

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

FEB 2 6 2016

PPPO-02-3394036-16A

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Mr. Allan Shingleton
Division of Waste Management
Kentucky Department for Environmental Protection
625 Hospital Drive
Madisonville, Kentucky 42431

Dear Ms. Green, Mr. Hendricks, and Mr. Shingleton:

C-746-U CONTAINED LANDFILL FOURTH QUARTER CALENDAR YEAR 2015 (OCTOBER-DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, PAD-ENM-0093/V4, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for the fourth quarter calendar year 2015. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of C-746-U Contained Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the fourth quarter 2015 monitoring well data collected from the C-746-U Landfill were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the fourth quarter calendar year 2015, in accordance with Condition GSTR0001, Standard Requirement 8, of the C-746-U Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Janufu Wardenal
Jennifer Woodard
Paducah Site Lead

Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill Fourth Quarter CY 2015 (October-December) Compliance Monitoring Report

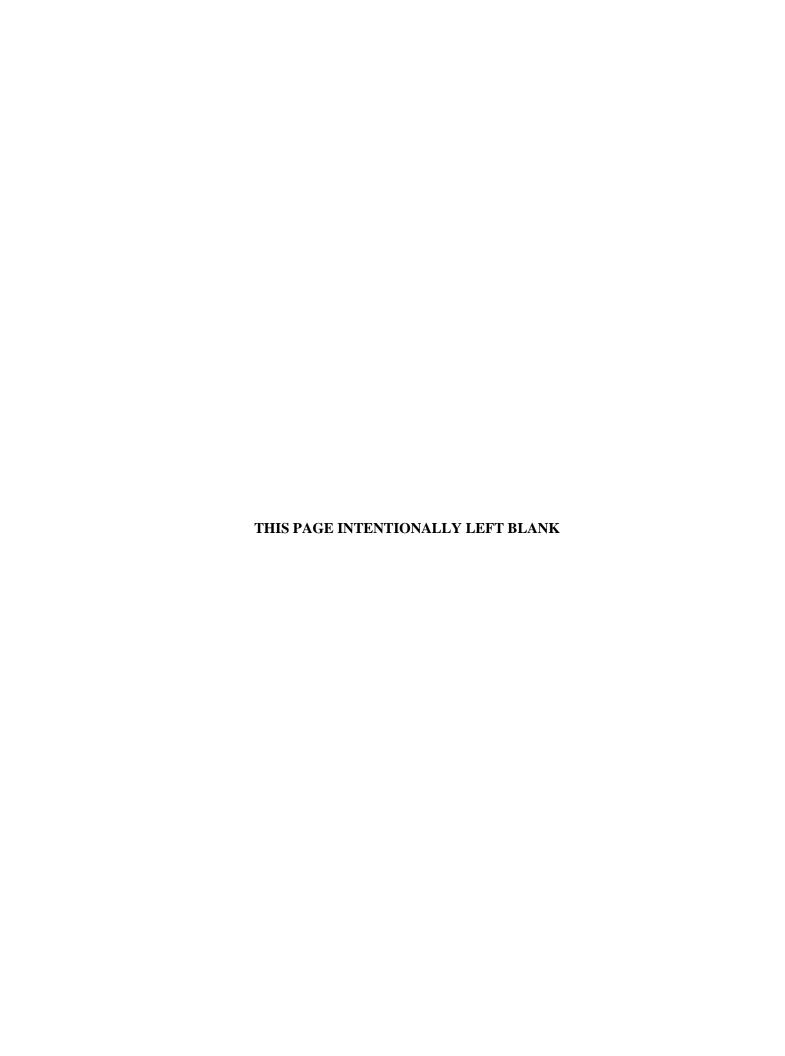
e-copy w/enclosure:

april.webb@ky.gov, KDEP/Frankfort brian.begley@ky.gov, KDEP/Frankfort dave.dollins@lex.doe.gov, PPPO/PAD ffscorrespondence@ffspaducah.com, FFS/Kevil gary.hines@ffspaducah.com, FFS/Kevil gaye.brewer@ky.gov, KDEP/PAD jennifer.blewett@ffspaducah.com, FFS/Kevil jennifer.watson@ffspaducah.com, FFS/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD joseph.towarnicky@ffspaducah.com, FFS/Kevil ken.davis@ffspaducah.com, FFS/Kevil leo.williamson@ky.gov, KDEP/Frankfort lisa.crabtree@ffspaducah.com, FFS/Kevil mark.duff@ffspaducah.com, FFS/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@ffspaducah.com, FFS/Kevil pad.rmc@swiftstaley.com, SSI/Kevil reinhard.knerr@lex.doe.gov, PPPO/PAD stephaniec.brock@ky.gov, KYRHB/Frankfort

C-746-U Contained Landfill
Fourth Quarter Calendar Year 2015
(October–December)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

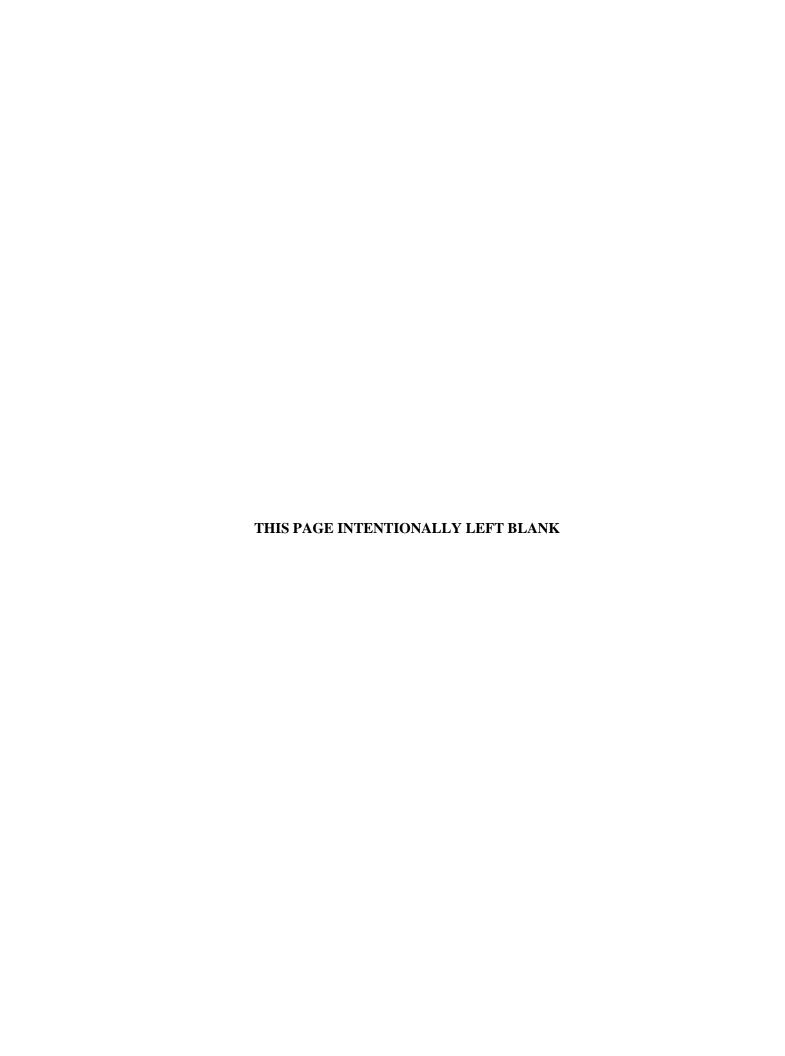
FLUOR.

This document is approved for public release per review by:

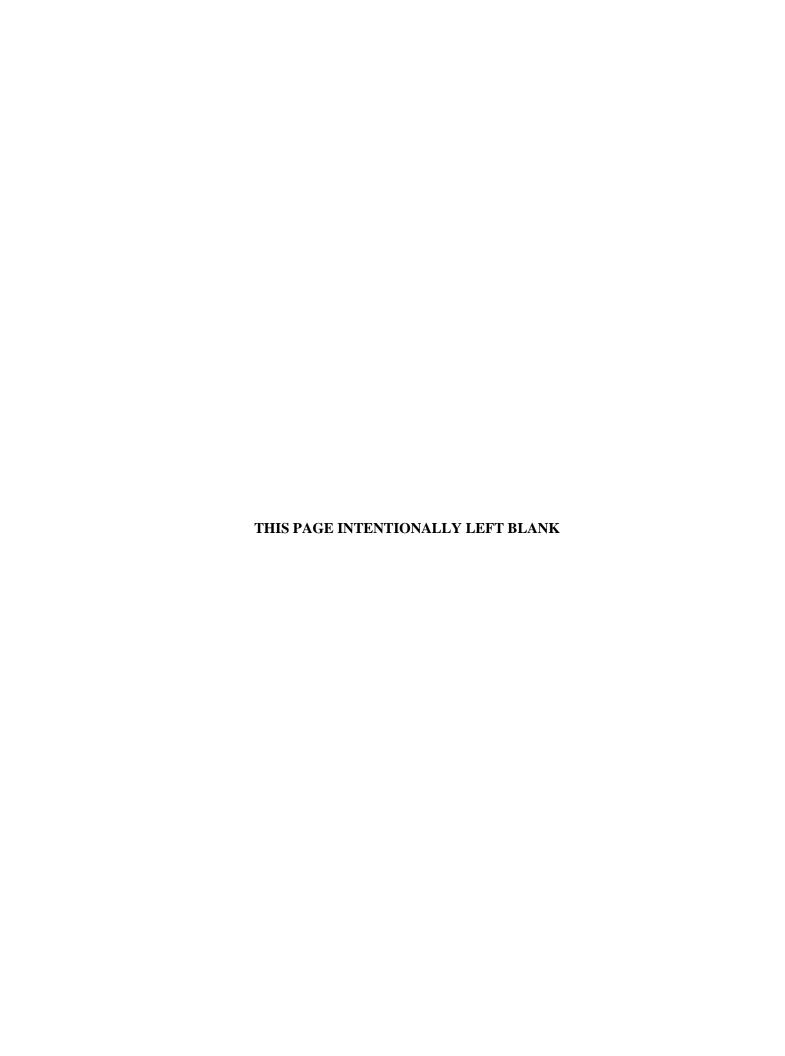

FFS, Inc., Classification Support

C-746-U Contained Landfill
Fourth Quarter Calendar Year 2015
(October–December)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—February 2016


U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FLUOR FEDERAL SERVICES, INC.,
Paducah Deactivation Project
managing the
Deactivation Project at the
Paducah Gaseous Diffusion Plant
under Task Order DE-DT0007774


CONTENTS

FI	GURE	S		V
TA	ABLES	S		v
ΑC	CRON	YMS		vii
1.	INTI	RODUC	TION	1
	1.1		GROUND	
	1.2		TORING PERIOD ACTIVITIES	
		1.2.1	Groundwater Monitoring	1
		1.2.2	Methane Monitoring	
		1.2.3	Surface Water Monitoring	4
	1.3	KEY F	RESULTS	4
2.	DAT	'A EVA	LUATION/STATISTICAL SYNOPSIS	9
	2.1		ISTICAL ANALYSIS OF GROUNDWATER DATA	
		2.1.1	Upper Continental Recharge System	
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	
	2.2	DATA	VERIFICATION AND VALIDATION	11
3.	PRO	FESSIC	NAL GEOLOGIST AUTHORIZATION	13
4.	REF	ERENC	ES	15
ΑF	PPENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PPENI	OIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PPENI	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PPENI	DIX D	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PPENI	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PPENI	OIX F:	NOTIFICATIONS	F-1
ΑF	PPENI	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PPENI	OIX H:	METHANE MONITORING DATA	H-1
ΑF	PPENI	OIX I·	SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS	I-1

FIGURES

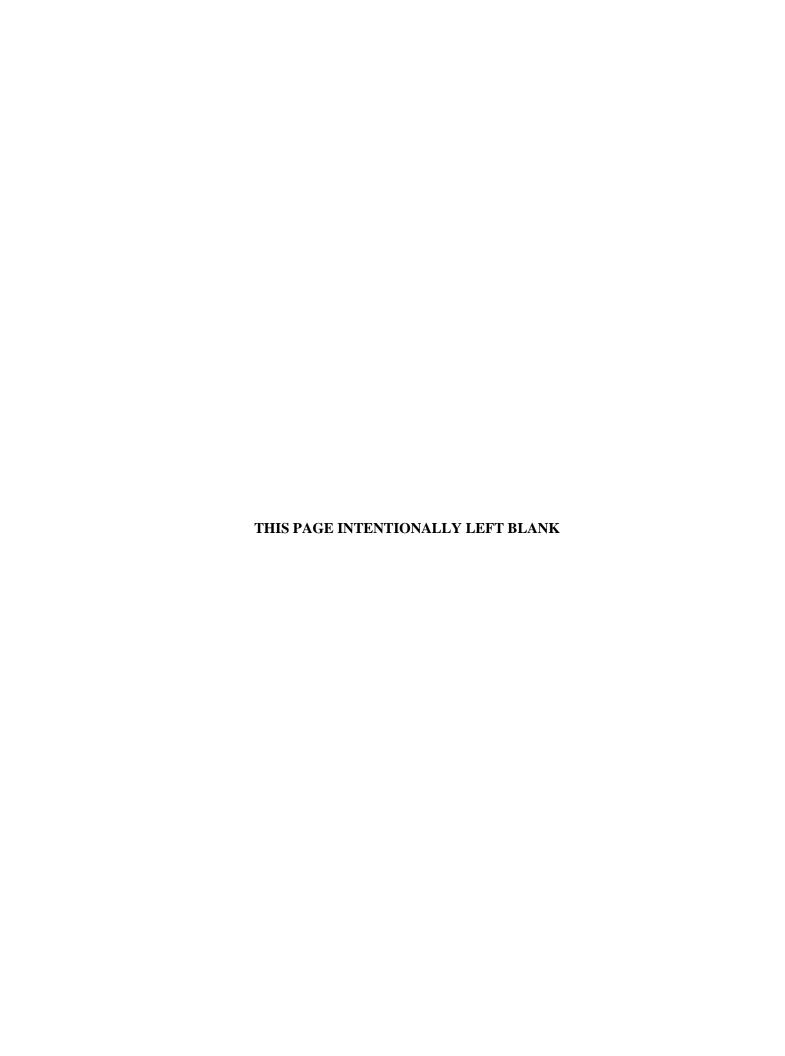
1.	C-746-U Landfill Groundwater Monitoring Well Network	3
2.	C-746-U Landfill Surface Water Monitoring Locations	5
	TABLES	
1.	Summary of MCL Exceedances	6
2.	Exceedances of Statistically Derived Historical Background Concentrations	6
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters	7
5.	Exceedances of Current Background UTL in UCRS Wells	8
6.	Monitoring Wells Included in Statistical Analysis	10

ACRONYMS

CFR Code of Federal Regulations

KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit


LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Fourth Quarter Calendar Year 2015 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. This report was written in accordance with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014), Technical Application, Attachment 25 of the Solid Waste Landfill permit.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring was conducted in accordance with 401 KAR 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), Technical Application Attachment 12 of the Solid Waste Landfill permit. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 4. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), Technical Application Attachment 24 of the Solid Waste Landfill permit. Surface water results are provided in Appendix I.

1.1 BACKGROUND

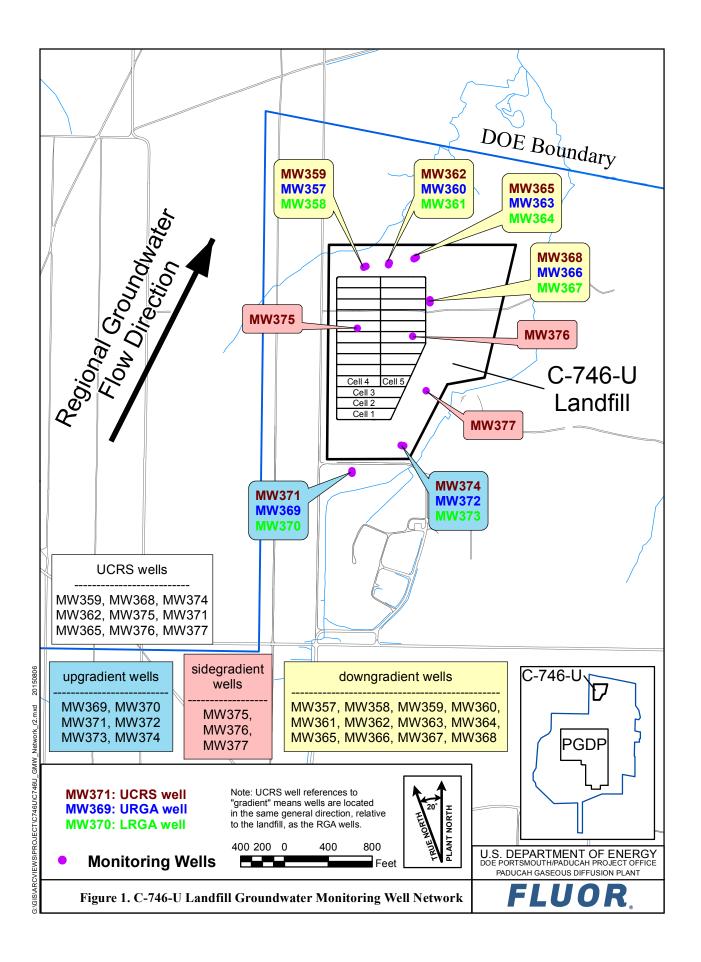
The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map

of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW359, MW376, and MW377 (all screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for these locations.


Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but flow in the underlying RGA is lateral. Groundwater flow in the RGA typically is in a north-northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the RGA wells located in the same direction (relative to the landfill) as nearby UCRS wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2015 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using Fluor Federal Services, Inc., procedure CP4-ES-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 28, 2015, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient in the vicinity of the C-746-U Landfill in October was 5.86×10^4 ft/ft. The hydraulic gradient for the URGA and LRGA at the C-746-U Landfill were 8.58×10^4 ft/ft and 8.69×10^4 ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.46 to 2.49 ft/day for the URGA and 1.48 to 2.52 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

In accordance with the Explosive Gas Monitoring Program (KEEC 2011), landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on December 9, 2015. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was sampled in accordance with 401 *KAR* 48:300 § 2 and the approved Surface Water Monitoring Plan (PRS 2008). Sampling was performed at three locations monitored for the C-746-U Landfill. The C-746-U Landfill has an upstream location, L154; a downstream location, L351; and a location capturing runoff from the landfill surface, L150. Figure 2 is a map of the surface water monitoring locations. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled, in report only format, pursuant to Permit Condition GMNP0001, Standard Requirement 1. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Parameters that had concentrations that exceeded the respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL concentrations during the fourth quarter 2015, as well as parameters that exceeded their MCL (beta activity) and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

There were no new MCL exceedances for this quarter. The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedance for trichloroethene in MW357 (downgradient well), does not exceed the historical background concentration and is considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

The MCL exceedance for beta activity in MW358 (downgradient well) was shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily it was considered to be a Type 2 exceedance because the source(s) of the exceedance is not determined. To further evaluate the preliminary Type 2 exceedance, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The result is summarized in Table 4. The preliminary Type 2 exceedance did not have an increasing trend and should be considered to be a Type 1 exceedance (not attributable to the landfill).

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8; and 401 *KAR* 48:300 § 7.

-

¹ The term "concentration" may refer to a field measurement result such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

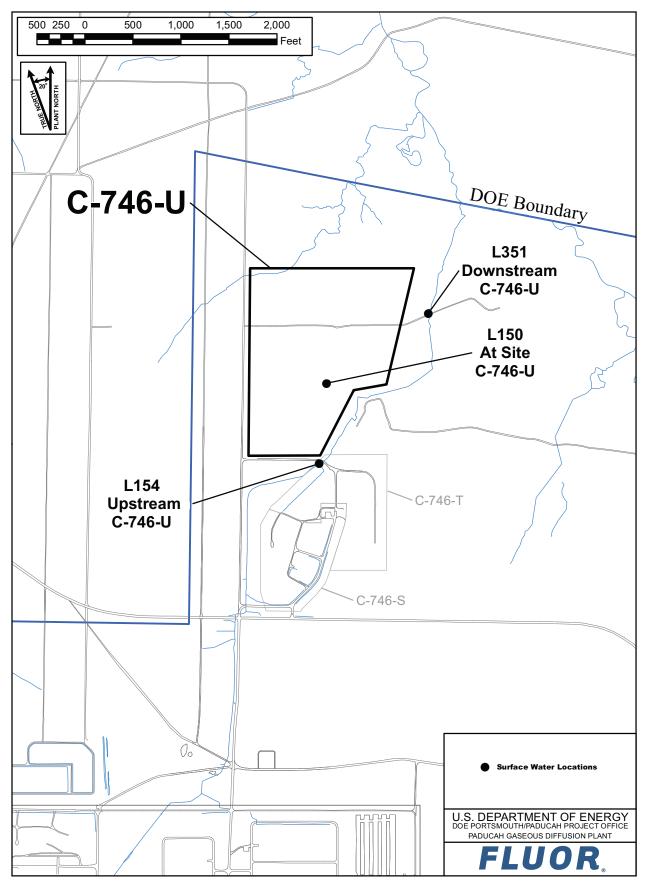


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW357: Trichloroethene	MW358: Beta activity
	MW372: Beta activity,	MW373: Trichloroethene
	trichloroethene	

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW362: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Beta activity, a oxidation-
oxidation-reduction potential, sulfate	potential	reduction potential
MW365: Dissolved oxygen,	MW360: Oxidation-reduction	MW361: Oxidation-reduction
oxidation-reduction potential, sulfate	potential, sodium	potential, technetium-99
MW368: Dissolved oxygen,	MW363: Oxidation-reduction	MW364: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW371: Oxidation-reduction	MW366: Oxidation-reduction	MW367: Oxidation-reduction
potential, sulfate	potential	potential, thorium-230
MW374: Oxidation-reduction	MW369: Oxidation-reduction	MW370: Oxidation-reduction
potential	potential	potential, technetium-99
MW375: Oxidation-reduction	MW372: Beta activity, a calcium,	MW373: Oxidation-reduction
potential, sulfate	conductivity, dissolved solids,	potential
	magnesium, oxidation-reduction	
	potential, technetium-99	

^{*}Gradients in the UCRS are downward. UCRS gradient designations refer to the locations of wells in the same direction, relative to the landfill as the RGA wells. Sidegradient wells: MW375, MW376, MW377

Table 3. Exceedances of Current Background **UTL** in Downgradient Wells

URGA	LRGA
None	MW358: Beta activity

Downgradient wells: MW357, MW370, MW371, MW368, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

^a Beta activity has an MCL; the exceedances of the MCL were subjected to a comparison against the statistically derived historical background.

Table 4. C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Var(S)4	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
C-746-U Landfill Downgradient Well	MW358	Beta Activity	8	0.05	0.274	6.000	0.000	1.810	0.214	No Trend

Footnotes:

Note: Statistics generated using XLSTAT Version 2015.2.01.16684

¹An alpha of 0.05 represents a 95% confidence interval.

 $^{^2}$ The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}VAR(S)$ represents the varience of S in the sample set and takes into account statistical ties.

⁵The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(x_j x_k)/(j-k)$, where x is a data point and j and k are values of time.

⁶Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is postive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.

The Mann-Kendall decision operates on two hypothesis, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend. Two different tests were ran to test for positive or negative trends. This table reports the test with the lowest p-value.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance. The constituent listed in Table 3 that exceeded both the historical UTL and the current UTL, beta activity, does not have an identified source and preliminarily is considered to be a Type 2 exceedance per the approved Groundwater Monitoring Plan. To evaluate the preliminary Type 2 exceedance further, beta activity was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. This preliminary Type 2 exceedance in a downgradient well did not have an increasing trend and is considered to be a Type 1 exceedance (not attributable to the landfill).

The statistical evaluation of current UCRS wells (downgradient) against the current UCRS background UTL identified UCRS wells with sulfate values that exceed both the historical and current background (Table 5). Because these wells are not hydrogeologically downgradient of the C-746-U Landfill, these exceedances are not attributable to C-746-U sources and are considered Type 1 exceedances.

Table 5. Exceedances of Current Background UTL in UCRS Wells

UCRS
MW362: Sulfate
MW365: Sulfate
MW368: Sulfate

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2015 groundwater data collected from the C-746-U Contained Landfill MWs were performed in accordance with the *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).* The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW359***	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376***		
MW377***		

^{*}A map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Sulfate exceeded the current background UTL and is included on Table 5.

2.1.2 Upper Regional Gravel Aquifer

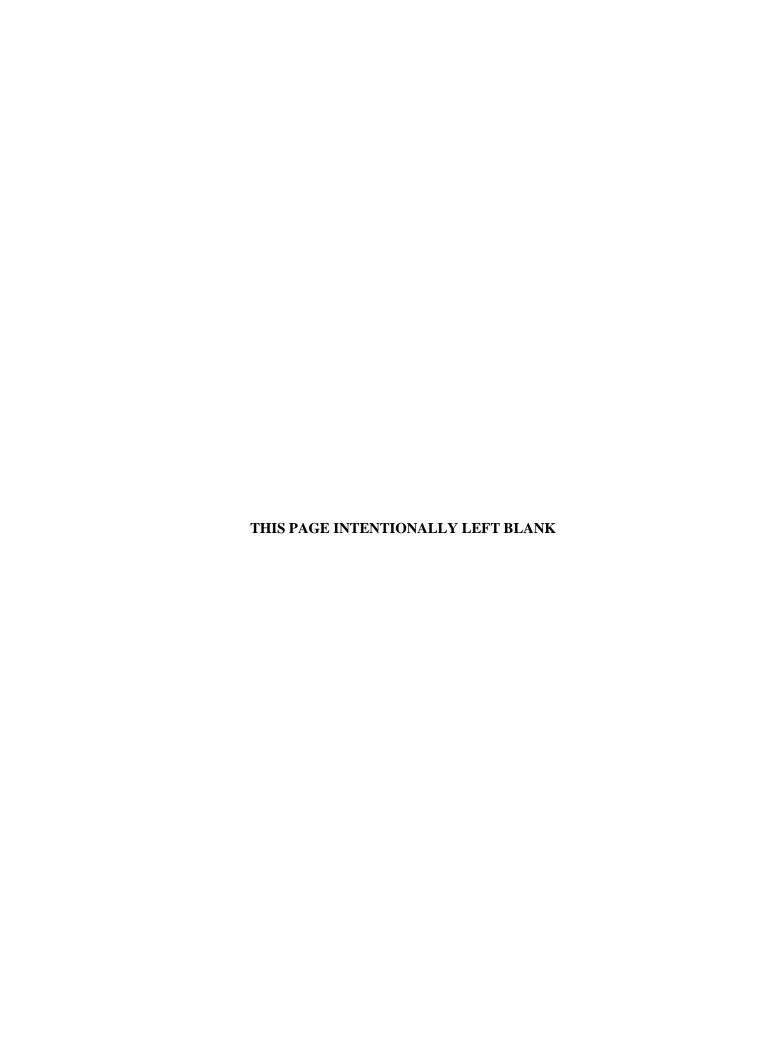
In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedances of the current background UTL for any URGA downgradient wells as summarized in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, beta activity, oxidation-reduction potential, technetium-99, and thorium-230 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity exceeded the current background UTL for LRGA downgradient wells as summarized in Table 3.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}MW359, MW376, and MW377 had insufficient water to permit a water sample for laboratory analysis.


2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

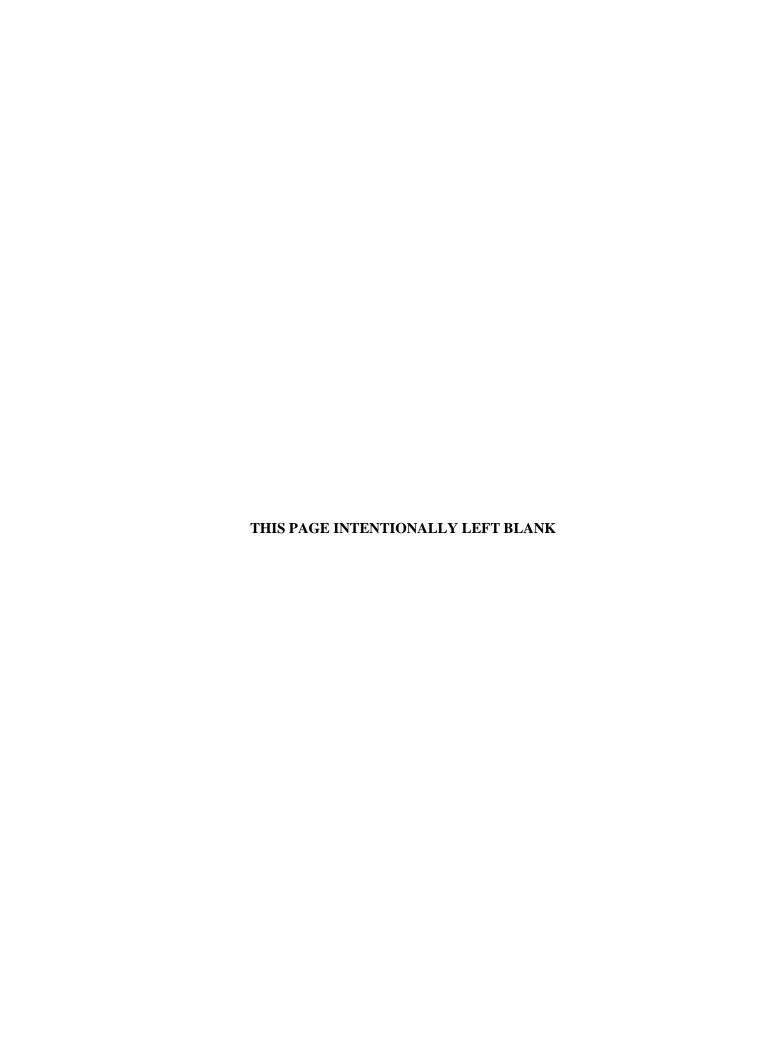
C-746-U Contained Landfill

Fourth Quarter Calendar Year 2015 (October-December)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0093/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.


OROGINAL PG 1194

OROGINAL PG

Kenneth R. Davis

PG1194

February 22, 2016 Date

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Paducah Remediation Services, LLC, Kevil, KY, June.

