

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

NOV 3 0 2015

PPPO-02-3256143-16

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Mr. Allan Shingleton
Division of Waste Management
Kentucky Department for Environmental Protection
625 Hospital Drive
Madisonville, Kentucky 42431

Dear Ms. Green, Mr. Hendricks, and Mr. Shingleton:

C-746-U CONTAINED LANDFILL THIRD QUARTER CALENDAR YEAR 2015 (JULY-SEPTEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, PAD-ENM-0093/V3, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for the third quarter calendar year 2015. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of C-746-U Contained Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the third quarter 2015 monitoring well data collected from the C-746-U Landfill were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the third quarter calendar year 2015, in accordance with Condition GSTR0001, Standard Requirement 8, of the C-746-U Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

If you have any questions or require additional information; please contact David Dollins at (270) 441-6819.

Sincerely,

Jennifer Woodard
Paducah Site Lead

Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill 3rd Quarter Calendar Year 2015 Compliance Monitoring Report

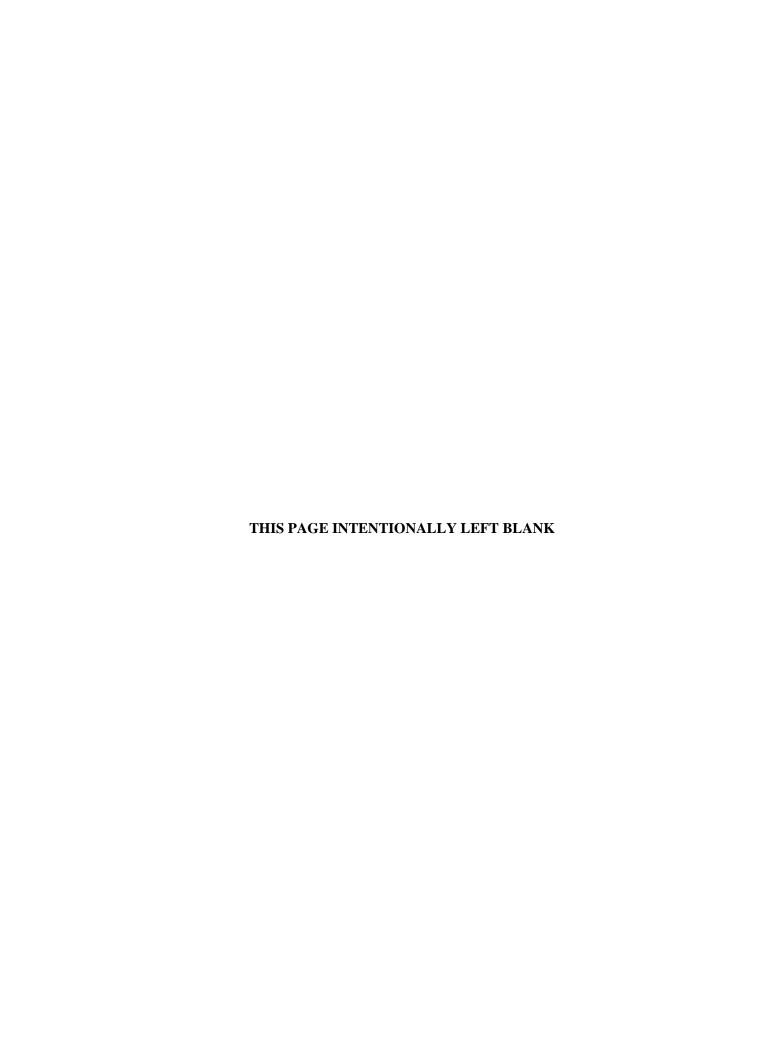
e-copy w/enclosure: april.webb@ky.gov, KDEP/Frankfort brian.begley@ky.gov, KDEP/Frankfort dave.dollins@lex.doe.gov, PPPO/PAD ffscorrespondence@ffspaducah.com, FFS/Kevil gary.hines@ffspaducah.com, FFS/Kevil gaye.brewer@ky.gov, KDEP/PAD jennifer.blewett@ffspaducah.com, FFS/Kevil jennifer.watson@ffspaducah.com, FFS/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD iessica.burnett@ffspaducah.com, FFS/Kevil john.morgan@ffspaducah.com, FFS/Kevil joseph.towarnicky@ffspaducah.com, FFS/Kevil leo.williamson@ky.gov, KDEP/Frankfort mark.duff@ffspaducah.com, FFS/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@ffspaducah.com, FFS/Kevil reinhard.knerr@lex.doe.gov, PPPO/PAD stephaniec.brock@ky.gov, KYRHB/Frankfort tammy.smith@ffspaducah.com, FFS/Kevil

C-746-U Contained Landfill
Third Quarter Calendar Year 2015
(July–September)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

FLUOR.

This document is approved for public release per review by:

FPDP Classification Support


Dota

C-746-U Contained Landfill
Third Quarter Calendar Year 2015
(July–September)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—November 2015

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FLUOR FEDERAL SERVICES, INC.,
Paducah Deactivation Project
managing the
Deactivation Project at the
Paducah Gaseous Diffusion Plant
under Task Order DE-DT0007774

CONTENTS

FI	GURE	S		v
TA	BLES	S		v
ΑC	CRON	YMS		vii
1.	INTI	RODUC	TION	1
	1.1	BACK	GROUND	1
	1.2	MONI	TORING PERIOD ACTIVITIES	2
		1.2.1	Groundwater Monitoring	2
		1.2.2	Methane Monitoring	
		1.2.3	Surface Water Monitoring	
	1.3	KEY F	RESULTS	
2.	DAT	'A EVA	LUATION/STATISTICAL SYNOPSIS	9
ے.	2.1		STICAL ANALYSIS OF GROUNDWATER DATA	
	2.1	2.1.1	Upper Continental Recharge System	
		2.1.2	Upper Regional Gravel Aquifer	
			Lower Regional Gravel Aquifer	
	2.2	DATA	VERIFICATION AND VALIDATION	11
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	13
4.	REF	ERENC	ES	15
AF	PPENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PENE	OIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PENE	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PENE	DIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PENE	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PENE	OIX F:	NOTIFICATIONS	F-1
ΑF	PENE	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PENE	OIX H:	METHANE MONITORING DATA	H-1
ΑF	PENE	OIX I:	SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS	I-1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	3
2.	C-746-U Landfill Surface Water Monitoring Locations	5
	TABLES	
1.	Summary of MCL Exceedances	4
	Exceedances of Statistically Derived Historical Background Concentrations	
	Exceedances of Current Background UTL in Downgradient Wells	
4.	C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters	7
5.	Exceedances of Current Background UTL in UCRS Wells	8
6.	Monitoring Wells Included in Statistical Analysis	10

ACRONYMS

CFR Code of Federal Regulations

KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Third Quarter Calendar Year 2015 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. This report was written in accordance with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014), Technical Application Attachment 25 of the Solid Waste Landfill permit.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring was conducted in accordance with 401 KAR 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), Technical Application Attachment 12 of the Solid Waste Landfill permit. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 4. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), Technical Application Attachment 24 of the Solid Waste Landfill permit. Surface water results are provided in Appendix I.

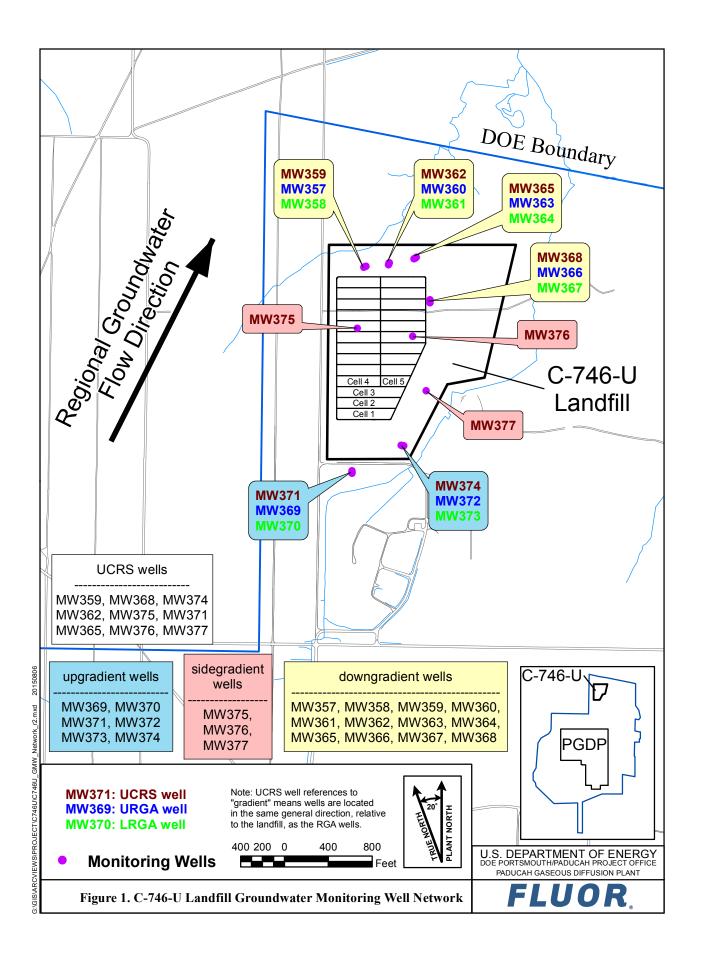
1.1 BACKGROUND

The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996 under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW365, MW368, MW376, and MW377 (all screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for these locations.


Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but flow in the underlying RGA is lateral. Groundwater flow in the RGA typically is in a north-northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the RGA wells located in the same direction (relative to the landfill) as nearby UCRS wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the third quarter 2015 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on August 4, 2015, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient in the vicinity of the C-746-U Landfill in August was 3.09×10^{-4} ft/ft. The hydraulic gradient for both the URGA and LRGA at the C-746-U Landfill was 4.32×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.73 to 1.25 ft/day for the URGA and LRGA (see Table E.3).

1.2.2 Methane Monitoring

In accordance with the Explosive Gas Monitoring Program (KEEC 2011), landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on September 4, 2015. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was sampled in accordance with 401 KAR 48:300 § 2 and the approved Surface Water Monitoring Plan (PRS 2008). Sampling was performed at three locations monitored for the C-746-U Landfill. The C-746-U Landfill has an upstream location, L154; a downstream location, L351; and a location capturing runoff from the landfill surface, L150. Figure 2 is a map of the surface water monitoring locations. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled, in report only format, pursuant to Permit Condition GMNP0001, Standard Requirement 1. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Parameters that had concentrations that exceeded the respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL concentrations¹ during the third quarter 2015, as well as parameters that exceeded their MCL (trichloroethene) and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
	MW357: Trichloroethene	MW361: Trichloroethene
	MW372: Trichloroethene	MW373: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved oxygen, oxidation-	MW357: Oxidation-reduction potential	MW358: Oxidation-reduction potential,
reduction potential, sulfate		technetium-99
MW362: Dissolved oxygen, oxidation-	MW360: Oxidation-reduction potential	MW361: Oxidation-reduction potential,
reduction potential, sulfate		pH
MW371: Dissolved oxygen, oxidation-	MW363: Oxidation-reduction potential	MW364: Oxidation-reduction potential,
reduction potential, sulfate		technetium-99
MW374: Oxidation-reduction potential	MW366: Oxidation-reduction potential	MW367: Oxidation-reduction potential
MW375: Oxidation-reduction potential,	MW369: Oxidation-reduction potential	MW370: Oxidation-reduction potential,
sulfate		technetium-99
	MW372: Calcium, conductivity,	MW373: Oxidation-reduction potential
	dissolved solids, magnesium, oxidation-	
	reduction potential, sulfate	

^{*}Gradients in the UCRS are downward. UCRS gradient designations refer to the locations of wells in the same direction, relative to the landfill as the RGA wells. Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Table 3. Exceedances of Current Background **UTL** in Downgradient Wells

LRGA—MW361: pH
•

¹ The term "concentration" may refer to a field measurement result such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

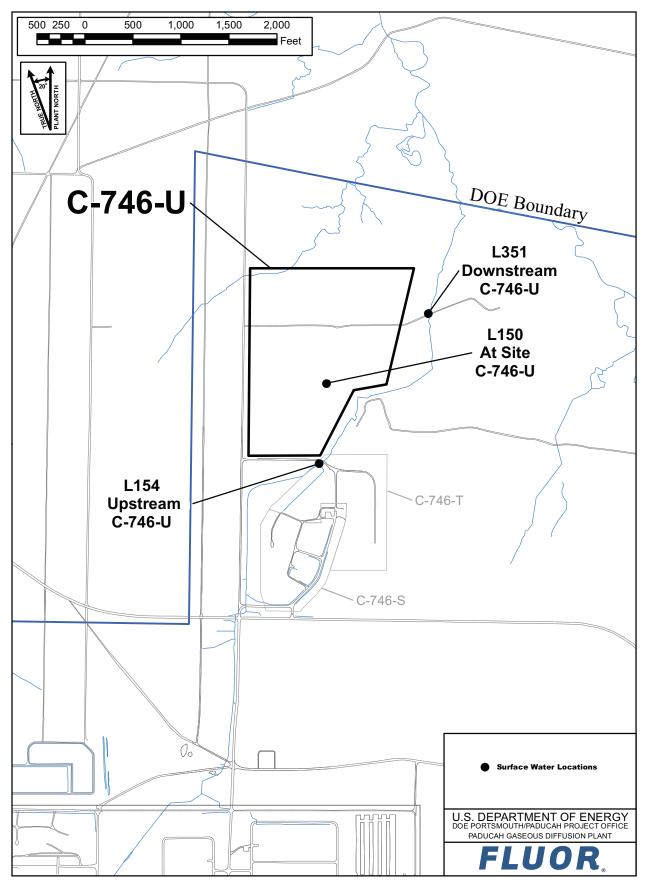


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

There were no new MCL exceedances for this quarter. The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW357 and MW361 (downgradient well), do not exceed the historical background concentrations and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance. The constituent listed in Table 3 that exceeded both the historical UTL and the current UTL, pH, does not have an identified source and preliminarily is considered to be a Type 2 exceedance per the approved Groundwater Monitoring Plan. To further evaluate this preliminary Type 2 exceedance, pH was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. This preliminary Type 2 exceedances (not attributable to the landfill).

Table 4. C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Var(S)4	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
C-746-U Landfill Downgradient Well	MW361	рН	8	0.05	0.138	-10.00	0.000	-0.032	-0.357	No Trend

Footnotes:

Note: Statistics generated using XLSTAT Version 2015.2.01.16684

¹An alpha of 0.05 represents a 95% confidence interval.

²The p-value represents the risk of acceptance the H_A hypothesis of a trend, in terms of a percentage.

³The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend

⁴VAR(S) represents the varience of S in the sample set and takes into account statistical ties.

 $^{^{5}}$ The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(x_{x}k_{y})/(j-k)$, where x is a data point and j and k are values of time.

⁶Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is postive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend

⁷The Mann-Kendall decision operates on two hypothesis, the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend. Two different tests were ran to test for positive or negative trends. This table reports the test with the lowest p-value.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS wells with dissolved oxygen and sulfate values that exceed both the historical and current background (Table 5). Because these wells are not hydrogeologically downgradient of the C-746-U Landfill, these exceedances are not attributable to C-746-U sources and are considered Type 1 exceedances.

Table 5. Exceedances of Current Background UTL in UCRS Wells

UCRS
MW359: Dissolved oxygen, sulfate
MW362: Dissolved oxygen, sulfate
MW375: Sulfate

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2015 groundwater data collected from the C-746-U Contained Landfill MWs were performed in accordance with the *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).* The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365***	MW363	MW364
MW368***	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376***		
MW377***		

^{*}A map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the UCRS. During the third quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Dissolved oxygen and sulfate exceeded the current background UTL and are included on Table 4.

2.1.2 Upper Regional Gravel Aquifer

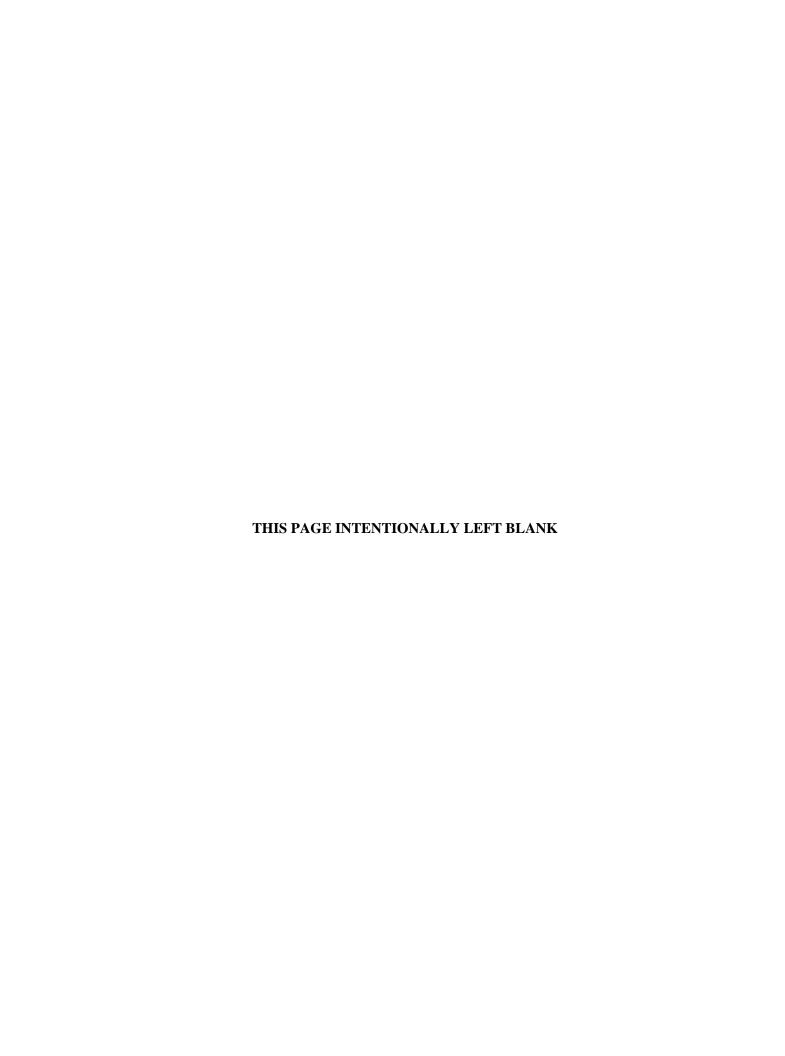
In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the URGA. During the third quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedances of the current background UTL for any downgradient wells as summarized in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the LRGA. During the third quarter, oxidation-reduction potential, pH, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. The parameter, pH, exceeded the current background UTL for downgradient wells as summarized in Table 3.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***} MW365, MW368, MW376, and MW377 had insufficient water to permit a water level measurement and a water sample for laboratory analysis.


2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

Third Quarter Calendar Year 2015 (July-September)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0093/V3)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Movember 24, 2015 Date

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Paducah Remediation Services, LLC, Kevil, KY, June.

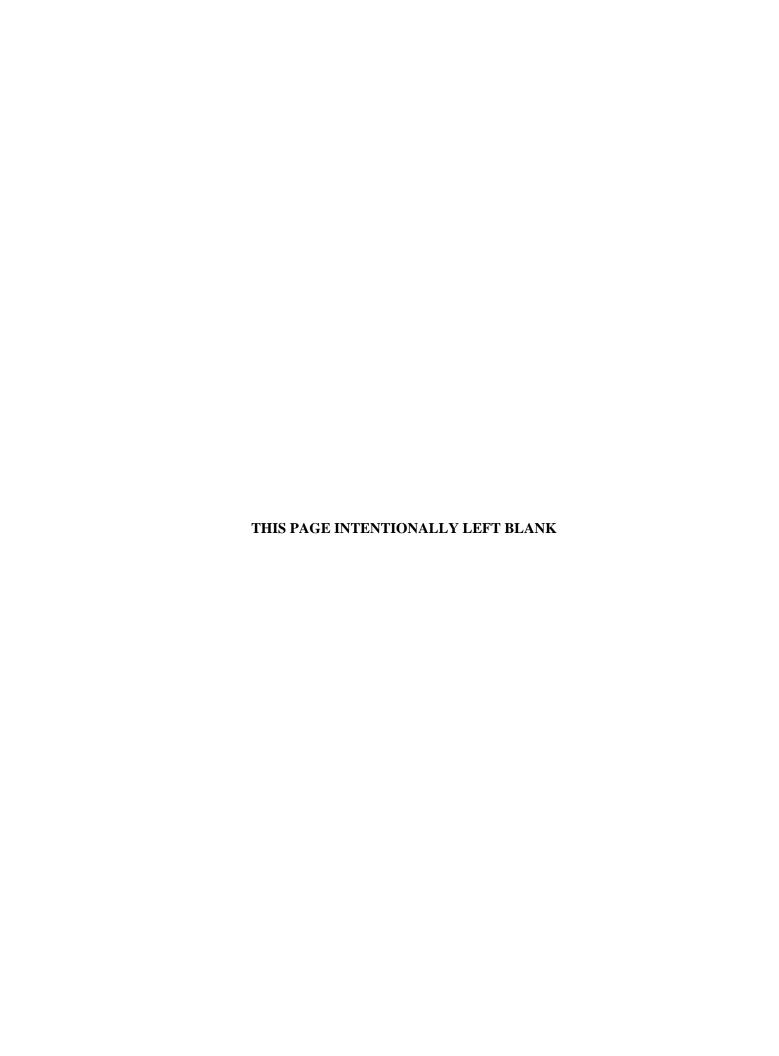
APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Pade (As officially	ucah Gaseous shown on DWM	Activity:	C-746-U Contained Landfill	
Permit No:	SW07300014, SW07300015, SW07300045	SW07300015, Finds/Unit No:		Quarter &	& Year 3rd Qtr. CY 2015
Please check the	e following as appli	cable:			
Charact	terization X	Quarterly	Semiannual	Annı	ual Assessment
Please check app	plicable submittal(s	s): <u> </u>	Groundwater	X	_ Surface Water
			Leachate	X	_ Methane Monitoring
45:160) or by statu jurisdiction of the (48) hours of ma Submitting the lai instruction pages. I certify under pe accordance with a Based on my inquibest of my knowle	the (Kentucky Revised Division of Waste Aking the determination between the NOT constitution of law that the system designed to lay of the person or pudge and belief, true, a	ed Statues Chap Management. Y ation using standard notificate e document an assure that qua- ersons directly raccurate, and co	ter 224) to conduct groud ou must report any in atistical analyses, direction. Instructions for conduct all attachments were lified personnel properly responsible for gathering	andwater and s ndication of c ct compariso mpleting the fo prepared under gather and e information, t there are signif	t Regulations-401 KAR 48:300 and surface water monitoring under the contamination within forty-eight n, or other similar techniques. It is a submit the error my direction or supervision in valuate the information submitted. The information submitted is, to the ficant penalties for submitting false
Mark J. Duff, h Fluor Federal S	nvironmental Ma ervices, Inc.	ınagement Di	rector	_	//-30-15 Date
Jennifer Wooda U.S. Departmen	ard, Paducah Site	ard Lead			11/30/15 Date



APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: July 2015 Surface Water: July 2015 Methane: September 2015	County:	McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045		
	-			_			
racinty Name:	Facility Name: U.S. DOE – Paducah Gaseous Diffusion Plant (As officially shown on DWM Permit Face)						
Site Address:	5501 Hobbs Road	Kevil, Kentucky	,	42053			
Site Hadress.	Street	City/State		Zip			
Phone No: (27	(0) 441-6800 Latitude:	N 37° 07' 45"	Longi	tude: W	88° 47' 55"		
	OWN	ER INFORMATION					
Facility Owner:	U.S. DOE – W. E. Murphie, M.	Ianager	Phone No:	(859) 219	9-4001		
Contact Person:	Mark J. Duff		Phone No:	(270) 441	1-6127		
Contact Person T	itle: Director, Environmental	Management, Fluor Fee	deral Services, In	nc.			
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053			
	Street	City/State		Zip			
	SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)						
Company: LA	TA Environmental Services of Ke	ntucky, LLC					
Contact Person:	Jeff Boulton		Phone No:	(270) 44	11-5444		
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053			
	Street	City/State		Zip			
	LABOI	RATORY RECORD #	1				
Laboratory GE	L Laboratories, LLC	Lab	ID No: KY90	129			
Contact Person:	Valerie Davis	Phone No: (843) 769-7391					
Mailing Address:	2040 Savage Road	Charleston, South Ca	ırolina	290	47		
	Street	City/State		Zi	p		
	LABOI	RATORY RECORD #	2				
Laboratory: .		Lab I	D No:				
Contact Person:			Phone No:				
Mailing Address:							
	Street	City/State			Zip		
	LABOI	RATORY RECORD #	3				
Laboratory:		Lab ID No:					
Contact Person:		<u></u>					
Mailing Address:							
	Street	City/State		-	7in		

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u>

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798	3	8004-47	799	8004-09	981	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g., 1	∕w-1	, MW-2, etc	:.)	357		358		359		360	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/8/2015 08	:10	7/8/2015	09:31	7/8/2015	11:58	7/9/2015 1	0:27
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW357UG4	-15	MW358U	G4-15	MW359U0	G4-15	MW360UG	4-15
Laboratory San	mple ID Number (if applicable)		37675300	1	376753	003	376753	005	3769050	01		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis										7/14/201	15
Gradient with	respect to Monitored Unit (UP, Do	OWN,	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.446		0.483		<0.2		0.165	J
16887-00-6	Chloride(s)	т	mg/L	9056	35.7		36.8		1.13		11.4	
16984-48-8	Fluoride	Т	mg/L	9056	0.14		0.147		0.0853	J	0.247	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.21		1.03		1.7		0.172	J
14808-79-8	Sulfate	т	mg/L	9056	54.6		80.1		49.7		26.7	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.04		30.05		30.05		30.08	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	466		519		266		521	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^{7}}$ Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-479	8	8004-4799	9	8004-0981		8004-4800	
Facility's Lo	cal Well or Spring Number (e.g., Mw	J-1, 1	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.5		326.5		333.72		326.5	
N238	Dissolved Oxygen	т	mg/L	Field	4		1.6		7.01		1.11	
s0266	Total Dissolved Solids	т	mg/L	160.1	246		299		203		307	
s0296	рН	т	Units	Field	6.07		6.3		6.01		6.27	
NS215	Eh	т	mV	Field	489		328		460		454	
s0907	Temperature	т	°C	Field	17.11		18		17.78		18.61	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.103		0.0156	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00176	J
7440-39-3	Barium	т	mg/L	6020	0.0608		0.0446		0.0337		0.158	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	*
7440-42-8	Boron	т	mg/L	6020	0.42		0.469		0.00574	J	0.0393	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	26.9		33.1		11.7		24.7	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00016	BJ	0.00051	BJ	0.00021	BJ	0.00518	
7440-50-8	Copper	т	mg/L	6020	0.00063	*J	0.00124	*	0.00248	*	0.0005	J
7439-89-6	Iron	т	mg/L	6020	0.0418	J	0.269		0.116		0.374	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.9	*B	14.4	*B	4.84	*B	10.8	
7439-96-5	Manganese	т	mg/L	6020	0.00194	J	0.0493		0.00126	J	0.0701	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-479	18	8004-479	99	8004-098	1	8004-480	00
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		<0.0005		0.00037	J
7440-02-0	Nickel	Т	mg/L	6020	0.00284		0.00323		0.00316		0.00261	
7440-09-7	Potassium	т	mg/L	6020	1.66		2.29		0.245	J	0.846	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		0.00151	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	38.3	*	39.3	*	32.7	*	73.4	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	0.00032	*	<0.0002	*	0.00021	*	0.00029	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		0.00468	J	0.00721	J
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00517	J	<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260		*		*		*	<0.005	
67-64-1	Acetone	Т	mg/L	8260		*		*		*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260		*		*		*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260		*		*		*	<0.005	
71-43-2	Benzene	Т	mg/L	8260		*		*		*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260		*		*		*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260		*		*		*	<0.003	
100-42-5	Styrene	т	mg/L	8260		*		*		*	<0.001	
108-88-3	Toluene	Т	mg/L	8260		*		*		*	<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260		*		*		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799	١	8004-0981	I	8004-480	0
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260		*		*		*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*		*		*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260		*		*		*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*		*		*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*		*		*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*		*		*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*		*		*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260		*		*		*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260		*		*		*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*		*		*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*		*		*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*		*		*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*		*		*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*		*		*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*		*		*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*		*		*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*		*		*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*		*		*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*		*		*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260		*		*		*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*		*		*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*		*		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-479	8	8004-479	9	8004-098	81	8004-48	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	., MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260		*		*		*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*		*		*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*		*		*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*		*		*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*		*		*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*		*		*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*		*		*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.000188		<0.0000192		<0.0000193		<0.000188	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*		*		*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*		*		*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*		*		*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*		*		*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*		*		*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*		*		*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*		*		*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*		*		*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.1		<0.0971		<0.099		<0.0962	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.1		<0.0971		<0.099		<0.0962	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.1		<0.0971		<0.099		<0.0962	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.1		<0.0971		<0.099		<0.0962	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.0971		<0.099		<0.0962	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.0971		<0.099		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798	1	8004-4799)	8004-098	31	8004-480	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.0971		<0.099		<0.0962	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.0971		<0.099		<0.0962	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.0971		<0.099		<0.0962	
12587-46-1	Gross Alpha	Т	pCi/L	9310	7.37	*	-5.01	*	1.37	*	-5.74	*
12587-47-2	Gross Beta	т	pCi/L	9310	20.4	*	32.4	*	0.712	*	-0.865	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.601	*	0.725	*	0.597	*	0.607	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.517	*	-1.56	*	-1.43	*	2.3	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	41	*	57.6	*	10.9	*	6.98	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.432	*	0.0648	*	-0.0763	*	0.167	*
10028-17-8	Tritium	Т	pCi/L	906.0	-8.24	*	30.8	*	5.74	*	-14.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		15.7	J	<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		0.003	J
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.563	J	0.627	J	1.91	J	1.7	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00684	J	0.00758	J	<0.01		0.0176	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: <u>KY8-890-008-982</u>/_1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	796	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., 1	∕w-1	., MW-2, etc	:.)	361		362		363		364	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/9/2015 08	:48	7/9/2015	09:36	7/14/2015	09:17	7/14/2015 1	10:22
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW361UG4	-15	MW362U	G4-15	MW363U0	G4-15	MW364UG	i4-15
Laboratory San	mple ID Number (if applicable)		37690500	3	376905	005	377182	001	3771820	03		
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis						7/13/20	15	7/17/20	15	7/17/201	15
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.412		0.147	J	0.136	J	0.404	
16887-00-6	Chloride(s)	т	mg/L	9056	31.1		8.57		30		33.3	
16984-48-8	Fluoride	Т	mg/L	9056	0.14		0.345		0.176		0.142	
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.975		0.53		4.26		0.919	
14808-79-8	Sulfate	т	mg/L	9056	74		33.7		29.1		71.6	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.04		30.08		29.91		29.91	
s0145	Specific Conductance	т	μ MH 0/cm	Field	487		719		409		455	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^{7}}$ Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796		8004-4797	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.52		337.72		327.12		327.09	
N238	Dissolved Oxygen	т	mg/L	Field	3.41		5.33		0.69		1.5	
s0266	Total Dissolved Solids	т	mg/L	160.1	271		464		240		250	
s0296	рн	т	Units	Field	5.81		6.86		6.13		5.94	
NS215	Eh	т	mV	Field	567		447		731		700	
s0907	Temperature	т	°C	Field	17.06		19.67		20.28		18.78	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		3.2		0.0183	J	0.0172	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00195	J	0.00272	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0588		0.105		0.171		0.0665	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005	*	<0.0005	*	<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.327		0.0226		0.0238		0.0107	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	32		21		27.6		29.1	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.00345	J	<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00161		0.00129		0.00036	J
7440-50-8	Copper	т	mg/L	6020	<0.001		0.00274		0.00037	J	0.00036	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		2.09		0.0537	J	0.0358	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		0.00146	J	0.00068	J	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	15.8		10.6		11.6		13.4	
7439-96-5	Manganese	Т	mg/L	6020	0.00703		0.0156		0.229		0.0164	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	6	8004-479	97
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		0.00113		<0.0005		<0.0005	
7440-02-0	Nickel	Т	mg/L	6020	0.00141	J	0.00318		0.00068	J	0.00176	J
7440-09-7	Potassium	Т	mg/L	6020	2.12		0.529		1.37		2.06	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	0.00225	J	<0.005		<0.005		0.005	J
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	44.6		139		40.6		46.3	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.00647		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.00777	J	0.0125		<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		0.0061	J	<0.01		0.0341	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-098	6	8004-47	96	8004-47	97
Facility's Loc	eal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00692		<0.001		0.00084	J	0.0043	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-47	95	8004-098	6	8004-47	96	8004-47	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW	I-2, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	D (nit METHO OF SURE	D DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	T mg	g/L 8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	T mg	g/L 8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	T mg	g/L 8260	<0.005		<0.005		0.00147	J	0.00137	J
108-10-1	Methyl isobutyl ketone	T mg	g/L 8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	T mg	g/L 8011	<0.0000191		<0.0000191		<0.0000203		<0.0000191	
78-87-5	Propane, 1,2-Dichloro-	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	T ug	g/L 8082	<0.0971		<0.098		<1.02		<0.971	
12674-11-2	PCB-1016	T ug	g/L 8082	<0.0971		<0.098		<1.02		<0.971	
11104-28-2	PCB-1221	T ug	g/L 8082	<0.0971		<0.098		<1.02		<0.971	
11141-16-5	PCB-1232	T ug	g/L 8082	<0.0971		<0.098		<1.02		<0.971	
53469-21-9	PCB-1242	T ug	g/L 8082	<0.0971		<0.098		<1.02		<0.971	
12672-29-6	PCB-1248	T ug	g/L 8082	<0.0971		<0.098		<1.02		<0.971	

