1.932		
7/9/2003	6.7	1.902		
10/6/2003	7	1.946		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
3/18/2002	5.75	1.749		
10/8/2002	6.6	1.887		
1/7/2003	6.82	1.920		
4/2/2003	6.86	1.926		
7/9/2003	6.7	1.902		
10/7/2003	6.6	1.887		
1/6/2004	6.9	1.932		
4/7/2004	6.58	1.884		

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW359	Downgradien	t Yes	6.78	NO	1.914	N/A
MW362	Downgradien	t Yes	6.93	NO	1.936	N/A
MW365	Downgradien	t Yes	6.47	NO	1.867	N/A
MW368	Sidegradient	Yes	6.65	NO	1.895	N/A
MW371	Upgradient	Yes	6.7	NO	1.902	N/A
MW374	Upgradient	Yes	6.77	NO	1.913	N/A
MW375	Sidegradient	Yes	6.63	NO	1.892	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonPotassiumUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.262	S = 0.907	CV(1)= 0.718	K factor**= 2.523	TL(1)= 3.549	LL(1)= N/A
Statistics-Transformed Background	X = -0.023	S = 0.752	CV(2) =-32.218	K factor**= 2.523	TL(2) = 1.874	LL(2)=N/A

Historical Bac		
Upgradient W	ells with Tra	ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	3.04	1.112
1/7/2003	2.83	1.040
4/2/2003	2	0.693
7/9/2003	1.09	0.086
10/7/2003	0.802	-0.221
1/6/2004	0.897	-0.109
4/7/2004	0.689	-0.373
7/14/2004	0.716	-0.334

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	0.177	NO	-1.732	N/A
MW362	Downgradient	t Yes	0.523	NO	-0.648	N/A
MW365	Downgradient	t Yes	0.23	NO	-1.470	N/A
MW368	Sidegradient	Yes	1.23	NO	0.207	N/A
MW371	Upgradient	Yes	1.45	NO	0.372	N/A
MW374	Upgradient	Yes	0.479	NO	-0.736	N/A
MW375	Sidegradient	Yes	0.264	NO	-1.332	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis **Historical Background Comparison UNITS: pCi/L** Radium-226 UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 13.483 CV(1)=3.787 **K factor**=** 2.523 TL(1)= 37.577 **Statistics-Background Data X**= 3.560 LL(1)=N/A LL(2)=N/A

Statistics-Transformed Background X = -1.189 S = 1.742 CV(2) = -1.465**K factor**=** 2.523 TL(2)= 3.991 Data

Г

Historical Background Data from Upgradient Wells with Transformed Result				
MW371				
Result	LN(Result)			
54.1	3.991			
0.0937	-2.368			
0.378	-0.973			
0.179	-1.720			
0.898	-0.108			
0.108	-2.226			
-0.149	#Func!			
0.154	-1.871			
MW374				
Result	LN(Result)			
0.298	-1.211			
-0.844	#Func!			
0.806	-0.216			
0.0306	-3.487			
0.35	-1.050			
0.273	-1.298			
0.205	-1.585			
0.205	1.000			
	MW371 Result 54.1 0.0937 0.378 0.179 0.898 0.108 -0.149 0.154 MW374 Result 0.298 -0.844 0.806 0.0306 0.35 0.273			

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.566	N/A	-0.569	NO
MW362	Downgradient	Yes	0.727	N/A	-0.319	NO
MW365	Downgradient	No	1.06	N/A	0.058	N/A
MW368	Sidegradient	Yes	0.547	N/A	-0.603	NO
MW371	Upgradient	Yes	1.26	N/A	0.231	NO
MW374	Upgradient	No	0.372	N/A	-0.989	N/A
MW375	Sidegradient	Yes	0.799	N/A	-0.224	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)Х

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 183.063 S= 73.222
 CV(1)=0.400
 K factor**= 2.523
 TL(1)= 367.800
 LL(1)=N/A

 Statistics-Transformed Background
 X= 5.146
 S= 0.356
 CV(2)=0.069
 K factor**= 2.523
 TL(2)= 6.044
 LL(2)=N/A

Historical Bac		
Upgradient W	ells with Tra	ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	336	5.817
1/7/2003	329	5.796
4/2/2003	287	5.659
7/9/2003	181	5.198
10/7/2003	182	5.204
1/6/2004	206	5.328
4/7/2004	182	5.204
7/14/2004	198	5.288

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	39.3	NO	3.671	N/A
MW362	Downgradient	Yes	127	NO	4.844	N/A
MW365	Downgradient	Yes	51.4	NO	3.940	N/A
MW368	Sidegradient	Yes	58	NO	4.060	N/A
MW371	Upgradient	Yes	112	NO	4.718	N/A
MW374	Upgradient	Yes	141	NO	4.949	N/A
MW375	Sidegradient	Yes	70.9	NO	4.261	N/A
NI/A D	1. 1.1				1 . 1.1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 6.469	S = 3.153	CV(1)= 0.487	K factor**= 2.523	TL(1)= 14.423	LL(1)= N/A
Statistics-Transformed Background	X = 1.794	S = 0.357	CV(2)= 0.199	K factor**= 2.523	TL(2) = 2.694	LL(2)=N/A

-							
Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	16.3	2.791					
4/22/2002	8.6	2.152					
7/15/2002	6.7	1.902					
10/8/2002	5	1.609					
1/8/2003	5	1.609					
4/3/2003	5	1.609					
7/9/2003	5	1.609					
10/6/2003	5	1.609					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	5	1.609					
1/7/2003	5	1.609					
4/2/2003	5	1.609					
7/9/2003	5.6	1.723					
10/7/2003	5	1.609					
1/6/2004	5	1.609					
4/7/2004	11.3	2.425					
7/14/2004	5	1.609					

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	50.4	YES	3.920	N/A
MW362	Downgradient	t Yes	15.1	YES	2.715	N/A
MW365	Downgradient	t Yes	62.7	YES	4.138	N/A
MW368	Sidegradient	Yes	28.2	YES	3.339	N/A
MW371	Upgradient	Yes	10.2	NO	2.322	N/A
MW374	Upgradient	Yes	5.63	NO	1.728	N/A
MW375	Sidegradient	Yes	28.2	YES	3.339	N/A
	lts identified as l	Non Detects	during lal	oratory analysis or	· data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW359	
MW362	
MW365	
MW368	
MW375	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 17.631	S = 24.314	CV(1) =1.379	K factor**= 2.523	TL(1)= 78.977	LL(1)= N/A
Statistics-Transformed Background	X = 2.318	S = 0.979	CV(2) =0.422	K factor**= 2.523	TL(2) = 4.788	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	11.1	2.407			
4/22/2002	7	1.946			
7/15/2002	4.1	1.411			
10/8/2002	6	1.792			
1/8/2003	5.3	1.668			
4/3/2003	5.3	1.668			
7/9/2003	2.9	1.065			
10/6/2003	3.2	1.163			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	90	4.500			
1/7/2003	64	4.159			
4/2/2003	25	3.219			
7/9/2003	16	2.773			
10/7/2003	13	2.565			
1/6/2004	10	2.303			
4/7/2004	7.2	1.974			
7/14/2004	12	2.485			

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	Yes	1.72	N/A	0.542	NO
MW362	Downgradien	Yes	2.59	N/A	0.952	NO
MW365	Downgradien	Yes	1.62	N/A	0.482	NO
MW368	Sidegradient	Yes	1.23	N/A	0.207	NO
MW371	Upgradient	Yes	1.96	N/A	0.673	NO
MW374	Upgradient	Yes	2.65	N/A	0.975	NO
MW375	Sidegradient	Yes	1.28	N/A	0.247	NO
N7/1 D						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 214.094 S= 231.089 CV(1)=1.079
 K factor**= 2.523
 TL(1)= 797.131
 LL(1)=N/A

Statistics-Transformed Background X=4.867 S= 1.065 CV(2)=0.219 Data

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	50	3.912			
4/22/2002	105	4.654			
7/15/2002	70	4.248			
10/8/2002	52	3.951			
1/8/2003	20.2	3.006			
4/3/2003	104	4.644			
7/9/2003	34.2	3.532			
10/6/2003	46.1	3.831			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	903	6.806			
1/7/2003	539	6.290			
4/2/2003	295	5.687			
7/9/2003	272	5.606			
10/7/2003	197	5.283			
1/6/2004	330	5.799			
4/7/2004	183	5.209			
7/14/2004	225	5.416			

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

TL(2)= 7.554

LL(2)=N/A

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.4	N/A	1.224	NO
MW362	Downgradient	Yes	11	N/A	2.398	NO
MW365	Downgradient	Yes	13.9	N/A	2.632	NO
MW368	Sidegradient	No	10	N/A	2.303	N/A
MW371	Upgradient	Yes	3.48	N/A	1.247	NO
MW374	Upgradient	Yes	17	N/A	2.833	NO
MW375	Sidegradient	Yes	9.02	N/A	2.199	NO

K factor=** 2.523

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.007	S = 0.012	CV(1)= 1.678	K factor**= 2.523	TL(1)= 0.037	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.884	S = 1.299	CV(2) =-0.221	K factor**= 2.523	TL(2)= -2.607	LL(2)= N/A

Historical Background Data from				
Upgradient W	ells with Tra	ansformed Result		
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	0.001	-6.908		
4/22/2002	0.001	-6.908		
7/15/2002	0.001	-6.908		
10/8/2002	0.027	-3.612		
1/8/2003	0.001	-6.908		
4/3/2003	0.001	-6.908		
7/9/2003	0.00109	-6.822		
10/6/2003	0.001	-6.908		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	0.0438	-3.128		
1/7/2003	0.011	-4.510		
4/2/2003	0.00905	-4.705		
7/9/2003	0.00694	-4.970		
10/7/2003	0.001	-6.908		
1/6/2004	0.00315	-5.760		
4/7/2004	0.00258	-5.960		
7/14/2004	0.0018	-6.320		

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00012	9 N/A	-8.956	NO
MW362	Downgradient	Yes	0.00278	N/A	-5.885	NO
MW365	Downgradient	Yes	0.00013	8 N/A	-8.888	NO
MW368	Sidegradient	Yes	0.00032	4 N/A	-8.035	NO
MW371	Upgradient	Yes	0.00266	N/A	-5.929	NO
MW374	Upgradient	Yes	0.00032	4 N/A	-8.035	NO
MW375	Sidegradient	Yes	0.00008	4 N/A	-9.385	NO
			U	oratory analysis of		on and were not

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonVanadiumUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.055	S = 0.072	CV(1)= 1.319	K factor**= 2.523	TL(1)= 0.237	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.438	S = 0.912	CV(2) =-0.265	K factor**= 2.523	TL(2)= -1.138	LL(2)= N/A

Historical Bac	kground Dat	a from
Upgradient W	ells with Tra	insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.2	-1.609
1/7/2003	0.2	-1.609
4/2/2003	0.2	-1.609
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912
1/6/2004	0.02	-3.912
4/7/2004	0.02	-3.912
7/14/2004	0.02	-3.912

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00633	N/A	-5.062	NO
MW362	Downgradient	Yes	0.00594	N/A	-5.126	NO
MW365	Downgradient	Yes	0.00517	N/A	-5.265	NO
MW368	Sidegradient	Yes	0.0158	N/A	-4.148	NO
MW371	Upgradient	Yes	0.0418	N/A	-3.175	NO
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	No	0.01	N/A	-4.605	N/A
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not					

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.060	S = 0.083	CV(1)= 1.380	K factor**= 2.523	TL(1)= 0.270	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.259	S = 0.840	CV(2) =-0.258	K factor**= 2.523	TL(2)= -1.140	LL(2)= N/A

Historical Das	leanound Do	to from
Historical Bac Upgradient W	0	ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.025	-3.689
1/7/2003	0.35	-1.050
4/2/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912
1/6/2004	0.02	-3.912
4/7/2004	0.02	-3.912
7/14/2004	0.02	-3.912

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.01	N/A	-4.605	N/A
MW362	Downgradient	Yes	0.00686	N/A	-4.982	NO
MW365	Downgradient	Yes	0.0205	N/A	-3.887	NO
MW368	Sidegradient	Yes	0.00394	N/A	-5.537	NO
MW371	Upgradient	Yes	0.0356	N/A	-3.335	NO
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	No	0.01	N/A	-4.605	N/A
N/A - Resu	lts identified as I	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.625	S= 0.774	CV(1)= 1.239	K factor**= 2.523	TL(1)= 2.578	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.973	S = 0.935	CV(2)= -0.961	K factor**= 2.523	TL(2)= 1.386	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.689	-0.373
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.959
Date Collected	Result	
Date Collected 3/19/2002	Result 2.61	0.959
Date Collected 3/19/2002 4/23/2002	Result 2.61 0.2	0.959 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2.61 0.2 1.14	0.959 -1.609 0.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.61 0.2 1.14 0.862	0.959 -1.609 0.131 -0.149
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.61 0.2 1.14 0.862 2.32	0.959 -1.609 0.131 -0.149 0.842
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2.61 0.2 1.14 0.862 2.32 0.2	0.959 -1.609 0.131 -0.149 0.842 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.05	N/A	-2.996	N/A
MW360	Downgradient	Yes	0.0258	N/A	-3.657	NO
MW363	Downgradient	No	0.05	N/A	-2.996	N/A
MW366	Sidegradient	No	0.05	N/A	-2.996	N/A
MW369	Upgradient	Yes	0.0742	N/A	-2.601	NO
MW372	Upgradient	Yes	0.0308	N/A	-3.480	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.985	S = 0.825	CV(1)= 0.838	K factor**= 2.523	TL(1)= 3.067	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.430	S = 0.990	CV(2) =-2.302	K factor**= 2.523	TL(2)= 2.068	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 2	0.693
Date Collected 3/19/2002 4/23/2002	Result 2 2	0.693 0.693
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2 2 2	0.693 0.693 0.693
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 2 2 0.492	0.693 0.693 0.693 -0.709
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 2 2 0.492 0.492	0.693 0.693 0.693 -0.709 -0.709
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2 2 2 0.492 0.492 0.6	0.693 0.693 0.693 -0.709 -0.709 -0.511

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.422	NO	-0.863	N/A
MW360	Downgradient	Yes	0.0328	NO	-3.417	N/A
MW363	Downgradient	Yes	0.0207	NO	-3.878	N/A
MW366	Sidegradient	Yes	0.119	NO	-2.129	N/A
MW369	Upgradient	Yes	0.0147	NO	-4.220	N/A
MW372	Upgradient	Yes	1.16	NO	0.148	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MU2CO

XX7-11 NT-----1-----

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/8/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.391	NO	-0.939	N/A
MW360	Downgradient	Yes	0.153	NO	-1.877	N/A
MW363	Downgradient	Yes	0.188	NO	-1.671	N/A
MW366	Sidegradient	Yes	0.485	NO	-0.724	N/A
MW369	Upgradient	Yes	0.392	NO	-0.936	N/A
MW372	Upgradient	Yes	0.608	NO	-0.498	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 32.763 S =	= 9.391	CV(1)= 0.287	K factor**= 2.523	TL(1)= 56.456	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.449 S =	= 0.299	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.202	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	29.5	3.384
4/22/2002	29.8	3.395
7/15/2002	25.3	3.231
10/8/2002	21.9	3.086
1/8/2003	20.9	3.040
4/3/2003	22.2	3.100
7/8/2003	22.9	3.131
10/6/2003	21.7	3.077
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.726
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 41.5	3.726
Date Collected 3/19/2002 4/23/2002	Result 41.5 43.6	3.726 3.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 41.5 43.6 40.4	3.726 3.775 3.699
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 41.5 43.6 40.4 38.8	3.726 3.775 3.699 3.658
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 41.5 43.6 40.4 38.8 41.1	3.726 3.775 3.699 3.658 3.716
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 41.5 43.6 40.4 38.8 41.1 42.9	3.726 3.775 3.699 3.658 3.716 3.759

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	27.4	NO	3.311	N/A
MW360	Downgradient	Yes	25.5	NO	3.239	N/A
MW363	Downgradient	Yes	27.2	NO	3.303	N/A
MW366	Sidegradient	Yes	29	NO	3.367	N/A
MW369	Upgradient	Yes	18.4	NO	2.912	N/A
MW372	Upgradient	Yes	60.9	YES	4.109	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.938 S = 3.750	CV(1)= 0.104	K factor**= 2.523	TL(1)= 45.399	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.578 S = 0.089	CV(2)= 0.025	K factor**= 2.523	TL(2)= 3.803	LL(2)= N/A

Historical Background Data from	
Upgradient Wells with Transformed Result	ŧ

1 1110 00

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	50	3.912
1/8/2003	35	3.555
4/3/2003	35	3.555
7/8/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 35	3.555
Date Collected 3/19/2002 4/23/2002	Result 35 35	3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 35 35 35	3.555 3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 35 35 35 35	3.555 3.555 3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 35 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	20	N/A	2.996	N/A
MW360	Downgradient	No	20	N/A	2.996	N/A
MW363	Downgradient	Yes	34.9	NO	3.552	N/A
MW366	Sidegradient	No	20	N/A	2.996	N/A
MW369	Upgradient	No	20	N/A	2.996	N/A
MW372	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =44.119 S = 4.554	CV(1)= 0.103	K factor**= 2.523	TL(1)= 55.607	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.782 S = 0.099	CV(2)= 0.026	K factor**= 2.523	TL(2)= 4.033	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/15/2002	48.3	3.877
10/8/2002	47.7	3.865
1/8/2003	45.7	3.822
4/3/2003	47.4	3.859
7/8/2003	55.9	4.024
10/6/2003	47.4	3.859
1/7/2004	45.5	3.818
4/7/2004	43.4	3.770
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.684
Date Collected	Result	· · · · ·
Date Collected 7/16/2002	Result 39.8	3.684
Date Collected 7/16/2002 10/8/2002	Result 39.8 41	3.684 3.714
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 39.8 41 39.4	3.684 3.714 3.674
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 39.8 41 39.4 39.2	3.684 3.714 3.674 3.669
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 39.8 41 39.4 39.2 39.8	3.684 3.714 3.674 3.669 3.684
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 39.8 41 39.4 39.2 39.8 40	3.684 3.714 3.674 3.669 3.684 3.689