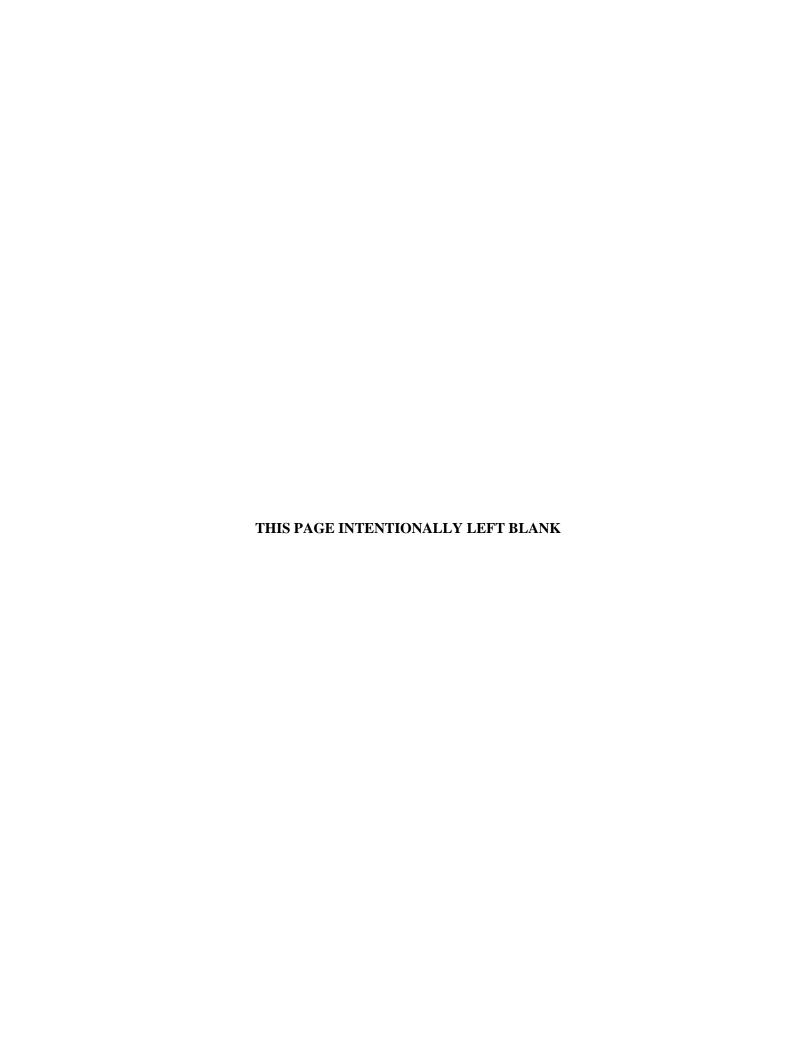
APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	me: U.S. DOE-Paducah Gaseous Diffusion Plant (As officially shown on DWM Permit Face)		Activity: <u>C-746-</u>	U Contained Landfill
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	4th Qtr. CY 2015
Please check the	following as applicable:			
Characte	erization X Quar	terly Semiannual	Annual _	Assessment
Please check appl	licable submittal(s):	X Groundwater	X Surfa	ce Water
	_	Leachate	X Meth	ane Monitoring
45:160) or by statut jurisdiction of the (48) hours of make Submitting the lab instruction pages. I certify under pen accordance with a Based on my inquir best of my knowled information, including	te (Kentucky Revised Statt Division of Waste Manage ing the determination report is NOT considered alty of law that the doct system designed to assure y of the person or persons ge and belief, true, accurating the possibility of fine an ingent of the person or persons ge and belief, true, accurating the possibility of fine and the possi	red by regulation (Kentucky Was use Chapter 224) to conduct groement. You must report any using statistical analyses, directly responsible for gatheringe, and complete. I am aware that dimprisonment for such violation. Management	undwater and surface windication of contaminect comparison, or of empleting the form are at a prepared under my did y gather and evaluate the ginformation, the informations.	ater monitoring under the nation within forty-eight ther similar techniques. tached. Do not submit the rection or supervision in the information submitted. nation submitted is, to the
Jennifer Wooda U.S./Departmen	rd, Paducah Site Lead t of Energy	dard	7	26/16 Date



APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

	Groundwater: October 2015 Surface Water: November 2015			Permit	SW07300014, SW07300015,			
Sampling Date:	Methane: December 2015	County:	McCracken	_ Nos.	SW07300045			
Facility Name:								
	(As officially shown on DWM Permit Face)							
Site Address:								
DI V (05	Street	City/State		Zip	000 451 553			
Phone No: (27	(0) 441-6800 Latitude:	N 37° 07' 45"	Longi	tude: W	88° 47' 55"			
	OWN	NER INFORMATION						
Facility Owner:	U.S. DOE – Robert E. Edward	s III, Acting Manager	Phone No:	(859) 227	7-5020			
Contact Person:	Mark J. Duff		Phone No:	(270) 441	1-6127			
Contact Person Ti	itle: Director, Environmental	Management, Fluor Fede	eral Services, Inc	•				
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053				
	Street	City/State		Zip				
Company: GE	SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY) Company: GEO Consultants, LLC							
Contact Person:	Sam Martin		Phone No:	(270) 44	1-6755			
Mailing Address:	352 Kentucky Avenue	Kevil, Kentucky		42053				
	Street	City/State		Zip				
	LABO	RATORY RECORD #1						
Laboratory GE	L Laboratories, LLC	Lab	ID No: KY90	129				
Contact Person:	Valerie Davis		Phone No:	(843) 769	9-7391			
Mailing Address:	2040 Savage Road	Charleston, South Ca	rolina	290	47			
	Street	City/State		Zij	р			
	LABO	RATORY RECORD #2	2					
Laboratory:		Lab I	D No:					
Contact Person:			Phone No:					
Mailing Address:								
	Street	City/State			Zip			
	LABO	RATORY RECORD #3	3					
Laboratory:		Lab I	D No:					
Contact Person:								
Mailing Address:								
	Street	City/State		-	Zip			

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798	3	8004-47	'99	8004-098	31	8004-480	0
Facility's Loc	al Well or Spring Number (e.g., I	MW-1	., MW-2, etc	:.)	357		358		359		360	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		10/7/2015 12	2:07	10/7/2015	13:22	NA		10/7/2015 09	9:33
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	lity Sample ID Number (if applicable)					-16	MW358U0	31-16	NA		MW360UG1	I-16
Laboratory Sam	ratory Sample ID Number (if applicable)					3	3828150	005	NA		38281500)7
Date of Analys	is (Month/Day/Year) For <u>Volatil</u> e	ganics Anal	ysis	10/13/201	5	10/13/20)15	NA		10/13/201	5	
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.446		0.482			*	0.158	J
16887-00-6	Chloride(s)	Т	mg/L	9056	31.5		35.3			*	10.5	
16984-48-8	Fluoride	Т	mg/L	9056	0.148		0.16			*	0.293	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.4		0.844			*	0.119	J
14808-79-8	Sulfate	Т	mg/L	9056	52		78.3			*	29.6	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.11		30.09			*	30.13	
s0145	Specific Conductance	T	μ MH0/cm	Field	435		499			*	562	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798	3	8004-4799	9	8004-0981		8004-4800	١
Facility's Loca	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	323.39		323.44			*	323.37	
N238	Dissolved Oxygen	Т	mg/L	Field	3.37		1.89			*	1.7	
s0266	Total Dissolved Solids	Т	mg/L	160.1	201		257			*	277	
s0296	Нд	т	Units	Field	6.18		6.28			*	6.55	
NS215	Eh	Т	mV	Field	582		380			*	440	
s0907	Temperature	т	°C	Field	20.06		18.89			*	16.56	
7429-90-5	Aluminum	т	mg/L	6020	0.025	J	<0.05			*	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005			*	0.00215	J
7440-39-3	Barium	т	mg/L	6020	0.0641		0.0496			*	0.162	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.47		0.486			*	0.0497	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	26.8		33.5			*	27.3	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00096	J	0.000656	J		*	0.0164	
7440-50-8	Copper	Т	mg/L	6020	0.000766	J	0.000466	J		*	<0.001	
7439-89-6	Iron	Т	mg/L	6020	0.0871	J	1.06			*	1.94	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	12.2	*	16.1	*		*	10.8	*
7439-96-5	Manganese	Т	mg/L	6020	0.0273		0.143			*	0.202	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		_	*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	11	8004-4800	
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		<0.0005			*	0.000502	
7440-02-0		Nickel	Т	mg/L	6020	0.00089	J	0.00292			*	0.00209	
7440-09-7		Potassium	Т	mg/L	6020	1.7		2.38			*	0.711	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2		Selenium	T	mg/L	6020	<0.005		0.00157	J		*	<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5		Sodium	Т	mg/L	6020	44.2		43			*	90.4	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.000348	
7440-62-2		Vanadium	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-66-6		Zinc	Т	mg/L	6020	<0.01		0.00405	J		*	<0.01	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-098	81	8004-4800	
Facility's Loc	al Well or Spring Number (e.g., 1	MW-1	l, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00578		0.00378			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	9	8004-09	81	8004-4800	
Facility's Loc	al Well or Spring Number (e.g., M	ſW−1	l, MW-2, et	:c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000206		<0.0000209			*	<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.101		<0.1			*	<0.105	
12674-11-2	PCB-1016	т	ug/L	8082	<0.101		<0.1			*	<0.105	
11104-28-2	PCB-1221	т	ug/L	8082	<0.101		<0.1			*	<0.105	
11141-16-5	PCB-1232	т	ug/L	8082	<0.101		<0.1			*	<0.105	
53469-21-9	PCB-1242	т	ug/L	8082	<0.101		<0.1			*	<0.105	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.101		<0.1			*	<0.105	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798	3	8004-4799)	8004-098	1	8004-4800	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.101		<0.1			*	<0.105	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.101		<0.1			*	<0.105	
11100-14-4	PCB-1268	т	ug/L	8082	<0.101		<0.1			*	<0.105	
12587-46-1	Gross Alpha	т	pCi/L	9310	6.29	*	0.831	*		*	-2.9	*
12587-47-2	Gross Beta	Т	pCi/L	9310	10.3	*	51	*		*	3.78	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.221	*	0.451	*		*	0.425	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.734	*	-1.97	*		*	-1.18	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	42.5	*	38.9	*		*	1.29	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.253	*	0.291	*		*	-0.0218	*
10028-17-8	Tritium	Т	pCi/L	906.0	51.4	*	-33.1	*		*	75.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		8.68	J		*	<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.644	J	0.892	J		*	2.02	
s0586	Total Organic Halides	т	mg/L	9020	0.00686	BJ	0.0082	BJ		*	0.0218	В

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g., N	w−1	, MW-2, etc	:.)	361		362		363		364	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/7/2015 08	3:08	10/14/2015	07:23	10/8/2015	07:35	10/8/2015 0)8:46
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW361UG1	-16	MW362U	G1-16	MW363U0	G1-16	MW364UG	1-16
Laboratory San	mple ID Number (if applicable)		38281500	1	383342	001	3829010	001	3829010	03		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	10/13/201	5	10/19/2	015	10/14/20)15	10/14/201	15	
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWI	٧	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.434		0.135	J	0.164	J	0.391	
16887-00-6	Chloride(s)	т	mg/L	9056	31.1		8.53		32.5		31.6	
16984-48-8	Fluoride	т	mg/L	9056	0.141		0.295		0.155		0.12	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.16		0.496		4.16		0.947	
14808-79-8	Sulfate	т	mg/L	9056	73.9		35.2		23.6		67.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.13		29.97		30.08		30.1	
s0145	Specific Conductance	т	μ MH 0/cm	Field	472		762		401		456	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796		8004-4797	
Facility's Loca	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.39		336.21		323.3		323.25	
N238	Dissolved Oxygen	Т	mg/L	Field	2.99		3.52		1.51		2.52	
s0266	Total Dissolved Solids	Т	mg/L	160.1	229		386		191		221	
s0296	Нд	т	Units	Field	6.08		7		6.18		6.07	
NS215	Eh	т	mV	Field	780		620		630		509	
s0907	Temperature	т	°C	Field	16.33		14.11		16.5		16.61	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		1.78	*	0.032	J	0.0159	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00183	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0568		0.117		0.187		0.0711	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.176		0.0208	В	0.0272		0.0126	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	29.6		23.4		26.9		28.7	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.0025	J	<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000438	J	0.00158		0.00103		0.000529	J
7440-50-8	Copper	Т	mg/L	6020	0.000609	J	0.00214		<0.001		0.000578	J
7439-89-6	Iron	Т	mg/L	6020	0.0398	J	1.23		0.0827	J	0.161	
7439-92-1	Lead	Т	mg/L	6020	<0.002		0.000727	J	<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	14.1	*	10.7		10.4		12.1	
7439-96-5	Manganese	Т	mg/L	6020	0.0287		0.0284		0.147		0.046	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	D OF MEASURE			8004-479	5	8004-098	36	8004-479	6	8004-479	7		
Facility's	CONSTITUENT Molybdenum Nickel Potassium Rhodium Selenium Silver Sodium Tantalum Uranium Vanadium Zinc Vinyl acetate Acetone Acrolein			1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	D	OF	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		0.00109		<0.0005		<0.0005	
7440-02-0		Nickel	Т	mg/L	6020	0.000781	J	0.00252		0.00114	J	0.0034	
7440-09-7		Potassium	Т	mg/L	6020	2.11		0.486		1.47		1.97	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	0.00163	J	0.0018	J	<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	44.9		176		33.2		40.3	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005	*	<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		0.00582	В	<0.0002		<0.0002	
7440-62-2		Vanadium	Т	mg/L	6020	<0.01		0.0035	J	<0.01		<0.01	
7440-66-6		Zinc	Т	mg/L	6020	<0.01		0.00423	J	<0.01		0.0351	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0980	6	8004-479	96	8004-47	97
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00476		<0.001		0.00091	J	0.0044	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-479	5	8004-0986	ô	8004-479	96	8004-47	97	
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000205		<0.0000206		<0.0000178		<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.101		<0.1		0.06	J	<0.0971	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.101		<0.1		<0.0952		<0.0971	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.101		<0.1		<0.0952		<0.0971	
11141-16-5	PCB-1232	т	ug/L	8082	<0.101		<0.1		<0.0952		<0.0971	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.101		<0.1		0.06	J	<0.0971	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.101		<0.1		<0.0952		<0.0971	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479) 7
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.101		<0.1		<0.0952		<0.0971	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.101		<0.1		<0.0952		<0.0971	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.101		<0.1		<0.0952		<0.0971	
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.22	*	-3.87	*	-2.4	*	-1.68	*
12587-47-2	Gross Beta	T	pCi/L	9310	30.8	*	-1.38	*	2.53	*	30.2	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	HASL 300	0.188	*	1.2	*	0.066	*	0.288	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.82	*	-1.42	*	-3.52	*	-0.172	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	48.4	*	-5.99	*	6.6	*	39.5	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.121	*	0.142	*	0.276	*	0.00919	*
10028-17-8	Tritium	Т	pCi/L	906.0	9.79	*	13.5	*	43.2	*	171	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.848	J	2.82		0.831	J	0.624	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0052	BJ	0.025		0.00738	J	0.00686	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	4793	8004-0	983
Facility's Loc	cal Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	:.)	365		36	66	36	7	368	}
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/14/2015	08:52	10/8/201	5 09:54	10/8/201	5 12:20	10/14/201	5 10:18
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW365UG	91-16	MW366	JG1-16	MW3671	JG1-16	MW368U	G1-16
Laboratory San	ratory Sample ID Number (if applicable)					003	38290	1005	38290	1009	383342	2005
Date of Analys	sis (Month/Day/Year) For Volatile	ganics Anal	ysis.	10/19/20	15	10/14/	2015	10/14/2	2015	10/19/2	015	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN	1	SIE	DE	SID	E	SIDE	Ē
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.478		0.132	J	<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	5.73		38.7		9.38		1.3	
16984-48-8	Fluoride	Т	mg/L	9056	0.216		0.14		0.0706	J	0.327	
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.464		0.599		<0.1		0.318	
14808-79-8	Sulfate	т	mg/L	9056	56.3		53.4		22.9		29	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	23.99		30.09		30.06		23.99	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	415		475		281		457	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-0982	2	8004-4793		8004-0983	
Facility's Loc	cal Well or Spring Number (e.g., MW	I-1, I	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.2		323.42		323.42		327.14	
N238	Dissolved Oxygen	т	mg/L	Field	3.39		1.13		1.44		3.82	
s0266	Total Dissolved Solids	т	mg/L	160.1	196		246		136		277	
s0296	рн	Т	Units	Field	6.38		6.17		6.03		6.58	
NS215	Eh	Т	mV	Field	523		482		336		523	
s0907	Temperature	Т	°C	Field	15.72		16.83		20.11		16.67	
7429-90-5	Aluminum	Т	mg/L	6020	0.0448	*J	0.0228	J	0.0332	J	2.4	*
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		0.00471	J	0.00867	
7440-39-3	Barium	Т	mg/L	6020	0.11		0.168		0.163		0.0173	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.00749	BJ	0.13		0.0194		0.0125	BJ
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	21.5		30.7		14.6		21.6	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00203		0.000636	J	0.00566		0.00108	
7440-50-8	Copper	Т	mg/L	6020	0.00233		0.000376	J	0.000467	J	0.00317	
7439-89-6	Iron	Т	mg/L	6020	0.0563	J	0.0819	J	12.5		1.17	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		0.00121	J
7439-95-4	Magnesium	Т	mg/L	6020	10.2		12.7		7.75		8.32	
7439-96-5	Manganese	Т	mg/L	6020	0.0428		0.0655		1.61		0.0416	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	-7 Molybdenum -0 Nickel -7 Potassium -6 Rhodium -2 Selenium -4 Silver -5 Sodium -7 Tantalum -0 Thallium -1 Uranium -1 Uranium -2 Vanadium -6 Zinc 4 Vinyl acetate Acetone 8 Acrolein 1 Acrylonitrile Benzene					8004-098	4	8004-098	32	8004-479	3	8004-098	33
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	0.000172	J	<0.0005		<0.0005		0.00276	
7440-02-0		Nickel	Т	mg/L	6020	0.00727		0.00118	J	0.0032		0.00372	
7440-09-7		Potassium	Т	mg/L	6020	0.241	J	1.84		2.71		0.875	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	52.8		41.6		17.8		86.2	
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	0.000135	BJ	<0.0002		<0.0002		0.000347	В
7440-62-2		Vanadium	Т	mg/L	6020	0.0033	J	<0.01		<0.01		0.0168	
7440-66-6		Zinc	Т	mg/L	6020	0.0243		<0.01		0.00767	J	0.0074	J
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982	2	8004-479	93	8004-09	33
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.00383		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Ethylbenzene 2-Hexanone 1 Iodomethane 3-1 Methane, Dibromochloro- 5 Carbon Tetrachloride Dichloromethane 1 Methyl isobutyl ketone Propane, 1,2-Dibromo-3-chloro Propane, 1,2-Dichloro- 1 trans-1,3-Dichloro-1-propene 1 cis-1,3-Dichloro-1-propene 1 Trichlorofluoromethane 1 1,2,3-Trichloropropane Enzene, 1,2-Dichloro- Benzene, 1,4-Dichloro- Benzene, 1,4-Dichloro-				8004-098	4	8004-0982	2	8004-479	93	8004-09	83
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000205		<0.0000204		<0.0000209		<0.0000206	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	0.182		<0.0971		<0.0952		0.135	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.098		<0.0971		<0.0952		<0.0962	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.098		<0.0971		<0.0952		<0.0962	
11141-16-5	PCB-1232	т	ug/L	8082	<0.098		<0.0971		<0.0952		<0.0962	
53469-21-9	PCB-1242	Т	ug/L	8082	0.182		<0.0971		<0.0952		0.135	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.098		<0.0971		<0.0952		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982)	8004-479	3	8004-098	33
Facility's Loc	cal Well or Spring Number (e.g., N	MW-1	L, MW-2, et	:c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.098		<0.0971		<0.0952		<0.0962	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.098		<0.0971		<0.0952		<0.0962	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.098		<0.0971		<0.0952		<0.0962	
12587-46-1	Gross Alpha	Т	pCi/L	9310	5.05	*	3.67	*	1.13	*	1.75	*
12587-47-2	Gross Beta	Т	pCi/L	9310	0.677	*	29.4	*	3.61	*	-0.465	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	HASL 300	0.391	*	0.445	*	1.42	*	0.238	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.428	*	-0.447	*	-1.08	*	-0.343	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-11.4	*	48.6	*	-4.6	*	-3.55	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.0706	*	-0.0516	*	0.0524	*	-0.143	*
10028-17-8	Tritium	Т	pCi/L	906.0	-13.4	*	-131	*	-234	*	-106	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.62	J	0.836	J	0.593	J	1.48	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0229		0.00524	J	<0.01		0.00524	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	4819	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g., N	w−1	, MW-2, etc	:.)	369		37	0	37	1	372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/13/2015	11:29	10/13/20	15 14:05	10/13/201	15 12:47	10/13/2015	5 08:36
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW369U0	G1-16	MW370	UG1-16	MW3711	JG1-16	MW372U	G1-16
Laboratory San	oratory Sample ID Number (if applicable)					003	38320	6005	38320	6007	383206	001
Date of Analys	of Analysis (Month/Day/Year) For Volatile Organics				10/16/20)15	10/16/	2015	10/16/	2015	10/16/20	015
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	UP		U	Р	UI	P	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.378	J	<0.2		0.503		0.663	J
16887-00-6	Chloride(s)	Т	mg/L	9056	34.6		5.57		39.4		49.4	
16984-48-8	Fluoride	Т	mg/L	9056	0.181		0.276		0.154		0.162	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.599		0.278	J	1.28		0.312	
14808-79-8	Sulfate	т	mg/L	9056	7.89		11		19.5		116	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.85		29.87		29.86		29.84	
s0145	Specific Conductance	т	μ M H0/cm	Field	370		432		778		751	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	
Facility's Loca	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	324.84		324.82		341.65		324.86	
N238	Dissolved Oxygen	T	mg/L	Field	1.73		4.29		1.78		1.72	
s0266	Total Dissolved Solids	Т	mg/L	160.1	189		414		211		419	
s0296	Нд	т	Units	Field	6.24		6.19		6.63		6.29	
NS215	Eh	т	mV	Field	382		416		393		294	
s0907	Temperature	Т	°C	Field	17.06		19.06		18.39		15.39	
7429-90-5	Aluminum	Т	mg/L	6020	0.0774		<0.05		0.0815		0.0637	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.389		0.207		0.177		0.0518	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0139	J	0.0328		<0.015		1.28	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	17.1		27.3		35.8		61.9	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00742		0.000578	J	<0.001		0.000346	J
7440-50-8	Copper	Т	mg/L	6020	0.00145		0.000816	J	0.000533	J	<0.001	
7439-89-6	Iron	Т	mg/L	6020	0.148		<0.1		0.0702	J	0.502	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	6.93		11.6		14.5		23.5	
7439-96-5	Manganese	Т	mg/L	6020	0.019		0.00374	J	0.00182	J	0.0199	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	D OF MEASURE					8004-482	0	8004-481	18	8004-481	9	8004-480)8
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴		CONSTITUENT	D	OF	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		0.000377	J	0.000402	J
7440-02-0		Nickel	Т	mg/L	6020	0.00888		0.00116	J	0.00137	J	0.00135	J
7440-09-7		Potassium	Т	mg/L	6020	0.554		2.38		0.418		2.42	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	0.00153	J	<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	48.3		50.4		136		58.9	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.0018		<0.0002	
7440-62-2		Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6		Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818	8	8004-48	19	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		0.00032	J
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00123		0.0008	J	<0.001		0.00918	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	8	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., M	ſW−1	l, MW-2, et	:c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002		<0.0000205		<0.0000206		<0.0000206	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0971		<0.098		<0.0962		0.0511	J
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0971		<0.098		<0.0962		<0.0962	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0971		<0.098		<0.0962		<0.0962	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0971		<0.098		<0.0962		<0.0962	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0971		<0.098		<0.0962		0.0511	J
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0971		<0.098		<0.0962		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g.,)	MW-	1, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0971		<0.098		<0.0962		<0.0962	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0971		<0.098		<0.0962		<0.0962	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0971		<0.098		<0.0962		<0.0962	
12587-46-1	Gross Alpha	т	pCi/L	9310	-2.55	*	0.324	*	-1.57	*	2.94	*
12587-47-2	Gross Beta	Т	pCi/L	9310	28	*	33.1	*	3.94	*	86.8	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	1.19	*	0.903	*	0.44	*	1.03	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.78	*	-1.21	*	-1.78	*	-1.19	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	46.7	*	50.5	*	-14.7	*	89.5	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.445	*	0.414	*	-0.0226	*	-0.381	*
10028-17-8	Tritium	Т	pCi/L	906.0	-106	*	-18	*	-62.1	*	-77.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		31.1		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	1.12	J	0.847	J	2.02		1.91	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0187		0.0119		0.0105		0.0138	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	2	8004-09	990	8004-09	985	8004-098	8
Facility's Loc	cal Well or Spring Number (e.g., N	w−1	., MW-2, etc	.)	373		374		375		376	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/13/2015 1	0:14	10/14/2015 12:26		10/14/2015 13:51		NA	
Duplicate ("Y	" or "N") ²				N		N	N			N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	cility Sample ID Number (if applicable)						MW374U	G1-16	MW375UG1-16		NA	
Laboratory San	mple ID Number (if applicable)			38320600	383206009		383342007		009	NA		
Date of Analys	Date of Analysis (Month/Day/Year) For Volatile Or				10/16/2015		10/19/2015		10/20/2015		NA	
Gradient with	respect to Monitored Unit (UP, DC), NWC	SIDE, UNKN	OWN)	UP	UP		UP			SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
24959-67-9	Bromide	т	mg/L	9056	0.575	J	0.919		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	48.6		74.8		5.69			*
16984-48-8	Fluoride	т	mg/L	9056	0.168		0.125		0.221			*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.973		<0.2		1.56			*
14808-79-8	Sulfate	т	mg/L	9056	160		6.31		23.4			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.84		30.02		30.02			*
s0145	Specific Conductance	Т	μ M H0/cm	Field	849		701		350			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-099)	8004-0985		8004-0988	3
Facility's Lo	ocal Well or Spring Number (e.g., MV	I-1,	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.81		335.06		330.52			*
N238	Dissolved Oxygen	т	mg/L	Field	1.99		1.1		2.14			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	480		289		146			*
s0296	рн	Т	Units	Field	6.19		6.62		6.5			*
NS215	Eh	Т	mV	Field	312		449		468			*
s0907	Temperature	Т	°C	Field	16.56		18.89		18.94			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0841	*	0.027	*J		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00289	J	0.00205	J		*
7440-39-3	Barium	Т	mg/L	6020	0.026		0.148		0.165			*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	Т	mg/L	6020	1.75		0.0133	BJ	0.008	BJ		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	71.8		21.8		14			*
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	Т	mg/L	6020	0.000271	J	0.00212		<0.001			*
7440-50-8	Copper	Т	mg/L	6020	0.00048	J	0.000941	J	0.000777	J		*
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.885		<0.1			*
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020	26.1		6.4		6			*
7439-96-5	Manganese	Т	mg/L	6020	0.0146		0.224		0.00118	J		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	38
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		0.00021	J	<0.0005			*
7440-02-0		Nickel	Т	mg/L	6020	0.000914	J	0.00124	J	0.00163	J		*
7440-09-7		Potassium	Т	mg/L	6020	2.7		0.456		0.274	J		*
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020	<0.005		0.00523		0.0027	J		*
7440-22-4		Silver	Т	mg/L	6020	<0.001		0.000114	J	<0.001			*
7440-23-5		Sodium	Т	mg/L	6020	59.5		131		61.3			*
7440-25-7		Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*		*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		0.000229	В	<0.0002			*
7440-62-2		Vanadium	Т	mg/L	6020	<0.01		0.00757	J	0.0103			*
7440-66-6		Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01			*
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00914		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	0	8004-098	35	8004-09	188
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000205		<0.0000202		<0.0000204			*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	т	ug/L	8082	<0.099		<0.099		<0.098			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.099		<0.099		<0.098			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.099		<0.099		<0.098			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.099		<0.099		<0.098			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.099		<0.099		<0.098			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.099		<0.099		<0.098			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990)	8004-098	5	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.099		<0.099		<0.098			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.099		<0.099		<0.098			*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.099		<0.099		<0.098			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-3.1	*	6.84	*	-4.78	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	10.7	*	-5.83	*	2.77	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	HASL 300	0.73	*	0.596	*	0.201	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.175	*	-0.321	*	1.07	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	15.9	*	-15.4	*	-7.41	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.022	*	0.675	*	-0.208	*		*
10028-17-8	Tritium	Т	pCi/L	906.0	-130	*	2.84	*	-81.5	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060	1.11	J	2.26		0.847	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0112		0.0201		0.0104			*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-00	00	0000-00	00	0000-000)0
Facility's Loc	al Well or Spring Number (e.g., N	1 W−1	L, MW-2, etc	:.)	377		E. BLAN	lK	F. BLAN	IK	T. BLANK	(1
Sample Sequenc	e #				1		1		1		1	
If sample is a B	clank, specify Type: (F)ield, (T)rip,	(M)€	ethod, or (E)	quipment	NA		Е		F		Т	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		NA		10/8/2015	06:55	10/8/2015 12:30		10/7/2015 0	7:30
Duplicate ("Y"	or "N") ²				N		N	N			N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	Facility Sample ID Number (if applicable)						RI1UG1-	16	FB1UG1-	-16	TB1UG1-	16
Laboratory Sam	Laboratory Sample ID Number (if applicable)						3829010	12	3829010	11	38281500)9
Date of Analys	is (Month/Day/Year) For Volatile	e 01	rganics Anal	ysis	NA		10/14/2015		10/14/2015		10/13/20	15
Gradient with	respect to Monitored Unit (UP, DC	NWC	, SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MH 0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989)	0000-0000)	0000-0000		0000-0000)
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	377		E. BLANK		F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рН	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	Т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	Т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	Т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	Т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	Т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	Т	mg/L	6020		*	<0.001		<0.001			*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	Т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	00
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	(1
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7		Molybdenum	Т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0		Nickel	Т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7		Potassium	Т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6		Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5		Sodium	Т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7		Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0		Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	Т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2		Vanadium	Т	mg/L	6020		*	<0.01		<0.01			*
7440-66-6		Zinc	Т	mg/L	6020		*	<0.01		<0.01			*
108-05-4		Vinyl acetate	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	T	mg/L	8260		*	<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000)	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	377		E. BLAN	(F. BLAN	IK	T. BLAN	(1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number					9	0000-0000		0000-0000		0000-0000	
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	377		E. BLANK	(F. BLAN	IK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000208		<0.0000208		<0.0000204	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.0952		<0.0952			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0952		<0.0952			*
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.0952		<0.0952			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0952		<0.0952			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0952		<0.0952			*
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.0952		<0.0952			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number					ı	0000-0000		0000-0000		0000-0000	
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	:c.)	377		E. BLANK		F. BLAN	K	T. BLANK	Í
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0952		<0.0952			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0952		<0.0952			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0952		<0.0952			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	-0.0109	*	-0.147	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	3.89	*	4.11	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*	0.178	*	0.467	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	-1.01	*	-0.094	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	1.59	*	-2.63	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	-0.042	*	0.194	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	155	*	132	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-00	00	8004-4793	
Facility's Loc	acility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						T. BLAN	К 3	T. BLANK 4		367	
Sample Sequence	Sample Sequence #						1		1		2	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	Т		Т		Т		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		10/8/2015 0	6:50	10/13/2015	07:45	10/14/2015	06:50	10/8/2015 12:2	20
Duplicate ("Y"	or "N") ²				N		N		N		Υ	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				TB2UG1-	16	TB3UG1	-16	TB4UG1-	-16	MW367DUG1-	16
Laboratory Sam	ple ID Number (if applicable)				3829010	13	3832060)11	3833420	11	382901007	
Date of Analys	is (Month/Day/Year) For Volatile	e 01	ganics Anal	ysis	10/14/201	15	10/16/20	15	10/20/20	15	10/14/2015	
Gradient with	respect to Monitored Unit (UP, DO	NWC	SIDE, UNKN	OWN)	NA		NA		NA		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*	0.131	J
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*	9.39	
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*	0.0708	J
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*	<0.2	
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*	22.8	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*	30.06	
s0145	Specific Conductance	т	μ MHO/cm	Field		*		*		*	281	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000		0000-0000		8004-4793	3
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK	1	367	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*	323.42	
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*	1.44	
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*	124	
s0296	рН	Т	Units	Field		*		*		*	6.03	
NS215	Eh	Т	mV	Field		*		*		*	336	
s0907	Temperature	Т	°C	Field		*		*		*	20.11	
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*	0.0298	J
7440-36-0	Antimony	Т	mg/L	6020		*		*		*	<0.003	
7440-38-2	Arsenic	Т	mg/L	6020		*		*		*	0.00532	
7440-39-3	Barium	Т	mg/L	6020		*		*		*	0.165	
7440-41-7	Beryllium	Т	mg/L	6020		*		*		*	<0.0005	
7440-42-8	Boron	Т	mg/L	6020		*		*		*	0.0202	
7440-43-9	Cadmium	т	mg/L	6020		*		*		*	<0.001	
7440-70-2	Calcium	Т	mg/L	6020		*		*		*	14.6	
7440-47-3	Chromium	т	mg/L	6020		*		*		*	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020		*		*		*	0.00587	
7440-50-8	Copper	Т	mg/L	6020		*		*		*	<0.001	
7439-89-6	Iron	Т	mg/L	6020		*		*		*	12.6	
7439-92-1	Lead	Т	mg/L	6020		*		*		*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020		*		*		*	7.97	
7439-96-5	Manganese	Т	mg/L	6020		*		*		*	1.69	
7439-97-6	Mercury	Т	mg/L	7470		*		*		*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ , Facility Well/Spring Number		0000-000	0	0000-0000		0000-000	00	8004-479	93				
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	(3	T. BLANK 4		367	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020		*		*		*	<0.0005	
7440-02-0		Nickel	Т	mg/L	6020		*		*		*	0.00308	
7440-09-7		Potassium	Т	mg/L	6020		*		*		*	2.78	
7440-16-6		Rhodium	T	mg/L	6020		*		*		*	<0.005	
7782-49-2		Selenium	T	mg/L	6020		*		*		*	<0.005	
7440-22-4		Silver	T	mg/L	6020		*		*		*	<0.001	
7440-23-5		Sodium	T	mg/L	6020		*		*		*	17.9	
7440-25-7		Tantalum	T	mg/L	6020		*		*		*	<0.005	
7440-28-0		Thallium	T	mg/L	6020		*		*		*	<0.002	
7440-61-1		Uranium	T	mg/L	6020		*		*		*	<0.0002	
7440-62-2		Vanadium	T	mg/L	6020		*		*		*	<0.01	
7440-66-6		Zinc	T	mg/L	6020		*		*		*	0.00739	J
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000		0000-0000		8004-479	93
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	:c.)	T. BLANK 2	2	T. BLANK	3	T. BLAN	K 4	367	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		0.00031	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-000	0	0000-0000		0000-0000		8004-4793	
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK	3	T. BLANK 4		367	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000209		<0.000021		<0.0000208		<0.0000207	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*	<0.962	
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*	<0.962	
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*	<0.962	
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*	<0.962	
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*	<0.962	
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*	<0.962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number					0	0000-0000		0000-0000	0	8004-479	3
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		T. BLANK	4	367	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*	<0.962	
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*	<0.962	
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*	<0.962	
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*	-1.29	*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*	0.952	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*		*		*	1.02	*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		*	4.25	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		*	-6.15	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		*	1.03	*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*	100	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*	<20	
57-12-5	Cyanide	Т	mg/L	9012		*		*		*	<0.2	
20461-54-5	Iodide	Т	mg/L	300.0		*		*		*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*	0.607	J
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*	<0.01	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4798 MW357	MW357UG1-16	Magnesium	X	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha		TPU is 7.72. Rad error is 7.64.
		Gross beta		TPU is 7.26. Rad error is 7.04.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.436. Rad error is 0.436.
		Strontium-90		TPU is 1.26. Rad error is 1.26.
		Technetium-99		TPU is 14.1. Rad error is 13.3.
		Thorium-230		TPU is 0.181. Rad error is 0.18.
		Tritium		TPU is 98.5. Rad error is 98.
8004-4799 MW358	MW358UG1-16	Magnesium	X	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha		TPU is 6.43. Rad error is 6.41.
		Gross beta		TPU is 14. Rad error is 11.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.45. Rad error is 0.45.
		Strontium-90		TPU is 1.3. Rad error is 1.3.
		Technetium-99		TPU is 14. Rad error is 13.3.
		Thorium-230		TPU is 0.545. Rad error is 0.539.
		Tritium		TPU is 78.5. Rad error is 78.5.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	<u>.</u>	Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample war collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	Campio is	1,2-Dichlorobenzene	riag	During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
			PCB-1248	
		PCB-1254		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		Iodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4800 MW360	MW360UG1-16	Magnesium	X	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha		TPU is 5.48. Rad error is 5.48.
		Gross beta		TPU is 6.43. Rad error is 6.35.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.41. Rad error is 0.41.
		Strontium-90		TPU is 1.83. Rad error is 1.83.
		Technetium-99		TPU is 11.4. Rad error is 11.4.
		Thorium-230		TPU is 0.439. Rad error is 0.438.
		Tritium		TPU is 102. Rad error is 101.
004-4795 MW361	MW361UG1-16	Magnesium	Х	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha		TPU is 5.72. Rad error is 5.71.
		Gross beta		TPU is 10.3. Rad error is 8.92.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.333. Rad error is 0.333.
		Strontium-90		TPU is 4.37. Rad error is 4.35.
		Technetium-99		TPU is 13.2. Rad error is 12.
		Thorium-230		TPU is 0.468. Rad error is 0.465.
		Tritium		TPU is 88.7. Rad error is 88.7.
004-0986 MW362	MW362UG1-16	Aluminum	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 5.03. Rad error is 5.03.
		Gross beta		TPU is 4.87. Rad error is 4.87.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.639. Rad error is 0.637.
		Strontium-90		TPU is 1.64. Rad error is 1.64.
		Technetium-99		TPU is 12.7. Rad error is 12.7.
		Thorium-230		TPU is 0.535. Rad error is 0.532.
		Tritium		TPU is 124. Rad error is 124.
004-4796 MW363	MW363UG1-16	Gross alpha		TPU is 6.48. Rad error is 6.48.
		Gross beta		TPU is 7.17. Rad error is 7.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.296. Rad error is 0.296.
		Strontium-90		TPU is 1.43. Rad error is 1.43.
		Technetium-99		TPU is 11.2. Rad error is 11.2.
		Thorium-230		TPU is 0.45. Rad error is 0.444.
		Tritium		TPU is 94.7. Rad error is 94.3.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4797 MW364	MW364UG1-16	Gross alpha		TPU is 5.96. Rad error is 5.96.
		Gross beta		TPU is 12.1. Rad error is 11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.34. Rad error is 0.34.
		Strontium-90		TPU is 3. Rad error is 3.
		Technetium-99		TPU is 13.1. Rad error is 12.3.
		Thorium-230		TPU is 0.294. Rad error is 0.292.
		Tritium		TPU is 121. Rad error is 117.
004-0984 MW365	MW365UG1-16	Aluminum	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 7.16. Rad error is 7.08.
		Gross beta		TPU is 7.89. Rad error is 7.89.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.39. Rad error is 0.389.
		Strontium-90		TPU is 3.48. Rad error is 3.48.
		Technetium-99		TPU is 12.4. Rad error is 12.4.
		Thorium-230		TPU is 0.566. Rad error is 0.563.
		Tritium		TPU is 123. Rad error is 123.
004-0982 MW366	MW366UG1-16	Gross alpha		TPU is 5.4. Rad error is 5.35.
		Gross beta		TPU is 9.7. Rad error is 8.43.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.424. Rad error is 0.423.
		Strontium-90		TPU is 1.32. Rad error is 1.32.
		Technetium-99		TPU is 13.2. Rad error is 12.
		Thorium-230		TPU is 0.317. Rad error is 0.316.
		Tritium		TPU is 165. Rad error is 165.
004-4793 MW367	MW367UG1-16	Gross alpha		TPU is 5.67. Rad error is 5.66.
		Gross beta		TPU is 6.04. Rad error is 6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.721. Rad error is 0.719.
		Strontium-90		TPU is 1.95. Rad error is 1.95.
		Technetium-99		TPU is 10.9. Rad error is 10.9.
		Thorium-230		TPU is 0.399. Rad error is 0.397.
		Tritium		TPU is 164. Rad error is 164.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	MW368UG1-16	Aluminum	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 5.92. Rad error is 5.92.
		Gross beta		TPU is 5.78. Rad error is 5.78.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.309. Rad error is 0.309.
		Strontium-90		TPU is 1.53. Rad error is 1.53.
		Technetium-99		TPU is 12.2. Rad error is 12.2.
		Thorium-230		TPU is 0.384. Rad error is 0.383.
		Tritium		TPU is 120. Rad error is 120.
004-4820 MW369	MW369UG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 4.73. Rad error is 4.73.
		Gross beta		TPU is 11.7. Rad error is 10.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.633. Rad error is 0.632.
		Strontium-90		TPU is 1.04. Rad error is 1.04.
		Technetium-99		TPU is 13.7. Rad error is 12.6.
		Thorium-230		TPU is 0.334. Rad error is 0.333.
		Tritium		TPU is 117. Rad error is 117.
004-4818 MW370	MW370UG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 5. Rad error is 4.99.
		Gross beta		TPU is 10.6. Rad error is 9.14.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.573. Rad error is 0.572.
		Strontium-90		TPU is 1.83. Rad error is 1.83.
		Technetium-99		TPU is 14.8. Rad error is 13.7.
		Thorium-230		TPU is 0.599. Rad error is 0.591.
		Tritium		TPU is 123. Rad error is 123.
004-4819 MW371	MW371UG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 5.73. Rad error is 5.72.
		Gross beta		TPU is 6.2. Rad error is 6.17.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.419. Rad error is 0.418.
		Strontium-90		TPU is 1.41. Rad error is 1.41.
		Technetium-99		TPU is 11.4. Rad error is 11.4.
		Thorium-230		TPU is 0.379. Rad error is 0.378.
		Tritium		TPU is 121. Rad error is 121.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4808 MW372	MW372UG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 6.42. Rad error is 6.36.
		Gross beta		TPU is 19.6. Rad error is 13.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.656. Rad error is 0.654.
		Strontium-90		TPU is 1.59. Rad error is 1.59.
		Technetium-99		TPU is 16.6. Rad error is 13.3.
		Thorium-230		TPU is 0.372. Rad error is 0.372.
		Tritium		TPU is 121. Rad error is 121.
004-4792 MW373	MW373UG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 5.27. Rad error is 5.26.
		Gross beta		TPU is 7.04. Rad error is 6.82.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.477. Rad error is 0.476.
		Strontium-90		TPU is 1.81. Rad error is 1.81.
		Technetium-99		TPU is 12.5. Rad error is 12.3.
		Thorium-230		TPU is 0.338. Rad error is 0.337.
		Tritium		TPU is 118. Rad error is 118.
3004-0990 MW374	MW374UG1-16	Aluminum	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 7.14. Rad error is 7.05.
		Gross beta		TPU is 5.7. Rad error is 5.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.405. Rad error is 0.405.
		Strontium-90		TPU is 3.64. Rad error is 3.64.
		Technetium-99		TPU is 11.8. Rad error is 11.8.
		Thorium-230		TPU is 0.862. Rad error is 0.844.
		Tritium		TPU is 124. Rad error is 124.
004-0985 MW375	MW375UG1-16	Aluminum	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 3.21. Rad error is 3.21.
		Gross beta		TPU is 5.91. Rad error is 5.89.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.358. Rad error is 0.358.
		Strontium-90		TPU is 3.41. Rad error is 3.4.
		Technetium-99		TPU is 11.6. Rad error is 11.6.
		Thorium-230		TPU is 0.326. Rad error is 0.326.
		Tritium		TPU is 120. Rad error is 120.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

