RECEIVED

By Darla Bowen at 3:23 pm, Aug 28, 2015

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

AUG 28 2015

PPPO-02-3099834-15

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Mr. Bill McDonough Division of Waste Management Kentucky Department for Environmental Protection 625 Hospital Drive Madisonville, Kentucky 42431

Dear Ms. Green, Mr. Hendricks, and Mr. McDonough:

C-746-U CONTAINED LANDFILL SECOND QUARTER CALENDAR YEAR 2015 (APRIL–JUNE) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, PAD-ENM-0093/V2, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for the second quarter calendar year 2015. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of C-746-U Contained Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the second quarter 2015 monitoring well data collected from the C-746-U Landfill were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the second quarter calendar year 2015, in accordance with Condition GSTR0001, Standard Requirement 8, of the C-746-U Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Jumber Woodard
Paducal Site Lead

Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill Second Quarter Calendar Year 2015 (April–June) Compliance Monitoring Report

e-copy:

april.webb@ky.gov, KDEP/Frankfort brian.beglev@kv.gov, KDEP/Frankfort dave.dollins@lex.doe.gov, PPPO/PAD ffscorrespondence@ffspaducah.com, FFS/Kevil gary.hines@ffspaducah.com, FFS/Kevil gaye.brewer@ky.gov, KDEP/PAD jennifer.blewett@ffspaducah.com, FFS/Kevil jennifer.watson@ffspaducah.com, FFS/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD joseph.towarnicky@ffspaducah.com, FFS/Kevil ken.davis@ffspaducah.com, FFS/Kevil leo.williamson@ky.gov, KDEP/Frankfort mark.duff@ffspaducah.com, FFS/Kevil mike.guffev@kv.gov, KDEP/Frankfort myrna.redfield@ffspaducah.com, FFS/Kevil reinhard.knerr@lex.doe.gov, PPPO/PAD stephaniec.brock@ky.gov, KYRHB/Frankfort

C-746-U Contained Landfill
Second Quarter Calendar Year 2015
(April—June)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

FLUOR.

This document is approved for public release per review by:

FFS. Inc. Classification Support

8-27-15

Date

C-746-U Contained Landfill Second Quarter Calendar Year 2015 (April–June) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—August 2015

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FLUOR FEDERAL SERVICES, INC.,
Paducah Deactivation Project
managing the
Deactivation Project at the
Paducah Gaseous Diffusion Plant
under Task Order DE-DT0007774

CONTENTS

FIG	GURE	S		v
TA	BLES	S		v
ΑC	CRON	YMS		vii
1.	INTI	RODUC	TION	1
	1.1	BACK	GROUND	1
	1.2	MONI	TORING PERIOD ACTIVITIES	2
		1.2.1	Groundwater Monitoring	2
		1.2.2	Methane Monitoring	
		1.2.3	Surface Water Monitoring	
	1.3	KEY F	RESULTS	
2.	DAT	'A EVA	LUATION/STATISTICAL SYNOPSIS	7
	2.1		STICAL ANALYSIS OF GROUNDWATER DATA	
		2.1.1	Upper Continental Recharge System	
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	
	2.2		VALIDATION	
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	11
4.	REF	ERENC	ES	13
AF	PPENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PENE	OIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PENE	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PENE	OIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PENE	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PENE	OIX F:	NOTIFICATIONS	F-1
ΑF	PENE	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PENE	OIX H:	METHANE MONITORING DATA	H-1
ΑF	PENE	OIX I:	SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS	I-1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	3
2.	C-746-U Landfill Surface Water Monitoring Locations	5
	TADI EG	
	TABLES	
1.	Summary of MCL Exceedances	4
2.	Exceedances of Statistically Derived Historical Background Concentrations	4
	Exceedances of Current Background UTL in Downgradient Wells	
	Exceedances of Current Background UTL in UCRS Wells	
5.	Monitoring Wells Included in Statistical Analysis	8

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

EPA U.S. Environmental Protection Agency
KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Second Quarter Calendar Year 2015 (April-June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. This report was written in accordance with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014), Technical Application Attachment 25 of the Solid Waste Landfill permit.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year (CY) 2002. Methane monitoring was conducted in accordance with 401 KAR 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), Technical Application Attachment 12 of the Solid Waste Landfill permit. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 4.

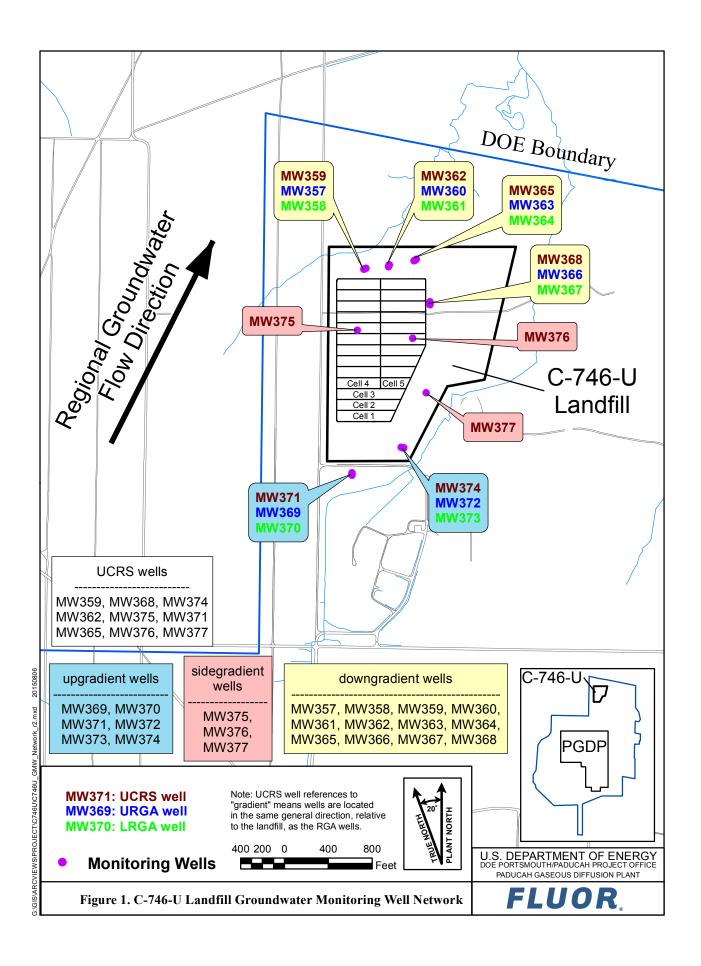
Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), Technical Application Attachment 24 of the Solid Waste Landfill Permit. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for reporting only, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.1 BACKGROUND

The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996 under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring


Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for these locations. Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow is downward through the UCRS, but flow in the underlying RGA is lateral. Groundwater flow in the RGA typically is in a north-northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) within the second quarter 2015 using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 29 and 30, 2015, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is northeastward, toward the Ohio River. Groundwater flow in the RGA in April was eastward, in response to continuing high water levels of the Ohio River. The hydraulic gradient in the vicinity of the C-746-U Landfill in April was 3.25×10^4 ft/ft. The hydraulic gradient for both the URGA and LRGA at the C-746-U Landfill was 2.61×10^4 ft/ft. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.44 to 0.76 ft/day for the URGA and LRGA (see Table E.3).

1.2.2 Methane Monitoring

In accordance with the Explosive Gas Monitoring Program (KEEC 2011), landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on June 4, 2015. See Appendix H for a map of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was sampled in accordance with 401 KAR 48:300 § 2 and the approved Surface Water Monitoring Plan (PRS 2008). Sampling was performed at three locations at the C-746-U Landfill. The C-746-U Landfill has an upstream location, L154; a downstream location, L351; and a location capturing runoff from the landfill surface, L150. Figure 2 is a map of the surface water monitoring locations. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled in report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water reports are provided in Appendix I.

1.3 KEY RESULTS

Parameters that had concentrations that exceeded the respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL concentrations during the second quarter 2015, as well as parameters that exceeded their MCL (beta activity and trichloroethene) and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
MW359: Trichloroethene	MW372: Trichloroethene	MW358: Trichloroethene
		MW367: Beta activity
		MW373: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-reduction potential, sulfate,	MW357: Oxidation-reduction potential	MW358: Oxidation-reduction potential
trichloroethene		
MW362: Dissolved Oxygen, Oxidation-reduction potential	MW360: Oxidation-reduction potential	MW361: Oxidation-reduction potential
MW365: Dissolved Oxygen, Oxidation-reduction potential, sulfate	MW363: Oxidation-reduction potential	MW364: Oxidation-reduction potential
MW368: Oxidation-reduction potential, sulfate	MW366: Oxidation-reduction potential	MW367: Beta activity ^a , Oxidation-reduction potential, technetium-99
MW371: Dissolved Oxygen, Oxidation-reduction potential	MW369: Oxidation-reduction potential	MW370: Oxidation-reduction potential
MW374: Oxidation-reduction potential	MW372: Calcium, conductivity, dissolved solids, magnesium, oxidation- reduction potential, sulfate	MW373: Oxidation-reduction potential
MW375: Oxidation-reduction potential, sulfate		

^{*}Gradients in the UCRS are downward. UCRS gradient designations refer to the locations of wells in the same direction, relative to the landfill as the RGA wells. Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Beta activity and trichloroethene have an MCL; the exceedances of the MCL were subjected to a comparison against the statistically derived historical background.

¹ The term "concentration" may refer to a field measurement result such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

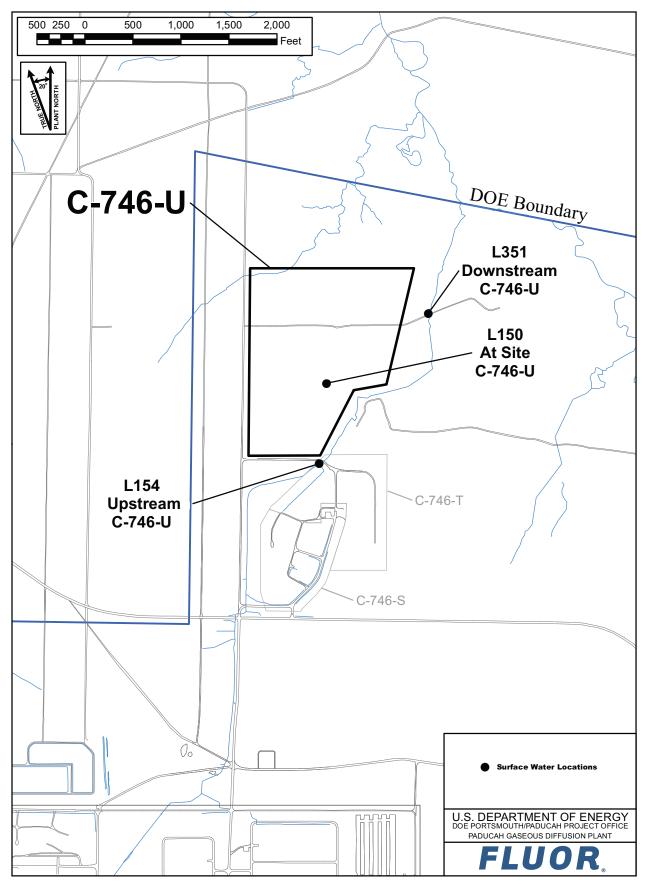
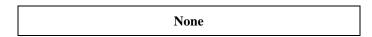



Figure 2. C-746-U Landfill Surface Water Monitoring Locations

Table 3. Exceedances of Current Background UTL in Downgradient Wells

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

There was one new MCL exceedance for this quarter, trichloroethene in UCRS well, MW359. Because the monitoring well is a UCRS well and not downgradient, this exceedance is considered a Type 1 exceedance—not attributable to the C-746-U Landfill.