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479) 7
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0971		<0.098		<1.02		<0.971	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0971		<0.098		<1.02		<0.971	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0971		<0.098		<1.02		<0.971	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-2.11	*	3.07	*	-1.11	*	4.66	*
12587-47-2	Gross Beta	Т	pCi/L	9310	31.3	*	-0.552	*	7.77	*	34.1	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.561	*	1.05	*	1.4	*	0.87	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-2.96	*	0.916	*	2.44	*	-1.24	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	42.8	*	-6.74	*	14.5	*	58.7	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.125	*	0.639	*	0.0827	*	0.752	*
10028-17-8	Tritium	Т	pCi/L	906.0	-44	*	-58.1	*	-15.8	*	2.87	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.637	J	2.79		0.809	J	0.618	J
s0586	Total Organic Halides	т	mg/L	9020	<0.01		0.0233		0.00518	J	0.00574	J
		П										
		П										
		П										

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: <u>KY8-890-008-982 / 1</u> LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	34	8004-0982	2	8004-4793	3	8004-098	33
Facility's Loc	cal Well or Spring Number (e.g., 1	/W-1	., MW-2, etc	:.)	365		366		367		368	
Sample Sequence	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		NA		7/14/2015 11	:56	7/14/2015 11	:16	NA	
Duplicate ("Y"	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				NA		MW366UG4	-15	MW367UG4	-15	NA	
Laboratory Sam	mple ID Number (if applicable)		NA		37718200	5	37718200	7	NA			
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						7/17/2015	i	7/17/2015		NA	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*	0.513		0.414			*
16887-00-6	Chloride(s)	т	mg/L	9056		*	37.9		31.2			*
16984-48-8	Fluoride	Т	mg/L	9056		*	0.163		0.124			*
s0595	Nitrate & Nitrite	т	mg/L	9056		*	0.759		0.205			*
14808-79-8	Sulfate	т	mg/L	9056		*	56		43.4			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*	29.94		29.95			*
s0145	Specific Conductance	т	μ MH0/cm	Field		*	430		337			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^{7}}$ Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793	3	8004-0983	3
Facility's Lo	cal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*	327.17		327.18			*
N238	Dissolved Oxygen	т	mg/L	Field		*	1.02		0.71			*
s0266	Total Dissolved Solids	т	mg/L	160.1		*	250		211			*
s0296	рн	т	Units	Field		*	6.05		5.9			*
NS215	Eh	т	mV	Field		*	387		416			*
s0907	Temperature	т	°C	Field		*	20.06		18.78			*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		0.00191	J		*
7440-39-3	Barium	т	mg/L	6020		*	0.147		0.187			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	0.128		0.0268			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	31.2		25.1			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	0.00034	J	0.00669			*
7440-50-8	Copper	т	mg/L	6020		*	<0.001		0.00045	J		*
7439-89-6	Iron	Т	mg/L	6020		*	0.0612	J	1.78			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020		*	13.8		12			*
7439-96-5	Manganese	т	mg/L	6020		*	0.017		0.863			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-098	84	8004-0982	2	8004-4793		8004-098	33
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0	Nickel	Т	mg/L	6020		*	0.00052	J	0.00202			*
7440-09-7	Potassium	Т	mg/L	6020		*	1.94		2.95			*
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	Т	mg/L	6020		*	47.3		36.1			*
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.01		<0.01			*
7440-66-6	Zinc	Т	mg/L	6020		*	<0.01		0.00482	J		*
108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.005		<0.005			*
67-64-1	Acetone	Т	mg/L	8260		*	<0.005		<0.005			*
107-02-8	Acrolein	т	mg/L	8260		*	<0.005		<0.005			*
107-13-1	Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005			*
71-43-2	Benzene	Т	mg/L	8260		*	<0.001		<0.001			*
108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.001		<0.001			*
1330-20-7	Xylenes	Т	mg/L	8260		*	<0.003		<0.003			*
100-42-5	Styrene	Т	mg/L	8260		*	<0.001		<0.001			*
108-88-3	Toluene	Т	mg/L	8260		*	<0.001		<0.001			*
74-97-5	Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984		8004-098	2	8004-4793		8004-0983	}
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260		*	<0.001		<0.001			*
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.001		<0.001			*
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.001		<0.001			*
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	0.00378		0.00288			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-098	4	8004-0982		8004-4793		8004-0983	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T Unit D OF S MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	T mg/L	8260		*	<0.001		<0.001			*
591-78-6	2-Hexanone	T mg/L	8260		*	<0.005		<0.005			*
74-88-4	Iodomethane	T mg/L	8260		*	<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	T mg/L	8260		*	<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	T mg/L	8260		*	<0.001		<0.001			*
75-09-2	Dichloromethane	T mg/L	8260		*	0.00132	J	0.00128	J		*
108-10-1	Methyl isobutyl ketone	T mg/L	8260		*	<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	T mg/L	8011		*	<0.0000191		<0.000019			*
78-87-5	Propane, 1,2-Dichloro-	T mg/L	8260		*	<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	T mg/L	8260		*	<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	T mg/L	8260		*	<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	T mg/L	8260		*	<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	T mg/L	8260		*	<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	T mg/L	8260		*	<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	T mg/L	8260		*	<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	T mg/L	8260		*	<0.001		<0.001			*
1336-36-3	PCB,Total	T ug/L	8082		*	<0.0962		<0.98			*
12674-11-2	PCB-1016	T ug/L	8082		*	<0.0962		<0.98			*
11104-28-2	PCB-1221	T ug/L	8082		*	<0.0962		<0.98			*
11141-16-5	PCB-1232	T ug/L	8082		*	<0.0962		<0.98			*
53469-21-9	PCB-1242	T ug/L	8082		*	<0.0962		<0.98			*
12672-29-6	PCB-1248	T ug/L	8082		*	<0.0962		<0.98			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-4793		8004-0983	
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0962		<0.98			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.0962		<0.98			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0962		<0.98			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	1.57	*	8.15	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	44.9	*	30.2	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*	1.34	*	1.29	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	-0.331	*	-1.79	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	47.1	*	35.1	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	0.149	*	0.748	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	-29.6	*	-122	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*	<20		<20			*
57-12-5	Cyanide	Т	mg/L	9012		*	<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060		*	0.595	J	0.655	J		*
s0586	Total Organic Halides	Т	mg/L	9020		*	0.00454	J	<0.01			*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: <u>KY8-890-008-982 / 1</u> LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4820)	8004-48	318	8004-48	319	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g., 1	/IW-1	, MW-2, etc	١.)	369		370		371		372	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/14/2015 09	9:06	7/14/2015	09:52	7/14/2015	10:33	7/13/2015 (9:35
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW369UG4	-15	MW370U	G4-15	MW371U0	G4-15	MW372UG	4-15
Laboratory San	boratory Sample ID Number (if applicable)						377182	011	3771820	015	3770620	03
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis						7/17/20	15	7/17/20	15	7/16/201	5
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)						UP		UP		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.43		0.477		0.0764	J	0.582	
16887-00-6	Chloride(s)	т	mg/L	9056	35.2		39.7		4.98		44	
16984-48-8	Fluoride	Т	mg/L	9056	0.197		0.154		0.276		0.17	
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.444		1.22		0.497	J	0.108	J
14808-79-8	Sulfate	Т	mg/L	9056	8.09		19		18.8		135	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.75		29.75		29.74		29.89	
s0145	Specific Conductance	т	μ MH 0/cm	Field	390		424		699		758	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

					(00110							
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820	0	8004-4818	3	8004-4819		8004-4808	
Facility's Loc	al Well or Spring Number (e.g., Mw	-1,	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.92		328.9		343		327.75	
N238	Dissolved Oxygen	т	mg/L	Field	3.28		3.63		2.73		0.76	
s0266	Total Dissolved Solids	т	mg/L	160.1	226		230		443		441	
s0296	Нд	т	Units	Field	6.12		6.05		6.6		6.13	
NS215	Eh	т	mV	Field	410		388		368		220	
s0907	Temperature	т	°C	Field	20.89		20.5		20.28		19.72	
7429-90-5	Aluminum	т	mg/L	6020	0.0723		<0.05		0.814		0.0241	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00179	J	0.00284	J	0.0021	J
7440-39-3	Barium	т	mg/L	6020	0.365		0.184		0.134		0.0491	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0136	J	0.0329		0.00626	J	1.35	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	17.8		27.4		31.1		62.6	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00617		0.00047	J	0.00019	J	0.00044	J
7440-50-8	Copper	т	mg/L	6020	0.00133		0.00057	J	0.00138		<0.001	
7439-89-6	Iron	Т	mg/L	6020	0.146		<0.1		0.524		0.384	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	7.73		12.4		13.3		24.8	
7439-96-5	Manganese	Т	mg/L	6020	0.0129		0.00151	J	0.0109		0.0161	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-482	0	8004-48	18	8004-481	9	8004-480)8
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		0.00069		0.00046	J
7440-02-0	Nickel	Т	mg/L	6020	0.0114		0.00101	J	0.00129	J	0.00121	J
7440-09-7	Potassium	Т	mg/L	6020	0.608		2.44		0.541		2.55	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	57.7		44		120		63.3	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.00143		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		0.00675	BJ	<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00081	J	0.00083	J	<0.001		0.0082	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	8	8004-48	19	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	., MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00122	J	0.0012	J	0.00117	J	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000189		<0.0000191		<0.0000191		<0.0000189	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0971		<0.0952		<0.0971		0.0523	J
12674-11-2	PCB-1016	т	ug/L	8082	<0.0971		<0.0952		<0.0971		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0971		<0.0952		<0.0971		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0971		<0.0952		<0.0971		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0971		<0.0952		<0.0971		0.0523	J
12672-29-6	PCB-1248	т	ug/L	8082	<0.0971		<0.0952		<0.0971		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818	}	8004-481	9	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0971		<0.0952		<0.0971		<0.0952	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0971		<0.0952		<0.0971		<0.0952	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0971		<0.0952		<0.0971		<0.0952	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.35	*	2.39	*	2.32	*	-0.0562	*
12587-47-2	Gross Beta	Т	pCi/L	9310	21.1	*	36.1	*	4.51	*	13.9	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.726	*	1.35	*	1.17	*	0.422	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.424	*	0.603	*	0.338	*	0.889	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	36.7	*	60.3	*	-4.99	*	37	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.604	*	0.623	*	0.33	*	0.563	*
10028-17-8	Tritium	Т	pCi/L	906.0	-123	*	28.9	*	32.8	*	49.5	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.978	J	0.68	J	2	J	1.25	J
s0586	Total Organic Halides	т	mg/L	9020	0.0143		<0.01		0.0037	J	0.00716	J
		П										

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: <u>KY8-890-008-982 / 1</u> LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-09	990	8004-09	985	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	., MW-2, etc	.)	373		374		375		376	
Sample Sequence	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu		7/13/2015 12	2:43	7/13/2015	10:20	7/13/2015	13:34	NA			
Duplicate ("Y"	or "N") ²		N		N		N		N			
Split ("Y" or	"N") ³		N		N		N		N			
Facility Sampl	le ID Number (if applicable)		MW373UG4	-15	MW374U	G4-15	MW375U0	G4-15	NA			
Laboratory Sam	mple ID Number (if applicable)		37706200	5	377062	007	377062	001	NA			
Date of Analys	sis (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	7/16/2015	5	7/16/2015		7/16/20	15	NA	
Gradient with	respect to Monitored Unit (UP, DO	OWN, SIDE, UNKNOWN)			UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.607		0.84		<0.2			*
16887-00-6	Chloride(s)	Т	mg/L	9056	44		67.8		5.44			*
16984-48-8	Fluoride	Т	mg/L	9056	0.175		0.157		0.266			*
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.928		<0.2		1.54			*
14808-79-8	Sulfate	Т	mg/L	9056	149		5.93		23.6			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.85		29.89		29.84			*
s0145	Specific Conductance	Т	μ MH 0/cm	Field	813		682		362			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^{7}}$ Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-4792	2	8004-0990)	8004-0985		8004-0988	3		
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.76		338.12		341.93			*
N238	Dissolved Oxygen	т	mg/L	Field	2		0.67		1.98			*
S0266	Total Dissolved Solids	т	mg/L	160.1	500		374		243			*
S0296	рн	т	Units	Field	6.11		6.6		6.38			*
NS215	Eh	т	mV	Field	468		268		443			*
s0907	Temperature	т	°C	Field	20.17		20.28		24.28			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0458	J		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00186	J		*
7440-39-3	Barium	т	mg/L	6020	0.0223		0.135		0.171			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.62		0.0312		0.00801	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	71.4		20.1		14.7			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00092	J	0.00019	J		*
7440-50-8	Copper	т	mg/L	6020	<0.001		<0.001		0.00077	J		*
7439-89-6	Iron	т	mg/L	6020	<0.1		0.353		0.101			*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	26.2		6		5.47			*
7439-96-5	Manganese	т	mg/L	6020	0.00222	J	0.398		0.00359	J		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002	·	<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						8004-099	90	8004-098	5	8004-098	38
Facility's L							374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00022	J	0.00031	J		*
7440-02-0	Nickel	т	mg/L	6020	0.00142	J	0.00241		0.00218			*
7440-09-7	Potassium	Т	mg/L	6020	2.51		0.393		0.259	J		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.0041	J	0.00317	J		*
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		0.00034	J		*
7440-23-5	Sodium	Т	mg/L	6020	57.1		125		60.4			*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.00033		0.000088	J		*
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		<0.01			*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-4792		8004-099	0	8004-09	85	8004-09	88	
Facility's Loc	cility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) CAS RN ⁴ CONSTITUENT T Unit METHO						374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00835		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-479	2	8004-0990)	8004-098	35	8004-0988		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	T mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	T mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	T mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	T mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	T mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	T mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	T mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	T mg/L	8011	<0.000019		<0.000189		<0.0000192			*
78-87-5	Propane, 1,2-Dichloro-	T mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	T mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	T mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	T mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	T mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	T mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	T mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	T ug/L	8082	<0.5		<0.0962		<0.0971			*
12674-11-2	PCB-1016	T ug/L	8082	<0.5		<0.0962		<0.0971			*
11104-28-2	PCB-1221	T ug/L	8082	<0.5		<0.0962		<0.0971			*
11141-16-5	PCB-1232	T ug/L	8082	<0.5		<0.0962		<0.0971			*
53469-21-9	PCB-1242	T ug/L	8082	<0.5		<0.0962		<0.0971			*
12672-29-6	PCB-1248	T ug/L	8082	<0.5		<0.0962		<0.0971			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	!	8004-0990)	8004-098	5	8004-098	38
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.5		<0.0962		<0.0971			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.5		<0.0962		<0.0971			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.5		<0.0962		<0.0971			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-2.18	*	-5.05	*	5.43	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	21.8	*	0.297	*	6.09	*		*
10043-66-0	Todine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.413	*	0.605	*	0.501	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.9	*	0.839	*	0.175	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	37.3	*	5.46	*	-0.45	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.0174	*	0.343	*	0.318	*		*
10028-17-8	Tritium	Т	pCi/L	906.0	-102	*	41.6	*	2.24	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		<20			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060	0.936	J	1.92	J	0.865	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.00702	J	0.0166		0.00828	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number	8004-098	9	0000-00	00	0000-000	00	0000-000	00			
Facility's Loc	al Well or Spring Number (e.g., 1	/W-1	., MW-2, etc	.)	377		E. BLAN	ΙK	F. BLAN	K	T. BLANK	1
Sample Sequenc	e #				1		1		1		1	
If sample is a B	slank, specify Type: (F)ield, (T)rip,	quipment	NA		Е		F		Т			
Sample Date an	d Time (Month/Day/Year hour: minu	NA		7/9/2015 07:35		7/9/2015 0	8:55	7/8/2015 07	7:00			
Duplicate ("Y"	or "N") ²		N		N		N		N			
Split ("Y" or	"N") ³		N		N		N		N			
Facility Sampl	e ID Number (if applicable)				NA		RI1UG4-	15	FB1UG4-	15	TB1UG4-	15
Laboratory Sam	ple ID Number (if applicable)				NA		3769050	08	37690500	07	37675300)7
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	NA		7/14/2015		7/14/2015		7/14/201	5
Gradient with	respect to Monitored Unit (UP, DO	NWC	, SIDE, UNKN	SIDE		NA		NA		NA		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	Т	μ MHO /cm	Field		*		*		*		*

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989	9	0000-0000)	0000-0000		0000-0000)
Facility's Lo	cal Well or Spring Number (e.g., MW	V-1,	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рН	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.002		0.00072	J		*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005	*	<0.0005	*		*
7440-42-8	Boron	Т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	Т	mg/L	6020		*	<0.2		1.05			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	Т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	<0.001		<0.001			*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	<0.03		0.0136	J		*
7439-96-5	Manganese	Т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						0000-000	00	0000-000	0	0000-0000)
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0	Nickel	т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7	Potassium	т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	т	mg/L	6020		*	<0.25		0.132	J		*
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.01		<0.01			*
7440-66-6	Zinc	т	mg/L	6020		*	<0.01		<0.01			*
108-05-4	Vinyl acetate	т	mg/L	8260		*	<0.005		<0.005			*
67-64-1	Acetone	т	mg/L	8260		*	<0.005		<0.005			*
107-02-8	Acrolein	т	mg/L	8260		*	<0.005		<0.005			*
107-13-1	Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005			*
71-43-2	Benzene	Т	mg/L	8260		*	<0.001		<0.001			*
108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.001		<0.001			*
1330-20-7	Xylenes	Т	mg/L	8260		*	<0.003		<0.003			*
100-42-5	Styrene	Т	mg/L	8260		*	<0.001		<0.001			*
108-88-3	Toluene	Т	mg/L	8260		*	<0.001		<0.001			*
74-97-5	Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-0989)	0000-0000)	0000-000	00	0000-0000			
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	377		E. BLAN	(F. BLAN	1K	T. BLANK 1	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.001		<0.001			*
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001			*
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*	<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number		8004-098	9	0000-0000)	0000-00	00	0000-00	00	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	377		E. BLAN	(F. BLAN	1K	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T Unit D OF S MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	T mg/L	8260		*	<0.001		<0.001			*
591-78-6	2-Hexanone	T mg/L	8260		*	<0.005		<0.005			*
74-88-4	Iodomethane	T mg/L	8260		*	<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	T mg/L	8260		*	<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	T mg/L	8260		*	<0.001		<0.001			*
75-09-2	Dichloromethane	T mg/L	8260		*	<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	T mg/L	8260		*	<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	T mg/L	8011		*	<0.000188		<0.000019		<0.0000192	
78-87-5	Propane, 1,2-Dichloro-	T mg/L	8260		*	<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	T mg/L	8260		*	<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	T mg/L	8260		*	<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	T mg/L	8260		*	<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	T mg/L	8260		*	<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	T mg/L	8260		*	<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	T mg/L	8260		*	<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	T mg/L	8260		*	<0.001		<0.001			*
1336-36-3	PCB,Total	T ug/L	8082		*	<0.0971		<0.099			*
12674-11-2	PCB-1016	T ug/L	8082		*	<0.0971		<0.099			*
11104-28-2	PCB-1221	T ug/L	8082		*	<0.0971		<0.099			*
11141-16-5	PCB-1232	T ug/L	8082		*	<0.0971		<0.099			*
53469-21-9	PCB-1242	T ug/L	8082		*	<0.0971		<0.099			*
12672-29-6	PCB-1248	T ug/L	8082		*	<0.0971		<0.099			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000		0000-000	00	0000-0000	
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	377		E. BLANK		F. BLAN	K	T. BLANK1	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0971		<0.099			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0971		<0.099			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0971		<0.099			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	1.94	*	0.711	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	-0.908	*	-6.8	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*	0.811	*	0.361	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	2.89	*	-3.75	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	-10.7	*	-2.53	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	0.126	*	0.448	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	69.7	*	69.7	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: <u>KY8-890-008-982 / 1</u> LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000	0
Facility's Loc	al Well or Spring Number (e.g., M	w-1	l, MW-2, etc	١.)	T. BLANK	(2	T. BLAN	K 3	T. BLAN	(4	T. BLANK	5
Sample Sequence	e #				1		1		1		1	
If sample is a F	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	Т		Т		Т		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/9/2015 07	7:30	7/13/2015	07:17	7/14/2015 0	7:30	7/14/2015 0	8:00
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				TB2UG4-	15	TB3UG4	-15	TB4UG4-	15	TB5UG4-	15
Laboratory Sam	aboratory Sample ID Number (if applicable)						3770620	009	3771820	17	37718201	18
Date of Analys	ate of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Anal					5	7/15/20	15	7/17/201	5	7/17/201	5
Gradient with	respect to Monitored Unit (UP, DC	NWN ,	, SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*	_	*		*		*
s0145	Specific Conductance	т	μ MHO /cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			0000-0000	0	0000-0000)	0000-0000	1	0000-0000)	
Facility's Loc	cal Well or Spring Number (e.g., Mw	-1, I	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK	4	T. BLANK	5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	т	mg/L	6020		*		*		*		*
7439-89-6	Iron	т	mg/L	6020		*		*		*		*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	0	0000-000	00	0000-000	0	0000-000)0
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	T. BLANK	. 2	T. BLAN	(3	T. BLANK	4	T. BLANK	(5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*		*
7440-02-0	Nickel	т	mg/L	6020		*		*		*		*
7440-09-7	Potassium	т	mg/L	6020		*		*		*		*
7440-16-6	Rhodium	Т	mg/L	6020		*		*		*		*
7782-49-2	Selenium	Т	mg/L	6020		*		*		*		*
7440-22-4	Silver	Т	mg/L	6020		*		*		*		*
7440-23-5	Sodium	Т	mg/L	6020		*		*		*		*
7440-25-7	Tantalum	Т	mg/L	6020		*		*		*		*
7440-28-0	Thallium	Т	mg/L	6020		*		*		*		*
7440-61-1	Uranium	Т	mg/L	6020		*		*		*		*
7440-62-2	Vanadium	Т	mg/L	6020		*		*		*		*
7440-66-6	Zinc	т	mg/L	6020		*		*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	<u> </u>
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	<u> </u>
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-000	0	0000-00	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	T. BLANI	K 4	T. BLAN	< 5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			0000-000	0	0000-0000	0	0000-000	00	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g.,)	MW-1, MW	-2, etc.)	T. BLANK	2	T. BLANK	3	T. BLAN	K 4	T. BLAN	K 5
CAS RN ⁴	CONSTITUENT	D C	nit METHOD OF SURE	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	T mg	g/L 8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	T mg	g/L 8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	T mg	g/L 8260	<0.005		<0.005		0.00138	J	0.00124	J
108-10-1	Methyl isobutyl ketone	T mg	g/L 8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	T mg	g/L 8011	<0.000019		<0.0000192		<0.000189		<0.000188	
78-87-5	Propane, 1,2-Dichloro-	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	T mg	g/L 8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	T ug	g/L 8082		*		*		*		*
12674-11-2	PCB-1016	T ug	g/L 8082		*		*		*		*
11104-28-2	PCB-1221	T ug	g/L 8082		*		*		*		*
11141-16-5	PCB-1232	T ug	g/L 8082		*		*		*		*
53469-21-9	PCB-1242	T ug	g/L 8082		*		*		*		*
12672-29-6	PCB-1248	T ug	g/L 8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-0000		0000-000)	0000-000)0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3	}	T. BLANK	4	T. BLANK	(5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*		*		*		*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u>

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	9						
Facility's Loc	al Well or Spring Number (e.g., M	/W-1	., MW-2, etc	:.)	371							
Sample Sequenc	e #				2						/	
If sample is a B	clank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA							
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		7/14/2015 1	0:33						
Duplicate ("Y"	or "N") ²				Υ							
Split ("Y" or	"N") ³				N							
Facility Sampl	cility Sample ID Number (if applicable)											
Laboratory Sam	aboratory Sample ID Number (if applicable)											
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis									7		
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP				X			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VAI/UE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.0808	J						
16887-00-6	Chloride(s)	т	mg/L	9056	4.98							
16984-48-8	Fluoride	Т	mg/L	9056	0.278							
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.482	J						
14808-79-8	Sulfate	т	mg/L	9056	18.9						\	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.74							
s0145	Specific Conductance	Т	μ MH0/cm	Field	699							

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

GILO	ONDWATER SAMILE		77.12.777.7	010	(COIIC	- • /						
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4819	9						
Facility's Lo	ocal Well or Spring Number (e.g., M	W-1, 1	MW-2, BLANK-	F, etc.)	371							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G s	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	343							
N238	Dissolved Oxygen	Т	mg/L	Field	2.73							
s0266	Total Dissolved Solids	Т	mg/L	160.1	434							
s0296	рн	Т	Units	Field	6.6				\			
NS215	Eh	Т	mV	Field	368							
s0907	Temperature	Т	°C	Field	20.28							
7429-90-5	Aluminum	Т	mg/L	6020	0.854							
7440-36-0	Antimony	Т	mg/L	6020	<0.003							
7440-38-2	Arsenic	Т	mg/L	6020	0.00296	J			X			
7440-39-3	Barium	Т	mg/L	6020	0.132							
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005							
7440-42-8	Boron	Т	mg/L	6020	0.00664	J						
7440-43-9	Cadmium	Т	mg/L	6020	<0.001							
7440-70-2	Calcium	Т	mg/L	6020	30.9			/				
7440-47-3	Chromium	Т	mg/L	6020	<0.01							
7440-48-4	Cobalt	Т	mg/L	6020	0.00018	J						
7440-50-8	Copper	Т	mg/L	6020	0.00124							
7439-89-6	Iron	Т	mg/L	6020	0.545							
7439-92-1	Lead	Т	mg/L	6020	<0.002							
7439-95-4	Magnesium	Т	mg/L	6020	13.2							
7439-96-5	Manganese	Т	mg/L	6020	0.0109							
7439-97-6	Mercury	Т	mg/L	7470	<0.0002							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

					, 00110							
AKGWA NUMBER	, Facility Well/Spring Number				8004-481	9						
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	371							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	Т	mg/L	6020	0.00068							
7440-02-0	Nickel	Т	mg/L	6020	0.00122	J						
7440-09-7	Potassium	Т	mg/L	6020	0.542							
7440-16-6	Rhodium	Т	mg/L	6020	<0.005							
7782-49-2	Selenium	Т	mg/L	6020	<0.005							
7440-22-4	Silver	Т	mg/L	6020	<0.001							
7440-23-5	Sodium	Т	mg/L	6020	122					/		
7440-25-7	Tantalum	Т	mg/L	6020	<0.005							
7440-28-0	Thallium	Т	mg/L	6020	<0.002				X			
7440-61-1	Uranium	Т	mg/L	6020	0.00142							
7440-62-2	Vanadium	Т	mg/L	6020	0.00697	BJ						
7440-66-6	Zinc	Т	mg/L	6020	<0.01							
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005							
67-64-1	Acetone	Т	mg/L	8260	<0.005				/			
107-02-8	Acrolein	Т	mg/L	8260	<0.005							
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005							
71-43-2	Benzene	Т	mg/L	8260	<0.001							
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001							
1330-20-7	Xylenes	Т	mg/L	8260	<0.003							
100-42-5	Styrene	Т	mg/L	8260	<0.001							
108-88-3	Toluene	Т	mg/L	8260	<0.001							
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		/					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4819							
Facility's Loca	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	371							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALVE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	т	mg/L	8260	<0.001							
74-83-9	Methyl bromide	т	mg/L	8260	<0.001							
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005						/	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005					/		
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005							
75-00-3	Chloroethane	т	mg/L	8260	<0.001					V_{-}		
67-66-3	Chloroform	т	mg/L	8260	<0.001							
74-87-3	Methyl chloride	т	mg/L	8260	<0.001				X			
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001				/ \			
74-95-3	Methylene bromide	т	mg/L	8260	<0.001							
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001				/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001							
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		/	/				
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001							
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001							
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001							
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		/					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number					9	\setminus					/
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)				371							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	т	mg/L	8260	<0.005			\				
74-88-4	Iodomethane	Т	mg/L	8260	<0.005							
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001							
75-09-2	Dichloromethane	Т	mg/L	8260	0.00118	J						
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005							
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191							
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				X			
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001							
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001						\	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001							
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001							
1336-36-3	PCB,Total	т	ug/L	8082	<0.0962							
12674-11-2	PCB-1016	т	ug/L	8082	<0.0962							
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0962							
11141-16-5	PCB-1232	т	ug/L	8082	<0.0962							
53469-21-9	PCB-1242	т	ug/L	8082	<0.0962							
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0962		/					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