004-0988 MW376	Molybdenum Nickel Potassium Rhodium Selenium Silver	During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected.
	Potassium Rhodium Selenium	During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was
	Rhodium Selenium	collected. During sampling, the well went dry; therefore, no sample was
	Selenium	
		collected.
	Silver	During sampling, the well went dry; therefore, no sample was collected.
		During sampling, the well went dry; therefore, no sample was collected.
	Sodium	During sampling, the well went dry; therefore, no sample was collected.
	Tantalum	During sampling, the well went dry; therefore, no sample was collected.
	Thallium	During sampling, the well went dry; therefore, no sample was collected.
	Uranium	During sampling, the well went dry; therefore, no sample was collected.
	Vanadium	During sampling, the well went dry; therefore, no sample was collected.
	Zinc	During sampling, the well went dry; therefore, no sample was collected.
	Vinyl acetate	During sampling, the well went dry; therefore, no sample was collected.
	Acetone	During sampling, the well went dry; therefore, no sample was collected.
	Acrolein	During sampling, the well went dry; therefore, no sample was collected.
	Acrylonitrile	During sampling, the well went dry; therefore, no sample was collected.
	Benzene	During sampling, the well went dry; therefore, no sample was collected.
	Chlorobenzene	During sampling, the well went dry; therefore, no sample was collected.
	Xylenes	During sampling, the well went dry; therefore, no sample was collected.
	Styrene	During sampling, the well went dry; therefore, no sample was collected.
	Toluene	During sampling, the well went dry; therefore, no sample was collected.
	Chlorobromomethane	During sampling, the well went dry; therefore, no sample was collected.
	Bromodichloromethane	During sampling, the well went dry; therefore, no sample was collected.
	Tribromomethane	During sampling, the well went dry; therefore, no sample was collected.
	Methyl bromide	During sampling, the well went dry; therefore, no sample was collected.
	Methyl Ethyl Ketone	During sampling, the well went dry; therefore, no sample was collected.
	trans-1,4-Dichloro-2-butene	During sampling, the well went dry; therefore, no sample was collected.
	Carbon disulfide	During sampling, the well went dry; therefore, no sample was collected.
	Chloroethane	During sampling, the well went dry; therefore, no sample was

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	<u> </u>	Chloroform	· · ·	During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		1,2-Dichlorobenzene	- J	During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

004-0989 MW377	Molybdenum Nickel Potassium Rhodium Selenium Silver Sodium Tantalum Thallium Uranium	During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected.
	Potassium Rhodium Selenium Silver Sodium Tantalum Thallium	During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected.
	Rhodium Selenium Silver Sodium Tantalum Thallium	collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was
	Selenium Silver Sodium Tantalum Thallium	collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected.
	Silver Sodium Tantalum Thallium	collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was
	Sodium Tantalum Thallium	collected. During sampling, the well went dry; therefore, no sample was collected. During sampling, the well went dry; therefore, no sample was
	Tantalum Thallium	collected. During sampling, the well went dry; therefore, no sample was
	Thallium	
	Uranium	During sampling, the well went dry; therefore, no sample was collected.
		During sampling, the well went dry; therefore, no sample was collected.
	Vanadium	During sampling, the well went dry; therefore, no sample was collected.
	Zinc	During sampling, the well went dry; therefore, no sample was collected.
	Vinyl acetate	During sampling, the well went dry; therefore, no sample was collected.
	Acetone	During sampling, the well went dry; therefore, no sample was collected.
	Acrolein	During sampling, the well went dry; therefore, no sample was collected.
	Acrylonitrile	During sampling, the well went dry; therefore, no sample was collected.
	Benzene	During sampling, the well went dry; therefore, no sample was collected.
	Chlorobenzene	During sampling, the well went dry; therefore, no sample was collected.
	Xylenes	During sampling, the well went dry; therefore, no sample was collected.
	Styrene	During sampling, the well went dry; therefore, no sample was collected.
	Toluene	During sampling, the well went dry; therefore, no sample was collected.
	Chlorobromomethane	During sampling, the well went dry; therefore, no sample was collected.
	Bromodichloromethane	During sampling, the well went dry; therefore, no sample was collected.
	Tribromomethane	During sampling, the well went dry; therefore, no sample was collected.
	Methyl bromide	During sampling, the well went dry; therefore, no sample was collected.
	Methyl Ethyl Ketone	During sampling, the well went dry; therefore, no sample was collected.
	trans-1,4-Dichloro-2-butene	During sampling, the well went dry; therefore, no sample was collected.
	Carbon disulfide	During sampling, the well went dry; therefore, no sample was collected.
	Chloroethane	During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	Campio is	1,2-Dichlorobenzene	riag	During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1UG1-16	Bromide	•	Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pH		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 5.27. Rad error is 5.27.
		Gross beta		TPU is 8. Rad error is 7.97.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.405. Rad error is 0.405.
		Strontium-90		TPU is 1.23. Rad error is 1.23.
		Technetium-99		TPU is 10.7. Rad error is 10.7.
		Thorium-230		TPU is 0.34. Rad error is 0.339.
		Tritium		TPU is 117. Rad error is 113.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG1-16	Bromide	ı lag	Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 4.73. Rad error is 4.73.
		Gross beta		TPU is 7.19. Rad error is 7.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.491. Rad error is 0.49.
		Strontium-90		TPU is 2.29. Rad error is 2.29.
		Technetium-99		TPU is 10.9. Rad error is 10.9.
		Thorium-230		TPU is 0.385. Rad error is 0.38.
		Tritium		TPU is 113. Rad error is 110.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG1-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

 $Finds/Unit: \underline{KY8-890-008-982 \ / \ 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG1-16	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG1-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

 $Finds/Unit: \underline{KY8-890-008-982 \ / \ 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG1-16	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG1-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG1-16	Zinc	•	Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

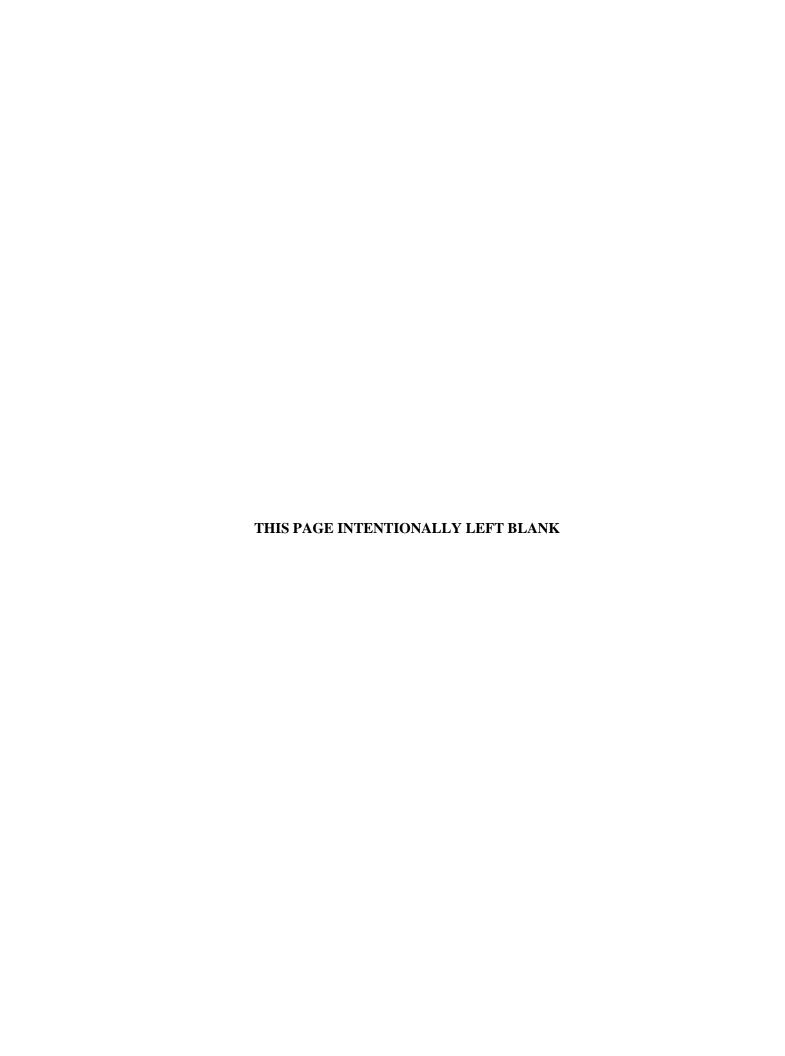
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG1-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>


LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG1-16	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
004-4793 MW367	MW367DUG1-16	Gross alpha		TPU is 3.42. Rad error is 3.42.
		Gross beta		TPU is 5.19. Rad error is 5.18.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.605. Rad error is 0.604.
		Strontium-90		TPU is 3.21. Rad error is 3.13.
		Technetium-99		TPU is 10.4. Rad error is 10.4.
		Thorium-230		TPU is 0.745. Rad error is 0.717.
		Tritium		TPU is 106. Rad error is 104.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/CONTAINED—QUARTERLY, 4th CY 2015

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-980-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2015 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2015 data used to conduct the statistical analyses were collected in October 2015. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that had exceeded the historical background using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the

current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

lower $TL = X - (K \times S)$

-

 $^{^1}$ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper TL = X + (K \times S)

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters by groundwater system from the available data set and the statistical test performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2015. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a well is sampled on two different dates, the most current available data are used. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a *	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^a *	SG	UCRS
MW377 ^a *	SG	UCRS

***NOTE:** The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters

Aluminum

Beta Activity

Boron

Bromide

Calcium

Chemical Oxygen Demand (COD)

Chloride

cis-1,2-Dichloroethene

Cobalt

Conductivity

Copper

Dissolved Oxygen

Dissolved Solids

Iron

Magnesium

Manganese

Molybdenum

Nickel

Oxidation-Reduction Potential

PCB, Total

PCB-1242

pH*

Potassium

Radium-226

Sodium

Sulfate

Technetium-99

Thorium-230

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Uranium

Vanadium

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	0	6	Yes
Antimony	6	6	0	No
Aroclor-1268	6	6	0	No
Beryllium	6	6	0	No
Boron	6	6	0	No
Beta Activity	6	6	0	No
Bromide	6	3	3	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform		6	0	No
Bromomethane	6	6	0	No
	6			
Calcium Carbon Disulfide	6	0	6	Yes No
	6	6		
Chemical Oxygen Demand (COD)	6	6	0	No
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	2	4	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Methylene Chloride	6	6	0	No.
Molybdenum	6	1	5	Yes
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	4	2	Yes
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	4	2	Yes
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	4	2	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	6	0	No
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	6	0	No
Trichlorofluoromethane	6	6	0	No
Uranium	6	4	2	Yes
Vanadium	6	4	2	Yes
Vinyl Acetate	6	6	0	No
Zinc Rold denotes personators with at least one	6	3	3	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1.2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	1	5	Yes
Antimony	6	6	0	No
Aroclor-1268	6	6	0	No
Beryllium	6	6	0	No
Beta Activity	6	3	3	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform			0	
	6	6	0	No No
Bromomethane	6	6		
Carbon Disulfide	6	0	6	Yes
	6	6	0	No
Chemical Oxygen Demand (COD)	6	6	0	No
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	5	1	Yes
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	1	5	Yes
Conductivity	6	0	6	Yes
Copper	6	3	3	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	0	6	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Methylene Chloride	6	6	0	No
Molybdenum	6	5	1	Yes
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	4	2	Yes
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	4	2	Yes
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
pН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	2	4	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Uranium	6	5	1	Yes
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	6	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	6	0	No
Aroclor-1268	6	6	0	No
Beryllium	6	6	0	No
Beta activity	6	1	5	Yes
Boron	6	0	6	Yes
Bromide	6	1	5	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon Disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	4	2	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
	6	6	0	No
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	0	6	Yes
	6	0	6	Yes
Conductivity		0		
Copper	6		6	Yes
Cyanide		6		No
Dibromochloromethane	6	6	0	No
Dibromomethane Divertibally and a Total	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	2	4	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes

Exhibit D.5. Tests Summary for Qualified Parameters—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Methylene chloride	6	6	0	No
Molybdenum	6	6	0	No
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	5	1	Yes
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	3	3	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Uranium	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 27, 29, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which include constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

<u>URGA</u>

This quarter's results identified historical background exceedances for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, and technetium-99.

LRGA

This quarter's results identified historical background exceedances for beta activity, oxidation-reduction potential, thorium-230, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW358: Beta Activity, Oxidation- Reduction Potential
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential, Sodium	MW361: Oxidation-Reduction Potential, Technetium-99
MW368: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential
MW371: Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential, Thorium-230
MW374: Oxidation-Reduction Potential	MW369: Oxidation-Reduction Potential	MW370: Oxidation-Reduction Potential, Technetium-99
MW375: Oxidation-Reduction Potential, Sulfate	MW372: Beta Activity, Calcium, Conductivity, Dissolved Solids, Magnesium, Oxidation- Reduction Potential, Technetium-99	MW373: Oxidation-Reduction Potential

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration
Copper	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW362, MW365, and MW368
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW362, MW365, MW368, MW371, MW374, and MW375
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration

Exhibit D.7. Tests Summary for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration
Radium-226	Tolerance Interval	3.79	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW362, MW365, MW368, MW371, and MW375
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration
Uranium	Tolerance Interval	1.68	No exceedance of statistically derived historical background concentration
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration
Beta Activity ¹	Tolerance Interval	0.74	Current results exceed statistically derived historical background concentration in MW372
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	0.85	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW372
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration

Exhibit D.8. Tests Summary for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372
PCB, Total	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration
PCB-1242	Tolerance Interval	1.36	No exceedance of statistically derived historical background concentration
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.26	Current results exceed statistically derived historical background concentration in MW360
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW372
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Trichloroethene ¹	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration
Uranium	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration

CV: coefficient of variation *If CV > 1.0, used log-transformed data. 1 A tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration
Beta Activity ¹	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW358
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373

Exhibit D.9. Tests Summary for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW361 and MW370
Thorium-230	Tolerance Interval	1.38	Current results exceed statistically derived historical background concentration in MW367
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the results of the one-sided upper tolerance interval test compared to current background, and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 8, and 3 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

Exhibit D.10. Summary of Exceedances (in Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
None	MW358: Beta Activity

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that sulfate concentrations in four UCRS wells (i.e., MW362, MW365, MW368, and MW375) were higher than the current TL this quarter.

URGA

This quarter's results showed no exceedances of the current TL in wells located downgradient of the landfill.

LRGA

This quarter's results showed an exceedance for beta activity in MW358 for this quarter. MW358 is located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.58	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.37	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Sulfate	Tolerance Interval	0.51	MW362, MW365, MW368, and MW375 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.98	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Calcium	Tolerance Interval	0.58	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Conductivity	Tolerance Interval	0.35	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Dissolved Solids	Tolerance Interval	0.41	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Magnesium	Tolerance Interval	0.53	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.51	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Sodium	Tolerance Interval	0.32	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Technetium-99	Tolerance Interval	0.95	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV: coefficient of variation

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.43	MW358 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.29	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Technetium-99	Tolerance Interval	0.44	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Thorium-230	Tolerance Interval	1.44	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

S = 6.859 CV(1) = 2.078

K factor=** 2.523

TL(1)= 20.604

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.371 S = 1.678

CV(2) = -4.521

K factor=** 2.523

TL(2) = 3.863

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.059
Date Collected	Result	
Date Collected 10/8/2002	Result 21.3	3.059
Date Collected 10/8/2002 1/7/2003	Result 21.3 20	3.059 2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 21.3 20 4.11	3.059 2.996 1.413
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 21.3 20 4.11 1.41	3.059 2.996 1.413 0.344
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 21.3 20 4.11 1.41 1.09	3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	1.78	N/A	0.577	NO
MW365	Downgradient	Yes	0.0448	N/A	-3.106	NO
MW368	Sidegradient	Yes	2.4	N/A	0.875	NO
MW371	Upgradient	Yes	0.0815	N/A	-2.507	NO
MW374	Upgradient	Yes	0.0841	N/A	-2.476	NO
MW375	Sidegradient	Yes	0.027	N/A	-3.612	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-3

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394

S= 0.474 **CV(1)**=0.340

K factor=** 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X= 0.279 **S**= 0.332

CV(2) = 1.190

K factor=** 2.523

TL(2)=1.118

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.742
Date Collected	Result	
Date Collected 10/8/2002	Result 2.1	0.742
Date Collected 10/8/2002 1/7/2003	Result 2.1 2.1	0.742 0.742
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2.1 2.1 1.9	0.742 0.742 0.642
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2.1 2.1 1.9 1	0.742 0.742 0.642 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2.1 2.1 1.9 1 1.9	0.742 0.742 0.642 0.000 0.642

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.135	NO	-2.002	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Sidegradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	Yes	0.503	NO	-0.687	N/A
MW374	Upgradient	Yes	0.919	NO	-0.084	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-4

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 34.100 S = 13.637 CV(1) = 0.400

K factor=** 2.523

TL(1) = 68.505 LL(1) = N/A

Statistics-Transformed Background Data

X= 3.466 **S**= 0.356

CV(2) = 0.103

K factor=** 2.523

TL(2) = 4.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.209
Date Collected	Result	
Date Collected 10/8/2002	Result 67.3	4.209
Date Collected 10/8/2002 1/7/2003	Result 67.3 60.6	4.209 4.104
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 67.3 60.6 47.2	4.209 4.104 3.854
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 67.3 60.6 47.2 34.7	4.209 4.104 3.854 3.547
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 67.3 60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	23.4	NO	3.153	N/A
MW365	Downgradient	Yes	21.5	NO	3.068	N/A
MW368	Sidegradient	Yes	21.6	NO	3.073	N/A
MW371	Upgradient	Yes	35.8	NO	3.578	N/A
MW374	Upgradient	Yes	21.8	NO	3.082	N/A
MW375	Sidegradient	Yes	14	NO	2.639	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-5

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

K factor=** 2.523

TL(1)= 310.697 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.620**S**= 1.590 CV(2) = 0.439

K factor=** 2.523

TL(2) = 7.631

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
	MW374 Result	LN(Result)
		LN(Result) 5.294
Date Collected	Result	
Date Collected 10/8/2002	Result 199.2	5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	8.53	NO	2.144	N/A
MW365	Downgradient	Yes	5.73	NO	1.746	N/A
MW368	Sidegradient	Yes	1.3	NO	0.262	N/A
MW371	Upgradient	Yes	39.4	NO	3.674	N/A
MW374	Upgradient	Yes	74.8	NO	4.315	N/A
MW375	Sidegradient	Yes	5.69	NO	1.739	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-6

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S= 0.009

CV(1)=1.314

K factor=** 2.523

TL(1)= 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

92 **CV(2)=**-0.238

K factor=** 2.523

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	` '
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.01	-4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.01 0.01	-4.605 -4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.01 0.01 0.00161	-4.605 -4.605 -4.605 -6.432
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.01 0.01 0.00161 0.001	-4.605 -4.605 -4.605 -6.432 -6.908

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.00158	N/A	-6.450	NO
MW365	Downgradient	Yes	0.00203	N/A	-6.200	NO
MW368	Sidegradient	Yes	0.00108	N/A	-6.831	NO
MW371	Upgradient	No	0.001	N/A	-6.908	N/A
MW374	Upgradient	Yes	0.00212	N/A	-6.156	NO
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-7

Historical Background Comparison C-746-U Fourth Quarter 2015 Statistical Analysis **Conductivity UNITS:** umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor=** 2.523

TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.705 S = 0.550 CV(2) = 0.082

K factor=** 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
	MW374 Result	LN(Result)
		LN(Result) 6.915
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 1007	6.915
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9 172	6.915 7.427 7.448 5.147
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116

Dry/Partially Dry Wells

Well No. Gradient Downgradient MW359 MW376 Sidegradient MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	762	NO	6.636	N/A
MW365	Downgradient	Yes	415	NO	6.028	N/A
MW368	Sidegradient	Yes	457	NO	6.125	N/A
MW371	Upgradient	Yes	778	NO	6.657	N/A
MW374	Upgradient	Yes	701	NO	6.553	N/A
MW375	Sidegradient	Yes	350	NO	5.858	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-8

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S = 0.072CV(1) = 1.275 **K factor**=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915

CV(2) = -0.270

K factor=** 2.523

TL(2) = -1.086

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-9

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 1.138 **S**= 0.621

CV(1)=0.546

K factor=** 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

K factor=** 2.523

TL(2)=1.441

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

landfill.