The constituents that exceeded their MCLs were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedance for trichloroethene in MW358 (downgradient well), does not exceed the historical background concentration and is considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. If constituents were present in downgradient wells with historical UTL exceedances that were above the current UTL, then they would be summarized in Table 3. In accordance with the approved Groundwater Monitoring Plan, these are considered to be Type 1 exceedances and are considered to be not attributable to the C-746-U Landfill. In accordance with the approved Groundwater Monitoring Plan, the MCL and historical background exceedances for beta activity in MW367 (downgradient well) do not exceed the current background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS wells with sulfate and trichloroethene values that exceed both the historical and current background. Because these wells are not hydrogeologically downgradient of the C-746-U Landfill, these exceedances are not attributable to C-746-U sources and are considered Type 1 exceedances (Table 4).

Table 4. Exceedances of Current Background UTL in UCRS Wells

UCRS
MW359: Sulfate, trichloroethene
MW365: Sulfate
MW368: Sulfate
MW375: Sulfate

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2015 groundwater data collected from the C-746-U Contained Landfill MWs were performed in accordance with the *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).* The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is properly attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 5.

Table 5. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375	, 10	, 10
MW376 ***		
MW377 ***		

^{*}A map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. If constituents were present in downgradient wells with historical UTL exceedances that also were above the current UTL, then they would be summarized in Table 3.

2.1.1 Upper Continental Recharge System

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the UCRS. During the second quarter, dissolved oxygen, oxidation-reduction potential, sulfate, and trichloroethene displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Sulfate and trichloroethene exceeded the current background UTL and are included on Table 4.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 31 parameters, including those with MCLs, required statistical analysis in the URGA. During the second quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedances of the current background UTL for any downgradient wells as summarized in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the LRGA. During the second quarter, beta activity, oxidation-reduction potential, and technetium-99 displayed

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***} MW376 and MW377 had sufficient water to permit a water level measurement, but insufficient water to provide water samples for laboratory analysis.

concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedances of the current background UTL for any downgradient wells as summarized in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan, data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION: C-746-U Contained Landfill

Second Quarter Calendar Year 2015 (April-June)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0093/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

OROGEO POO SON CONTROLLED ON THE PROPERTY OF T

Kenneth R Davis

PG1194

4. REFERENCES

- EPA (U.S. Environmental Protection Agency) 1989. *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Final Guidance, Office of Resource Conservation and Recovery, U.S. Environmental Protection Agency, Washington, DC.
- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	e: U.S. DOE-Paducah Gaseous Diffusion Plant (As officially shown on DWM Permit Face)			Activity: <u>C-746-U Contained Landfill</u>				
Permit No:	SW07300014, Permit No: SW07300015, SW07300045		nds/Unit No: 	Quarter &	& Year 2nd Qtr. CY 2015			
Please check the	following as app	olicable:						
Characte	erization X	Quarterly	Semiannual	Ann	ual Assessment			
Please check app	licable submitta	l(s): X	Groundwater	X	Surface Water			
		3	Leachate	X	Methane Monitoring			
45:160) or by statu jurisdiction of the (48) hours of mal Submitting the lab instruction pages. I certify under per accordance with a Based on my inquibest of my knowled.	te (Kentucky Rev Division of Wask king the determ report is NOT co malty of law that system designed ry of the person of dge and belief, true	rised Statues Chapte Management. Vination using standard notification the document and to assure that quar persons directly e, accurate, and co	ter 224) to conduct grow must report any atistical analyses, direction. Instructions for conduct all attachments were diffied personnel proper responsible for gatherin	oundwater and sindication of cect comparison ompleting the formation, and engineering information, there are signi	t Regulations-401 KAR 48:300 and surface water monitoring under the contamination within forty-eight on, or other similar techniques. Form are attached. Do not submit the er my direction or supervision in evaluate the information submitted the information submitted is, to the ficant penalties for submitting false			
Myrna E. Redfie		Regulatory Aff	airs	-	8/28/15 Date			
Fluor Federal So January Jennifer Wooda U.S. Departmen	rd, Paducah Si	dereste Lead	2	_	8 28 15 Date			

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

	Groundwater: April 2015 Surface Water: April 2015			Permit	SW07300014, SW07300015,		
Sampling Date:	Methane: June 2015	County:	McCracken	Nos.	SW07300045		
Facility Name:	U.S. DOE – Paducah Gaseous D						
	(As officially show	vn on DWM Permit Fac	e)				
Site Address:	5501 Hobbs Road	Kevil, Kentucky		42053			
	Street	City/State	_	Zip			
Phone No: (27)	70) 441-6800 Latitude:	N 37° 07' 45"	Longi	itude: W	88° 47' 55"		
	OWN	ER INFORMATION					
Facility Owner:	U.S. DOE – W. E. Murphie, M	anager	Phone No:	(859) 219	9-4001		
Contact Person:	Mark J. Duff		Phone No:	(270) 441	1-6127		
Contact Person T	Title: Director, Environmental	Management, Fluor Fed	deral Services, I	nc.			
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053			
	Street	City/State		Zip			
	SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)						
	ATA Environmental Services of Ke	ntucky, LLC					
Contact Person:	Jeff Boulton		Phone No:	(270) 44			
Mailing Address:	Mailing Address: 761 Veterans Avenue Kevil, Kentucky 42053 Street City/State Zip						
	LABOR	RATORY RECORD #	1				
Laboratory GF	EL Laboratories, LLC	Lab	ID No: KY90	129			
Contact Person:	Joanne Harley		Phone No:	(843) 769	9-7387		
Mailing Address:		Charleston, South Ca	arolina	290			
	Street	City/State		Zi	p		
	LABOR	RATORY RECORD #	2				
Laboratory:		Lab I	D No:				
Contact Person: Phone No:							
Mailing Address:							
	Street	City/State			Zip		
LABORATORY RECORD #3							
Laboratory:		Lab I	D No:				
Contact Person:			-				
Mailing Address:							
-	Street	City/State			Zip		

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

Solid Waste Branch

Frankfort, KY 40601 (502)564-6716 14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

RESIDENTIAL/CONTAINED-QUARTERLY

Permit Number: 073-00045

LAB ID: None

FINDS/UNIT: KY8-890-008-982 / 1

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4798		8004-4799	66	8004-0981	31	8004-4800	
Facility's Local Well or	Spring Number (e.g.,	MW-1, I	MW-2, etc.)		357		358		328		360	
Sample Sequence	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)ethod,	d, or (E)quipment	.pment	N		AN		AN		N	
Sample Date ar	and Time (Month/Day/Year hour: minutes)	tes)			4/6/2015 12:36	9	4/6/2015 13:32	3:32	4/6/2015 09:50	9:50	4/7/2015 09:26	56
Duplicate ("Y	("Y" Or "N") ²				Z		Z		Z		Z	
Split ("Y" or	, пип)				Z		Z		Z		Z	
Facility Sample	le ID Number (if applicable)				MW357UG3-15	2	MW358UG3-15	3-15	MW359UG3-15	3-15	MW360UG3-15	15
Laboratory Sam	Sample ID Number (if applicable)				370481001		370481003	03	370481005	35	370578001	
Date of Analysis	(Month/Day/Year) For	Organ	Volatile Organics Analysis	iis	4/9/2015		4/9/2015	10	4/9/2015	10	4/9/2015	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,		SIDE, UNKNOWN)	N)	DOWN		DOWN		DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	H Qs	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	្ធ ឯ៤ ឯ	DETECTED VALUE OR PQL ⁶	មក≪្ល	DETECTED VALUE OR PQL ⁶	ម្បៈជ្រ	DETECTED VALUE OR PQL ⁶	គ្រុង ២០
24959-67-9	Bromide	H	mg/L	9026	0.323		0.445		<0.2		0.152	r
16887-00-6	Chloride(s)	T	mg/L	9026	26.6		34.3		1.15		11.6	
16984-48-8	Fluoride	I	mg/L	9026	0.159		0.154		0.0666	ſ	0.197	
80595	Nitrate & Nitrite	T	mg/L	9026	1.02		0.557		2.35		0.272	
14808-79-8	Sulfate	T	mg/L	9026	40		80.8		52.8		23	
NS1894	Barometric Pressure Reading	uI I	Inches/Hg	Field	30.05		30.05		30.05		30	
s0145	Specific Conductance	T	uMH0/cm	Field	385		511		255		445	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved
6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.
7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."</pre>

STANDARD FLAGS:

^{* =} See Comments

⁼ Estimated Value
= Analyte found in blank

A = Average value N = Presumptive ID D = Concentration f

Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4798		8004-4799		8004-0981		8004-4800	
Facility's Local	Well or Spring Number (e.g.,	мм-1, мм	W-2, BLANK-F	', etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Η Оν	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ምካፋውወ	DETECTED VALUE OR PQL ⁶	គ្រុ៩២០	DETECTED VALUE OR PQL ⁶	ម្បី៤០ខ	DETECTED VALUE OR PQL ⁶	គ្រុជ២ឆ
90608	Static Water Level Elevation	H	Ft. MSL	Field	326.31		326.27		338.11		326.29	
N238	Dissolved Oxygen	H	mg/L	Field	4		0.78		4.8		2.08	
s0266	Total Dissolved Solids	H	mg/L	160.1	189		279		149		253	
s0296	на	H	Units	Field	6.13		6.16		5.97		6.1	
NS215	чв	H	Λm	Field	546		320		536		276	
70608	Temperature	H	ပွ	Field	14.44		14.44		14.11		16.39	
7429-90-5	Aluminum	H	mg/L	6020	0.0159	7	<0.05		0.0606		0.0183	7
7440-36-0	Antimony	H	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	H	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	H	mg/L	6020	0.0658		0.0501		0.0302		0.157	В
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	H	mg/L	6020	0.296		0.431		0.0125	ſ	0.055	
7440-43-9	Cadmium	Н	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	23.9		35.7		7.19		23	
7440-47-3	Chromium	T	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	H	mg/L	6020	0.00099	7	0.00113		0.00018	٦	0.00814	
7440-50-8	Copper	H	mg/L	6020	0.00037	٦	99000'0	ſ	0.00181		0.00062	ſ
7439-89-6	Iron	H	mg/L	6020	<0.1		0.462		690:0	ſ	0.54	В
7439-92-1	Lead	I	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	T	mg/L	6020	10.4		15.8		4.38		9.46	
7439-96-5	Manganese	H	mg/L	6020	0.00369	ſ	0.145		0.00111	J	0.0734	
7439-97-6	Mercury	T	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