	DWATER DAME IN				8004-4819		N					
	AKGWA NUMBER ¹ , Facility Well/Spring Number											$-\!\!\!\!/$
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)				371								
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0962							
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0962							
11100-14-4	PCB-1268	т	ug/L	8082	<0.0962							
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.302	*					/	
12587-47-2	Gross Beta	т	pCi/L	9310	4.33	*						
10043-66-0	Iodine-131	т	pCi/L			*						
13982-63-3	Radium-226	т	pCi/L	HASL 300	1.71	*				<u> </u>		
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.52	*						
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-7.57	*						
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.327	*						
10028-17-8	Tritium	т	pCi/L	906.0	-67.5	*						
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20							
57-12-5	Cyanide	т	mg/L	9012	<0.2				1			
20461-54-5	Iodide	т	mg/L	300.0	<0.5							
s0268	Total Organic Carbon	т	mg/L	9060	2.01							
s0586	Total Organic Halides	т	mg/L	9020	0.00402	J						
		П										
		\prod										
		\prod										
		\sqcap										

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4798 MW357	MW357UG4-15	Copper	N	Sample spike recovery not within control limits.
		Magnesium	Χ	Other specific flags and footnotes may be required to properly define the results.
		Sodium	Х	Other specific flags and footnotes may be required to properly define the results.
		Uranium	*	Duplicate analysis not within control limits.
		Vinyl acetate		Collected during a re-sampling event.
		Acetone		Collected during a re-sampling event.
		Acrolein		Collected during a re-sampling event.
		Acrylonitrile		Collected during a re-sampling event.
		Benzene		Collected during a re-sampling event.
		Chlorobenzene		Collected during a re-sampling event.
		Xylenes		Collected during a re-sampling event.
		Styrene		Collected during a re-sampling event.
		Toluene		Collected during a re-sampling event.
		Chlorobromomethane		Collected during a re-sampling event.
		Bromodichloromethane		Collected during a re-sampling event.
		Tribromomethane		Collected during a re-sampling event.
		Methyl bromide		Collected during a re-sampling event.
		Methyl Ethyl Ketone		Collected during a re-sampling event.
		trans-1,4-Dichloro-2-butene		Collected during a re-sampling event.
		Carbon disulfide		Collected during a re-sampling event.
		Chloroethane		Collected during a re-sampling event.
		Chloroform		Collected during a re-sampling event.
		Methyl chloride		Collected during a re-sampling event.
		cis-1,2-Dichloroethene		Collected during a re-sampling event.
		Methylene bromide		Collected during a re-sampling event.
		1,1-Dichloroethane		Collected during a re-sampling event.
		1,2-Dichloroethane		Collected during a re-sampling event.
		1,1-Dichloroethylene		Collected during a re-sampling event.
		1,2-Dibromoethane		Collected during a re-sampling event.
		1,1,2,2-Tetrachloroethane		Collected during a re-sampling event.
		1,1,1-Trichloroethane		Collected during a re-sampling event.
		1,1,2-Trichloroethane		Collected during a re-sampling event.
		1,1,1,2-Tetrachloroethane		Collected during a re-sampling event.
		Vinyl chloride		Collected during a re-sampling event.
		Tetrachloroethene		Collected during a re-sampling event.
		Trichloroethene		Collected during a re-sampling event.
		Ethylbenzene		Collected during a re-sampling event.
		2-Hexanone		Collected during a re-sampling event.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4798 MW357	MW357UG4-15	lodomethane		Collected during a re-sampling event.
		Dibromochloromethane		Collected during a re-sampling event.
		Carbon tetrachloride		Collected during a re-sampling event.
		Dichloromethane		Collected during a re-sampling event.
		Methyl Isobutyl Ketone		Collected during a re-sampling event.
		1,2-Dichloropropane		Collected during a re-sampling event.
		trans-1,3-Dichloropropene		Collected during a re-sampling event.
		cis-1,3-Dichloropropene		Collected during a re-sampling event.
		trans-1,2-Dichloroethene		Collected during a re-sampling event.
		Trichlorofluoromethane		Collected during a re-sampling event.
		1,2,3-Trichloropropane		Collected during a re-sampling event.
		1,2-Dichlorobenzene		Collected during a re-sampling event.
		1,4-Dichlorobenzene		Collected during a re-sampling event.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.46. Rad error is 6.35.
		Gross beta		TPU is 9.53. Rad error is 8.93.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.431. Rad error is 0.43.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.65. Rad error is 1.65.
		Technetium-99		TPU is 15.6. Rad error is 14.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.591. Rad error is 0.581.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 160.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4799 MW358	MW358UG4-15	Copper	N	Sample spike recovery not within control limits.
		Magnesium	Χ	Other specific flags and footnotes may be required to properly define the results.
		Sodium	Χ	Other specific flags and footnotes may be required t properly define the results.
		Uranium	*	Duplicate analysis not within control limits.
		Vinyl acetate		Collected during a re-sampling event.
		Acetone		Collected during a re-sampling event.
		Acrolein		Collected during a re-sampling event.
		Acrylonitrile		Collected during a re-sampling event.
		Benzene		Collected during a re-sampling event.
		Chlorobenzene		Collected during a re-sampling event.
		Xylenes		Collected during a re-sampling event.
		Styrene		Collected during a re-sampling event.
		Toluene		Collected during a re-sampling event.
		Chlorobromomethane		Collected during a re-sampling event.
		Bromodichloromethane		Collected during a re-sampling event.
		Tribromomethane		Collected during a re-sampling event.
		Methyl bromide		Collected during a re-sampling event.
		Methyl Ethyl Ketone		Collected during a re-sampling event.
		trans-1,4-Dichloro-2-butene		Collected during a re-sampling event.
		Carbon disulfide		Collected during a re-sampling event.
		Chloroethane		Collected during a re-sampling event.
		Chloroform		Collected during a re-sampling event.
		Methyl chloride		Collected during a re-sampling event.
		cis-1,2-Dichloroethene		Collected during a re-sampling event.
		Methylene bromide		Collected during a re-sampling event.
		1,1-Dichloroethane		Collected during a re-sampling event.
		1,2-Dichloroethane		Collected during a re-sampling event.
		1,1-Dichloroethylene		Collected during a re-sampling event.
		1,2-Dibromoethane		Collected during a re-sampling event.
		1,1,2,2-Tetrachloroethane		Collected during a re-sampling event.
		1,1,1-Trichloroethane		Collected during a re-sampling event.
		1,1,2-Trichloroethane		Collected during a re-sampling event.
		1,1,1,2-Tetrachloroethane		Collected during a re-sampling event.
		Vinyl chloride		Collected during a re-sampling event.
		Tetrachloroethene		Collected during a re-sampling event.
		Trichloroethene		Collected during a re-sampling event.
		Ethylbenzene		Collected during a re-sampling event.
		2-Hexanone		Collected during a re-sampling event.
		lodomethane		Collected during a re-sampling event.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4799 MW358	MW358UG4-15	Dibromochloromethane		Collected during a re-sampling event.
		Carbon tetrachloride		Collected during a re-sampling event.
		Dichloromethane		Collected during a re-sampling event.
		Methyl Isobutyl Ketone		Collected during a re-sampling event.
		1,2-Dichloropropane		Collected during a re-sampling event.
		trans-1,3-Dichloropropene		Collected during a re-sampling event
		cis-1,3-Dichloropropene		Collected during a re-sampling event.
		trans-1,2-Dichloroethene		Collected during a re-sampling event.
		Trichlorofluoromethane		Collected during a re-sampling event.
		1,2,3-Trichloropropane		Collected during a re-sampling event.
		1,2-Dichlorobenzene 1,4-Dichlorobenzene		Collected during a re-sampling event.
			1,4-Dichlorobenzene	
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.97. Rad error is 3.97.
		Gross beta		TPU is 11.6. Rad error is 10.4.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.47. Rad error is 0.469.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.28. Rad error is 2.28.
		Technetium-99		TPU is 17. Rad error is 15.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.436. Rad error is 0.434.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 163. Rad error is 162.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitor Point	ing	Facility Sample ID	Constituent	Flag	Description
3004-0981	MW359	MW359UG4-15	Copper	N	Sample spike recovery not within control limits.
			Magnesium	Χ	Other specific flags and footnotes may be required to properly define the results.
			Sodium	X	Other specific flags and footnotes may be required t properly define the results.
		Uranium	*	Duplicate analysis not within control limits.	
			Vinyl acetate		Collected during a re-sampling event.
			Acetone		Collected during a re-sampling event.
			Acrolein		Collected during a re-sampling event.
			Acrylonitrile		Collected during a re-sampling event.
			Benzene		Collected during a re-sampling event.
			Chlorobenzene		Collected during a re-sampling event.
			Xylenes		Collected during a re-sampling event.
			Styrene		Collected during a re-sampling event.
			Toluene		Collected during a re-sampling event.
			Chlorobromomethane		Collected during a re-sampling event.
		Bromodichloromethane		Collected during a re-sampling event.	
			Tribromomethane		Collected during a re-sampling event.
			Methyl bromide		Collected during a re-sampling event.
			Methyl Ethyl Ketone		Collected during a re-sampling event.
			trans-1,4-Dichloro-2-butene		Collected during a re-sampling event.
			Carbon disulfide		Collected during a re-sampling event.
			Chloroethane		Collected during a re-sampling event.
			Chloroform		Collected during a re-sampling event.
			Methyl chloride		Collected during a re-sampling event.
			cis-1,2-Dichloroethene		Collected during a re-sampling event.
			Methylene bromide		Collected during a re-sampling event.
			1,1-Dichloroethane		Collected during a re-sampling event.
			1,2-Dichloroethane		Collected during a re-sampling event.
			1,1-Dichloroethylene		Collected during a re-sampling event.
			1,2-Dibromoethane		Collected during a re-sampling event.
			1,1,2,2-Tetrachloroethane		Collected during a re-sampling event.
			1,1,1-Trichloroethane		Collected during a re-sampling event.
			1,1,2-Trichloroethane		Collected during a re-sampling event.
			1,1,1,2-Tetrachloroethane		Collected during a re-sampling event.
			Vinyl chloride		Collected during a re-sampling event.
			Tetrachloroethene		Collected during a re-sampling event.
			Trichloroethene		Collected during a re-sampling event.
			Ethylbenzene		Collected during a re-sampling event.
			2-Hexanone		Collected during a re-sampling event.
			lodomethane		Collected during a re-sampling event.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	MW359UG4-15	Dibromochloromethane		Collected during a re-sampling event.
		Carbon tetrachloride		Collected during a re-sampling event.
		Dichloromethane		Collected during a re-sampling event.
		Methyl Isobutyl Ketone		Collected during a re-sampling event.
		1,2-Dichloropropane		Collected during a re-sampling event.
		trans-1,3-Dichloropropene		Collected during a re-sampling event.
		cis-1,3-Dichloropropene		Collected during a re-sampling event.
		trans-1,2-Dichloroethene		Collected during a re-sampling event.
		Trichlorofluoromethane		Collected during a re-sampling event.
		1,2,3-Trichloropropane		Collected during a re-sampling event.
		1,2-Dichlorobenzene		Collected during a re-sampling event.
		1,4-Dichlorobenzene		Collected during a re-sampling event.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.34. Rad error is 5.33.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.08. Rad error is 7.08.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.409. Rad error is 0.409.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.4. Rad error is 1.4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 14.3. Rad error is 14.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.3. Rad error is 0.299.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 162. Rad error is 162.
004-4800 MW360	MW360UG4-15	Beryllium	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.16. Rad error is 4.16.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.04. Rad error is 7.04.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.451. Rad error is 0.451.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.51. Rad error is 3.49.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.5. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.469. Rad error is 0.465.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 129. Rad error is 129.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4795 MW361	MW361UG4-15	Beryllium	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.6. Rad error is 4.6.
		Gross beta		TPU is 12.3. Rad error is 11.1.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.395. Rad error is 0.394.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.32. Rad error is 2.32.
		Technetium-99		TPU is 14.2. Rad error is 13.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.284. Rad error is 0.284.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 130. Rad error is 130.
3004-0986 MW362 MW3	MW362UG4-15	Beryllium	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.95. Rad error is 4.92.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.12. Rad error is 9.12.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.509. Rad error is 0.507.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.11. Rad error is 2.11.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.55. Rad error is 0.536.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 129. Rad error is 129.
8004-4796 MW363	MW363UG4-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.87. Rad error is 2.87.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.44. Rad error is 7.33.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.66. Rad error is 0.658.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.22. Rad error is 2.19.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 14.6. Rad error is 14.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.371. Rad error is 0.368.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 129. Rad error is 129.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4797 MW364	MW364UG4-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.21. Rad error is 8.17.
		Gross beta		TPU is 12.5. Rad error is 11.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.578. Rad error is 0.577.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.34. Rad error is 1.34.
		Technetium-99		TPU is 16. Rad error is 14.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.622. Rad error is 0.604.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected TPU is 130. Rad error is 130.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:<u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	·	Bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well went dry; therefore, no sampl was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sampl was collected.
		Sulfate		During sampling, the well went dry; therefore, no sampl was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sampl was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sampl was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sampl was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sampl was collected.
		pН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no samp was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no samp was collected.
		Cobalt		During sampling, the well went dry; therefore, no samp was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:<u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0984 MW365		Magnesium	3	During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no samplwas collected.
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.
		Potassium		During sampling, the well went dry; therefore, no sampl was collected.
		Rhodium		During sampling, the well went dry; therefore, no sampl was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sampl was collected.
		Sodium		During sampling, the well went dry; therefore, no sampl was collected.
		Tantalum		During sampling, the well went dry; therefore, no sampl was collected.
		Thallium		During sampling, the well went dry; therefore, no sampl was collected.
		Uranium		During sampling, the well went dry; therefore, no sampl was collected.
		Vanadium		During sampling, the well went dry; therefore, no sampl was collected.
		Zinc		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sampl was collected.
		Acetone		During sampling, the well went dry; therefore, no sampl was collected.
		Acrolein		During sampling, the well went dry; therefore, no sampl was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sampl was collected.
		Benzene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampl was collected.
		Styrene		During sampling, the well went dry; therefore, no sampl was collected.
		Toluene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365		Tribromomethane	3	During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no samplwas collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sampl was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365		Dichloromethane		During sampling, the well went dry; therefore, no samplwas collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sampl was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sampl was collected.
		Gross beta		During sampling, the well went dry; therefore, no sampl was collected.
		lodine-131		During sampling, the well went dry; therefore, no sampl was collected.
		Radium-226		During sampling, the well went dry; therefore, no samplwas collected.
		Strontium-90		During sampling, the well went dry; therefore, no sampl was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0984 MW365		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
3004-0982 MW366	MW366UG4-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.1. Rad error is 7.09.
		Gross beta		TPU is 13.2. Rad error is 11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.67. Rad error is 0.668.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.86. Rad error is 1.86.
		Technetium-99		TPU is 15.2. Rad error is 14.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.446. Rad error is 0.442.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 129. Rad error is 129.
8004-4793 MW367	MW367UG4-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.81. Rad error is 7.61.
		Gross beta		TPU is 12.5. Rad error is 11.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.636. Rad error is 0.634.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.84. Rad error is 1.84.
		Technetium-99		TPU is 14. Rad error is 13.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.622. Rad error is 0.604.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 125. Rad error is 125.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	·	Bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well went dry; therefore, no sampl was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sampl was collected.
		Sulfate		During sampling, the well went dry; therefore, no sampl was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sampl was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sampl was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sampl was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sampl was collected.
		рН		During sampling, the well went dry; therefore, no sampl was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no sampl was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no sampl was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.
		Copper		During sampling, the well went dry; therefore, no sampl was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368		Magnesium	- 3	During sampling, the well went dry; therefore, no sampl was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.
		Potassium		During sampling, the well went dry; therefore, no sampl was collected.
		Rhodium		During sampling, the well went dry; therefore, no sampl was collected.
		Selenium		During sampling, the well went dry; therefore, no sampl was collected.
		Silver		During sampling, the well went dry; therefore, no sampl was collected.
		Sodium		During sampling, the well went dry; therefore, no sampl was collected.
		Tantalum		During sampling, the well went dry; therefore, no sampl was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no sampl was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sampl was collected.
		Benzene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampl was collected.
		Styrene		During sampling, the well went dry; therefore, no sampl was collected.
		Toluene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	·	Tribromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no samp was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.
		Iodomethane		During sampling, the well went dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sampl was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sampl was collected.
		Gross beta		During sampling, the well went dry; therefore, no sampl was collected.
		lodine-131		During sampling, the well went dry; therefore, no sampl was collected.
		Radium-226		During sampling, the well went dry; therefore, no sampl was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sampl was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0983 MW368		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
3004-4820 MW369	MW369UG4-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.34. Rad error is 5.33.
		Gross beta		TPU is 9.23. Rad error is 8.58.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.562. Rad error is 0.561.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82.
		Technetium-99		TPU is 14.4. Rad error is 13.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.573. Rad error is 0.559.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 127. Rad error is 127.
3004-4818 MW370	MW370UG4-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.91. Rad error is 5.89.
		Gross beta		TPU is 11.6. Rad error is 10.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.685. Rad error is 0.683.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.06. Rad error is 2.05.
		Technetium-99		TPU is 15.9. Rad error is 14.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.62. Rad error is 0.606.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 130. Rad error is 130.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

8004-4819 MW371 MW371UG4- 8004-4808 MW372 MW372UG4-	15 Gross alpha Gross beta Iodine-131 Radium-226 Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 5.07. Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.94. Rad error is 7.91.
3004-4808 MW372 MW372UG4-	lodine-131 Radium-226	U	
3004-4808 MW372 MW372UG4-	Radium-226		
3004-4808 MW372 MW372UG4-			Analysis of constituent not required and not performed
3004-4808 MW372 MW372UG4-	Strontium-90		TPU is 0.649. Rad error is 0.647.
3004-4808 MW372 MW372UG4-	0	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.68. Rad error is 1.68.
3004-4808 MW372 MW372UG4-	Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 14. Rad error is 14.
3004-4808 MW372 MW372UG4-	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.587. Rad error is 0.58.
3004-4808 MW372 MW372UG4-	Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 131. Rad error is 131.
	15 Tantalum	N	Sample spike recovery not within control limits.
	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5. Rad error is 5.
	Gross beta		TPU is 7.62. Rad error is 7.24.
	lodine-131		Analysis of constituent not required and not performed
	Radium-226		TPU is 0.341. Rad error is 0.341.
	Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.26. Rad error is 2.25.
	Technetium-99		TPU is 13.3. Rad error is 12.6.
	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.677. Rad error is 0.663.
	Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 134. Rad error is 133.
3004-4792 MW373 MW373UG4-	15 Tantalum	N	Sample spike recovery not within control limits.
	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.76. Rad error is 4.76.
	Gross beta		TPU is 8.68. Rad error is 7.85.
	lodine-131		Analysis of constituent not required and not performed
	Radium-226		TPU is 0.338. Rad error is 0.338.
	Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.61. Rad error is 2.54.
	Technetium-99		TPU is 13.2. Rad error is 12.5.
	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.381. Rad error is 0.38.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0990 MW374 MV	MW374UG4-15	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.92. Rad error is 5.92.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.15. Rad error is 4.15.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.402. Rad error is 0.401.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.95. Rad error is 2.95.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.1. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.602. Rad error is 0.594.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 131. Rad error is 131.
3004-0985 MW375	MW375UG4-15	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.82. Rad error is 5.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.66. Rad error is 5.56.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.406. Rad error is 0.405.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.6. Rad error is 1.6.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.56. Rad error is 0.553.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 131. Rad error is 131.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	·	Bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well went dry; therefore, no sampl was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sampl was collected.
		Sulfate		During sampling, the well went dry; therefore, no sampl was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sampl was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sampl was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sampl was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sampl was collected.
		рН		During sampling, the well went dry; therefore, no sampl was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no sampl was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no samp was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Point	Sample ID	Constituent	Flag	Description
004-0988 MW376		Magnesium		During sampling, the well went dry; therefore, no sampling was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sampl was collected.
		Silver		During sampling, the well went dry; therefore, no sampl was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Tribromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no samp was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no samp was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no samp was collected.
		Chloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Chloroform		During sampling, the well went dry; therefore, no samp was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.
		Iodomethane		During sampling, the well went dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sampl was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sampl was collected.
		Gross beta		During sampling, the well went dry; therefore, no sampl was collected.
		lodine-131		During sampling, the well went dry; therefore, no sampl was collected.
		Radium-226		During sampling, the well went dry; therefore, no sampl was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sampl was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376	·	Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	·	Bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well went dry; therefore, no sampl was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sampl was collected.
		Sulfate		During sampling, the well went dry; therefore, no sampl was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sampl was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sampl was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sampl was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sampl was collected.
		рН		During sampling, the well went dry; therefore, no sampling was collected.
		Eh		During sampling, the well went dry; therefore, no sampl was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no sampl was collected.
		Beryllium		During sampling, the well went dry; therefore, no sampl was collected.
		Boron		During sampling, the well went dry; therefore, no sampl was collected.
		Cadmium		During sampling, the well went dry; therefore, no sampl was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no samp was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.
		Copper		During sampling, the well went dry; therefore, no sampl was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Magnesium	- 3	During sampling, the well went dry; therefore, no sampling sampling.
		Manganese		During sampling, the well went dry; therefore, no samplwas collected.
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.
		Potassium		During sampling, the well went dry; therefore, no sampl was collected.
		Rhodium		During sampling, the well went dry; therefore, no sampl was collected.
		Selenium		During sampling, the well went dry; therefore, no sampl was collected.
		Silver		During sampling, the well went dry; therefore, no sampl was collected.
		Sodium		During sampling, the well went dry; therefore, no sampl was collected.
		Tantalum		During sampling, the well went dry; therefore, no sampl was collected.
		Thallium		During sampling, the well went dry; therefore, no sampl was collected.
		Uranium		During sampling, the well went dry; therefore, no sampl was collected.
		Vanadium		During sampling, the well went dry; therefore, no sampl was collected.
		Zinc		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sampl was collected.
		Acetone		During sampling, the well went dry; therefore, no samplwas collected.
		Acrolein		During sampling, the well went dry; therefore, no sampl was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sampl was collected.
		Benzene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampl was collected.
		Styrene		During sampling, the well went dry; therefore, no sampl was collected.
		Toluene		During sampling, the well went dry; therefore, no sampli was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Tribromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no samp was collected.
		Chloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Chloroform		During sampling, the well went dry; therefore, no samp was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.
		Iodomethane		During sampling, the well went dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description		
004-0989 MW377		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.		
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.		
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.		
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.		
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.		
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.		
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.		
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.		
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sampl was collected.		
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.		
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.		
		PCB, Total		During sampling, the well went dry; therefore, no sampl was collected.		
		PCB-1016		During sampling, the well went dry; therefore, no sampl was collected.		
		PCB-1221		During sampling, the well went dry; therefore, no sampl was collected.		
		PCB-1232		During sampling, the well went dry; therefore, no sampl was collected.		
		PCB-1242		During sampling, the well went dry; therefore, no sampl was collected.		
		PCB-1248		During sampling, the well went dry; therefore, no sampl was collected.		
		PCB-1254		During sampling, the well went dry; therefore, no sampl was collected.		
				PCB-1260		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sampl was collected.		
		Gross alpha		During sampling, the well went dry; therefore, no sampl was collected.		
		Gross beta		During sampling, the well went dry; therefore, no sampl was collected.		
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.		
		Radium-226		During sampling, the well went dry; therefore, no sampli was collected.		
		Strontium-90		During sampling, the well went dry; therefore, no sampl was collected.		
		Technetium-99		During sampling, the well went dry; therefore, no sampl was collected.		

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377	•	Thorium-230		During sampling, the well went dry; therefore, no sampl was collected.
		Tritium		During sampling, the well went dry; therefore, no sampl was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sampl was collected.
		Cyanide		During sampling, the well went dry; therefore, no sampl was collected.
		lodide		During sampling, the well went dry; therefore, no samp was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no samp was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no samp was collected.
000-0000 QC	RI1UG4-15	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed.
		Beryllium	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.25. Rad error is 5.24.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.34. Rad error is 7.34.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.485. Rad error is 0.484.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.66. Rad error is 3.63.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.498. Rad error is 0.495.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 131. Rad error is 130.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1UG4-15	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Beryllium	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.29. Rad error is 3.28.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.56. Rad error is 7.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.331. Rad error is 0.331.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.76. Rad error is 2.76.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.5. Rad error is 13.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.492. Rad error is 0.482.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 131. Rad error is 130.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG4-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG4-15	Zinc		Analysis of constituent not required and not performed
		Vinyl acetate		Collected during a re-sampling event.
		Acetone		Collected during a re-sampling event.
		Acrolein		Collected during a re-sampling event.
		Acrylonitrile		Collected during a re-sampling event.
		Benzene		Collected during a re-sampling event.
		Chlorobenzene		Collected during a re-sampling event.
		Xylenes		Collected during a re-sampling event.
		Styrene		Collected during a re-sampling event.
		Toluene		Collected during a re-sampling event.
		Chlorobromomethane		Collected during a re-sampling event.
		Bromodichloromethane		Collected during a re-sampling event.
		Tribromomethane		Collected during a re-sampling event.
		Methyl bromide		Collected during a re-sampling event.
		Methyl Ethyl Ketone		Collected during a re-sampling event.
		trans-1,4-Dichloro-2-butene		Collected during a re-sampling event.
		Carbon disulfide		Collected during a re-sampling event.
		Chloroethane		Collected during a re-sampling event.
		Chloroform		Collected during a re-sampling event.
		Methyl chloride		Collected during a re-sampling event.
		cis-1,2-Dichloroethene		Collected during a re-sampling event.
		Methylene bromide		Collected during a re-sampling event.
		1,1-Dichloroethane		Collected during a re-sampling event.
		1,2-Dichloroethane		Collected during a re-sampling event.
		1,1-Dichloroethylene		Collected during a re-sampling event.
		1,2-Dibromoethane		Collected during a re-sampling event.
		1,1,2,2-Tetrachloroethane		Collected during a re-sampling event.
		1,1,1-Trichloroethane		Collected during a re-sampling event.
		1,1,2-Trichloroethane		Collected during a re-sampling event.
		1,1,1,2-Tetrachloroethane		Collected during a re-sampling event.
		Vinyl chloride		Collected during a re-sampling event.
		Tetrachloroethene		Collected during a re-sampling event.
		Trichloroethene		Collected during a re-sampling event.
		Ethylbenzene		Collected during a re-sampling event.
		2-Hexanone		Collected during a re-sampling event.
		Iodomethane		Collected during a re-sampling event.
		Dibromochloromethane		Collected during a re-sampling event.
		Carbon tetrachloride		Collected during a re-sampling event.
		Dichloromethane		Collected during a re-sampling event.
		Methyl Isobutyl Ketone		Collected during a re-sampling event.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

0000-0000 QC	Sample ID TB1UG4-15	Constituent 1,2-Dichloropropane	Flag	Description
				Collected during a re-sampling event.
		trans-1,3-Dichloropropene		Collected during a re-sampling event.
		cis-1,3-Dichloropropene		Collected during a re-sampling event.
		trans-1,2-Dichloroethene		Collected during a re-sampling event.
		Trichlorofluoromethane		Collected during a re-sampling event.
		1,2,3-Trichloropropane		Collected during a re-sampling event.
		1,2-Dichlorobenzene		Collected during a re-sampling event.
		1,4-Dichlorobenzene		Collected during a re-sampling event.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and no
				performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG4-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG4-15	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description	
0000-0000 QC	TB3UG4-15	Bromide		Analysis of constituent not required and not performed	
		Chloride		Analysis of constituent not required and not performed	
		Fluoride		Analysis of constituent not required and not performed	
		Nitrate & Nitrite		Analysis of constituent not required and not performed	
		Sulfate		Analysis of constituent not required and not performed	
		Barometric Pressure Reading		Analysis of constituent not required and not performed	
		Specific Conductance		Analysis of constituent not required and not performed	
		Static Water Level Elevation		Analysis of constituent not required and not performed	
		Dissolved Oxygen		Analysis of constituent not required and not performed	
		Total Dissolved Solids		Analysis of constituent not required and not performed	
		рН		Analysis of constituent not required and not performed	
		Eh		Analysis of constituent not required and not performed	
		Temperature		Analysis of constituent not required and not performed	
		Aluminum		Analysis of constituent not required and not performed	
		Antimony		Analysis of constituent not required and not performed	
		Arsenic		Analysis of constituent not required and not performed	
		Barium		Analysis of constituent not required and not performed	
		Beryllium		Analysis of constituent not required and not performed	
		Boron		Analysis of constituent not required and not performed	
		Cadmium		Analysis of constituent not required and not performed	
		Calcium		Analysis of constituent not required and not performed	
		Chromium		Analysis of constituent not required and not performed	
		Cobalt		Analysis of constituent not required and not performed	
		Copper		Analysis of constituent not required and not performed	
		Iron		Analysis of constituent not required and not performed	
		Lead		Analysis of constituent not required and not performed	
		Magnesium		Analysis of constituent not required and not performed	
		Manganese		Analysis of constituent not required and not performed	
		Mercury		Analysis of constituent not required and not performed	
		Molybdenum		Analysis of constituent not required and not performed	
		Nickel		Analysis of constituent not required and not performed	
		Potassium		Analysis of constituent not required and not performed	
		Rhodium		Analysis of constituent not required and not performed	
		Selenium	Analysis of constituent not r	Analysis of constituent not required and not performed	
		Silver		Analysis of constituent not required and not performed	
		Sodium			Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed	
		Thallium		Analysis of constituent not required and not performed	
		Uranium	,	Analysis of constituent not required and not performed	
		Vanadium		Analysis of constituent not required and not performed	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG4-15	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG4-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG4-15	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description					
0000-0000 QC	TB5UG4-15	Bromide		Analysis of constituent not required and not performed					
		Chloride		Analysis of constituent not required and not performed					
		Fluoride		Analysis of constituent not required and not performed					
		Nitrate & Nitrite		Analysis of constituent not required and not performed					
		Sulfate		Analysis of constituent not required and not performed					
		Barometric Pressure Reading		Analysis of constituent not required and not performed					
		Specific Conductance		Analysis of constituent not required and not performed					
		Static Water Level Elevation		Analysis of constituent not required and not performed					
		Dissolved Oxygen		Analysis of constituent not required and not performed					
		Total Dissolved Solids		Analysis of constituent not required and not performed					
		рН		Analysis of constituent not required and not performed					
		Eh		Analysis of constituent not required and not performed					
		Temperature		Analysis of constituent not required and not performed					
		Aluminum		Analysis of constituent not required and not performed					
		Antimony		Analysis of constituent not required and not performed					
		Arsenic		Analysis of constituent not required and not performed					
		Barium		Analysis of constituent not required and not performed					
		Beryllium		Analysis of constituent not required and not performed					
		Boron		Analysis of constituent not required and not performed					
		Cadmium		Analysis of constituent not required and not performed					
		Calcium		Analysis of constituent not required and not performed					
		Chromium		Analysis of constituent not required and not performed					
		Cobalt		Analysis of constituent not required and not performed					
		Copper		Analysis of constituent not required and not performed					
		Iron		Analysis of constituent not required and not performed					
		Lead		Analysis of constituent not required and not performed					
		Magnesium		Analysis of constituent not required and not performed					
		Manganese		Analysis of constituent not required and not performed					
		Mercury		Analysis of constituent not required and not performed					
		Molybdenum		Analysis of constituent not required and not performed					
		Nickel		Analysis of constituent not required and not performed					
		Potassium		Analysis of constituent not required and not performed					
		Rhodium		Analysis of constituent not required and not performed					
		Selenium		Analysis of constituent not required and not performed					
		Silver		Analysis of constituent not required and not performed					
		Sodium		Analysis of constituent not required and not performed					
		Tantalum		Analysis of constituent not required and not performed					
		Thallium	Analysis of constituent not required and not per Analysis of constituent not required and not per						
		Uranium							
		Vanadium		Analysis of constituent not required and not performed					

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5UG4-15	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
8004-4819 MW371	MW371DUG4-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.43. Rad error is 5.43.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.12. Rad error is 7.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.744. Rad error is 0.741.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.71. Rad error is 2.64.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.4. Rad error is 13.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.569. Rad error is 0.561.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 127. Rad error is 127.