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	3.52	YES	1.258	N/A
MW365	Downgradient	Yes	3.39	YES	1.221	N/A
MW368	Sidegradient	Yes	3.82	YES	1.340	N/A
MW371	Upgradient	Yes	1.78	NO	0.577	N/A
MW374	Upgradient	Yes	1.1	NO	0.095	N/A
MW375	Sidegradient	Yes	2.14	NO	0.761	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW362 MW365 MW368

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-10

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 590.000 S = 248.068 CV(1) = 0.420

K factor=** 2.523

TL(1)= 1215.876 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.308 S = 0.383

CV(2) = 0.061

K factor=** 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 7.035
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 1136	7.035
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	386	NO	5.956	N/A
MW365	Downgradient	Yes	196	NO	5.278	N/A
MW368	Sidegradient	Yes	277	NO	5.624	N/A
MW371	Upgradient	Yes	211	NO	5.352	N/A
MW374	Upgradient	Yes	289	NO	5.666	N/A
MW375	Sidegradient	Yes	146	NO	4.984	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-11

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612

S= 6.487 **CV(1)**=0.981

K factor=** 2.523

TL(1)= 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X= 1.363 **S**= 1.147

CV(2) = 0.841

K factor=** 2.523

TL(2) = 4.256

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.135
Date Collected	Result	
Date Collected 10/8/2002	Result 23	3.135
Date Collected 10/8/2002 1/7/2003	Result 23 13.9	3.135 2.632
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 23 13.9 14	3.135 2.632 2.639
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 23 13.9 14 14.2	3.135 2.632 2.639 2.653
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 23 13.9 14 14.2 7.92	3.135 2.632 2.639 2.653 2.069

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	1.23	NO	0.207	N/A
MW365	Downgradient	Yes	0.0563	NO	-2.877	N/A
MW368	Sidegradient	Yes	1.17	NO	0.157	N/A
MW371	Upgradient	Yes	0.0702	NO	-2.656	N/A
MW374	Upgradient	Yes	0.885	NO	-0.122	N/A
MW375	Sidegradient	No	0.1	N/A	-2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-12

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.347 **S**= 3.019

CV(1)=0.266

K factor=** 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401 S = 0.237

CV(2) = 0.099

K factor=** 2.523

TL(2) = 2.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 2.996
Date Collected	Result	,
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.996 2.779 2.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	10.7	NO	2.370	N/A
MW365	Downgradient	Yes	10.2	NO	2.322	N/A
MW368	Sidegradient	Yes	8.32	NO	2.119	N/A
MW371	Upgradient	Yes	14.5	NO	2.674	N/A
MW374	Upgradient	Yes	6.4	NO	1.856	N/A
MW375	Sidegradient	Yes	6	NO	1.792	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-13

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.248

S = 0.222

CV(1)=0.894

K factor=** 2.523

TL(1) = 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.873 S = 1.068

CV(2) = -0.570

K factor=** 2.523

TL(2) = 0.821

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.518
Date Collected	Result	` '
Date Collected 10/8/2002	Result 0.596	-0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	-0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	-0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	-0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	-0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No. Gradient Downgradient MW359 MW376 Sidegradient MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.0284	NO	-3.561	N/A
MW365	Downgradient	Yes	0.0428	NO	-3.151	N/A
MW368	Sidegradient	Yes	0.0416	NO	-3.180	N/A
MW371	Upgradient	Yes	0.00182	2 NO	-6.309	N/A
MW374	Upgradient	Yes	0.224	NO	-1.496	N/A
MW375	Sidegradient	Yes	0.00118	8 NO	-6.742	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-14

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

S = 0.010

CV(1)=1.650

K factor=** 2.523

TL(1) = 0.030

LL(1)=N/A

Statistics-Transformed Background Data

X= -6.108 **S**= 1.239

239 **CV(2)=**-0.203

K factor=** 2.523

TL(2) = -2.983

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.00121	-6.717
4/3/2003	0.001	-6.908
7/9/2003	0.00111	-6.803
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -6.110
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 0.00222	-6.110
Date Collected 10/8/2002 1/7/2003	Result 0.00222 0.00201	-6.110 -6.210
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.00222 0.00201 0.00159	-6.110 -6.210 -6.444
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.00222 0.00201 0.00159 0.00242	-6.110 -6.210 -6.444 -6.024
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.00222 0.00201 0.00159 0.00242 0.001	-6.110 -6.210 -6.444 -6.024 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.00109	N/A	-6.822	NO
MW365	Downgradient	Yes	0.000172	2 N/A	-8.668	NO
MW368	Sidegradient	Yes	0.00276	N/A	-5.893	NO
MW371	Upgradient	Yes	0.000377	7 N/A	-7.883	NO
MW374	Upgradient	Yes	0.00021	N/A	-8.468	NO
MW375	Sidegradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-15

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S= 0.022 **CV(1)**=0.980

S = 1.109

K factor=** 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349

CV(2) = -0.255

K factor=** 2.523

TL(2) = -1.552

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 0.05	-2.996
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.00794	-2.996 -2.996 -2.996 -4.836
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.005 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.00252	NO	-5.983	N/A
MW365	Downgradient	Yes	0.00727	NO	-4.924	N/A
MW368	Sidegradient	Yes	0.00372	NO	-5.594	N/A
MW371	Upgradient	Yes	0.00137	NO	-6.593	N/A
MW374	Upgradient	Yes	0.00124	NO	-6.693	N/A
MW375	Sidegradient	Yes	0.00163	NO	-6.419	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-16

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.281 S = 78.889 CV(1) = 3.541

S = 1.729

K factor=** 2.523

TL(1)= 221.319 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.642

CV(2) = 0.475

K factor=** 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.905
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	620	N/A	6.430	YES
MW365	Downgradient	Yes	523	N/A	6.260	YES
MW368	Sidegradient	Yes	523	N/A	6.260	YES
MW371	Upgradient	Yes	393	N/A	5.974	YES
MW374	Upgradient	Yes	449	N/A	6.107	YES
MW375	Sidegradient	Yes	468	N/A	6.148	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW362 MW365

MW368 MW371

MW374

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-17

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** PCB, Total **UNITS: UG/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.224

S = 0.207

CV(1)=0.922

K factor=** 2.523

TL(1) = 0.746

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.647 S = 0.440

CV(2) = -0.267

K factor=** 2.523

TL(2) = -0.537

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/9/2003	0.17	-1.772
10/6/2003	0.17	-1.772
7/13/2004	0.18	-1.715
7/25/2005	0.17	-1.772
4/5/2006	0.18	-1.715
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.772
Date Collected	Result	` ′
Date Collected 7/9/2003	Result 0.17	-1.772
Date Collected 7/9/2003 10/7/2003	Result 0.17 0.17	-1.772 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.17 0.17 0.18	-1.772 -1.772 -1.715
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.17 0.17 0.18 0.17	-1.772 -1.772 -1.715 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.17 0.17 0.18 0.17 0.18	-1.772 -1.772 -1.715 -1.772 -1.715

Dry/Partially Dry Wells

Well No. Gradient Downgradient MW359 MW376 Sidegradient MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	No	0.1	N/A	-2.303	N/A
MW365	Downgradient	Yes	0.182	NO	-1.704	N/A
MW368	Sidegradient	Yes	0.135	NO	-2.002	N/A
MW371	Upgradient	No	0.0962	N/A	-2.341	N/A
MW374	Upgradient	No	0.099	N/A	-2.313	N/A
MW375	Sidegradient	No	0.098	N/A	-2.323	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-18

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.159

S = 0.224 C

CV(1)=1.409

K factor=** 2.523

TL(1) = 0.726

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.134 S = 0.579

CV(2) = -0.272

K factor=** 2.523

TL(2) = -0.672

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/9/2003	0.13	-2.040
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/25/2005	0.09	-2.408
4/5/2006	0.1	-2.303
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.040
Date Collected	Result	` ,
Date Collected 7/9/2003	Result 0.13	-2.040
Date Collected 7/9/2003 10/7/2003	Result 0.13 0.09	-2.040 -2.408
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.13 0.09 0.1	-2.040 -2.408 -2.303
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.13 0.09 0.1 0.1	-2.040 -2.408 -2.303 -2.303
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.13 0.09 0.1 0.1	-2.040 -2.408 -2.303 -2.303 -2.303

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	No	0.1	N/A	-2.303	N/A
MW365	Downgradient	Yes	0.182	N/A	-1.704	NO
MW368	Sidegradient	Yes	0.135	N/A	-2.002	NO
MW371	Upgradient	No	0.0962	N/A	-2.341	N/A
MW374	Upgradient	No	0.099	N/A	-2.313	N/A
MW375	Sidegradient	No	0.098	N/A	-2.323	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-19

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S= 0.295 **CV(1)**=0.045

K factor=** 2.904

TL(1) = 7.475

LL(1)=5.7635

Statistics-Transformed Background Data

X = 1.889 S = 0.046

CV(2) = 0.024

K factor=** 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	` ,
Date Collected 3/18/2002	Result 5.75	1.749
Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW362	Downgradien	t Yes	7	NO	1.946	N/A
MW365	Downgradien	t Yes	6.38	NO	1.853	N/A
MW368	Sidegradient	Yes	6.58	NO	1.884	N/A
MW371	Upgradient	Yes	6.63	NO	1.892	N/A
MW374	Upgradient	Yes	6.62	NO	1.890	N/A
MW375	Sidegradient	Yes	6.5	NO	1.872	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-20

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

S = 0.907

CV(1)=0.718

K factor=** 2.523

TL(1) = 3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

CV(2) = -32.218

K factor**= 2.523

TL(2) = 1.874

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221

Dry/Partially Dry Wells

Well No. Gradient Downgradient MW359 MW376 Sidegradient MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.486	NO	-0.722	N/A
MW365	Downgradient	Yes	0.241	NO	-1.423	N/A
MW368	Sidegradient	Yes	0.875	NO	-0.134	N/A
MW371	Upgradient	Yes	0.418	NO	-0.872	N/A
MW374	Upgradient	Yes	0.456	NO	-0.785	N/A
MW375	Sidegradient	Yes	0.274	NO	-1.295	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-21

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** Radium-226 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.560

S= 13.483 **CV(1)**=3.787

K factor=** 2.523

TL(1) = 37.577

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.189 S = 1.742

CV(2) = -1.465

K factor=** 2.523

TL(2) = 3.991

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	54.1	3.991
10/8/2002	0.0937	-2.368
1/8/2003	0.378	-0.973
10/6/2003	0.179	-1.720
1/7/2004	0.898	-0.108
4/6/2004	0.108	-2.226
7/13/2004	-0.149	#Func!
10/7/2004	0.154	-1.871
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.211
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.298	-1.211
Date Collected 10/8/2002 1/7/2003	Result 0.298 -0.844	-1.211 #Func!
Date Collected 10/8/2002 1/7/2003 10/7/2003	Result 0.298 -0.844 0.806	-1.211 #Func! -0.216
Date Collected 10/8/2002 1/7/2003 10/7/2003 1/6/2004	Result 0.298 -0.844 0.806 0.0306	-1.211 #Func! -0.216 -3.487
Date Collected 10/8/2002 1/7/2003 10/7/2003 1/6/2004 4/7/2004	Result 0.298 -0.844 0.806 0.0306 0.35	-1.211 #Func! -0.216 -3.487 -1.050

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	1.2	N/A	0.182	NO
MW365	Downgradient	No	0.391	N/A	-0.939	N/A
MW368	Sidegradient	No	0.238	N/A	-1.435	N/A
MW371	Upgradient	No	0.44	N/A	-0.821	N/A
MW374	Upgradient	Yes	0.596	N/A	-0.518	NO
MW375	Sidegradient	No	0.201	N/A	-1.604	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-22

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor**= 2.523

TL(1)= 367.800 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.146 S = 0.356 CV(2) = 0.069

K factor=** 2.523

TL(2)= 6.044

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.817
Date Collected	Result	• •
Date Collected 10/8/2002	Result 336	5.817
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No	. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW362	Downgradien	t Yes	176	NO	5.170	N/A
MW365	Downgradien	t Yes	52.8	NO	3.967	N/A
MW368	Sidegradient	Yes	86.2	NO	4.457	N/A
MW371	Upgradient	Yes	136	NO	4.913	N/A
MW374	Upgradient	Yes	131	NO	4.875	N/A
MW375	Sidegradient	Yes	61.3	NO	4.116	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-23

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

S= 3.153 **CV(1)**=0.487

K factor=** 2.523

TL(1)= 14.423

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.794 S = 0.357

CV(2) = 0.199

K factor=** 2.523

TL(2) = 2.694

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 10/8/2002	Result 5	1.609
Date Collected 10/8/2002 1/7/2003	Result 5	1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5	1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5.6	1.609 1.609 1.609 1.723
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.723 1.609

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	35.2	YES	3.561	N/A
MW365	Downgradient	Yes	56.3	YES	4.031	N/A
MW368	Sidegradient	Yes	29	YES	3.367	N/A
MW371	Upgradient	Yes	19.5	YES	2.970	N/A
MW374	Upgradient	Yes	6.31	NO	1.842	N/A
MW375	Sidegradient	Yes	23.4	YES	3.153	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW362 MW365

MW368

MW371

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-24

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.631 **S**= 24.314 **CV(1)**=1.379

K factor**= 2.523

TL(1)= 78.977 **LL(1**

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.318 **S**= 0.979

CV(2) = 0.422

K factor=** 2.523

TL(2) = 4.788

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	
Date Collected 10/8/2002	Result 90	4.500
Date Collected 10/8/2002 1/7/2003	Result 90 64	4.500 4.159
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 90 64 25	4.500 4.159 3.219
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 90 64 25 16	4.500 4.159 3.219 2.773
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW362	Downgradient	t Yes	2.82	N/A	1.037	NO
MW365	Downgradient	t Yes	1.62	N/A	0.482	NO
MW368	Sidegradient	Yes	1.48	N/A	0.392	NO
MW371	Upgradient	Yes	2.02	N/A	0.703	NO
MW374	Upgradient	Yes	2.26	N/A	0.815	NO
MW375	Sidegradient	Yes	0.847	N/A	-0.166	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-25

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor=** 2.523

TL(1)= 797.131 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.867

 $S= 1.065 \quad CV(2)=0.219$

K factor=** 2.523

TL(2) = 7.554

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	25	N/A	3.219	NO
MW365	Downgradient	Yes	22.9	N/A	3.131	NO
MW368	Sidegradient	Yes	5.24	N/A	1.656	NO
MW371	Upgradient	Yes	10.5	N/A	2.351	NO
MW374	Upgradient	Yes	20.1	N/A	3.001	NO
MW375	Sidegradient	Yes	10.4	N/A	2.342	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-26

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.012

CV(1)=1.678

K factor=** 2.523

TL(1) = 0.037

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.884 S = 1.299

CV(2) = -0.221

K factor=** 2.523

TL(2) = -2.607

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.001	-6.908
4/22/2002	0.001	-6.908
7/15/2002	0.001	-6.908
10/8/2002	0.027	-3.612
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.00109	-6.822
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -3.128
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 0.0438	-3.128
Date Collected 10/8/2002 1/7/2003	Result 0.0438 0.011	-3.128 -4.510
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.0438 0.011 0.00905	-3.128 -4.510 -4.705
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.0438 0.011 0.00905 0.00694	-3.128 -4.510 -4.705 -4.970
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.0438 0.011 0.00905 0.00694 0.001	-3.128 -4.510 -4.705 -4.970 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW362	Downgradient	Yes	0.00582	N/A	-5.146	NO
MW365	Downgradient	No	0.00013	5 N/A	-8.910	N/A
MW368	Sidegradient	No	0.00034	7 N/A	-7.966	N/A
MW371	Upgradient	Yes	0.0018	N/A	-6.320	NO
MW374	Upgradient	No	0.00022	9 N/A	-8.382	N/A
MW375	Sidegradient	No	0.0002	N/A	-8.517	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-27

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072

CV(1) = 1.319

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912

CV(2) = -0.265

K factor=** 2.523

TL(2) = -1.138

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient Downgradient MW359 MW376 Sidegradient MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.0035	N/A	-5.655	NO
MW365	Downgradient	No	0.0033	N/A	-5.714	N/A
MW368	Sidegradient	Yes	0.0168	N/A	-4.086	NO
MW371	Upgradient	No	0.01	N/A	-4.605	N/A
MW374	Upgradient	No	0.00757	N/A	-4.884	N/A
MW375	Sidegradient	No	0.0103	N/A	-4.576	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.083 CV(1) = 1.380

K factor=** 2.523

TL(1) = 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259

S = 0.840

CV(2) = -0.258

K factor=** 2.523

TL(2) = -1.140

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 0.025	-3.689
Date Collected 10/8/2002 1/7/2003	Result 0.025 0.35	-3.689 -1.050
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.35 0.035	-3.689 -1.050 -3.352
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.025 0.35 0.035 0.02	-3.689 -1.050 -3.352 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.025 0.35 0.035 0.02 0.02	-3.689 -1.050 -3.352 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW359 Downgradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.00423	N/A	-5.466	NO
MW365	Downgradient	Yes	0.0243	N/A	-3.717	NO
MW368	Sidegradient	Yes	0.0074	N/A	-4.906	NO
MW371	Upgradient	No	0.01	N/A	-4.605	N/A
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-29

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.625 S = 0.774

CV(1)=1.239

K factor=** 2.523

TL(1) = 2.578

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.973 S = 0.935

035 **CV(2)=**-0.961

K factor=** 2.523

TL(2)= 1.386

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.255 -1.3664/22/2002 0.2 -1.6097/15/2002 0.322 -1.13310/8/2002 0.2 -1.6090.2 1/8/2003 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.689 -0.373Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.61 0.959 4/23/2002 0.2 -1.609 7/16/2002 1.14 0.131 10/8/2002 0.862 -0.149 1/7/2003 2.32 0.842 4/2/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.025	N/A	-3.689	NO	
MW360	Downgradient	No	0.05	N/A	-2.996	N/A	
MW363	Downgradient	Yes	0.032	N/A	-3.442	NO	
MW366	Sidegradient	Yes	0.0228	N/A	-3.781	NO	
MW369	Upgradient	Yes	0.0774	N/A	-2.559	NO	
MW372	Upgradient	Yes	0.0637	N/A	-2.754	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-30

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: pCi/L **Beta activity URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X= 15.996 **S**= 11.899 **CV(1)**=0.744 **K factor**=** 2.523 Statistics-Background Data TL(1) = 46.017LL(1)=N/A **Statistics-Transformed Background**

Data

X = 2.497S = 0.783CV(2) = 0.314 **K factor****= 2.523

TL(2) = 4.473LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 32.5 3.481 4/22/2002 35.4 3.567 7/15/2002 12.9 2.557 10/8/2002 7.59 2.027 1/8/2003 9.58 2.260 4/3/2003 6.69 1.901 7/8/2003 9.1 2.208 10/6/2003 7.31 1.989 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 28.5 3.350 4/23/2002 5.37 1.681 2.991 7/16/2002 19.9 10/8/2002 38.7 3.656 1/7/2003 13 2.565 4/2/2003 3.94 1.371 7/9/2003 1.270 3.56 10/7/2003 21.9 3.086

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	10.3	N/A	2.332	N/A	
MW360	Downgradient	No	3.78	N/A	1.330	N/A	
MW363	Downgradient	No	2.53	N/A	0.928	N/A	
MW366	Sidegradient	Yes	29.4	N/A	3.381	N/A	
MW369	Upgradient	Yes	28	N/A	3.332	N/A	
MW372	Upgradient	Yes	86.8	YES	4.464	N/A	
NI/A D	1, 11, 201 1 3	T D	1 . 11		1 / 11 /	1 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-31

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.985 S = 0.825 CV(1) = 0.838 K factor**= 2.523
 TL(1) = 3.067 LL(1) = N/A

 Statistics-Transformed Background Data
 X = -0.430 X = 0.990 X = 0.990

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2 0.693 2 7/15/2002 0.693 10/8/2002 0.2 -1.6090.2 1/8/2003 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 0.492 -0.709 1/7/2003 0.492 -0.7094/2/2003 0.6 -0.5117/9/2003 0.57 -0.562-0.504 10/7/2003 0.604

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.47	NO	-0.755	N/A	
MW360	Downgradient	Yes	0.0497	NO	-3.002	N/A	
MW363	Downgradient	Yes	0.0272	NO	-3.605	N/A	
MW366	Sidegradient	Yes	0.13	NO	-2.040	N/A	
MW369	Upgradient	Yes	0.0139	NO	-4.276	N/A	
MW372	Upgradient	Yes	1.28	NO	0.247	N/A	
M/A Decu	ulte identified as N	Von Detects	during lak	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-32

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Data
Historical Background Data from

Upgradient Wells with Transformed Result

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/8/2003	1	0.000
10/6/2003	1	0.000

Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	1	0.000
4/23/2002	1	0.000
7/16/2002	1	0.000
10/8/2002	1	0.000
1/7/2003	1	0.000
4/2/2003	1	0.000
7/9/2003	1	0.000
10/7/2003	1	0.000

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.446	NO	-0.807	N/A	
MW360	Downgradient	Yes	0.158	NO	-1.845	N/A	
MW363	Downgradient	Yes	0.164	NO	-1.808	N/A	
MW366	Sidegradient	Yes	0.478	NO	-0.738	N/A	
MW369	Upgradient	Yes	0.378	NO	-0.973	N/A	
MW372	Upgradient	Yes	0.663	NO	-0.411	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-33

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 32.763 **S**= 9.391 **CV(1)**=0.287

K factor=** 2.523

TL(1)= 56.456

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.449 **S**= 0.299

CV(2)=0.087

K factor=** 2.523

TL(2) = 4.202

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	29.5	3.384
4/22/2002	29.8	3.395
7/15/2002	25.3	3.231
10/8/2002	21.9	3.086
1/8/2003	20.9	3.040
4/3/2003	22.2	3.100
7/8/2003	22.9	3.131
10/6/2003	21.7	3.077
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.726
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 41.5	3.726
Date Collected 3/19/2002 4/23/2002	Result 41.5 43.6	3.726 3.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 41.5 43.6 40.4	3.726 3.775 3.699
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 41.5 43.6 40.4 38.8	3.726 3.775 3.699 3.658
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 41.5 43.6 40.4 38.8 41.1	3.726 3.775 3.699 3.658 3.716

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Downgradient	Yes	26.8	NO	3.288	N/A		
Downgradient	Yes	27.3	NO	3.307	N/A		
Downgradient	Yes	26.9	NO	3.292	N/A		
Sidegradient	Yes	30.7	NO	3.424	N/A		
Upgradient	Yes	17.1	NO	2.839	N/A		
Upgradient	Yes	61.9	YES	4.126	N/A		
	Gradient Downgradient Downgradient Downgradient Sidegradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Sidegradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 26.8 Downgradient Yes 27.3 Downgradient Yes 26.9 Sidegradient Yes 30.7 Upgradient Yes 17.1	Gradient Detected? Result Result >TL(1)? Downgradient Yes 26.8 NO Downgradient Yes 27.3 NO Downgradient Yes 26.9 NO Sidegradient Yes 30.7 NO Upgradient Yes 17.1 NO	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientYes26.8NO3.288DowngradientYes27.3NO3.307DowngradientYes26.9NO3.292SidegradientYes30.7NO3.424UpgradientYes17.1NO2.839		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-34

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Chloride** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 44.119 S = 4.554**CV(1)=**0.103 **K factor**=** 2.523 Statistics-Background Data TL(1) = 55.607LL(1)=N/A **Statistics-Transformed Background**

Data

X = 3.782S = 0.099CV(2) = 0.026 **K factor**=** 2.523

TL(2) = 4.033LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 7/15/2002 48.3 3.877 10/8/2002 47.7 3.865 1/8/2003 45.7 3.822 4/3/2003 47.4 3.859 7/8/2003 55.9 4.024 10/6/2003 47.4 3.859 1/7/2004 45.5 3.818 4/7/2004 43.4 3.770 Well Number: MW372 Date Collected Result LN(Result) 7/16/2002 39.8 3.684 10/8/2002 41 3.714 1/7/2003 39.4 3.674 4/2/2003 39.2 3.669 7/9/2003 39.8 3.684 10/7/2003 40 3.689 1/5/2004 43.4 3.770 4/5/2004 42 3.738

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	31.5	NO	3.450	N/A
MW360	Downgradient	Yes	10.5	NO	2.351	N/A
MW363	Downgradient	Yes	32.5	NO	3.481	N/A
MW366	Sidegradient	Yes	38.7	NO	3.656	N/A
MW369	Upgradient	Yes	34.6	NO	3.544	N/A
MW372	Upgradient	Yes	49.4	NO	3.900	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-35

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.609 5 4/22/2002 5 1.609 7/15/2002 5 1.609 10/8/2002 5 1.609 5 1/8/2003 1.609 4/3/2003 5 1.609 7/8/2003 5 1.609 5 10/6/2003 1.609 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 5 1.609 4/23/2002 5 1.609 7/16/2002 5 1.609 10/8/2002 5 1.609 5 1/7/2003 1.609 4/2/2003 5 1.609 7/9/2003 5 1.609 5 10/7/2003 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	1	N/A	0.000	N/A
MW360	Downgradient	No	1	N/A	0.000	N/A
MW363	Downgradient	No	1	N/A	0.000	N/A
MW366	Sidegradient	No	1	N/A	0.000	N/A
MW369	Upgradient	No	1	N/A	0.000	N/A
MW372	Upgradient	Yes	0.32	NO	-1.139	N/A
M/A Dogg	Its identified as N	Jan Datasta	dumin a lab		data validation	s and record not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-36

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.021 CV(1) = 0.845 K factor** = 2.523
 TL(1) = 0.077 LL(1) = N/A

 Statistics-Transformed Background
 X = -4.090 S = 1.006 CV(2) = -0.246 K factor** = 2.523
 TL(2) = -1.553 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.00938 -4.669 0.00548 1/8/2003 -5.2074/3/2003 0.00587 -5.1387/8/2003 0.0541 -2.917 10/6/2003 0.0689 -2.675Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.025 -3.6894/23/2002 0.025 -3.689 7/16/2002 0.025 -3.68910/8/2002 0.00158 -6.450 1/7/2003 0.0147 -4.2204/2/2003 0.0116 -4.4577/9/2003 0.0653 -2.7290.00788 -4.843 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00096	NO	-6.949	N/A
MW360	Downgradient	Yes	0.0164	NO	-4.110	N/A
MW363	Downgradient	Yes	0.00103	NO	-6.878	N/A
MW366	Sidegradient	Yes	0.00063	6 NO	-7.360	N/A
MW369	Upgradient	Yes	0.00742	NO	-4.904	N/A
MW372	Upgradient	No	0.00034	6 N/A	-7.969	N/A
NI/A D	1, 11, 1	T D	1 1 1 1		1 / 11 /	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-37

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 482.856 S = 57.603 CV(1) = 0.119

K factor=** 2.523

TL(1)= 628.189 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123

CV(2) = 0.020

K factor=** 2.523

TL(2) = 6.484

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 6.230
Date Collected	Result	` ,
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	435	NO	6.075	N/A
MW360	Downgradient	Yes	562	NO	6.332	N/A
MW363	Downgradient	Yes	401	NO	5.994	N/A
MW366	Sidegradient	Yes	475	NO	6.163	N/A
MW369	Upgradient	Yes	370	NO	5.914	N/A
MW372	Upgradient	Yes	751	YES	6.621	N/A
3.T/A D	1. 11 .:0 1 3					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-38

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.400 **K factor**=** 2.523 Statistics-Background Data X = 0.025S = 0.010TL(1) = 0.050LL(1)=N/A **Statistics-Transformed Background**

Data

X = -3.742 S = 0.307CV(2) = -0.082 **K factor**=** 2.523 TL(2) = -2.967

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6890.05 -2.996 7/15/2002 10/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.912 7/8/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.025 -3.6894/23/2002 0.025 -3.689 -2.9967/16/2002 0.05 10/8/2002 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result 1	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.000766	5 NO	-7.174	N/A
MW360	Downgradient	No	0.001	N/A	-6.908	N/A
MW363	Downgradient	No	0.001	N/A	-6.908	N/A
MW366	Sidegradient	Yes	0.000376	5 NO	-7.886	N/A
MW369	Upgradient	Yes	0.00145	NO	-6.536	N/A
MW372	Upgradient	No	0.001	N/A	-6.908	N/A
		_				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-39

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.781
 S= 1.351
 CV(1)=0.759
 K factor**= 2.523
 TL(1)= 5.190
 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.228
 S= 1.065
 CV(2)=4.665
 K factor**= 2.523
 TL(2)= 2.915
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.688 5.41 4/22/2002 1.57 0.451 -0.223 7/15/2002 0.8 10/8/2002 1.09 0.086 0.990 1/8/2003 2.69 4/3/2003 2.04 0.713 7/8/2003 0.174 1.19 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.9967/16/2002 1.33 0.285 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.9164/2/2003 0.91 -0.0947/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	3.37	NO	1.215	N/A
MW360	Downgradient	Yes	1.7	NO	0.531	N/A
MW363	Downgradient	Yes	1.51	NO	0.412	N/A
MW366	Sidegradient	Yes	1.13	NO	0.122	N/A
MW369	Upgradient	Yes	1.73	NO	0.548	N/A
MW372	Upgradient	Yes	1.72	NO	0.542	N/A
27/1 75						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-40

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 285.188 **S**= 44.908 **CV(1)**=0.157

K factor**= 2.523

TL(1)= 398.489 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

K factor=** 2.523

TL(2) = 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 173 5.153 4/22/2002 246 5.505 7/15/2002 232 5.447 10/8/2002 275 5.617 1/8/2003 269 5.595 4/3/2003 250 5.521 7/8/2003 295 5.687 10/6/2003 276 5.620 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 295 5.687 4/23/2002 322 5.775 7/16/2002 329 5.796 10/8/2002 290 5.670 1/7/2003 316 5.756 4/2/2003 311 5.740 7/9/2003 347 5.849 10/7/2003 337 5.820

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	201	NO	5.303	N/A
MW360	Downgradient	Yes	277	NO	5.624	N/A
MW363	Downgradient	Yes	191	NO	5.252	N/A
MW366	Sidegradient	Yes	246	NO	5.505	N/A
MW369	Upgradient	Yes	189	NO	5.242	N/A
MW372	Upgradient	Yes	419	YES	6.038	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-41

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 7.385
 S= 6.991
 CV(1)=0.947
 K factor**= 2.523
 TL(1)= 25.024
 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 1.358
 S= 1.323
 CV(2)=0.974
 K factor**= 2.523
 TL(2)= 4.697
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.656 -0.422 4/22/2002 0.695 -0.3641.960 7/15/2002 7.1 10/8/2002 21.5 3.068 1/8/2003 18.5 2.918 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 1.78 0.577 10/8/2002 0.776 -0.2541/7/2003 3.55 1.267 4/2/2003 5.02 1.613 7/9/2003 10 2.303 10/7/2003 0.733 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0871	NO	-2.441	N/A
MW360	Downgradient	Yes	1.94	NO	0.663	N/A
MW363	Downgradient	Yes	0.0827	NO	-2.493	N/A
MW366	Sidegradient	Yes	0.0819	NO	-2.502	N/A
MW369	Upgradient	Yes	0.148	NO	-1.911	N/A
MW372	Upgradient	Yes	0.502	NO	-0.689	N/A
27/4 72						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-42

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Magnesium** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 12.864 S = 3.505

CV(1)=0.272

K factor=** 2.523

TL(1) = 21.707

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.517 S = 0.290

CV(2) = 0.115

K factor**= 2.523

TL(2) = 3.248

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11.4 2.434 4/22/2002 12 2.485 10 7/15/2002 2.303 10/8/2002 8.62 2.154 7.89 1/8/2003 2.066 4/3/2003 7.97 2.076 7/8/2003 10.3 2.332 10/6/2003 9.14 2.213 Well Number: MW372 Result Date Collected LN(Result) 3/19/2002 15.7 2.754 4/23/2002 16.6 2.809 7/16/2002 15.4 2.734 10/8/2002 15.8 2.760 1/7/2003 15.8 2.760 4/2/2003 2.797 16.4 7/9/2003 2.721 15.2 10/7/2003 17.6 2.868

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	12.2	NO	2.501	N/A
MW360	Downgradient	Yes	10.8	NO	2.380	N/A
MW363	Downgradient	Yes	10.4	NO	2.342	N/A
MW366	Sidegradient	Yes	12.7	NO	2.542	N/A
MW369	Upgradient	Yes	6.93	NO	1.936	N/A
MW372	Upgradient	Yes	23.5	YES	3.157	N/A
27/4 20						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.413 S = 0.274 CV(1) = 0.664 K factor**= 2.523
 TL(1) = 1.105 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.226 S = 1.008 CV(2) = -0.822 K factor**= 2.523
 TL(2) = 1.317 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.034 -3.3814/22/2002 0.062 -2.7817/15/2002 0.436 -0.83010/8/2002 0.867-0.143-0.189 1/8/2003 0.828 4/3/2003 0.672 -0.3977/8/2003 0.321 -1.136 10/6/2003 0.714 -0.337Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.205 -1.5854/23/2002 0.345 -1.064 7/16/2002 0.21 -1.56110/8/2002 0.0539 -2.921 1/7/2003 0.537 -0.6224/2/2003 0.415 -0.8797/9/2003 0.654 -0.425-1.370 10/7/2003 0.254

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0273	NO	-3.601	N/A
MW360	Downgradient	Yes	0.202	NO	-1.599	N/A
MW363	Downgradient	Yes	0.147	NO	-1.917	N/A
MW366	Sidegradient	Yes	0.0655	NO	-2.726	N/A
MW369	Upgradient	Yes	0.019	NO	-3.963	N/A
MW372	Upgradient	Yes	0.0199	NO	-3.917	N/A
		_				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-44

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.010 S = 0.012

CV(1)=1.199

K factor=** 2.523

TL(1)= 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.698 S = 1.607

CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.643

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	0.025	-3.689
4/23/2002		
4/23/2002	0.025	-3.689
7/16/2002	0.025 0.025	-3.689 -3.689
7/16/2002	0.025	-3.689
7/16/2002 10/8/2002	0.025 0.001	-3.689 -6.908
7/16/2002 10/8/2002 1/7/2003	0.025 0.001 0.001	-3.689 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	0.0005	N/A	-7.601	N/A		
MW360	Downgradient	Yes	0.000502	2 N/A	-7.597	NO		
MW363	Downgradient	No	0.0005	N/A	-7.601	N/A		
MW366	Sidegradient	No	0.0005	N/A	-7.601	N/A		
MW369	Upgradient	No	0.0005	N/A	-7.601	N/A		
MW372	Upgradient	No	0.000402	2 N/A	-7.819	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-45