(Cont.) ı GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4798	~	8004-4799	6	8004-0981	1	8004-4800	
Facility's Lo	Local Well or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	357		358		326		360	
CAS RN ⁴	CONSTITUENT	НΩω	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	្ឋាមព្រ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រែ	DETECTED VALUE OR PQL ⁶	ក្រុងព្រ	DETECTED VALUE OR PQL ⁶	ម្បុងប្រ
7439-98-7	Molybdenum	H	mg/L	6020	<0.0005		<0.0005		<0.0005		0.00032	BJ
7440-02-0	Nickel	H	mg/L	6020	<0.002		0.00243		0.00156	ſ	0.0018	BJ
7440-09-7	Potassium	H	mg/L	6020	1.52		2.38		0.0838	ſ	0.871	
7440-16-6	Rhodium	H	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	H	mg/L	6020	<0.005		<0.005		<0.005		0.0016	ſ
7440-22-4	Silver	H	mg/L	6020	<0.001		<0.001		0.00029	ſ	<0.001	
7440-23-5	Sodium	I	mg/L	6020	39.5		42.3		42.1		58.5	
7440-25-7	Tantalum	Ŧ	mg/L	6020	<0.005		<0.005		<0.005		<0.005	*
7440-28-0	Thallium	H	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	H	mg/L	6020	<0.0002		<0.0002		0.00011	ſ	0.000094	ſ
7440-62-2	Vanadium	H	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	H	mg/L	6020	0.00782	ſ	0.00925	ſ	0.00511	ſ	<0.01	
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	T	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

LAB ID: None For Official Use Only

FINDS/UNIT: KY8-890-008-982 / 1

(Cont.) I SAMPLE ANALYSIS GROUNDWATER

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4798		8004-4799	6	8004-0981	31	8004-4800	0
Facility's Local Well	al Well or Spring Number (e.g., MW-1,	MW-1	, MW-2, etc.)	3.)	357		358		328		360	
CAS RN ⁴	CONSTITUENT	НДς	Unit OF MEASURE	метнор	DETECTED VALUE OR	ት il ፋ ር	DETECTED VALUE OR	F I K	DETECTED VALUE OR	FIKC	DETECTED VALUE OR	ከጉተ
					ַ חַסָּ	מיי	PQL	n c	PQL	უ w	TÕT	უ თ
75-27-4	Bromodichloromethane	Ŧ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	H	mg/L	8260	<0.001		0.00145		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	H	mg/L	8260	0.00484		0.0158		0.00577		0.00081	7

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4798		8004-4799		8004-0981	1	8004-4800	0
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1,	MW-2,	etc.)	357		358		329		360	
CAS RN ⁴	CONSTITUENT	ΗДω	Unit OF MEASURE	метнор	DETECTED E VALUE I I OR POL ⁶ C	គ 1 4 0 0	DETECTED VALUE OR PQL ⁶	ម្បុស្យ	DETECTED VALUE OR PQL ⁶	គ្រា៤២០	DETECTED VALUE OR PQL ⁶	គ្រុជ្ល
100-41-4	Ethylbenzene	Н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	H	mg/L	8011	<0.0000194		<0.00002		<0.0000192		<0.00002	
78-87-5	Propane, 1,2-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	H	ng/L	8082	<0.0952		<0.0943		<0.0943		<0.1	
12674-11-2	PCB-1016	T	ng/L	8082	<0.0952		<0.0943		<0.0943		<0.1	
11104-28-2	PCB-1221	T	ng/L	8082	<0.0952		<0.0943		<0.0943		<0.1	
11141-16-5	PCB-1232	T	ng/L	8082	<0.0952		<0.0943		<0.0943		<0.1	
53469-21-9	PCB-1242	H	ug/L	8082	<0.0952		<0.0943		<0.0943		<0.1	
12672-29-6	PCB-1248	T	ug/L	8082	<0.0952		<0.0943		<0.0943		<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

(Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4798		8004-4799		8004-0981	1	8004-4800	
Facility's Lo	Local Well or Spring Number (e.g., b	MW-1	, MW-2,	etc.)	357		358		359		098	
CAS RN⁴	CONSTITUENT	НΩς	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ខេត្តម្រ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ
11097-69-1	PCB-1254	H	ng/L	8082	<0.0952		<0.0943		<0.0943		<0.1	
11096-82-5	PCB-1260	H	ng/L	8082	<0.0952		<0.0943		<0.0943		<0.1	
11100-14-4	PCB-1268	Ŧ	ng/L	8082	<0.0952		<0.0943		<0.0943		<0.1	
12587-46-1	Gross Alpha	Ţ	pCi/L	9310	-1.07	*	0.586	*	0.951	*	0.169	*
12587-47-2	Gross Beta	T	pCi/L	9310	18.7	*	28.1	*	-0.0654	*	7.53	*
10043-66-0	Iodine-131	T	pCi/L			*		*		*		*
13982-63-3	Radium-226	H	pCi/L	HASL 300	0.396	*	0.898	*	0.372	*	0.655	*
10098-97-2	strontium-90	H	pCi/L	905.0	-2.25	*	2	*	-2.26	*	969:0-	*
14133-76-7	Technetium-99	T	pCi/L	TC-02-RC	30.4	*	32.8	*	7.14	*	1.11	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	0.697	*	0.556	*	0.392	*	0.35	*
10028-17-8	Tritium	T	pCi/L	0.906	-155	*	-134	*	16.7	*	02-	*
s0130	Chemical Oxygen Demand	Ŧ	T/Em	410.4	<20		14	٦	17.4	ſ	<20	
57-12-5	Cyanide	Ţ	T/Em	9012	<0.2		<0.2		7'0>		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		5.0>		<0.5	
s0268	Total Organic Carbon	Ŧ	mg/L	0906	<1		0.8	ſ	99'0	ſ	1.5	
98208	Total Organic Halides	H	mg/L	9020	0.00496	ſ	0.00904	ſ	<0.01		80800'0	J

Division of Waste Management

Solid Waste Branch

14 Reilly Road

Frankfort, KY 40601 (502)564-6716

Facility: US DOE - Paducah Gaseous Diffusion Plant RESIDENTIAL/CONTAINED-QUARTERLY

FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

												l
AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4795		8004-0986	98	8004-4796	96	8004-4797	
Facility's Local Well or	Spring Number (e.g.,	MW-1,	MW-2, etc.)	(361		362		363		364	
Sample Sequence	ce #				1		1		1		1	
If sample is a I	Blank, specify Type: (F)ield, (T)rip,	(M)ethod,	or	(E)quipment	NA		AN		Ν		ΑN	
Sample Date ar	and Time (Month/Day/Year hour: minutes)	tes)			4/7/2015 08:38	~	4/6/2015 08:52	8:52	4/7/2015 12:44	2:44	4/7/2015 13:38	
Duplicate ("Y	("Y" Or "N") ²				Z		Z		Z		Z	
Split ("Y" or	, пип)				Z		Z		Z		Z	
Facility Sample	le ID Number (if applicable)				MW361UG3-15	10	MW362UG3-15	3-15	MW363UG3-15	3-15	MW364UG3-15	10
Laboratory Sam	Sample ID Number (if applicable)				370578003		370481007	20	370578005	90	370578007	
Date of Analysis	(Month/Day/Year) For	orga	Volatile Organics Analysis	sis	4/9/2015		4/9/2015	2	4/14/2015	2	4/14/2015	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,		SIDE, UNKNOWN)	WIN)	DOWN		DOWN		DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	НΩω	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	សុព្ធ មាម	DETECTED VALUE OR PQL ⁶	គ្រុស្ល	DETECTED VALUE OR PQL ⁶	គ 1 ៩ ០ ០		ፑገፋ ዑወ
24959-67-9	Bromide	H	mg/L	9056	0.445		0.12	ſ	0.144	ſ	0.409	
16887-00-6	Chloride(s)	T	mg/L	9026	35.6		9.05		28.7		29.4	
16984-48-8	Fluoride	T	mg/L	9026	0.164		0.305		0.178		0.127	
80595	Nitrate & Nitrite	H	mg/L	9026	1.06		969.0		3.25		0.929	
14808-79-8	Sulfate	Ŧ	mg/L	9026	71.4		13		26.7		6.99	
NS1894	Barometric Pressure Reading	T	Inches/Hg	Field	30		30.05		30		30	
s0145	Specific Conductance	H	uMH0/cm	Field	498		592		391		464	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved
6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.
7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."</pre>

STANDARD FLAGS:

^{* =} See Comments

⁼ Estimated Value
= Analyte found in blank

Concentration from analysis of a secondary dilution A = Average value N = Presumptive ID D = Concentration f

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4795		8004-0986		8004-4796		8004-4797	
Facility's Loc	Local Well or Spring Number (e.g., MW	мм-1, мм	V-2, BLANK-F	', etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Η Оν	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	មៗ៩២០	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្ក≮ប្ល
90608	Static Water Level Elevation	H	Ft. MSL	Field	326.32		335.85		326.18		326.16	
N238	Dissolved Oxygen	H	mg/L	Field	3.3		5.78		1.69		2.56	
s0266	Total Dissolved Solids	Н	mg/L	160.1	266		334		196		241	
96208	на	Н	Units	Field	5.93		6.93		90.9		2.93	
NS215	чв	H	Λm	Field	422		322		379		401	
20608	Temperature	H	ပ္စ	Field	15.89		13.78		18.56		17.83	
7429-90-5	Aluminum	I	mg/L	6020	<0.05		2.18		<0.05		<0.05	
7440-36-0	Antimony	H	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	H	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	H	mg/L	6020	0.0554	В	0.0958		0.174	В	0.0762	В
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		5000'0>		<0.0005		<0.0005	
7440-42-8	Boron	Н	mg/L	6020	0.347		0.0132	ſ	0.026		0.012	٦
7440-43-9	Cadmium	Н	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	H	mg/L	6020	33.3		16.6		26.7		9.08	
7440-47-3	Chromium	H	mg/L	6020	<0.01		0.00258	ſ	<0.01		<0.01	
7440-48-4	Cobalt	Н	mg/L	6020	<0.001		6000'0	ſ	0.0012		0.00019	7
7440-50-8	Copper	Н	mg/L	6020	0.0004	J	0.00235		<0.001		0.00042	٦
7439-89-6	Iron	Н	mg/L	6020	<0.1		1.28		0.0465	BJ	86£0.0	BJ
7439-92-1	Lead	Н	mg/L	6020	<0.002		0.00111	٦	<0.002		<0.002	
7439-95-4	Magnesium	Н	mg/L	6020	14.3		9.7		10.4		13.1	
7439-96-5	Manganese	T	mg/L	6020	0.00801		0.0133		0.371		0.0111	
7439-97-6	Mercury	T	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