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	29.6	NO	3.388	N/A
MW360	Downgradient	Yes	10.7	NO	2.370	N/A
MW363	Downgradient	Yes	28.9	NO	3.364	N/A
MW366	Sidegradient	Yes	37.3	NO	3.619	N/A
MW369	Upgradient	Yes	33.1	NO	3.500	N/A
MW372	Upgradient	Yes	45.5	NO	3.818	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.025	S = 0.021	CV(1)= 0.845	K factor**= 2.523	TL(1)= 0.077	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.090	S = 1.006	CV(2)= -0.246	K factor**= 2.523	TL(2)= -1.553	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result
Opgrautent wens with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138
7/8/2003	0.0541	-2.917
10/6/2003	0.0689	-2.675
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.025 0.00158	-3.689 -3.689 -3.689 -6.450
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.00158 0.0147	-3.689 -3.689 -3.689 -6.450 -4.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.00158 0.0147 0.0116	-3.689 -3.689 -3.689 -6.450 -4.220 -4.457

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	Yes	0.0171	NO	-4.069	N/A
MW363	Downgradient	Yes	0.00107	NO	-6.840	N/A
MW366	Sidegradient	Yes	0.000212	2 NO	-8.459	N/A
MW369	Upgradient	Yes	0.00435	NO	-5.438	N/A
MW372	Upgradient	Yes	0.00067	6 NO	-7.299	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 482.856 S = 57.603	CV(1)= 0.119	K factor**= 2.523	TL(1)= 628.189 LL(2	1)= N/A
Statistics-Transformed Background Data	X = 6.173 S = 0.123	CV(2)= 0.020	K factor**= 2.523	TL(2)= 6.484 LL(2	2)=N/A

Historical Background Data from	
Upgradient Wells with Transformed Result	,

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 508 501 507 495 508.7 515	6.230 6.217 6.229 6.205 6.232 6.244

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	434	NO	6.073	N/A
MW360	Downgradient	Yes	546	NO	6.303	N/A
MW363	Downgradient	Yes	434	NO	6.073	N/A
MW366	Sidegradient	Yes	479	NO	6.172	N/A
MW369	Upgradient	Yes	387	NO	5.958	N/A
MW372	Upgradient	Yes	700	YES	6.551	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.025	S = 0.010	CV(1)= 0.400	K factor**= 2.523	TL(1)= 0.050	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.742	S = 0.307	CV(2)= -0.082	K factor**= 2.523	TL(2)= -2.967	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Resul

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.05	-3.689 -3.689 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.05 0.02	-3.689 -3.689 -2.996 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.05 0.02 0.02 0.02	-3.689 -3.689 -2.996 -3.912 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.05 0.02 0.02 0.02 0.02	-3.689 -3.689 -2.996 -3.912 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	No	0.001	N/A	-6.908	N/A
MW363	Downgradient	No	0.001	N/A	-6.908	N/A
MW366	Sidegradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	Yes	0.00070)5 NO	-7.257	N/A
MW372	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.781	S = 1.351	CV(1)= 0.759	K factor**= 2.523	TL(1)= 5.190	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.228	S= 1.065	CV(2) =4.665	K factor**= 2.523	TL(2)= 2.915	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	5.41	1.688
4/22/2002	1.57	0.451
7/15/2002	0.8	-0.223
10/8/2002	1.09	0.086
1/8/2003	2.69	0.990
4/3/2003	2.04	0.713
7/8/2003	1.19	0.174
10/6/2003	1.78	0.577
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.358
Date Collected	Result	
Date Collected 3/19/2002	Result 3.89	1.358
Date Collected 3/19/2002 4/23/2002	Result 3.89 0.05	1.358 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 3.89 0.05 1.33	1.358 -2.996 0.285
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.89 0.05 1.33 2.66	1.358 -2.996 0.285 0.978
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.89 0.05 1.33 2.66 0.4	1.358 -2.996 0.285 0.978 -0.916
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 3.89 0.05 1.33 2.66 0.4 0.91	1.358 -2.996 0.285 0.978 -0.916 -0.094

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	3.49	NO	1.250	N/A
MW360	Downgradient	Yes	1.7	NO	0.531	N/A
MW363	Downgradient	Yes	1.43	NO	0.358	N/A
MW366	Sidegradient	Yes	1.62	NO	0.482	N/A
MW369	Upgradient	Yes	0.94	NO	-0.062	N/A
MW372	Upgradient	Yes	0.53	NO	-0.635	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 285.188 S = 44.908	CV(1)= 0.157	K factor**= 2.523	TL(1)= 398.489	LL(1)= N/A
Statistics-Transformed Background Data	X= 5.640 S= 0.175	CV(2)= 0.031	K factor**= 2.523	TL(2)= 6.080	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.687
Date Collected	Result	
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 295 322 329 290 316 311	5.687 5.775 5.796 5.670 5.756 5.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	221	NO	5.398	N/A
MW360	Downgradient	Yes	309	NO	5.733	N/A
MW363	Downgradient	Yes	200	NO	5.298	N/A
MW366	Sidegradient	Yes	259	NO	5.557	N/A
MW369	Upgradient	Yes	207	NO	5.333	N/A
MW372	Upgradient	Yes	530	YES	6.273	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 7.385	S= 6.991	CV(1)= 0.947	K factor**= 2.523	TL(1)= 25.024	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.358	S= 1.323	CV(2)= 0.974	K factor**= 2.523	TL(2)= 4.697	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.656	-0.422
4/22/2002	0.695	-0.364
7/15/2002	7.1	1.960
10/8/2002	21.5	3.068
1/8/2003	18.5	2.918
4/3/2003	14.9	2.701
7/8/2003	11.3	2.425
10/6/2003	14.9	2.701
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.783
Date Collected	Result	
Date Collected 3/19/2002	Result 5.95	1.783
Date Collected 3/19/2002 4/23/2002	Result 5.95 0.792	1.783 -0.233
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5.95 0.792 1.78	1.783 -0.233 0.577
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5.95 0.792 1.78 0.776	1.783 -0.233 0.577 -0.254
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5.95 0.792 1.78 0.776 3.55	1.783 -0.233 0.577 -0.254 1.267
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.95 0.792 1.78 0.776 3.55 5.02	1.783 -0.233 0.577 -0.254 1.267 1.613

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.1	N/A	-2.303	N/A
MW360	Downgradient	Yes	2.91	NO	1.068	N/A
MW363	Downgradient	Yes	0.0737	NO	-2.608	N/A
MW366	Sidegradient	Yes	0.0678	NO	-2.691	N/A
MW369	Upgradient	Yes	0.113	NO	-2.180	N/A
MW372	Upgradient	Yes	0.64	NO	-0.446	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.864 S = 3.505	CV(1)= 0.272	K factor**= 2.523	TL(1)= 21.707	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.517 S = 0.290	CV(2)= 0.115	K factor**= 2.523	TL(2)= 3.248	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	11.4	2.434
4/22/2002	12	2.485
7/15/2002	10	2.303
10/8/2002	8.62	2.154
1/8/2003	7.89	2.066
4/3/2003	7.97	2.076
7/8/2003	10.3	2.332
10/6/2003	9.14	2.213
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 2.754
Date Collected	Result	
Date Collected 3/19/2002	Result 15.7	2.754
Date Collected 3/19/2002 4/23/2002	Result 15.7 16.6	2.754 2.809
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 15.7 16.6 15.4	2.754 2.809 2.734
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 15.7 16.6 15.4 15.8	2.754 2.809 2.734 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 15.7 16.6 15.4 15.8 15.8	2.754 2.809 2.734 2.760 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 15.7 16.6 15.4 15.8 15.8 16.4	2.754 2.809 2.734 2.760 2.760 2.797

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	11.6	NO	2.451	N/A
MW360	Downgradient	Yes	9.26	NO	2.226	N/A
MW363	Downgradient	Yes	10.8	NO	2.380	N/A
MW366	Sidegradient	Yes	12.1	NO	2.493	N/A
MW369	Upgradient	Yes	7.78	NO	2.052	N/A
MW372	Upgradient	Yes	23.7	YES	3.165	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.413	S= 0.274	CV(1)= 0.664	K factor**= 2.523	TL(1)= 1.105	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.226	S = 1.008	CV(2) =-0.822	K factor**= 2.523	TL(2)= 1.317	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.034	-3.381
4/22/2002	0.062	-2.781
7/15/2002	0.436	-0.830
10/8/2002	0.867	-0.143
1/8/2003	0.828	-0.189
4/3/2003	0.672	-0.397
7/8/2003	0.321	-1.136
10/6/2003	0.714	-0.337
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -1.585
Date Collected	Result	
Date Collected 3/19/2002	Result 0.205	-1.585
Date Collected 3/19/2002 4/23/2002	Result 0.205 0.345	-1.585 -1.064
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.205 0.345 0.21	-1.585 -1.064 -1.561
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.205 0.345 0.21 0.0539	-1.585 -1.064 -1.561 -2.921
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.205 0.345 0.21 0.0539 0.537	-1.585 -1.064 -1.561 -2.921 -0.622
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.205 0.345 0.21 0.0539 0.537 0.415	-1.585 -1.064 -1.561 -2.921 -0.622 -0.879

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00378	NO	-5.578	N/A
MW360	Downgradient	Yes	0.226	NO	-1.487	N/A
MW363	Downgradient	Yes	0.224	NO	-1.496	N/A
MW366	Sidegradient	Yes	0.012	NO	-4.423	N/A
MW369	Upgradient	Yes	0.0235	NO	-3.751	N/A
MW372	Upgradient	Yes	0.0134	NO	-4.313	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.010	S = 0.012	CV(1)= 1.199	K factor**= 2.523	TL(1)= 0.040	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.698	S= 1.607	CV(2)= -0.282	K factor**= 2.523	TL(2)= -1.643	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0005	N/A	-7.601	N/A
MW360	Downgradient	Yes	0.00039	5 N/A	-7.837	NO
MW363	Downgradient	Yes	0.00021	1 N/A	-8.464	NO
MW366	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW369	Upgradient	No	0.00017	9 N/A	-8.628	N/A
MW372	Upgradient	No	0.00069	7 N/A	-7.269	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S = 0.021	CV(1)= 0.910	K factor**= 2.523	TL(1)= 0.078	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.246	S = 1.075	CV(2) =-0.253	K factor**= 2.523	TL(2)= -1.535	LL(2)= N/A

Historical Background Data from	
Upgradient Wells with Transformed Resul	t

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00059	3 NO	-7.430	N/A
MW360	Downgradient	Yes	0.00171	NO	-6.371	N/A
MW363	Downgradient	Yes	0.00093	4 NO	-6.976	N/A
MW366	Sidegradient	Yes	0.00105	NO	-6.859	N/A
MW369	Upgradient	Yes	0.0055	NO	-5.203	N/A
MW372	Upgradient	Yes	0.00099	9 NO	-6.909	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =74.563	S= 94.243	CV(1)= 1.264	K factor**= 2.523	TL(1)= 312.337	LL(1)= N/A
Statistics-Transformed Background Data	X= 4.554	S = 0.784	CV(2)= 0.172	K factor**= 2.523	TL(2)= 5.371	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

epgraaiene it		
Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	210	5.347
4/23/2002		
4/25/2002	65	4.174
4/23/2002 7/16/2002	65 215	4.174 5.371
7/16/2002	215	5.371
7/16/2002 10/8/2002	215 185	5.371 5.220
7/16/2002 10/8/2002 1/7/2003	215 185 45	5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	355	N/A	5.872	YES
MW360	Downgradient	Yes	192	N/A	5.257	NO
MW363	Downgradient	Yes	455	N/A	6.120	YES
MW366	Sidegradient	Yes	480	N/A	6.174	YES
MW369	Upgradient	Yes	398	N/A	5.986	YES
MW372	Upgradient	Yes	246	N/A	5.505	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW357 MW363 MW366 MW369 MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonPCB, TotalUNITS: UG/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.390	S = 0.350	CV(1)= 0.897	K factor**= 2.523	TL(1)= 1.272	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.238	S = 0.737	CV(2) =-0.595	K factor**= 2.523	TL(2)= 0.622	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/8/2003	1.15	0.140
10/6/2003	0.605	-0.503
7/13/2004	0.42	-0.868
7/20/2005	0.28	-1.273
4/4/2006	0.23	-1.470
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 0.17	0.000 -1.772
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 0.17 0.17	0.000 -1.772 -1.772
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003	Result 1 0.17 0.17 0.17	0.000 -1.772 -1.772 -1.772
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003	Result 1 0.17 0.17 0.17 0.17	0.000 -1.772 -1.772 -1.772 -1.772
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003 7/14/2004	Result 1 0.17 0.17 0.17 0.17 0.17 0.18	0.000 -1.772 -1.772 -1.772 -1.772 -1.772 -1.715

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0943	N/A	-2.361	N/A
MW360	Downgradient	No	0.0943	N/A	-2.361	N/A
MW363	Downgradient	No	0.1	N/A	-2.303	N/A
MW366	Sidegradient	No	0.0943	N/A	-2.361	N/A
MW369	Upgradient	No	0.0962	N/A	-2.341	N/A
MW372	Upgradient	Yes	0.0552	NO	-2.897	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonPCB-1242UNITS: UG/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.281	S = 0.383	CV(1)= 1.361	K factor**= 2.523	TL(1)= 1.247	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.835	S = 0.938	CV(2)= -0.511	K factor**= 2.523	TL(2)= 0.532	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/8/2003	1.15	0.140
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/20/2005	0.1	-2.303
4/4/2006	0.1	-2.303
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 0.11	0.000 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 0.11 0.11	0.000 -2.207 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003	Result 1 0.11 0.11 0.13	0.000 -2.207 -2.207 -2.040
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003	Result 1 0.11 0.11 0.13 0.09	0.000 -2.207 -2.207 -2.040 -2.408
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003 7/14/2004	Result 1 0.11 0.13 0.09 0.1	0.000 -2.207 -2.207 -2.040 -2.408 -2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0943	N/A	-2.361	N/A
MW360	Downgradient	No	0.0943	N/A	-2.361	N/A
MW363	Downgradient	No	0.1	N/A	-2.303	N/A
MW366	Sidegradient	No	0.0943	N/A	-2.361	N/A
MW369	Upgradient	No	0.0962	N/A	-2.341	N/A
MW372	Upgradient	Yes	0.0552	N/A	-2.897	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.274	S = 0.194	CV(1)= 0.031	K factor**= 2.904	TL(1)= 6.837	LL(1)= 5.7114
Statistics-Transformed Background Data	X= 1.836	S= 0.031	CV(2)= 0.017	K factor**= 2.904	TL(2)= 1.925	LL(2)= 1.7467

Historical Background Data from
Upgradient Wells with Transformed Result

MUNCO

XX7-11 NT-----1-----

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	6.1	1.808
4/22/2002	6.1	1.808
7/15/2002	6.1	1.808
10/8/2002	6.5	1.872
1/8/2003	6.5	1.872
4/3/2003	6.6	1.887
7/8/2003	6.5	1.872
10/6/2003	6.5	1.872
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.808
Date Collected	Result	
Date Collected 3/19/2002	Result 6.1	1.808
Date Collected 3/19/2002 4/23/2002	Result 6.1 6.12	1.808 1.812
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 6.1 6.12 6.1	1.808 1.812 1.808
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.1 6.12 6.1 6.06	1.808 1.812 1.808 1.802
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.1 6.12 6.1 6.06 6.26	1.808 1.812 1.808 1.802 1.834
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 6.1 6.12 6.1 6.06 6.26 6.15	1.808 1.812 1.808 1.802 1.834 1.816

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradien	t Yes	6.34	NO	1.847	N/A
MW360	Downgradien	t Yes	6.58	NO	1.884	N/A
MW363	Downgradien	t Yes	6.46	NO	1.866	N/A
MW366	Sidegradient	Yes	6.24	NO	1.831	N/A
MW369	Upgradient	Yes	6.21	NO	1.826	N/A
MW372	Upgradient	Yes	6.31	NO	1.842	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.663	S = 0.488	CV(1)= 0.293	K factor**= 2.523	TL(1)= 2.895	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.456	S= 0.362	CV(2)= 0.794	K factor**= 2.523	TL(2)= 1.368	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW369

wen runiber.	111 (1 5 0)	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2.21	0.793
7/15/2002	2	0.693
10/8/2002	0.966	-0.035
1/8/2003	0.727	-0.319
4/3/2003	0.8	-0.223
7/8/2003	1.62	0.482
10/6/2003	1.14	0.131
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.713
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 2.04	0.713
Date Collected 3/19/2002 4/23/2002	Result 2.04 2.03	0.713 0.708
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2.04 2.03 2	0.713 0.708 0.693
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.04 2.03 2 1.54	0.713 0.708 0.693 0.432
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.04 2.03 2 1.54 1.88	0.713 0.708 0.693 0.432 0.631
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2.04 2.03 2 1.54 1.88 2.09	0.713 0.708 0.693 0.432 0.631 0.737

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	1.71	NO	0.536	N/A		
MW360	Downgradient	Yes	0.731	NO	-0.313	N/A		
MW363	Downgradient	Yes	1.23	NO	0.207	N/A		
MW366	Sidegradient	Yes	1.8	NO	0.588	N/A		
MW369	Upgradient	Yes	0.581	NO	-0.543	N/A		
MW372	Upgradient	Yes	2.25	NO	0.811	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.398	S = 8.854	CV(1)= 2.605	K factor**= 2.523	TL(1)= 25.736	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.836	S = 1.704	CV(2) =-2.039	K factor**= 2.523	TL(2)= 3.346	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
7/15/2002	28.4	3.346				
10/8/2002	0.167	-1.790				
1/8/2003	0.173	-1.754				
10/6/2003	0.168	-1.784				
1/7/2004	0.702	-0.354				
4/7/2004	0.195	-1.635				
7/13/2004	0.256	-1.363				
10/7/2004	0.228	-1.478				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
7/16/2002	23.5	3.157				
10/8/2002	0.195	-1.635				
1/7/2003	-0.844	#Func!				