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024

S = 0.021 C

CV(1)=0.910

K factor=** 2.523

TL(1)= 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X= -4.246 **S**= 1.075

CV(2) = -0.253

K factor=** 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369			
Date Collected	Result	LN(Result)		
3/18/2002	0.05	-2.996		
4/22/2002	0.05	-2.996		
7/15/2002	0.05	-2.996		
10/8/2002	0.005	-5.298		
1/8/2003	0.005	-5.298		
4/3/2003	0.005	-5.298		
7/8/2003	0.013	-4.343		
10/6/2003	0.0104	-4.566		
Well Number:	MW372			
Well Number: Date Collected	MW372 Result	LN(Result)		
		LN(Result) -2.996		
Date Collected	Result	` ′		
Date Collected 3/19/2002	Result 0.05	-2.996		
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996		
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996		
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298		
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.00089	NO	-7.024	N/A	
MW360	Downgradient	Yes	0.00209	NO	-6.171	N/A	
MW363	Downgradient	Yes	0.00114	NO	-6.777	N/A	
MW366	Sidegradient	Yes	0.00118	NO	-6.742	N/A	
MW369	Upgradient	Yes	0.00888	NO	-4.724	N/A	
MW372	Upgradient	Yes	0.00135	NO	-6.608	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-46

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 74.563 **S**= 94.243 **CV(1)**=1.264

K factor=** 2.523

TL(1)= 312.337 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784 CV(2) = 0.172

K factor=** 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369			
Date Collected	Result	LN(Result)		
3/18/2002	215	5.371		
4/22/2002	110	4.700		
7/15/2002	20	2.996		
1/8/2003	-5	#Func!		
4/3/2003	-18	#Func!		
7/8/2003	-67	#Func!		
10/6/2003	-1	#Func!		
1/7/2004	55	4.007		
Well Number:	MW372			
Well Number: Date Collected	MW372 Result	LN(Result)		
		LN(Result) 5.347		
Date Collected	Result	, ,		
Date Collected 3/19/2002	Result 210	5.347		
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174		
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371		
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220		
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807		

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	582	N/A	6.366	YES	
MW360	Downgradient	Yes	440	N/A	6.087	YES	
MW363	Downgradient	Yes	630	N/A	6.446	YES	
MW366	Sidegradient	Yes	482	N/A	6.178	YES	
MW369	Upgradient	Yes	382	N/A	5.945	YES	
MW372	Upgradient	Yes	294	N/A	5.684	YES	
NI/A D	14- ! 14!C! - 1 N	I D-44-	J 1 - 1-		3-41:3-4:		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with	Exceedances
------------	-------------

MW357 MW360 MW363

MW366

MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-47

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison PCB, Total **UNITS: UG/L URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.897 **K factor**=** 2.523 Statistics-Background Data X = 0.390S = 0.350TL(1)=1.272LL(1)=N/A **Statistics-Transformed Background**

Data

X = -1.238 S = 0.737CV(2) = -0.595 **K factor**=** 2.523 TL(2) = 0.622 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 0.17 -1.7727/15/2002 -1.7720.17 7/8/2003 1.15 0.140 0.605 -0.503 10/6/2003 7/13/2004 0.42 -0.8687/20/2005 0.28 -1.2734/4/2006 0.23 -1.470Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.000 4/23/2002 0.17 -1.772-1.7727/16/2002 0.17 7/9/2003 0.17 -1.772-1.772 10/7/2003 0.17 7/14/2004 0.18 -1.715 7/21/2005 0.17 -1.772-1.715 4/5/2006 0.18

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.101	N/A	-2.293	N/A	
MW360	Downgradient	No	0.105	N/A	-2.254	N/A	
MW363	Downgradient	Yes	0.06	NO	-2.813	N/A	
MW366	Sidegradient	No	0.0971	N/A	-2.332	N/A	
MW369	Upgradient	No	0.0971	N/A	-2.332	N/A	
MW372	Upgradient	Yes	0.0511	NO	-2.974	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison **PCB-1242 UNITS: UG/L URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.281

S = 0.383CV(1) = 1.361 **K factor**=** 2.523

TL(1)=1.247

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.835 S = 0.938

CV(2) = -0.511

K factor=** 2.523

TL(2) = 0.532

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/8/2003	1.15	0.140
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/20/2005	0.1	-2.303
4/4/2006	0.1	-2.303
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	` ,
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 0.11	0.000 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 0.11 0.11	0.000 -2.207 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003	Result 1 0.11 0.11 0.13	0.000 -2.207 -2.207 -2.040
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003	Result 1 0.11 0.11 0.13 0.09	0.000 -2.207 -2.207 -2.040 -2.408

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.101	N/A	-2.293	N/A
MW360	Downgradient	No	0.105	N/A	-2.254	N/A
MW363	Downgradient	Yes	0.06	N/A	-2.813	NO
MW366	Sidegradient	No	0.0971	N/A	-2.332	N/A
MW369	Upgradient	No	0.0971	N/A	-2.332	N/A
MW372	Upgradient	Yes	0.0511	N/A	-2.974	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.274 S = 0.194 CV(1) = 0.031 K factor** = 2.904 TL(1) = 6.837 LL(1) = 5.7114

Statistics-Transformed Background X=1.836 S=0.031 CV(2)=0.017 K factor**= 2.904 TL(2)=1.925 LL(2)=1.7467 Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 7/15/2002 6.1 1.808 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 1/7/2003 6.26 1.834 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841 10/7/2003 6.4 1.856

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Dat	a
----------------------------	---

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradient	Yes	6.18	NO	1.821	N/A
MW360	Downgradient	Yes	6.55	NO	1.879	N/A
MW363	Downgradient	Yes	6.18	NO	1.821	N/A
MW366	Sidegradient	Yes	6.17	NO	1.820	N/A
MW369	Upgradient	Yes	6.24	NO	1.831	N/A
MW372	Upgradient	Yes	6.29	NO	1.839	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-50

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.663 S = 0.488 CV(1) = 0.293 K factor**= 2.523 TL(1) = 2.895 LL(1) = N/A Statistics-Transformed Background X = 0.456 S = 0.362 CV(2) = 0.794 K factor**= 2.523 TL(2) = 1.368 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2.21 0.793 7/15/2002 2 0.693 10/8/2002 0.966 -0.0351/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 1.62 0.482 10/6/2003 1.14 0.131 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 7/16/2002 2 0.693 10/8/2002 1.54 0.432 1/7/2003 1.88 0.631 4/2/2003 2.09 0.737 7/9/2003 1.78 0.577 10/7/2003 1.79 0.582

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	1.7	NO	0.531	N/A
MW360	Downgradient	Yes	0.711	NO	-0.341	N/A
MW363	Downgradient	Yes	1.47	NO	0.385	N/A
MW366	Sidegradient	Yes	1.84	NO	0.610	N/A
MW369	Upgradient	Yes	0.554	NO	-0.591	N/A
MW372	Upgradient	Yes	2.42	NO	0.884	N/A
N/A Pagu	Ite identified as N	Von Detects	during lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-51

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 45.100 **S**= 11.875 **CV(1)**= 0.263

K factor=** 2.523

TL(1) = 75.061

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.780 S = 0.242

CV(2) = 0.064

K factor=** 2.523

TL(2) = 4.390

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	35.7	3.575
4/22/2002	37.6	3.627
7/15/2002	42.4	3.747
10/8/2002	66.9	4.203
1/8/2003	67.9	4.218
4/3/2003	61.8	4.124
7/8/2003	45.6	3.820
10/6/2003	59.1	4.079
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.616
Date Collected	Result	
Date Collected 3/19/2002	Result 37.2	3.616
Date Collected 3/19/2002 4/23/2002	Result 37.2 38.6	3.616 3.653
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 37.2 38.6 35.6	3.616 3.653 3.572
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 37.2 38.6 35.6 37.5	3.616 3.653 3.572 3.624
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 37.2 38.6 35.6 37.5 34.1	3.616 3.653 3.572 3.624 3.529

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	44.2	NO	3.789	N/A
MW360	Downgradient	Yes	90.4	YES	4.504	N/A
MW363	Downgradient	Yes	33.2	NO	3.503	N/A
MW366	Sidegradient	Yes	41.6	NO	3.728	N/A
MW369	Upgradient	Yes	48.3	NO	3.877	N/A
MW372	Upgradient	Yes	58.9	NO	4.076	N/A
3.7/A D	1. 11 1	T D			1 . 111 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW360

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-52

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 45.031 **S**= 33.919 **CV(1)**=0.753

K factor=** 2.523

TL(1)= 130.609 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 3.420 **S**= 0.981

CV(2)=0.287

K factor=** 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 15.5 2.741 4/22/2002 15.8 2.760 7/15/2002 13.8 2.625 10/8/2002 6.9 1.932 1/8/2003 10.5 2.351 4/3/2003 10.5 2.351 7/8/2003 10.9 2.389 10/6/2003 16.3 2.791 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 71.7 4.272 4/23/2002 74.7 4.313 4.305 7/16/2002 74.1 10/8/2002 70.5 4.256 1/7/2003 75.8 4.328 4/2/2003 81.8 4.404 7/9/2003 83.6 4.426 10/7/2003 88.1 4.478

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	52	NO	3.951	N/A
MW360	Downgradient	Yes	29.6	NO	3.388	N/A
MW363	Downgradient	Yes	23.6	NO	3.161	N/A
MW366	Sidegradient	Yes	53.4	NO	3.978	N/A
MW369	Upgradient	Yes	7.89	NO	2.066	N/A
MW372	Upgradient	Yes	116	NO	4.754	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-53

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 20.821 S = 18.044 CV(1) = 0.867

K factor=** 2.523

TL(1)= 66.344

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.770 S = 1.150 CV(2) = 0.415

K factor=** 2.523

TL(2) = 3.972

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	41.7	3.731
4/22/2002	53.1	3.972
7/15/2002	18.1	2.896
10/8/2002	16.4	2.797
1/8/2003	3.49	1.250
4/3/2003	9.34	2.234
7/8/2003	17.5	2.862
10/6/2003	17	2.833
Well Number:	MW372	
Well Number: Date Collected	11111012	LN(Result)
	11111012	LN(Result) 3.802
Date Collected	Result	
Date Collected 3/19/2002	Result 44.8	3.802
Date Collected 3/19/2002 4/23/2002	Result 44.8 0.802	3.802 -0.221
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 44.8 0.802 19.8	3.802 -0.221 2.986
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 44.8 0.802 19.8 46.1	3.802 -0.221 2.986 3.831
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 44.8 0.802 19.8 46.1 -0.973	3.802 -0.221 2.986 3.831 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

(Current	Quarter Data					
V	Vell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
N	MW357	Downgradient	Yes	42.5	NO	3.750	N/A
N	MW360	Downgradient	No	1.29	N/A	0.255	N/A
N	MW363	Downgradient	No	6.6	N/A	1.887	N/A
N	MW366	Sidegradient	Yes	48.6	NO	3.884	N/A
N	MW369	Upgradient	Yes	46.7	NO	3.844	N/A
N	MW372	Upgradient	Yes	89.5	YES	4.494	N/A
	T/A D	1, 11, ,,,,, 1	T D.		. 1 .	1.7	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-54

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 3.513 S = 4.307 CV(1) = 1.226 K factor**= 2.523 TL(1) = 14.378 LL(1) = N/A

Statistics-Transformed Background Data

X= 0.851 **S**= 0.828 **CV(2)**= 0.973

K factor**= 2.523

TL(2)= 2.940

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.531 1.7 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 9 1/8/2003 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1.2 0.182 0.000 7/16/2002 1 10/8/2002 1 0.000 1/7/2003 1.6 0.470 4/2/2003 1.5 0.405 7/9/2003 3 1.099 10/7/2003 1.5 0.405

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.644	N/A	-0.440	NO
MW360	Downgradient	Yes	2.02	N/A	0.703	NO
MW363	Downgradient	Yes	0.831	N/A	-0.185	NO
MW366	Sidegradient	Yes	0.836	N/A	-0.179	NO
MW369	Upgradient	Yes	1.12	N/A	0.113	NO
MW372	Upgradient	Yes	1.91	N/A	0.647	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-55

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

K factor=** 2.523

TL(1) = 230.231 LL(1) = N/A

Statistics-Transformed Background Data

X = 3.772 S = 1.023 CV(2) = 0.271

K factor=** 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.215
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50	5.215 3.912 3.912 3.912 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	6.86	N/A	1.926	N/A		
MW360	Downgradient	No	21.8	N/A	3.082	N/A		
MW363	Downgradient	Yes	7.38	NO	1.999	N/A		
MW366	Sidegradient	Yes	5.24	NO	1.656	N/A		
MW369	Upgradient	Yes	18.7	NO	2.929	N/A		
MW372	Upgradient	Yes	13.8	NO	2.625	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-56

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 5.625 S = 3.594 CV(1) = 0.639 K factor**= 2.523 TL(1) = 14.693 LL(1) = N/A Statistics-Transformed Background X = 1.571 S = 0.565 CV(2) = 0.360 K factor**= 2.523 TL(2) = 2.995 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11 2.398 4/22/2002 16 2.773 2.079 7/15/2002 8 10/8/2002 3 1.099 2 1/8/2003 0.693 4/3/2003 3 1.099 7/8/2003 3 1.099 2 10/6/2003 0.693 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 5 1.609 4/23/2002 5 1.609 7/16/2002 4 1.386 10/8/2002 1.792 6 5 1/7/2003 1.609 4/2/2003 6 1.792 7/9/2003 5 1.609 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	5.78	NO	1.754	N/A			
MW360	Downgradient	No	1	N/A	0.000	N/A			
MW363	Downgradient	Yes	0.91	N/A	-0.094	N/A			
MW366	Sidegradient	Yes	3.83	N/A	1.343	N/A			
MW369	Upgradient	Yes	1.23	N/A	0.207	N/A			
MW372	Upgradient	Yes	9.18	NO	2.217	N/A			
M/A Dogu	Ita identified on N	Jon Dotoots	during lab	orotory analysis or	data validation	and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-57

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Uranium **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.917 **K factor**=** 2.523 Statistics-Background Data X = 0.001S = 0.001TL(1) = 0.005LL(1)=N/A **Statistics-Transformed Background**

Data

X = -6.718 S = 0.528CV(2) = -0.079 **K factor**=** 2.523 TL(2) = -5.385

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.001 -6.908 4/22/2002 0.001 -6.9087/15/2002 0.001 -6.90810/8/2002 0.00355 -5.641 -6.908 0.001 1/8/2003 4/3/2003 0.001 -6.9087/8/2003 0.001 -6.908 10/6/2003 0.001 -6.908Well Number: MW372 Result Date Collected LN(Result) 3/19/2002 0.001 -6.908 4/23/2002 0.001 -6.908 7/16/2002 0.001 -6.90810/8/2002 0.00591 -5.131 1/7/2003 0.001 -6.9084/2/2003 0.001 -6.9087/9/2003 0.001 -6.908 10/7/2003 0.001 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	0.0002	N/A	-8.517	N/A		
MW360	Downgradient	Yes	0.000348	8 NO	-7.963	N/A		
MW363	Downgradient	No	0.0002	N/A	-8.517	N/A		
MW366	Sidegradient	No	0.0002	N/A	-8.517	N/A		
MW369	Upgradient	No	0.0002	N/A	-8.517	N/A		
MW372	Upgradient	No	0.0002	N/A	-8.517	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 2.026 **S**= 5.626 **CV(1)**=2.777

K factor**= 2.523

TL(1)= 16.219 **LL(1)=**N/A

Statistics-Transformed Background Data

X = -0.803 S = 1.380 CV(2) = -1.718

K factor=** 2.523

TL(2) = 2.678

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.539 4.66 4/23/2002 0.2 -1.6097/15/2002 0.2 -1.60910/8/2002 0.2 -1.6090.2 -1.609 1/8/2003 4/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 22.7 3.122 4/23/2002 1.46 0.378 7/16/2002 0.253 -1.37410/8/2002 0.482 -0.730 1/7/2003 0.608 -0.4984/2/2003 0.446 -0.8077/9/2003 0.2 -1.609 10/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	0.05	N/A	-2.996	N/A	
MW361	Downgradient	No	0.05	N/A	-2.996	N/A	
MW364	Downgradient	Yes	0.0159	N/A	-4.141	NO	
MW367	Sidegradient	Yes	0.0332	N/A	-3.405	NO	
MW370	Upgradient	No	0.05	N/A	-2.996	N/A	
MW373	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-59

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: pCi/L **Beta activity LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.799 **K factor**=** 2.523 Statistics-Background Data X = 9.815S = 7.838**TL(1)=** 29.591 LL(1)=N/A **Statistics-Transformed Background** X = 2.072S = 0.630CV(2) = 0.304**K factor****= 2.523 TL(2) = 3.662LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 10.1 2.313 4/23/2002 4.46 1.495 7/15/2002 6.58 1.884 10/8/2002 4.9 1.589 4.47 1/8/2003 1.497 4/3/2003 8.65 2.158 7/9/2003 1.297 3.66 10/6/2003 5.38 1.683 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 15.1 2.715 4/23/2002 6.26 1.834 7/16/2002 6.22 1.828 10/8/2002 4.06 1.401 1/7/2003 11.2 2.416 4/2/2003 18.5 2.918 7/9/2003 13.3 2.588 10/7/2003 34.2 3.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	51	YES	3.932	N/A		
MW361	Downgradient	Yes	30.8	N/A	3.428	N/A		
MW364	Downgradient	Yes	30.2	N/A	3.408	N/A		
MW367	Sidegradient	No	3.61	N/A	1.284	N/A		
MW370	Upgradient	Yes	33.1	N/A	3.500	N/A		
MW373	Upgradient	Yes	10.7	N/A	2.370	N/A		
N/A Page	ulte identified as N	Von Detects	during lak	oratory analysis or	data validation	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA Boron**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.684 **K factor**=** 2.523 Statistics-Background Data X = 1.140S = 0.780TL(1) = 3.108LL(1)=N/A **Statistics-Transformed Background**

Data

X = -0.235 S = 1.006CV(2) = -4.287

K factor=** 2.523 TL(2) = 2.303 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.693 2. 4/23/2002 2 0.693 2 7/15/2002 0.693 10/8/2002 0.2 -1.6090.2 -1.609 1/8/2003 4/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 0.79 -0.236 1/7/2003 0.807 -0.2144/2/2003 1.13 0.122 7/9/2003 1.28 0.247 10/7/2003 1.24 0.215

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	0.486	NO	-0.722	N/A			
MW361	Downgradient	Yes	0.176	NO	-1.737	N/A			
MW364	Downgradient	Yes	0.0126	NO	-4.374	N/A			
MW367	Sidegradient	Yes	0.0202	NO	-3.902	N/A			
MW370	Upgradient	Yes	0.0328	NO	-3.417	N/A			
MW373	Upgradient	Yes	1.75	NO	0.560	N/A			
3.7/A D	1. 11 1	T . D			1 . 111 .				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-61

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 0.000 4/23/2002 1 0.000 0.000 7/15/2002 1 10/8/2002 1 0.000 1 0.000 1/8/2003 4/3/2003 1 0.000 7/9/2003 1 0.000 10/6/2003 1 0.000 Well Number: MW373 Result Date Collected LN(Result) 3/18/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.000 1/7/2003 0.000 4/2/2003 1 0.000 7/9/2003 0.000 1

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.482	NO	-0.730	N/A		
MW361	Downgradient	Yes	0.434	NO	-0.835	N/A		
MW364	Downgradient	Yes	0.391	NO	-0.939	N/A		
MW367	Sidegradient	Yes	0.132	NO	-2.025	N/A		
MW370	Upgradient	No	0.2	N/A	-1.609	N/A		
MW373	Upgradient	Yes	0.575	NO	-0.553	N/A		
		_						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-62

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Calcium LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 43.413 S = 13.444 CV(1) = 0.310**K factor**=** 2.523 Statistics-Background Data TL(1) = 77.331LL(1)=N/A **Statistics-Transformed Background**

Data

X = 3.723 S = 0.323CV(2) = 0.087 **K factor**=** 2.523 TL(2) = 4.539

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 34.8 3.550 4/23/2002 43.4 3.770 7/15/2002 33.2 3.503 10/8/2002 29.2 3.374 1/8/2003 31.3 3.444 4/3/2003 32.4 3.478 7/9/2003 22.9 3.131 10/6/2003 28 3.332 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 61.9 4.126 4/23/2002 59.2 4.081 7/16/2002 47.6 3.863 10/8/2002 46.1 3.831 1/7/2003 49.2 3.896 4/2/2003 57.8 4.057 7/9/2003 52.7 3.965

64.9

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	33.5	NO	3.512	N/A		
MW361	Downgradient	Yes	29.6	NO	3.388	N/A		
MW364	Downgradient	Yes	28.7	NO	3.357	N/A		
MW367	Sidegradient	Yes	14.6	NO	2.681	N/A		
MW370	Upgradient	Yes	27.3	NO	3.307	N/A		
MW373	Upgradient	Yes	71.8	NO	4.274	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.173

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-63

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 41.938 **S**= 24.732 **CV(1)**=0.590

K factor=** 2.523

TL(1)= 104.336 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 3.658 **S**= 0.339

CV(2) = 0.093

K factor=** 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 35 3.555 4/23/2002 134 4.898 7/15/2002 35 3.555 10/8/2002 35 3.555 1/8/2003 35 3.555 4/3/2003 35 3.555 7/9/2003 35 3.555 10/6/2003 35 3.555 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 35 3.555 4/23/2002 47 3.850 7/16/2002 35 3.555 10/8/2002 35 3.555 1/7/2003 35 3.555 4/2/2003 35 3.555 7/9/2003 35 3.555

35

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	8.68	NO	2.161	N/A		
MW361	Downgradient	No	20	N/A	2.996	N/A		
MW364	Downgradient	No	20	N/A	2.996	N/A		
MW367	Sidegradient	No	20	N/A	2.996	N/A		
MW370	Upgradient	Yes	31.1	NO	3.437	N/A		
MW373	Upgradient	No	20	N/A	2.996	N/A		
NI/A Dogg	lta idantified on N	Jon Dotooto	المام م	anotomy on alvaia am	data validatio	a and ryons not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-64

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 45.919 **S**= 7.524

K factor=** 2.523

TL(1)= 64.901

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.814 **S**= 0.165

CV(2)=0.043

CV(1)=0.164

K factor=** 2.523

TL(2) = 4.231

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/15/2002	55.5	4.016
10/8/2002	53.6	3.982
1/8/2003	52.9	3.968
4/3/2003	53.6	3.982
7/9/2003	51.9	3.949
10/6/2003	53	3.970
1/7/2004	53	3.970
4/7/2004	51.6	3.944
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.704
Date Collected	Result	,
Date Collected 7/16/2002	Result 40.6	3.704
Date Collected 7/16/2002 10/8/2002	Result 40.6 38.8	3.704 3.658
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 40.6 38.8 39	3.704 3.658 3.664
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 40.6 38.8 39 38.4	3.704 3.658 3.664 3.648
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 40.6 38.8 39 38.4 38.1	3.704 3.658 3.664 3.648 3.640

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	35.3	NO	3.564	N/A		
MW361	Downgradient	Yes	31.1	NO	3.437	N/A		
MW364	Downgradient	Yes	31.6	NO	3.453	N/A		
MW367	Sidegradient	Yes	9.39	NO	2.240	N/A		
MW370	Upgradient	Yes	5.57	NO	1.717	N/A		
MW373	Upgradient	Yes	48.6	NO	3.884	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-65

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.027S = 0.032CV(1) = 1.165TL(1) = 0.108LL(1)=N/A **Statistics-Transformed Background**

Data

X = -4.058 S = 1.011CV(2) = -0.249 **K factor**=** 2.523

TL(2) = -1.507

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.0174 -4.051 0.0105 1/8/2003 -4.5564/3/2003 0.00931 -4.6777/9/2003 0.137 -1.988 10/6/2003 0.0463 -3.073Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/23/2002 0.034 -3.381 7/16/2002 0.025 -3.68910/8/2002 0.00411 -5.494 1/7/2003 0.00344 -5.672-5.605 4/2/2003 0.00368 7/9/2003 0.0405 -3.2060.00843 -4.776 10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.00065	6 N/A	-7.329	NO		
MW361	Downgradient	Yes	0.00043	8 N/A	-7.733	NO		
MW364	Downgradient	Yes	0.000529	9 N/A	-7.545	NO		
MW367	Sidegradient	Yes	0.00587	N/A	-5.138	NO		
MW370	Upgradient	Yes	0.00057	8 N/A	-7.456	NO		
MW373	Upgradient	Yes	0.00027	1 N/A	-8.213	NO		
3.T/A D	1. 11 .10 1 3				1 . 111			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 608.719 S = 156.157 CV(1) = 0.257

K factor=** 2.523

TL(1)= 1002.702 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor=** 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 406 6.006 4/23/2002 543 6.297 7/15/2002 476 6.165 10/8/2002 441 6.089 1/8/2003 486 6.186 4/3/2003 466 6.144 7/9/2003 479 6.172 10/6/2003 435 6.075 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 661 6.494 4/23/2002 801 6.686 7/16/2002 774 6.652 10/8/2002 680 6.522 1/7/2003 686.5 6.532 4/2/2003 763 6.637 7/9/2003 828 6.719 10/7/2003 814 6.702

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	499	NO	6.213	N/A
MW361	Downgradient	Yes	472	NO	6.157	N/A
MW364	Downgradient	Yes	456	NO	6.122	N/A
MW367	Sidegradient	Yes	281	NO	5.638	N/A
MW370	Upgradient	Yes	432	NO	6.068	N/A
MW373	Upgradient	Yes	849	NO	6.744	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-67

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.010 CV(1) = 0.399 K factor** = 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.739 S = 0.308 CV(2) = -0.082 K factor** = 2.523
 TL(2) = -2.963 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6890.05 -2.996 7/15/2002 10/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.912 7/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW373 Result Date Collected LN(Result) 3/18/2002 0.026 -3.6504/23/2002 0.025 -3.689 -2.9967/16/2002 0.05 10/8/2002 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00046	6 NO	-7.671	N/A
MW361	Downgradient	Yes	0.00060	9 NO	-7.404	N/A
MW364	Downgradient	Yes	0.00057	8 NO	-7.456	N/A
MW367	Sidegradient	Yes	0.00046	7 NO	-7.669	N/A
MW370	Upgradient	Yes	0.00081	6 NO	-7.111	N/A
MW373	Upgradient	Yes	0.00048	NO	-7.642	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-68

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.387

 $S= 1.153 \quad CV(1)=0.831$

K factor=** 2.523

TL(1)= 4.295

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.115 S = 1.207

CV(2) = -10.514

K factor=** 2.523

TL(2) = 2.930

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result)
Date Collected	Result	,
Date Collected 3/18/2002	Result 3.04	1.112
Date Collected 3/18/2002 4/23/2002	Result 3.04 0.03	1.112 -3.507
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 3.04 0.03 0.23	1.112 -3.507 -1.470
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.04 0.03 0.23 0.86	1.112 -3.507 -1.470 -0.151
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.04 0.03 0.23 0.86 0.21	1.112 -3.507 -1.470 -0.151 -1.561

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.89	NO	0.637	N/A
MW361	Downgradient	Yes	2.99	NO	1.095	N/A
MW364	Downgradient	Yes	2.52	NO	0.924	N/A
MW367	Sidegradient	Yes	1.44	NO	0.365	N/A
MW370	Upgradient	Yes	4.29	NO	1.456	N/A
MW373	Upgradient	Yes	1.99	NO	0.688	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-69

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 356.188 **S**= 106.752 **CV(1)**=0.300

K factor**= 2.523

TL(1)= 625.523 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor=** 2.523

TL(2) = 6.616

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 236 5.464 4/23/2002 337 5.820 7/15/2002 266 5.583 10/8/2002 240 5.481 1/8/2003 282 5.642 4/3/2003 238 5.472 7/9/2003 248 5.513 10/6/2003 224 5.412 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 427 6.057 4/23/2002 507 6.229 7/16/2002 464 6.140 10/8/2002 408 6.011 1/7/2003 404 6.001 4/2/2003 450 6.109 7/9/2003 487 6.188 10/7/2003 481 6.176

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	257	NO	5.549	N/A
MW361	Downgradient	Yes	229	NO	5.434	N/A
MW364	Downgradient	Yes	221	NO	5.398	N/A
MW367	Sidegradient	Yes	136	NO	4.913	N/A
MW370	Upgradient	Yes	414	NO	6.026	N/A
MW373	Upgradient	Yes	480	NO	6.174	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-70

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 9.230 S = 8.841 CV(1) = 0.958 K factor**= 2.523
 TL(1) = 31.535 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.942 X = 0.713 X =

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 1.258 7/15/2002 3.52 10/8/2002 7.45 2.008 7.04 1/8/2003 1.952 4/3/2003 4.64 1.535 7/9/2003 15.8 2.760 10/6/2003 6.49 1.870 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 7/16/2002 10.7 2.370 10/8/2002 3.75 1.322 1/7/2003 3.87 1.353 4/2/2003 3.5 1.253 7/9/2003 7.72 2.044 10/7/2003 2.93 1.075

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.06	NO	0.058	N/A
MW361	Downgradient	Yes	0.0398	NO	-3.224	N/A
MW364	Downgradient	Yes	0.161	NO	-1.826	N/A
MW367	Sidegradient	Yes	12.6	NO	2.534	N/A
MW370	Upgradient	No	0.1	N/A	-2.303	N/A
MW373	Upgradient	No	0.1	N/A	-2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-71

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.544 **S**= 5.911 **CV(1)**=0.337

K factor=** 2.523

TL(1) = 32.458

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.810 **S**= 0.343

CV(2) = 0.122

K factor=** 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	12.1	2.493
4/23/2002	15.1	2.715
7/15/2002	12.4	2.518
10/8/2002	12.2	2.501
1/8/2003	11.5	2.442
4/3/2003	12.3	2.510
7/9/2003	10	2.303
10/6/2003	12.1	2.493
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.211
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 24.8	3.211
Date Collected 3/18/2002 4/23/2002	Result 24.8 22.7	3.211 3.122
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 24.8 22.7 18.8	3.211 3.122 2.934
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 24.8 22.7 18.8 21.1	3.211 3.122 2.934 3.049
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 24.8 22.7 18.8 21.1 19.9	3.211 3.122 2.934 3.049 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	16.1	NO	2.779	N/A
MW361	Downgradient	Yes	14.1	NO	2.646	N/A
MW364	Downgradient	Yes	12.1	NO	2.493	N/A
MW367	Sidegradient	Yes	7.97	NO	2.076	N/A
MW370	Upgradient	Yes	11.6	NO	2.451	N/A
MW373	Upgradient	Yes	26.1	NO	3.262	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-72

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 1.080 S= 0.674 C

CV(1)=0.624

K factor=** 2.523

TL(1) = 2.780

LL(1)=N/A

Statistics-Transformed Background Data

X=-0.114 **S**= 0.658

CV(2) = -5.762

K factor=** 2.523

TL(2) = 1.547

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.244	-1.411
4/23/2002	1.82	0.599
7/15/2002	1.22	0.199
10/8/2002	0.988	-0.012
1/8/2003	0.729	-0.316
4/3/2003	0.637	-0.451
7/9/2003	2.51	0.920
10/6/2003	1.05	0.049
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -1.036
Date Collected	Result	
Date Collected 3/18/2002	Result 0.355	-1.036
Date Collected 3/18/2002 4/23/2002	Result 0.355 2.16	-1.036 0.770
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.355 2.16 1.39	-1.036 0.770 0.329
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.355 2.16 1.39 0.717	-1.036 0.770 0.329 -0.333
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.355 2.16 1.39 0.717 0.587	-1.036 0.770 0.329 -0.333 -0.533

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.143	NO	-1.945	N/A
MW361	Downgradient	Yes	0.0287	NO	-3.551	N/A
MW364	Downgradient	Yes	0.046	NO	-3.079	N/A
MW367	Sidegradient	Yes	1.69	NO	0.525	N/A
MW370	Upgradient	Yes	0.00374	l NO	-5.589	N/A
MW373	Upgradient	Yes	0.0146	NO	-4.227	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-73

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.022 CV(1) = 0.901 K factor** = 2.523
 TL(1) = 0.078 LL(1) = N/A