- (Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4795	2	8004-0986	36	8004-4796	9	8004-4797	
Facility's Lo	Local Well or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	НΩς	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	្ឋា្ស្ល	DETECTED VALUE OR PQL ⁶	គ្មា៤លែល	DETECTED VALUE OR PQL ⁶	្ឋា៤លេ	DETECTED VALUE OR PQL ⁶	្ឋា។លេ
7439-98-7	Molybdenum	H	mg/L	6020	<0.0005		0.00086		<0.0005		<0.0005	
7440-02-0	Nickel	H	mg/L	6020	<0.002		0.0017	٦	0.00079	BJ	<0.002	
7440-09-7	Potassium	H	mg/L	6020	2.01		0.453		1.27		2.12	
7440-16-6	Rhodium	H	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Н	mg/L	6020	0.00189	7	<0.005		<0.005		<0.005	
7440-22-4	Silver	H	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	T	mg/L	6020	44.3		121		36.3		43.7	
7440-25-7	Tantalum	H	mg/L	0209	<0.005	*	<0.005		<0.005	*	<0.005	*
7440-28-0	Thallium	H	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	H	mg/L	6020	<0.0002		0.0038		<0.0002		<0.0002	
7440-62-2	Vanadium	T	mg/L	0109	<0.005		0.00356	ſ	<0.005		<0.005	
7440-66-6	Zinc	H	mg/L	6020	<0.01		0.00526	ſ	<0.01		0.034	В
108-05-4	Vinyl acetate	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	H	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

LAB ID: None For Official Use Only

FINDS/UNIT: KY8-890-008-982 / 1

(Cont.) I SAMPLE ANALYSIS GROUNDWATER

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4795		8004-0986	(0	8004-4796	96	8004-4797	
Facility's Local	Well or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	HAs	Unit OF MEASURE	МЕТНОD	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្រុ៩២៧	DETECTED VALUE OR PQL ⁶	ម្បុស្ល	DETECTED VALUE OR PQL ⁶	ម្បុស្ន
75-27-4	Bromodichloromethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	H	T/Em	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	H	mg/L	8260	<0.001		0.00142		0.00265		0.00478	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

ម្បុ 4 ម ធ

OR PQL⁶

ខេត្តក្រ

 $\underset{\mathtt{PQL}^{6}}{\mathtt{or}}$

DETECTED

<0.005 <0.005

<0.005 <0.005

<0.001

<0.001

<0.001 <0.001 <0.005

<0.001 <0.001

8004-4797 364

8004-4796 363

DETECTED VALUE គ្មជ្ល 8004-0986 362 <0.0000197 DETECTED VALUE OR PQL⁶ <0.0952 <0.005 <0.005 <0.001 <0.005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 គ្រុងប្រ (Cont. 8004-4795 DETECTED VALUE 361 <0.00002 <0.005 <0.005 <0.001 <0.005 <0.005 <0.001 <0.001 <0.001 <0.001 <0.105 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 $\underset{\mathbf{PQL}^{6}}{\mathsf{oR}}$ METHOD 8260 8260 8260 8260 8260 8260 8260 8260 8260 8260 8260 8260 8260 8260 8082 8011 8260 SAMPLE ANALYSIS Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) MEASURE mg/L Unit OF mg/L ug/L mg/L mg/L mg/L F D s H H Н Н Н Н Н Н Н H H Н Н Н Н Н Propane, 1,2-Dibromo-3-chloro trans-1,3-Dichloro-1-propene cis-1,3-Dichloro-1-propene AKGWA NUMBER1, Facility Well/Spring Number trans-1,2-Dichloroethene Methane, Dibromochloro-Methyl isobutyl ketone Trichlorofluoromethane 1,2,3-Trichloropropane Propane, 1,2-Dichloro-Benzene, 1,2-Dichloro-Benzene, 1,4-Dichloro-CONSTITUENT Carbon Tetrachloride Dichloromethane GROUNDWATER Ethylbenzene Iodomethane 2-Hexanone PCB, Total 10061-02-6 10061-01-5 RN^4 1336-36-3 591-78-6 156-60-5 106-46-7 100-41-4 124-48-1 108-10-1 56-23-5 78-87-5 74-88-4 75-09-2 96-12-8 75-69-4 96-18-4 95-50-1 CAS

<0.00002

<0.00002

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

<0.005 <0.005 <0.001 <0.001 <0.001 <0.001 <0.099

<0.0971 <0.0971 <0.0971 <0.0971

<0.099 <0.099

<0.001

<0.001 <0.001

<0.001

<0.099

<0.099 <0.099

<0.0971

<0.0952

<0.0952

н H

PCB-1248

12672-29-6

<0.0952 <0.0952

<0.105 <0.105 <0.105 <0.105 <0.105

8082 8082 8082 8082 8082

ug/L ug/L ug/L ng/I ug/I

Н

PCB-1016

12674-11-2 11104-28-2 11141-16-5 53469-21-9

PCB-1221 PCB-1232 PCB-1242 <0.0971

<0.0952

<0.005

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

LAB ID: No

LAB ID: None For Official Use Only

FINDS/UNIT: KY8-890-008-982 / 1

- (Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4795		8004-0986		8004-4796	(C)	8004-4797	
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1,	MW-2,	etc.)	361		362		363		364	
CAS RN⁴	CONSTITUENT	НΩς	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	្មាស្ល	DETECTED VALUE OR PQL ⁶	ក្រុក្ល	DETECTED VALUE OR PQL ⁶	ម្បាស្ន	DETECTED VALUE OR PQL ⁶	ក្បុស្ស
11097-69-1	PCB-1254	H	ng/L	8082	<0.105		<0.0952		<0.0971		<0.099	
11096-82-5	PCB-1260	H	ng/L	8082	<0.105		<0.0952		<0.0971		<0.099	
11100-14-4	PCB-1268	H	ng/L	8082	<0.105		<0.0952		<0.0971		660.0>	
12587-46-1	Gross Alpha	H	pCi/L	9310	-0.212	*	5.56	*	0.392	*	-7.13	*
12587-47-2	Gross Beta	H	pCi/L	9310	24.8	*	-0.691	*	0.599	*	41.2	*
10043-66-0	Iodine-131	H	pCi/L			*		*		*		*
13982-63-3	Radium-226	H	pCi/L	HASL 300	0.141	*	0.836	*	0.474	*	0.623	*
10098-97-2	strontium-90	H	pCi/L	0.506	0.412	*	3.38	*	2.36	*	-1.5	*
14133-76-7	Technetium-99	I	pCi/L	TC-02-RC	37.8	*	-0.704	*	4.84	*	43.3	*
14269-63-7	Thorium-230	I	pCi/L	Th-01-RC	0.859	*	0.19	*	0.892	*	0.304	*
10028-17-8	Tritium	H	pCi/L	0.906	-159	*	-88.8	*	-88.8	*	-212	*
s0130	Chemical Oxygen Demand	H	mg/L	410.4	19.3	ſ	27.4		7.32	٦	<20	
57-12-5	Cyanide	I	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	H	mg/L	300.0	<0.5		<0.5		2'0>		<0.5	
s0268	Total Organic Carbon	T	mg/L	0906	0.84	ſ	2.3		98'0	ſ	0.52	ſ
98508	Total Organic Halides	T	mg/L	9020	0.00778	ſ	0.0091	ſ	0.00794	ſ	0.00656	J

Division of Waste Management

Solid Waste Branch

Frankfort, KY 40601 (502)564-6716 14 Reilly Road

Permit Number: 073-00045

Facility: US DOE - Paducah Gaseous Diffusion Plant

RESIDENTIAL/CONTAINED-QUARTERLY

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984	4	8004-0982	1982	8004-4793	793	8004-0983	33
Facility's Local Well	or Spring Number (e.g.,	MW-1,	, MW-2, etc.)	(365		396	9	367	,	368	
esubes eldwes	# 90				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip, ((M)et	(M)ethod, or (E) ਧ	(E)quipment	AN		AN		AN		NA	
Sample Date and	nd Time (Month/Day/Year hour: minutes)	ites)			4/8/2015 12:54	::54	4/8/2015 13:50	13:50	4/8/2015 09:16	09:16	4/8/2015 10:05	0:05
Duplicate ("Y"	("Y" OF "N") ²				Z		z		z		Z	
Split ("Y" or	, п.И.н.)				Z		z		z		Z	
Facility Sampl	Facility Sample ID Number (if applicable)				MW365UG3-15	3-15	MW366UG3-15	JG3-15	MW367UG3-15	G3-15	MW368UG3-15	3-15
Laboratory Sam	Sample ID Number (if applicable)				370669001	2	370669003	9003	370669008	8008	370669010	10
Date of Analysis	is (Month/Day/Year) For Volatile		Organics Analysis	rsis	4/15/2015	20	4/15/2015	015	4/15/2015	015	4/15/2015	2
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,	OWN,	SIDE, UNKNOWN)	WW()	DOWN		SIDE	ш	SIDE	ш	SIDE	
CAS RN⁴	CONSTITUENT	Н Ω ω	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	្រ ។ ៤ ភ្	DETECTED VALUE OR PQL ⁶	ፑካፋሪሪ	DETECTED VALUE OR PQL ⁶	គ្រុ៤២០	DETECTED VALUE OR PQL ⁶	ፑካፋ ዑወ
24959-67-9	Bromide	H	mg/L	9026	<0.2		0.464		0.487		<0.2	
16887-00-6	Chloride(s)	H	mg/L	9026	3.98		37.6		37.3		0.729	
16984-48-8	Fluoride	H	mg/L	9026	0.245		0.148		0.136		0.35	
26208	Nitrate & Nitrite	H	mg/L	9026	0.503		0.739		0.651		<0.1	
14808-79-8	Sulfate	H	mg/L	9026	9.79		42.6		43.6		28.2	
NS1894	Barometric Pressure Reading	H	Inches/Hg	Field	29.98		29.97		29.99		29.99	
S0145	Specific Conductance	H	µMH0/cm	Field	458		488		472		455	
									פטג זפו ממגמווגגשט			

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved
6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.
7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."</pre>

STANDARD FLAGS:

⁼ Estimated Value
= Analyte found in blank

A = Average value N = Presumptive ID D = Concentration f

Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-0984		8004-0982		8004-4793		8004-0983	
Facility's Local	Well or Spring Number (e.g.,	MW-1, MW-2,	W-2, BLANK-F	', etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	НΩς	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	চিচাৰ	DETECTED VALUE OR PQL ⁶	рчче	DETECTED VALUE OR PQL ⁶	দ্বৰ্ড	DETECTED VALUE OR PQL ⁶	ម្បុក្ស
9060s	Static Water Level Elevation	H	Ft. MSL	Field	334.24	w	326.25	Ø	326.18	Ø	361.19	w
N238	Dissolved Oxygen	H	mg/L	Field	5.47		1.99		1.98		2.67	
s0266	Total Dissolved Solids	H	mg/L	160.1	236		226		214		230	
s0296	нd	H	Units	Field	6.12		6.01		5.98		6.53	
NS215	чя	H	Λm	Field	200		692		751		929	
70908	Temperature	H	ပွ	Field	19.61		18.11		16.72		16.56	
7429-90-5	Aluminum	H	mg/L	6020	0.0314	7	0.016	٦	0.0185	ſ	1.56	
7440-36-0	Antimony	H	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	H	mg/L	6020	0.00194	7	<0.005		0.00187	ſ	0.00844	
7440-39-3	Barium	H	mg/L	6020	0.0922		0.152		0.191		0.0177	
7440-41-7	Beryllium	H	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	н	mg/L	6020	0.00543	7	0.0762		0.024		<0.015	
7440-43-9	Cadmium	H	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	H	mg/L	6020	23.1		29.4		30.9		22.7	
7440-47-3	Chromium	Н	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	H	mg/L	6020	0.00205		0.00019	٦	0.00058	٦	0.00051	ſ
7440-50-8	Copper	н	mg/L	6020	0.00233		0.00042	J	0.00047	J	0.00107	
7439-89-6	Iron	H	mg/L	6020	0.0358	٦	<0.1		0.899		0.838	
7439-92-1	Lead	н	mg/L	6020	<0.002		<0.002		<0.002		0.00088	ſ
7439-95-4	Magnesium	H	mg/L	6020	10.8		12.5		12.9		8.68	
7439-96-5	Manganese	T	mg/L	6020	0.0482		0.00558		0.178		0.028	
7439-97-6	Mercury	I	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

- (Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-0984	4	8004-0982	32	8004-4793	8	8004-0983	_
Facility's Lo	Local Well or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	НΩς	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	គ្រា៩២០	DETECTED VALUE OR PQL ⁶	គ្រុ៩២៧	DETECTED VALUE OR PQL ⁶	គ្រា៤៤០០	DETECTED VALUE OR PQL ⁶	្រុក្ស
7439-98-7	Molybdenum	Н	mg/L	6020	0.00033	BJ	<0.0005		<0.0005		0.00282	В
7440-02-0	Nickel	H	mg/L	0709	0.00568		<0.002		2000'0	ſ	0.00102	ſ
7440-09-7	Potassium	H	mg/L	0709	0.304		1.9		2:92		1.2	
7440-16-6	Rhodium	H	mg/L	0709	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Н	mg/L	0709	<0.005		0.00195	٢	0.00243	ſ	<0.005	
7440-22-4	Silver	H	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	H	mg/L	6020	57.5		45.2		42.8		58.6	
7440-25-7	Tantalum	H	mg/L	0709	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	H	mg/L	0709	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	H	mg/L	0709	0.00011	ſ	<0.0002		<0.0002		0.00027	
7440-62-2	Vanadium	Н	mg/L	0109	<0.005		<0.005		<0.005		0.0154	
7440-66-6	Zinc	H	mg/L	0709	0.00797	ſ	<0.01		<0.01		0.00603	ſ
108-05-4	Vinyl acetate	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	H	mg/L	0978	<0.003		<0.003		00.00		<0.003	
100-42-5	Styrene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

LAB ID: None For Official Use Only

FINDS/UNIT: KY8-890-008-982 / 1

(Cont.) ı SAMPLE ANALYSIS GROUNDWATER

KGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-0984		8004-0982		8004-4793	33	8004-0983	ຊຸ	
Facility's Local	Well or Spring Number (e.g.,	MW-1,	, MW-2, etc.)	.)	365		366		367		368		
CAS RN ⁴	CONSTITUENT	Η Оν	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	គេឯ៩២០	DETECTED VALUE OR PQL ⁶	ក្បុស្យ	DETECTED VALUE OR PQL ⁶	មក្សព្ល	DETECTED VALUE OR PQL ⁶	គ្ម៩២០	
75-27-4	Bromodichloromethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
75-25-2	Tribromomethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
74-83-9	Methyl bromide	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
78-93-3	Methyl ethyl ketone	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005		
110-57-6	trans-1,4-Dichloro-2-butene	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005		
75-15-0	Carbon disulfide	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005		
75-00-3	Chloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
67-66-3	Chloroform	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
74-87-3	Methyl chloride	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
156-59-2	cis-1,2-Dichloroethene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
74-95-3	Methylene bromide	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
75-34-3	1,1-Dichloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
107-06-2	1,2-Dichloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
106-93-4	Ethane, 1,2-dibromo	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
79-34-5	Ethane, 1,1,2,2-Tetrachloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
71-55-6	Ethane, 1,1,1-Trichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		_
79-00-5	Ethane, 1,1,2-Trichloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
630-20-6	Ethane, 1,1,1,2-Tetrachloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
75-01-4	Vinyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
127-18-4	Ethene, Tetrachloro-	Ŧ	mg/L	8260	<0.001		<0.001		<0.001		<0.001		
79-01-6	Ethene, Trichloro-	H	mg/L	8260	0.0004	r	0.00339		0.00419		0.00033	ſ	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

- (Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹ ,	AKGWA NUMBER, Facility Well/Spring Number				8004-0984		8004-0982		8004-4793	13	8004-0983	
Facility's Loca	9.,	MW-1,	MW-2,	etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	НΩ»	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	គ្រុង២០	DETECTED VALUE OR PQL ⁶	ម្រុស្ល	DETECTED VALUE OR PQL ⁶	្ឋាមព្រ	DETECTED VALUE OR PQL ⁶	្ឋាម្ព
100-41-4	Ethylbenzene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	T	mg/L	8011	<0.00002		<0.00002		<0.00002		<0.00002	
78-87-5	Propane, 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	T	ng/L	8082	<0.101		<0.1		<0.098		<0.0971	
12674-11-2	PCB-1016	T	ng/L	8082	<0.101		<0.1		<0.098		<0.0971	
11104-28-2	PCB-1221	T	ng/L	8082	<0.101		<0.1		<0.098		<0.0971	
11141-16-5	PCB-1232	T	ng/L	8082	<0.101		<0.1		<0.098		<0.0971	
53469-21-9	PCB-1242	H	ng/L	8082	<0.101		<0.1		<0.098		<0.0971	
12672-29-6	PCB-1248	H	ug/L	8082	<0.101	$= \parallel$	<0.1		<0.098		<0.0971	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

(Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-0984		8004-0982		8004-4793	9	8004-0983	_
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1	, MW-2,	etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	НΩσ	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ក្បុស្យ	DETECTED VALUE OR PQL ⁶	គ្ម៩២០	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ
11097-69-1	PCB-1254	H	ng/L	8082	<0.101		<0.1		<0.098		<0.0971	
11096-82-5	PCB-1260	H	ng/L	8082	<0.101		<0.1		<0.098		<0.0971	
11100-14-4	PCB-1268	H	ng/L	8082	<0.101		<0.1		860:0>		<0.0971	
12587-46-1	Gross Alpha	T	pCi/L	9310	7.52	*	-2.37	*	-0.24	*	1.92	*
12587-47-2	Gross Beta	T	pCi/L	9310	4.63	*	41.1	*	20.5	*	4.19	*
10043-66-0	Iodine-131	T	pCi/L			*		*		*		*
13982-63-3	Radium-226	H	pCi/L	HASL 300	0.485	*	0.677	*	1.18	*	0.412	*
10098-97-2	Strontium-90	H	pCi/L	905.0	2.89	*	-0.307	*	-0.416	*	-0.341	*
14133-76-7	Technetium-99	H	pCi/L	TC-02-RC	-2.83	*	51	*	9.09	*	-3.78	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	0.244	*	0.339	*	-0.245	*	0.254	*
10028-17-8	Tritium	H	pCi/L	0.906	-103	*	-32.8	*	-47.5	*	-82.3	*
s0130	Chemical Oxygen Demand	H	mg/L	410.4	11.3	ſ	<20		7.32	٦	7.04	ſ
57-12-5	Cyanide	H	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	H	mg/L	300.0	<0.5		<0.5		2.0>		<0.5	
s0268	Total Organic Carbon	H	mg/L	0906	1.8		0.75	٦	<١		6:0	ſ
98208	Total Organic Halides	H	mg/L	9020	0.0246		0.00618	ſ	0.0073	r	<0.01	

Division of Waste Management

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant RESIDENTIAL/CONTAINED-QUARTERLY

Frankfort, KY 40601 (502)564-6716 14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4820	0	8004-4818	1818	8004-4819	819	8004-4808	80
Facility's Local Well	or Spring Number (e.g.,	MW-1,	, MW-2, etc.)	.)	369		370	0	371	1	372	
esubes eldwes	de #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)et	(M)ethod, or (E)q	(E)quipment	AN		AN		NA		AN	
Sample Date an	and Time (Month/Day/Year hour: minutes)	tes)			4/13/2015 12:48	2:48	4/13/2015 13:41	5 13:41	4/13/2015 08:16	5 08:16	4/9/2015 08:04	18:04
Duplicate ("Y"	" or "N") ²				Z		Z		Z		Z	
Split ("Y" or	.("N")				z		z		Z		z	
Facility Sample	le ID Number (if applicable)				MW369UG3-15	3-15	MW370UG3-15	JG3-15	MW371UG3-15	JG3-15	MW372UG3-15	33-15
Laboratory Sar	Sample ID Number (if applicable)				370965006	9	370965008	2008	370965001	5001	370820001	100
Date of Analysis	sis (Month/Day/Year) For Volatile Organics	e Orç	yanics Analysis	rsis	4/16/2015	15	4/16/2015	015	4/16/2015	015	4/16/2015	15
Gradient with respect	respect to Monitored Unit (UP, DOWN,	OWN,	SIDE, UNKNOWN)	OWN)	UP		UP	0	UP		UP	
CAS RN ⁴	CONSTITUENT	ΗД«	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ក្នុល ទុក ម	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	ጉ니석 ሆ
24959-67-9	Bromide	H	mg/L	9026	0.503		0.519		6960.0	7	0.561	۵
16887-00-6	Chloride(s)	H	mg/L	9026	37		38.6		5.82		44.4	
16984-48-8	Fluoride	H	mg/L	9026	0.176		0.159		0.273		0.159	
56508	Nitrate & Nitrite	Н	mg/L	9026	1.1		1.14		0.671		0.0393	7
14808-79-8	Sulfate	H	mg/L	9026	19.4		19.1		13.2		138	
NS1894	Barometric Pressure Reading	H	Inches/Hg	Field	30.04		30.04		30.04		29.86	
s0145	Specific Conductance	H	µMH0/cm	Field	434		432		711		692	
									OD & TEL GORGE			