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: <u>KY8-890-008-982 / 1</u> LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4	799	8004-0	981	0000-0000	
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	L, MW-2, etc	:.)	357		358		359)	T. BLANK	1
Sample Sequenc	ce #				2	2 2		2			2	
If sample is a F	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		Т	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)						7/13/2015	09:01	7/13/2015	08:32	7/13/2015 0	7:23
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or		N		N		N		N				
Facility Sampl	le ID Number (if applicable)				MW357UG4-	-15R	MW358U0	64-15R	MW359UG4	1-15R	TB1UG4-15	R
Laboratory Sam	mple ID Number (if applicable)				37707800)1	377078	002	377078	8003	377078004	
Date of Analys	Date of Analysis (Month/Day/Year) For Volatile Organics Analysis					7/16/2015 7/16/20)15	7/16/2015		7/16/2015	
Gradient with	respect to Monitored Unit (UP, DO	WN,	, SIDE, UNKN	IOWN)	DOWN		DOW	DOWN		DOWN		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.9		29.9		29.9			*
s0145	Specific Conductance	т	μMH0/cm	Field	449		502		250			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798	3	8004-4799	9	8004-0981		0000-0000)
Facility's Loc	cal Well or Spring Number (e.g., Mw	-1,	MW-2, BLANK-	F, etc.)	357		358		359		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	41.87		41.98		32.21			*
N238	Dissolved Oxygen	т	mg/L	Field	3.31		1.6		5.29			*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field	6.07		6.1		5.86			*
NS215	Eh	т	mV	Field	460		342		465			*
s0907	Temperature	т	°C	Field	67.2		67.5		66.4			*
7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	т	mg/L	6020		*		*		*		*
7439-89-6	Iron	т	mg/L	6020		*		*		*		*
7439-92-1	Lead	т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	1	0000-0000	
Facility's L	ocal Well or Spring Number (e.g.,	MW-	·1, MW-2, e	tc.)	357		358		359		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*		*
7440-02-0	Nickel	т	mg/L	6020		*		*		*		*
7440-09-7	Potassium	т	mg/L	6020		*		*		*		*
7440-16-6	Rhodium	т	mg/L	6020		*		*		*		*
7782-49-2	Selenium	т	mg/L	6020		*		*		*		*
7440-22-4	Silver	Т	mg/L	6020		*		*		*		*
7440-23-5	Sodium	т	mg/L	6020		*		*		*		*
7440-25-7	Tantalum	т	mg/L	6020		*		*		*		*
7440-28-0	Thallium	т	mg/L	6020		*		*		*		*
7440-61-1	Uranium	т	mg/L	6020		*		*		*		*
7440-62-2	Vanadium	т	mg/L	6020		*		*		*		*
7440-66-6	Zinc	Т	mg/L	6020		*		*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-09	81	0000-0000	
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	357		358		359		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00588		0.00464		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number					8004-479	9	8004-09	81	0000-0000	
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						358		359		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	T Unit D OF S MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	T mg/L	8011		*		*		*		*
78-87-5	Propane, 1,2-Dichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	T ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	T ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	T ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	T ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	T ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	T ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4798 MW357	MW357UG4-15R	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4798 MW357	MW357UG4-15R	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4799 MW358	MW358UG4-15R	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4799 MW358	MW358UG4-15R	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0981 MW359	MW359UG4-15R	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0981 MW359	MW359UG4-15R	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG4-15R	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG4-15R	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/CONTAINED—QUARTERLY, 3rd CY 2015

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u> LAB ID: <u>None</u>

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the third quarter 2015 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The third quarter 2015 data used to conduct the statistical analyses were collected in July 2015. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that had exceeded the historical background using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the

current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper tolerance limit using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower tolerance limit to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The tolerance limit (TL) is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit is calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well concentration exceeds the historical background.

_

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

lower $TL = X - (K \times S)$

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters by groundwater system from the available data set and the statistical test performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, third quarter 2015. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a well is sampled on two different dates, the most current available data are used. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a *	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a *	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^a *	SG	UCRS
MW377 ^a *	SG	UCRS

^aNOTE: The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are considered neither upgradient, downgradient, nor sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters

Aluminum

Boron

Bromide

Calcium

Chemical Oxygen Demand (COD)

Chloride

Cobalt

Conductivity

Copper

Cyanide

Dissolved Oxygen

Dissolved Solids

Iron

Magnesium

Manganese

Molybdenum

Nickel

Oxidation-Reduction Potential

PCB, Total

PCB-1242

рН*

Potassium

Sodium

Sulfate

Technetium-99

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Uranium

Vanadium

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	5	5	0	No
1,1,2,2-Tetrachloroethane	5	5	0	No
1,1,2-Trichloroethane	5	5	0	No
1,1-Dichloroethane	5	5	0	No
1,2,3-Trichloropropane	5	5	0	No
1,2-Dibromo-3-chloropropane	5	5	0	No
1,2-Dibromoethane	5	5	0	No
1,2-Dichlorobenzene	5	5	0	No
1,2-Dichloropropane	5	5	0	No
2-Butanone	5	5	0	No
2-Hexanone	5	5	0	No
4-Methyl-2-pentanone	5	5	0	No
Acetone	5	5	0	No
Acrolein	5	5	0	No
Acrylonitrile	5	5	0	No
Aluminum	5	1	4	Yes
Antimony	5	5	0	No
Aroclor-1268	5	5	0	No
Beryllium	5	5	0	No
Boron	5	0	5	Yes
Bromide	5	2	3	Yes
Bromochloromethane	5	5	0	No
Bromodichloromethane	5	5	0	No
Bromoform	5	5	0	No
Bromomethane	5	5	0	No
Calcium	5	0	5	Yes
Carbon disulfide	5	5	0	No
Chemical Oxygen Demand (COD)	5	4	1	Yes
Chloride	5	0	5	Yes
Chlorobenzene	5	5	0	No
Chloroethane	5	5	0	No
Chloroform	5	5	0	No
Chloromethane	5	5	0	No
<i>cis</i> -1,2-Dichloroethene	5	5	0	No
	5	5	0	No
<i>cis</i> -1,3-Dichloropropene Cobalt	5	1	4	Yes
Conductivity	5	0	<u> </u>	Yes
Copper	5	1	4	Yes
Cyanide	5 5	5	0	No No
Dibromochloromethane		5		No No
Dibromomethane Dimethylhograpa Total	5		0	No No
Dimethylbenzene, Total	5	5	0	No
Dissolved Oxygen	5	0	5	Yes
Dissolved Solids	5	0	5	Yes
Ethylbenzene	5	5	0	No
Iodide	5	5	0	No
Iodomethane	5	5	0	No
Iron	5	0	5	Yes
Magnesium	5	0	5	Yes
Manganese	5	0	5	Yes
Methylene chloride	5	5	0	No

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	5	2	3	Yes
Nickel	5	0	5	Yes
Oxidation-Reduction Potential	5	0	5	Yes
PCB, Total	5	5	0	No
PCB-1016	5	5	0	No
PCB-1221	5	5	0	No
PCB-1232	5	5	0	No
PCB-1242	5	5	0	No
PCB-1248	5	5	0	No
PCB-1254	5	5	0	No
PCB-1260	5	5	0	No
pН	5	0	5	Yes
Potassium	5	0	5	Yes
Radium-226	5	5	0	No
Rhodium	5	5	0	No
Sodium	5	0	5	Yes
Styrene	5	5	0	No
Sulfate	5	0	5	Yes
Tantalum	5	5	0	No
Technetium-99	5	5	0	No
Tetrachloroethene	5	5	0	No
Thallium	5	5	0	No
Thorium-230	5	5	0	No
Toluene	5	5	0	No
Total Organic Carbon (TOC)	5	0	5	Yes
Total Organic Halides (TOX)	5	1	4	Yes
trans-1,2-Dichloroethene	5	5	0	No
trans-1,3-Dichloropropene	5	5	0	No
trans-1,4-Dichloro-2-Butene	5	5	0	No
Trichloroethene	5	5	0	No
Trichlorofluoromethane	5	5	0	No
Uranium	5	1	4	Yes
Vanadium	5	3	2	Yes
Vinyl Acetate	5	5	0	No
Zinc	5	4	1	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	2	4	Yes
Antimony	6	6	0	No
Aroclor-1268	6	6	0	No
Beryllium	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	6	0	No
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	1	5	Yes
Conductivity	6	0	6	Yes
·	6	2	4	Yes
Copper Cyanide	6	5	1	Yes
Dibromochloromethane	6	6	0	No
Dibromocnioromethane Dibromomethane	6	6	0	No No
	6	6	0	No No
Dimethylbenzene, Total	6	0	6	
Dissolved Oxygen Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	Yes
	6	6	0	No No
Iodide La damenth and				No
Iodomethane	6	6	0	No
Iron	6	0	6	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	4	2	Yes
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	5	1	Yes
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	5	1	Yes
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
pН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Uranium	6	5	1	Yes
Vanadium	6	5	1	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	6	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	5	1	Yes
Antimony	6	6	0	No
Aroclor-1268	6	6	0	No
Beryllium	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	6	0	No
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	2	4	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	3	3	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.5. Tests Summary for Qualified Parameters—LRGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	6	0	No
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
pH	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	0	6	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	3	3	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Uranium	6	6	0	No
Vanadium	6	5	1	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 26, 29, and 25 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes a constituent (trichloroethene) that exceeded its MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

<u>URGA</u>

This quarter's results identified historical background exceedances for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, and sulfate.

LRGA

This quarter's results identified historical background exceedances for oxidation-reduction potential, pH, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW358: Oxidation-Reduction Potential, Technetium-99
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential, pH
MW371: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential, Technetium-99
MW374: Oxidation-Reduction Potential	MW366: Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate	MW369: Oxidation-Reduction Potential MW372: Calcium, Conductivity, Dissolved Solids, Magnesium, Oxidation-Reduction Potential, Sulfate	MW370: Oxidation-Reduction Potential, Technetium-99 MW373: Oxidation-Reduction Potential

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, and MW371
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration

Exhibit D.7. Tests Summary for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW371, MW374, and MW375
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW371, and MW375
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration
Uranium	Tolerance Interval	1.68	No exceedance of statistically derived historical background concentration
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Cyanide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW372
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
PCB, Total	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration
PCB-1242	Tolerance Interval	1.36	No exceedance of statistically derived historical background concentration
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration
Sulfate	Tolerance Interval	0.75	Current results exceed statistically derived historical background concentration in MW372
Technetium-99	Tolerance Interval	0.87	No exceedance of statistically derived historical background concentration
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Trichloroethene	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration
Uranium	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration
Vanadium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373
pН	Tolerance Interval	0.03	Current results exceed statistically derived historical background concentration in MW361
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration

Exhibit D.9. Tests Summary for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW358, MW364, and MW370
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration
Trichloroethene	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration
Vanadium	Tolerance Interval	0.32	No exceedance of statistically derived historical background concentration
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration

 $[\]overline{\text{CV: coefficient of variation}}$ *If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the results of the one-sided upper tolerance interval test compared to current background, and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 6, and 3 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

Exhibit D.10. Summary of Exceedances (in downgradient wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
None	MW361: pH

UCRS

Because gradients in the UCRS are downward, there are no hydrogeologically downgradient UCRS wells that exceed the current background TL derived using the most recent eight quarters of data. NOTE: Sulfate concentrations in three UCRS wells and dissolved oxygen in two UCRS wells exceeded the current TL this quarter.

URGA

This quarter's results showed no exceedances of the current TL in wells located downgradient of the landfill.

LRGA

This quarter's results showed an exceedance for pH in MW361 for this quarter. MW361 is located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.53	MW359 and MW362 exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.35	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Sulfate	Tolerance Interval	0.51	MW359, MW362, and MW375 exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

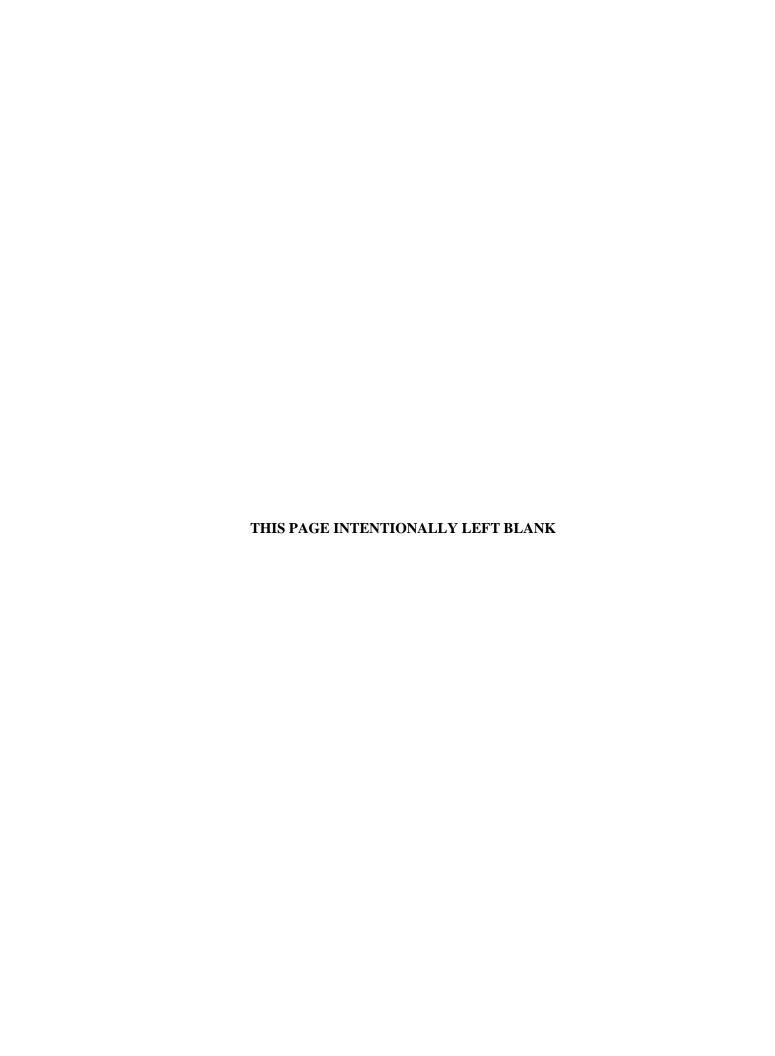
CV: coefficient of variation

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.57	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Conductivity	Tolerance Interval	0.35	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Dissolved Solids	Tolerance Interval	0.42	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Magnesium	Tolerance Interval	0.53	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.51	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Sulfate	Tolerance Interval	0.92	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV: coefficient of variation

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA


Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.28	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
рН	Tolerance Interval	0.014	MW361 exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.45	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

S= 6.859

CV(1) = 2.078

K factor=** 2.523

TL(1)= 20.604

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.371 S = 1.678

CV(2) = -4.521

K factor=** 2.523

TL(2) = 3.863

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.059
Date Collected	Result	
Date Collected 10/8/2002	Result 21.3	3.059
Date Collected 10/8/2002 1/7/2003	Result 21.3 20	3.059 2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 21.3 20 4.11	3.059 2.996 1.413
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 21.3 20 4.11 1.41	3.059 2.996 1.413 0.344
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 21.3 20 4.11 1.41 1.09	3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

We	ell No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL
M	W359	Downgradient	Yes	0.103	N/A	-2.273	NO
M	W362	Downgradient	Yes	3.2	N/A	1.163	NO
M	W371	Upgradient	Yes	0.854	N/A	-0.158	NO
M	W374	Upgradient	No	0.05	N/A	-2.996	N/A
M	W375	Sidegradient	Yes	0.0458	N/A	-3.083	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1)=1.238

K factor=** 2.523

TL(1) = 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
	o. _	
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
	MW374	LN(Result) 0.693
Date Collected	MW374 Result	
Date Collected 10/8/2002	MW374 Result	0.693
Date Collected 10/8/2002 1/7/2003	MW374 Result 2 0.2	0.693 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 2 0.2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 2 0.2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00574	N/A	-5.160	NO
MW362	Downgradient	Yes	0.0226	N/A	-3.790	NO
MW371	Upgradient	Yes	0.00664	N/A	-5.015	NO
MW374	Upgradient	Yes	0.0312	N/A	-3.467	NO
MW375	Sidegradient	Yes	0.00801	N/A	-4.827	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394

S = 0.474 CV(1) = 0.340

K factor=** 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.279 S = 0.332

CV(2) = 1.190

K factor=** 2.523

TL(2)=1.118

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.742
Date Collected	Result	
Date Collected 10/8/2002	Result 2.1	0.742
Date Collected 10/8/2002 1/7/2003	Result 2.1 2.1	0.742 0.742
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2.1 2.1 1.9	0.742 0.742 0.642
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2.1 2.1 1.9 1	0.742 0.742 0.642 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2.1 2.1 1.9 1 1.9	0.742 0.742 0.642 0.000 0.642

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.2	N/A	-1.609	N/A
MW362	Downgradient	t Yes	0.147	NO	-1.917	N/A
MW371	Upgradient	Yes	0.0808	NO	-2.516	N/A
MW374	Upgradient	Yes	0.84	NO	-0.174	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 34.100 **S**= 13.637 **CV(1)**= 0.400

K factor=** 2.523

TL(1)= 68.505 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.466 S = 0.356

CV(2) = 0.103

K factor=** 2.523

TL(2) = 4.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.209
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 67.3	4.209
Date Collected 10/8/2002 1/7/2003	Result 67.3 60.6	4.209 4.104
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 67.3 60.6 47.2	4.209 4.104 3.854
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 67.3 60.6 47.2 34.7	4.209 4.104 3.854 3.547
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 67.3 60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	11.7	NO	2.460	N/A
MW362	Downgradient	Yes	21	NO	3.045	N/A
MW371	Upgradient	Yes	31.1	NO	3.437	N/A
MW374	Upgradient	Yes	20.1	NO	3.001	N/A
MW375	Sidegradient	Yes	14.7	NO	2.688	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 72.938 S = 70.749 CV(1) = 0.970

K factor=** 2.523

TL(1)= 251.437 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.000 S = 0.702

CV(2) = 0.175

K factor**= 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.561
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 260	5.561
Date Collected 10/8/2002 1/7/2003	Result 260 214	5.561 5.366
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 260 214 147	5.561 5.366 4.990
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 260 214 147 72	5.561 5.366 4.990 4.277
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 260 214 147 72 56	5.561 5.366 4.990 4.277 4.025

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	15.7	NO	2.754	N/A
MW362	Downgradient	No	20	N/A	2.996	N/A
MW371	Upgradient	No	20	N/A	2.996	N/A
MW374	Upgradient	No	20	N/A	2.996	N/A
MW375	Sidegradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

K factor**= 2.523

TL(1)= 310.697 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 3.620 **S**= 1.590

CV(2) = 0.439

K factor**= 2.523

TL(2) = 7.631

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
		I N/D 1/2
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.294
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 199.2	5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	1.13	NO	0.122	N/A
MW362	Downgradient	Yes	8.57	NO	2.148	N/A
MW371	Upgradient	Yes	4.98	NO	1.605	N/A
MW374	Upgradient	Yes	67.8	NO	4.217	N/A
MW375	Sidegradient	Yes	5.44	NO	1.694	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.009

CV(1) = 1.314

K factor=** 2.523

TL(1) = 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

CV(2) = -0.238

K factor=** 2.523

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.01	-4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.01 0.01	-4.605 -4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.01 0.01 0.001 0.00161	-4.605 -4.605 -4.605 -6.432
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.01 0.01 0.00161 0.001	-4.605 -4.605 -4.605 -6.432 -6.908

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.00021	N/A	-8.468	N/A
MW362	Downgradient	Yes	0.00161	N/A	-6.432	NO
MW371	Upgradient	Yes	0.00019	N/A	-8.568	NO
MW374	Upgradient	Yes	0.00092	N/A	-6.991	NO
MW375	Sidegradient	Yes	0.00019	N/A	-8.568	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison Conductivity UNITS:** umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor=** 2.523

TL(1)= 1971.483 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.705 S = 0.550 CV(2) = 0.082

K factor=** 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.915
Date Collected	Result	,
Date Collected 3/18/2002	Result 1007	6.915
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9 172	6.915 7.427 7.448 5.147
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	266	NO	5.583	N/A
MW362	Downgradient	Yes	719	NO	6.578	N/A
MW371	Upgradient	Yes	699	NO	6.550	N/A
MW374	Upgradient	Yes	682	NO	6.525	N/A
MW375	Sidegradient	Yes	362	NO	5.892	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S = 0.072

CV(1) = 1.275

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915

CV(2) = -0.270

K factor=** 2.523

TL(2) = -1.086

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	` '
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00248	N/A	-5.999	NO
MW362	Downgradient	Yes	0.00274	N/A	-5.900	NO
MW371	Upgradient	Yes	0.00138	N/A	-6.586	NO
MW374	Upgradient	No	0.001	N/A	-6.908	N/A
MW375	Sidegradient	Yes	0.00077	N/A	-7.169	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 1.138 **S**= 0.621

CV(1)=0.546

K factor=** 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

K factor=** 2.523

TL(2)=1.441

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	7.01	YES	1.947	N/A
MW362	Downgradient	Yes	5.33	YES	1.673	N/A
MW371	Upgradient	Yes	2.73	YES	1.004	N/A
MW374	Upgradient	Yes	0.67	NO	-0.400	N/A
MW375	Sidegradient	Yes	1.98	NO	0.683	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362 MW371

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 590.000 S = 248.068 CV(1) = 0.420

K factor**= 2.523

TL(1)= 1215.876 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.308 S = 0.383

CV(2) = 0.061

K factor=** 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	274	5.613	
4/22/2002	409	6.014	
7/15/2002	418	6.035	
10/8/2002	424	6.050	
1/8/2003	431	6.066	
4/3/2003	444	6.096	
7/9/2003	445	6.098	
10/6/2003	438	6.082	
Well Number:	MW374		
Well Number: Date Collected	MW374 Result	LN(Result)	
		LN(Result) 7.035	
Date Collected	Result	,	
Date Collected 10/8/2002	Result 1136	7.035	
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004	
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378	

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	203	NO	5.313	N/A
MW362	Downgradient	Yes	464	NO	6.140	N/A
MW371	Upgradient	Yes	443	NO	6.094	N/A
MW374	Upgradient	Yes	374	NO	5.924	N/A
MW375	Sidegradient	Yes	243	NO	5.493	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612

S= 6.487 **CV(1)**=0.981

K factor=** 2.523

TL(1)= 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X= 1.363 **S**= 1.147

CV(2) = 0.841

K factor=** 2.523

TL(2) = 4.256

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	1.31	0.270	
4/22/2002	0.913	-0.091	
7/15/2002	0.881	-0.127	
10/8/2002	3.86	1.351	
1/8/2003	1.88	0.631	
4/3/2003	3.18	1.157	
7/9/2003	0.484	-0.726	
10/6/2003	2.72	1.001	
Well Number:	MW374		
Well Number: Date Collected		LN(Result)	
		LN(Result) 3.135	
Date Collected	Result		
Date Collected 10/8/2002	Result 23	3.135	
Date Collected 10/8/2002 1/7/2003	Result 23 13.9	3.135 2.632	
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 23 13.9 14	3.135 2.632 2.639	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 23 13.9 14 14.2	3.135 2.632 2.639 2.653	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 23 13.9 14 14.2 7.92	3.135 2.632 2.639 2.653 2.069	

Dry/Partially Dry Wells

Well No. Gradient

MW365 Downgradient

MW368 Sidegradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.116	NO	-2.154	N/A
MW362	Downgradient	Yes	2.09	NO	0.737	N/A
MW371	Upgradient	Yes	0.545	NO	-0.607	N/A
MW374	Upgradient	Yes	0.353	NO	-1.041	N/A
MW375	Sidegradient	Yes	0.101	NO	-2.293	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.347 **S**= 3.019

CV(1)=0.266

K factor=** 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401 S = 0.237

CV(2) = 0.099

K factor=** 2.523

TL(2) = 2.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.996 2.779 2.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	4.84	NO	1.577	N/A
MW362	Downgradient	Yes	10.6	NO	2.361	N/A
MW371	Upgradient	Yes	13.3	NO	2.588	N/A
MW374	Upgradient	Yes	6	NO	1.792	N/A
MW375	Sidegradient	Yes	5.47	NO	1.699	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.248 S = 0.222

CV(1)=0.894

K factor=** 2.523

TL(1)= 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.873 S = 1.068

CV(2) = -0.570

K factor=** 2.523

TL(2) = 0.821

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.518
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 0.596	-0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	-0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	-0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	-0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	-0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00126	NO	-6.677	N/A
MW362	Downgradient	Yes	0.0156	NO	-4.160	N/A
MW371	Upgradient	Yes	0.0109	NO	-4.519	N/A
MW374	Upgradient	Yes	0.398	NO	-0.921	N/A
MW375	Sidegradient	Yes	0.00359	NO	-5.630	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

S= 0.010 **CV(1)**=1.650

K factor=** 2.523

TL(1)= 0.030

LL(1)=N/A

Statistics-Transformed Background Data

X= -6.108 **S**= 1.239

1.239 **CV(2)=**-0.203

K factor=** 2.523

TL(2) = -2.983

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	0.025	-3.689	
4/22/2002	0.025	-3.689	
7/15/2002	0.025	-3.689	
10/8/2002	0.001	-6.908	
1/8/2003	0.00121	-6.717	
4/3/2003	0.001	-6.908	
7/9/2003	0.00111	-6.803	
10/6/2003	0.001	-6.908	
Well Number:	MW374		
Well Number: Date Collected	MW374 Result	LN(Result)	
		LN(Result) -6.110	
Date Collected	Result	, ,	
Date Collected 10/8/2002	Result 0.00222	-6.110	
Date Collected 10/8/2002 1/7/2003	Result 0.00222 0.00201	-6.110 -6.210	
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.00222 0.00201 0.00159	-6.110 -6.210 -6.444	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.00222 0.00201 0.00159 0.00242	-6.110 -6.210 -6.444 -6.024	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.00222 0.00201 0.00159 0.00242 0.001	-6.110 -6.210 -6.444 -6.024 -6.908	

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0005	N/A	-7.601	N/A
MW362	Downgradient	Yes	0.00113	N/A	-6.786	NO
MW371	Upgradient	Yes	0.00069	N/A	-7.279	NO
MW374	Upgradient	Yes	0.00022	N/A	-8.422	NO
MW375	Sidegradient	No	0.00031	N/A	-8.079	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S = 0.022 C

CV(1)=0.980

K factor=** 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349 S = 1.109

1.109 **CV(2)=**-0.255

5 **K**

K factor=** 2.523

TL(2) = -1.552

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 0.05	-2.996
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.005 0.00794	-2.996 -2.996 -2.996 -4.836
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.005 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL
MW359	Downgradient	Yes	0.00316	NO	-5.757	N/A
MW362	Downgradient	Yes	0.00318	NO	-5.751	N/A
MW371	Upgradient	Yes	0.00129	NO	-6.653	N/A
MW374	Upgradient	Yes	0.00241	NO	-6.028	N/A
MW375	Sidegradient	Yes	0.00218	NO	-6.128	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.281 **S**= 78.889 **CV(1)**=3.541

K factor=** 2.523

TL(1)= 221.319 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.642 S = 1.729

CV(2) = 0.475

K factor=** 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

337 11 NT 1	MXX/271	
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.905
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Ouarter	Data
Current	Qual ttl	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	465	N/A	6.142	YES
MW362	Downgradient	Yes	447	N/A	6.103	YES
MW371	Upgradient	Yes	368	N/A	5.908	YES
MW374	Upgradient	Yes	268	N/A	5.591	YES
MW375	Sidegradient	Yes	443	N/A	6.094	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362 MW371

MW374

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S = 0.295

CV(1) = 0.045

K factor=** 2.904

TL(1) = 7.475

LL(1)=5.7635

Statistics-Transformed Background Data

X = 1.889

S = 0.046

CV(2) = 0.024

K factor=** 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW271	
well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	,
Date Collected 3/18/2002	Result 5.75	1.749
Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>` ,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	` ,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW359	Downgradien	t Yes	6.01	NO	1.793	N/A
MW362	Downgradien	t Yes	6.86	NO	1.926	N/A
MW371	Upgradient	Yes	6.6	NO	1.887	N/A
MW374	Upgradient	Yes	6.6	NO	1.887	N/A
MW375	Sidegradient	Yes	6.38	NO	1.853	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

S = 0.907

K factor=** 2.523 CV(1)=0.718

TL(1) = 3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

CV(2) = -32.218

K factor=** 2.523

TL(2) = 1.874

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.112
Date Collected	Result	,
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.245	NO	-1.406	N/A
MW362	Downgradient	Yes	0.529	NO	-0.637	N/A
MW371	Upgradient	Yes	0.542	NO	-0.612	N/A
MW374	Upgradient	Yes	0.393	NO	-0.934	N/A
MW375	Sidegradient	Yes	0.259	NO	-1.351	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor**= 2.523

TL(1)= 367.800 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.146 S = 0.356

CV(2) = 0.069

K factor=** 2.523

TL(2) = 6.044

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.817
Date Collected	Result	,
Date Collected 10/8/2002	Result 336	5.817
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW359	Downgradient	Yes	32.7	NO	3.487	N/A
MW362	Downgradient	Yes	139	NO	4.934	N/A
MW371	Upgradient	Yes	122	NO	4.804	N/A
MW374	Upgradient	Yes	125	NO	4.828	N/A
MW375	Sidegradient	Yes	60.4	NO	4.101	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

S= 3.153 **CV(1)**=0.487

K factor=** 2.523

TL(1)= 14.423

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.794 S = 0.357

CV(2) = 0.199

K factor=** 2.523

TL(2) = 2.694

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 5	1.609
Date Collected 10/8/2002 1/7/2003	Result 5	1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5.6	1.609 1.609 1.609 1.723
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.723 1.609

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	49.7	YES	3.906	N/A
MW362	Downgradient	Yes	33.7	YES	3.517	N/A
MW371	Upgradient	Yes	18.9	YES	2.939	N/A
MW374	Upgradient	Yes	5.93	NO	1.780	N/A
MW375	Sidegradient	Yes	23.6	YES	3.161	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362 MW371

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.631 **S**= 24.314 **CV(1)**=1.379

K factor**= 2.523 T

TL(1) = 78.977 LL(1) = N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979

CV(2) = 0.422

K factor=** 2.523

TL(2) = 4.788

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 90	4.500
Date Collected 10/8/2002 1/7/2003	Result 90 64	4.500 4.159
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 90 64 25	4.500 4.159 3.219
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 90 64 25 16	4.500 4.159 3.219 2.773
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

W	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
M	IW359	Downgradient	Yes	1.91	N/A	0.647	NO
M	IW362	Downgradient	Yes	2.79	N/A	1.026	NO
M	1 W371	Upgradient	Yes	2.01	N/A	0.698	NO
M	1 W374	Upgradient	Yes	1.92	N/A	0.652	NO
M	1W375	Sidegradient	Yes	0.865	N/A	-0.145	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor=** 2.523

TL(1)= 797.131 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.867 S = 1.0

 $S= 1.065 \quad CV(2)=0.219$

K factor=** 2.523

TL(2) = 7.554

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No. Gradient

MW365 Downgradient

MW368 Sidegradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	10	N/A	2.303	N/A
MW362	Downgradient	Yes	23.3	N/A	3.148	NO
MW371	Upgradient	Yes	4.02	N/A	1.391	NO
MW374	Upgradient	Yes	16.6	N/A	2.809	NO
MW375	Sidegradient	Yes	8.28	N/A	2.114	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.012

CV(1)=1.678

K factor=** 2.523

TL(1)= 0.037

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.884

S= 1.299

CV(2) = -0.221

K factor=** 2.523

TL(2) = -2.607

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.001	-6.908
4/22/2002	0.001	-6.908
7/15/2002	0.001	-6.908
10/8/2002	0.027	-3.612
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.00109	-6.822
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -3.128
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.0438	-3.128
Date Collected 10/8/2002 1/7/2003	Result 0.0438 0.011	-3.128 -4.510
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.0438 0.011 0.00905	-3.128 -4.510 -4.705
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.0438 0.011 0.00905 0.00694	-3.128 -4.510 -4.705 -4.970
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.0438 0.011 0.00905 0.00694 0.001	-3.128 -4.510 -4.705 -4.970 -6.908

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	0.00021	N/A	-8.468	NO
MW362	Downgradient	t Yes	0.00647	N/A	-5.041	NO
MW371	Upgradient	Yes	0.00143	N/A	-6.550	NO
MW374	Upgradient	Yes	0.00033	N/A	-8.016	NO
MW375	Sidegradient	No	0.00008	8 N/A	-9.338	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison** Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072

CV(1) = 1.319

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912

CV(2) = -0.265

K factor=** 2.523

TL(2) = -1.138

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	` '
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00468	N/A	-5.364	NO
MW362	Downgradient	Yes	0.0125	N/A	-4.382	NO
MW371	Upgradient	No	0.00697	N/A	-4.966	N/A
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.083 C

CV(1) = 1.380

K factor=** 2.523

TL(1) = 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259

S = 0.840

CV(2) = -0.258

K factor=** 2.523

TL(2) = -1.140

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 0.025	-3.689
Date Collected 10/8/2002 1/7/2003	Result 0.025 0.35	-3.689 -1.050
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.35 0.035	-3.689 -1.050 -3.352
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.025 0.35 0.035 0.02	-3.689 -1.050 -3.352 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.025 0.35 0.035 0.02 0.02	-3.689 -1.050 -3.352 -3.912 -3.912

Dry/Partially Dry Wells

Well No.	Gradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.01	N/A	-4.605	N/A
MW362	Downgradient	Yes	0.0061	N/A	-5.099	NO
MW371	Upgradient	No	0.01	N/A	-4.605	N/A
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.625 S = 0.774 CV(1) = 1.239 K factor**= 2.523 TL(1) = 2.578 LL(1) = N/A Statistics-Transformed Background X = -0.973 S = 0.935 CV(2) = -0.961 K factor**= 2.523 TL(2) = 1.386 LL(2) = N/A

Data

Because CV(1) is greater than 1, the natural logarithm of background and

test well results were calculated utilizing TL(2) for comparison.