0.349

0.239

0.308

0.147

0.188

10/7/2003

1/5/2004 4/5/2004

7/14/2004

10/7/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.425	N/A	-0.856	N/A	
MW360	Downgradient	Yes	0.561	N/A	-0.578	NO	
MW363	Downgradient	No	0.361	N/A	-1.019	N/A	
MW366	Sidegradient	Yes	0.452	N/A	-0.794	NO	
MW369	Upgradient	No	0.754	N/A	-0.282	N/A	
MW372	Upgradient	No	0.367	N/A	-1.002	N/A	

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.053

-1.431

-1.178

-1.917

-1.671

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 45.100	S = 11.875	CV(1)= 0.263	K factor**= 2.523	TL(1)= 75.061	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.780	S= 0.242	CV(2)= 0.064	K factor**= 2.523	TL(2)= 4.390	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW369			

wen number:	IVI W 509	M W 309				
Date Collected	Result	LN(Result)				
3/18/2002	35.7	3.575				
4/22/2002	37.6	3.627				
7/15/2002	42.4	3.747				
10/8/2002	66.9	4.203				
1/8/2003	67.9	4.218				
4/3/2003	61.8	4.124				
7/8/2003	45.6	3.820				
10/6/2003	59.1 4.079					
Well Number:	MW372					
Well Number: Date Collected	MW372 Result	LN(Result)				
		LN(Result) 3.616				
Date Collected	Result					
Date Collected 3/19/2002	Result 37.2	3.616				
Date Collected 3/19/2002 4/23/2002	Result 37.2 38.6	3.616 3.653				
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 37.2 38.6 35.6	3.616 3.653 3.572				
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 37.2 38.6 35.6 37.5	3.616 3.653 3.572 3.624				
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 37.2 38.6 35.6 37.5 34.1	3.616 3.653 3.572 3.624 3.529				
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 37.2 38.6 35.6 37.5 34.1 34.4	3.616 3.653 3.572 3.624 3.529 3.538				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	43.4	NO	3.770	N/A	
MW360	Downgradient	Yes	78	YES	4.357	N/A	
MW363	Downgradient	Yes	37.3	NO	3.619	N/A	
MW366	Sidegradient	Yes	42.2	NO	3.742	N/A	
MW369	Upgradient	Yes	55.7	NO	4.020	N/A	
MW372	Upgradient	Yes	57.7	NO	4.055	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW360

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 45.031	S= 33.919	CV(1)= 0.753	K factor**= 2.523	TL(1)= 130.609	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.420	S = 0.981	CV(2)= 0.287	K factor**= 2.523	TL(2)= 5.894	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	15.5	2.741
4/22/2002	15.8	2.760
7/15/2002	13.8	2.625
10/8/2002	6.9	1.932
1/8/2003	10.5	2.351
4/3/2003	10.5	2.351
7/8/2003	10.9	2.389
10/6/2003	16.3	2.791
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.272
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 71.7	4.272
Date Collected 3/19/2002 4/23/2002	Result 71.7 74.7	4.272 4.313
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 71.7 74.7 74.1	4.272 4.313 4.305
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 71.7 74.7 74.1 70.5	4.272 4.313 4.305 4.256
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 71.7 74.7 74.1 70.5 75.8	4.272 4.313 4.305 4.256 4.328
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 71.7 74.7 74.1 70.5 75.8 81.8	4.272 4.313 4.305 4.256 4.328 4.404

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	48	NO	3.871	N/A	
MW360	Downgradient	Yes	23.5	NO	3.157	N/A	
MW363	Downgradient	Yes	25.4	NO	3.235	N/A	
MW366	Sidegradient	Yes	49.1	NO	3.894	N/A	
MW369	Upgradient	Yes	9.98	NO	2.301	N/A	
MW372	Upgradient	Yes	102	NO	4.625	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Tantalum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.078	S = 0.098	CV(1)= 1.248	K factor**= 2.523	TL(1)= 0.324	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.915	S= 1.844	CV(2)= -0.471	K factor**= 2.523	TL(2)= 0.739	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.2	-1.609
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 3/19/2002	Result 0.2	-1.609
Date Collected 3/19/2002 4/23/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.2 0.2 0.2 0.005	-1.609 -1.609 -1.609 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.2 0.2 0.2 0.005 0.005	-1.609 -1.609 -1.609 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.005	N/A	-5.298	N/A	
MW360	Downgradient	No	0.005	N/A	-5.298	N/A	
MW363	Downgradient	Yes	0.00293	S N/A	-5.833	NO	
MW366	Sidegradient	No	0.005	N/A	-5.298	N/A	
MW369	Upgradient	No	0.005	N/A	-5.298	N/A	
MW372	Upgradient	No	0.005	N/A	-5.298	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 20.821	S = 18.044	CV(1)= 0.867	K factor**= 2.523	TL(1)= 66.344	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.770	S= 1.150	CV(2)= 0.415	K factor**= 2.523	TL(2)= 3.972	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	41.7	3.731				
4/22/2002	53.1	3.972				
7/15/2002	18.1	2.896				
10/8/2002	16.4	2.797				
1/8/2003	3.49	1.250				
4/3/2003	9.34	2.234				
7/8/2003	17.5	2.862				
10/6/2003	17	2.833				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	44.8	3.802				
4/23/2002	0.802	-0.221				
7/16/2002	19.8	2.986				
10/8/2002	46.1	3.831				
1/7/2003	-0.973	#Func!				
4/2/2003	9.07	2.205				
7/9/2003	0	#Func!				

0 36.9

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	42.7	NO	3.754	N/A	
MW360	Downgradient	No	10.9	N/A	2.389	N/A	
MW363	Downgradient	No	15.5	N/A	2.741	N/A	
MW366	Sidegradient	Yes	62.7	NO	4.138	N/A	
MW369	Upgradient	Yes	52.7	NO	3.965	N/A	
MW372	Upgradient	No	18.3	N/A	2.907	N/A	

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.608

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.513	S = 4.307	CV(1)= 1.226	K factor**= 2.523	TL(1)= 14.378	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.851	S = 0.828	CV(2) =0.973	K factor**= 2.523	TL(2)= 2.940	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul							
Well Number:	MW369						

Well Number:	MW 369	
Date Collected	Result	LN(Result)
3/18/2002	1.7	0.531
4/22/2002	1.6	0.470
7/15/2002	3.1	1.131
10/8/2002	17.7	2.874
1/8/2003	9	2.197
4/3/2003	4	1.386
7/8/2003	4.9	1.589
10/6/2003	2.4	0.875
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 1.2	0.000 0.182
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 1.2 1	0.000 0.182 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1.2 1 1	0.000 0.182 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1.2 1 1 1.6	0.000 0.182 0.000 0.000 0.470
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1.2 1 1 1.6 1.5	0.000 0.182 0.000 0.000 0.470 0.405

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.642	N/A	-0.443	NO
MW360	Downgradient	Yes	2.05	N/A	0.718	NO
MW363	Downgradient	Yes	0.854	N/A	-0.158	NO
MW366	Sidegradient	Yes	0.817	N/A	-0.202	NO
MW369	Upgradient	Yes	1.29	N/A	0.255	NO
MW372	Upgradient	Yes	1.29	N/A	0.255	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 67.963	S= 64.316	CV(1)= 0.946	K factor**= 2.523	TL(1)= 230.231	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.772	S = 1.023	CV(2)= 0.271	K factor**= 2.523	TL(2)= 6.353	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.215
Date Collected	Result	
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50 10	5.215 3.912 3.912 3.912 2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 184 50 50 50 10 12.7	5.215 3.912 3.912 3.912 2.303 2.542

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	5.92	NO	1.778	N/A	
MW360	Downgradient	Yes	15	NO	2.708	N/A	
MW363	Downgradient	No	10	N/A	2.303	N/A	
MW366	Sidegradient	No	10	N/A	2.303	N/A	
MW369	Upgradient	Yes	25.4	NO	3.235	N/A	
MW372	Upgradient	Yes	8.86	NO	2.182	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.625	S = 3.594	CV(1)= 0.639	K factor**= 2.523	TL(1)= 14.693	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.571	S = 0.565	CV(2)= 0.360	K factor**= 2.523	TL(2)= 2.995	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	11	2.398
4/22/2002	16	2.773
7/15/2002	8	2.079
10/8/2002	3	1.099
1/8/2003	2	0.693
4/3/2003	3	1.099
7/8/2003	3	1.099
10/6/2003	2	0.693
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	`
Date Collected 3/19/2002	Result 5	1.609
Date Collected 3/19/2002 4/23/2002	Result 5 5	1.609 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5 5 4	1.609 1.609 1.386
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 5 4 6	1.609 1.609 1.386 1.792
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 5 4 6 5	1.609 1.609 1.386 1.792 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5 5 4 6 5 6	1.609 1.609 1.386 1.792 1.609 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	5.13	NO	1.635	N/A
MW360	Downgradient	No	1	N/A	0.000	N/A
MW363	Downgradient	Yes	1.15	N/A	0.140	N/A
MW366	Sidegradient	Yes	3.35	N/A	1.209	N/A
MW369	Upgradient	Yes	1.08	N/A	0.077	N/A
MW372	Upgradient	Yes	9.87	NO	2.289	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.006	CV(1)= 0.259	K factor**= 2.523	TL(1)= 0.039	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.771	S= 0.223	CV(2) =-0.059	K factor**= 2.523	TL(2)= -3.208	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number	MW369					

well Number:	IM W 309	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.027	-3.612
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.244
Date Collected	Result	
Date Collected 3/19/2002	Result 0.039	-3.244
Date Collected 3/19/2002 4/23/2002	Result 0.039 0.037	-3.244 -3.297
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.039 0.037 0.025	-3.244 -3.297 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.039 0.037 0.025 0.02	-3.244 -3.297 -3.689 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.039 0.037 0.025 0.02 0.02	-3.244 -3.297 -3.689 -3.912 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.039 0.037 0.025 0.02 0.02 0.02 0.02	-3.244 -3.297 -3.689 -3.912 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.01	N/A	-4.605	N/A
MW360	Downgradient	No	0.01	N/A	-4.605	N/A
MW363	Downgradient	No	0.01	N/A	-4.605	N/A
MW366	Sidegradient	No	0.01	N/A	-4.605	N/A
MW369	Upgradient	Yes	0.00337	7 NO	-5.693	N/A
MW372	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.116	S = 0.173	CV(1)= 1.490	K factor**= 2.523	TL(1)= 0.552	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.729	S = 1.014	CV(2)= -0.371	K factor**= 2.523	TL(2)= -0.172	LL(2)= N/A

Upgradient Wells with Transformed Result	Historical Background Data from
	Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -0.322
Date Collected	Result	
Date Collected 3/19/2002	Result 0.725	-0.322
Date Collected 3/19/2002 4/23/2002	Result 0.725 0.1	-0.322 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.725 0.1 0.1	-0.322 -2.303 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.725 0.1 0.1 0.025	-0.322 -2.303 -2.303 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.725 0.1 0.1 0.025 0.035	-0.322 -2.303 -2.303 -3.689 -3.352
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.725 0.1 0.1 0.025 0.035 0.035	-0.322 -2.303 -2.303 -3.689 -3.352 -3.352

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.01	N/A	-4.605	N/A
MW360	Downgradient	No	0.01	N/A	-4.605	N/A
MW363	Downgradient	No	0.01	N/A	-4.605	N/A
MW366	Sidegradient	No	0.01	N/A	-4.605	N/A
MW369	Upgradient	No	0.01	N/A	-4.605	N/A
MW372	Upgradient	Yes	0.00547	7 N/A	-5.208	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.026	S = 5.626	CV(1) =2.777	K factor**= 2.523	TL(1)= 16.219	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.803	S = 1.380	CV(2) =-1.718	K factor**= 2.523	TL(2)= 2.678	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.66	1.539
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.122
Date Collected	Result	· · · · ·
Date Collected 3/18/2002	Result 22.7	3.122
Date Collected 3/18/2002 4/23/2002	Result 22.7 1.46	3.122 0.378
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 22.7 1.46 0.253	3.122 0.378 -1.374
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 22.7 1.46 0.253 0.482	3.122 0.378 -1.374 -0.730
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 22.7 1.46 0.253 0.482 0.608	3.122 0.378 -1.374 -0.730 -0.498
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 22.7 1.46 0.253 0.482 0.608 0.446	3.122 0.378 -1.374 -0.730 -0.498 -0.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.05	N/A	-2.996	N/A
MW361	Downgradient	No	0.05	N/A	-2.996	N/A
MW364	Downgradient	No	0.05	N/A	-2.996	N/A
MW367	Sidegradient	No	0.05	N/A	-2.996	N/A
MW370	Upgradient	No	0.05	N/A	-2.996	N/A
MW373	Upgradient	Yes	0.02	N/A	-3.912	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis **Historical Background Comparison** UNITS: mg/L LRGA Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.140	S = 0.780	CV(1)= 0.684	K factor**= 2.523	TL(1)= 3.108	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.235	S = 1.006	CV(2) =-4.287	K factor**= 2.523	TL(2)= 2.303	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	2	0.693
4/23/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 2	0.693
Date Collected 3/18/2002 4/23/2002	Result 2 2	0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 2 2 2	0.693 0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 2 2 0.79	0.693 0.693 0.693 -0.236
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 2 0.79 0.807	0.693 0.693 0.693 -0.236 -0.214

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.453	NO	-0.792	N/A
MW361	Downgradient	Yes	0.359	NO	-1.024	N/A
MW364	Downgradient	Yes	0.00874	NO	-4.740	N/A
MW367	Sidegradient	Yes	0.0329	NO	-3.414	N/A
MW370	Upgradient	Yes	0.0291	NO	-3.537	N/A
MW373	Upgradient	Yes	1.42	NO	0.351	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1111270

XX7-11 NT-----1-----

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	1	0.000
4/23/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/18/2002	Result 1	0.000
Date Collected 3/18/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.458	NO	-0.781	N/A		
MW361	Downgradient	Yes	0.412	NO	-0.887	N/A		
MW364	Downgradient	Yes	0.405	NO	-0.904	N/A		
MW367	Sidegradient	Yes	0.464	NO	-0.768	N/A		
MW370	Upgradient	Yes	0.472	NO	-0.751	N/A		
MW373	Upgradient	Yes	0.595	NO	-0.519	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 43.413	S = 13.444	CV(1)= 0.310	K factor**= 2.523	TL(1)= 77.331	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.723	S= 0.323	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.539	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW270

XX7-11 NT-----1-----

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	34.8	3.550
4/23/2002	43.4	3.770
7/15/2002	33.2	3.503
10/8/2002	29.2	3.374
1/8/2003	31.3	3.444
4/3/2003	32.4	3.478
7/9/2003	22.9	3.131
10/6/2003	28	3.332
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.126
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 61.9	4.126
Date Collected 3/18/2002 4/23/2002	Result 61.9 59.2	4.126 4.081
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 61.9 59.2 47.6	4.126 4.081 3.863
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 61.9 59.2 47.6 46.1	4.126 4.081 3.863 3.831
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 61.9 59.2 47.6 46.1 49.2	4.126 4.081 3.863 3.831 3.896
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 61.9 59.2 47.6 46.1 49.2 57.8	4.126 4.081 3.863 3.831 3.896 4.057

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	34.9	NO	3.552	N/A
MW361	Downgradient	Yes	31	NO	3.434	N/A
MW364	Downgradient	Yes	28.6	NO	3.353	N/A
MW367	Sidegradient	Yes	28.2	NO	3.339	N/A
MW370	Upgradient	Yes	27.6	NO	3.318	N/A
MW373	Upgradient	Yes	68	NO	4.220	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 41.938	S= 24.732	CV(1)= 0.590	K factor**= 2.523	TL(1)= 104.336	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.658	S = 0.339	CV(2)= 0.093	K factor**= 2.523	TL(2)= 4.512	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	35	3.555
4/23/2002	134	4.898
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 35	3.555
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 35 47 35 35 35 35 35	3.555 3.850 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	20	N/A	2.996	N/A
MW361	Downgradient	No	20	N/A	2.996	N/A
MW364	Downgradient	No	20	N/A	2.996	N/A
MW367	Sidegradient	No	20	N/A	2.996	N/A
MW370	Upgradient	Yes	19.1	NO	2.950	N/A
MW373	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =45.919 S = 7	7.524	CV(1)= 0.164	K factor**= 2.523	TL(1)= 64.901	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.814 S = ().165	CV(2)= 0.043	K factor**= 2.523	TL(2)= 4.231	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/15/2002	55.5	4.016
10/8/2002	53.6	3.982
1/8/2003	52.9	3.968
4/3/2003	53.6	3.982
7/9/2003	51.9	3.949
10/6/2003	53	3.970
1/7/2004	53	3.970
4/7/2004	51.6	3.944
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.704
Date Collected	Result	· · · · ·
Date Collected 7/16/2002	Result 40.6	3.704
Date Collected 7/16/2002 10/8/2002	Result 40.6 38.8	3.704 3.658
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 40.6 38.8 39	3.704 3.658 3.664
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 40.6 38.8 39 38.4	3.704 3.658 3.664 3.648
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 40.6 38.8 39 38.4 38.1	3.704 3.658 3.664 3.648 3.640