 Statistics-Transformed Background
 X = -4.239 S = 1.087 CV(2) = -0.256 K factor** = 2.523
 TL(2) = -1.497 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.05 -2.9964/23/2002 0.05 -2.9967/15/2002 0.05 -2.99610/8/2002 0.005 -5.2980.005 1/8/2003 -5.2984/3/2003 0.005 -5.2987/9/2003 0.0264 -3.634 10/6/2003 0.00971 -4.635Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.05 -2.996 4/23/2002 0.05 -2.996 7/16/2002 0.05 -2.99610/8/2002 0.005 -5.298 1/7/2003 0.005 -5.2984/2/2003 0.005 -5.2987/9/2003 0.0112 -4.4920.005 -5.298 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	0.00292	NO	-5.836	N/A
	MW361	Downgradient	Yes	0.00078	1 NO	-7.155	N/A
	MW364	Downgradient	Yes	0.0034	NO	-5.684	N/A
	MW367	Sidegradient	Yes	0.0032	NO	-5.745	N/A
	MW370	Upgradient	Yes	0.00116	NO	-6.759	N/A
	MW373	Upgradient	Yes	0.00091	4 NO	-6.998	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-74

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 46.688 **S**= 60.986 **CV(1)**=1.306

K factor=** 2.523

TL(1)= 200.555 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.829

 $S= 1.151 \quad CV(2)=0.301$

K factor=** 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.942
Date Collected	Result	` '
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	380	N/A	5.940	YES
MW361	Downgradient	Yes	780	N/A	6.659	YES
MW364	Downgradient	Yes	509	N/A	6.232	YES
MW367	Sidegradient	Yes	336	N/A	5.817	YES
MW370	Upgradient	Yes	416	N/A	6.031	YES
MW373	Upgradient	Yes	312	N/A	5.743	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Welle	with	Exceedances

MW358 MW361

MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-75

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.283 S = 0.159 CV(1) = 0.025 K factor**= 2.904
 TL(1) = 6.745 LL(1) = 5.8202

 Statistics-Transformed Background Data
 X = 1.837 X = 0.025 X = 0.025</th

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 6.3 1.841 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 1/7/2003 6.35 1.848 4/2/2003 6.14 1.815 7/9/2003 1.808 6.1 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1.823

N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.28	NO	1.837	N/A
MW361	Downgradien	t Yes	6.08	NO	1.805	N/A
MW364	Downgradien	t Yes	6.07	NO	1.803	N/A
MW367	Sidegradient	Yes	6.03	NO	1.797	N/A
MW370	Upgradient	Yes	6.19	NO	1.823	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

6.19

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW373 Upgradient

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-76

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Potassium LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.185 **K factor**=** 2.523 Statistics-Background Data X = 2.823S = 0.522TL(1) = 4.139LL(1)=N/A **Statistics-Transformed Background** X = 1.024S = 0.167

Data

CV(2) = 0.163

K factor=** 2.523

TL(2) = 1.445

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.22 1.169 4/23/2002 3.43 1.233 1.092 7/15/2002 2.98 10/8/2002 2.46 0.900 2.41 1/8/2003 0.8804/3/2003 2.43 0.888 7/9/2003 2.44 0.892 10/6/2003 2.48 0.908 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 4.34 1.468 4/23/2002 3.04 1.112 7/16/2002 2.93 1.075 10/8/2002 2.3 0.833 1/7/2003 2.45 0.896 4/2/2003 2.7 0.993 7/9/2003 0.986 2.68 10/7/2003 2.88 1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW358	Downgradient	Yes	2.38	NO	0.867	N/A
	MW361	Downgradient	Yes	2.11	NO	0.747	N/A
	MW364	Downgradient	Yes	1.97	NO	0.678	N/A
	MW367	Sidegradient	Yes	2.78	NO	1.022	N/A
	MW370	Upgradient	Yes	2.38	NO	0.867	N/A
	MW373	Upgradient	Yes	2.7	NO	0.993	N/A
	3.7/A D	1. 11 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Sodium LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 51.544 **S**= 15.227 **CV(1)**=0.295

K factor=** 2.523

TL(1)= 89.962

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.906 S = 0.272 CV(2) = 0.070

K factor=** 2.523

TL(2) = 4.592

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.770
Date Collected	Result	
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	43	NO	3.761	N/A
MW361	Downgradient	Yes	44.9	NO	3.804	N/A
MW364	Downgradient	Yes	40.3	NO	3.696	N/A
MW367	Sidegradient	Yes	17.9	NO	2.885	N/A
MW370	Upgradient	Yes	50.4	NO	3.920	N/A
MW373	Upgradient	Yes	59.5	NO	4.086	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-78

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 122.381 **S**= 195.095 **CV(1)**=1.594

K factor=** 2.523

TL(1)= 614.606 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.985 S = 1.323 CV(2) = 0.332

K factor=** 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 17.4 2.856 4/23/2002 37.9 3.635 7/15/2002 15.7 2.754 10/8/2002 13.4 2.595 2.667 1/8/2003 14.4 4/3/2003 18.1 2.896 7/9/2003 9.6 2.262 10/6/2003 16.5 2.803 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 163.3 5.096 4/23/2002 809.6 6.697 7/16/2002 109.4 4.695 10/8/2002 110.6 4.706 1/7/2003 113.7 4.734 4/2/2003 4.890 133 7/9/2003 182.1 5.205 10/7/2003 193.4 5.265

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	78.3	N/A	4.361	NO
MW361	Downgradient	Yes	73.9	N/A	4.303	NO
MW364	Downgradient	Yes	67.2	N/A	4.208	NO
MW367	Sidegradient	Yes	22.9	N/A	3.131	NO
MW370	Upgradient	Yes	11	N/A	2.398	NO
MW373	Upgradient	Yes	160	N/A	5.075	NO
NT/A D	1, 11, 20, 1, 3				1. 1.1.	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-79

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 7.655 S = 13.274 CV(1) = 1.734 K factor** = 2.523
 TL(1) = 41.146 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.946 X = 0.939 X = 0.939

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	10.8	2.380
4/23/2002	8.53	2.144
7/15/2002	5.09	1.627
10/8/2002	4.78	1.564
1/8/2003	-5.12	#Func!
4/3/2003	5.11	1.631
7/9/2003	4.25	1.447
10/6/2003	6.54	1.878
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.803
Date Collected	Result	
Date Collected 3/18/2002	Result 16.5	2.803
Date Collected 3/18/2002 4/23/2002	Result 16.5 3.49	2.803 1.250
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 16.5 3.49 1.42	2.803 1.250 0.351
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 16.5 3.49 1.42 -6.06	2.803 1.250 0.351 #Func!
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 16.5 3.49 1.42 -6.06 -8.41	2.803 1.250 0.351 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	38.9	N/A	3.661	NO
MW361	Downgradient	Yes	48.4	N/A	3.879	YES
MW364	Downgradient	Yes	39.5	N/A	3.676	NO
MW367	Sidegradient	No	-4.6	N/A	#Error	N/A
MW370	Upgradient	Yes	50.5	N/A	3.922	YES
MW373	Upgradient	No	15.9	N/A	2.766	N/A
NT/A D	1, 11 (C 1 N				1 . 111	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW361 MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-80

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** Thorium-230 UNITS: pCi/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.127

S = 0.175

CV(1) = 1.382

K factor=** 2.523

TL(1) = 0.568

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.222 S = 2.322

CV(2) = -0.721

K factor=** 2.523

TL(2) = -0.629

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
10/7/2004	0.533	-0.629
1/12/2005	0.0808	-2.516
4/7/2005	0.174	-1.749
7/20/2005	0.000167	-8.698
10/12/2005	0.00661	-5.019
1/9/2006	0.00128	-6.661
4/5/2006	-0.0055	#Func!
7/6/2006	0.0775	-2.557
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -0.970
Date Collected	Result	` ′
Date Collected 10/7/2004	Result 0.379	-0.970
Date Collected 10/7/2004 1/11/2005	Result 0.379 0.461	-0.970 -0.774
Date Collected 10/7/2004 1/11/2005 4/13/2005	Result 0.379 0.461 0.029	-0.970 -0.774 -3.540
Date Collected 10/7/2004 1/11/2005 4/13/2005 7/26/2005	Result 0.379 0.461 0.029 0.143	-0.970 -0.774 -3.540 -1.945
Date Collected 10/7/2004 1/11/2005 4/13/2005 7/26/2005 10/11/2005	Result 0.379 0.461 0.029 0.143 0.0894	-0.970 -0.774 -3.540 -1.945 -2.415

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.291	N/A	-1.234	N/A
MW361	Downgradient	No	0.121	N/A	-2.112	N/A
MW364	Downgradient	No	0.00919	N/A	-4.690	N/A
MW367	Sidegradient	Yes	1.03	N/A	0.030	YES
MW370	Upgradient	No	0.414	N/A	-0.882	N/A
MW373	Upgradient	No	-0.022	N/A	#Error	N/A
3.7/4 D	1, 11, 410 1 31	T D			1 . 111 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW367

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
 - Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-81

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 6.169 **S**= 12.072 **CV(1)**=1.957

K factor=** 2.523

TL(1)= 36.626 **LI**

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.069 S = 1.014 CV(2) = 0.948

K factor=** 2.523

TL(2) = 3.626

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	1.2	0.182
4/23/2002	4.3	1.459
7/15/2002	2.6	0.956
10/8/2002	2.3	0.833
1/8/2003	3	1.099
4/3/2003	1.2	0.182
7/9/2003	2.6	0.956
10/6/2003	1.7	0.531
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.095
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 1.1	0.095
Date Collected 3/18/2002 4/23/2002	Result 1.1 17.5	0.095 2.862
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1.1 17.5 49	0.095 2.862 3.892
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1.1 17.5 49 2.9	0.095 2.862 3.892 1.065
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1.1 17.5 49 2.9 3.9	0.095 2.862 3.892 1.065 1.361

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.892	N/A	-0.114	NO
MW361	Downgradient	Yes	0.848	N/A	-0.165	NO
MW364	Downgradient	Yes	0.624	N/A	-0.472	NO
MW367	Sidegradient	Yes	0.607	N/A	-0.499	NO
MW370	Upgradient	Yes	0.847	N/A	-0.166	NO
MW373	Upgradient	Yes	1.11	N/A	0.104	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-82

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

K factor=** 2.523

TL(1)= 277.798 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.971 S = 0.950 CV(2) = 0.239

K factor=** 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370			
Date Collected	Result	LN(Result)		
3/17/2002	50	3.912		
4/23/2002	228	5.429		
7/15/2002	88	4.477		
10/8/2002	58	4.060		
1/8/2003	72.4	4.282		
4/3/2003	26.6	3.281		
7/9/2003	16.4	2.797		
10/6/2003	31.1 3.437			
Well Number:	MW373			
Well Number: Date Collected	MW373 Result	LN(Result)		
		LN(Result) 3.912		
Date Collected	Result			
Date Collected 3/18/2002	Result 50	3.912		
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620		
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176		
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331		
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	. No	8.2	N/A	2.104	N/A	
MW361	Downgradient	No	5.2	N/A	1.649	N/A	
MW364	Downgradient	Yes	6.86	NO	1.926	N/A	
MW367	Sidegradient	No	10	N/A	2.303	N/A	
MW370	Upgradient	Yes	11.9	NO	2.477	N/A	
MW373	Upgradient	Yes	11.2	NO	2.416	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-83

C-746-U Fourth Quarter 2015 Statistical Analysis Historical Background Comparison **Trichloroethene** UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X= 12.188 **S**= 6.950 **CV(1)**=0.570 **K factor**=** 2.523 Statistics-Background Data TL(1) = 29.721LL(1)=N/A **Statistics-Transformed Background** X = 2.305S = 0.687CV(2) = 0.298TL(2) = 4.039

Data

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 19 2.944 4/23/2002 17 2.833 15 7/15/2002 2.708 10/8/2002 18 2.890 17 1/8/2003 2.833 4/3/2003 18 2.890 7/9/2003 15 2.708 10/6/2003 16 2.773 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 7/16/2002 3 1.099 10/8/2002 4 1.386 1/7/2003 6 1.792 4/2/2003 5 1.609 7/9/2003 1.792 6 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	3.78	N/A	1.330	N/A
MW361	Downgradient	Yes	4.76	N/A	1.560	N/A
MW364	Downgradient	Yes	4.4	N/A	1.482	N/A
MW367	Sidegradient	Yes	0.31	N/A	-1.171	N/A
MW370	Upgradient	Yes	0.8	N/A	-0.223	N/A
MW373	Upgradient	Yes	9.14	NO	2.213	N/A
NI/A D	1. 11 1	T . D			1 . 111 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-84

C-746-U Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.673 **K factor**=** 2.523 Statistics-Background Data X = 0.055S = 0.037TL(1) = 0.147LL(1)=N/A **Statistics-Transformed Background**

Data

X = -3.131 S = 0.691CV(2) = -0.221 **K factor**=** 2.523

TL(2) = -1.388LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 -2.303 0.1 4/23/2002 0.1 -2.3037/15/2002 0.1 -2.30310/8/2002 0.025 -3.6890.035 1/8/2003 -3.3524/3/2003 0.035 -3.3527/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.1 -2.303 4/23/2002 0.1 -2.303-2.3037/16/2002 0.1 10/8/2002 0.025 -3.689 1/7/2003 0.035 -3.352 4/2/2003 0.035 -3.3527/9/2003 0.0234 -3.755

0.02

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00405	NO	-5.509	N/A
MW361	Downgradient	No	0.01	N/A	-4.605	N/A
MW364	Downgradient	Yes	0.0351	NO	-3.350	N/A
MW367	Sidegradient	Yes	0.00767	NO	-4.870	N/A
MW370	Upgradient	No	0.01	N/A	-4.605	N/A
MW373	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-85

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

Current Background Comparison

Dissolved Oxygen

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: mg/L

Statistics-Background Data	X= 1.993	S = 1.146	CV(1) =0.575	K factor**= 2.523	TL(1) = 4.885	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.533	S = 0.589	CV(2)= 1.106	K factor**= 2.523	TL(2)= 2.019	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 10/8/2013 1.38 0.322 1/14/2014 1.97 0.678 4/14/2014 3.87 1.353 9/22/2014 1.34 0.293 10/20/2014 0.98 -0.020 1/21/2015 1.79 0.582 4/13/2015 4.44 1.491 7/14/2015 1.004 2.73 Well Number: MW374 Date Collected Result LN(Result) 10/9/2013 2.74 1.008 1/14/2014 1.67 0.513 4/15/2014 3.44 1.235 7/7/2014 1.76 0.565 10/16/2014 0.86 -0.1511/21/2015 -0.416 0.66 0.464 4/9/2015 1.59

0.67

7/13/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradien	t Yes	3.52	NO	1.258	N/A
MW365	Downgradien	t Yes	3.39	NO	1.221	N/A
MW368	Sidegradient	Yes	3.82	NO	1.340	N/A

Conclusion of Statistical Analysis on Current Data

-0.400

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2015 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 444.750 **S**= 164.344 **CV(1)**=0.370

K factor=** 2.523

TL(1)= 859.389

LL(1)=N/A

Statistics-Transformed Background Data

X = 6.039 S = 0.350

CV(2) = 0.058

K factor**= 2.523

TL(2)= 6.921

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
10/8/2013	544	6.299
1/14/2014	374	5.924
4/14/2014	476	6.165
9/22/2014	311	5.740
10/20/2014	360	5.886
1/21/2015	774	6.652
4/13/2015	384	5.951
7/14/2015	368	5.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.687
Date Collected	Result	` '
Date Collected 10/9/2013	Result 802	6.687
Date Collected 10/9/2013 1/14/2014	Result 802 515	6.687 6.244
Date Collected 10/9/2013 1/14/2014 4/15/2014	Result 802 515 499	6.687 6.244 6.213
Date Collected 10/9/2013 1/14/2014 4/15/2014 7/7/2014	Result 802 515 499 259	6.687 6.244 6.213 5.557
Date Collected 10/9/2013 1/14/2014 4/15/2014 7/7/2014 10/16/2014	Result 802 515 499 259 257	6.687 6.244 6.213 5.557 5.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Qual ttl	Data

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	t Yes	620	NO	6.430	N/A
MW365	Downgradient	t Yes	523	NO	6.260	N/A
MW368	Sidegradient	Yes	523	NO	6.260	N/A
MW371	Upgradient	Yes	393	NO	5.974	N/A
MW374	Upgradient	Yes	449	NO	6.107	N/A
MW375	Sidegradient	Yes	468	NO	6.148	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2015 Statistical Analysis **Sulfate** UNITS: mg/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 9.716**S**= 4.907 CV(1)=0.505K factor**= 2.523 TL(1)= 22.095 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background**

Data

X = 2.162S = 0.479**CV(2)**=0.221 **K** factor**= 2.523

TL(2) = 3.370

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 10/8/2013 13 2.565 9.9 1/14/2014 2.293 4/14/2014 2.797 16.4 7/8/2014 18.6 2.923 10/20/2014 10.5 2.351 1/21/2015 9.23 2.222 4/13/2015 13.2 2.580 7/14/2015 2.939 18.9 Well Number: MW374 Date Collected Result LN(Result) 10/9/2013 1.887 6.6 1/14/2014 5.1 1.629 4/15/2014 5.63 1.728

5.64

5.73

5.39

5.7

5.93

7/7/2014

10/16/2014

1/21/2015

4/9/2015

7/13/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradien	t Yes	35.2	YES	3.561	N/A
MW365	Downgradien	t Yes	56.3	YES	4.031	N/A
MW368	Sidegradient	Yes	29	YES	3.367	N/A
MW371	Upgradient	Yes	19.5	NO	2.970	N/A
MW375	Sidegradient	Yes	23.4	YES	3.153	N/A

Conclusion of Statistical Analysis on Current Data

1.730

1.746

1.685

1.740

1.780

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW362 MW365 MW368

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2015 Statistical Analysis Beta activity UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.319 S = 40.657 CV(1) = 0.984

K factor=** 2.523

TL(1)= 143.898 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 3.294 **S**= 0.960

CV(2)=0.292

K factor**= 2.523

TL(2) = 5.717

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 10/8/2013 17.3 2.851 1/14/2014 26.8 3.288 4/14/2014 15.7 2.754 7/8/2014 5.76 1.751 10/20/2014 32.1 3.469 1/13/2015 33.4 3.509 4/13/2015 26.8 3.288 3.049 7/14/2015 21.1

,, 1 ,, 2010		2.0.7
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/9/2013	131	4.875
1/14/2014	102	4.625
4/16/2014	7.56	2.023
7/7/2014	30.3	3.411
10/16/2014	74	4.304
1/21/2015	115	4.745
4/9/2015	8.38	2.126
	Date Collected 10/9/2013 1/14/2014 4/16/2014 7/7/2014 10/16/2014 1/21/2015	Date Collected Result 10/9/2013 131 1/14/2014 102 4/16/2014 7.56 7/7/2014 30.3 10/16/2014 74 1/21/2015 115

13.9

7/13/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	86.8	NO	4 464	N/A

Conclusion of Statistical Analysis on Current Data

2.632

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

URGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 38.256 S = 22.038 CV(1) = 0.576

K factor=** 2.523

TL(1) = 93.859

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.470

S = 0.623CV(2) = 0.180 **K** factor**= 2.523

TL(2) = 5.043

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
10/8/2013	16.2	2.785
1/14/2014	21.8	3.082
4/14/2014	16.4	2.797
7/8/2014	15.5	2.741
10/20/2014	16.8	2.821
1/13/2015	16.5	2.803
4/13/2015	28	3.332
7/14/2015	17.8	2.879

7/14/2015	17.8	2.879
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/9/2013	60.2	4.098
1/14/2014	31.3	3.444
4/16/2014	70.5	4.256
7/7/2014	59.1	4.079
10/16/2014	59.3	4.083
1/21/2015	53.5	3.980
4/9/2015	66.6	4.199
7/13/2015	62.6	4.137

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	61.9	NO	4.126	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 581.688 S = 205.082 CV(1) = 0.353

K factor=** 2.523

TL(1)= 1099.110 **LL(1)**=N/A

URGA

Statistics-Transformed Background Data

X = 6.304**S**= 0.366 CV(2) = 0.058 **K** factor**= 2.523

TL(2) = 7.227

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
10/8/2013	376	5.930
1/14/2014	392	5.971
4/14/2014	380	5.940
9/22/2014	370	5.914
10/20/2014	371	5.916
1/13/2015	374	5.924
4/13/2015	434	6.073
7/14/2015	390	5.966

10/20/2014	371	5.916
1/13/2015	374	5.924
4/13/2015	434	6.073
7/14/2015	390	5.966
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/9/2013	791	6.673
10/9/2013 1/14/2014	791 759	, ,
		6.673
1/14/2014	759	6.673 6.632
1/14/2014 4/16/2014	759 837	6.673 6.632 6.730
1/14/2014 4/16/2014 7/7/2014	759 837 839	6.673 6.632 6.730 6.732

758

7/13/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	751	NO	6 621	N/A

Conclusion of Statistical Analysis on Current Data

6.631

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S),
- LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 321.375 S = 131.364 CV(1) = 0.409

K factor=** 2.523

TL(1)= 652.805

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.692**S**= 0.419 CV(2) = 0.074 **K** factor**= 2.523

TL(2) = 6.749

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 10/8/2013 228 5.429 1/14/2014 216 5.375 4/14/2014 213 5.361 7/8/2014 150 5.011 10/20/2014 193 5.263 1/13/2015 207 5.333 4/13/2015 201 5.303

Well Number: MW372 Date Collected Result LN(Result) 10/9/2013 481 6.176 1/14/2014 455 6.120 4/16/2014 546 6.303 7/7/2014 314 5.749 10/16/2014 476 6.165 1/21/2015 374 5.924 4/9/2015 421 6.043

441

226

7/14/2015

7/13/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Unoradient	Yes	419	NO	6.038	N/A

Conclusion of Statistical Analysis on Current Data

6.089

5.421

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S),
- LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 14.947 **S**= 7.989

CV(1)=0.534

K factor**= 2.523

TL(1)= 35.102

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.553

S = 0.584 CV(2) = 0.229

K factor**= 2.523

TL(2) = 4.027

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 10/8/2013 6.5 1.872 1/14/2014 2.255 9.54 4/14/2014 1.902 6.7 7/8/2014 1.733 5.66 10/20/2014 7.03 1.950 1/13/2015 7.19 1.973 4/13/2015 12.7 2.542

Well Number: MW372 Date Collected Result LN(Result) 10/9/2013 22.8 3.127 1/14/2014 12.8 2.549 4/16/2014 26.1 3.262 7/7/2014 21.6 3.073 10/16/2014 22.4 3.109

20.4

25.2

24.8

7.73

7/14/2015

1/21/2015

4/9/2015

7/13/2015

utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	23.5	NO	3.157	N/A

Conclusion of Statistical Analysis on Current Data

2.045

3.016

3.227

3.211

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2015 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 433.500 S = 220.385 CV(1) = 0.508

K factor**= 2.523

TL(1)= 989.531

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.915 S = 0.632 CV(2) = 0.107

K factor**= 2.523

TL(2) = 7.509

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
10/8/2013	750	6.620
1/14/2014	438	6.082
4/14/2014	514	6.242
9/22/2014	331	5.802
10/20/2014	405	6.004
1/13/2015	779	6.658
4/13/2015	404	6.001
7/14/2015	410	6.016
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/9/2013	519	6.252
1/14/2014	740	6.607
4/16/2014	236	5.464
7/7/2014	126	4.836

88

693

283

220

10/16/2014

1/21/2015

4/9/2015

7/13/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Qual ttl	Data

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradien	t Yes	582	NO	6.366	N/A
MW360	Downgradien	t Yes	440	NO	6.087	N/A
MW363	Downgradien	t Yes	630	NO	6.446	N/A
MW366	Sidegradient	Yes	482	NO	6.178	N/A
MW369	Upgradient	Yes	382	NO	5.945	N/A
MW372	Upgradient	Yes	294	NO	5.684	N/A

Conclusion of Statistical Analysis on Current Data

4.477

6.541

5.645

5.394

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

URGA Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 59.381 S = 18.924 CV(1) = 0.319

K factor=** 2.523

TL(1) = 107.127

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.047

S = 0.272

CV(2) = 0.067

K factor**= 2.523

TL(2) = 4.734

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
10/8/2013	52.6	3.963
1/14/2014	30.6	3.421
4/14/2014	58.7	4.072
7/8/2014	48.8	3.888
10/20/2014	53.4	3.978
1/13/2015	52.2	3.955
4/13/2015	46.2	3.833
7/14/2015	57.7	4.055

7/14/2013	31.1	4.033
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/9/2013	61.5	4.119
1/14/2014	123	4.812
4/16/2014	65.5	4.182
7/7/2014	60.7	4.106
10/16/2014	59.7	4.089
1/21/2015	55.7	4.020
4/9/2015	60.5	4.103
7/13/2015	63.3	4.148

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW360	Downgradien	t Yes	90.4	NO	4 504	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S),
- LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2015 Statistical Analysis Technetium-99 UNITS:

Analysis Current Background Comparison UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 59.469 S = 56.460 CV(1) = 0.949

K factor=** 2.523

TL(1)= 201.918 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.721

S = 0.861 CV(2) = 0.231

K factor**= 2.523

TL(2) = 5.894

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 10/8/2013 29.7 3.391 1/14/2014 25.3 3.231 4/14/2014 35.4 3.567 7/8/2014 2.760 15.8 10/20/2014 43.3 3.768 1/13/2015 45.2 3.811 4/13/2015 37.3 3.619 3.603 7/14/2015 36.7

77172013	50.7	3.003
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/9/2013	176	5.170
1/14/2014	131	4.875
4/16/2014	13.4	2.595
7/7/2014	26.6	3.281
10/16/2014	107	4.673
1/21/2015	181	5.198
4/9/2015	10.8	2.380
7/13/2015	37	3.611

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Vec	89.5	NO	4 494	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2015 Statistical Analysis Beta activity UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.294 **S**= 9.485

CV(1)=0.425

S= 0.395

K factor**= 2.523

TL(1) = 46.224

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.028

CV(2) = 0.130

K factor**= 2.523

TL(2) = 4.025

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW370 Well Number: Date Collected Result LN(Result) 10/8/2013 15.1 2.715 1/14/2014 11.4 2.434 4/15/2014 27.2 3.303 7/8/2014 19.2 2.955 10/20/2014 14.5 2.674 1/13/2015 16 2.773 4/13/2015 14.5 2.674 7/14/2015 36 1 3 586

7/14/2013	30.1	3.360
Well Number:	MW373	
Date Collected	Result	LN(Result)
10/9/2013	42.4	3.747
1/14/2014	38.6	3.653
4/16/2014	19.1	2.950
7/7/2014	16.7	2.815
10/16/2014	24.9	3.215
1/21/2015	14.1	2.646
4/9/2015	25.1	3.223
7/13/2015	21.8	3.082

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradien	t Yes	51	YES	3 932	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW358

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2015 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 473.250 S = 134.952 CV(1) = 0.285

K factor=** 2.523

TL(1)= 813.733 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.126S = 0.257**CV(2)=**0.042 **K** factor**= 2.523

TL(2) = 6.776

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
		LN/D to
Date Collected	Result	LN(Result)
10/8/2013	811	6.698
1/14/2014	443	6.094
4/15/2014	535	6.282
9/22/2014	353	5.866
10/20/2014	363	5.894
1/13/2015	691	6.538
4/13/2015	380	5.940
7/14/2015	388	5.961
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.441
Date Collected	Result	` ′
Date Collected 10/9/2013	Result 627	6.441
Date Collected 10/9/2013 1/14/2014	Result 627 494	6.441 6.203
Date Collected 10/9/2013 1/14/2014 4/16/2014	Result 627 494 398	6.441 6.203 5.986
Date Collected 10/9/2013 1/14/2014 4/16/2014 7/7/2014	Result 627 494 398 374	6.441 6.203 5.986 5.924
Date Collected 10/9/2013 1/14/2014 4/16/2014 7/7/2014 10/16/2014	Result 627 494 398 374 404	6.441 6.203 5.986 5.924 6.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	380	NO	5.940	N/A
MW361	Downgradient	Yes	780	NO	6.659	N/A
MW364	Downgradient	Yes	509	NO	6.232	N/A
MW367	Sidegradient	Yes	336	NO	5.817	N/A
MW370	Upgradient	Yes	416	NO	6.031	N/A
MW373	Upgradient	Yes	312	NO	5.743	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Fourth Quarter 2015 Statistical Analysis Technetium-99 UNITS:

Analysis Current Background Comparison UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 32.181 **S**= 14.067 **CV(1)**=0.437

K factor**= 2.523

TL(1)= 67.672

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.377

S = 0.464 CV(2) = 0.138

K factor**= 2.523

TL(2) = 4.548

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
10/8/2013	27.9	3.329
1/14/2014	10.6	2.361
4/15/2014	27.9	3.329
7/8/2014	30.8	3.428
10/20/2014	22.5	3.114
1/13/2015	14.8	2.695
4/13/2015	20.9	3.040
7/14/2015	60.3	4.099

7/14/2015	60.3	4.099
Well Number:	MW373	
Date Collected	Result	LN(Result)
10/9/2013	59.9	4.093
1/14/2014	37.8	3.632
4/16/2014	43.6	3.775
7/7/2014	20.1	3.001
10/16/2014	38	3.638
1/21/2015	28.8	3.360
4/9/2015	33.7	3.517
7/13/2015	37.3	3.619

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW361	Downgradien	t Yes	48.4	NO	3.879	N/A
MW370	Upgradient	Yes	50.5	NO	3.922	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Thorium-230 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.974	S = 1.405	CV(1) =1.443	K factor**= 2.523	TL(1)= 4.520	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.897	S = 1.846	CV(2)= -2.058	K factor**= 2.523	TL(2)= 1.361	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
10/8/2013	0.0218	-3.826
1/14/2014	0.0283	-3.565
4/15/2014	0.782	-0.246
7/8/2014	0.0902	-2.406
10/20/2014	3.82	1.340
1/13/2015	0.324	-1.127
4/13/2015	-0.0229	#Func!
7/14/2015	0.623	-0.473
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) #Func!
Date Collected	Result	
Date Collected 10/9/2013	Result -0.0478	#Func!
Date Collected 10/9/2013 1/14/2014	Result -0.0478 0.0381	#Func! -3.268
Date Collected 10/9/2013 1/14/2014 4/16/2014	Result -0.0478 0.0381 3.23	#Func! -3.268 1.172
Date Collected 10/9/2013 1/14/2014 4/16/2014 7/7/2014	Result -0.0478 0.0381 3.23 0.688	#Func! -3.268 1.172 -0.374
Date Collected 10/9/2013 1/14/2014 4/16/2014 7/7/2014 10/16/2014	Result -0.0478 0.0381 3.23 0.688 3.9	#Func! -3.268 1.172 -0.374 1.361

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)			

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL(2)
MW367	Sidegradient	Yes	1.03	N/A	0.030	NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

January 22, 2016

Ms. Myrna Redfield Fluor Federal Services, Inc. 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Redfield:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Fluor Federal Services, Inc.

For this project, the statistical analyses conducted on the fourth quarter 2015 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Blewett

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED—QUARTERLY, 4th CY 2015

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2015 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on October 28, 2015. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW359, MW376, and MW377 had insufficient water to permit sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for both the URGA and LRGA at the C-746-U Landfill were similar (8.58×10^{-4} ft/ft and 8.69×10^{-4} ft/ft, respectively). Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 5.86×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for October 2015, the groundwater flow direction in the immediate area of the landfill ranges from north to northeast.