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.689	-0.373
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.959
Date Collected	Result	
Date Collected 3/19/2002	Result 2.61	0.959
Date Collected 3/19/2002 4/23/2002	Result 2.61 0.2	0.959 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2.61 0.2 1.14	0.959 -1.609 0.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.61 0.2 1.14 0.862	0.959 -1.609 0.131 -0.149
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.61 0.2 1.14 0.862 2.32	0.959 -1.609 0.131 -0.149 0.842

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.05	N/A	-2.996	N/A	
MW360	Downgradient	Yes	0.0156	N/A	-4.160	NO	
MW363	Downgradient	Yes	0.0183	N/A	-4.001	NO	
MW366	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW369	Upgradient	Yes	0.0723	N/A	-2.627	NO	
MW372	Upgradient	Yes	0.0241	N/A	-3.726	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.985 S = 0.825 CV(1) = 0.838 K factor** = 2.523
 TL(1) = 3.067 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.430 X = 0.990 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6090.2 1/8/2003 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 0.492 -0.709 1/7/2003 0.492 -0.7094/2/2003 0.6 -0.5117/9/2003 0.57 -0.562-0.504 10/7/2003 0.604

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.42	NO	-0.868	N/A	
MW360	Downgradient	Yes	0.0393	NO	-3.237	N/A	
MW363	Downgradient	Yes	0.0238	NO	-3.738	N/A	
MW366	Sidegradient	Yes	0.128	NO	-2.056	N/A	
MW369	Upgradient	Yes	0.0136	NO	-4.298	N/A	
MW372	Upgradient	Yes	1.35	NO	0.300	N/A	
N/A Pagu	Its identified as N	Jon Datacte	during lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 1 0.000 0.000 7/15/2002 1 10/8/2002 1 0.000 1 0.000 1/8/2003 4/3/2003 1 0.000 7/8/2003 0.000 1 10/6/2003 1 0.000 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.000 1/7/2003 0.000 4/2/2003 1 0.000 7/9/2003 0.000 1 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.446	NO	-0.807	N/A	
MW360	Downgradient	Yes	0.165	NO	-1.802	N/A	
MW363	Downgradient	Yes	0.136	NO	-1.995	N/A	
MW366	Sidegradient	Yes	0.513	NO	-0.667	N/A	
MW369	Upgradient	Yes	0.43	NO	-0.844	N/A	
MW372	Upgradient	Yes	0.582	NO	-0.541	N/A	
M/A Dogg	Ita identified on N	Von Dotoots	durina lak	orotory analysis or	data validation	n and ware not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 32.763 **S**= 9.391 **CV(1)**=0.287

K factor=** 2.523

TL(1) = 56.456

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.449 **S**= 0.299

CV(2)=0.087

K factor=** 2.523

TL(2) = 4.202

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 29.5 3.384 4/22/2002 29.8 3.395 7/15/2002 25.3 3.231 10/8/2002 21.9 3.086 3.040 1/8/2003 20.9 4/3/2003 22.2 3.100 7/8/2003 22.9 3.131 10/6/2003 21.7 3.077 Well Number: MW372 Result Date Collected LN(Result) 3/19/2002 41.5 3.726 4/23/2002 43.6 3.775 7/16/2002 40.4 3.699 10/8/2002 38.8 3.658 1/7/2003 41.1 3.716 4/2/2003 42.9 3.759 7/9/2003 35.1 3.558 10/7/2003 46.6 3.842

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	26.9	NO	3.292	N/A	
MW360	Downgradient	Yes	24.7	NO	3.207	N/A	
MW363	Downgradient	Yes	27.6	NO	3.318	N/A	
MW366	Sidegradient	Yes	31.2	NO	3.440	N/A	
MW369	Upgradient	Yes	17.8	NO	2.879	N/A	
MW372	Upgradient	Yes	62.6	YES	4.137	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison Chloride** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 44.119 S = 4.554**CV(1)=**0.103 **K factor**=** 2.523 Statistics-Background Data TL(1) = 55.607LL(1)=N/A **Statistics-Transformed Background**

Data

X = 3.782S = 0.099CV(2) = 0.026 **K factor**=** 2.523 TL(2) = 4.033

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 7/15/2002 48.3 3.877 10/8/2002 47.7 3.865 1/8/2003 45.7 3.822 4/3/2003 47.4 3.859 7/8/2003 55.9 4.024 10/6/2003 47.4 3.859 1/7/2004 45.5 3.818 4/7/2004 43.4 3.770 Well Number: MW372 Date Collected LN(Result) Result 7/16/2002 39.8 3.684 10/8/2002 41 3.714 1/7/2003 39.4 3.674 4/2/2003 39.2 3.669 7/9/2003 39.8 3.684 10/7/2003 40 3.689 1/5/2004 43.4 3.770 4/5/2004 42 3.738

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	35.7	NO	3.575	N/A	
MW360	Downgradient	Yes	11.4	NO	2.434	N/A	
MW363	Downgradient	Yes	30	NO	3.401	N/A	
MW366	Sidegradient	Yes	37.9	NO	3.635	N/A	
MW369	Upgradient	Yes	35.2	NO	3.561	N/A	
MW372	Upgradient	Yes	44	NO	3.784	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.025S = 0.021CV(1)=0.845TL(1) = 0.077LL(1)=N/A **Statistics-Transformed Background**

Data

X = -4.090 S = 1.006CV(2) = -0.246

K factor=** 2.523 TL(2) = -1.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.00938 -4.669 0.00548 1/8/2003 -5.2074/3/2003 0.00587 -5.1387/8/2003 0.0541 -2.917 10/6/2003 0.0689 -2.675Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.025 -3.6894/23/2002 0.025 -3.689 7/16/2002 0.025 -3.68910/8/2002 0.00158 -6.450 1/7/2003 0.0147 -4.2204/2/2003 0.0116 -4.4577/9/2003 0.0653 -2.7290.00788 -4.843 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data									
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
•	MW357	Downgradient	No	0.00016	N/A	-8.740	N/A			
	MW360	Downgradient	Yes	0.00518	NO	-5.263	N/A			
	MW363	Downgradient	Yes	0.00129	NO	-6.653	N/A			
	MW366	Sidegradient	Yes	0.00034	NO	-7.987	N/A			
	MW369	Upgradient	Yes	0.00617	NO	-5.088	N/A			
	MW372	Upgradient	Yes	0.00044	NO	-7.729	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 482.856 S = 57.603 CV(1) = 0.119

K factor**= 2.523

TL(1)= 628.189 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123 CV(2) = 0.020

K factor**= 2.523

TL(2) = 6.484

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 5.961 388 4/22/2002 404 6.001 7/15/2002 394 5.976 10/8/2002 403 5.999 1/8/2003 520 6.254 4/3/2003 487 6.188 7/8/2003 478 6.170 10/6/2003 476 6.165 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 508 6.230 4/23/2002 501 6.217 7/16/2002 507 6.229 10/8/2002 495 6.205 1/7/2003 508.7 6.232 4/2/2003 515 6.244 7/9/2003 576 6.356 10/7/2003 565 6.337

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	466	NO	6.144	N/A			
MW360	Downgradient	Yes	521	NO	6.256	N/A			
MW363	Downgradient	Yes	409	NO	6.014	N/A			
MW366	Sidegradient	Yes	430	NO	6.064	N/A			
MW369	Upgradient	Yes	390	NO	5.966	N/A			
MW372	Upgradient	Yes	758	YES	6.631	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.400 **K factor**=** 2.523 Statistics-Background Data X = 0.025S = 0.010TL(1) = 0.050LL(1)=N/A **Statistics-Transformed Background**

Data

X = -3.742 S = 0.307CV(2) = -0.082 **K factor**=** 2.523 TL(2) = -2.967 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6890.05 -2.996 7/15/2002 10/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.912 7/8/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.025 -3.6894/23/2002 0.025 -3.689 -2.9967/16/2002 0.05 10/8/2002 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW357	Downgradient	Yes	0.00063	NO	-7.370	N/A				
MW360	Downgradient	Yes	0.0005	NO	-7.601	N/A				
MW363	Downgradient	Yes	0.00037	NO	-7.902	N/A				
MW366	Sidegradient	No	0.001	N/A	-6.908	N/A				
MW369	Upgradient	Yes	0.00133	NO	-6.623	N/A				
MW372	Upgradient	No	0.001	N/A	-6.908	N/A				
NT/A D	1. 11 .10 1 3	T . D			1. 1.1.					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Cyanide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.020 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 0.020 LL(1) = N/A Statistics-Transformed Background X = -3.912 S = 0.000 CV(2) = 0.000 K factor**= 2.523 TL(2) = -3.912 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.02 -3.912 4/22/2002 0.02 -3.9120.02 -3.912 7/15/2002 10/8/2002 0.02 -3.912 0.02 -3.912 4/3/2003 7/8/2003 0.02 -3.912 10/6/2003 0.02 -3.912 1/7/2004 0.02 -3.912Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.02 -3.912 4/23/2002 0.02 -3.912 -3.912 7/16/2002 0.02 10/8/2002 0.02 -3.912 -3.912 4/2/2003 0.02 7/9/2003 0.02 -3.912 10/7/2003 0.02 -3.912 -3.912 1/5/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	No	0.2	N/A	-1.609	N/A			
MW360	Downgradient	Yes	0.003	NO	-5.809	N/A			
MW363	Downgradient	No	0.2	N/A	-1.609	N/A			
MW366	Sidegradient	No	0.2	N/A	-1.609	N/A			
MW369	Upgradient	No	0.2	N/A	-1.609	N/A			
MW372	Upgradient	No	0.2	N/A	-1.609	N/A			
		_							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.781 S = 1.351 CV(1) = 0.759 K factor**= 2.523 TL(1) = 5.190 LL(1) = N/A Statistics-Transformed Background X = 0.228 S = 1.065 CV(2) = 4.665 K factor**= 2.523 TL(2) = 2.915 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.688 5.41 4/22/2002 1.57 0.451 -0.223 7/15/2002 0.8 10/8/2002 1.09 0.086 0.990 1/8/2003 2.69 4/3/2003 2.04 0.713 7/8/2003 0.174 1.19 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.9967/16/2002 1.33 0.285 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.9164/2/2003 0.91 -0.0947/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	4	NO	1.386	N/A			
MW360	Downgradient	Yes	1.11	NO	0.104	N/A			
MW363	Downgradient	Yes	0.69	NO	-0.371	N/A			
MW366	Sidegradient	Yes	1.02	NO	0.020	N/A			
MW369	Upgradient	Yes	3.28	NO	1.188	N/A			
MW372	Upgradient	Yes	0.76	NO	-0.274	N/A			
37/4 D	1, 11, 20 1 3	T D			1 . 111	1 4			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 285.188 **S**= 44.908 **CV(1)**=0.157

K factor**= 2.523

TL(1)= 398.489 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 5.640 **S**= 0.175 **CV(2)**= 0.031

K factor=** 2.523

TL(2) = 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.687
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	246	NO	5.505	N/A		
MW360	Downgradient	Yes	307	NO	5.727	N/A		
MW363	Downgradient	Yes	240	NO	5.481	N/A		
MW366	Sidegradient	Yes	250	NO	5.521	N/A		
MW369	Upgradient	Yes	226	NO	5.421	N/A		
MW372	Upgradient	Yes	441	YES	6.089	N/A		
3.7/4 D	1, 11, 2011	T . D			1 . 111 .			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 7.385 S = 6.991 CV(1) = 0.947 K factor**= 2.523 TL(1) = 25.024 LL(1) = N/A Statistics-Transformed Background X = 1.358 S = 1.323 CV(2) = 0.974 K factor**= 2.523 TL(2) = 4.697 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.656 -0.422 4/22/2002 0.695 -0.3641.960 7/15/2002 7.1 10/8/2002 21.5 3.068 1/8/2003 18.5 2.918 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 1.78 0.577 10/8/2002 0.776 -0.2541/7/2003 3.55 1.267 4/2/2003 5.02 1.613 7/9/2003 10 2.303 10/7/2003 0.733 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	0.0418	NO	-3.175	N/A			
MW360	Downgradient	Yes	0.374	NO	-0.983	N/A			
MW363	Downgradient	Yes	0.0537	NO	-2.924	N/A			
MW366	Sidegradient	Yes	0.0612	NO	-2.794	N/A			
MW369	Upgradient	Yes	0.146	NO	-1.924	N/A			
MW372	Upgradient	Yes	0.384	NO	-0.957	N/A			
NT/A D	1 11 10 1								

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison Magnesium** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.272**K factor**=** 2.523 Statistics-Background Data X = 12.864 S = 3.505TL(1) = 21.707LL(1)=N/A **Statistics-Transformed Background**

Data

X = 2.517 S = 0.290CV(2) = 0.115 **K factor****= 2.523 TL(2) = 3.248 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11.4 2.434 4/22/2002 12 2.485 10 7/15/2002 2.303 10/8/2002 8.62 2.154 1/8/2003 7.89 2.066 4/3/2003 7.97 2.076 7/8/2003 10.3 2.332 10/6/2003 9.14 2.213 Well Number: MW372 Result Date Collected LN(Result) 3/19/2002 15.7 2.754 4/23/2002 16.6 2.809 7/16/2002 15.4 2.734 10/8/2002 15.8 2.760 1/7/2003 15.8 2.760 4/2/2003 2.797 16.4 7/9/2003 2.721 15.2

17.6

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	10.9	NO	2.389	N/A			
MW360	Downgradient	Yes	10.8	NO	2.380	N/A			
MW363	Downgradient	Yes	11.6	NO	2.451	N/A			
MW366	Sidegradient	Yes	13.8	NO	2.625	N/A			
MW369	Upgradient	Yes	7.73	NO	2.045	N/A			
MW372	Upgradient	Yes	24.8	YES	3.211	N/A			
NI/A D	1, 11, 1	T D	1 . 11		1 . 11	1 .			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.868

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.413S = 0.274CV(1)=0.664 TL(1)=1.105LL(1)=N/A **Statistics-Transformed Background** X = -1.226 S = 1.008LL(2)=N/A

Data

CV(2) = -0.822

K factor=** 2.523

TL(2) = 1.317

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.034 -3.3814/22/2002 0.062 -2.7817/15/2002 0.436 -0.83010/8/2002 0.867-0.143-0.189 1/8/2003 0.828 4/3/2003 0.672 -0.3977/8/2003 0.321 -1.136 10/6/2003 0.714 -0.337Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.205 -1.5854/23/2002 0.345 -1.064 7/16/2002 0.21 -1.56110/8/2002 0.0539 -2.921 1/7/2003 0.537 -0.6224/2/2003 0.415 -0.8797/9/2003 0.654 -0.425-1.370 10/7/2003 0.254

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	0.00194	NO	-6.245	N/A			
MW360	Downgradient	Yes	0.0701	NO	-2.658	N/A			
MW363	Downgradient	Yes	0.229	NO	-1.474	N/A			
MW366	Sidegradient	Yes	0.017	NO	-4.075	N/A			
MW369	Upgradient	Yes	0.0129	NO	-4.351	N/A			
MW372	Upgradient	Yes	0.0161	NO	-4.129	N/A			
37/4 D	1. 11 .10 1 3								

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.010

S= 0.012 **CV(1)**=1.199

K factor**= 2.523

TL(1) = 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X= -5.698 **S**= 1.607

CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.643

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 3/19/2002	Result 0.025	LN(Result) -3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	LN(Result) -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	LN(Result) -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	LN(Result) -3.689 -3.689 -3.689 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	LN(Result) -3.689 -3.689 -3.689 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	0.0005	N/A	-7.601	N/A		
MW360	Downgradient	Yes	0.00037	N/A	-7.902	NO		
MW363	Downgradient	No	0.0005	N/A	-7.601	N/A		
MW366	Sidegradient	No	0.0005	N/A	-7.601	N/A		
MW369	Upgradient	No	0.0005	N/A	-7.601	N/A		
MW372	Upgradient	Yes	0.00046	N/A	-7.684	NO		
NI/A D	1, 11, 410 1 31	T D			1 . 111 .	1 ,		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024

S = 0.021

CV(1)=0.910

K factor=** 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.246 S = 1.075

CV(2) = -0.253

K factor=** 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.00284	NO	-5.864	N/A	
MW360	Downgradient	Yes	0.00261	NO	-5.948	N/A	
MW363	Downgradient	Yes	0.00068	NO	-7.293	N/A	
MW366	Sidegradient	Yes	0.00052	NO	-7.562	N/A	
MW369	Upgradient	Yes	0.0114	NO	-4.474	N/A	
MW372	Upgradient	Yes	0.00121	NO	-6.717	N/A	
		_					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 74.563 **S**= 94.243 **CV(1)**=1.264

K factor=** 2.523

TL(1)= 312.337 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784

CV(2) = 0.172

K factor=** 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

	Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
•	MW357	Downgradient	Yes	489	N/A	6.192	YES	
	MW360	Downgradient	Yes	454	N/A	6.118	YES	
	MW363	Downgradient	Yes	731	N/A	6.594	YES	
	MW366	Sidegradient	Yes	387	N/A	5.958	YES	
	MW369	Upgradient	Yes	410	N/A	6.016	YES	
	MW372	Upgradient	Yes	220	N/A	5.394	YES	
	37/4 D	1 1	T D			1.1.1.1.1		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells	with	Exceedances

MW357 MW360 MW363

MW366

MW369 MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2015 Statistical Analysis PCB, Total **UNITS: UG/L URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.897 **K factor**=** 2.523 Statistics-Background Data X = 0.390S = 0.350TL(1)=1.272LL(1)=N/A **Statistics-Transformed Background**

Data

X = -1.238 S = 0.737CV(2) = -0.595 **K factor**=** 2.523 TL(2) = 0.622 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 0.17 -1.772-1.7727/15/2002 0.17 7/8/2003 1.15 0.140 0.605 -0.503 10/6/2003 7/13/2004 0.42 -0.8687/20/2005 0.28 -1.2734/4/2006 0.23 -1.470Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.000 4/23/2002 0.17 -1.772-1.7727/16/2002 0.17 7/9/2003 0.17 -1.77210/7/2003 0.17 -1.7727/14/2004 0.18 -1.715 7/21/2005 0.17 -1.772-1.715 4/5/2006 0.18

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.1	N/A	-2.303	N/A
MW360	Downgradient	No	0.0962	N/A	-2.341	N/A
MW363	Downgradient	No	1.02	N/A	0.020	N/A
MW366	Sidegradient	No	0.0962	N/A	-2.341	N/A
MW369	Upgradient	No	0.0971	N/A	-2.332	N/A
MW372	Upgradient	Yes	0.0523	NO	-2.951	N/A
NT/A D	1. 11 .10 1 3					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2015 Statistical Analysis **PCB-1242 UNITS: UG/L URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.281S = 0.383CV(1) = 1.361TL(1) = 1.247LL(1)=N/A **Statistics-Transformed Background**

Data

X = -1.835 S = 0.938CV(2) = -0.511 **K factor**=** 2.523

TL(2) = 0.532

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/8/2003	1.15	0.140
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/20/2005	0.1	-2.303
4/4/2006	0.1	-2.303
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 0.11	0.000 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 0.11 0.11	0.000 -2.207 -2.207
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003	Result 1 0.11 0.11 0.13	0.000 -2.207 -2.207 -2.040
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003	Result 1 0.11 0.11 0.13 0.09	0.000 -2.207 -2.207 -2.040 -2.408

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.1	N/A	-2.303	N/A	
MW360	Downgradient	No	0.0962	N/A	-2.341	N/A	
MW363	Downgradient	No	1.02	N/A	0.020	N/A	
MW366	Sidegradient	No	0.0962	N/A	-2.341	N/A	
MW369	Upgradient	No	0.0971	N/A	-2.332	N/A	
MW372	Upgradient	Yes	0.0523	N/A	-2.951	NO	
NT/A D	1, 11, 201 1 3	T D	1 . 11	, 1 .	1.7	1 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.274 S = 0.194 CV(1) = 0.031 K factor**= 2.904
 TL(1) = 6.837 LL(1) = 5.7114

 Statistics-Transformed Background
 X = 1.836 X = 0.031 X = 0.031

Data

Upgradient Wells with Transformed Result

Historical Background Data from

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 7/15/2002 6.1 1.808 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 1/7/2003 6.26 1.834 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841 10/7/2003 6.4 1.856

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradien	t Yes	6.07	NO	1.803	N/A
MW360	Downgradien	t Yes	6.27	NO	1.836	N/A
MW363	Downgradien	t Yes	6.13	NO	1.813	N/A
MW366	Sidegradient	Yes	6.05	NO	1.800	N/A
MW369	Upgradient	Yes	6.12	NO	1.812	N/A
MW372	Upgradient	Yes	6.13	NO	1.813	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.663 S = 0.488 CV(1) = 0.293 K factor**= 2.523
 TL(1) = 2.895 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 0.456 X = 0.362 X = 0.362

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2.21 0.793 7/15/2002 2 0.693 10/8/2002 0.966 -0.0351/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 1.62 0.482 10/6/2003 1.14 0.131 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 7/16/2002 2 0.693 10/8/2002 0.432 1.54 1/7/2003 1.88 0.631 4/2/2003 2.09 0.737 7/9/2003 1.78 0.577 10/7/2003 1.79 0.582

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	1.66	NO	0.507	N/A		
MW360	Downgradient	Yes	0.846	NO	-0.167	N/A		
MW363	Downgradient	Yes	1.37	NO	0.315	N/A		
MW366	Sidegradient	Yes	1.94	NO	0.663	N/A		
MW369	Upgradient	Yes	0.608	NO	-0.498	N/A		
MW372	Upgradient	Yes	2.55	NO	0.936	N/A		
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not								

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 45.100 S = 11.875 CV(1) = 0.263 K factor**= 2.523
 TL(1) = 75.061 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.780 X = 0.242 X = 0.242

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35.7 3.575 4/22/2002 37.6 3.627 7/15/2002 42.4 3.747 10/8/2002 66.9 4.203 1/8/2003 67.9 4.218 4/3/2003 61.8 4.124 7/8/2003 45.6 3.820 10/6/2003 59.1 4.079 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 37.2 3.616 4/23/2002 38.6 3.653 7/16/2002 35.6 3.572 10/8/2002 37.5 3.624 1/7/2003 34.1 3.529 4/2/2003 34.4 3.538 7/9/2003 44.1 3.786 10/7/2003 43.1 3.764

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	38.3	NO	3.645	N/A			
MW360	Downgradient	Yes	73.4	NO	4.296	N/A			
MW363	Downgradient	Yes	40.6	NO	3.704	N/A			
MW366	Sidegradient	Yes	47.3	NO	3.857	N/A			
MW369	Upgradient	Yes	57.7	NO	4.055	N/A			
MW372	Upgradient	Yes	63.3	NO	4.148	N/A			
N/A - Resi	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not								

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 45.031 **S**= 33.919 **CV(1)**=0.753

K factor=** 2.523

TL(1)= 130.609

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.420 S = 0.981

CV(2) = 0.287

K factor=** 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	15.5	2.741
4/22/2002	15.8	2.760
7/15/2002	13.8	2.625
10/8/2002	6.9	1.932
1/8/2003	10.5	2.351
4/3/2003	10.5	2.351
7/8/2003	10.9	2.389
10/6/2003	16.3	2.791
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.272
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 71.7	4.272
Date Collected 3/19/2002 4/23/2002	Result 71.7 74.7	4.272 4.313
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 71.7 74.7 74.1	4.272 4.313 4.305
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 71.7 74.7 74.1 70.5	4.272 4.313 4.305 4.256
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 71.7 74.7 74.1 70.5 75.8	4.272 4.313 4.305 4.256 4.328

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
,	MW357	Downgradient	Yes	54.6	NO	4.000	N/A	
	MW360	Downgradient	Yes	26.7	NO	3.285	N/A	
	MW363	Downgradient	Yes	29.1	NO	3.371	N/A	
	MW366	Sidegradient	Yes	56	NO	4.025	N/A	
	MW369	Upgradient	Yes	8.09	NO	2.091	N/A	
	MW372	Upgradient	Yes	135	YES	4.905	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X= 20.821 **S**= 18.044 **CV(1)**= 0.867 **K factor**=** 2.523 Statistics-Background Data TL(1)= 66.344 LL(1)=N/A **Statistics-Transformed Background** X = 2.770 S = 1.150 CV(2) = 0.415**K factor****= 2.523 TL(2) = 3.972LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 41.7 3.731 4/22/2002 53.1 3.972 7/15/2002 18.1 2.896 10/8/2002 16.4 2.797 3.49 1/8/2003 1.250 4/3/2003 9.34 2.234 7/8/2003 17.5 2.862 10/6/2003 17 2.833 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 44.8 3.802 4/23/2002 0.802 -0.2217/16/2002 19.8 2.986 10/8/2002 46.1 3.831 1/7/2003 -0.973#Func! 4/2/2003 9.07 2.205 #Func! 7/9/2003 0 10/7/2003 36.9 3.608

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	41	NO	3.714	N/A
MW360	Downgradient	No	6.98	N/A	1.943	N/A
MW363	Downgradient	No	14.5	N/A	2.674	N/A
MW366	Sidegradient	Yes	47.1	NO	3.852	N/A
MW369	Upgradient	Yes	36.7	NO	3.603	N/A
MW372	Upgradient	Yes	37	NO	3.611	N/A
M/A Dogu	Ita identified on N	Von Dotoots	during lok	orotomi analysis or	data validation	n and ware not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Total Organic Carbon (TOC) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.226**K factor**=** 2.523 Statistics-Background Data X = 3.513S = 4.307TL(1) = 14.378LL(1)=N/A **Statistics-Transformed Background**

Data

X = 0.851S = 0.828CV(2) = 0.973 **K factor**=** 2.523 TL(2) = 2.940 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.531 1.7 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 9 1/8/2003 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1.2 0.182 0.000 7/16/2002 1 10/8/2002 1 0.000 1/7/2003 1.6 0.470 4/2/2003 1.5 0.405 7/9/2003 3 1.099 10/7/2003 1.5 0.405

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.563	N/A	-0.574	NO	
MW360	Downgradient	Yes	1.7	N/A	0.531	NO	
MW363	Downgradient	Yes	0.809	N/A	-0.212	NO	
MW366	Sidegradient	Yes	0.595	N/A	-0.519	NO	
MW369	Upgradient	Yes	0.978	N/A	-0.022	NO	
MW372	Upgradient	Yes	1.25	N/A	0.223	NO	
NI/A D	1, 11, 2011	T . D			1 . 111		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