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	35.5	NO	3.570	N/A
MW361	Downgradient	Yes	32.8	NO	3.490	N/A
MW364	Downgradient	Yes	30.6	NO	3.421	N/A
MW367	Sidegradient	Yes	37	NO	3.611	N/A
MW370	Upgradient	Yes	36.6	NO	3.600	N/A
MW373	Upgradient	Yes	48.1	NO	3.873	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.027	S = 0.032	CV(1)= 1.165	K factor**= 2.523	TL(1)= 0.108	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.058	S = 1.011	CV(2)= -0.249	K factor**= 2.523	TL(2)= -1.507	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1111270

X7-11 Nt-----

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.0174	-4.051
1/8/2003	0.0105	-4.556
4/3/2003	0.00931	-4.677
7/9/2003	0.137	-1.988
10/6/2003	0.0463	-3.073
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	· /
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.034	-3.689 -3.381
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.034 0.025	-3.689 -3.381 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.034 0.025 0.00411	-3.689 -3.381 -3.689 -5.494
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.034 0.025 0.00411 0.00344	-3.689 -3.381 -3.689 -5.494 -5.672
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.034 0.025 0.00411 0.00344 0.00368	-3.689 -3.381 -3.689 -5.494 -5.672 -5.605

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00028	3 N/A	-8.170	NO
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	Yes	0.00036	1 N/A	-7.927	NO
MW367	Sidegradient	Yes	0.00157	N/A	-6.457	NO
MW370	Upgradient	Yes	0.00035	6 N/A	-7.941	NO
MW373	Upgradient	Yes	0.00092	2 N/A	-6.989	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 608.719 S= 156.157 CV(1)=0.257
 K factor**= 2.523
 TL(1)= 1002.702 LL(1)=N/A

 Statistics-Transformed Background
 X = 6.380 S= 0.260
 CV(2)=0.041 K factor**= 2.523
 TL(2)= 7.036 LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1 111070

Data

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 661 801 774 680 686.5 763	6.494 6.686 6.652 6.522 6.532 6.637

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	523	NO	6.260	N/A
MW361	Downgradient	Yes	498	NO	6.211	N/A
MW364	Downgradient	Yes	474	NO	6.161	N/A
MW367	Sidegradient	Yes	457	NO	6.125	N/A
MW370	Upgradient	Yes	427	NO	6.057	N/A
MW373	Upgradient	Yes	793	NO	6.676	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis **Historical Background Comparison** UNITS: mg/L LRGA Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.025	S = 0.010	CV(1)= 0.399	K factor**= 2.523	TL(1)= 0.050	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.739	S = 0.308	CV(2)= -0.082	K factor**= 2.523	TL(2)= -2.963	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -3.650
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 0.026	-3.650
Date Collected 3/18/2002 4/23/2002	Result 0.026 0.025	-3.650 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.026 0.025 0.05	-3.650 -3.689 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.026 0.025 0.05 0.02	-3.650 -3.689 -2.996 -3.912
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.026 0.025 0.05 0.02 0.02	-3.650 -3.689 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00050	7 NO	-7.587	N/A
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	No	0.001	N/A	-6.908	N/A
MW367	Sidegradient	No	0.001	N/A	-6.908	N/A
MW370	Upgradient	No	0.001	N/A	-6.908	N/A
MW373	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =1.387	S = 1.153	CV(1)= 0.831	K factor**= 2.523	TL(1)= 4.295	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.115	S = 1.207	CV(2)= -10.514	K factor**= 2.523	TL(2)= 2.930	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.112
Date Collected	Result	
Date Collected 3/18/2002	Result 3.04	1.112
Date Collected 3/18/2002 4/23/2002	Result 3.04 0.03	1.112 -3.507
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 3.04 0.03 0.23	1.112 -3.507 -1.470
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.04 0.03 0.23 0.86	1.112 -3.507 -1.470 -0.151
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.04 0.03 0.23 0.86 0.21	1.112 -3.507 -1.470 -0.151 -1.561
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 3.04 0.03 0.23 0.86 0.21 1.19	1.112 -3.507 -1.470 -0.151 -1.561 0.174

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.62	NO	0.482	N/A
MW361	Downgradient	Yes	2.98	NO	1.092	N/A
MW364	Downgradient	Yes	2.18	NO	0.779	N/A
MW367	Sidegradient	Yes	1.48	NO	0.392	N/A
MW370	Upgradient	Yes	3.44	NO	1.235	N/A
MW373	Upgradient	Yes	2.24	NO	0.806	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 356.188
 S= 106.752
 CV(1)=0.300
 K factor**= 2.523
 TL(1)= 625.523
 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 5.831
 S= 0.311
 CV(2)=0.053
 K factor**= 2.523
 TL(2)= 6.616
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

1111270

W-11 N-----

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.057
Date Collected	Result	
Date Collected 3/18/2002	Result 427	6.057
Date Collected 3/18/2002 4/23/2002	Result 427 507	6.057 6.229
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427 507 464	6.057 6.229 6.140
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427 507 464 408	6.057 6.229 6.140 6.011
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427 507 464 408 404	6.057 6.229 6.140 6.011 6.001
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 427 507 464 408 404 450	6.057 6.229 6.140 6.011 6.001 6.109

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	264	NO	5.576	N/A
MW361	Downgradient	Yes	269	NO	5.595	N/A
MW364	Downgradient	Yes	236	NO	5.464	N/A
MW367	Sidegradient	Yes	203	NO	5.313	N/A
MW370	Upgradient	Yes	240	NO	5.481	N/A
MW373	Upgradient	Yes	507	NO	6.229	N/A

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.230	S = 8.841	CV(1)= 0.958	K factor**= 2.523	TL(1)= 31.535	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.942	S= 0.713	CV(2)= 0.367	K factor**= 2.523	TL(2)= 3.740	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	9.34	2.234
4/23/2002	4.33	1.466
7/15/2002	3.52	1.258
10/8/2002	7.45	2.008
1/8/2003	7.04	1.952
4/3/2003	4.64	1.535
7/9/2003	15.8	2.760
10/6/2003	6.49	1.870
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.627
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 37.6	3.627
Date Collected 3/18/2002 4/23/2002	Result 37.6 19	3.627 2.944
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 37.6 19 10.7	3.627 2.944 2.370
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 37.6 19 10.7 3.75	3.627 2.944 2.370 1.322
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 37.6 19 10.7 3.75 3.87	3.627 2.944 2.370 1.322 1.353
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 37.6 19 10.7 3.75 3.87 3.5	3.627 2.944 2.370 1.322 1.353 1.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0891	NO	-2.418	N/A
MW361	Downgradient	No	0.1	N/A	-2.303	N/A
MW364	Downgradient	Yes	0.0553	NO	-2.895	N/A
MW367	Sidegradient	Yes	0.813	NO	-0.207	N/A
MW370	Upgradient	No	0.1	N/A	-2.303	N/A
MW373	Upgradient	Yes	0.353	NO	-1.041	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =17.544 S = 5.911	CV(1)= 0.337	K factor**= 2.523	TL(1)= 32.458	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.810 S = 0.343	CV(2)= 0.122	K factor**= 2.523	TL(2)= 3.676	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW270

X7-11 Nt-----

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	12.1	2.493
4/23/2002	15.1	2.715
7/15/2002	12.4	2.518
10/8/2002	12.2	2.501
1/8/2003	11.5	2.442
4/3/2003	12.3	2.510
7/9/2003	10	2.303
10/6/2003	12.1	2.493
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.211
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 24.8	3.211
Date Collected 3/18/2002 4/23/2002	Result 24.8 22.7	3.211 3.122
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 24.8 22.7 18.8	3.211 3.122 2.934
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 24.8 22.7 18.8 21.1	3.211 3.122 2.934 3.049
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 24.8 22.7 18.8 21.1 19.9	3.211 3.122 2.934 3.049 2.991
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 24.8 22.7 18.8 21.1 19.9 25.5	3.211 3.122 2.934 3.049 2.991 3.239

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	14.9	NO	2.701	N/A
MW361	Downgradient	Yes	13.1	NO	2.573	N/A
MW364	Downgradient	Yes	12.2	NO	2.501	N/A
MW367	Sidegradient	Yes	12.1	NO	2.493	N/A
MW370	Upgradient	Yes	11.8	NO	2.468	N/A
MW373	Upgradient	Yes	26.4	NO	3.273	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.080	S= 0.674	CV(1)= 0.624	K factor**= 2.523	TL(1)= 2.780	LL(1)= N/A
Statistics-Transformed Background	X= -0.114	S= 0.658	CV(2) =-5.762	K factor**= 2.523	TL(2)= 1.547	LL(2)= N/A

	kground Data from fells with Transformed Result
Well Number	MW370

well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.244	-1.411
4/23/2002	1.82	0.599
7/15/2002	1.22	0.199
10/8/2002	0.988	-0.012
1/8/2003	0.729	-0.316
4/3/2003	0.637	-0.451
7/9/2003	2.51	0.920
10/6/2003	1.05	0.049
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -1.036
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 0.355	-1.036
Date Collected 3/18/2002 4/23/2002	Result 0.355 2.16	-1.036 0.770
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.355 2.16 1.39	-1.036 0.770 0.329
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.355 2.16 1.39 0.717	-1.036 0.770 0.329 -0.333
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.355 2.16 1.39 0.717 0.587	-1.036 0.770 0.329 -0.333 -0.533
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.355 2.16 1.39 0.717 0.587 0.545	-1.036 0.770 0.329 -0.333 -0.533 -0.607

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0145	NO	-4.234	N/A
MW361	Downgradient	Yes	0.0127	NO	-4.366	N/A
MW364	Downgradient	Yes	0.0188	NO	-3.974	N/A
MW367	Sidegradient	Yes	0.438	NO	-0.826	N/A
MW370	Upgradient	Yes	0.00163	3 NO	-6.419	N/A
MW373	Upgradient	Yes	0.0459	NO	-3.081	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.010	S = 0.012	CV(1)= 1.198	K factor**= 2.523	TL(1)= 0.040	LL(1)= N/A
Statistics-Transformed Background	X= -5.693	S= 1.604	CV(2)= -0.282	K factor**= 2.523	TL(2)= -1.647	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00113	-6.786
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.0005	N/A	-7.601	N/A
MW361	Downgradient	No	0.0005	N/A	-7.601	N/A
MW364	Downgradient	Yes	0.00028	5 N/A	-8.160	NO
MW367	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW370	Upgradient	No	0.00029	N/A	-8.146	N/A
MW373	Upgradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S = 0.022	CV(1)= 0.901	K factor**= 2.523	TL(1)= 0.078	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.239	S = 1.087	CV(2) =-0.256	K factor**= 2.523	TL(2)= -1.497	LL(2)= N/A

Historical Background Data from	
Upgradient Wells with Transformed Result	

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· /
Date Collected 3/18/2002	Result 0.05	-2.996
Date Collected 3/18/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0028	NO	-5.878	N/A
MW361	Downgradient	Yes	0.00068	3 NO	-7.289	N/A
MW364	Downgradient	Yes	0.00344	NO	-5.672	N/A
MW367	Sidegradient	Yes	0.00117	NO	-6.751	N/A
MW370	Upgradient	Yes	0.00079	5 NO	-7.137	N/A
MW373	Upgradient	Yes	0.00069	6 NO	-7.270	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 46.688	S= 60.986	CV(1)= 1.306	K factor**= 2.523	TL(1)= 200.555	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.829	S = 1.151	CV(2)= 0.301	K factor**= 2.523	TL(2)= 4.942	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370

Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
wen Rumber.	11110575	
Date Collected		LN(Result)
		LN(Result) 4.942
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 140 -20 10 10 67 -29	4.942 #Func! 2.303 2.303 4.205 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	404	N/A	6.001	YES	
MW361	Downgradient	Yes	503	N/A	6.221	YES	
MW364	Downgradient	Yes	504	N/A	6.223	YES	
MW367	Sidegradient	Yes	459	N/A	6.129	YES	
MW370	Upgradient	Yes	415	N/A	6.028	YES	
MW373	Upgradient	Yes	193	N/A	5.263	YES	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW358
	MW361
concentration with respect to historical background data.	MW364
	MW367
	MW370
	MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.283	S = 0.159	CV(1)= 0.025	K factor**= 2.904	TL(1)= 6.745	LL(1)= 5.8202
Statistics-Transformed Background Data	X= 1.837	S = 0.025	CV(2)= 0.014	K factor**= 2.904	TL(2)= 1.911	LL(2)= 1.7634

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370

wen rumber.	11110370	
Date Collected	Result	LN(Result)
3/17/2002	6.3	1.841
4/23/2002	6.4	1.856
7/15/2002	6.3	1.841
10/8/2002	6.3	1.841
1/8/2003	6.4	1.856
4/3/2003	6.5	1.872
7/9/2003	6.3	1.841
10/6/2003	6.5	1.872
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.792
Date Collected	Result	
Date Collected 3/18/2002	Result 6	1.792
Date Collected 3/18/2002 4/23/2002	Result 6 6.3	1.792 1.841
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 6 6.3 6.45	1.792 1.841 1.864
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 6 6.3 6.45 6.18	1.792 1.841 1.864 1.821
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6 6.3 6.45 6.18 6.35	1.792 1.841 1.864 1.821 1.848
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 6 6.3 6.45 6.18 6.35 6.14	1.792 1.841 1.864 1.821 1.848 1.815

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.32	NO	1.844	N/A
MW361	Downgradien	t Yes	6.27	NO	1.836	N/A
MW364	Downgradien	t Yes	6.28	NO	1.837	N/A
MW367	Sidegradient	Yes	6.1	NO	1.808	N/A
MW370	Upgradient	Yes	6.17	NO	1.820	N/A
MW373	Upgradient	Yes	6.39	NO	1.855	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.823	S = 0.522	CV(1)= 0.185	K factor**= 2.523	TL(1)= 4.139	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.024	S = 0.167	CV(2)= 0.163	K factor**= 2.523	TL(2)= 1.445	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW270

W7-11 NT-----1-----

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	3.22	1.169
4/23/2002	3.43	1.233
7/15/2002	2.98	1.092
10/8/2002	2.46	0.900
1/8/2003	2.41	0.880
4/3/2003	2.43	0.888
7/9/2003	2.44	0.892
10/6/2003	2.48	0.908
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.468
Date Collected	Result	
Date Collected 3/18/2002	Result 4.34	1.468
Date Collected 3/18/2002 4/23/2002	Result 4.34 3.04	1.468 1.112
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 4.34 3.04 2.93	1.468 1.112 1.075
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 4.34 3.04 2.93 2.3	1.468 1.112 1.075 0.833
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 4.34 3.04 2.93 2.3 2.45	1.468 1.112 1.075 0.833 0.896
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 4.34 3.04 2.93 2.3 2.45 2.7	1.468 1.112 1.075 0.833 0.896 0.993

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.4	NO	0.875	N/A
MW361	Downgradient	Yes	1.85	NO	0.615	N/A
MW364	Downgradient	Yes	1.9	NO	0.642	N/A
MW367	Sidegradient	Yes	2.76	NO	1.015	N/A
MW370	Upgradient	Yes	2.34	NO	0.850	N/A
MW373	Upgradient	Yes	2.5	NO	0.916	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonRadium-226UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.158	S = 5.739	CV(1)= 2.660	K factor**= 2.523	TL(1)= 16.637	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.670	S = 1.833	CV(2) =-2.736	K factor**= 2.523	TL(2)= 3.068	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/15/2002	10.1	2.313
10/8/2002	-0.825	#Func!
1/8/2003	0.415	-0.879
10/6/2003	0.52	-0.654
1/7/2004	1.03	0.030
4/7/2004	0.434	-0.835
7/13/2004	0.532	-0.631
10/7/2004	0.299	-1.207
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.068
Date Collected	Result	· · · · · ·
Date Collected 7/16/2002	Result 21.5	3.068
Date Collected 7/16/2002 10/8/2002	Result 21.5 0.0327	3.068 -3.420
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 21.5 0.0327 -0.844	3.068 -3.420 #Func!
Date Collected 7/16/2002 10/8/2002 1/7/2003 10/7/2003	Result 21.5 0.0327 -0.844 0	3.068 -3.420 #Func! #Func!
Date Collected 7/16/2002 10/8/2002 1/7/2003 10/7/2003 1/6/2004	Result 21.5 0.0327 -0.844 0 0.177	3.068 -3.420 #Func! #Func! -1.732

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.497	N/A	-0.699	NO	
MW361	Downgradient	No	0.0999	N/A	-2.304	N/A	
MW364	Downgradient	No	0.405	N/A	-0.904	N/A	
MW367	Sidegradient	Yes	0.868	N/A	-0.142	NO	
MW370	Upgradient	No	0.659	N/A	-0.417	N/A	
MW373	Upgradient	No	0.459	N/A	-0.779	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 51.544	S = 15.227	CV(1)= 0.295	K factor**= 2.523	TL(1)= 89.962	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.906	S= 0.272	CV(2)= 0.070	K factor**= 2.523	TL(2)= 4.592	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.770
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 43.4 79.8 87.7 61.6 59.3 62.1	3.770 4.380 4.474 4.121 4.083 4.129