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved
6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.
7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."</pre>

STANDARD FLAGS:

^{* =} See Comments

⁼ Estimated Value
= Analyte found in blank

A = Average value N = Presumptive ID D = Concentration f

Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AVCIAN MINDER	APPEN MINDERS BILLIAM WILLIAM MINDERS				8004-4820		8004-4818		8004-4819		8004-4808	
ANGWA NOMBER ,	raciiicy weil/spring number								į		-	
Facility's Loc	Local Well or Spring Number (e.g., MW	-1, M	MW-1, MW-2, BLANK-F	', etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	НΩ«	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ក្រុងប្រ	DETECTED VALUE OR PQL ⁶	ក្រុងប្រ	DETECTED VALUE OR PQL ⁶	ខល្ងក្ម	DETECTED VALUE OR PQL ⁶	្ឋា៤លេ
90608	Static Water Level Elevation	H	Ft. MSL	Field	326.68		326.68		341.47		326.43	
N238	Dissolved Oxygen	H	mg/L	Field	3.38		4.18		4.44		1.18	
s0266	Total Dissolved Solids	H	mg/L	160.1	201		194		413		421	
s0296	нd	H	Units	Field	6.11		6.1		6.75		90'9	
NS215	पञ्च	H	Λm	Field	404		380		384		283	
70608	Temperature	H	ပွ	Field	17.44		16.94		16.67		17.28	
7429-90-5	Aluminum	H	mg/L	6020	0.0644	*	<0.05	*	1.48	*	0.0384	BJ
7440-36-0	Antimony	H	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	H	mg/L	6020	<0.005		<0.005		<0.005		0.00323	٦
7440-39-3	Barium	H	mg/L	6020	0.521		0.194		0.122		0.0567	
7440-41-7	Beryllium	H	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	H	mg/L	6020	0.0355		0.0351		0.00541	ſ	1.31	
7440-43-9	Cadmium	I	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	H	mg/L	6020	28		28.3		28.2		9:99	
7440-47-3	Chromium	Н	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	H	mg/L	6020	0.00062	٦	0.00052	7	0.00032	ſ	0.00153	
7440-50-8	Copper	H	mg/L	6020	0.00055	7	0.00056	7	0.0012		<0.001	
7439-89-6	Iron	H	mg/L	6020	0.0871	ſ	<0.1		0.862		1.65	
7439-92-1	Lead	н	mg/L	6020	<0.002		<0.002		0.00056	٦	<0.002	
7439-95-4	Magnesium	H	mg/L	6020	12.7		12.9		12.4		25.2	
7439-96-5	Manganese	T	mg/L	6020	0.00599		0.00282	٦	0.0139		0.0295	
7439-97-6	Mercury	T	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

(Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4820	0	8004-4818	8	8004-4819	6	8004-4808	_
Facility's Lo	Local Well or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	ΗДς	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	គ្រា៩២០	DETECTED VALUE OR PQL ⁶	ម្បាស្ល	DETECTED VALUE OR PQL ⁶	គ្រុជ្ធ	DETECTED VALUE OR PQL ⁶	ក្បុស្យ
7439-98-7	Molybdenum	H	mg/L	6020	<0.0005		<0.0005		0.00043	7	0.00088	
7440-02-0	Nickel	H	mg/L	6020	0.0014	ſ	0.00095	٢	0.00122	٦	0.00119	J
7440-09-7	Potassium	Н	mg/L	6020	1.47		2.49		0.502		2.65	
7440-16-6	Rhodium	Н	mg/L	0709	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	H	mg/L	6020	<0.005		<0.005		<00.05		<0.005	
7440-22-4	Silver	H	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Н	mg/L	6020	46.2		42.4		135		9.09	
7440-25-7	Tantalum	H	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	T	mg/L	0709	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	T	mg/L	0709	<0.0002		<0.0002		0.00126		<0.0002	
7440-62-2	Vanadium	H	mg/L	0109	0.00151	ſ	<0.005		95900'0		<0.005	
7440-66-6	Zinc	H	mg/L	0709	<0.01		<0.01		90500:0	ſ	0.00622	ſ
108-05-4	Vinyl acetate	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	ī	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	H	mg/L	0978	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	H	mg/L	0978	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	H	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

LAB ID: None For Official Use Only

FINDS/UNIT: KY8-890-008-982 / 1

(Cont.) ı SAMPLE ANALYSIS GROUNDWATER

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4820		8004-4818	3	8004-4819	61	8004-4808	8
Facility's Local	Well or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Η Оν	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ស ប ង ក ម	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	ក្រុងព្រ	DETECTED VALUE OR PQL ⁶	ក្បុងប្រ
75-27-4	Bromodichloromethane	Н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	H	mg/L	8260	0.00152		0.00129		0.00052	٢	0.00896	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4820		8004-4818		8004-4819	6	8004-4808	œ
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1,	MW-2,	etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Η О ω	Unit OF MEASURE	метнор	DETECTED I	គ្រា៤ ២០	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	្ឋា៤លេ	DETECTED VALUE OR PQL ⁶	្ឋា៤ពេល
100-41-4	Ethylbenzene	Н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	T	mg/L	8011	<0.00002		<0.00002		<0.00002		<0.00002	
78-87-5	Propane, 1,2-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Ŧ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	H	ng/L	8082	<0.0952		<0.0962		<0.1		0.0729	J
12674-11-2	PCB-1016	T	ng/L	8082	<0.0952		<0.0962		<0.1		<0.0952	
11104-28-2	PCB-1221	T	ng/L	8082	<0.0952		<0.0962		<0.1		<0.0952	
11141-16-5	PCB-1232	T	ng/L	8082	<0.0952		<0.0962		<0.1		<0.0952	
53469-21-9	PCB-1242	H	ug/L	8082	<0.0952		<0.0962		<0.1		0.0729	ſ
12672-29-6	PCB-1248	H	ug/L	8082	<0.0952		<0.0962		<0.1		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

(Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4820		8004-4818		8004-4819	6	8004-4808	
Facility's Lo	Local Well or Spring Number (e.g., b	MW-1	, MW-2,	etc.)	369		370		371		372	
CAS RN⁴	CONSTITUENT	ΗОυ	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ						
11097-69-1	PCB-1254	H	ng/L	8082	<0.0952		<0.0962		<0.1		<0.0952	
11096-82-5	PCB-1260	Ŧ	T/6n	8082	<0.0952		<0.0962		<0.1		<0.0952	
11100-14-4	PCB-1268	T	T/6n	8082	<0.0952		<0.0962		1.0>		<0.0952	
12587-46-1	Gross Alpha	T	pCi/L	9310	0.652	*	0.95	*	9.6	*	0.816	*
12587-47-2	Gross Beta	T	pCi/L	9310	26.8	*	14.5	*	12.6	*	8:38	*
10043-66-0	Iodine-131	T	pCi/L			*		*		*		*
13982-63-3	Radium-226	H	pCi/L	HASL 300	0.521	*	0.905	*	0.88	*	0.643	*
10098-97-2	strontium-90	H	pCi/L	905.0	0.138	*	-0.768	*	929'0	*	-1.07	*
14133-76-7	Technetium-99	T	pCi/L	TC-02-RC	37.3	*	20.9	*	92'E-	*	10.8	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	-0.122	*	-0.0229	*	0.641	*	0.138	*
10028-17-8	Tritium	T	pCi/L	0.906	79.1	*	41.8	*	-1.47	*	160	*
s0130	Chemical Oxygen Demand	H	T/Em	410.4	<20		<20		<20		23	
57-12-5	Cyanide	Ŧ	T/Em	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	H	mg/L	300.0	<0.5		<0.5		5.0>		<0.5	
s0268	Total Organic Carbon	H	mg/L	0906	0.46	ſ	0.37	J	1.3		29.0	J
s0586	Total Organic Halides	H	mg/L	9020	0.00914	BJ	0.007	ВЈ	0.00526	ВЈ	0.0089	BJ

Division of Waste Management

Solid Waste Branch

14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

LAB ID: None

FINDS/UNIT: KY8-890-008-982 / 1

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

												Ĭ
AKGWA NUMBER ¹ ,	AKGWA NUMBER 1 , Facility Well/Spring Number				8004-4792		8004-0990	06	8004-0985	85	8004-0988	
Facility's Loc	Local Well or Spring Number (e.g., A	MW-1,	, MW-2, etc.)	()	373		374		375		376	
Sample Sequence	de #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,		(M)ethod, or (E)q	(E)quipment	ΝΑ		ΑN		AN		NA	
Sample Date an	and Time (Month/Day/Year hour: minutes)	utes)			4/9/2015 09:43		4/9/2015 08:55	8:55	4/9/2015 13:04	3:04	NA	
Duplicate ("Y"	" or "N") ²				Z		z		Z		Z	
Split ("Y" or	_E ("N")				Z		z		Z		Z	
Facility Sample	le ID Number (if applicable)				MW373UG3-15	2	MW374UG3-15	3-15	MW375UG3-15	33-15	NA	
Laboratory Sar	Sample ID Number (if applicable)				370820003		370820005	05	370820007	200	AN	
Date of Analysis	sis (Month/Day/Year) For Volatile Organics	e Or	yanics Analysis	rsis	4/16/2015		4/16/2015	15	4/16/2015	15	NA	
Gradient with respect	respect to Monitored Unit (UP, DOWN,	OWIN,	SIDE, UNKNOWN)	WM()	UP		UP		SIDE		SIDE	
CAS RN⁴	CONSTITUENT	НΩω	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	គ្មជ្	DETECTED VALUE OR PQL	គ្រុងប	DETECTED VALUE OR PQL ⁶	ፑካፋዕ	DETECTED VALUE OR PQL ⁶	គ្រុ ប
						S ₇		Ø		Ø		ω (
24959-67-9	Bromide	I	mg/L	9026	0.584		0.892		<0.2			*
16887-00-6	Chloride(s)	H	mg/L	9026	42.4		72.5		4.42			*
16984-48-8	Fluoride	I	mg/L	9026	0.153		0.164		0.247			*
26508	Nitrate & Nitrite	I	mg/L	9026	0.3		92200	7	0.793			*
14808-79-8	Sulfate	I	mg/L	9026	165		5.7		30.4			*
NS1894	Barometric Pressure Reading	I	Inches/Hg	Field	29.9		29.9		29.88			*
s0145	Specific Conductance	H	hMH0/cm	Field	873		702		395			*
									STANDARD FILAGS	FT.AGS:		

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved
6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.
7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."</pre>

^{* =} See Comments

⁼ Estimated Value
= Analyte found in blank

J = Estimated Value
B = Analyte found in
A = Average value
N = Presumptive ID
D = Concentration fr

Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4792		8004-0990		8004-0985		8004-0988	
Facility's Loc	Local Well or Spring Number (e.g., MW-	7-1, M	MW-1, MW-2, BLANK-F	, etc.)	373		374		375		376	
CAS RN⁴	CONSTITUENT	ΗQu	Unit OF MEASURE	МЕТНОБ	DETECTED VALUE OR PQL ⁶	ម្បុស្ល	DETECTED VALUE OR PQL ⁶	ម្បី៤០០	DETECTED VALUE OR PQL ⁶	គ្រុង២០	DETECTED VALUE OR PQL ⁶	គ្រុ៩២០
90608	Static Water Level Elevation	H	Ft. MSL	Field	326.41		336.68		343.15			*
N238	Dissolved Oxygen	H	mg/L	Field	2.09		1.59		1.21			*
s0266	Total Dissolved Solids	H	mg/L	160.1	476		360		189			*
s0296	ън	H	Units	Field	6.02		6.54		6.25			*
NS215	ча	H	тм	Field	207		395		495			*
70608	Temperature	H	ပွ	Field	17.22		17.11		19.11			*
7429-90-5	Aluminum	H	mg/L	6020	0.0177	BJ	0.0186	BJ	0.0325	BJ		*
7440-36-0	Antimony	H	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	H	mg/L	6020	<0.005		<0.005		<0.005			*
7440-39-3	Barium	H	mg/L	6020	0.0246		0.143		0.181			*
7440-41-7	Beryllium	I	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	I	mg/L	6020	1.67		0.0453		0.0194			*
7440-43-9	Cadmium	I	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	H	mg/L	6020	73.5		21.5		15.1			*
7440-47-3	Chromium	I	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	Н	mg/L	6020	<0.001		0.00014	ſ	0.00046	ſ		*
7440-50-8	Copper	T	mg/L	6020	<0.001		<0.001		<0.001			*
7439-89-6	Iron	H	mg/L	6020	<0.1		0.129		0.037	ſ		*
7439-92-1	Lead	I	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	I	mg/L	6020	28.1		2.97		6.34			*
7439-96-5	Manganese	Ŀ	mg/L	6020	0.00318	ſ	0.0135		0.0108			*
7439-97-6	Mercury	H	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

- (Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4792	~	8004-0990	ō	8004-0985	5	8004-0988	
Facility's Lo	g.,	MW-1,	MW-2,	etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Η Оν	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ፑካፋዑወ	DETECTED VALUE OR PQL ⁶	គ្រុជប្រ	DETECTED VALUE OR PQL ⁶	ម្ដ≪្លល	DETECTED VALUE OR PQL ⁶	គ្រុ៩២៧
7439-98-7	Molybdenum	H	mg/L	6020	<0.0005		0.0002	٦	0.00022	٦		*
7440-02-0	Nickel	H	mg/L	6020	<0.002		<0.002		0.00124	7		*
7440-09-7	Potassium	H	mg/L	6020	2.89		0.458		0.276	7		*
7440-16-6	Rhodium	H	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2	Selenium	H	mg/L	6020	<0.005		0.00511		0.00196	7		*
7440-22-4	Silver	H	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5	Sodium	T	mg/L	6020	63.4		130		99			*
7440-25-7	Tantalum	Н	mg/L	6020	<0.005	*	<0.005	*	<0.005	*		*
7440-28-0	Thallium	T	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1	Uranium	T	mg/L	6020	<0.0002		0.0005		0.000076	ſ		*
7440-62-2	Vanadium	T	mg/L	6010	<0.005		<0.005		<0.005			*
7440-66-6	Zinc	H	mg/L	6020	<0.01		<0.01		<0.01			*
108-05-4	Vinyl acetate	H	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8	Acrolein	T	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2	Benzene	H	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7	Chlorobenzene	Ŧ	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7	Xylenes	Н	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5	Styrene	Н	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3	Toluene	H	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5	Chlorobromomethane	H	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

LAB ID: None For Official Use Only

FINDS/UNIT: KY8-890-008-982 / 1

(Cont.) I SAMPLE ANALYSIS GROUNDWATER

Cols Rat* Constitutors and constituent 1 Total Late National Designation of the constituent Total Constituent	AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4792		8004-0990		8004-0985	85	8004-0988	8
		Well or Spring Number (e.g.,	MW-1	MW-2,	c.)	373		374		375		376	
Bromodichlorcomethane T mg/L 8260 0.001 0.		CONSTITUENT	Η Оъ	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ម្បុង្ខ	DETECTED VALUE OR PQL ⁶	មក្សព្	DETECTED VALUE OR POL 6	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	ក្បុងប្រ
methyl brande r mg/L 8260 <0001 <0001 <0001 methyl brande r mg/L 8260 <0001	75-27-4	Bromodichloromethane	Н	mg/L	8260	<0.001		<0.001		<0.001			*
Methyl bromide T mg/L 8260 <0.001 <0.005 <0.005 Methyl ethyl tethyl ketone T mg/L 8260 <0.005	75-25-2	Tribromomethane	H	mg/L	8260	<0.001		<0.001		<0.001			*
Heathyl ethyl ketone T mg/L 8260	74-83-9	Methyl bromide	Н	mg/L	8260	<0.001		<0.001		<0.001			*
Carbon disulfide	78-93-3	Methyl ethyl ketone	Н	mg/L	8260	<0.005		<0.005		<0.005			*
carbon disulfide T mg/L 8260 <0.005 <0.005 <0.005 chlorocthame T mg/L 8260 <0.001	110-57-6	trans-1,4-Dichloro-2-butene	Н	mg/L	8260	<0.005		<0.005		<0.005			*
Chlotroethane T mg/L 8260 <0.001 <0.001 <0.001 Chlotroform T mg/L 8260 <0.001	75-15-0	Carbon disulfide	Н	mg/L	8260	<0.005		<0.005		<0.005			*
methy1 chloride T mg/L 8260 <0.001 <0.001 <0.001 cis-1,2-Dichloroethene T mg/L 8260 <0.001	75-00-3	Chloroethane	H	mg/L	8260	<0.001		<0.001		<0.001			*
methyl chloride T mg/L 8260 <0.001 <0.001 <0.001 cis-1,2-Dichloroethene T mg/L 8260 <0.001	67-66-3	Chloroform	H	mg/L	8260	<0.001		<0.001		<0.001			*
Methylene bromide T mg/L 8260 <0.001 <0.001 <0.001 1,1-Dichloroethane T mg/L 8260 <0.001	74-87-3	Methyl chloride	H	mg/L	8260	<0.001		<0.001		<0.001			*
Methylene bromide	156-59-2	cis-1,2-Dichloroethene	Н	mg/L	8260	<0.001		<0.001		<0.001			*
1,1-Dichloroethane	74-95-3	Methylene bromide	H	mg/L	8260	<0.001		<0.001		<0.001			*
1,2-Dichloroethane	75-34-3	1,1-Dichloroethane	Н	mg/L	8260	<0.001		<0.001		<0.001			*
1,1-Dichloroethylene	107-06-2	1,2-Dichloroethane	Н	mg/L	8260	<0.001		<0.001		<0.001			*
Ethane, 1,2-dibromo T mg/L 8260 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00	75-35-4	1,1-Dichloroethylene	H	mg/L	8260	<0.001		<0.001		<0.001			*
Ethane, 1,1,2,2-Tetrachloro T mg/L 8260 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.	106-93-4	Ethane, 1,2-dibromo	Н	mg/L	8260	<0.001		<0.001		<0.001			*
Ethane, 1,1,1-Trichloro- T mg/L 8260 <0.001 <0.001 <0.001 <0.001 <0.001 Ethane, 1,1,2-Trichloro T mg/L 8260 <0.001 <0.001 <0.001 <0.001 <0.001 Ethane, 1,1,2-Tetrachloro- T mg/L 8260 <0.001 <0.001 <0.001 <0.001 <0.001 Ethene, Tetrachloro- T mg/L 8260 <0.001 <0.0031 J 0.0005 Ethene, Trichloro- T mg/L 8260 0.00861 J 0.00031 J 0.0005	79-34-5		H	mg/L	8260	<0.001		<0.001		<0.001			*
Ethane, 1,1,2-Trichloro T mg/L 8260 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0	71-55-6	Ethane, 1,1,1-Trichloro-	Н	mg/L	8260	<0.001		<0.001		<0.001			*
Ethane, 1,1,1,2-Tetrachloro T mg/L 8260 <0.001 <0.001 <0.001 Vinyl chloride T mg/L 8260 <0.001	79-00-5	Ethane, 1,1,2-Trichloro	Н	mg/L	8260	<0.001		<0.001		<0.001			*
Vinyl chloride T mg/L 8260 <0.001 <0.001 <0.001 <0.001 Ethene, Tetrachloro- T mg/L 8260 0.00861 <0.00031	630-20-6		Н	mg/L	8260	<0.001		<0.001		<0.001			*
Ethene, Tetrachloro- T mg/L 8260 <0.001 <0.0001 J 0.0005	75-01-4	Vinyl chloride	Н	mg/L	8260	<0.001		<0.001		<0.001			*
Ethene, Trichloro- T mg/L 8260 0.00861 0.00031 J 0.0005	127-18-4	Ethene, Tetrachloro-	H	mg/L	8260	<0.001		<0.001		<0.001			*
	79-01-6		H	mg/L	8260	0.00861		0.00031	٦	0.0005	ſ		*