K factor=** 2.523

TL(1) = 230.231 LL(1) = N/A

Statistics-Transformed Background Data

X = 3.772 S = 1.023 CV(2) = 0.271

K factor=** 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.215
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 10	5.215 3.912 3.912 3.912 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Downgradient	Yes	6.84	NO	1.923	N/A
Downgradient	Yes	17.6	NO	2.868	N/A
Downgradient	Yes	5.18	NO	1.645	N/A
Sidegradient	Yes	4.54	NO	1.513	N/A
Upgradient	Yes	14.3	NO	2.660	N/A
Upgradient	Yes	7.16	NO	1.969	N/A
	Gradient Downgradient Downgradient Downgradient Sidegradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Sidegradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 6.84 Downgradient Yes 17.6 Downgradient Yes 5.18 Sidegradient Yes 4.54 Upgradient Yes 14.3	Gradient Detected? Result Result >TL(1)? Downgradient Yes 6.84 NO Downgradient Yes 17.6 NO Downgradient Yes 5.18 NO Sidegradient Yes 4.54 NO Upgradient Yes 14.3 NO	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientYes6.84NO1.923DowngradientYes17.6NO2.868DowngradientYes5.18NO1.645SidegradientYes4.54NO1.513UpgradientYes14.3NO2.660

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.625 S = 3.594 CV(1) = 0.639 K factor**= 2.523
 TL(1) = 14.693 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.571 S = 0.565 CV(2) = 0.360 K factor**= 2.523
 TL(2) = 2.995 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11 2.398 4/22/2002 16 2.773 2.079 7/15/2002 8 10/8/2002 3 1.099 2 1/8/2003 0.693 4/3/2003 3 1.099 7/8/2003 3 1.099 2 10/6/2003 0.693 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 5 1.609 4/23/2002 5 1.609 7/16/2002 4 1.386 10/8/2002 1.792 6 1/7/2003 5 1.609 4/2/2003 6 1.792 7/9/2003 5 1.609 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	5.88	NO	1.772	N/A
MW360	Downgradient	No	1	N/A	0.000	N/A
MW363	Downgradient	Yes	0.84	N/A	-0.174	N/A
MW366	Sidegradient	Yes	3.78	N/A	1.330	N/A
MW369	Upgradient	Yes	0.81	N/A	-0.211	N/A
MW372	Upgradient	Yes	8.2	NO	2.104	N/A
M/A Dagg	Ita idantified on N	Jon Datasta	ما ما ماسران	anatami analizaia am	data validatio	n and rrans not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison** Uranium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.917 **K factor**=** 2.523 Statistics-Background Data X = 0.001S = 0.001TL(1) = 0.005LL(1)=N/A **Statistics-Transformed Background**

Data

X = -6.718 S = 0.528CV(2) = -0.079 **K factor**=** 2.523 TL(2) = -5.385

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.001 -6.9084/22/2002 0.001 -6.9087/15/2002 0.001 -6.90810/8/2002 0.00355 -5.641 -6.908 0.001 1/8/2003 4/3/2003 0.001 -6.9087/8/2003 0.001 -6.908 10/6/2003 0.001 -6.908Well Number: MW372 Result Date Collected LN(Result) 3/19/2002 0.001 -6.908 4/23/2002 0.001 -6.908 7/16/2002 0.001 -6.90810/8/2002 0.00591 -5.131 1/7/2003 0.001 -6.9084/2/2003 0.001 -6.9087/9/2003 0.001 -6.908 10/7/2003 0.001 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	0.00032	NO	-8.047	N/A
	MW360	Downgradient	No	0.00029	N/A	-8.146	N/A
	MW363	Downgradient	No	0.0002	N/A	-8.517	N/A
	MW366	Sidegradient	No	0.0002	N/A	-8.517	N/A
	MW369	Upgradient	No	0.0002	N/A	-8.517	N/A
	MW372	Upgradient	No	0.0002	N/A	-8.517	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison** Vanadium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.259**K factor**=** 2.523 Statistics-Background Data X = 0.024S = 0.006TL(1) = 0.039LL(1)=N/A **Statistics-Transformed Background** X = -3.771 S = 0.223CV(2) = -0.059**K factor**=** 2.523 TL(2) = -3.208LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.027 -3.6120.025 7/15/2002 -3.68910/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.912 7/8/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.039 -3.2444/23/2002 0.037 -3.2977/16/2002 0.025 -3.68910/8/2002 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.01	N/A	-4.605	N/A
MW360	Downgradient	Yes	0.00721	NO	-4.932	N/A
MW363	Downgradient	No	0.01	N/A	-4.605	N/A
MW366	Sidegradient	No	0.01	N/A	-4.605	N/A
MW369	Upgradient	No	0.01	N/A	-4.605	N/A
MW372	Upgradient	No	0.01	N/A	-4.605	N/A
27/4 22	1 11 10 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 2.026 **S**= 5.626 **CV(1)**=2.777

K factor=** 2.523

TL(1)= 16.219 **LL(1)**=N/A

Statistics-Transformed Background Data

X = -0.803 S = 1.380 CV(2) = -1.718

K factor=** 2.523

TL(2) = 2.678

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.539 4.66 4/23/2002 0.2 -1.6097/15/2002 0.2 -1.60910/8/2002 0.2 -1.6090.2 -1.609 1/8/2003 4/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 22.7 3.122 4/23/2002 1.46 0.378 7/16/2002 0.253 -1.37410/8/2002 0.482 -0.730 1/7/2003 0.608 -0.4984/2/2003 0.446 -0.8077/9/2003 0.2 -1.609 10/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	0.05	N/A	-2.996	N/A	
MW361	Downgradient	No	0.05	N/A	-2.996	N/A	
MW364	Downgradient	Yes	0.0172	N/A	-4.063	NO	
MW367	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW370	Upgradient	No	0.05	N/A	-2.996	N/A	
MW373	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.140 S = 0.780 CV(1) = 0.684 K factor**= 2.523 TL(1) = 3.108 LL(1) = N/A Statistics-Transformed Background X = -0.235 S = 1.006 CV(2) = -4.287 K factor**= 2.523 TL(2) = 2.303 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.693 2. 4/23/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6090.2 -1.609 1/8/2003 4/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 0.79 -0.236 1/7/2003 0.807 -0.2144/2/2003 1.13 0.122 7/9/2003 1.28 0.247 10/7/2003 1.24 0.215

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.469	NO	-0.757	N/A	
MW361	Downgradient	Yes	0.327	NO	-1.118	N/A	
MW364	Downgradient	Yes	0.0107	NO	-4.538	N/A	
MW367	Sidegradient	Yes	0.0268	NO	-3.619	N/A	
MW370	Upgradient	Yes	0.0329	NO	-3.414	N/A	
MW373	Upgradient	Yes	1.62	NO	0.482	N/A	
37/4 5	1 11 10 1						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.000 4/23/2002 1 0.000 0.000 7/15/2002 1 10/8/2002 1 0.000 1 0.000 1/8/2003 4/3/2003 1 0.000 7/9/2003 0.000 1 10/6/2003 1 0.000 Well Number: MW373 Result Date Collected LN(Result) 3/18/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.000 1/7/2003 0.000 4/2/2003 1 0.000 7/9/2003 0.000 1 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.483	NO	-0.728	N/A
MW361	Downgradient	Yes	0.412	NO	-0.887	N/A
MW364	Downgradient	Yes	0.404	NO	-0.906	N/A
MW367	Sidegradient	Yes	0.414	NO	-0.882	N/A
MW370	Upgradient	Yes	0.477	NO	-0.740	N/A
MW373	Upgradient	Yes	0.607	NO	-0.499	N/A
M/A Dogu	Ita identified on N	Von Dotoots	during lok	orotomi analysis or	data validation	n and ware not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2015 Statistical Analysis **Calcium** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 43.413 S = 13.444 CV(1) = 0.310**K factor**=** 2.523 Statistics-Background Data TL(1) = 77.331LL(1)=N/A **Statistics-Transformed Background**

Data

X = 3.723 S = 0.323CV(2) = 0.087 **K factor**=** 2.523

TL(2) = 4.539

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 34.8 3.550 4/23/2002 43.4 3.770 7/15/2002 33.2 3.503 10/8/2002 29.2 3.374 1/8/2003 31.3 3.444 4/3/2003 32.4 3.478 7/9/2003 22.9 3.131 10/6/2003 28 3.332 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 61.9 4.126 4/23/2002 59.2 4.081 7/16/2002 47.6 3.863 10/8/2002 46.1 3.831 1/7/2003 49.2 3.896 4/2/2003 57.8 4.057 7/9/2003 3.965 52.7 10/7/2003 64.9 4.173

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW358	Downgradient	Yes	33.1	NO	3.500	N/A
	MW361	Downgradient	Yes	32	NO	3.466	N/A
	MW364	Downgradient	Yes	29.1	NO	3.371	N/A
	MW367	Sidegradient	Yes	25.1	NO	3.223	N/A
	MW370	Upgradient	Yes	27.4	NO	3.311	N/A
	MW373	Upgradient	Yes	71.4	NO	4.268	N/A
	3.T/A D	1. 11 .10 1 3					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 45.919 **S**= 7.524

CV(1)=0.164

K factor=** 2.523

TL(1)= 64.901

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.814 **S**= 0.165

CV(2) = 0.043

K factor=** 2.523

TL(2) = 4.231

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/15/2002	55.5	4.016
10/8/2002	53.6	3.982
1/8/2003	52.9	3.968
4/3/2003	53.6	3.982
7/9/2003	51.9	3.949
10/6/2003	53	3.970
1/7/2004	53	3.970
4/7/2004	51.6	3.944
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.704
Date Collected	Result	
Date Collected 7/16/2002	Result 40.6	3.704
Date Collected 7/16/2002 10/8/2002	Result 40.6 38.8	3.704 3.658
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 40.6 38.8 39	3.704 3.658 3.664
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 40.6 38.8 39 38.4	3.704 3.658 3.664 3.648
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 40.6 38.8 39 38.4 38.1	3.704 3.658 3.664 3.648 3.640

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	36.8	NO	3.605	N/A
MW361	Downgradient	Yes	31.1	NO	3.437	N/A
MW364	Downgradient	Yes	33.3	NO	3.506	N/A
MW367	Sidegradient	Yes	31.2	NO	3.440	N/A
MW370	Upgradient	Yes	39.7	NO	3.681	N/A
MW373	Upgradient	Yes	44	NO	3.784	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2015 Statistical Analysis Cobalt UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.027S = 0.032CV(1) = 1.165TL(1) = 0.108LL(1)=N/A **Statistics-Transformed Background** TL(2) = -1.507

Data

X = -4.058 S = 1.011CV(2) = -0.249 **K factor**=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.0174 -4.051 0.0105 1/8/2003 -4.5564/3/2003 0.00931 -4.6777/9/2003 0.137 -1.988 10/6/2003 0.0463 -3.073Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/23/2002 0.034 -3.381 7/16/2002 0.025 -3.68910/8/2002 0.00411 -5.494 1/7/2003 0.00344 -5.672-5.605 4/2/2003 0.00368 7/9/2003 0.0405 -3.2060.00843 -4.776 10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.00051	N/A	-7.581	N/A
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	Yes	0.00036	N/A	-7.929	NO
MW367	Sidegradient	Yes	0.00669	N/A	-5.007	NO
MW370	Upgradient	Yes	0.00047	N/A	-7.663	NO
MW373	Upgradient	No	0.001	N/A	-6.908	N/A
NI/A D	1, 11, 201 1 3	T D	1 . 11		1.7	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 608.719 S = 156.157 CV(1) = 0.257

K factor=** 2.523

TL(1)= 1002.702 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor**= 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 406 6.006 4/23/2002 543 6.297 7/15/2002 476 6.165 10/8/2002 441 6.089 1/8/2003 486 6.186 4/3/2003 466 6.144 7/9/2003 479 6.172 10/6/2003 435 6.075 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 661 6.494 4/23/2002 801 6.686 7/16/2002 774 6.652 10/8/2002 680 6.522 1/7/2003 686.5 6.532 4/2/2003 763 6.637 7/9/2003 828 6.719 10/7/2003 814 6.702

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	519	NO	6.252	N/A
MW361	Downgradient	Yes	487	NO	6.188	N/A
MW364	Downgradient	Yes	455	NO	6.120	N/A
MW367	Sidegradient	Yes	337	NO	5.820	N/A
MW370	Upgradient	Yes	424	NO	6.050	N/A
MW373	Upgradient	Yes	813	NO	6.701	N/A
3.T/A D	1. 11 .:0 1 3	T D			1 . 111	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.010 CV(1) = 0.399 K factor** = 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background Data
 X = -3.739 S = 0.308 CV(2) = -0.082 K factor** = 2.523
 TL(2) = -2.963 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6890.05 -2.996 7/15/2002 10/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.912 7/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.026 -3.6504/23/2002 0.025 -3.689 -2.9967/16/2002 0.05 10/8/2002 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00124	NO	-6.693	N/A
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	Yes	0.00036	NO	-7.929	N/A
MW367	Sidegradient	Yes	0.00045	NO	-7.706	N/A
MW370	Upgradient	Yes	0.00057	NO	-7.470	N/A
MW373	Upgradient	No	0.001	N/A	-6.908	N/A
NI/A Dagu	Ita idantified as N	Van Dataata	dumin a lah		data validatio	a and ryana nat

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.387

S= 1.153

CV(1)=0.831

K factor=** 2.523

TL(1) = 4.295

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.115 S = 1.207

CV(2) = -10.514

K factor=** 2.523

TL(2)= 2.930

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
		LN(Result)
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
Well Number: Date Collected 3/18/2002	MW373 Result 3.04	LN(Result)
Well Number: Date Collected 3/18/2002 4/23/2002	MW373 Result 3.04 0.03	LN(Result) 1.112 -3.507
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002	MW373 Result 3.04 0.03 0.23	LN(Result) 1.112 -3.507 -1.470
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	MW373 Result 3.04 0.03 0.23 0.86	LN(Result) 1.112 -3.507 -1.470 -0.151
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	MW373 Result 3.04 0.03 0.23 0.86 0.21	LN(Result) 1.112 -3.507 -1.470 -0.151 -1.561

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.6	NO	0.470	N/A
MW361	Downgradient	Yes	3.41	NO	1.227	N/A
MW364	Downgradient	Yes	1.5	NO	0.405	N/A
MW367	Sidegradient	Yes	0.71	NO	-0.342	N/A
MW370	Upgradient	Yes	3.63	NO	1.289	N/A
MW373	Upgradient	Yes	2	NO	0.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2015 Statistical Analysis **Dissolved Solids** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 356.188 **S**= 106.752 **CV(1)**=0.300

K factor=** 2.523

TL(1)= 625.523 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor=** 2.523

TL(2) = 6.616

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.057
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 427	6.057
Date Collected 3/18/2002 4/23/2002	Result 427 507	6.057 6.229
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427 507 464	6.057 6.229 6.140
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427 507 464 408	6.057 6.229 6.140 6.011
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427 507 464 408 404	6.057 6.229 6.140 6.011 6.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	299	NO	5.700	N/A
MW361	Downgradient	Yes	271	NO	5.602	N/A
MW364	Downgradient	Yes	250	NO	5.521	N/A
MW367	Sidegradient	Yes	211	NO	5.352	N/A
MW370	Upgradient	Yes	230	NO	5.438	N/A
MW373	Upgradient	Yes	500	NO	6.215	N/A
3.7/A D	1. 11 1	T D			1 . 111 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2015 Statistical Analysis UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.958 **K factor**=** 2.523 Statistics-Background Data X = 9.230**S**= 8.841 TL(1) = 31.535LL(1)=N/A **Statistics-Transformed Background** X = 1.942TL(2) = 3.740

Data

S = 0.713CV(2) = 0.367 **K factor**=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 7/15/2002 3.52 1.258 10/8/2002 7.45 2.008 7.04 1/8/2003 1.952 4/3/2003 4.64 1.535 7/9/2003 15.8 2.760 10/6/2003 6.49 1.870 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 7/16/2002 10.7 2.370 10/8/2002 3.75 1.322 1/7/2003 3.87 1.353 4/2/2003 3.5 1.253 7/9/2003 2.044 7.72 10/7/2003 2.93 1.075

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.269	NO	-1.313	N/A
MW361	Downgradient	No	0.1	N/A	-2.303	N/A
MW364	Downgradient	Yes	0.0358	NO	-3.330	N/A
MW367	Sidegradient	Yes	1.78	NO	0.577	N/A
MW370	Upgradient	No	0.1	N/A	-2.303	N/A
MW373	Upgradient	No	0.1	N/A	-2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.544 **S**= 5.911 **CV(1)**=0.337

K factor=** 2.523

TL(1) = 32.458

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.810 **S**= 0.343

CV(2) = 0.122

K factor=** 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	12.1	2.493
4/23/2002	15.1	2.715
7/15/2002	12.4	2.518
10/8/2002	12.2	2.501
1/8/2003	11.5	2.442
4/3/2003	12.3	2.510
7/9/2003	10	2.303
10/6/2003	12.1	2.493
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.211
Date Collected	Result	
Date Collected 3/18/2002	Result 24.8	3.211
Date Collected 3/18/2002 4/23/2002	Result 24.8 22.7	3.211 3.122
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 24.8 22.7 18.8	3.211 3.122 2.934
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 24.8 22.7 18.8 21.1	3.211 3.122 2.934 3.049
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 24.8 22.7 18.8 21.1 19.9	3.211 3.122 2.934 3.049 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	14.4	NO	2.667	N/A
MW361	Downgradient	Yes	15.8	NO	2.760	N/A
MW364	Downgradient	Yes	13.4	NO	2.595	N/A
MW367	Sidegradient	Yes	12	NO	2.485	N/A
MW370	Upgradient	Yes	12.4	NO	2.518	N/A
MW373	Upgradient	Yes	26.2	NO	3.266	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.080 S = 0.674 CV(1) = 0.624 K factor** = 2.523
 TL(1) = 2.780 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.114 S = 0.658 CV(2) = -5.762 K factor** = 2.523
 TL(2) = 1.547 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.244 -1.411 0.599 4/23/2002 1.82 0.199 7/15/2002 1.22 10/8/2002 0.988 -0.012 -0.316 1/8/2003 0.729 4/3/2003 0.637 -0.4517/9/2003 2.51 0.920 0.049 10/6/2003 1.05 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 0.355 -1.036 4/23/2002 2.16 0.770 0.329 7/16/2002 1.39 10/8/2002 0.717 -0.333 1/7/2003 0.587 -0.5334/2/2003 0.545 -0.6077/9/2003 0.565 1.76 10/7/2003 0.57 -0.562

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0493	NO	-3.010	N/A
MW361	Downgradient	Yes	0.00703	NO	-4.958	N/A
MW364	Downgradient	Yes	0.0164	NO	-4.110	N/A
MW367	Sidegradient	Yes	0.863	NO	-0.147	N/A
MW370	Upgradient	Yes	0.00151	NO	-6.496	N/A
MW373	Upgradient	Yes	0.00222	NO	-6.110	N/A
M/A Dogg	Ita idontified as N	Jon Dotooto	dumin a lab		data validation	a and record not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.022 CV(1) = 0.901 K factor** = 2.523
 TL(1) = 0.078 LL(1) = N/A

 Statistics-Transformed Background
 X = -4.239 S = 1.087 CV(2) = -0.256 K factor** = 2.523
 TL(2) = -1.497 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.05 -2.9964/23/2002 0.05 -2.9967/15/2002 0.05 -2.99610/8/2002 0.005 -5.2980.005 1/8/2003 -5.2984/3/2003 0.005 -5.2987/9/2003 0.0264 -3.634 10/6/2003 0.00971 -4.635Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.05 -2.996 4/23/2002 0.05 -2.996 7/16/2002 0.05 -2.99610/8/2002 0.005 -5.298 1/7/2003 0.005 -5.2984/2/2003 0.005 -5.2987/9/2003 0.0112 -4.4920.005 -5.298 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00323	NO	-5.735	N/A
MW361	Downgradient	Yes	0.00141	NO	-6.564	N/A
MW364	Downgradient	Yes	0.00176	NO	-6.342	N/A
MW367	Sidegradient	Yes	0.00202	NO	-6.205	N/A
MW370	Upgradient	Yes	0.00101	NO	-6.898	N/A
MW373	Upgradient	Yes	0.00142	NO	-6.557	N/A
N/A Pagu	Ite identified as N	Jon Detects	during lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 46.688 **S**= 60.986 **CV(1)**=1.306

K factor=** 2.523

TL(1)= 200.555 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.829

 $S= 1.151 \quad CV(2)=0.301$

K factor=** 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	342	N/A	5.835	YES
MW361	Downgradient	Yes	567	N/A	6.340	YES
MW364	Downgradient	Yes	700	N/A	6.551	YES
MW367	Sidegradient	Yes	416	N/A	6.031	YES
MW370	Upgradient	Yes	388	N/A	5.961	YES
MW373	Upgradient	Yes	468	N/A	6.148	YES
NI/A D	14- 1141C1-1 N	I D-44-	J 1 - 1-		3-41:3-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW361

MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.283 S = 0.159 CV(1) = 0.025 K factor**= 2.904
 TL(1) = 6.745 LL(1) = 5.8202

 Statistics-Transformed Background Data
 X = 1.837 X = 0.025 X = 0.025</th

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 6.3 1.841 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 6.35 1.848 1/7/2003 4/2/2003 6.14 1.815 7/9/2003 1.808 6.1 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradient	Yes	6.3	NO	1.841	N/A
MW361	Downgradient	Yes	5.81	YES	1.760	N/A
MW364	Downgradient	Yes	5.94	NO	1.782	N/A
MW367	Sidegradient	Yes	5.9	NO	1.775	N/A
MW370	Upgradient	Yes	6.05	NO	1.800	N/A
MW373	Upgradient	Yes	6.11	NO	1.810	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW361

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 2.823 S = 0.522 CV(1) = 0.185 K factor**= 2.523 TL(1) = 4.139 LL(1) = N/A Statistics-Transformed Background X = 1.024 S = 0.167 CV(2) = 0.163 K factor**= 2.523 TL(2) = 1.445 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.22 1.169 4/23/2002 3.43 1.233 1.092 7/15/2002 2.98 10/8/2002 2.46 0.900 2.41 1/8/2003 0.8804/3/2003 2.43 0.888 7/9/2003 2.44 0.892 10/6/2003 2.48 0.908 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 4.34 1.468 4/23/2002 3.04 1.112 7/16/2002 2.93 1.075 10/8/2002 2.3 0.833 1/7/2003 2.45 0.896 4/2/2003 2.7 0.993 7/9/2003 0.986 2.68 10/7/2003 2.88 1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.29	NO	0.829	N/A
MW361	Downgradient	Yes	2.12	NO	0.751	N/A
MW364	Downgradient	Yes	2.06	NO	0.723	N/A
MW367	Sidegradient	Yes	2.95	NO	1.082	N/A
MW370	Upgradient	Yes	2.44	NO	0.892	N/A
MW373	Upgradient	Yes	2.51	NO	0.920	N/A
NI/A D	14- 1141C-1 N	J D-44-	J 1 - 1-		3-41:3-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2015 Statistical Analysis **Sodium** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 51.544 **S**= 15.227 **CV(1)**=0.295

K factor=** 2.523

TL(1)= 89.962

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.906 S = 0.272 CV(2) = 0.070

K factor=** 2.523

TL(2) = 4.592

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.770
Date Collected	Result	
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	39.3	NO	3.671	N/A
MW361	Downgradient	Yes	44.6	NO	3.798	N/A
MW364	Downgradient	Yes	46.3	NO	3.835	N/A
MW367	Sidegradient	Yes	36.1	NO	3.586	N/A
MW370	Upgradient	Yes	44	NO	3.784	N/A
MW373	Upgradient	Yes	57.1	NO	4.045	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 122.381 **S**= 195.095 **CV(1)**=1.594

K factor=** 2.523

TL(1)= 614.606 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.985 S = 1.323 CV(2) = 0.332

K factor=** 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 17.4 2.856 4/23/2002 37.9 3.635 7/15/2002 15.7 2.754 10/8/2002 13.4 2.595 2.667 1/8/2003 14.4 4/3/2003 18.1 2.896 7/9/2003 9.6 2.262 10/6/2003 16.5 2.803 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 163.3 5.096 4/23/2002 809.6 6.697 7/16/2002 109.4 4.695 10/8/2002 110.6 4.706 1/7/2003 113.7 4.734 4/2/2003 4.890 133 7/9/2003 182.1 5.205

193.4

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	80.1	N/A	4.383	NO
MW361	Downgradient	Yes	74	N/A	4.304	NO
MW364	Downgradient	Yes	71.6	N/A	4.271	NO
MW367	Sidegradient	Yes	43.4	N/A	3.770	NO
MW370	Upgradient	Yes	19	N/A	2.944	NO
MW373	Upgradient	Yes	149	N/A	5.004	NO
NT/A D	1, 11, 1	T D	1 . 11	, 1 .	1.7	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

5.265

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 7.655 S = 13.274 CV(1) = 1.734 K factor** = 2.523
 TL(1) = 41.146 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.946 X = 0.939 X = 0.483 X = 0.483 X = 0.939 X = 0.939

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	10.8	2.380
4/23/2002	8.53	2.144
7/15/2002	5.09	1.627
10/8/2002	4.78	1.564
1/8/2003	-5.12	#Func!
4/3/2003	5.11	1.631
7/9/2003	4.25	1.447
10/6/2003	6.54	1.878
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.803
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 16.5	2.803
Date Collected 3/18/2002 4/23/2002	Result 16.5 3.49	2.803 1.250
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 16.5 3.49 1.42	2.803 1.250 0.351
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 16.5 3.49 1.42 -6.06	2.803 1.250 0.351 #Func!
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 16.5 3.49 1.42 -6.06 -8.41	2.803 1.250 0.351 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	57.6	N/A	4.054	YES	
MW361	Downgradient	Yes	42.8	N/A	3.757	NO	
MW364	Downgradient	Yes	58.7	N/A	4.072	YES	
MW367	Sidegradient	Yes	35.1	N/A	3.558	NO	
MW370	Upgradient	Yes	60.3	N/A	4.099	YES	
MW373	Upgradient	Yes	37.3	N/A	3.619	NO	
NT/A D	1. 11 .10 1 3						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW364

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.169 S = 12.072 CV(1) = 1.957 K factor** = 2.523 TL(1) = 36.626 LL(1) = N/A

Statistics-Transformed Background Data

X= 1.069 **S**= 1.014 **CV(2)**= 0.948

K factor=** 2.523

TL(2)= 3.626

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.2 0.182 4/23/2002 4.3 1.459 0.956 7/15/2002 2.6 10/8/2002 2.3 0.8331/8/2003 3 1.099 4/3/2003 1.2 0.182 7/9/2003 2.6 0.956 10/6/2003 1.7 0.531 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1.1 0.095 4/23/2002 17.5 2.862 49 7/16/2002 3.892 10/8/2002 2.9 1.065 1/7/2003 3.9 1.361 4/2/2003 2.5 0.916 7/9/2003 1.7 0.531 10/7/2003 1.2 0.182

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.627	N/A	-0.467	NO	
MW361	Downgradient	Yes	0.637	N/A	-0.451	NO	
MW364	Downgradient	Yes	0.618	N/A	-0.481	NO	
MW367	Sidegradient	Yes	0.655	N/A	-0.423	NO	
MW370	Upgradient	Yes	0.68	N/A	-0.386	NO	
MW373	Upgradient	Yes	0.936	N/A	-0.066	NO	
3.T/A D							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

K factor=** 2.523

TL(1) = 277.798LL(1)=N/A

Statistics-Transformed Background Data

X = 3.971 S = 0.950 CV(2) = 0.239

K factor=** 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.912 50 4/23/2002 228 5.429 7/15/2002 88 4.477 10/8/2002 58 4.060 4.282 1/8/2003 72.4 4/3/2003 26.6 3.281 7/9/2003 2.797 16.4 10/6/2003 31.1 3.437 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 50 3.912 4/23/2002 276 5.620 7/16/2002 177 5.176 10/8/2002 76 4.331 1/7/2003 45.9 3.826 4/2/2003 57.8 4.057 7/9/2003 2.303 10

13.9

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data							
_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
	MW358	Downgradient	Yes	7.58	NO	2.026	N/A	
	MW361	Downgradient	No	10	N/A	2.303	N/A	
	MW364	Downgradient	Yes	5.74	NO	1.747	N/A	
	MW367	Sidegradient	No	10	N/A	2.303	N/A	
	MW370	Upgradient	No	10	N/A	2.303	N/A	
	MW373	Upgradient	Yes	7.02	NO	1.949	N/A	
	27/4 75	1 11 10 1					_	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.632

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2015 Statistical Analysis **Trichloroethene** UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X= 12.188 **S**= 6.950 **CV(1)**=0.570 **K factor**=** 2.523 Statistics-Background Data TL(1) = 29.721LL(1)=N/A **Statistics-Transformed Background** X = 2.305S = 0.687CV(2) = 0.298

Data

K factor=** 2.523

TL(2) = 4.039

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 19 2.944 4/23/2002 17 2.833 15 7/15/2002 2.708 10/8/2002 18 2.890 17 1/8/2003 2.833 4/3/2003 18 2.890 7/9/2003 15 2.708 10/6/2003 16 2.773 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 7/16/2002 3 1.099 10/8/2002 4 1.386 1/7/2003 6 1.792 4/2/2003 5 1.609 7/9/2003 1.792 6 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	4.64	N/A	1.535	N/A	
MW361	Downgradient	Yes	6.92	NO	1.934	N/A	
MW364	Downgradient	Yes	4.3	N/A	1.459	N/A	
MW367	Sidegradient	Yes	2.88	N/A	1.058	N/A	
MW370	Upgradient	Yes	0.83	N/A	-0.186	N/A	
MW373	Upgradient	Yes	8.35	NO	2.122	N/A	
NI/A D	Ita idantified on N	I D-44-	J 1 - 1-		3-41:3-4:		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.008 CV(1) = 0.324 K factor**= 2.523
 TL(1) = 0.044 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.749 S = 0.265 CV(2) = -0.071 K factor**= 2.523
 TL(2) = -3.080 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.035 -3.352 4/23/2002 0.033 -3.4110.025 7/15/2002 -3.68910/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.912 7/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 0.048 -3.037 4/23/2002 0.025 -3.689 7/16/2002 0.025 -3.68910/8/2002 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	0.01	N/A	-4.605	N/A	
MW361	Downgradient	Yes	0.00777	NO	-4.857	N/A	
MW364	Downgradient	No	0.01	N/A	-4.605	N/A	
MW367	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW370	Upgradient	No	0.01	N/A	-4.605	N/A	
MW373	Upgradient	No	0.01	N/A	-4.605	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison C-746-U Third Quarter 2015 Statistical Analysis Zinc UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.055S = 0.037CV(1)=0.673TL(1) = 0.147LL(1)=N/A **Statistics-Transformed Background** X = -3.131 S = 0.691