Table E.1. C-746-U Landfill Fourth Quarter 2015 (October) Water Levels

	C-746-U Landfill (October 2015) Water Levels									
										rrected
1								w Data		Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
<u> </u>				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/28/2015	9:06	MW357	URGA	368.99	29.68	0.01	45.82	323.17	45.83	323.16
10/28/2015	9:04	MW358	LRGA	369.13	29.68	0.01	45.97	323.16	45.98	323.15
10/28/2015	9:05	MW359	UCRS	369.11	29.68	0.01	41.86	327.25	41.87	327.24
10/28/2015	9:10	MW360	URGA	362.30	29.68	0.01	39.13	323.17	39.14	323.16
10/28/2015	9:08	MW361	LRGA	361.54	29.68	0.01	38.40	323.14	38.41	323.13
10/28/2015	9:09	MW362	UCRS	362.04	29.68	0.01	26.41	335.63	26.42	335.62
10/28/2015	15:35	MW363	URGA	368.83	29.68	0.01	45.73	323.10	45.74	323.09
10/28/2015	15:34	MW364	LRGA	367.75	29.68	0.01	44.70	323.05	44.71	323.04
10/28/2015	9:14	MW365	UCRS	368.37	29.68	0.01	41.74	326.63	41.75	326.62
10/28/2015	15:40	MW366	URGA	369.27	29.68	0.01	45.96	323.31	45.97	323.30
10/28/2015	15:38	MW367	LRGA	369.66	29.68	0.01	46.36	323.30	46.37	323.29
10/28/2015	9:19	MW368	UCRS	369.27	29.68	0.01	44.05	325.22	44.06	325.21
10/28/2015	9:47	MW369	URGA	364.48	29.68	0.01	39.77	324.71	39.78	324.70
10/28/2015	9:45	MW370	LRGA	365.35	29.68	0.01	40.66	324.69	40.67	324.68
10/28/2015	9:46	MW371	UCRS	364.88	29.68	0.01	23.09	341.79	23.10	341.78
10/28/2015	9:43	MW372	URGA	359.66	29.68	0.01	34.98	324.68	34.99	324.67
10/28/2015	9:41	MW373	LRGA	359.95	29.68	0.01	35.29	324.66	35.30	324.65
10/28/2015	9:42	MW374	UCRS	359.71	29.68	0.01	24.99	334.72	25.00	334.71
10/28/2015	9:36	MW375	UCRS	370.53	29.68	0.01	40.52	330.01	40.53	330.00
10/28/2015	9:34	MW376	UCRS	370.61	29.68	0.01	39.89	330.72	39.90	330.71
10/28/2015	9:32	MW377	UCRS	365.92	29.68	0.01	37.71	328.21	37.72	328.20

Initial Barometric Pressure

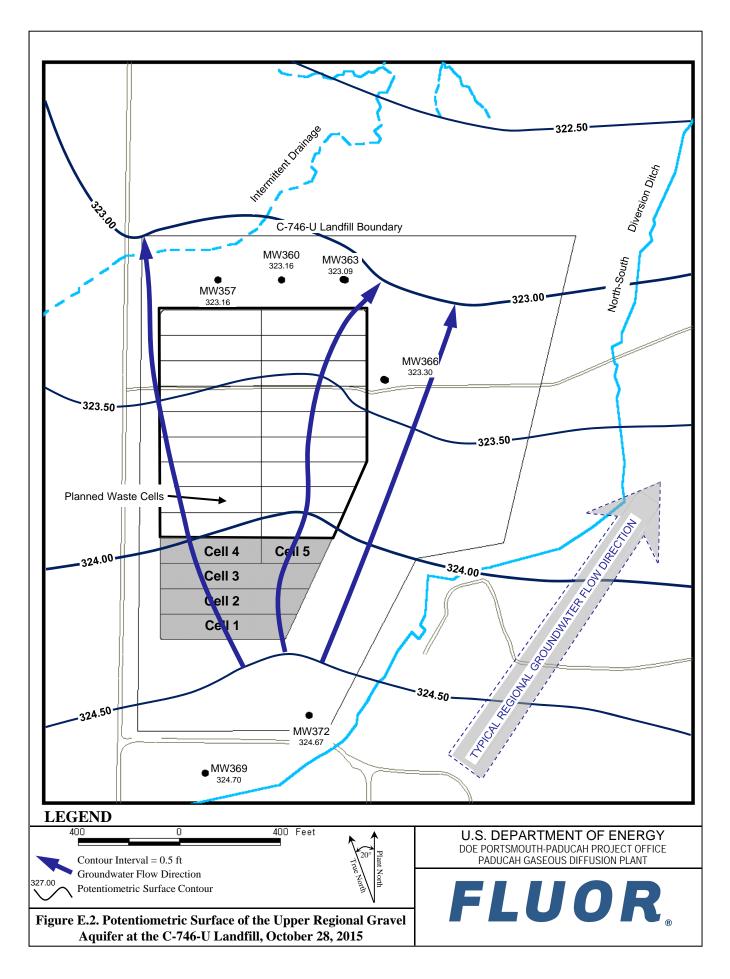
29.69

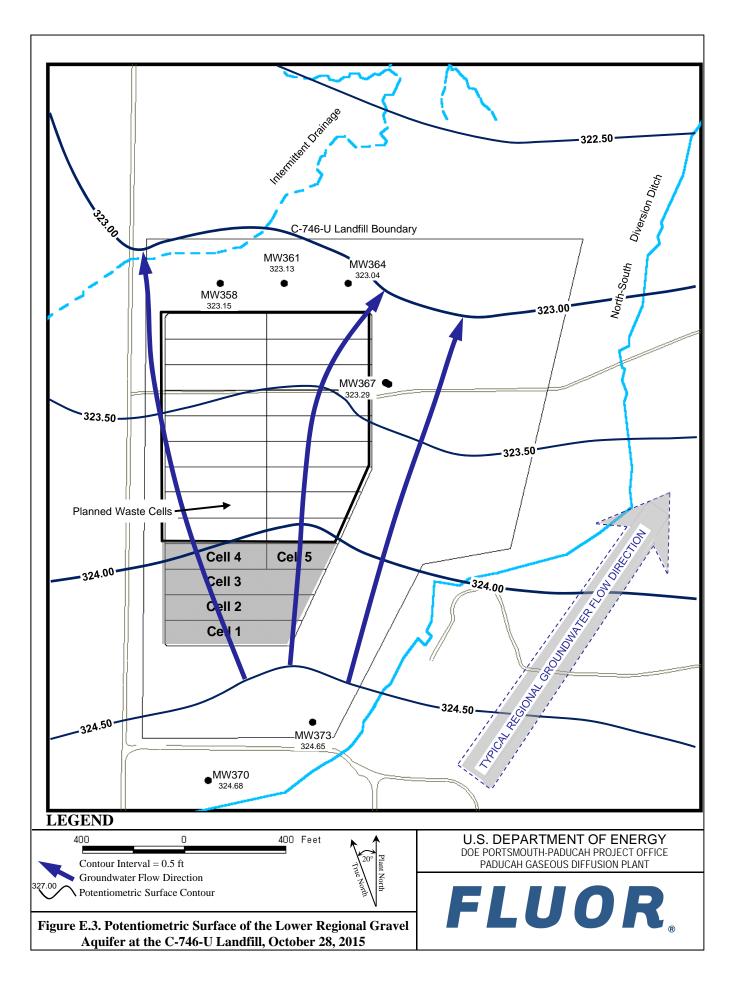
Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer


LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge

System

ND = No Data acquired

*Assumes a barometric efficiency of 1.0

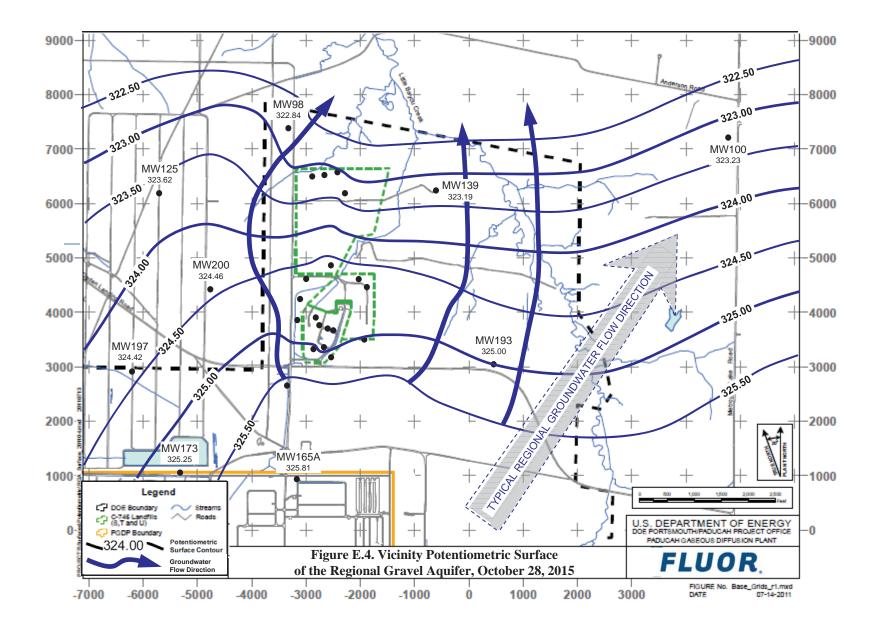
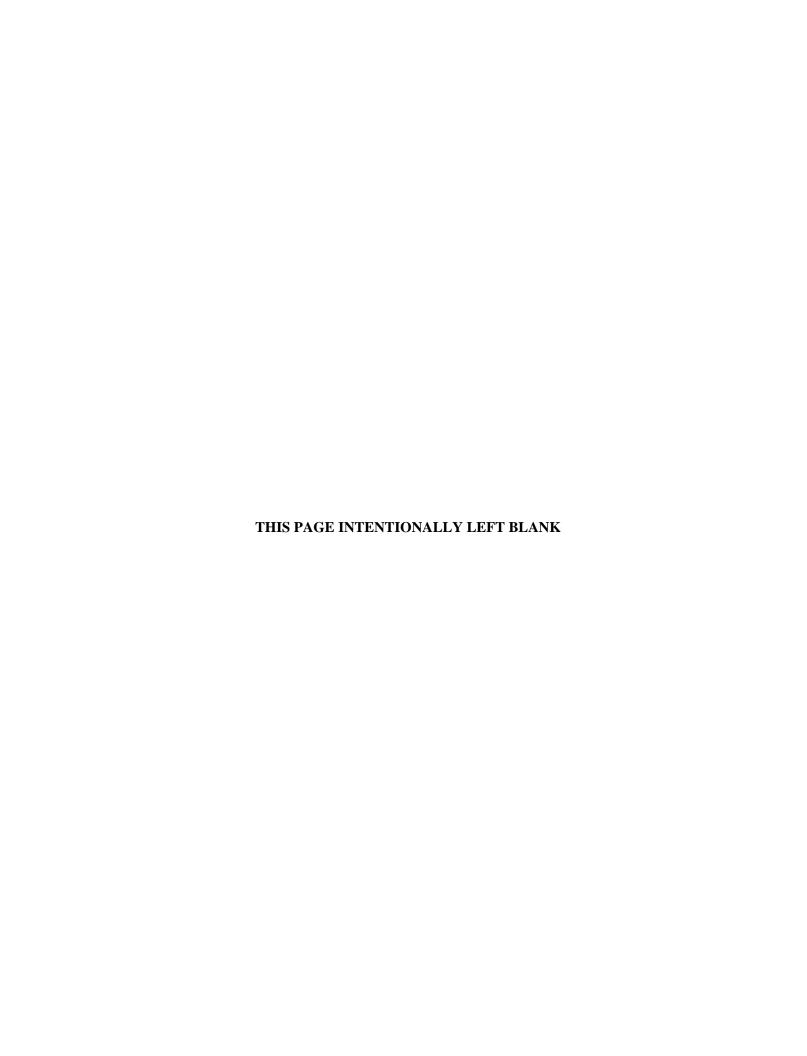



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	8.58×10^{-4}
Beneath Landfill—Lower RGA	8.69 × 10 ⁻⁴
Vicinity	5.86×10^{-4}

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Conductivity (K)		Specifi	c Discharge (q)	Average Linear Velocity (v)		
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s	
Upper RGA						
725	0.256	0.62	2.20×10^{-4}	2.49	8.78×10^{-4}	
425	0.150	0.36	1.29×10^{-4}	1.46	5.15×10^{-4}	
Lower RGA						
725	0.256	0.63	2.23×10^{-4}	2.52	8.90×10^{-4}	
425	0.150	0.37	1.30×10^{-4}	1.48	5.22×10^{-4}	

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the fourth quarter 2015 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW360 MW372
Lower Regional Gravel Aquifer	Technetium-99	MW361, MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

12/9/2015

Fluor Federal Services PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL PERMIT NUMBER 073-00045

MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4798	MW357	Trichloroethene	8260B	5.78	ug/L	5
8004-4799	MW358	Beta activity	9310	51	pCi/L	50
8004-4808	MW372	Beta activity Trichloroethene	9310 8260B	86.8 9.18	pCi/L ug/L	50 5
8004-4792	MW373	Trichloroethene	8260B	9.14	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill

Groundwater Flow System				UCR	RS							URG	ξA					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*			*							
Quarter 3, 2004						*										*					
Quarter 3, 2005						*															
Ouarter 4, 2005						*															
ALPHA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2009																					
ALUMINUM																					
Quarter 3, 2003											*										
BETA ACTIVITY											-11										
Quarter 1, 2004																					
Quarter 1, 2004 Quarter 2, 2004	\mathbf{f}		\vdash		\vdash	\vdash	\vdash	 	\vdash		\vdash		\vdash	\vdash			\vdash	\vdash	H		
Quarter 3, 2004 Quarter 3, 2004	1									-						_					-
	1	\vdash	\vdash		\vdash	\vdash	\vdash	-	\vdash	<u> </u>	\vdash	-	\vdash	\vdash			\vdash	\vdash	\vdash		\vdash
Quarter 4, 2004 Quarter 4, 2005	1	\vdash	\vdash		\vdash	\vdash	\vdash	-	\vdash	<u> </u>	\vdash	-	\vdash	\vdash			\vdash	\vdash	\vdash		\vdash
	1		-		-					-		-	-			-	-				
Quarter 1, 2006	_				\vdash	_								\vdash	_		\vdash	_			
Quarter 2, 2006	-		-		<u> </u>	<u> </u>	_	-			_	-	├	\vdash	_		<u> </u>	<u> </u>			
Quarter 3, 2006	-									_						_					
Quarter 4, 2006	_				_	_				_			_				_	_			
Quarter 1, 2007	_																				
Quarter 2, 2007										_											
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012										Ħ											
Quarter 3, 2012																		Η-			
Quarter 4, 2012										_											
Quarter 1, 2012 Quarter 1, 2013	t				\vdash	\vdash			\vdash					Н			\vdash	\vdash			1
Quarter 3, 2013	t		\vdash		\vdash	\vdash	 	l	\vdash		 		\vdash				\vdash	\vdash			
Quarter 4, 2013	\mathbf{f}		\vdash		\vdash	\vdash	\vdash	 	\vdash		\vdash		\vdash	\vdash			\vdash	\vdash	\vdash		-
Quarter 1, 2014	1				\vdash	\vdash	-	-	\vdash	-	-		 	\vdash		-	\vdash	\vdash	\vdash		\vdash
Quarter 1, 2014 Quarter 4, 2014	1	\vdash	\vdash		\vdash	\vdash	\vdash	-	\vdash	<u> </u>	\vdash	-	\vdash	\vdash			\vdash	\vdash	\vdash		\vdash
	1	\vdash	\vdash		-	\vdash	-	-	\vdash	-	-	-		\vdash		-	-	\vdash	-		—
Quarter 1, 2015	1	\vdash	 		\vdash	\vdash	\vdash	<u> </u>	\vdash	<u> </u>	\vdash	-	\vdash	\vdash		-	\vdash	\vdash	\vdash		\vdash
Quarter 2, 2015	1	\vdash	 		\vdash	\vdash	\vdash	<u> </u>	\vdash	<u> </u>	\vdash	-	\vdash	\vdash	-		\vdash	\vdash	-		\vdash
Quarter 4, 2015																					
BROMIDE													14								
Quarter 2, 2004										_			*								

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Land fill\ (Continued)$

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364		370	373
CALCIUM																					
Quarter 3, 2003										*			$\overline{}$				$\overline{}$				
Quarter 2, 2005																					*
Quarter 3, 2006															*						Ė
Quarter 2, 2008															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						\vdash
Quarter 1, 2010															*						\vdash
Quarter 2, 2010															*						
Quarter 3, 2010															*						\vdash
Quarter 1, 2011															*	_					\vdash
Quarter 1, 2011 Quarter 2, 2011															*	_					\vdash
							_		\vdash				\vdash	\vdash	不		\vdash	\vdash			*
Quarter 3, 2011													-		u	-	-				_
Quarter 4, 2011							_		\vdash			-	<u> </u>	<u> </u>	*		<u> </u>	<u> </u>			*
Quarter 1, 2012															*	_					*
Quarter 2, 2012													_	_	*		_	_			*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						*
Quarter 2, 2013														$oxedsymbol{oxedsymbol{oxed}}$	*			$oxedsymbol{oxedsymbol{oxedsymbol{eta}}}$			_
Quarter 3, 2013													L	L	*		L	L			*
Quarter 4, 2013															*						
Quarter 2, 2014															*						*
Quarter 3, 2014															*						*
Ouarter 4, 2014															*						_
Quarter 2, 2015															*						<u> </u>
Quarter 3, 2015															*						\vdash
Quarter 4, 2015															*	-					\vdash
															不						
CARBON DISULFIDE										4						_					
Quarter 3, 2003							-14		\vdash	*		-	<u> </u>	<u> </u>	_		<u> </u>	<u> </u>			\vdash
Quarter 2, 2005							*						_	_			_	_			
Quarter 3, 2005						*															\vdash
Quarter 4, 2005						*															ldot
Quarter 1, 2006						*															
Quarter 2, 2006						*															
Quarter 3, 2010		*									*										
Quarter 4, 2010														*							
Quarter 1, 2011															*						
CHEMICAL OXYGEN DEMA	ND																				
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*	\vdash	\vdash	\vdash		\vdash	\vdash	H		\vdash
Quarter 3, 2003	*		-			<u> </u>	\vdash		\vdash	*	*	45	\vdash	\vdash	\vdash	*	\vdash	\vdash	\vdash	<u> </u>	\vdash
	Α.					*	 		\vdash	*	*	-	\vdash	\vdash	\vdash	~	\vdash	\vdash	\vdash		\vdash
Quarter 4, 2003			<u> </u>			™	-		\vdash	*	不	-	-	\vdash	-	-	-	\vdash	-	<u> </u>	\vdash
Quarter 3, 2004			-			4	<u> </u>		\vdash	_	-	-	\vdash	\vdash	<u>.</u>	<u>.</u>	\vdash	\vdash	<u>.</u>	-	\vdash
Quarter 3, 2005			<u> </u>			*	<u> </u>		\vdash	*	<u> </u>	<u> </u>	Ь—	├	*	*	Ь—	144	*	<u> </u>	\vdash
Quarter 4, 2005						*	<u> </u>		\vdash	_		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	*	*		\vdash
Quarter 1, 2006													\vdash				\vdash		*		
CHLORIDE																					
Quarter 1, 2006													L	<u> </u>			L	<u> </u>		*	$ldsymbol{ldsymbol{eta}}$
Quarter 2, 2014													$oxed{oxed}$	$oxed{oxed}$	*		$oxed{oxed}$	$oxed{oxed}$			
COBALT																					
Quarter 3, 2003	*						*		LĪ	*	*		*	*	*	*	*	*		*	L
Quarter 1, 2004														*							
CONDUCTIVITY																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											\vdash
Quarter 2, 2003							\vdash			*	*	 	\vdash	\vdash	\vdash		\vdash	\vdash	H		\vdash
Quarter 4, 2003			-			-	-		\vdash	*	-		\vdash	\vdash	-	-	\vdash	\vdash	-	-	\vdash
Quarter 4, 2003 Quarter 1, 2004						-	\vdash		\vdash	*		-	\vdash	\vdash	\vdash	—	\vdash	\vdash	\vdash		\vdash
Quarter 1, 2004		_							_	Τ.			_	_		_	_	_			_

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Land fill\ (Continued)$

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY																					
Quarter 2, 2004	-									*						_		_			
Quarter 3, 2004	_				\vdash				\vdash	*			\vdash		ale.		_	_			\vdash
Quarter 1, 2005	_				\vdash				\vdash	_			\vdash		*						\vdash
Quarter 2, 2005	-				-		_		-	_			-		*	_	<u> </u>	├	ale.		\vdash
Quarter 3, 2005	-				\vdash	*	_		\vdash	_	_		<u> </u>		4		<u> </u>	<u>.</u>	*		\vdash
Quarter 4, 2005	₩	\vdash			⊢	\vdash	_		⊢	\vdash	_	_	⊢	\vdash	*	_	-	*		_	\vdash
Quarter 1, 2006	1				\vdash				\vdash				\vdash		*						\vdash
Quarter 2, 2006 Quarter 3, 2006	-				-				-	-			-		*	-	-	-			\vdash
	1														*						
Quarter 1, 2007 Quarter 2, 2007	1				\vdash				┢				\vdash		*			-			\vdash
Quarter 3, 2007	1														*						
Quarter 4, 2007	1				\vdash				\vdash				\vdash		*						\vdash
Quarter 1, 2008															*						\vdash
Quarter 2, 2008	1				\vdash				\vdash				\vdash		*						\vdash
Quarter 3, 2008	1				\vdash				\vdash				\vdash		*		\vdash	\vdash			\vdash
Quarter 4, 2008	1														*						\vdash
Quarter 1, 2009	H	Н			\vdash	Н			\vdash				\vdash	Н	*			\vdash			Н
Quarter 2, 2009	1				\vdash				\vdash				\vdash		*		\vdash	\vdash			М
Quarter 3, 2009	t														*	H					М
Quarter 4, 2009	t														*						М
Quarter 1, 2010	1				\vdash				\vdash				\vdash		*						М
Quarter 2, 2010	t														*	H					М
Quarter 3, 2010															*		-	<u> </u>			
Quarter 4, 2010	1														*						\vdash
Quarter 1, 2011					\vdash				\vdash				\vdash		*						\vdash
Quarter 2, 2011															*						
Quarter 3, 2011	1														*						\vdash
Quarter 4, 2011															*						\blacksquare
Quarter 1, 2012														*	*						\Box
Quarter 2, 2012	1														*						
Quarter 3, 2012	i														*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013	Ì														*						
Quarter 3, 2013	Î .														*						
Quarter 4, 2013	Î														*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
Quarter 3, 2014															*						
Quarter 4, 2014															*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
DISSOLVED OXYGEN																					
Quarter 1, 2003					*	*				*											$ldsymbol{ldsymbol{ldsymbol{eta}}}$
Quarter 3, 2003					*					*											$ldsymbol{ldsymbol{ldsymbol{eta}}}$
Quarter 4, 2003					*																$ldsymbol{ldsymbol{ldsymbol{eta}}}$
Quarter 1, 2004					*		<u> </u>														
Quarter 2, 2004								*								*					
Quarter 1, 2005					*																
Quarter 2, 2005								*													
Quarter 1, 2006	<u> </u>	$oxed{oxed}$			*	$oxed{oxed}$	L_		<u> </u>		L	L	Ь.	$oxed{oxed}$		Ь.	<u> </u>			L	$ldsymbol{ldsymbol{ldsymbol{eta}}}$
Quarter 2, 2006	<u> </u>	$oxed{oxed}$			*	$oxed{oxed}$	<u> </u>	*	<u> </u>		<u> </u>		<u> </u>	$oxed{oxed}$			<u> </u>	<u> </u>			igsquare
Quarter 3, 2006					*			*	L				<u> </u>				<u> </u>	<u> </u>			igspace
Quarter 4, 2006	—				*		<u> </u>	.1.	*		<u> </u>	<u> </u>	<u> </u>			_	_	_		<u> </u>	╙
Quarter 2, 2007	 	\vdash			*	\vdash	<u> </u>	*			<u> </u>	ļ	<u> </u>	\vdash		<u> </u>	<u> </u>	<u> </u>		ļ	—
Quarter 3, 2007	—	\vdash			*	\vdash	<u> </u>	*	*		<u> </u>		<u> </u>	\vdash		<u> </u>	<u> </u>	<u> </u>	a) -		\vdash
Quarter 1, 2008	—	\vdash			*	\vdash	<u> </u>	47-	4.	_	<u> </u>		<u> </u>	\vdash		_	_	_	*		\vdash
Quarter 2, 2008	 	\vdash			_	\vdash		*	*					\vdash		_		_			igwdapsilon
Quarter 3, 2008	1	\vdash			\vdash	\vdash	34	*	\vdash	\vdash	<u> </u>	<u> </u>	\vdash	\vdash		_	<u> </u>	<u> </u>		<u> </u>	<u> </u>
Quarter 1, 2009	—	\vdash			4.	\vdash	*	47-	4.	_	<u> </u>		<u> </u>	\vdash		_	_	<u> </u>			—
Quarter 2, 2009	 	\vdash			*	- Ju		*	*				_	\vdash		_		_			<u> </u>
Quarter 3, 2009	_				_	*		*	*	_			_			_					_

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Land fill\ (Continued)$

Seadlent	Groundwater Flow System	I			UCR	S							URG	A					LRG	A		
DIRROLLED OXYGEN	Gradient		S	S			D	D	U	U	S	D		_	U	U	S	D	_		U	U
Damer 2010	Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Date of 2, 2010	DISSOLVED OXYGEN																					
Date Color	Quarter 1, 2010					_		*														
Description	Quarter 2, 2010								*	*											*	*
Durster 1, 2011	Quarter 3, 2010					*	*															
Duarter 2, 2011	Quarter 4, 2010							*					*								*	$ldsymbol{ldsymbol{ldsymbol{eta}}}$
Duarter 1, 2017						L.	_								L							$ldsymbol{\sqcup}$
Daurier 1, 2012						*		*	*			_			*				_			$ldsymbol{\sqcup}$
Dataford 2, 2012							*	NI4										-				\vdash
Date of 2, 2012					4	<u> </u>	<u></u>	*	4					<u> </u>	_			\vdash	_			\vdash
Description Color		*			*	*	_		*	*				<u> </u>	_			\vdash	_			\vdash
Danter 1, 2013						\vdash	不	-		<u>*</u>		-		\vdash	\vdash			\vdash	<u> </u>			\vdash
Dauter 2, 2013						\vdash	3 <u>k</u>				_			\vdash	\vdash			\vdash				\vdash
Date Part							<u> </u>	*														H
Dearter 4, 2013		*				*		_	*													H
Dearter 2, 2014		<u> </u>				<u> </u>		<u> </u>	т					\vdash				\vdash			*	\vdash
Dearter 3, 2014		*				*	*	*	*					\vdash				\vdash	*		Ψ	\vdash
Dearter 4, 2014								_		-				\vdash				\vdash	- T		\vdash	Н
Dearter 2, 2015		1				۳		 "	t													М
Dearter 3, 2015						*		*	*													М
Section Sect							_	 "														М
DESOLVED SOLIDS		*				-		*	-													
Dearter 4, 2002							Ë	Ë														
Quarter 1, 2003											*											
Quarter 2, 2003																						
Duarter 3, 2003 Duarter 4, 2003 Duarter 4, 2005 W W Duarter 1, 2007 Duarter 1, 2007 Duarter 2, 2007 Duarter 2, 2007 Duarter 2, 2009 Duarter 1, 2009 Duarter 2, 2009 Duarter 1, 2009 Duarter 1, 2009 Duarter 1, 2010 Duarter 3, 2010 Duarter 3, 2011 Duarter 4, 2011 Duarter 2, 2011 Duarter 4, 2011 Duarter 2, 2012 Duarter 3, 2012 Duarter 3, 2012 Duarter 4, 2013 Duarter 1, 2013 Duarter 1, 2014 Duarter 2, 2015 Duarter 2, 2015 Duarter 2, 2005 W W W W W W W W W W W W W																						
Duarter 4, 2003								*			_	*										
Duarter 3, 2005								<u> </u>														
Quarter 4, 2006							*	<u> </u>			<u> </u>								<u> </u>			
Quarter 1, 2007							<u> </u>									*						
Quarter 2, 2007																						
Quarter 4, 2008																						
Quarter 1, 2009	Quarter 4, 2008															*						
Quarter 2, 2009	Quarter 1, 2009															*						
Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 5, 2013 Quarter 6, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 20003 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 20	Quarter 2, 2009															*						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2005 Quarter 3, 2003 ** Quarter 4, 2003 Quarter 3, 2003 ** Quarter 4, 2003 Quarter 3, 2000 ** ** ** ** ** ** ** ** ** ** ** **	Quarter 3, 2009															*						
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 4, 2015 Quarter 2, 2003 Quarter 3, 2010 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2000 Quarter 3, 2010 Quarter 4, 2001 Quarter 4, 2003 Quarter 3, 2000 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2003 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2012 Quarter 3, 2010 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 201	Quarter 4, 2009															*						
Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2000 Quarter 4, 2003 Quarter 4, 2000 Quarter 3, 2000 ** ** ** ** ** ** ** ** **	Quarter 1, 2010															*						
Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2010 ODDNE-131	Quarter 2, 2010															*						
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2014 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2003 ** ** ** ** ** ** ** ** **	Quarter 3, 2010															*						
Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2000 Quarter 4, 2003 Quarter 3, 2010 ** ** ** ** ** ** ** ** **	Quarter 4, 2010															*						
Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2010 ** ** ** ** ** ** ** ** **	Quarter 1, 2011															*						
Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 3, 2010 ** ** ** ** ** ** ** ** **	Quarter 2, 2011															*						
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 4, 2015 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2010 ** ** ** ** ** ** ** ** **	Quarter 3, 2011															*						
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2010 W* ** ** ** ** ** ** ** ** *	Quarter 4, 2011																					
Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2005 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2010 W* ** ** ** ** ** ** ** ** *	Quarter 1, 2012														*	*						
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2010 ** ** ** ** ** ** ** ** **	Quarter 2, 2012																					_
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2010 Quarter 4, 2003 Quarter 3, 2010 Quarter 4, 2003 Quarter 3, 2010 Quarter 3, 201	Quarter 3, 2012																					*
Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2010 ** ** ** ** ** ** ** ** **	Quarter 4, 2012																					
Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2000 Quarter 3, 2010 ** ** ** ** ** ** ** ** **	Quarter 1, 2013								<u> </u>													ــــــ
Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2000 Quarter 3, 200	Quarter 2, 2013	$ldsymbol{ldsymbol{eta}}$		L					<u> </u>													Щ
Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2000 Quarter 3, 200	Quarter 3, 2013	$ldsymbol{ldsymbol{eta}}$		L					<u> </u>													igsqcup
Quarter 2, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2005 Quarter 3, 2010 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2000 Quarter 3, 2010 Quarter 3, 201	Quarter 4, 2013						L_		<u> </u>	<u> </u>												\vdash
Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 X Quarter 4, 2003 X Quarter 4, 2003 X Quarter 3, 2010 X X X X X X X X X X X X X X X X X X	Quarter 1, 2014	$ldsymbol{ldsymbol{\sqcup}}$		<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>				<u> </u>	<u> </u>			Ь.	<u> </u>			igsquare
Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 X Quarter 4, 2003 X Quarter 4, 2003 X Quarter 4, 2003 X Quarter 3, 2010 X X X X X X X X X X X X X X X X X X	Quarter 2, 2014			<u> </u>		Ь.	<u> </u>							Ь.	Ь.		Ш	Ь.			$ldsymbol{ldsymbol{ldsymbol{eta}}}$	igspace
Quarter 3, 2015 Quarter 4, 2015 ODIDE Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2010 W * * * * * * * * * * * *	Quarter 4, 2014			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	_		<u> </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>		lacksquare	ــــ
Quarter 4, 2015 * ODIDE * Quarter 2, 2003 * Quarter 3, 2003 * Quarter 4, 2003 * Quarter 3, 2010 * * * ODINE-131 *		_				<u> </u>	<u> </u>	<u> </u>	 	<u> </u>		<u> </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>			\vdash
ODIDE Unarter 2, 2003 *		_		<u> </u>		<u> </u>	<u> </u>		 	<u> </u>				<u> </u>	<u> </u>			<u> </u>	<u> </u>		$ldsymbol{ldsymbol{eta}}$	\vdash
Quarter 2, 2003																*						
Quarter 3, 2003																	u.					
Quarter 4, 2003		,r.		<u> </u>		<u> </u>	<u> </u>	_	 	<u> </u>	42.			<u> </u>	<u> </u>	<u> </u>	*	<u> — </u>	<u> </u>		<u> </u>	\vdash
Quarter 3, 2010		*		_		<u> </u>	\vdash	N/c	<u> </u>	_	*			<u> </u>	\vdash	_		<u> </u>	_		\vdash	\vdash
ODINE-131				_		<u> </u>	alc.	*	Alc:	_				14	\vdash	_		alc.	_		\vdash	\vdash
							*		*					*				*				
guarier 3, 2010																			_			
	Quarter 3, 2010										_											\Box