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	41.2	NO	3.718	N/A		
MW361	Downgradient	Yes	42.2	NO	3.742	N/A		
MW364	Downgradient	Yes	42.9	NO	3.759	N/A		
MW367	Sidegradient	Yes	37.9	NO	3.635	N/A		
MW370	Upgradient	Yes	41.2	NO	3.718	N/A		
MW373	Upgradient	Yes	61.7	NO	4.122	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 122.381 S = 195.095	CV(1)= 1.594	K factor**= 2.523	TL(1)= 614.606	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.985 S = 1.323	CV(2)= 0.332	K factor**= 2.523	TL(2)= 7.322	LL(2)= N/A

Historical Background Data from	n
Upgradient Wells with Transform	ned Result

1111270

W-11 N-----

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.096
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 163.3 809.6 109.4 110.6 113.7 133	5.096 6.697 4.695 4.706 4.734 4.890

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	76.4	N/A	4.336	NO		
MW361	Downgradient	Yes	69	N/A	4.234	NO		
MW364	Downgradient	Yes	66.2	N/A	4.193	NO		
MW367	Sidegradient	Yes	46.6	N/A	3.842	NO		
MW370	Upgradient	Yes	18.4	N/A	2.912	NO		
MW373	Upgradient	Yes	127	N/A	4.844	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.655	S = 13.274	CV(1)= 1.734	K factor**= 2.523	TL(1)= 41.146	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.946	S= 0.939	CV(2)= 0.483	K factor**= 2.523	TL(2)= 3.833	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
2/17/2002	10.0	2 200			

3/17/2002 10.8 2.3804/23/2002 8.53 2.144 7/15/2002 5.09 1.627 10/8/2002 4.78 1.564 1/8/2003 -5.12#Func! 4/3/2003 5.11 1.631 7/9/2003 4.25 1.447 10/6/2003 6.54 1.878 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 16.5 2.803 4/23/2002 3.49 1.250 7/16/2002 1.42 0.351 10/8/2002 -6.06 #Func! #Func! 1/7/2003 -8.41 4/2/2003 26.3 3.270 7/9/2003 3.06 1.118 10/7/2003 46.2 3.833

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	54.3	N/A	3.995	YES
MW361	Downgradient	Yes	47.3	N/A	3.857	YES
MW364	Downgradient	Yes	51	N/A	3.932	YES
MW367	Sidegradient	Yes	59.1	N/A	4.079	YES
MW370	Upgradient	Yes	32.1	N/A	3.469	NO
MW373	Upgradient	Yes	50.3	N/A	3.918	YES

 $N\!/A$ - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW358 MW361 MW364 MW367 MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.169	S = 12.072	CV(1)= 1.957	K factor**= 2.523	TL(1)= 36.626	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.069	S = 1.014	CV(2)= 0.948	K factor**= 2.523	TL(2)= 3.626	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	1.2	0.182
4/23/2002	4.3	1.459
7/15/2002	2.6	0.956
10/8/2002	2.3	0.833
1/8/2003	3	1.099
4/3/2003	1.2	0.182
7/9/2003	2.6	0.956
10/6/2003	1.7	0.531
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.095
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 1.1	0.095
Date Collected 3/18/2002 4/23/2002	Result 1.1 17.5	0.095 2.862
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1.1 17.5 49	0.095 2.862 3.892
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1.1 17.5 49 2.9	0.095 2.862 3.892 1.065
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1.1 17.5 49 2.9 3.9	0.095 2.862 3.892 1.065 1.361
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1.1 17.5 49 2.9 3.9 2.5	0.095 2.862 3.892 1.065 1.361 0.916

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.593	N/A	-0.523	NO
MW361	Downgradient	Yes	0.723	N/A	-0.324	NO
MW364	Downgradient	Yes	0.623	N/A	-0.473	NO
MW367	Sidegradient	Yes	0.795	N/A	-0.229	NO
MW370	Upgradient	Yes	0.852	N/A	-0.160	NO
MW373	Upgradient	Yes	1.12	N/A	0.113	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =79.819	S = 78.470	CV(1)= 0.983	K factor**= 2.523	TL(1)= 277.798	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.971	S = 0.950	CV(2)= 0.239	K factor**= 2.523	TL(2)= 6.368	LL(2)= N/A

Historical Background Da	ata from
Upgradient Wells with Tr	ransformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 50 276 177 76 45.9 57.8	3.912 5.620 5.176 4.331 3.826 4.057

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	7.68	NO	2.039	N/A
MW361	Downgradient	Yes	4.32	NO	1.463	N/A
MW364	Downgradient	Yes	3.74	NO	1.319	N/A
MW367	Sidegradient	Yes	14.5	NO	2.674	N/A
MW370	Upgradient	Yes	6.1	NO	1.808	N/A
MW373	Upgradient	Yes	14.1	NO	2.646	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis **Historical Background Comparison** Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.188 S = 6.950	CV(1)= 0.570	K factor**= 2.523	TL(1)= 29.721	LL(1)= N/A
Statistics-Transformed Background Data	X =2.305 S = 0.687	CV(2) =0.298	K factor**= 2.523	TL(2)= 4.039	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW370		
Date Collected	Result	LN(Result)	
3/17/2002	19	2.944	
4/23/2002	17	2.833	
7/15/2002	15	2.708	
10/8/2002	18	2.890	
1/8/2003	17	2.833	
4/3/2003	18	2.890	
7/9/2003	15	2.708	
10/6/2003	16	2.773	
Well Number:	MW373		
Well Number: Date Collected	MW373 Result	LN(Result)	
		LN(Result) 1.609	
Date Collected	Result		
Date Collected 3/18/2002	Result 5	1.609	
Date Collected 3/18/2002 4/23/2002	Result 5 25	1.609 3.219	
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 5 25 3	1.609 3.219 1.099	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 25 3 4	1.609 3.219 1.099 1.386	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 25 3 4 6	1.609 3.219 1.099 1.386 1.792	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	4.13	N/A	1.418	N/A
MW361	Downgradient	Yes	5.4	NO	1.686	N/A
MW364	Downgradient	Yes	5.21	NO	1.651	N/A
MW367	Sidegradient	Yes	4.03	N/A	1.394	N/A
MW370	Upgradient	Yes	0.93	N/A	-0.073	N/A
MW373	Upgradient	Yes	9.93	NO	2.296	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

C-746-U First Quarter 2016 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.055	S = 0.037	CV(1)= 0.673	K factor**= 2.523	TL(1)= 0.147	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.131	S = 0.691	CV(2)= -0.221	K factor**= 2.523	TL(2)= -1.388	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370		
Date Collected	Result	LN(Result)	
3/17/2002	0.1	-2.303	
4/23/2002	0.1	-2.303	
7/15/2002	0.1	-2.303	
10/8/2002	0.025	-3.689	
1/8/2003	0.035	-3.352	
4/3/2003	0.035	-3.352	
7/9/2003	0.02	-3.912	
10/6/2003	0.02	-3.912	
Well Number:	MW373		
Well Number: Date Collected	MW373 Result	LN(Result)	
		LN(Result) -2.303	
Date Collected	Result	. ,	
Date Collected 3/18/2002	Result 0.1	-2.303	
Date Collected 3/18/2002 4/23/2002	Result 0.1 0.1	-2.303 -2.303	
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.1 0.1 0.1	-2.303 -2.303 -2.303	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.1 0.1 0.1 0.025	-2.303 -2.303 -2.303 -3.689	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.1 0.1 0.1 0.025 0.035	-2.303 -2.303 -2.303 -3.689 -3.352	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.1 0.1 0.025 0.035 0.035	-2.303 -2.303 -2.303 -3.689 -3.352 -3.352	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.01	N/A	-4.605	N/A
MW361	Downgradient	No	0.01	N/A	-4.605	N/A
MW364	Downgradient	Yes	0.0373	NO	-3.289	N/A
MW367	Sidegradient	No	0.01	N/A	-4.605	N/A
MW370	Upgradient	No	0.01	N/A	-4.605	N/A
MW373	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-U First Quarter 2016 Statistical AnalysisCurrent Background ComparisonDissolved OxygenUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.916	S= 1.141	CV(1)= 0.596	K factor**= 2.523	TL(1)= 4.794	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.491	S= 0.583	CV(2)= 1.187	K factor**= 2.523	TL(2)= 1.963	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW359	Downgradien	t Yes	4.55	NO	1.515	N/A			
MW365	Downgradien	t Yes	4.5	NO	1.504	N/A			
MW368	Sidegradient	Yes	3.44	NO	1.235	N/A			

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

0.678

1.353

0.293

-0.020

0.582

1.491

1.004

0.577

0.513

1.235

0.565

-0.151

-0.416

0.464

-0.400

0.095

LN(Result)

MW371

Result

1.97

3.87

1.34

0.98

1.79

4.44

2.73

1.78

MW374

Result

1.67

3.44

1.76

0.86

0.66

1.59

0.67

1.1

Wells with Transformed Result

Well Number:

Date Collected

1/14/2014

4/14/2014

9/22/2014

10/20/2014

1/21/2015

4/13/2015

7/14/2015

10/13/2015

Well Number:

Date Collected

1/14/2014

4/15/2014

7/7/2014

10/16/2014

1/21/2015

4/9/2015

7/13/2015

10/14/2015

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =413.250 S = 130.250) CV(1)= 0.315	K factor**= 2.523	TL(1)= 741.870	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.982 S = 0.295	CV(2)= 0.049	K factor**= 2.523	TL(2)= 6.726	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW359	Downgradien	t Yes	187	NO	5.231	N/A			
MW365	Downgradien	t Yes	476	NO	6.165	N/A			
MW368	Sidegradient	Yes	265	NO	5.580	N/A			
MW371	Upgradient	Yes	254	NO	5.537	N/A			
MW375	Sidegradient	Yes	298	NO	5.697	N/A			

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

5.924

6.165

5.740

5.886

6.652

5.951

5.908

5.974

6.244

6.213

5.557

5.549

6.273

5.979

5.591

6.107

LN(Result)

MW371

Result

374

476

311

360

774

384

368

393

MW374

Result

515

499

259

257

530

395

268

449

Wells with Transformed Result

Well Number:

Date Collected

1/14/2014

4/14/2014

9/22/2014

10/20/2014

1/21/2015

4/13/2015

7/14/2015

10/13/2015

Well Number:

Date Collected

1/14/2014

4/15/2014

7/7/2014

10/16/2014

1/21/2015

4/9/2015

7/13/2015

10/14/2015

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisCurrent Background ComparisonSulfateUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.104 S = 5.450	CV(1)= 0.539	K factor**= 2.523	TL(1)= 23.855	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.185 S = 0.513	CV(2) =0.235	K factor**= 2.523	TL(2)= 3.479	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW371 Date Collected Result LN(Result) 1/14/2014 9.9 2.293 4/14/2014 16.4 2.797 7/8/2014 18.6 2.923 10/20/2014 10.5 2.351 1/21/2015 9.23 2.222 4/13/2015 13.2 2.580 7/14/2015 18.9 2.939 10/13/2015 19.5 2.970 Well Number: MW374 Date Collected Result LN(Result) 1/14/2014 5.1 1.629 4/15/2014 5.63 1.728 7/7/2014 5.64 1.730 10/16/2014 5.73 1.746 1/21/2015 5.39 1.685 4/9/2015 5.7 1.740 7/13/2015 5.93 1.780 10/14/2015 6.31 1.842

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradien	t Yes	50.4	YES	3.920	N/A		
MW362	Downgradien	t Yes	15.1	NO	2.715	N/A		
MW365	Downgradien	t Yes	62.7	YES	4.138	N/A		
MW368	Sidegradient	Yes	28.2	YES	3.339	N/A		
MW375	Sidegradient	Yes	28.2	YES	3.339	N/A		

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances
MW359
MW365
MW368
MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisCurrent Background ComparisonCalciumUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 38.419	S = 22.096	CV(1)= 0.575	K factor**= 2.523	TL(1)= 94.167	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.475	S = 0.622	CV(2)= 0.179	K factor**= 2.523	TL(2)= 5.043	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
1/14/2014	21.8	3.082
4/14/2014	16.4	2.797
7/8/2014	15.5	2.741
10/20/2014	16.8	2.821
1/13/2015	16.5	2.803
4/13/2015	28	3.332
7/14/2015	17.8	2.879
10/13/2015	17.1	2.839
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.444
Date Collected	Result	· · · · ·
Date Collected 1/14/2014	Result 31.3	3.444
Date Collected 1/14/2014 4/16/2014	Result 31.3 70.5	3.444 4.256
Date Collected 1/14/2014 4/16/2014 7/7/2014	Result 31.3 70.5 59.1	3.444 4.256 4.079
Date Collected 1/14/2014 4/16/2014 7/7/2014 10/16/2014	Result 31.3 70.5 59.1 59.3	3.444 4.256 4.079 4.083
Date Collected 1/14/2014 4/16/2014 7/7/2014 10/16/2014 1/21/2015	Result 31.3 70.5 59.1 59.3 53.5	3.444 4.256 4.079 4.083 3.980

Current Background Data from Upgradient

Wells with Transformed Result

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW372	Upgradient	Yes	60.9	NO	4.109	N/A		

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis **Current Background Comparison** Conductivity **URGA UNITS: umho/cm**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 578.81	3 S = 202.990	5 CV(1)= 0.351	K factor**= 2.523	TL(1)= 1090.97	0 LL(1)= N/A
Statistics-Transformed Background	X= 6.300	S = 0.363	CV(2)= 0.058	K factor**= 2.523	TL(2)= 7.217	LL(2)= N/A

Statistics-Tran	l
Data	

round	V	20

K factor**= 2.523 TL(2)= 7.217 LL(2)=N/A Because CV(1) is less than or equal to 1, assume normal distribution and

continue with statistical analysis

Well Number: MW369 Date Collected Result LN(Result) 1/14/2014 392 5.971 4/14/2014 380 5.940 9/22/2014 370 5.914 10/20/2014 371 5.916 1/13/2015 374 5.924 4/13/2015 434 6.073 7/14/2015 390 5.966 10/13/2015 5.914 370 Well Number: MW372

Wells with Transformed Result

Current Background Data from Upgradient

Date Collected	Result	LN(Result)
1/14/2014	759	6.632
4/16/2014	837	6.730
7/7/2014	839	6.732
10/16/2014	766	6.641
1/21/2015	701	6.553
4/9/2015	769	6.645
7/13/2015	758	6.631
10/13/2015	751	6.621

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	700	NO	6.551	N/A

utilizing TL(1).

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L URGA The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the UNITS: mg/L

TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated concentration in that well.

Statistics-Background Data	X= 315.063	3 S = 129.374	4 CV(1)=0.411	K factor**= 2.523	TL(1)= 641.472	LL(1)= N/A
Statistics-Transformed Background	X = 5.671	S = 0.420	CV(2) =0.074	K factor**= 2.523	TL(2)= 6.731	LL(2)= N/A

Statistics-Transformed Background	X = 5.671	S = 0.420	CV(2) = 0.074	K factor**= 2.523	TL(2) = 6.731	LL(2)
Data						
				b		

Current Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
1/14/2014	216	5.375				
4/14/2014	213	5.361				
7/8/2014	150	5.011				
10/20/2014	193	5.263				
1/13/2015	207	5.333				
4/13/2015	201	5.303				
7/14/2015	226	5.421				
10/13/2015	189	5.242				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
1/14/2014	455	6.120				
4/16/2014	546	6.303				
7/7/2014	314	5.749				
10/16/2014	476	6.165				
1/21/2015	374	5.924				
4/9/2015	421	6.043				
7/13/2015	441	6.089				
10/13/2015	419	6.038				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW372	Upgradient	Yes	530	NO	6.273	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisCurrent Background ComparisonMagnesiumUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =15.018 S = 8	3.007	CV(1)= 0.533	K factor**= 2.523	TL(1)= 35.218	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.559 S = 0).581	CV(2) =0.227	K factor**= 2.523	TL(2)= 4.026	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
1/14/2014	9.54	2.255
4/14/2014	6.7	1.902
7/8/2014	5.66	1.733
10/20/2014	7.03	1.950
1/13/2015	7.19	1.973
4/13/2015	12.7	2.542
7/14/2015	7.73	2.045
10/13/2015	6.93	1.936
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 2.549
Date Collected	Result	
Date Collected 1/14/2014	Result 12.8	2.549
Date Collected 1/14/2014 4/16/2014	Result 12.8 26.1	2.549 3.262
Date Collected 1/14/2014 4/16/2014 7/7/2014	Result 12.8 26.1 21.6	2.549 3.262 3.073
Date Collected 1/14/2014 4/16/2014 7/7/2014 10/16/2014	Result 12.8 26.1 21.6 22.4	2.549 3.262 3.073 3.109
Date Collected 1/14/2014 4/16/2014 7/7/2014 10/16/2014 1/21/2015	Result 12.8 26.1 21.6 22.4 20.4	2.549 3.262 3.073 3.109 3.016

Current Background Data from Upgradient

Wells with Transformed Result

continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	23.7	NO	3.165	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 396.438 S = 203.502	2 CV(1)=0.513	K factor**= 2.523	TL(1)= 909.872	LL(1)= N/A
Statistics-Transformed Background Data	X= 5.837 S= 0.596	CV(2)= 0.102	K factor**= 2.523	TL(2)= 7.342	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradien	t Yes	355	NO	5.872	N/A		
MW363	Downgradien	t Yes	455	NO	6.120	N/A		
MW366	Sidegradient	Yes	480	NO	6.174	N/A		
MW369	Upgradient	Yes	398	NO	5.986	N/A		
MW372	Upgradient	Yes	246	NO	5.505	N/A		