Data

CV(2) = -0.221

K factor=** 2.523

TL(2) = -1.388

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.1 -2.3034/23/2002 0.1 -2.3037/15/2002 0.1 -2.30310/8/2002 0.025 -3.6890.035 1/8/2003 -3.3524/3/2003 0.035 -3.3527/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.1 -2.303 4/23/2002 0.1 -2.3037/16/2002 0.1 -2.30310/8/2002 0.025 -3.689 1/7/2003 0.035 -3.352 4/2/2003 0.035 -3.3527/9/2003 0.0234 -3.755 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.00517	NO	-5.265	N/A	
MW361	Downgradient	No	0.01	N/A	-4.605	N/A	
MW364	Downgradient	Yes	0.0341	NO	-3.378	N/A	
MW367	Sidegradient	Yes	0.00482	NO	-5.335	N/A	
MW370	Upgradient	No	0.01	N/A	-4.605	N/A	
MW373	Upgradient	No	0.01	N/A	-4.605	N/A	
3.7/4 D							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-U Third Quarter 2015 Statistical Analysis

Current Background Comparison

Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 2.166
 S= 1.141
 CV(1)=0.527
 K factor**= 2.523
 TL(1)= 5.045
 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.635
 S= 0.557
 CV(2)=0.878
 K factor**= 2.523
 TL(2)= 2.041
 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Data

1/21/2015

4/9/2015

Well Number: MW371 Date Collected Result LN(Result) 7/16/2013 2.76 1.015 10/8/2013 0.322 1.38 1.97 1/14/2014 0.678 4/14/2014 3.87 1.353 9/22/2014 1.34 0.293 10/20/2014 0.98 -0.020 1/21/2015 1.79 0.582 4/13/2015 1.491 4.44 Well Number: MW374 Date Collected Result LN(Result) 7/16/2013 3.41 1.227 10/9/2013 2.74 1.008 1/14/2014 1.67 0.513 4/15/2014 3.44 1.235 1.76 7/7/2014 0.565 10/16/2014 0.86 -0.151

0.66

1.59

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

UCRS

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	7.01	YES	1.947	N/A
MW362	Downgradien	t Yes	5.33	YES	1.673	N/A
MW371	Upgradient	Yes	2.73	NO	1.004	N/A

Conclusion of Statistical Analysis on Current Data

-0.416

0.464

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW359 MW362

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2015 Statistical Analysis

Current Background Comparison UCRS

Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 450.875 S = 159.280 CV(1) = 0.353

K factor=** 2.523

TL(1) = 852.737LL(1)=N/A

Statistics-Transformed Background Data

X = 6.058S = 0.332CV(2) = 0.055 **K** factor**= 2.523

TL(2)= 6.896

LL(2)=N/A

L(2)

Current Background Data from Upgradient Wells with Transformed Result

Well Number MW371

WCII INUIIIOCI.	101 00 3 / 1	
Date Collected	Result	LN(Result)
7/16/2013	390	5.966
10/8/2013	544	6.299
1/14/2014	374	5.924
4/14/2014	476	6.165
9/22/2014	311	5.740
10/20/2014	360	5.886
1/21/2015	774	6.652
4/13/2015	384	5.951
Well Number:	MW374	

Well Number:	MW374	
Date Collected	Result	LN(Result)
7/16/2013	344	5.841
10/9/2013	802	6.687
1/14/2014	515	6.244
4/15/2014	499	6.213
7/7/2014	259	5.557
10/16/2014	257	5.549
1/21/2015	530	6.273
4/9/2015	395	5.979

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW359	Downgradien	t Yes	465	NO	6.142	N/A
MW362	Downgradien	t Yes	447	NO	6.103	N/A
MW371	Upgradient	Yes	368	NO	5.908	N/A
MW374	Upgradient	Yes	268	NO	5.591	N/A
MW375	Sidegradient	Yes	443	NO	6.094	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 9.701
 S= 4.937
 CV(1)=0.509 K factor**= 2.523
 TL(1)=22.157 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.159
 S= 0.483
 CV(2)=0.224 K factor**= 2.523
 TL(2)=3.377 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Data

4/9/2015

Well Number: MW371 Date Collected Result LN(Result) 7/16/2013 19 2.944 10/8/2013 13 2.565 9.9 2.293 1/14/2014 4/14/2014 16.4 2.797 7/8/2014 18.6 2.923 10/20/2014 10.5 2.351 1/21/2015 9.23 2.222 4/13/2015 13.2 2.580 Well Number: MW374 Date Collected Result LN(Result) 7/16/2013 5.6 1.723 10/9/2013 6.6 1.887 1/14/2014 5.1 1.629 4/15/2014 5.63 1.728 7/7/2014 5.64 1.730 10/16/2014 1.746 5.73 1/21/2015 5.39 1.685

5.7

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	49.7	YES	3.906	N/A
MW362	Downgradien	t Yes	33.7	YES	3.517	N/A
MW371	Upgradient	Yes	18.9	NO	2.939	N/A
MW375	Sidegradient	Yes	23.6	YES	3.161	N/A

Conclusion of Statistical Analysis on Current Data

1.740

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW359 MW362 MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

URGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 38.444 S = 21.982 CV(1) = 0.572

K factor=** 2.523

TL(1)= 93.904

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.478 S = 0.618

CV(2) = 0.178

K factor**= 2.523

TL(2) = 5.037

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/16/2013	19.9	2.991
10/8/2013	16.2	2.785
1/14/2014	21.8	3.082
4/14/2014	16.4	2.797
7/8/2014	15.5	2.741
10/20/2014	16.8	2.821
1/13/2015	16.5	2.803
4/13/2015	28	3.332

1/13/2013	10.5	2.803
4/13/2015	28	3.332
Well Number:	MW372	
Date Collected	Result	LN(Result)
7/16/2013	63.5	4.151
10/9/2013	60.2	4.098
1/14/2014	31.3	3.444
4/16/2014	70.5	4.256
7/7/2014	59.1	4.079
10/16/2014	59.3	4.083
1/21/2015	53.5	3.980
4/9/2015	66.6	4.199

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Unoradient	Yes	62.6	NO	4 137	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 588.000 S = 207.218 CV(1) = 0.352

K factor=** 2.523

TL(1)= 1110.812 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.315 S = 0.366 CV(2) = 0.058

K factor**= 2.523

TL(2) = 7.239

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/16/2013	427	6.057
10/8/2013	376	5.930
1/14/2014	392	5.971
4/14/2014	380	5.940
9/22/2014	370	5.914
10/20/2014	371	5.916
1/13/2015	374	5.924
4/13/2015	434	6.073

4/13/2015	434	6.073
Well Number:	MW372	
Date Collected	Result	LN(Result)
7/16/2013	822	6.712
10/9/2013	791	6.673
1/14/2014	759	6.632
4/16/2014	837	6.730
7/7/2014	839	6.732
10/16/2014	766	6.641
1/21/2015	701	6.553
4/9/2015	769	6.645

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Unoradient	Yes	758	NO	6.631	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- $TL \quad Upper \ Tolerance \ Limit, \ TL = X + (K * S), \qquad \quad LL \quad Lower \ Tolerance \ Limit, \ LL = X (K * S)$
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 325.625 S = 135.677 CV(1) = 0.417

K factor=** 2.523

TL(1)= 667.939

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.701

S = 0.427

CV(2) = 0.075

K factor**= 2.523

TL(2) = 6.780

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 7/16/2013 232 5.447 10/8/2013 228 5.429 1/14/2014 216 5.375 4/14/2014 213 5.361 7/8/2014 150 5.011 10/20/2014 193 5.263 1/13/2015 207 5.333 1/12/2015

4/13/2015	201	5.303
Well Number:	MW372	
Date Collected	Result	LN(Result)
7/16/2013	503	6.221
10/9/2013	481	6.176
1/14/2014	455	6.120
4/16/2014	546	6.303
7/7/2014	314	5.749
10/16/2014	476	6.165
1/21/2015	374	5.924
4/9/2015	421	6.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Unoradient	Yes	441	NO	6.089	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Toleran
- LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 14.878 **S**= 7.917

CV(1)=0.532

K factor=** 2.523

TL(1) = 34.851

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.549

S = 0.582 CV(2) = 0.228

K factor**= 2.523

TL(2) = 4.018

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/16/2013 7.62 2.031 10/8/2013 6.5 1.872 2.255 1/14/2014 9.54 4/14/2014 6.7 1.902 7/8/2014 1.733 5.66 10/20/2014 7.03 1.950 1/13/2015 7.19 1.973 4/13/2015 2.542

12.7 Well Number: MW372 Date Collected Result LN(Result) 7/16/2013 23.8 3.170 10/9/2013 22.8 3.127 1/14/2014 12.8 2.549 4/16/2014 26.1 3.262 7/7/2014 21.6 3.073 10/16/2014 22.4 3.109 1/21/2015 20.4 3.016 4/9/2015 25.2 3.227

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	24.8	NO	3 211	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison URGA

Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 428.938 S = 220.633 CV(1) = 0.514

K factor**= 2.523

TL(1)= 985.595 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.906S = 0.625CV(2) = 0.106 **K** factor**= 2.523

TL(2) = 7.483

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/16/2013 284 5.649 10/8/2013 750 6.620 6.082 1/14/2014 438 4/14/2014 514 6.242

9/22/2014 331 5.802 10/20/2014 405 6.004 1/13/2015 779 6.658 4/13/2015 404 6.001

Well Number: MW372 Date Collected Result LN(Result) 7/16/2013 273 5.609 10/9/2013 519 6.252 1/14/2014 740 6.607 4/16/2014 236 5.464 7/7/2014 126 4.836 10/16/2014 88 4.477 1/21/2015 693 6.541

283

4/9/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradien	t Yes	489	NO	6.192	N/A
MW360	Downgradien	t Yes	454	NO	6.118	N/A
MW363	Downgradien	t Yes	731	NO	6.594	N/A
MW366	Sidegradient	Yes	387	NO	5.958	N/A
MW369	Upgradient	Yes	410	NO	6.016	N/A
MW372	Upgradient	Yes	220	NO	5.394	N/A

Conclusion of Statistical Analysis on Current Data

5.645

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 77.051 S = 70.847 CV(1) = 0.919

K factor=** 2.523

TL(1) = 255.797

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.615 **S**= 1.409

CV(2) = 0.390

K factor**= 2.523

TL(2) = 7.169

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/16/2013	8.7	2.163
10/8/2013	13	2.565
1/14/2014	8.1	2.092
4/14/2014	8.09	2.091
7/8/2014	8.17	2.100
10/20/2014	7.65	2.035
1/13/2015	8.7	2.163
4/13/2015	19.4	2.965

Well Number:	MW372	
Date Collected	Result	LN(Result)
7/16/2013	150	5.011
10/9/2013	150	5.011
1/14/2014	140	4.942
4/16/2014	176	5.170
7/7/2014	170	5.136
10/16/2014	118	4.771
1/21/2015	109	4.691
4/9/2015	138	4.927
10/9/2013 1/14/2014 4/16/2014 7/7/2014 10/16/2014 1/21/2015	150 140 176 170 118 109	5.011 5.011 4.942 5.170 5.136 4.771 4.691

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	135	NO	4 905	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison LRGA

Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

1/21/2015

4/9/2015

X = 475.188 S = 135.149 CV(1) = 0.284

K factor**= 2.523

TL(1)= 816.168 **LL(1)**=N/A

Statistics-Transformed Background

X = 6.130 S = 0.258

CV(2)=0.042

K factor**= 2.523

TL(2) = 6.782

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/16/2013 387 5.958 10/8/2013 811 6.698 6.094 1/14/2014 443 535 4/15/2014 6.282 9/22/2014 353 5.866 10/20/2014 363 5.894 1/13/2015 691 6.538 4/13/2015 5.940 380 Well Number: MW373 Date Collected Result LN(Result) 7/16/2013 500 6.215 10/9/2013 627 6.441 1/14/2014 494 6.203 4/16/2014 398 5.986 7/7/2014 374 5.924 10/16/2014 404 6.001

336

507

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Qual ttl	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradien	t Yes	342	NO	5.835	N/A
MW361	Downgradien	t Yes	567	NO	6.340	N/A
MW364	Downgradien	t Yes	700	NO	6.551	N/A
MW367	Sidegradient	Yes	416	NO	6.031	N/A
MW370	Upgradient	Yes	388	NO	5.961	N/A
MW373	Upgradient	Yes	468	NO	6.148	N/A

Conclusion of Statistical Analysis on Current Data

5.817

6.229

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Current Background Comparison UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

pH

X = 6.119

CV(1)=0.014

K factor**= 2.904

TL(1) = 6.372

LL(1)=5.8672

Statistics-Transformed Background Data

X = 1.811

S = 0.014 CV(2) = 0.008

S = 0.087

K factor**= 2.904

TL(2)= 1.852

LL(2)=1.7703

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/16/2013 6.27 1.836 10/8/2013 1.807 6.09 1/14/2014 6.11 1.810 4/15/2014 6.08 1.805 7/8/2014 6.12 1.812 10/20/2014 6.03 1.797 1/13/2015 6.23 1.829 1.808 4/13/2015 6.1

.,,		
Well Number:	MW373	
Date Collected	Result	LN(Result)
7/16/2013	6.13	1.813
10/9/2013	6.08	1.805
1/14/2014	6.28	1.837
4/16/2014	6.08	1.805
7/7/2014	6.08	1.805
10/16/2014	6.22	1.828
1/21/2015	5.99	1.790
4/9/2015	6.02	1.795

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result		` /	LN(Result) >TL(2)
				Result <ll(1)?< td=""><td></td><td>LN(Result) <ll(2)< td=""></ll(2)<></td></ll(1)?<>		LN(Result) <ll(2)< td=""></ll(2)<>
MW361	Downgradien	t Ves	5.81	YES	1.760	N/Δ

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW361

The test well(s) listed exceeded the Lower Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Background Comparison LRGA UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the

X = 32.138 S = 14.481 CV(1) = 0.451**K factor**=** 2.523 Statistics-Background Data TL(1)= 68.674 LL(1)=N/A **Statistics-Transformed Background** TL(2) = 4.552

Data

Technetium-99

X = 3.373S = 0.467CV(2)=0.139 **K** factor**= 2.523

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/16/2013 33.2 3.503 10/8/2013 27.9 3.329 1/14/2014 10.6 2.361 4/15/2014 27.9 3.329 7/8/2014 30.8 3.428 10/20/2014 22.5 3.114 1/13/2015 14.8 2.695 4/13/2015 20.9 3.040 Well Number: MW373 Date Collected Result LN(Result) 7/16/2013 63.7 4.154 4.093 10/9/2013 59.9 1/14/2014 37.8 3.632 4/16/2014 43.6 3.775 7/7/2014 20.1 3.001

38

28.8

33.7

10/16/2014

1/21/2015

4/9/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Qual ttl	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradien	t Yes	57.6	NO	4.054	N/A
MW364	Downgradien	t Yes	58.7	NO	4.072	N/A
MW370	Upgradient	Yes	60.3	NO	4.099	N/A

Conclusion of Statistical Analysis on Current Data

3.638

3.360

3.517

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

November 3, 2015

Ms. Myrna Redfield Fluor Federal Services, Inc. 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Redfield:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Fluor Federal Services, Inc.

For this project, the statistical analyses conducted on the third quarter 2015 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Blewett

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED—QUARTERLY, 3rd CY 2015

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2015 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on August 4, 2015. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW365, MW368, MW376, and MW377 had insufficient water to permit sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradient for both the URGA and LRGA at the C-746-U Landfill were similar $(4.32 \times 10^{-4} \text{ ft/ft})$. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was $3.09 \times 10^{-4} \text{ ft/ft}$. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for August 2015, the groundwater flow direction in the immediate area of the landfill conforms to the typical regional flow direction.

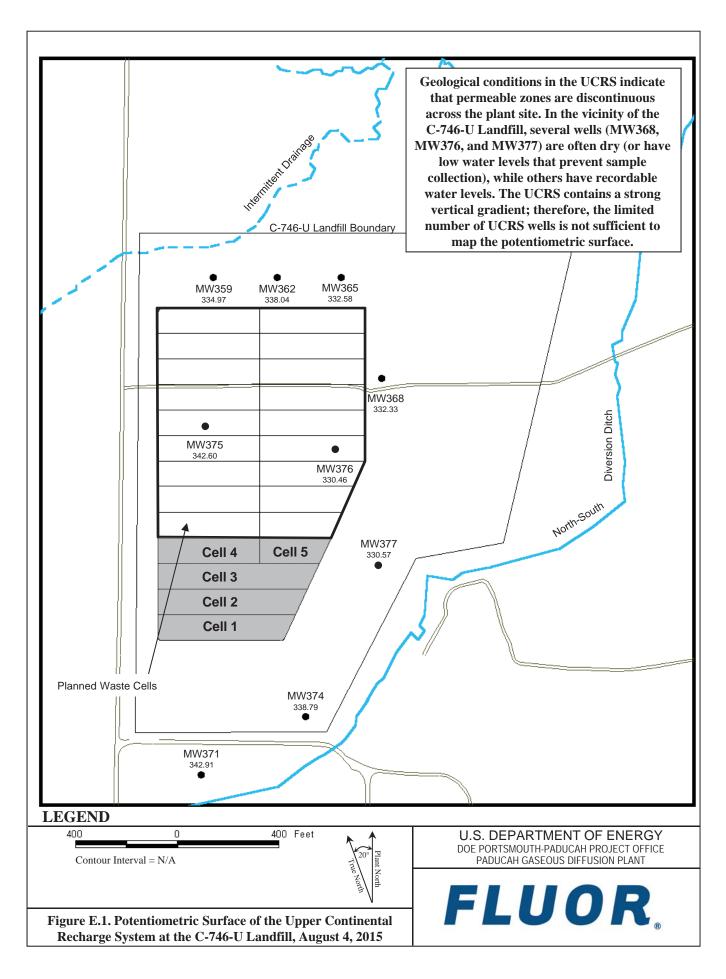


Table E.1. C-746-U Landfill Third Quarter 2015 (August) Water Levels

			C-7	46-U Landf	ill (August	2015) Wate	er Levels			
							Rav	v Data	Correct	ed Data ^a
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
8/4/2015	7:32	MW357	URGA	368.99	30.01	0.00	41.64	327.35	41.64	327.35
8/4/2015	7:34	MW358	LRGA	369.13	30.01	0.00	41.77	327.36	41.77	327.36
8/4/2015	7:33	MW359	UCRS	369.11	30.01	0.00	34.14	334.97	34.14	334.97
8/4/2015	7:31	MW360	URGA	362.30	30.01	0.00	34.96	327.34	34.96	327.34
8/4/2015	7:29	MW361	LRGA	361.54	30.01	0.00	34.23	327.31	34.23	327.31
8/4/2015	7:30	MW362	UCRS	362.04	30.01	0.00	24.00	338.04	24.00	338.04
8/4/2015	14:03	MW363	URGA	368.83	29.97	0.05	41.57	327.26	41.62	327.21
8/4/2015	7:39	MW364	LRGA	367.75	30.01	0.00	40.53	327.22	40.53	327.22
8/4/2015	7:40	MW365	UCRS	368.37	30.01	0.00	35.79	332.58	35.79	332.58
8/4/2015	13:56	MW366	URGA	369.27	29.97	0.05	41.88	327.39	41.93	327.34
8/4/2015	13:55	MW367	LRGA	369.66	29.97	0.05	42.28	327.38	42.33	327.33
8/4/2015	7:44	MW368	UCRS	369.27	30.01	0.00	36.94	332.33	36.94	332.33
8/4/2015	8:14	MW369	URGA	364.48	30.01	0.00	36.26	328.22	36.26	328.22
8/4/2015	8:16	MW370	LRGA	365.35	30.01	0.00	37.14	328.21	37.14	328.21
8/4/2015	8:15	MW371	UCRS	364.88	30.01	0.00	21.97	342.91	21.97	342.91
8/4/2015	8:06	MW372	URGA	359.66	30.01	0.00	ND^b		ND^b	
8/4/2015	8:07	MW373	LRGA	359.95	30.01	0.00	31.81	328.14	31.81	328.14
8/4/2015	8:08	MW374	UCRS	359.71	30.01	0.00	20.92	338.79	20.92	338.79
8/4/2015	7:59	MW375	UCRS	370.53	30.01	0.00	27.93	342.60	27.93	342.60
8/4/2015	8:01	MW376	UCRS	370.61	30.01	0.00	40.15	330.46	40.15	330.46
8/4/2015	8:03	MW377	UCRS	365.92	30.01	0.00	35.35	330.57	35.35	330.57

Initial Barometric Pressure

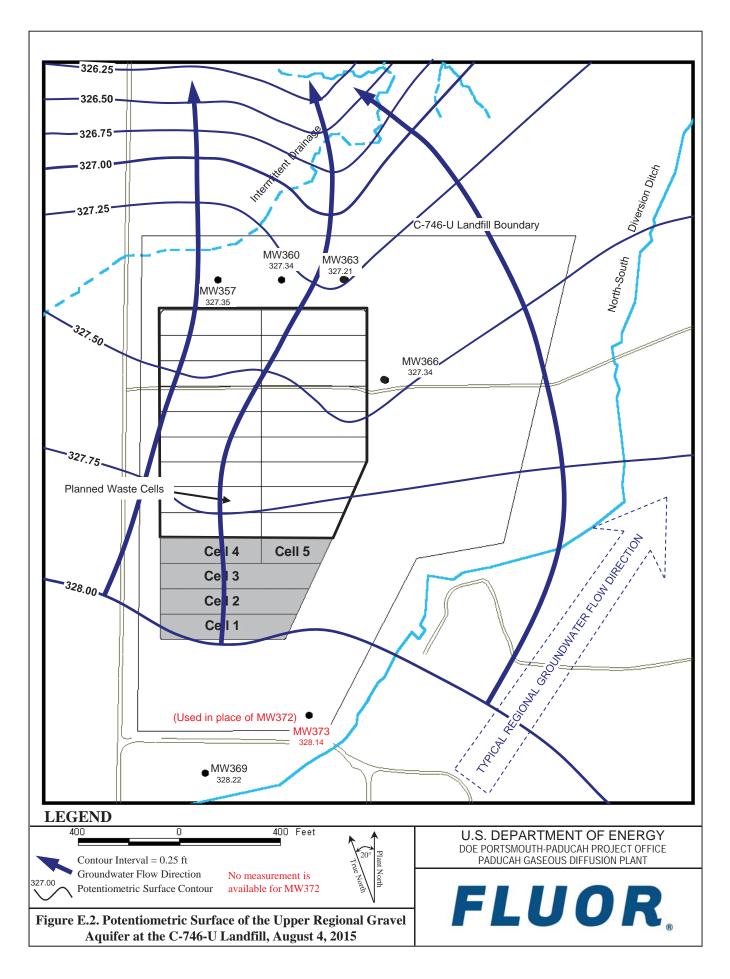
30.01

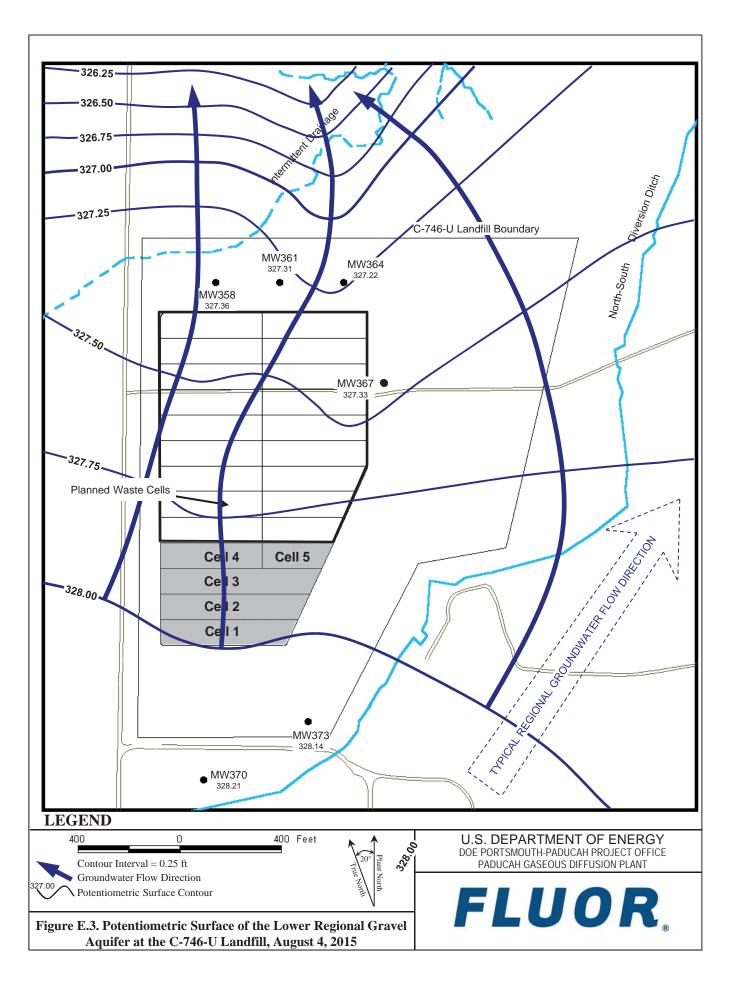
Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer


LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

ND = No Data acquired

^a Assumes a barometric efficiency of 1.0.
^b Presence of wasps prevented measurement of water level.

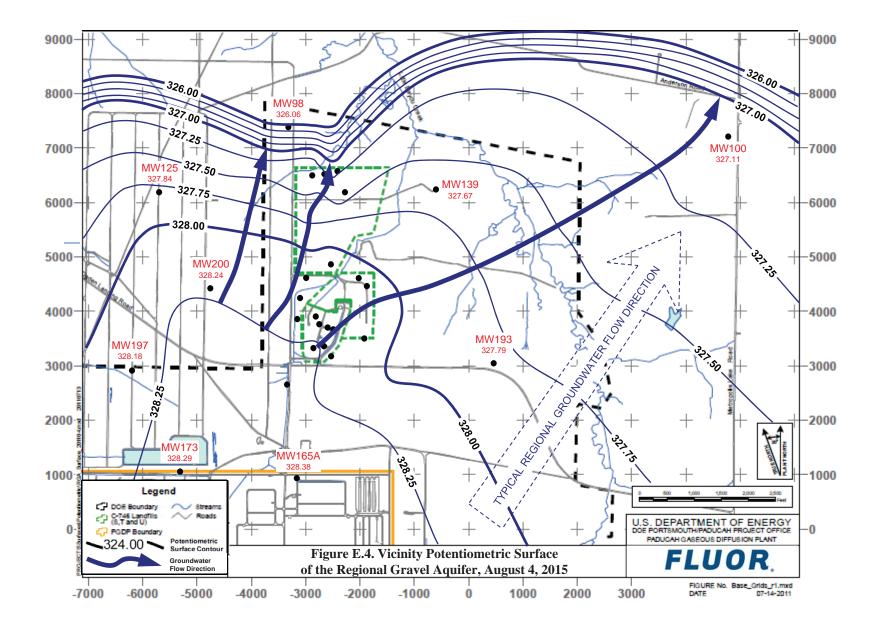



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	4.32×10^{-4}
Beneath Landfill—Lower RGA	4.32×10^{-4}
Vicinity	3.09×10^{-4}

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific	c Discharge (q)	Average 1	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.31	1.11×10^{-4}	1.25	4.42×10^{-4}
425	0.150	0.18	6.48×10^{-5}	0.73	2.59×10^{-4}
Lower RGA					
725	0.256	0.31	1.11×10^{-4}	1.25	4.42×10^{-4}
425	0.150	0.18	6.48×10^{-5}	0.73	2.59×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the third quarter 2015 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	None	
Lower Regional Gravel Aquifer	Technetium-99	MW358, MW364, MW370

8/31/2015

Fluor Federal Services PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL PERMIT NUMBER 073-00045 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT

CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4798	MW357	Trichloroethene	8260B	5.88	ug/L	5
8004-4795	MW361	Trichloroethene	8260B	6.92	ug/L	5
8004-4808	MW372	Trichloroethene	8260B	8.2	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	8.35	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill

Gradient S S S S D D D U U S D D U U S D D S U	Groundwater Flow System	I		UCR	S							URG	A					LRG	A		
Monitoring Well 368 375 376 377 339 362 365 371 374 366 360 363 373 389 372 367 361 364 388 370		S	S			D	D	U	U	S	D			U	U	S	D			U	U
ACETONE																					
Ounter 3, 2002 Ounter 1, 2003 Ounter 1, 2003 Ounter 2, 2003 Ounter 3, 2004 Ounter 3, 2004 Ounter 3, 2004 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2007 Ounter 4, 2007 Ounter 4, 2008 Ounter 3, 2008 Ounter 3, 2008 Ounter 3, 2008 Ounter 3, 2008 Ounter 4, 2008 Ounter 3, 2008 Ounter 3, 2008 Ounter 3, 2008 Ounter 3, 2008 Ounter 4, 2004 Ounter 2, 2004 Ounter 2, 2004 Ounter 3, 2009 Ounter 3, 2008 Ounter 3, 2009 Ounter 4, 2004 Ounter 3, 2006 Ounter 4, 2006 Ounter 2, 2007 Ounter 4, 2006 Ounter 2, 2007 Ounter 2, 2007 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2008 Ounter 4, 2009 Ounter 5, 2009 Ounter 6, 2009 Ounter																					
Ounter 4, 2002 Ounter 1, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 4, 2003 Ounter 4, 2003 Ounter 4, 2003 Ounter 4, 2004 Ounter 3, 2004 Ounter 3, 2005 Ounter 4, 2006 Ounter 3, 2005 Ounter 4, 2006 Ounter 3, 2006 Ounter 4, 2006 Ounter 3, 2006 Ounter 4, 2006 Ounter 4, 2006 Ounter 2, 2006 Ounter 2, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2007 Ounter 4, 2009 Ounter 4, 2001 Ounter 5, 2001 Ounter 6, 2001 Ounter										*	*	*									
Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2004 Quarter 2, 2000 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2001 Quarter 4, 2006 Quarter 4, 2001 Quarter 5, 2001 Quarter 5, 2001 Quarter 6, 200																					
Oustret 2, 2003																					
Quarter 3, 2003												*									
Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2004 Quarter 1, 2004 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2010 Quarter 5, 2015 Quarter 5, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 5, 2015 Quarter 6, 201		*					*			*					*			*			
Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 ALUMINUM Quarter 3, 2003 BETA ACTIVITY Quarter 2, 2004 Quarter 3, 2003 BETA ACTIVITY Quarter 2, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter						*								*							
Quarter 3, 2005 ALPHA ACTIVITY Quarter 1, 2004 Quarter 3, 2009 Quarter 2, 2004 Quarter 3, 2009 Quarter 1, 2004 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 4, 2009 Quarter 3, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2011 Quarter 6, 2011 Quarter 7, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 201						*										*					
ALPHA ACTIVITY																					
ALPHA ACTIVITY																					
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2009 ALUMINUM Quarter 3, 2003 BETA ACTIVITY Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 5, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2019 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 5, 2016 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2016 Quarter 9, 2016 Quarte																					
Quarter 2, 2004 Quarter 3, 2009 ALLMINUM Quarter 3, 2003 BETA ACTIVITY Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 7, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2010 Quarter 2, 2011 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 5, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 9, 2015 Quart																					
Quarter 3, 2009 ALUMINUM Quarter 3, 2003 BETA ACTIVITY Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2012 Quarter 4, 2013 Quarter 1, 2015 Quarter 2, 2016 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 5, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 9, 2015 Quarte																					
ALUNINUM																					
Quarter 3, 2003 BETA ACTIVITY Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 5, 2012 Quarter 6, 2011 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE																					
Description											*										
Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015																					
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015																					
Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2015 Quarter 2, 2015	Ouarter 2, 2004																				
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 8, 200		1																			
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2015		1																			
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015																					
Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 201	` .																				
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 1, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 BROMIDE	` .																				
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2015 BROMIDE																					
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 BROMIDE	` .																				
Quarter 2, 2008 Image: Control of the control of t																					
Quarter 3, 2008 Image: Company of the company of t																					
Quarter 4, 2008 Image: Composition of the c																					
Quarter 1, 2009 Image: Company of the company of t																					
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 BROMIDE	Quarter 2, 2009																				
Quarter 1, 2010 Image: Control of the control of t	Quarter 3, 2009																				
Quarter 2, 2010 Image: square of the content of th	Quarter 4, 2009																				
Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE	Quarter 1, 2010																				
Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE	Quarter 2, 2010																				
Quarter 2, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 4, 2015 Quarter 2, 2015 BROMIDE	Quarter 4, 2010																				
Quarter 1, 2012 Image: square of the content of th	Quarter 2, 2011																				
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE	Quarter 4, 2011																				
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE	Quarter 1, 2012																				
Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE	Quarter 3, 2012																				
Quarter 3, 2013 Image: Control of the control of t																					
Quarter 4, 2013 Image: Control of the control of t	Quarter 1, 2013																				
Quarter 1, 2014 Image: Control of the control of t	Quarter 3, 2013																				
Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 4, 2014 Image: Control of the control of t	Quarter 1, 2014																				
Quarter 1, 2015 Image: Control of the control of t																					
BROMIDE																					
	Quarter 2, 2015																				
Quarter 2, 2004 *	BROMIDE																				
	Quarter 2, 2004												*								