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Land fill\ (Continued)$

Groundwater Flow System	Т			UCR	RS							URG	ξA					LRG	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
IODOMETHANE																					
Quarter 4, 2003						*															
IRON																					
Quarter 4, 2002	1					*															
Quarter 3, 2003	1															*					
Quarter 4, 2003	+									*						*					
Quarter 1, 2004	+									*						*					\vdash
Quarter 2, 2004	+									*											
Quarter 3, 2004	+	\vdash								*											\vdash
Quarter 3, 2005	+									-						*	_				\vdash
MAGNESIUM																Α					
	-									_					*						*
Quarter 2, 2005	+					<u> </u>			-	\vdash			-		不		-				*
Quarter 3, 2005	┿	\vdash	_	_	\vdash	*	_		-	_	-	-	-	\vdash	- Ju		_				-
Quarter 2, 2006	+	_			\vdash	_									*						*
Quarter 3, 2006	+	_			\vdash	_									*						\vdash
Quarter 1, 2007	_														*						
Quarter 2, 2008	_														*						
Quarter 2, 2009															*						
Quarter 3, 2009		<u> </u>	L			<u> </u>	L								*						\vdash
Quarter 4, 2009					oxdot									$oxed{oxed}$	*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011	1														*						
Quarter 3, 2011	1														*						
Quarter 4, 2011	1														*						
Quarter 1, 2012	1														*						
Quarter 2, 2012	+														*						\vdash
Quarter 3, 2012	+									_					*						
Quarter 4, 2012	+	\vdash				\vdash				_					*						\vdash
Quarter 1, 2013	+									_					*						\vdash
Quarter 1, 2013 Quarter 2, 2013	+	\vdash				\vdash			_	\vdash			_		*		_				\vdash
	+	\vdash	\vdash	-	\vdash	\vdash	\vdash	-	-	_	-		-	\vdash	*		-			\vdash	\vdash
Quarter 3, 2013	+									\vdash					*						\vdash
Quarter 4, 2013	┿	\vdash	_	_	\vdash	\vdash	_	_	-	_	-	-	-	\vdash			_				\vdash
Quarter 2, 2014	+								-	_			-		*		-				\vdash
Quarter 4, 2014	+				\vdash										*						\vdash
Quarter 2, 2015	+				\vdash										*						\vdash
Quarter 3, 2015	-									_					*						\vdash
Quarter 4, 2015										_					*						
MANGANESE																					
Quarter 3, 2002										*		*									
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2003										*		*									
Quarter 3, 2003										*		*	*			*	*	*	*		
Quarter 4, 2003										*	*	*	*				*	*			
Quarter 1, 2004										*	*	*				*	*	*			
Quarter 2, 2004							*			*	*	*						*			
Quarter 3, 2004							*			*	*	*				*					
Quarter 4, 2004										*		*				*					
Quarter 1, 2005										*		*									
Quarter 2, 2005	1									*		*									
Quarter 3, 2005	1									*		*				*					
Quarter 4, 2005	1									*						*					
Quarter 1, 2006	+									*											\vdash
Quarter 2, 2006	+	\vdash	\vdash			\vdash	*			*		*			\vdash						г
Quarter 3, 2006	+	\vdash	\vdash	\vdash	\vdash	\vdash	 	\vdash	\vdash	*	\vdash	-,,	\vdash	\vdash	\vdash	*	\vdash	\vdash			\vdash
Quarter 4, 2006	+	\vdash				\vdash				*				H		T.					\vdash
	+	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	*			\vdash	\vdash	\vdash	\vdash	\vdash	\vdash		\vdash	\vdash
Quarter 1, 2007	+	\vdash	\vdash	<u> </u>	\vdash	\vdash	4	<u> </u>	\vdash			_	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash			\vdash
Quarter 2, 2007	+	\vdash	\vdash	<u> </u>	\vdash	\vdash	*	<u> </u>	_	*	_		_	\vdash	\vdash	_	_				\vdash
Quarter 3, 2007	-	\vdash	\vdash	<u> </u>	\vdash	\vdash	*	<u> </u>	_				_	\vdash	\vdash	_	_			\vdash	\vdash
Quarter 3, 2008	_	L				L	*							\vdash		<u> </u>					\vdash
Quarter 4, 2008		<u> </u>	L			<u> </u>	*								L						\vdash
Quarter 3, 2009		$oxed{oxed}$				$oxed{oxed}$	*														$ldsymbol{ldsymbol{eta}}$
Quarter 3, 2011							*														

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Land fill\ (Continued)$

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
NICKEL																					
Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTE	NTIA	L																		
Quarter 4, 2002																	*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Ouarter 2, 2004													*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*		_	*	*	*				*		*	*	*
Quarter 4, 2005		*			-	-45		*		_	-75	71	*				*		75	*	
Quarter 1, 2006		~			*			*	*	-			т_				*	-		т .	*
			\vdash		*		*	*	T	_	\vdash	<u> </u>	*				*	-		*	<u>~</u>
Quarter 2, 2006					-		不			\vdash			-				_			-	$\vdash\vdash\vdash$
Quarter 3, 2006			_		*		- Ju	*	├	<u></u>	_	4	*			_	*	┢		*	4
Quarter 4, 2006		şl.	<u> </u>		*	<u> </u>	*	114	<u> </u>	*	<u> </u>	*	*		<u> </u>	—	*	\vdash	\vdash	*	*
Quarter 1, 2007		*	\vdash	_	*		\vdash	*	<u> </u>		<u> </u>	<u> </u>	*			—	*	<u> </u>	\vdash	*	*
Quarter 2, 2007	\vdash		<u> </u>		*		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	*			<u> </u>	*	<u> </u>	<u> </u>	*	*
Quarter 3, 2007					*			*									*			*	ш
Quarter 4, 2007			$oxed{oxed}$								$oxed{oxed}$						*			*	*
Quarter 1, 2008					*			*				*	*						*	*	ш
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*			_	*	*	*	*	*		*	*	_			*	*	*	*	*
Quarter 1, 2010		*			*		*	*	-	*			*			*	*	*	<u> </u>	*	Ħ.
Quarter 2, 2010		-75			*	*		*		*	*	*	*			*	*	*	*	*	*
		*	\vdash		*	*	*	*	*	*	*	- 1	*	*	*	· *	*	*	*	*	*
Quarter 3, 2010		*			不	*	*	*	*	*	*	*	*	*	不	*	*	*	*	*	*
Quarter 4, 2010		不	_		\vdash	-	不		不	_			-	-			_		_	_	不
Quarter 1, 2011		-11-			-11	*		*	.11	*	*	*	*	*		*	*	*	*	*	-11
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013	Ė	*				*	Ė	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014		*			H	r i		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014 Quarter 2, 2014	*	*	\vdash		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014 Quarter 3, 2014	*	*			*	*	*	*	*	*	-	*	*	*	-	*	*	*	*	*	*
Quarter 4, 2014	Ť	*	<u> </u>		-r	*	_ T	*	*	*	 	*	*	*	-	*	*	*	*	*	*
	\vdash	*	\vdash	\vdash	$\vdash\vdash$	*	\vdash	*	*	*	JŁ.		*	*	JŁ.	*	*	*		-	-
Quarter 1, 2015	ъ.		<u> </u>		JJ.		- Ab		_	_	*	*			*	_	_	_	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015		*	_		*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
PCB, TOTAL																					
Quarter 4, 2003																	*				ш
Quarter 3, 2004												*								$ldsymbol{ld}}}}}}$	
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007	П						*													П	\neg
Quarter 2, 2007							*	İ			i –	İ								П	\Box
Quarter 3, 2007					\vdash		*													H	\Box
Quarter 1, 2008			\vdash		\vdash		*			<u> </u>	\vdash	<u> </u>								Н	\vdash
Quarter 1, 2008 Quarter 2, 2008		-	\vdash		Н	-	*	 	\vdash		\vdash	 			-	\vdash	\vdash	\vdash	\vdash	H	\vdash
Quarter 2, 2006			_				_ · ·	_	_	_	_					_	_	_	_	-	

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Land fill\ (Continued)$

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
PCB, TOTAL																					
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														匚
Quarter 4, 2010							*													ldot	<u> </u>
PCB-1016																					
Quarter 3, 2004												*									
Quarter 2, 2006							*					*									<u> </u>
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*													ldot	<u> </u>
PCB-1242																					
Quarter 3, 2006							*					*									匚
Quarter 4, 2006										*											
Quarter 1, 2008							*														
Quarter 2, 2012							*														
PCB-1248																					
Quarter 2, 2008							*														
PCB-1260																					
Quarter 2, 2006							*														
pН																					
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005						*												*	*		
Quarter 4, 2005						*													*		
Quarter 3, 2006																*					
Quarter 2, 2011														*							
Quarter 3, 2011														*							
Quarter 4, 2011														*							
Quarter 1, 2012																*	*				
Quarter 2, 2012												*									
Quarter 1, 2013										*		*				*					
Quarter 3, 2015			<u> </u>				İ	l			<u> </u>						*				
POTASSIUM																					
Quarter 1, 2014																*					
RADIUM-228																					
Quarter 2, 2005																					
Quarter 4, 2005			<u> </u>				l	l			<u> </u>									П	
SELENIUM																					
Quarter 4, 2003																					
SODIUM																					
Quarter 3, 2002										*	*		*								
Quarter 4, 2002										*	*		Ė	*						\Box	
Quarter 1, 2003										*	T .									М	
Quarter 2, 2003										*	*										
Quarter 3, 2003						H				Ė	*									\vdash	
Quarter 1, 2007		Н			\vdash	\vdash					*		Н	Н			\vdash	Н	\vdash	Н	\vdash
Quarter 1, 2012		Н			\vdash	\vdash					<u> </u>		Н	*			\vdash	Н	\vdash	Н	\vdash
Quarter 1, 2014					\vdash	\vdash		 						<u> </u>	*		\vdash			\vdash	
Quarter 3, 2014					\vdash	\vdash	\vdash				*		\vdash		<u> </u>		\vdash		\vdash	Н	\vdash
			 		\vdash	\vdash	 		\vdash		*						\vdash		\vdash	Н	\vdash
														-	$\overline{}$	_		-			\vdash
Quarter 4, 2014 Quarter 4, 2015						l	l				*								1 1	1 1	l .

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Land fill\ (Continued)$

Groundwater Flow System	I			UCR	RS							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368		376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
STRONTIUM-90																					
Quarter 4, 2008																					
SULFATE																					
Quarter 1, 2003							*														
Quarter 2, 2003						*	*														
Quarter 3, 2003	*					*															
Quarter 4, 2003	<u> </u>				*	-	*									_					
Quarter 1, 2004	1				*	*	*									_					
	1				*	*	*		\vdash				\vdash			\vdash					┢
Quarter 2, 2004	1		_		*	*	*		\vdash		_		\vdash			_		-			┢
Quarter 3, 2004	-		_		-	-	不		-	-	_		\vdash			_		_	-		├
Quarter 1, 2005	1				*	*	- Ju		*						4	_					\vdash
Quarter 2, 2005	_				*	-11-	*		*				_		*						_
Quarter 3, 2005	_				*	*	*		_				_			_		_			Ь
Quarter 4, 2005															*	lacksquare					Ь_
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007	1		i –				*				i –			Г							
Quarter 4, 2007	1	*							\vdash				\vdash								\vdash
	1	*	-	-	*	-	*		*		-		\vdash		-		\vdash			-	\vdash
Quarter 1, 2008	\vdash	*	\vdash	-	*	JŁ.	_		-		\vdash		\vdash		 		\vdash	\vdash	\vdash	-	\vdash
Quarter 2, 2008	-	_	\vdash	<u> </u>	-	*	*	-	\vdash	_	<u> </u>		\vdash	\vdash	<u> </u>	_	\vdash	\vdash	\vdash	<u> </u>	\vdash
Quarter 3, 2008	1	*	<u> </u>		*	*	*		<u> </u>	_	<u> </u>	—	<u> </u>	\vdash			_	<u> </u>	<u> </u>		—
Quarter 4, 2008	1	*	<u> </u>		\vdash	*	*		Ь_		<u> </u>		<u> </u>								Щ
Quarter 1, 2009		*					*														$oxed{oxed}$
Quarter 2, 2009		*			*	*	*														<u> </u>
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*									*						
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010	1	*			*	*	*								*			\vdash			
Quarter 3, 2010	1	*			*	*	*								*			\vdash			
Quarter 4, 2010		*			- · · ·	*	*		-				-		*	_		_			\vdash
	┢	*	\vdash		\vdash	~	· *		\vdash		<u> </u>	\vdash	\vdash		- 1	_		-	\vdash		┢
Quarter 1, 2011	-	*			*	4	<u>.</u>		_	_					*	-	-	-	-		├
Quarter 2, 2011	-	_			*	*	*	ala.							-	_		<u> </u>			⊢
Quarter 3, 2011	_	*			\vdash	*	*	*	_	\vdash			_		*	_		_			Ь
Quarter 4, 2011		*				*									*						<u> </u>
Quarter 1, 2012		*					*	*							*						$oxed{oxed}$
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						<u> </u>
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*													*			\vdash			
Quarter 3, 2013	*	*		*	*	*	*								*			\vdash			
Quarter 4, 2013	- ···	*	\vdash		"				\vdash		\vdash		\vdash		*	_		\vdash	\vdash		\vdash
		_													-	-					\vdash
Quarter 1, 2014	Ф.	*	 	-	- Ju	-	ъ	,de	\vdash	<u> </u>	 		\vdash	\vdash	*		\vdash	\vdash	<u> </u>	-	\vdash
Quarter 2, 2014	*	*	<u> </u>		*	41.	*	*	<u> </u>	_	<u> </u>		<u> </u>	\vdash	*		_	<u> </u>	<u> </u>		—
Quarter 3, 2014	*	*	<u> </u>		*	*	*	*	<u> </u>		<u> </u>	\vdash	<u> </u>	\vdash	*		\vdash	_	_		—
Quarter 4, 2014		*	<u> </u>		lacksquare	*	<u> </u>		Ь		<u> </u>		Ь								\vdash
Quarter 1, 2015	$ldsymbol{f eta}$	*					L							$ldsymbol{ldsymbol{ldsymbol{eta}}}$							Щ
Quarter 2, 2015	*	*	$oxed{oxed}$		*		*		oxdot		$oxed{oxed}$		oxdot		*		L	L	L		\perp
Quarter 3, 2015		*			*	*		*							*						
Quarter 4, 2015	*	*				*	*	*													
TECHNETIUM-99																					
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003	1						Ë						-			-	*	-			Ë
Quarter 4, 2003	1		\vdash		\vdash		\vdash		\vdash		\vdash		\vdash			—	*	\vdash	\vdash		*
	1		\vdash	\vdash	\vdash	—	\vdash		\vdash	\vdash	\vdash		\vdash		JU.	\vdash	*	\vdash		\vdash	_
Quarter 1, 2004	₽	—	<u> </u>	<u> </u>	\vdash	<u> </u>	<u> </u>	-	⊢	<u> </u>	<u> </u>	\vdash	⊢	\vdash	*	-	*	<u> </u>	-	<u> </u>	*
Quarter 2, 2004	_	—	<u> </u>		\vdash		├		<u> </u>	_	<u> </u>	—	<u> </u>	—	*		—	<u> </u>	_		*
Quarter 3, 2004		$oxed{}$	<u> </u>		\vdash		<u> </u>		<u> </u>		<u> </u>		<u> </u>	\vdash	*						*
Quarter 4, 2004														$ldsymbol{ldsymbol{eta}}$	*		*				*
Quarter 3, 2005					$oxedsymbol{oxed}$											L	*				
															*						*
Quarter 1, 2006					_			_	_	_		_	_	_							*
Quarter 1, 2006 Quarter 2, 2006	i	*							*								1				*
		*							*							H					*

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Land fill\ (Continued)$

Groundwater Flow System				UCR	RS							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TECHNETIUM-99																					
Quarter 4, 2006															*	_		_	_		*
Quarter 1, 2007										Н			- Ju		4					4	*
Quarter 2, 2007 Quarter 3, 2007										Н			*		*		*	*		*	-
Quarter 3, 2007 Quarter 4, 2007										*					*		不	不	*		*
Quarter 1, 2008					<u> </u>					<u> </u>					*		-	┢	_ T	*	*
Quarter 2, 2008							*	*						*	-1-	*			*	-11-	-10
Quarter 3, 2008							_							<u> </u>	*	-					
Ouarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010																		*			
Quarter 1, 2011		*								*							*	L.	L.		
Quarter 2, 2011		<u> </u>			<u> </u>		<u> </u>		<u> </u>				\vdash	\vdash		*	*	*	*		Ш
Quarter 1, 2012					<u> </u>		<u> </u>	41-		ш				\vdash		<u> </u>	*	*	_		ш
Quarter 2, 2012	-	—	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	*	├	\vdash	<u> </u>		\vdash	<u> </u>		<u> </u>	4	*	<u> </u>		Ш
Quarter 3, 2012	_														4		*	*			4
Quarter 4, 2012	_	\vdash			\vdash		\vdash	<u> </u>	\vdash	\vdash		-	\vdash	\vdash	*	_	\vdash	*	<u> </u>		*
Quarter 1, 2013	\vdash	\vdash	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	-	\vdash	\vdash	<u> </u>	-	\vdash	\vdash		—	<u> </u>	*	-		*
Quarter 2, 2013 Quarter 3, 2013		\vdash	-	-	\vdash	_	\vdash	-	\vdash	*	-	-	\vdash	\vdash		\vdash	\vdash	\vdash	\vdash		*
Quarter 3, 2013 Quarter 4, 2013	_				_		\vdash			不			\vdash	\vdash	*	-	*	*	-		*
Quarter 1, 2014										\vdash					*		*	*			- 1
Quarter 2, 2014										Н					т		т.	*			-
Quarter 3, 2014																	*	*	*		
Quarter 4, 2014										Н					*		-11	- · · ·			
Quarter 1, 2015															*			*			
Quarter 2, 2015																*		Ė			
Quarter 3, 2015																		*	*	*	
Quarter 4, 2015															*		*			*	
THORIUM-230																					
Quarter 4, 2015																*					
TOLUENE																					
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON																					
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003	_										*					_					
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										
Quarter 1, 2004						ala.				44	*				sla.	14			14		
Quarter 3, 2005						*				*					*	*		14	*		
Quarter 4, 2005	_					*				Н			\vdash					*	*		-
Quarter 1, 2006										_									*		
TOTAL ORGANIC HALIDES										*											
Quarter 4, 2002 Quarter 1, 2003		\vdash			\vdash		\vdash	 	\vdash	*		-	\vdash	\vdash		\vdash	\vdash	\vdash	\vdash		\vdash
Quarter 1, 2003 Quarter 2, 2003							\vdash	\vdash		*		 	\vdash	\vdash							\vdash
Quarter 1, 2004			-	-	\vdash	-	 	-	\vdash	*	-	-	\vdash			*	\vdash	\vdash	\vdash		\vdash
TRICHLOROETHENE																*					
Quarter 3, 2002																				\blacksquare	
Quarter 4, 2002														┢═┈							\vdash
Quarter 1, 2003							\vdash		\vdash							\vdash					
Quarter 2, 2003																					\Box
Quarter 3, 2003																					
Quarter 4, 2003		Г																			
Quarter 1, 2004																					
Quarter 2, 2004	L					L_	L_		L_			L_		L		L_		L_	L		
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Land fill\ (Continued)$

Groundwater Flow System				UCR	S							URG	A					LRG	A		\neg
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE						-		-											-		
Quarter 4, 2005																					
Quarter 1, 2006																					\blacksquare
Quarter 2, 2006																					\blacksquare
Quarter 3, 2006																					
Quarter 4, 2006																				_	
Quarter 1, 2007																					
Quarter 2, 2007															Ŧ		\vdash			\vdash	Ŧ
Quarter 3, 2007															Ŧ					\vdash	Ħ
Quarter 4, 2007																_	\vdash			\vdash	
																_				H	
Quarter 1, 2008 Quarter 2, 2008																	\vdash			$\vdash\vdash$	
															÷	-	┢	-	-	\vdash	
Quarter 3, 2008														\vdash			\vdash			$\vdash\vdash\vdash$	-
Quarter 4, 2008															_	_		<u> </u>		$\vdash \vdash \vdash$	_
Quarter 1, 2009															_		_			igwdown	_
Quarter 2, 2009																	_			igsquare	ш
Quarter 3, 2009																				ш	
Quarter 4, 2009																				ш	
Quarter 1, 2010																				ш	
Quarter 2, 2010																				Ш	
Quarter 3, 2010																				ш	
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 3, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																				\Box	
Quarter 3, 2012																					
Quarter 4, 2012																				\Box	
Quarter 1, 2013																				\Box	
Quarter 2, 2013																				\Box	
Quarter 3, 2013																				\vdash	
Quarter 4, 2013																				\Box	
Quarter 1, 2014																				\vdash	
Quarter 2, 2014													\vdash							\vdash	\vdash
Quarter 3, 2014																	⊢			\vdash	
Quarter 4, 2014																	\vdash	\vdash		$\vdash \vdash$	
Quarter 1, 2015						—	\vdash	\vdash			\vdash				Ŧ		\vdash	\vdash	-	$\vdash\vdash$	
Quarter 1, 2015 Quarter 2, 2015						 	-				-		_				\vdash			$\vdash \vdash$	
Quarter 3, 2015					_	-	-				-			\vdash				\vdash	-	$\vdash\vdash$	-
Quarter 4, 2015							\vdash	-			\vdash			\vdash		_	Ε-	\vdash		$\vdash\vdash\vdash$	
TURBIDITY																					
										*											
Quarter 1, 2003										<u>*</u>										\square	
URANIUM		*			*	JI.	JU.			JL.	JU.	JU.	JI.	JU.	JU.	JU.		JU.	*	34	JL.
Quarter 4, 2002		不			不	*	*	-		*	*	*	*	*	*	*	\vdash	*	不	*	*
Quarter 4, 2006																				\square	木
ZINC																			114		
Quarter 3, 2005							l	l			l			L				<u> </u>	*	لــــا	Щ
* Statistical test results indicate an elevat	ted cond	centrati	on (i.e.	, a stati	stical e	xceeda	nce).														

 [★] Statistical test results indicate an elevated concentration (i.e., a statistical exceedance)
 ■ MCL Exceedance
 UCRS Upper Continental Recharge System

URGA Upper Regional Gravel Aquifer LRGA Lower Regional Gravel Aquifer

APPENDIX H METHANE MONITORING DATA

C-746-U LANDFILL METHANE LOG

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

Date: December 09, 2015

Time	Location	% LEL of Methane Reading	Remarks	Weather Conditions
11:00	C-746-U1	0	Checked at floor level	Inside office
	C-746-U2	0	Checked at floor level	Inside shop
	C-746-U-T-14	0	Checked at floor level	Inside trailer
	C-746-U15	0	Checked at floor level	Inside building
	MG1	0	dry casing	J.
	MG2	0	dry casing	1 pg.
	MG3	0	dry casing	Sumuland bit
11:30	MG4	0	dry casing	500
N/A	Suspect or Problem Areas	N/A	No problems noted	N/A
			Juit 12-9-15	
		January >	July 10	

WD-F-0053 (8/19/13) PAD-WD-0017 Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms In Accordance With PAD-WC-0044

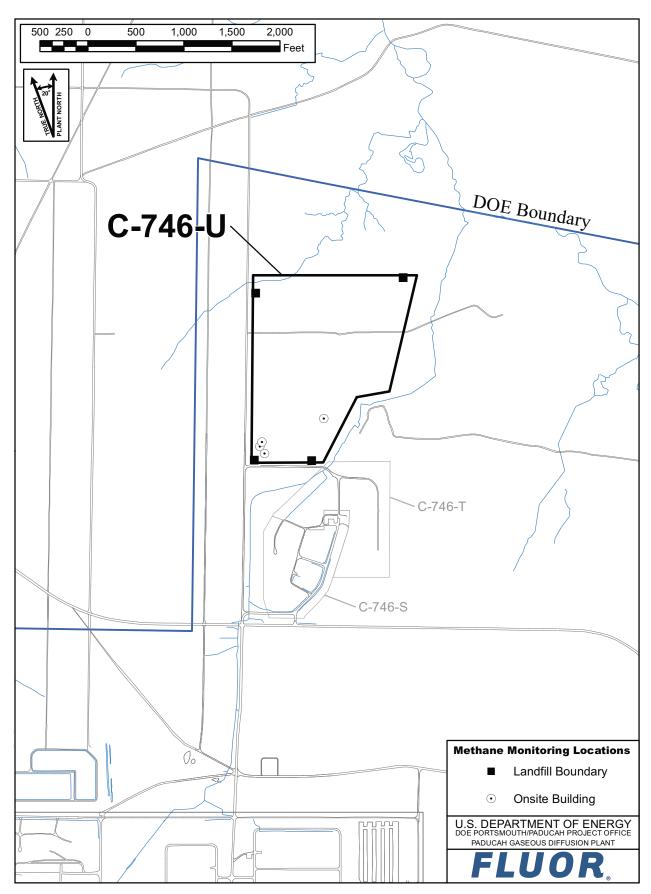
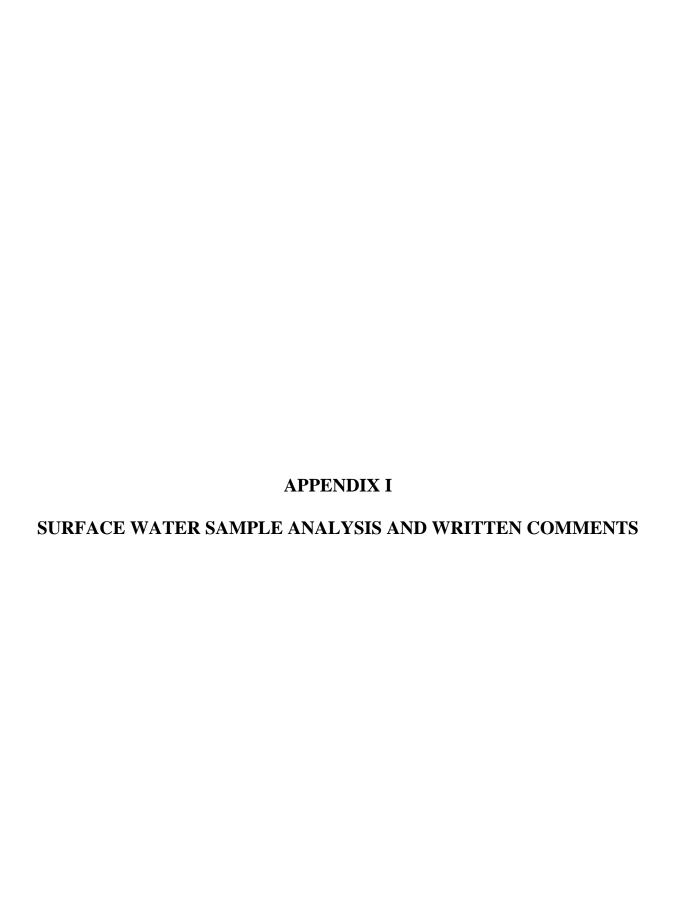



Figure H.1. C-746-U Methane Monitoring Locations

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")						L150 AT SITE		L154 UPSTREAM		L351 DOWNSTREAM		F. BLANK	
Sample Sequence #						1		1		1		1	
If sample is a	a Bl	ank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA		F	
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		11/17/2015 09	:23	11/17/2015 09	9:35	11/17/2015 0	9:09	11/17/2015 09:25	
Duplicate ("Y	?" c	or "N") ¹				N		N		N		N	
Split ('Y' or	: "I	T") ²				N		N		N		N	
Facility Samp	ole	ID Number (if applicable)				L150US1-16	3	L154US1-1	6	L351US1-1	16	FB1US1-16	
Laboratory Sa	ımp]	e ID Number (if applicable)				385808002		385808003	3	38580800	4	385808005	
Date of Analy	Date of Analysis (Month/Day/Year)				12/12/2015		12/12/2015		12/14/2015		12/14/2015		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G
A200-00-0	0	Flow	Т	MGD	Field	0.02		0.39		0.91			*
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	2.53		1.67		1.64		0.0799	J
14808-79-8	0	Sulfate	Т	mg/L	300.0	46.4		4.4		4.22		<0.4	
7439-89-6	0	Iron	Т	mg/L	200.8	1.26		0.656		0.848		<0.1	
7440-23-5	0	Sodium	Т	mg/L	200.8	2.48		1.66		1.61		<0.25	
s0268	0	Organic Carbon ⁶	Т	mg/L	9060	5.14		11.5		10.2			*
s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		*
s0130	0	Chemical Oxygen Demand	Т	mg/L	410.4	30		47.8		25.6			*

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

A = Average value

A = Average value
N = Presumptive ID

D = Concentration from analysis of

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM")			L150 AT SITE		L154 UPSTREAM		L351 DOWNSTREAM		F. BLANK				
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G
s0145	1	Specific Conductance	т	μмно/см	Field	275		97		94			*
s0270	0	Total Suspended Solids	т	MG/L	160.2	21.3		11.7		19.8			*
s0266	0	Total Dissolved Solids	Т	MG/L	160.1	211		120		77.1			*
s0269	0	Total Solids	т	MG/L	2540B	237		101		108			*
s0296	0	рН	Т	Units	Field	7.28		7.27		7.12			*
7440-61-1		Uranium	Т	MG/L	200.8	0.00201		0.00104		0.00239		<0.0002	
12587-46-1		Gross Alpha (α)	т	pCi/L	900.0	2.94	*	-4.22	*	4.21	*	-0.604	*
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	8.05	*	10.1	*	12.8	*	3.76	*

4

Division of Waste Management Solid Waste Branch

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u>

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")							E						
Sample Sequence #							1						
If sample is	a B	lank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA							
Sample Date	and	Time (Month/Day/Year hour: m	inu	tes)		11/17/2015 09):23						
Duplicate ("	Y" (or "N") ¹				N							
Split ('Y' o	r "1	N") ²				N			\setminus				
Facility Sam	ple	ID Number (if applicable)				L150DUS1-1	16				,		
Laboratory Sa	amp:	le ID Number (if applicable)				385808001					$\overline{}$		
Date of Analy	ysis	S (Month/Day/Year)				12/12/2015							
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OF PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G
A200-00-0	0	Flow	Т	MGD	Field	0.02							
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	2.54					`		
14808-79-8	0	Sulfate	Т	MG/L	300.0	46.6							
7439-89-6	0	Iron	Т	MG/L	200.8	1.14							
7440-23-5	0	Sodium	Т	MG/L	200.8	2.5							
s0268	0	Organic Carbon ⁶	Т	MG/L	9060	5.17							
s0097	0	BOD ⁶	Т	MG/L	not applicable		*						
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.4	12.3	J						

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{4&}quot;T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	t (KPDES Discharge Number, o	r "(JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	Ν					7
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	VALUE OR PQL ⁵	F L A G
s0145	1	Specific Conductance	Т	µmho/cm	Field	275							
s0270	0	Total Suspended Solids	Т	mg/L	160.2	21.4		\					
s0266	0	Total Dissolved Solids	Т	mg/L	160.1	210							
s0269	0	Total Solids	Т	mg/L	2540B	221							
s0296	0	рН	Т	Units	Field	7.28							
7440-61-1		Uranium	Т	mg/L	200.8	0.00196							
12587-46-1		Gross Alpha (α)	Т	pCi/L	900.0	-0.995	*						
12587-47-2		Gross Beta (β)	Т	pCi/L	900.0	5.51	*						
												<u> </u>	_
								/					

RESIDENTIAL/CONTAINED – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit:	KY8-890-008-982 / 1								
LAB ID:	None								
For Official Use Only									

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L150	L150US1-16	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 7.29. Rad error is 7.27.
		Beta activity		TPU is 8.13. Rad error is 8.02.
L154	L154US1-16	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 3.5. Rad error is 3.49.
		Beta activity		TPU is 10. Rad error is 9.86.
L351	L351US1-16	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 6.55. Rad error is 6.51.
		Beta activity		TPU is 9.87. Rad error is 9.59.
QC	FB1US1-16	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 4.16. Rad error is 4.15.
		Beta activity		TPU is 9.04. Rad error is 9.02.
L150	L150DUS1-16	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 4.08. Rad error is 4.07.
		Beta activity		TPU is 7.45. Rad error is 7.4.