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

6.082

6.242

5.802

6.004

6.658

6.001

6.016

5.945

6.607

5.464

4.836 4.477

6.541

5.645

5.394

5.684

LN(Result)

MW369

Result

438

514

331

405

779

404

410

382

MW372

Result

740

236

126

88

693

283

220

294

Wells with Transformed Result

Well Number:

Date Collected

1/14/2014

4/14/2014

9/22/2014

10/20/2014

1/13/2015

4/13/2015

7/14/2015

10/13/2015

Well Number:

Date Collected

1/14/2014

4/16/2014

7/7/2014

10/16/2014

1/21/2015

4/9/2015

7/13/2015

10/13/2015

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisCurrent Background ComparisonSodiumUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 58.950	S = 19.04	7 CV(1) =0.323	K factor**= 2.523	TL(1)= 107.004	LL(1)= N/A
Statistics-Transformed Background Data	X= 4.038	S= 0.274	CV(2) =0.068	K factor**= 2.523	TL(2)= 4.730	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
1/14/2014	30.6	3.421
4/14/2014	58.7	4.072
7/8/2014	48.8	3.888
10/20/2014	53.4	3.978
1/13/2015	52.2	3.955
4/13/2015	46.2	3.833
7/14/2015	57.7	4.055
10/13/2015	48.3	3.877
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.812
Date Collected	Result	
Date Collected 1/14/2014	Result 123	4.812
Date Collected 1/14/2014 4/16/2014	Result 123 65.5	4.812 4.182
Date Collected 1/14/2014 4/16/2014 7/7/2014	Result 123 65.5 60.7	4.812 4.182 4.106
Date Collected 1/14/2014 4/16/2014 7/7/2014 10/16/2014	Result 123 65.5 60.7 59.7	4.812 4.182 4.106 4.089
Date Collected 1/14/2014 4/16/2014 7/7/2014 10/16/2014 1/21/2015	Result 123 65.5 60.7 59.7 55.7	4.812 4.182 4.106 4.089 4.020

Current Background Data from Upgradient

Wells with Transformed Result

Current	t Quarter Data	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW360	Downgradier	nt Yes	78	NO	4.357	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 428.875 S = 94.247	CV(1)= 0.220	K factor**= 2.523	TL(1)= 666.660	LL(1)= N/A
Statistics-Transformed Background Data	X= 6.041 S= 0.201	CV(2)= 0.033	K factor**= 2.523	TL(2)= 6.549	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: **MW370** Date Collected Result LN(Result) 1/14/2014 443 6.094 4/15/2014 535 6.282 9/22/2014 353 5.866 10/20/2014 5.894 363 1/13/2015 691 6.538 4/13/2015 380 5.940 7/14/2015 388 5.961 10/13/2015 416 6.031 Well Number: MW373 Date Collected Result LN(Result) 1/14/2014 494 6.203 4/16/2014 398 5.986 7/7/2014 374 5.924 10/16/2014 404 6.001 1/21/2015 336 5.817 4/9/2015 507 6.229 7/13/2015 468 6.148 10/13/2015 312 5.743

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradien	t Yes	404	NO	6.001	N/A
MW361	Downgradien	t Yes	503	NO	6.221	N/A
MW364	Downgradien	t Yes	504	NO	6.223	N/A
MW367	Sidegradient	Yes	459	NO	6.129	N/A
MW370	Upgradient	Yes	415	NO	6.028	N/A
MW373	Upgradient	Yes	193	NO	5.263	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2016 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 30.844	S = 13.549	CV(1)= 0.439	K factor**= 2.523	TL(1)= 65.027	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.331	S= 0.473	CV(2)= 0.142	K factor**= 2.523	TL(2)= 4.524	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: **MW370** Date Collected Result LN(Result) 1/14/2014 10.6 2.361 4/15/2014 27.9 3.329 7/8/2014 30.8 3.428 10/20/2014 22.5 3.114 1/13/2015 14.8 2.695 4/13/2015 20.9 3.040 7/14/2015 60.3 4.099 10/13/2015 3.922 50.5 Well Number: MW373 Date Collected Result LN(Result) 1/14/2014 37.8 3.632 4/16/2014 43.6 3.775 7/7/2014 20.1 3.001 10/16/2014 38 3.638 1/21/2015 28.8 3.360 4/9/2015 33.7 3.517 7/13/2015 37.3 3.619 10/13/2015 15.9 2.766

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradien	t Yes	54.3	NO	3.995	N/A
MW361	Downgradien	t Yes	47.3	NO	3.857	N/A
MW364	Downgradien	t Yes	51	NO	3.932	N/A
MW367	Sidegradient	Yes	59.1	NO	4.079	N/A
MW373	Upgradient	Yes	50.3	NO	3.918	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

April 19, 2016

Ms. Myrna Redfield Fluor Federal Services, Inc. 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Redfield:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Fluor Federal Services, Inc.

For this project, the statistical analyses conducted on the first quarter 2016 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

R. Blewett

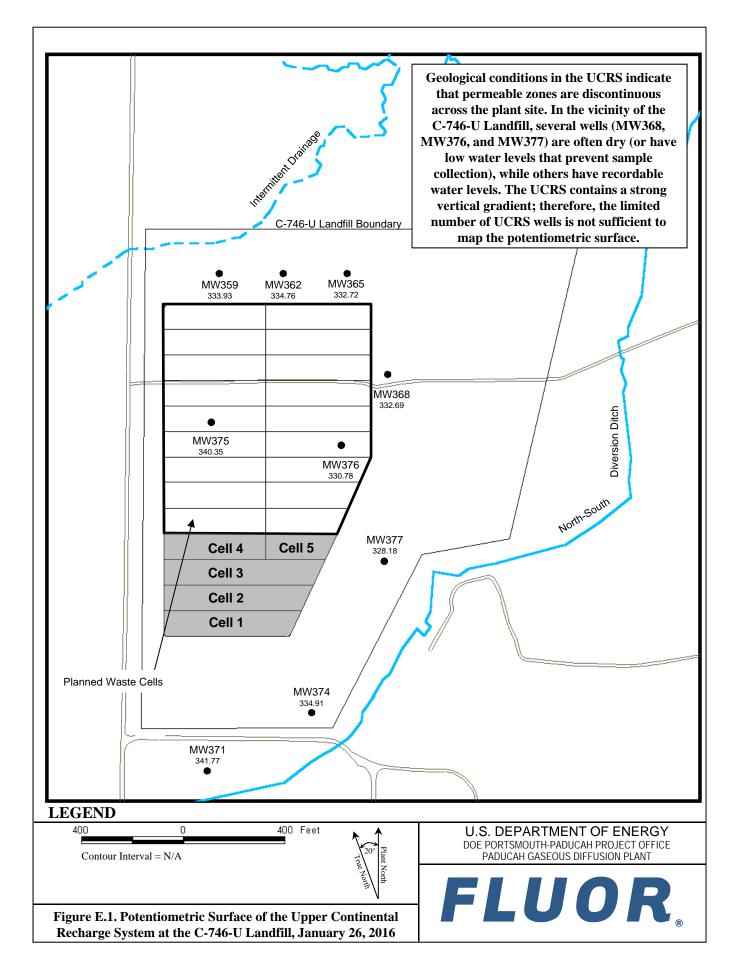
Jennifer R. Blewett

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

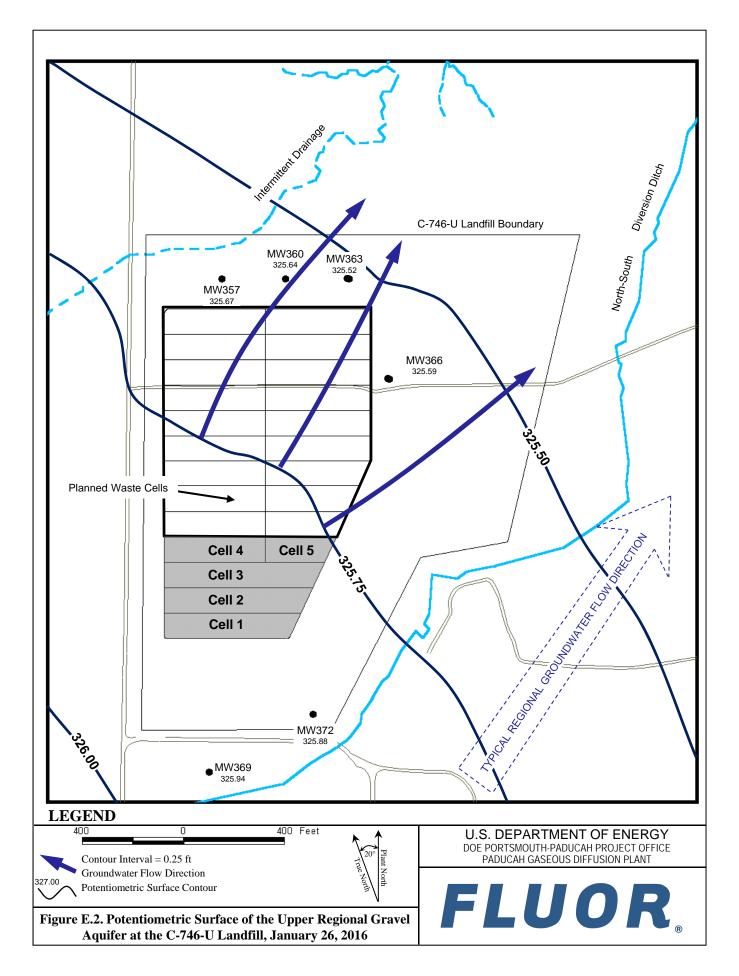
RESIDENTIAL/CONTAINED—QUARTERLY, 1st CY 2016 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

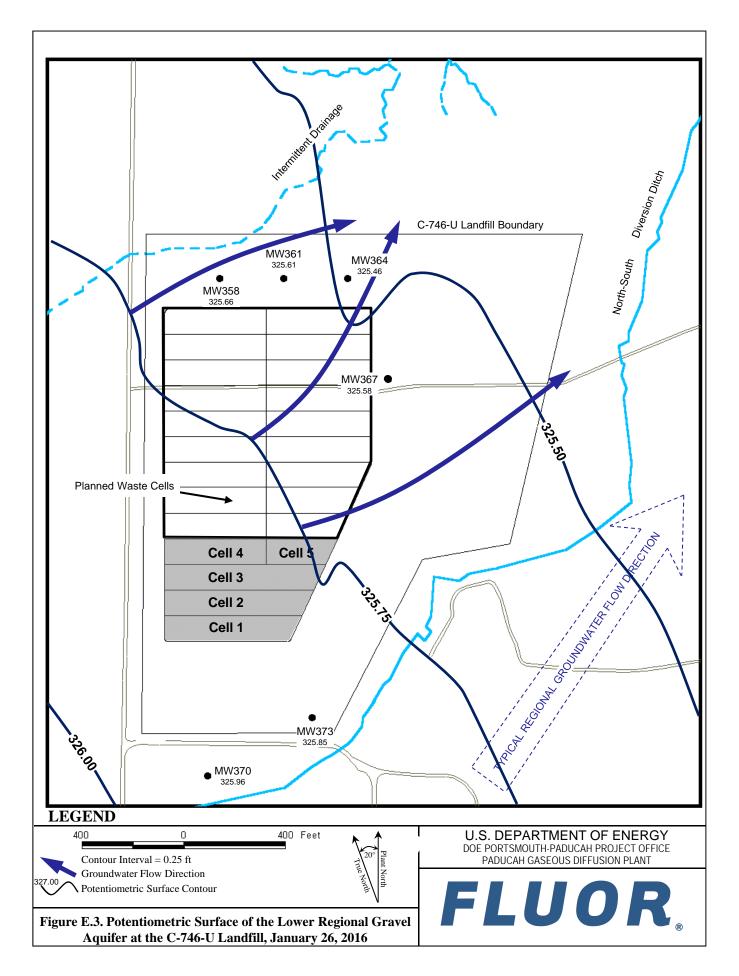
GROUNDWATER FLOW RATE AND DIRECTION

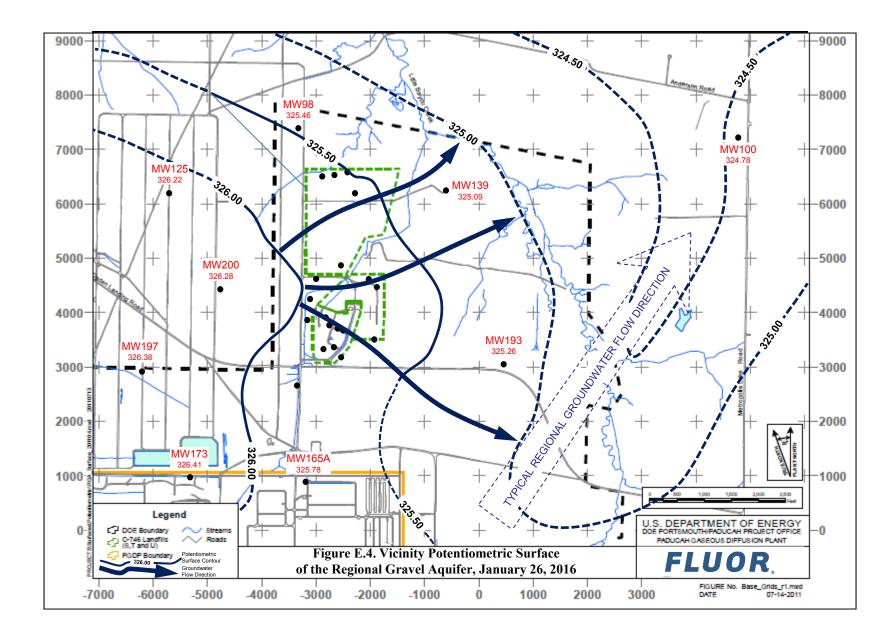

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 *KAR* 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2016 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on January 26, 2016. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 2.76×10^{-4} ft/ft and 3.09×10^{-4} ft/ft, respectively). Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 2.22×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.


The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.


Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for January 2016, the groundwater flow direction in the immediate area of the landfill is northeast to east.



							Ra	w Data	*Corre	ected Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
			-	(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/26/2016	7:54	MW357	URGA	368.99	30.17	0.00	43.32	325.67	43.32	325.67
1/26/2016	7:52	MW358	LRGA	369.13	30.17	0.00	43.47	325.66	43.47	325.66
1/26/2016	7:53	MW359	UCRS	369.11	30.17	0.00	35.18	333.93	35.18	333.93
1/26/2016	7:48	MW360	URGA	362.30	30.17	0.00	36.66	325.64	36.66	325.64
1/26/2016	7:51	MW361	LRGA	361.54	30.17	0.00	35.93	325.61	35.93	325.61
1/26/2016	7:49	MW362	UCRS	362.04	30.17	0.00	27.28	334.76	27.28	334.76
1/26/2016	7:56	MW363	URGA	368.83	30.17	0.00	43.31	325.52	43.31	325.52
1/26/2016	7:59	MW364	LRGA	367.75	30.17	0.00	42.29	325.46	42.29	325.46
1/26/2016	7:57	MW365	UCRS	368.37	30.17	0.00	35.65	332.72	35.65	332.72
1/26/2016	8:00	MW366	URGA	369.27	30.17	0.00	43.68	325.59	43.68	325.59
1/26/2016	8:02	MW367	LRGA	369.66	30.17	0.00	44.08	325.58	44.08	325.58
1/26/2016	8:01	MW368	UCRS	369.27	30.17	0.00	36.58	332.69	36.58	332.69
1/26/2016	8:18	MW369	URGA	364.48	30.17	0.00	38.54	325.94	38.54	325.94
1/26/2016	8:20	MW370	LRGA	365.35	30.17	0.00	39.39	325.96	39.39	325.96
1/26/2016	8:19	MW371	UCRS	364.88	30.17	0.00	23.11	341.77	23.11	341.77
1/26/2016	8:16	MW372	URGA	359.66	30.17	0.00	33.78	325.88	33.78	325.88
1/26/2016	8:15	MW373	LRGA	359.95	30.17	0.00	34.10	325.85	34.10	325.85
1/26/2016	8:14	MW374	UCRS	359.71	30.17	0.00	24.80	334.91	24.80	334.91
1/26/2016	8:08	MW375	UCRS	370.53	30.17	0.00	30.18	340.35	30.18	340.35
1/26/2016	8:10	MW376	UCRS	370.61	30.17	0.00	39.83	330.78	39.83	330.78
1/26/2016	8:12	MW377	UCRS	365.92	30.17	0.00	37.74	328.18	37.74	328.18
Initial Baro	matria Dr	0.001170	30.17							
		essure	30.17							
Elev = elevation amsl = above mean sea level										
BP = baron										
URGA = U	•		al Aquifer							
LRGA = Lo	·		-							
ND = No D	0		A Aquiter							
*Assumes a	-									

Table E.1. C-746-U Landfill First Quarter 2016 (January) Water Levels

	ft/ft
Beneath Landfill—Upper RGA	2.76×10^{-4}
Beneath Landfill—Lower RGA	3.09×10^{-4}
Vicinity	2.22×10^{-4}

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific Discharge (q)		Average	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.20	$7.05 imes 10^{-5}$	0.80	2.82×10^{-4}
425	0.150	0.12	4.13×10^{-5}	0.47	1.65×10^{-4}
Lower RGA					
725	0.256	0.22	$7.91 imes 10^{-5}$	0.90	3.17×10^{-4}
425	0.150	0.13	4.64×10^{-5}	0.53	$1.85 imes 10^{-4}$