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Groundwater Flow System Gradient S Monitoring Well 368 CALCIUM Quarter 3, 2003 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 7, 2000	S 375	S 376	S 377	D 359	D 362	D 365	U 371	U 374	\$ 366 **	D 360	D 363	D 357	U 369	* * * * * * * *	S 367	D 361	D 364	S 358	U 370	**
CALCIUM Quarter 3, 2003 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Carbon Disulfibe Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2005 Quarter 4, 2010 Quarter 7, 2010 Quarter 7, 2006 Quarter 7, 2010 Quarter 7, 2006 Quarter 4, 2010 Quarter 7, 2001 Quarter 7, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 4, 2010 Quarter 7, 2000 Quarter 7, 2000	375	376	377	359	362	365	371	374		360	363	357	369	* * * * * * * * * * * * * * * * * * * *	367	361	364	358	370	*
Quarter 3, 2003 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2010 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2002 Quarter 3, 2002 Quarter 3, 2002 Quarter 4, 2002 Quarter 3, 2003 Quarter 3, 2002 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2000 Quarter 4, 2010 Quarter 3, 2001 Quarter 3, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2000 Quarter 4, 2000 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003									*					* * * * * *						
Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2001 Quarter 3, 2000 Quarter 4, 2010 Quarter 3, 2002 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2000 Quarter 7, 2000									*					* * * * * *						
Quarter 3, 2006 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2002 Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2002														* * * * * *						
Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2015 Carbon Disulfide Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 20016 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 3, 2000 Quarter 4, 2010 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2002 Quarter 4, 2003 Quarter 4, 2000														* * * * * *						
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2000 Quarter 7, 2000 Quarter 9, 2000 Quarter 9, 2000 Quarter 9, 2000 Quarter 1, 2000 Quarter 9, 2000 Quarter 1, 2000 Quarter 9, 2000														* * * * *						
Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003														* * * * *						
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 4, 2000 Quarter 7, 20003 Quarter 2, 20003 Quarter 2, 20003														* * *						
Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003														* * *						
Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003														*						
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2003 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003														*						
Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2010 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2002														*						<u> </u>
Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2002 Quarter 3, 2002 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2002																				*
Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2002														*						
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2001 Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2002																				*
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2001 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2002											1			*						*
Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 2, 2015 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003														*						*
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003														*						*
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003														*						
Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003														*						*
Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2003 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 **						1								*						771
Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003					1									*						*
Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2015 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **														*						
Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2003 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003														*						*
Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2003 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **														*						*
Quarter 2, 2015 Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2003 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **														*						
Quarter 3, 2015 CARBON DISULFIDE Quarter 3, 2003 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **			1											*						
Quarter 3, 2003 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **														*						
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **																				
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **									*											
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **	1					*														
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **					*															
Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **					*															
Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **					*															
Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **					*															
Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **	*									*										
CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **													*							<u> </u>
Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003	$oldsymbol{ol}}}}}}}}}}}}}}}}}$													*						
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 **																				
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003	↓								*	*	*	*	*	*						
Quarter 2, 2003 Quarter 3, 2003 **	↓								*	*										
Quarter 3, 2003 *	↓								*	*										
	—								*	*	*									
Quarter 4, 2003	₩								*	*					*					
	—				*				ጥ	*										
Quarter 3, 2004	—				- Ju				*					NJ.	4			J		
Quarter 3, 2005	₩	-	-		*				*					*	*	-	.	*		
Quarter 4, 2005	+-	+	 		*											 	*	*		
Quarter 1, 2006																		不		
CHLORIDE Ougstor 1, 2006	-																		*	
Quarter 1, 2006 Quarter 2, 2014	+-	1	-	-	1									*		1	-		不	
COBALT														不						
Quarter 3, 2003 *	+					*			*	*		*	*	*	*	*	*		*	
Quarter 1, 2004		+	 		 	π			Φ.	Φ.		Ψ.	*	Τ.	Φ.	₩.	₩.		ጥ	
CONDUCTIVITY													т .							
Quarter 4, 2002									*											
Quarter 1, 2003		-	1						*											
Quarter 2, 2003			1	-					*	*										
Quarter 4, 2003									*											
Quarter 1, 2004				-					*			l				 				
Zumier 1, 2001			1	1	1															

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System				UCR								URG						LRG			
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well CONDUCTIVITY	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 1, 2005															*						
Quarter 2, 2005															*						
Quarter 3, 2005						*													*		
Quarter 4, 2005															*			*			
Quarter 1, 2006															*						
Quarter 2, 2006															*						
Quarter 3, 2006															*						
Quarter 1, 2007															*						\vdash
Quarter 2, 2007 Quarter 3, 2007															*						\vdash
Quarter 4, 2007															*						
Quarter 1, 2008															*						
Quarter 2, 2008															*						\vdash
Quarter 3, 2008															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011	-														*						
Quarter 3, 2011															*						
Quarter 4, 2011 Quarter 1, 2012														*	*						
Quarter 2, 2012														不	*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						\vdash
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
Quarter 3, 2014															*						
Quarter 4, 2014															*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
DISSOLVED OXYGEN Quarter 1, 2003					*	*				*											
Quarter 1, 2003 Quarter 3, 2003	1		1		*	*	1			*	1						1				
Quarter 4, 2003	1		-		*		-			~	-						-				\vdash
Quarter 1, 2004					*																\Box
Quarter 2, 2004								*								*					
Quarter 1, 2005					*																
Quarter 2, 2005								*													
Quarter 1, 2006	L				*																
Quarter 2, 2006					*			*													
Quarter 3, 2006					*			*													
Quarter 4, 2006					*				*												
Quarter 2, 2007					*			*													
Quarter 3, 2007					*			*	*												
Quarter 1, 2008	<u> </u>		ļ		*		ļ	4	4		ļ						ļ		*		\vdash
Quarter 2, 2008	 		<u> </u>				<u> </u>	*	*	<u> </u>	<u> </u>						<u> </u>				\vdash
Quarter 3, 2008	1		1				*	*		-							1				
Quarter 1, 2009 Quarter 2, 2009	1		 		*		木	*	*	-	<u> </u>						 				
Quarter 2, 2009 Quarter 3, 2009	1		1		T	*	-	*	*	-	-			-		-	1	-			\vdash
Zuarter 3, 2007	_					70		-T	<u> </u>	_						_					

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
DISSOLVED OXYGEN																					
Quarter 1, 2010					*		*														
Quarter 2, 2010					*	*		*	*											*	*
Quarter 3, 2010					*	*															
Quarter 4, 2010							*					*								*	
Quarter 1, 2011						*															
Quarter 2, 2011					*	*	*	*	*					*							
Quarter 3, 2011						*			*												
Quarter 1, 2012							*		*												
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012						*															
Quarter 4, 2012									*												
Quarter 1, 2013						*			*												
Quarter 2, 2013							*		*												
Quarter 3, 2013	*				*		*	*	*												
Quarter 4, 2013									*											*	
Quarter 2, 2014	*				*	*	*	*	*									*			
Quarter 3, 2014	*				*	*	*														<u> </u>
Quarter 4, 2014						*															
Quarter 2, 2015					*	*	*	*													
Quarter 3, 2015					*	*		*													
DISSOLVED SOLIDS																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003							*			*	*										
Quarter 4, 2003										*											
Quarter 3, 2005						*															
Quarter 4, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						\vdash
Quarter 2, 2009															*						\vdash
Quarter 3, 2009															*						—
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						lacksquare
Quarter 3, 2010															*						
															*						
Quarter 4, 2010																					
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012	.									.	 	 	 	*	*	.	 		 		alc.
Quarter 2, 2012	<u> </u>														*						*
Quarter 3, 2012															*						*
Quarter 4, 2012											ļ	ļ	ļ		*		ļ		ļ		<u> </u>
Quarter 1, 2013											ļ	ļ	ļ		*		ļ		ļ		<u> </u>
Quarter 2, 2013											ļ	ļ	ļ		*		ļ		ļ		<u> </u>
Quarter 3, 2013											ļ	ļ	ļ		*		ļ		ļ		<u> </u>
Quarter 4, 2013															*						<u> </u>
Quarter 1, 2014															*						<u> </u>
Quarter 2, 2014															*						<u> </u>
Quarter 4, 2014															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
IODIDE																					
Quarter 2, 2003																*					
Quarter 3, 2003	*									*											
Quarter 4, 2003							*														
Quarter 3, 2010						*		*					*				*				
IODINE-131																					
Quarter 3, 2010																					
																		_			

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System		UCRS							URGA						LRGA						
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375		377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
IODOMETHANE																					
Quarter 4, 2003						*															
IRON																					
Quarter 4, 2002						*															
Quarter 3, 2003																*					
Quarter 4, 2003										*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005															*						*
Quarter 3, 2005						*															*
Quarter 2, 2006															*						*
Quarter 3, 2006															*						
Quarter 1, 2007															*						<u> </u>
Quarter 2, 2008															*						
Quarter 2, 2009															*						<u> </u>
Quarter 3, 2009															*						
Quarter 4, 2009	1												ļ	ļ	*			<u> </u>	ļ	ļ	<u> </u>
Quarter 1, 2010	1														*			ļ			₩
Quarter 2, 2010	₩														*			<u> </u>	ļ		<u> </u>
Quarter 3, 2010	1												ļ	ļ	*			1	ļ	ļ	
Quarter 1, 2011	-														*						
Quarter 2, 2011	-														*						<u> </u>
Quarter 3, 2011	-														*						
Quarter 4, 2011															*						-
Quarter 1, 2012	-														*						
Quarter 2, 2012	-														*						
Quarter 3, 2012 Quarter 4, 2012	-														*						-
Quarter 4, 2012 Quarter 1, 2013	-														*						-
Quarter 1, 2013 Quarter 2, 2013	-														*						-
Quarter 3, 2013	1														*						
Quarter 4, 2013															*						1
Quarter 2, 2014															*						1
Quarter 4, 2014	1														*						
Quarter 2, 2015	1														*						
Quarter 3, 2015	1														*						
MANGANESE															4.						
Quarter 3, 2002										*		*									
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2003										*		*									
Quarter 3, 2003										*		*	*			*	*	*	*		
Ouarter 4, 2003										*	*	*	*				*	*			
Quarter 1, 2004										*	*	*				*	*	*			
Quarter 2, 2004							*			*	*	*						*			
Quarter 3, 2004							*			*	*	*				*					
Quarter 4, 2004										*		*				*					
Quarter 1, 2005										*		*									
Quarter 2, 2005										*		*									
Quarter 3, 2005										*		*				*					
Quarter 4, 2005										*						*					
Quarter 1, 2006										*											
Quarter 2, 2006							*			*		*									
Quarter 3, 2006										*						*					
Quarter 4, 2006										*											
Quarter 1, 2007	1									*											<u> </u>
Quarter 2, 2007							*			*											
Quarter 3, 2007	_						*						ļ	ļ				ļ		ļ	<u> </u>
Quarter 3, 2008	_						*						ļ	ļ				ļ		ļ	<u> </u>
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 3, 2011							*														

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Groundwater Flow System				UCR	RS							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
NICKEL										414											
Quarter 3, 2003	OTEN	TOTAL A								*											
OXIDATION-REDUCTION I	OTE	VIIA	L														.		4		
Quarter 4, 2002	-																*		*		
Quarter 1, 2003	-																不		*		
Quarter 2, 2003 Quarter 3, 2003	*																		*		
Quarter 4, 2003	T				*																
Quarter 4, 2003 Quarter 2, 2004	1				т.								*				*				*
Quarter 3, 2004	1				*			*					*	*	*		*			*	*
Ouarter 4, 2004												*			-		-				*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Ouarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006					*			*	*								*				*
Quarter 2, 2006					*		*	*					*				*			*	
Quarter 3, 2006					*			*					*				*			*	
Quarter 4, 2006					*		*			*		*	*				*			*	*
Quarter 1, 2007		*			*			*					*				*			*	*
Quarter 2, 2007					*								*				*			*	*
Quarter 3, 2007					*			*									*			*	
Quarter 4, 2007																	*			*	*
Quarter 1, 2008					*			*				*	*						*	*	
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009							*	*		*		*	*				ala	*		*	ala
Quarter 2, 2009	-	-14			*	-14	*	*	414	*		*	*	414			*	*		*	*
Quarter 3, 2009	-	*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009	-	*			4	*	*	*	*	*		*	*			<u> </u>	*	*	*	*	*
Quarter 1, 2010		*			*	Ψ.	*	*		*	.	4	*			*	*	*	4	*	.
Quarter 2, 2010	-	*			*	*	*	*	*	*	*	*	*	*	*	木	*	*	*	*	*
Quarter 3, 2010	-	*			不	*	*	*	*	*	*	*	*	*	不	*	*	*	*	*	*
Quarter 4, 2010	-	不				*	不	*	不	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011 Quarter 2, 2011	-	*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011	-	*			т.	*	т.	*	*	*	Ψ.	*	*	*		*	*	*	*	*	*
Quarter 4, 2011	1	*				*		*	*	*	*	*	*	*		*	*	*	т.	*	*
Quarter 1, 2012	1	*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012	+ "	*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013	1	*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013	1	*				<u> </u>		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013	1	*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014	1	*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*			*	*	*	*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2014		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 1, 2015		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015		*			*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
PCB, TOTAL																					
Quarter 4, 2003																	*				
Quarter 3, 2004												*									
Quarter 3, 2005	1						*														
Quarter 2, 2006	<u> </u>		<u> </u>		<u> </u>		*	<u> </u>			<u> </u>					<u> </u>			<u> </u>	<u> </u>	
Quarter 3, 2006	1						*									ļ					
Quarter 1, 2007	<u> </u>		ļ		ļ		*				ļ					<u> </u>				ļ	
Quarter 2, 2007	1						*									ļ					
Quarter 3, 2007	1						*	<u> </u>											<u> </u>		
Quarter 1, 2008	<u> </u>		ļ		ļ		*	ļ			ļ					<u> </u>			ļ	ļ	
Quarter 2, 2008							*									<u> </u>					

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

	URG	ξA					LRG	A		
D	D	D	U	U	S	D	D	S	U	U
6 360	363	357	369	372	367	361	364	358	370	373
	*									
	*									
\bot										
\bot										
\bot										
$\perp \!\!\! \perp \!\!\! \perp$	*			ļ	<u> </u>	ļ	<u> </u>		ļ	<u> </u>
				ļ	<u> </u>	ļ	<u> </u>		ļ	<u> </u>
\bot				ļ	<u> </u>	ļ	<u> </u>		ļ	<u> </u>
\perp										$ldsymbol{eta}$
\bot										
\bot										
										L
										L
										L
					414					
					*					<u> </u>
					*		L			L
							*	*		└
4								*		
+					*					
4			*							
+			*							-
4			*		<u> </u>	u u				
+	NI.	<u> </u>	 	<u> </u>	*	*	 	<u> </u>	<u> </u>	-
+	*			-	4	 	-			₩
	*			-	*	*	-			₩
						*				
					*					
+					*					
+	_		-	 	 				 	-
	_									
*		*								
*		ᅏ	*	<u> </u>		 	 	-	 	
· *		-	不	1	-	 	-	-	-	<u> </u>
*				-	-	-	-		-	
*				<u> </u>		 	 		<u> </u>	-
*				<u> </u>		 	 		<u> </u>	-
ᅏ			뽀	 	-	-	1		 	
+			*	- AFC		├	 		<u> </u>	-
<u> </u>				*		1	 		<u> </u>	-
				 	-	-	1		 	
**										<u> </u>
_	*	*	*	*	*	*	* *	* *	* *	* *

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Groundwater Flow System				UCR	RS							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
STRONTIUM-90																					
Quarter 4, 2008							•														ldot
SULFATE																					
Quarter 1, 2003							*														<u> </u>
Quarter 2, 2003						*	*														<u> </u>
Quarter 3, 2003	*					*	ala														\vdash
Quarter 4, 2003	_				*	ala.	*														\vdash
Quarter 1, 2004	-				*	*	*														
Quarter 2, 2004	-				*	*	*														\vdash
Quarter 3, 2004					*	*	*		*												\vdash
Quarter 1, 2005 Quarter 2, 2005					*	*	*		*						*						\vdash
	-				*	*	*		*						*						\vdash
Quarter 3, 2005	-				不	不	不								.						\vdash
Quarter 4, 2005	-				*				*						*						$\vdash \vdash$
Quarter 1, 2006	-				不	*	*		*						*						\vdash
Quarter 2, 2006	-					*			木						*						$\vdash \vdash$
Quarter 3, 2006	+	 		 	 		*	1	1		 	 	 	 		 	 	-			$\vdash \vdash$
Quarter 1, 2007							*	-	-												$\vdash\vdash$
Quarter 2, 2007	+	 		 	 						 	 	 	 		-	 				$\vdash \vdash$
Quarter 3, 2007	-	- Ju					*														\vdash
Quarter 4, 2007	+	*	<u> </u>	<u> </u>	410		110	-	111		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>			$\vdash \vdash$
Quarter 1, 2008		*			*	Al-	*	<u> </u>	*		<u> </u>	<u> </u>	<u> </u>	<u> </u>							igwdot
Quarter 2, 2008	\perp	*			*	*	*	 	 							.					igsqcup
Quarter 3, 2008		*			*	*	*														<u> </u>
Quarter 4, 2008		*				*	*														<u> </u>
Quarter 1, 2009		*					*														Ш
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*									*						
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010		*			*	*	*								*						
Quarter 3, 2010		*			*	*	*								*						
Quarter 4, 2010		*				*	*								*						
Quarter 1, 2011		*																			
Quarter 2, 2011		*			*	*	*								*						
Quarter 3, 2011		*				*	*	*							*						
Quarter 4, 2011		*				*									*						
Quarter 1, 2012		*					*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*													*						
Quarter 3, 2013	*	*		*	*	*	*								*						
Quarter 4, 2013		*													*						П
Quarter 1, 2014	1	*		1									1	1	*		1				П
Quarter 2, 2014	*	*		1	*		*	*					1	1	*		1				П
Quarter 3, 2014	*	*			*	*	*	*	 						*	1					
Quarter 4, 2014	1	*				*	<u> </u>	<u> </u>													М
Quarter 1, 2015	+	*				-		t	t												М
Quarter 1, 2015 Quarter 2, 2015	*	*			*		*	 	 						*	1					$\vdash \vdash$
Quarter 3, 2015	+**	*		 	*	*	<u> </u>	*	1		 	 	 	 	*	1	 				\vdash
TECHNETIUM-99		-17			-17	-14		4							-17						
Quarter 4, 2002																	*	*	*		
Quarter 4, 2002 Quarter 2, 2003	1						*						*			*	*	*	*		*
Quarter 3, 2003	1	1		1	1		<u> </u>				1	1	<u> </u>	1		- "	*	<u> </u>			m
Quarter 4, 2003	+	 		 	 			1	1		 	 	 	 		1	*				*
Quarter 1, 2003	1							 	 						*	1	*				*
Quarter 1, 2004 Quarter 2, 2004	+	 		1	 			1	1		 	 	 	 	*						*
Quarter 2, 2004 Quarter 3, 2004	-	 		 	 			1	1		 	 	 	 	*	1	 				*
	+							 	 						*	-	*				*
Quarter 4, 2004	+	 		 	 						 	 	 	 	ᅏ	-	*				不
Quarter 3, 2005	+	 		 	 			1	1		 	 	 	 	4	 	ᅏ	-			- V
Quarter 1, 2006	-	110						-	410						*	.					*
Quarter 2, 2006	\perp	*		<u> </u>	<u> </u>				*		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>				*
Quarter 3, 2006	4_									<u> </u>						<u> </u>					*

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Groundwater Flow System	I			UCR	RS							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TECHNETIUM-99																					
Quarter 4, 2006															*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007															*		*	*			
Quarter 4, 2007										*					*				*		*
Quarter 1, 2008															*					*	*
Quarter 2, 2008							*	*						*		*			*		
Quarter 3, 2008															*		-11		-1-		
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*								.			
Quarter 2, 2009								.		4					4			*			
Quarter 3, 2009								*		*					*			.	Ψ.		
Quarter 4, 2009										*					*	*	*	*	*		
Quarter 2, 2010										*					*	不	不	不	不		<u> </u>
Quarter 3, 2010										*					*			*			
Quarter 4, 2010		*								*							*	不			<u> </u>
Quarter 1, 2011 Quarter 2, 2011	1	*		1						*			1		1	*	*	*	*		\vdash
Quarter 2, 2011 Quarter 1, 2012																不	*	*	不		<u> </u>
Quarter 1, 2012 Quarter 2, 2012		-	-	-	-	-		*		-		-	-		-		*	*			\vdash
								不									*	*			
Quarter 3, 2012 Quarter 4, 2012	1			1						-			1		*		*	*			*
Quarter 1, 2013															•			*			*
Quarter 2, 2013																		т.			*
Quarter 3, 2013										*											*
Quarter 4, 2013										~					*		*	*			*
Quarter 1, 2014															*		*	*			<u> </u>
Quarter 2, 2014															· *		~	*			
Quarter 3, 2014																	*	*	*		
Quarter 4, 2014															*		-11	71	71		
Quarter 1, 2015															*			*			
Quarter 2, 2015																*					
Quarter 3, 2015																-		*	*	*	
TOLUENE																					
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON														-							
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003											*										
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										
Quarter 1, 2004											*										
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
TOTAL ORGANIC HALIDES																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 1, 2004																*					
TRICHLOROETHENE																					
Quarter 3, 2002																					
Quarter 4, 2002																					
Quarter 1, 2003																					
Quarter 2, 2003																					<u> </u>
Quarter 3, 2003																					
Quarter 4, 2003																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
			1	1				1	1			1	1	1			1	1	1		
Quarter 2, 2005								_													
															Ī						

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Groundwater Flow System	T			UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364		370	373
TRICHLOROETHENE																					
Quarter 4, 2005	\Box																				
Quarter 1, 2006																					
Quarter 2, 2006	+																				
Quarter 3, 2006	+																				
Quarter 4, 2006	+																				
Quarter 1, 2007																					
Quarter 2, 2007	+																				
Quarter 3, 2007	+																				
Quarter 4, 2007	+																				
Quarter 1, 2008	+																				
Quarter 2, 2008	+																				
Quarter 3, 2008	+														=				_		
Quarter 4, 2008	1																				
Quarter 1, 2009	+																				
Quarter 2, 2009	+																				
Quarter 2, 2009 Quarter 3, 2009	+									-							1	1		\vdash	
Quarter 4, 2009	₩																				
Quarter 1, 2010	₩					-	-				-			-			-				
` '	₩																				
Quarter 2, 2010	+														Ŧ						
Quarter 3, 2010	₩																				
Quarter 4, 2010	+												-		_						
Quarter 2, 2011	\vdash												_								
Quarter 3, 2011	\vdash												-		_				-		
Quarter 4, 2011	+												-				<u> </u>		_		
Quarter 1, 2012	\bot														_						
Quarter 2, 2012	\bot																				
Quarter 3, 2012	igspace														_						
Quarter 4, 2012	igspace												_								
Quarter 1, 2013	igspace																<u> </u>				
Quarter 2, 2013	igspace																				
Quarter 3, 2013	\perp																				
Quarter 4, 2013	\perp																				
Quarter 1, 2014	\perp																				
Quarter 2, 2014																					
Quarter 3, 2014																					
Quarter 4, 2014																					
Quarter 1, 2015	ш															ļ	<u> </u>	ļ			
Quarter 2, 2015																					
Quarter 3, 2015																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an eleva	ated con	centrati	ion (i.e.	, a stati	istical e	exceeda	ince).														
■ MCL Exceedance																					
UCRS Upper Continental Recharge Syste	em																				
LIDGA Upper Pagional Graval Aquifor																					

URGA Upper Regional Gravel Aquifer

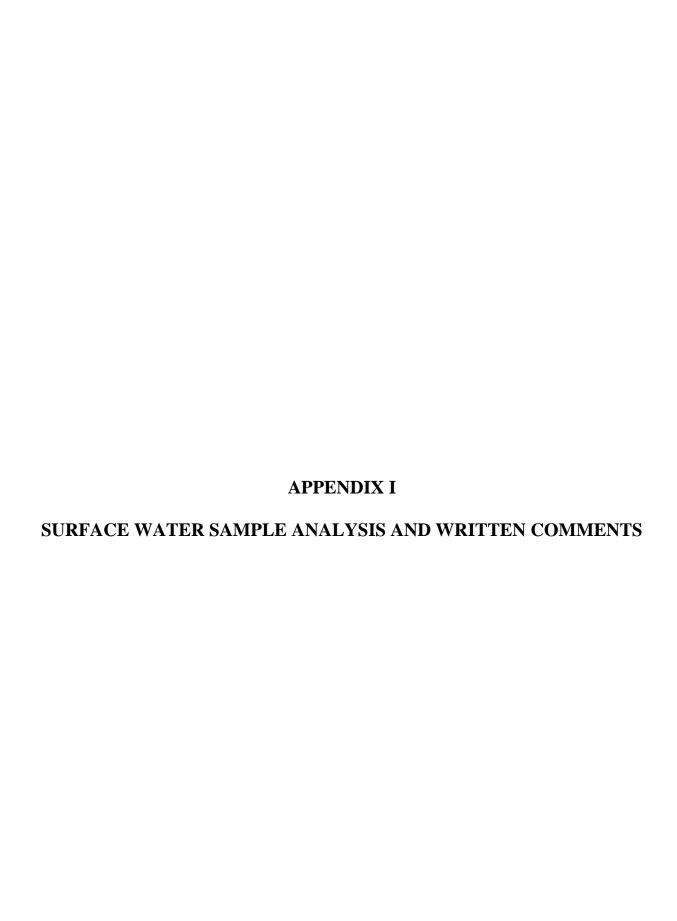
LRGA Lower Regional Gravel Aquifer

APPENDIX H METHANE MONITORING DATA

C-746-U LANDFILL METHANE LOG

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>


McCracken County, Kentucky

Date: September 04, 2015

Time	Location	% LEL of Methane Reading	Remarks	Weather Conditions
09:45	C-746-U1	0	checked at floor level	inside office
	C-746-U2	0	checked at floor level	inside shop
	C-746-U-T-14	0	checked at floor level	inside trailer
	C-746-U15	0	checked at floor level	inside building
	MG1	0	dry casing	J.
	MG2	0	dry casing	87.4
	MG3	0	dry casing	C. Mary Co.
10:30	MG4	0	dry casing	
N/A	Suspect or Problem Areas	N/A	No problems noted	N/A
		<u> </u>	43.9-4.15	
		Jones	T	
		,		

Jammy Funts
Signature

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	int	(KPDES Discharge Number, or "U	OWNSTREAM")	L150 AT SITE		L154 UPSTRE	AM	L351 DOWNSTF	REAM	\			
Sample Seque	ıce	#				1		1		1			
If sample is	a Bl	ank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	ample Date and Time (Month/Day/Year hour: minutes)							7/7/2015 08:1	2	7/7/2015 07:	40		
Duplicate ("	?" c	or "N") ¹				N		N		N			
Split ('Y' o	· "N	Ι") ²				N		N		N			\overline{I}
Facility Samp	ole	ID Number (if applicable)				L150US4-15		L154US4-15	5	L351US4-1	5		
Laboratory Sa	mpl	e ID Number (if applicable)				376539001		376539002		376539003	3	\ /	
Date of Analy	zsis	(Month/Day/Year)				7/31/2015		7/31/2015		7/31/2015			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	Т	MGD	Field	0.05		0.92		3.55		/ \	
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	1.07		2.35		2.59			
14808-79-8	0	Sulfate	Т	mg/L	300.0	9.3		3.47		3.32			
7439-89-6	0	Iron	Т	mg/L	200.8	0.225		0.863		0.963			
7440-23-5	0	Sodium	Т	mg/L	200.8	1.46		2.33		1.91			
s0268	0	Organic Carbon ⁶	Т	mg/L	9060	5.68		14.2		14.8			
s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	22.5		55.9		85			

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	: (KPDES Discharge Number, or	יי ד	JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	REAM		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L G
s0145	1	Specific Conductance	т	µmho/cm	Field	108		100		94			
s0270	0	Total Suspended Solids	Т	mg/L	160.2	5.87		12.5		19.7			
s0266	0	Total Dissolved Solids	Т	mg/L	160.1	84.3		107		94.3		\	
s0269	0	Total Solids	Т	mg/L	SM-2540 B 17	100		127		140			
s0296	0	рН	Т	Units	Field	7.73		7.34		7.21		\	
7440-61-1		Uranium	Т	mg/L	200.8	0.000665		0.00128		0.00155		\	
12587-46-1		Gross Alpha (α)	т	pCi/L	900.0	-1.45	*	-2.69	*	-2.99	*		
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	1.68	*	6.4	*	8.01	*	V	
												,	
													\
													oxed
													$\Box ackslash$
												/	\

RESIDENTIAL/CONTAINED – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L150	L150US4-15	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.17. Rad error is 6.17.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.22. Rad error is 5.21.
L154	L154US4-15	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.48. Rad error is 3.48.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.11. Rad error is 6.02.
L351	L351US4-15	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.41. Rad error is 5.4.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.84. Rad error is 8.74.