APPENDIX F

NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the first quarter 2016 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Sodium	MW360
Lower Regional Gravel Aquifer	Technetium-99	MW358, MW361, MW364, MW367, MW373

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

2/29/2016

Fluor Federal Services PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL PERMIT NUMBER 073-00045 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4798	MW357	Trichloroethene	8260B	5.13	ug/L	5
8004-4797	MW364	Trichloroethene	8260B	5.21	ug/L	5
8004-4808	MW372	Trichloroethene	8260B	9.87	ug/L	5
8004-4792	MW373	Trichloroethene Trichloroethene	8260B 8260B	9.93 9.89	ug/L ug/L	5 5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

0	S	S	G	UCR		_						URG									
Monitoring Well			S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	LRG D	S	U	U
0	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364		370	-
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*			*							
Quarter 3, 2004						*										*					
Quarter 3, 2005						*															
Quarter 4, 2005						*															
ALPHA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2009																					
ALUMINUM																					
Quarter 3, 2003											*										
BETA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007						-															
Quarter 4, 2007						-															
Quarter 1, 2008						-															
Quarter 2, 2008						-															
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																					ļ
Quarter 3, 2012																					<u> </u>
Quarter 4, 2012																					
Quarter 1, 2013																	<u> </u>				
Quarter 3, 2013											l										
Quarter 4, 2013											l										ļ
Quarter 1, 2014											l										ļ
Quarter 4, 2014											l										ļ
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 4, 2015																					
BROMIDE																					
Quarter 2, 2004													*								

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill

Gradient S S S S D D D U S D D D D D U U S D D S U U U U S D D S U U U	Groundwater Flow System				UCR	S							URG	ΞA					LRG	Ă		
Moniforing Well 368 375 377 389 362 363 371 370 377 389 362 363 371 370 377 389 362 363 371 380 370 377 380 370 377 380 380 370 377 380 380 370 377 380 380 370 377 380 380 370 377 380 380 370 377 380 380 370 377 380 380 370 377 380 380 370 370 380 370 380 370 380 370 380 370 380 370 380 370 380 370 380 370 380 370 380 370 380 370 380 370 380 370 380 370 380 370 380 370 380 380 370 370 380 370 <		S	S	S			D	D	U	U	S	D			U	U	S	D	1		U	U
CALCUM Image 2005 Image 2005 Image 2005 Quarter 2.2005 Image 2005 Image 2005 Image 2005 Quarter 2.2008 Image 2005 Image 2005 Image 2005 Quarter 2.2008 Image 2005 Image 2005 Image 2005 Quarter 2.2008 Image 2005 Image 2005 Image 2005 Quarter 2.2010 Image 2005 Image 2005 Image 2005 Quarter 2.2010 Image 2005 Image 2005 Image 2005 Quarter 2.2011 Image 2005 Image 2005 Image 2005 Quarter 2.2011 Image 2005 Image 2005 Image 2005 Quarter 2.2011 Image 2005 Image 2005 Image 2005 Quarter 2.2012 Image 2005 Image 2005 Image 2005 Quarter 2.2012 Image 2005 Image 2005 Image 2005 Quarter 2.2013 Image 2005 Image 2005 Image 2005																					-	373
Quarter 2, 2003 Quarter 2, 2005 Quarter 2, 2007 Quarter 2, 2007 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2015 Quarter 2,																						
Quarter 2, 2006 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2014 Quarter 2,											*											
Quarter 3, 2008 Quarter 4, 2009 Quarter 4,																						*
Quarter 3, 2008 Quarter 4, 2009 Quarter 4,	Quarter 3, 2006															*						
Quarder 1, 2000 Quarder 1, 2010 Quarder 1, 2010 Quarder 2, 2011 Quarder 2, 2012 Quarder 2, 2013 Quarder 2, 2013 Quarder 2, 2013 Quarder 2, 2014 Quarder 2,																*						
Quarter 1.2010 Image: Another 1.2010 Im																*						
Quarter 2, 2010 Image 2, 2012 Image 2, 2013 Image 2, 2014 Image 2, 2013 Image 2, 2013 Image 2, 2013 Image 2, 2014 Image																*						
Quarter 3.2010 Image 1.2011 Image 1.201																*						
Quarter 3, 2010 Image 1, 2011 Image 1, 2012 Image 1, 2013 Image																*						
Quarter 1.2011 Image 2.2014 Image 2.201																*						
Quarter 2, 2011 Image: Construct of the second																*						
Quarter 3, 2011 Image: Amage of the second sec																*						
Quarter 4, 2011 Image: Construct 1, 2012 Image: Construct 1, 2013 Image: Construct 1, 2014 Image: Construct																						*
Ounter 1. 2012 Image: Amage: Ama																*						
Quarter 2, 2012 Image: Constraint of the second secon																						
Quarter 3, 2012 Image: Constraint of the second secon																						
Quarter 1, 2013 Image 1, 2014 Image																						
Quarter 1, 2013 Image: Constraint of the second secon																						-
Quarter 2, 2013 Image: Constraint of the second secon													1	1	1				1			*
Quarter 3, 2013 Image: Constraint of the second													1	1	1				1			
Quarter 4, 2013 Image: Constraint of the second																						*
Quarter 2, 2014																						-17
Quarter 3, 2014 Image: Constraint of the second																						*
Quarter 4, 2014																						
Quarter 2, 2015																						Ŧ
Quarter 3, 2015 Image: Control of the second se																						
Quarter 4, 2015																						
Quarter 1, 2016																						
CARBON DISULFIDE <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																						
Quarter 3, 2003																不						
Quarter 2, 2005 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>											*						-					
Quarter 3, 2005 ** ** *								*			Ŧ											
Quarter 4, 2005							*	Ŧ														
Quarter 1, 2006 Image: Constraint of the second																						
Quarter 2, 2006 *																						
Quarter 3, 2010 * * * <																						
Quarter 4, 2010 Image: Constraint of the second			÷				不					÷										
Quarter 1, 2011 Image: Constraint of the constraint of t			*									*			÷							
CHEMICAL OXYGEN DEMAND Image: Constraint of the second															*	J.						
Quarter 3, 2002 Image: Constraint of the second											_					*						
Quarter 4, 2002 Image: Constraint of the second		IND									J.	<u>ч</u>	4	<u>ч</u>	4	÷						
Quarter 1, 2003 Image: Constraint of the second													*	*	*	*						
Quarter 2, 2003 *																						
Quarter 3, 2003 * ·													44									
Quarter 4, 2003 Image: Constraint of the second													*									
Quarter 3, 2004 Image: Constraint of the second		*															*					
Quarter 3, 2005							*					*										
Quarter 4, 2005 Image: Constraint of the second																						
Quarter 1, 2006 Image: Constraint of the second											*					*	*					
CHLORIDE Image: Construction of the cons							*												*			
Quarter 1, 2006 Image: Comparison of the comparison of t																				*		
Quarter 2, 2014 Image: Compact for the system of the s																						
COBALT Image: Comparison of the state							<u> </u>		L										I		*	L
Quarter 3, 2003 *																*						
Quarter 1, 2004 Image: Conductivity of the conductivity of t																						
CONDUCTIVITY Image: Conduct of the second secon		*						*	l		*	*		*		*	*	*	*		*	L
Quarter 4, 2002															*							
Quarter 1, 2003 K	Quarter 1, 2004																					
Quarter 2, 2003 * * *	Quarter 1, 2004 CONDUCTIVITY										4	1	1	1								
Quarter 4, 2003 * *	Quarter 1, 2004 CONDUCTIVITY Quarter 4, 2002																					
	Quarter 1, 2004 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003										*											
Quarter 1, 2004	Quarter 1, 2004 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003										*	*										
<u> </u>	Quarter 1, 2004 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003										* * *	*										

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Monitoring Weil Ses Size	Groundwater Flow System				UCR	RS							URG	A					LRG	A		
CONDUCTIVITY Construction Construction<	Gradient																					
Junce 2, 2004 A Provide A		368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
junce 1. 2004 junce 1. 2005 junce 1. 2007 junce 1.											¥						_					
Juner 1, 2005																						
Junter J. 2005 Junter J. 2006 Junter J. 2007 Junter J. 2008 Junter											Ŧ					*						
Junter 4. 2005 Image 4. 2007 Image 4	Quarter 2, 2005																					
Junter 1. 2006 Image 1. 2006 Image 2. 2007 Image 2. 2008 Image 2. 2009 Image 2	Quarter 3, 2005						*													*		
Junter 2, 2006 Image 2, 2006 Image 2, 2007 Image 2	Quarter 4, 2005																		*			
Junter 1. 2007 Image: All and																						
Junter 1. 2007 Junter 2. 2007 Junter 3. 2007 Junter																						
Junier J. 2007 Image: Automatic Auto		_																				
Junter 4. 2007 Image 4. 2007 Image 4. 2007 Image 4. 2008 Image 4																						
Junter 4. 2007 Image: All and																						
Junter 2.2008 Junter 4.2008 Junter 4.2009 Junter 4.2010 Junter 4.2010 Junter 4.2010 Junter 4.2010 Junter 4.2010 Junter 4.2010 Junter 4.2011 Junter 4	Quarter 4, 2007															*						
Junter J. 2008 Image: Source A. 2009 Im	Quarter 1, 2008															*						
Durter 1, 2009 Image: Solution of the	Quarter 2, 2008																					
Junter 1. 2009 Image: Solution of the	Quarter 3, 2008																					
Junter 3. 2009 Junter 3. 2009 Junter 3. 2009 Junter 4. 2009 Junter 3. 2001 Junter																						
Durter 4, 2009 Image: Another A, 2009 Image: Anoother A, 2009																						
Quarter 1, 2009			<u> </u>			<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>				—	<u> </u>		<u> </u>		
Junter 1. 2010 Junter 3. 2011 Junter 3. 2012 Junter 3. 2013 Junter 3. 2014 Junter																						
Dunter 2, 2010 Dunter 3, 2010 Dunter 4, 2012 Dunter	Quarter 1, 2009																					
Danter 3, 2010 Description Description <thdescription< th=""></thdescription<>	Quarter 2, 2010																					
Danter 1. 2011Image: Solution of the second sec	Quarter 3, 2010															*						
uarter 2, 2011 uarter 3, 2012 uarter 3, 2012 uarter 3, 2012 uarter 3, 2012 uarter 4, 2012 uarter 3, 2012 uarter 3, 2012 uarter 4, 2012 uarter 3, 2012 uarter 3, 2012 uarter 3, 2012 uarter 4, 2013 uarter 4, 2014 uarter 4, 2015 uarter 4, 2015 uarter 4, 2015 uarter 4, 2014 uarter 4, 2015 uarter 4, 2015 uarter 4, 2015 uarte	Quarter 4, 2010															*						
uarter 3. 2011 Image: Second Seco	Quarter 1, 2011																					
uarter 4, 2011 <																						
Duarter 1. 2012 Image: Solution of the solution																						
Quarter 2, 2012 Image: Constraint of the second		_													*							
Quarter 3, 2012Image: state of the state of t															Ŧ							
Duarter 4, 2012 Image: Constraint of the second s																						
Quarter 1, 2013 Image: Constraint of the second	Quarter 4, 2012																					
Quarter 3, 2013 Image: Constraint of the second	Quarter 1, 2013															*						
Quarter 4, 2013	Quarter 2, 2013																					
Quarter 1, 2014 Image: Constraint of the second	Quarter 3, 2013																					
Quarter 2, 2014 Image: Constraint of the second	Quarter 4, 2013																					
Quarter 3, 2014 Image: Constraint of the second																						
Quarter 4, 2014																						
Quarter 1, 2015 Image: Constraint of the second																						
Quarter 2, 2015 Image: Constraint of the second																						
Quarter 4, 2015Image: constraint of the system	Quarter 2, 2015																					
Quarter 4, 2015Image: constraint of the system	Quarter 3, 2015															*			1			
DISSOLVED OXYGEN Image: Constraint of the second secon	Quarter 4, 2015																					
Quarter 1, 2003 Image: Constraint of the constraint of t	Quarter 1, 2016															*						
Quarter 3, 2003 Image: Constraint of the constraint of t							J.															
Quarter 4, 2003 Image: Constraint of the constraint of t							*															
Quarter 1, 2004 Image: Constraint of the constraint of t											*											
Quarter 2, 2004 Image: Constraint of the constraint of t																						
Quarter 1, 2005 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-1-</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td></td<>						-1-			*								*					
Quarter 1, 2006 *	Quarter 1, 2005					*			-								-					
Quarter 2, 2006 * * * <	Quarter 2, 2005								*													
Quarter 3, 2006 * * *	Quarter 1, 2006																					
Quarter 4, 2006 * * * *	Quarter 2, 2006																					
Quarter 2, 2007 * * *	Quarter 3, 2006		<u> </u>				<u> </u>	<u> </u>	*			<u> </u>	<u> </u>				L	<u> </u>		<u> </u>		
Quarter 3, 2007 * * * *									4	*							—					
Quarter 1, 2008 * * * Quarter 2, 2008 * *										*												
Quarter 2, 2008 * * <									*	*										*		
Quarter 3, 2008 Image: Constraint of the con						Ť			*	*										T		
Quarter 1, 2009 * *	Quarter 3, 2008									-												
Quarter 2, 2009 * * * * O O O O O O O O O O O O O O O	Quarter 1, 2009		1			1	1	*		1		1	1					1		1		
Quarter 3, 2009 * * * *	Quarter 2, 2009					*																
	Quarter 3, 2009						*		*	*												

Chart of MCL and Historical UTL	Exceedances for the C-746-U C	Contained Landfill (Continued)

Groundwater Flow System	T			UCR	s							URG	A			<u> </u>		LRG	A		—
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376		359	362	365	371				363	357	369	372	367	361	364	358		
DISSOLVED OXYGEN																					
Quarter 1, 2010					*		*														
Quarter 2, 2010					*	*		*	*											*	*
Quarter 3, 2010					*	*															
Quarter 4, 2010							*					*								*	
Quarter 1, 2011					_	*															<u> </u>
Quarter 2, 2011					*	*	*	*	*					*							l
Quarter 3, 2011						*			*												
Quarter 1, 2012	-			÷	ч	ب د	*	J.	*												
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012 Quarter 4, 2012						不			*												
Quarter 1, 2012 Quarter 1, 2013						*			*												
Quarter 2, 2013						Ŧ	*		*												
Quarter 3, 2013	*				*		*	*	*												
Quarter 4, 2013					-1-				*											*	
Quarter 2, 2014	*				*	*	*	*	*									*			
Quarter 3, 2014	*				*	*	*	-										-			
Quarter 4, 2014						*															
Quarter 2, 2015					*	*	*	*													
Quarter 3, 2015	1				*	*	L	*													
Quarter 4, 2015	*					*	*														
Quarter 1, 2016	*				*		*														
DISSOLVED SOLIDS																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003							*			*	*										
Quarter 4, 2003										*											
Quarter 3, 2005						*															
Quarter 4, 2006															*	_					
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 4, 2008	-														*						
Quarter 1, 2009															*						
Quarter 2, 2009	-														*						
Quarter 3, 2009 Quarter 4, 2009															*						
Quarter 1, 2009															*						
Quarter 2, 2010															*						-
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						l
Quarter 3, 2013															*						l
Quarter 4, 2013															*						ļ
Quarter 1, 2014															*						ļ
Quarter 2, 2014															*						
Quarter 4, 2014 Quarter 2, 2015	+														*						I
Quarter 2, 2015 Quarter 3, 2015	1														*						
Quarter 4, 2015															*						
Quarter 1, 2015	1							-		-					*						
IODIDE															-						
Quarter 2, 2003																*					
Quarter 3, 2003	*						1			*											
Quarter 4, 2003	1						*	l													
Quarter 3, 2010	1					*	1	*	1	1			*				*	1			1
IODINE-131																					
Quarter 3, 2010																					
									÷												·

Chart of MCL and Historical UTL Exceedances for the C-746-U C	Contained Landfill (Continued)
---	--------------------------------

Groundwater Flow System				UCR	s							URG	FA					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
IODOMETHANE																					
Quarter 4, 2003						*															
IRON																					
Quarter 4, 2002						*															
Quarter 3, 2003																*					
Quarter 4, 2003										*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005															*						*
Quarter 3, 2005						*															*
Quarter 2, 2006															*						*
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2008															*						
Quarter 2, 2009	Ĩ														*						
Quarter 3, 2009	1	1											1		*			1			
Quarter 4, 2009	1	1													*			1			
Quarter 1, 2010	1		1				1					1	1	1	*				1		<u> </u>
Quarter 2, 2010	1	1													*			1			
Quarter 3, 2010	1		1				1					1		1	*				1		<u> </u>
Quarter 1, 2011	1														*						<u> </u>
Quarter 2, 2011	1														*						<u> </u>
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 2, 2014															*						
Quarter 4, 2014															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2015															*						
MANGANESE															*						
Quarter 3, 2002										*		*									
Quarter 3, 2002 Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2002		Ŧ				÷	Ŧ			*		*		Ŧ							
Quarter 2, 2003 Ouarter 3, 2003										*		*	*			*	*	*	*		
Quarter 4, 2003										*	*	*	*			*	* *	*	*		
Quarter 1, 2003 Quarter 1, 2004										*	* *	*	*			*	* *	*			
							*			*	* *	*				*	不	*			
Quarter 2, 2004							*			*	*	*				*		不			
Quarter 3, 2004							*			*	¥					*					
Quarter 4, 2004												*				Ŧ					
Quarter 1, 2005	-									*		*									
Quarter 2, 2005										*		*				44					
Quarter 3, 2005	1									*		*				*					┝───
Quarter 4, 2005	1									*						*					⊢
Quarter 1, 2006	1						م ال			*											⊢
Quarter 2, 2006	1						*			*		*									⊢
Quarter 3, 2006	1				ļ					*						*					⊢
Quarter 4, 2006	1					L		L		*	L			<u> </u>	<u> </u>		L				└──
Quarter 1, 2007	1				l	l		l		*	l						l				<u> </u>
Quarter 2, 2007	1						*			*											└──
Quarter 3, 2007	1						*														└──
Quarter 3, 2008	1						*														
Quarter 4, 2008							*														
Quarter 3, 2009	1	L					*														└──
							- -											1			1
Quarter 3, 2003							*														

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (C	ontinued)

Groundwater Flow System				UCR	s					1		URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
NICKEL																					
Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTE	NTIA	L																		
Quarter 4, 2002																	*		*		
Quarter 1, 2003																	*		*		<u> </u>
Quarter 2, 2003																			*		<u> </u>
Quarter 3, 2003	*				J.																<u> </u>
Quarter 4, 2003					*								*				*				*
Quarter 2, 2004					*			*					* *	*	*		*			*	*
Quarter 3, 2004 Quarter 4, 2004					Ť			Ť				*	Ť	*	Ŧ		*			*	*
Quarter 1, 2005												Ŧ					*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006		-			*			*	*				-				*			-	*
Quarter 2, 2006					*		*	*					*				*			*	
Quarter 3, 2006					*			*					*				*			*	
Quarter 4, 2006					*		*		1	*		*	*				*	1		*	*
Quarter 1, 2007		*			*			*		l			*				*		1	*	*
Quarter 2, 2007		1			*					l			*				*		1	*	*
Quarter 3, 2007					*			*		I							*			*	
Quarter 4, 2007		1								I							*		1	*	*
Quarter 1, 2008		1			*			*		I		*	*						*	*	
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*		-		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011						*		*		*	*	*	*	*		*	*	*	*	*	
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*	_	*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013		*					.1.	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014	÷	*			÷	J.	<u>т</u>	* *	*	*	*	*	* *	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*				*		*		*												
Quarter 4, 2014		*				*		* *	* *	*	بلار	* *	*	*	ىلار	*	*	*	*	*	*
Quarter 1, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*		*	*	*	*	* *	*	*	*	*
Quarter 3, 2015	*	* *			*	*	*	* *	*	*	*	*	* *	*	*	*	* *	*	* *	*	* *
Quarter 4, 2015 Quarter 1, 2016	*	*			*	*	* *	* *	*	*	*	*	* *	*	* *	*	*	*	*	*	*
PCB, TOTAL	*	*			*		*	-		*		-	*	*	Ť	-	*	*	*	*	*
Quarter 4, 2003																	*				
Quarter 3, 2003												*					- T				<u> </u>
Quarter 3, 2004 Quarter 3, 2005							*					-									<u> </u>
Quarter 2, 2005							*														<u> </u>
Quarter 2, 2006 Quarter 3, 2006							*														<u> </u>
	I						* *														<u> </u>
Ouarter 1 2007							ŧ		l								l	1	1	1	—
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 2, 2007 Quarter 3, 2007							*														
Quarter 2, 2007																					

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System				UCR	s							URG	БА					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
PCB, TOTAL																					
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010 Quarter 4, 2010							*														<u> </u>
PCB-1016							*														
Quarter 3, 2004												*									
Quarter 2, 2006							*					*									
Quarter 1, 2007							*					-									
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242																					
Quarter 3, 2006							*			بە		*									
Quarter 4, 2006							بىر			*											
Quarter 1, 2008							* *														
Quarter 2, 2012 PCB-1248							*														
Quarter 2, 2008							*									_					
PCB-1260							*														
Quarter 2, 2006							*	_								_					
pH							-1-														
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005						*												*	*		L
Quarter 4, 2005						*													*		
Quarter 3, 2006																*					L
Quarter 2, 2011														*							
Quarter 3, 2011														*							
Quarter 4, 2011														*		*	*				
Quarter 1, 2012												*				*	不				
Quarter 2, 2012 Quarter 1, 2013										*		*				*					
Quarter 3, 2015										-rr		*				- T	*				
POTASSIUM																					
Quarter 1, 2014																*					
RADIUM-228																					
Quarter 2, 2005																					
Quarter 4, 2005																					
SELENIUM																					
Quarter 4, 2003																					
SODIUM																					
Quarter 3, 2002								<u> </u>		*	*		*								<u> </u>
Quarter 4, 2002										*	*			*							
Quarter 1, 2003										*											
Quarter 2, 2003										*	* *										
Quarter 3, 2003											*										
Quarter 1, 2007									-		*			*					-		
Quarter 1, 2012 Quarter 1, 2014														*	*						
Quarter 1, 2014 Quarter 3, 2014											*				*						
Quarter 4, 2014											*										
Quarter 4, 2014 Quarter 4, 2015											*										
Quarter 1, 2015											*										
200101 1, 2010																					

Groundwater Flow System	1			UCR	s							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	s	D	D	S	U	U
Monitoring Well	368			377	359	362	365	371	374		360		357	369	372		361	364			373
STRONTIUM-90						2.01						0.00			\$ / <u></u>						
Quarter 4, 2008																					
SULFATE																					
Quarter 1, 2003							*														
Quarter 2, 2003						*	*														
Quarter 3, 2003	*					*															
Quarter 4, 2003					*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*	*		*		——————————————————————————————————————				*						
Quarter 2, 2005					* *	*	*		Ŧ						不						
Quarter 3, 2005 Quarter 4, 2005					÷	Ŧ	*								*						
Quarter 1, 2005					*				*						Ŧ						
Quarter 2, 2006					Ŧ	*	*		*						*						
Quarter 3, 2006	1						*														
Quarter 1, 2007	1	-					*														
Quarter 2, 2007							*														
Quarter 3, 2007	1						*											1			
Quarter 4, 2007		*																			
Quarter 1, 2008	1	*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008	1	*			*	*	*														
Quarter 4, 2008	1	*				*	*											1			
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*									*						
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010		*			*	*	*								*						
Quarter 3, 2010		*			*	*	*								*						
Quarter 4, 2010		*				*	*								*						
Quarter 1, 2011		*																			
Quarter 2, 2011		*			*	*	*								*						
Quarter 3, 2011		*				*	*	*							*						
Quarter 4, 2011		*				*									*						
Quarter 1, 2012		*					*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013	J.	*		JL L	÷	JL I	J.			<u> </u>					*						
Quarter 3, 2013	*	*		*	*	*	*								*						
Quarter 4, 2013		*								<u> </u>					*						
Quarter 1, 2014	*	*			*		*	*		──					*						
Quarter 2, 2014	*	*			*	*	*	*							*						
Quarter 3, 2014 Quarter 4, 2014	*	*			*	*	*	*							Ŧ						
Quarter 1, 2014 Quarter 1, 2015		* *				*															
Quarter 1, 2015 Quarter 2, 2015	*	* *			*		*								*						
Quarter 2, 2015 Quarter 3, 2015	*	* *			* *	*	-т ^с	*							*						
Quarter 3, 2015 Quarter 4, 2015	*	*			*	*	*	*							*						
Quarter 1, 2015	*	*			*	*	*														-
TECHNETIUM-99																					
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003	l –						*						*			*	*	*	*		*
Quarter 3, 2003	t –		1	1		1	1							1			*		1		
Quarter 4, 2003	1																*	1			*
Quarter 1, 2004	1														*		*				*
Quarter 2, 2004															*						*
Quarter 3, 2004			L	L		L	L							L	*	L	L		L		*
Quarter 4, 2004															*		*				*
Quarter 3, 2005		ſ															*				
Quarter 5, 2005			r	r		r	r					1		1	*		[1			*
Quarter 1, 2005															Ŧ						
		*							*						*						*
Quarter 1, 2006		*							*						*						

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TECHNETIUM-99																					
Quarter 4, 2006															*						*
Quarter 1, 2007													-							-	*
Quarter 2, 2007													*		*		Ч.	*		*	
Quarter 3, 2007										*					*		*	不	*		*
Quarter 4, 2007 Quarter 1, 2008										*					*				*	*	*
Quarter 2, 2008							*	*						*	Ŧ	*			*	Ŧ	т Т
Quarter 3, 2008							-1-	-1-							*				-1-		
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010						-		-									-	*			
Quarter 1, 2011		*								*							*				
Quarter 2, 2011																*	*	*	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012								*			L	L						*			
Quarter 3, 2012		L			L		L				<u> </u>	<u> </u>	L				*	*			
Quarter 4, 2012	┣──┤														*			*			*
Quarter 1, 2013																		*			*
Quarter 2, 2013																					*
Quarter 3, 2013										*					L.		Ψ.	J.			*
Quarter 4, 2013															*		*	*			*
Quarter 1, 2014															*		*	*			
Quarter 2, 2014																	*	*	*		
Quarter 3, 2014															*		不	不	Ŧ		
Quarter 4, 2014 Quarter 1, 2015															* *			*			
Quarter 2, 2015															Ŧ	*		*			
Quarter 3, 2015																*		*	*	*	
Quarter 4, 2015															*		*	Ť	Ŧ	*	
Quarter 1, 2015															Ŧ	*	*	*	*	Ŧ	*
THORIUM-230																					
Quarter 4, 2015																*					
TOLUENE																					
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON																					
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003											*										
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										
Quarter 1, 2004											*										
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
TOTAL ORGANIC HALIDES																					
Quarter 4, 2002										*	L	L						L			
Quarter 1, 2003		L			L		L			*	<u> </u>	<u> </u>	L					<u> </u>			
Quarter 2, 2003		L			L		L			*	<u> </u>	<u> </u>	L					<u> </u>			
Quarter 1, 2004																*					
TRICHLOROETHENE																					
Quarter 3, 2002	┝──┘														_						
Quarter 4, 2002																				_	
Quarter 1, 2003																					
Quarter 2, 2003	┣──┤						-														
Quarter 3, 2003	<u> </u>														_					-	
Quarter 4, 2003																				_	
Quarter 1, 2004																					
Quarter 2, 2004																				-	
Quarter 3, 2004	<u> </u>																				
Quarter 4, 2004																				_	
Quarter 1, 2005																				-	
Quarter 2, 2005																				-	
Quarter 3, 2005	L																				

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System	Т			UCR	s							URG	ĞΑ			1		LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360		357	369	372	367	361	364	358	370	373
TRICHLOROETHENE	200	010	010	511	007	202	000	071	571	200	200	000	001	507	0.12	507	001	501	000	510	010
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006	+ +																				
Quarter 4, 2006																					
Quarter 1, 2007	+ +																				
Quarter 2, 2007	-																				
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008	╉──┦																				
Quarter 2, 2008	-																				
Quarter 3, 2008																			_		
Quarter 4, 2008																					
Quarter 1, 2009	╉──┦														_						
Quarter 2, 2009	+																				
Quarter 3, 2009	+					-									_						
Quarter 4, 2009	╉──┦																				
Quarter 1, 2010													_		_						
Quarter 2, 2010	╉──┦																				
Quarter 3, 2010	4																				
Quarter 4, 2010	4																		_		
Quarter 2, 2011													_								
Quarter 3, 2011																					
Quarter 4, 2011																	_				
Quarter 1, 2012																					
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013																					
Quarter 2, 2013																					
Quarter 3, 2013						-														-	
Quarter 4, 2013																					
Quarter 1, 2014																					
Quarter 2, 2014																					
Quarter 3, 2014																					
Quarter 4, 2014																L					
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 3, 2015																					
Quarter 4, 2015																					
Quarter 1, 2016																I					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
 Statistical test results indicate an elev 	vated cor	ncentra	tion (i e	e., a sta	tistical	excee	dance)		1		1		1	1		!	1	1			
MCL Exceedance				, .																	
UCRS Upper Continental Recharge Sys	tem																				
URGA Upper Regional Gravel Aquifer	iem.																				
LRGA Lower Regional Gravel Aquifer																					

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

APPENDIX H

METHANE MONITORING DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U LANDFILL METHANE LOG

PADUCAH GASEOUS DIFFUSION PLANT Permit #: 073-00045 McCracken County, Kentucky

Date: February 29, 2016

Time	Location	% LEL of Methane Reading	Remarks	Weather Conditions
12:00	C-746-U1	0	Checked at floor level	Inside office
	C-746-U2	0	Checked at floor level	Inside shop
	C-746-U-T-14	0	Checked at floor level	Inside trailer
	C-746-U15	0	Checked at floor level	Inside building
	MG1	0	Dry casing	a what bit it
	MG2	0	Dry casing	r billis
	MG3	0	Dry casing	a wy al
12:30	MG4	0	Dry casing	June
N/A	Suspect or Problem Areas	N/A	No problems noted	N/A
			y Sumith 2 2 th	
		Jamm	y solution	

lanmet . t Ì Signature

WD-F-0053 (8/19/13) CP3-WM-0017 Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms In Accordance With PAD-WC-0044

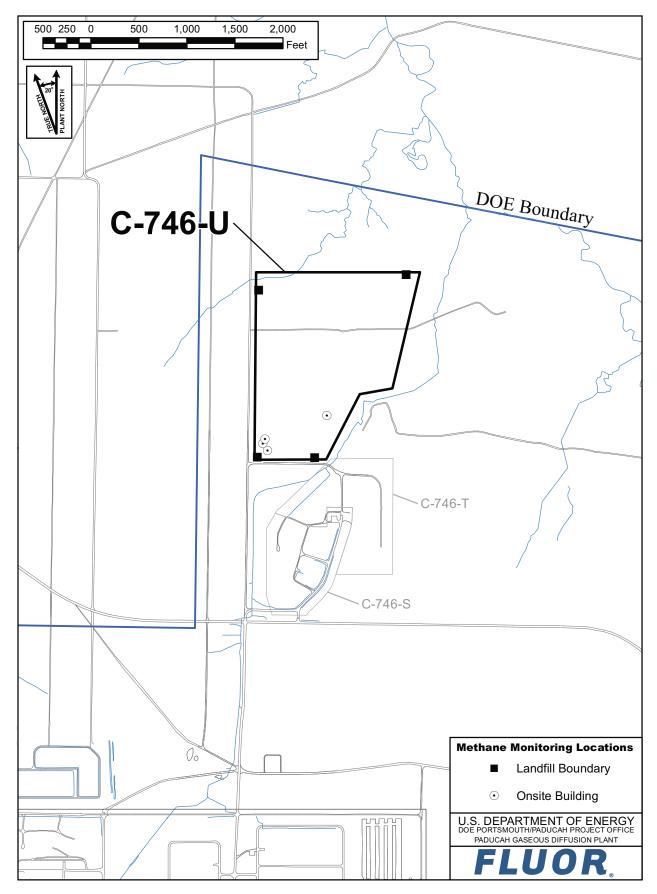


Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I

SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Division of Waste Management **RESIDENTIAL/CONTAINED-QUARTERLY** Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number: 073-00045 14 Reilly Road

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (5)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")							L150 AT SITE		L154 UPSTREAM		L351 DOWNSTREAM		
Sample Sequence #							1		1				
If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment							NA		NA				
Sample Date and Time (Month/Day/Year hour: minutes)						2/16/2016 13:31		2/16/2016 13:45		2/16/2016 13:15			\neg
Duplicate ("Y" or "N") ¹							N		N		N		7
Split ('Y' or "N") ²						N		N		N			7
Facility Sample ID Number (if applicable)						L150US2-16		L154US2-16		L351US2-16			
Laboratory Sa	Laboratory Sample ID Number (if applicable)						391512001		391512002		391512003		
Date of Analy	ysi	s (Month/Day/Year)				2/24/2016		2/25/2016		2/25/2016			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
A200-00-0	0	Flow	т	MGD	Field	0.17		0.56		0.89			
16887-00-6	2	Chloride(s)	т	mg/L	300.0	5.68		40.5		18.7			
14808-79-8	0	Sulfate	т	mg/L	300.0	11.2		12.9		52.8			Ĭ
7439-89-6	0	Iron	т	mg/L	200.8	1.59		2.51		1.89			
7440-23-5	0	Sodium	т	mg/L	200.8	1.62		15.3		26.2			\square
S0268	0	Organic Carbon ⁶	т	mg/L	9060	20.1		16.3		14.1			\Box
50097	0	BOD ⁶	т	mg/L	not applicable		*		*		*	/	
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	84.3		44.7		28.1			

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

Page 2 of 2

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM")						L150 AT SITE		L154 UPSTREAM		L351 DOWNSTREAM			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
s0145	1	Specific Conductance	т	µmho/cm	Field	129		284		560			
s0270	0	Total Suspended Solids	т	mg/L	160.2	20.8		32.8		52.8			
S0266	0	Total Dissolved Solids	т	mg/L	160.1	221		240		303			
S0269	0	Total Solids	т	mg/L	SM-2540B	145		281		323			
s0296	0	рН	т	Units	Field	8.14		7.63		7.81			
7440-61-1		Uranium	т	mg/L	200.8	0.00289		0.00502		0.0382			
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	-0.478	*	4.08	*	21.4	*		
12587-47-2		Gross Beta (β)	т	pCi/L	9310	8.24	*	-10.4	*	22.4	*		

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitorin Point	g Facility Sample ID	Constituent	Flag	Description
L150	L150US2-16	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 4.88. Rad error is 4.88.
		Beta activity		TPU is 8.3. Rad error is 8.19.
L154	L154US2-16	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 7.55. Rad error is 7.52.
		Beta activity		TPU is 8.51. Rad error is 8.51.
L351	L351US2-16	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 11.8. Rad error is 11.3.
		Beta activity		TPU is 12.1. Rad error is 11.4.

THIS PAGE INTENTIONALLY LEFT BLANK