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

(Cont.) ı GROUNDWATER SAMPLE ANALYSIS

7	AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4792		8004-0990	C	8004-0985	35	8004-0988	38
щ	Facility's Loc	Local Well or Spring Number (e.g., MV	MW-1,	MW-2,	etc.)	373		374		375		376	
	CAS RN ⁴	CONSTITUENT	НΩς	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	ម្បាប្រ	DETECTED VALUE OR PQL ⁶	គ្រុជ្ល	DETECTED VALUE OR PQL ⁶	គ្រុជប្រ
	100-41-4	Ethylbenzene	H	mg/L	8260	<0.001		<0.001		<0.001			*
ш	591-78-6	2-Hexanone	T	mg/L	8260	<0.005		<0.005		<0.005			*
	74-88-4	Iodomethane	H	mg/L	8260	<0.005		900.0>		<0.005			*
1	124-48-1	Methane, Dibromochloro-	H	mg/L	8260	<0.001		<0.001		<0.001			*
ш)	56-23-5	Carbon Tetrachloride	H	mg/L	8260	<0.001		<0.001		<0.001			*
	75-09-2	Dichloromethane	Ŧ	mg/L	8260	<0.005		900'0>		<0.005			*
C-3	108-10-1	Methyl isobutyl ketone	H	mg/L	8260	<0.005		900'0>		<0.005			*
	96-12-8	Propane, 1,2-Dibromo-3-chloro	T	mg/L	8011	<0.00002		<0.00002		<0.00002			*
	78-87-5	Propane, 1,2-Dichloro-	Ŧ	mg/L	8260	<0.001		<0.001		<0.001			*
П	10061-02-6	trans-1,3-Dichloro-1-propene	H	mg/L	8260	<0.001		<0.001		<0.001			*
1	10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001			*
П	156-60-5	trans-1,2-Dichloroethene	H	mg/L	8260	<0.001		<0.001		<0.001			*
	75-69-4	Trichlorofluoromethane	Ŧ	mg/L	8260	<0.001		<0.001		<0.001			*
51	96-18-4	1,2,3-Trichloropropane	H	mg/L	8260	<0.001		<0.001		<0.001			*
U1	95-50-1	Benzene, 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001			*
1	106-46-7	Benzene, 1,4-Dichloro-	Ŧ	mg/L	8260	<0.001		<0.001		<0.001			*
1	1336-36-3	PCB, Total	H	ng/L	8082	<0.0952		<0.0952		<0.0952			*
П	12674-11-2	PCB-1016	H	ng/L	8082	<0.0952		<0.0952		<0.0952			*
П	11104-28-2	PCB-1221	H	ng/L	8082	<0.0952		<0.0952		<0.0952			*
1	11141-16-5	PCB-1232	H	ng/L	8082	<0.0952		<0.0952		<0.0952			*
<u> </u>	53469-21-9	PCB-1242	H	ng/L	8082	<0.0952		<0.0952		<0.0952			*
п	12672-29-6	PCB-1248	Т	ug/L	8082	<0.0952		<0.0952		<0.0952			*

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

(Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4792		8004-0990		8004-0985	2	8004-0988	
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1	, MW-2,	etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	НΩω	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ក្បុស្យ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	ក្បុស្យ
11097-69-1	PCB-1254	Н	ng/L	8082	<0.0952		<0.0952		<0.0952			*
11096-82-5	PCB-1260	H	ng/L	8082	<0.0952		<0.0952		<0.0952			*
11100-14-4	PCB-1268	H	ng/L	8082	<0.0952		<0.0952		<0.0952			*
12587-46-1	Gross Alpha	H	pCi/L	9310	-1.02	*	11.1	*	0.987	*		*
12587-47-2	Gross Beta	T	pCi/L	9310	25.1	*	-2.44	*	5.02	*		*
10043-66-0	Iodine-131	Ŧ	pCi/L			*		*		*		*
13982-63-3	Radium-226	H	pCi/L	HASL 300	0.436	*	0.379	*	0.197	*		*
10098-97-2	Strontium-90	H	pCi/L	905.0	2.33	*	7-	*	892'0-	*		*
14133-76-7	Technetium-99	H	pCi/L	TC-02-RC	33.7	*	-1.79	*	1.46	*		*
14269-63-7	Thorium-230	Ŧ	pCi/L	Th-01-RC	0.469	*	0.139	*	0.0402	*		*
10028-17-8	Tritium	T	pCi/L	0.906	-156	*	-230	*	-31.1	*		*
s0130	Chemical Oxygen Demand	H	mg/L	410.4	11	ſ	<20		<20			*
57-12-5	Cyanide	H	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	H	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	H	mg/L	0906	0.51	ſ	1.6		0.85	J		*
98208	Total Organic Halides	H	mg/L	9020	0.0139	В	0.0179	В	0.0167	В		*

Division of Waste Management

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045 Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant

RESIDENTIAL/CONTAINED-QUARTERLY

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

											Ī
AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number			8004-0989		0000-0000		0000-0000	C	0000-0000	
Facility's Local Well	or Spring Number (e.g.,	MW-1, MW-2, e	etc.)	377		E. BLANK		F. BLANK		T. BLANK 1	
Sample Sequence	e #			1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip, ((M)ethod, or (or (E)quipment	NA		Е		Ь		Τ	
Sample Date and	d Time (Month/Day/Year hour: minutes)	es)		NA		4/8/2015 08:15	15	4/8/2015 09:25	:25	4/6/2015 08:08	80
Duplicate ("Y" or "N") 2	or "N") ²			Z		Z		Z		Z	
Split ("Y" or	"И") 3			Z		Z		Z		Z	
Facility Sample	le ID Number (if applicable)			NA		RI1UG3-15	2	FB1UG3-15	5	TB1UG3-15	
Laboratory Sam	Sample ID Number (if applicable)			NA		370669006	3	370669005	5	370481009	
Date of Analysis	(Month/Day/Year) For	Volatile Organics Analysis	nalysis	NA		4/15/2015		4/15/2015		4/9/2015	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,	WN, SIDE, UNKNOWN)	IKNOMN)	SIDE		NA		NA		NA	
CAS RW ⁴	CONSTITUENT	T Unit D OF S MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	8,4 Q P L H	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	ម្បុស្ស	DETECTED VALUE OR PQL ⁶	គ្រា៤ ប្រ
24959-67-9	Bromide	T mg/L	9026	*			*		*		*
16887-00-6	Chloride(s)	T mg/L	9026	*			*		*		*
16984-48-8	Fluoride	T mg/L	9026	*			*		*		*
s0595	Nitrate & Nitrite	T mg/L	9906	*			*		*		*
14808-79-8	Sulfate	T mg/L	9026	*			*		*		*
NS1894	Barometric Pressure Reading	T Inches/Hg	lg Field	*			*		*		*
S0145	Specific Conductance	T µMH0/cm	n Field	*			*		*		*
											1

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved
6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.
7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."</pre>

STANDARD FLAGS:

^{* =} See Comments

⁼ Estimated Value
= Analyte found in blank

A = Average value N = Presumptive ID D = Concentration f

Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-0989		0000-0000		0000-0000		0000-0000	
Facility's Loc	9.,	MW-1, M	MW-2, BLANK-F	', etc.)	377		E. BLANK		F. BLANK		T. BLANK 1	
CAS RN⁴	CONSTITUENT	НΩω	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្រា៩២០	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	្ឋា៤លេ
90608	Static Water Level Elevation	I	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	H	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Н	mg/L	160.1		*		*		*		*
s0296	на	H	Units	Field		*		*		*		*
NS215	ча	H	νm	Field		*		*		*		*
70608	Temperature	Н	ပ္စ	Field		*		*		*		*
7429-90-5	Aluminum	н	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	Н	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	H	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	H	mg/L	6020		*	<0.002		<0.002			*
7440-41-7	Beryllium	T	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	ī	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	I	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	T	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	T	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	Ŧ	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	T	mg/L	6020		*	<0.001		<0.001			*
7439-89-6	Iron	I	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	ı	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	H	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	H	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	H	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-0989	_	0000-0000	0	0000-0000		0000-0000	
Facility's Loc	Local Well or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	377		E. BLANK	K	F. BLANK		T. BLANK 1	1
CAS RN ⁴	CONSTITUENT	Η Qs	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ម្បុងប្រ	DETECTED VALUE OR PQL ⁶	ម្បុស្ស	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	្រុក្ស
7439-98-7	Molybdenum	H	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0	Nickel	H	mg/L	6020		*	<0.002		<0.002			*
7440-09-7	Potassium	H	mg/L	6020		*	<0.3		<0.3			*
7440-16-6	Rhodium	Н	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	H	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	H	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	H	mg/L	6020		*	<0.25		<0.25			*
7440-25-7	Tantalum	H	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	H	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	I	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2	Vanadium	H	mg/L	6010		*	<0.005		<0.005			*
7440-66-6	Zinc	H	mg/L	6020		*	<0.01		<0.01			*
108-05-4	Vinyl acetate	H	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1	Acetone	H	mg/L	8260		*	<0.005		<0.005		<0.005	
107-02-8	Acrolein	H	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	H	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2	Benzene	H	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	H	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7	Xylenes	I	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5	Styrene	H	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3	Toluene	H	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5	Chlorobromoethane	T	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

LAB ID: None For Official Use Only

FINDS/UNIT: KY8-890-008-982 / 1

(Cont.) ı SAMPLE ANALYSIS GROUNDWATER

00	۲۱	ម្បុងប្រ																						
0000-0000	T. BLANK 1	DETECTED VALUE OR PQL ⁶	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
00	ᆂ	្ឋា្ស្ល																						
0000-0000	F. BLANK	DETECTED VALUE OR PQL ⁶	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
0	,	គ្រុងប្រ																						
0000-0000	E. BLANK	DETECTED VALUE OR PQL ⁶	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
		គ្រា៩២៧	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
8004-0989	377	DETECTED VALUE OR PQL ⁶																						
	etc.)	метнор	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260
	MW-2,	Unit OF MEASURE	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	MW-1,	ΗQs	H	H	H	T	Н	H	H	H	H	H	H	H	H	H	H	H	H	Н	H	H	H	H
AKGWA NUMBER ¹ , Facility Well/Spring Number	al Well or Spring Number (e.g.,	CONSTITUENT	Bromodichloromethane	Tribromomethane	Methyl bromide	Methyl ethyl ketone	trans-1,4-Dichloro-2-butene	Carbon disulfide	Chloroethane	Chloroform	Methyl chloride	cis-1,2-Dichloroethene	Methylene bromide	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	Ethane, 1,2-dibromo	Ethane, 1,1,2,2-Tetrachloro	Ethane, 1,1,1-Trichloro-	Ethane, 1,1,2-Trichloro	Ethane, 1,1,1,2-Tetrachloro	Vinyl chloride	Ethene, Tetrachloro-	Ethene, Trichloro-
AKGWA NUMBER ¹ ,	Facility's Local	CAS RN ⁴	75-27-4	75-25-2	74-83-9	78-93-3	110-57-6	75-15-0	75-00-3	67-66-3	74-87-3	156-59-2	74-95-3	75-34-3	107-06-2	75-35-4	106-93-4	79-34-5	71-55-6	2-00-62	630-20-6	75-01-4	127-18-4	79-01-6

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-0989		0000-0000		0000-0000	0	0000-0000	0
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1,	MW-2,	etc.)	377		E. BLANK		F. BLANK	>	T. BLANK 1	-
CAS RN ⁴	CONSTITUENT	Η О ω	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	ក្រុងព្រ	DETECTED VALUE OR PQL ⁶	្ឋា៤លេ	DETECTED VALUE OR PQL ⁶	្ឋា៤ល
100-41-4	Ethylbenzene	H	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	H	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	T	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	H	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	H	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	H	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	T	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	T	mg/L	8011		*	<0.00002		<0.00002		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	T	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	T	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	T	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	T	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	T	ng/L	8082		*	<0.0962		<0.098			*
12674-11-2	PCB-1016	T	ng/L	8082		*	<0.0962		<0.098			*
11104-28-2	PCB-1221	T	ng/L	8082		*	<0.0962		<0.098			*
11141-16-5	PCB-1232	T	ng/L	8082		*	<0.0962		<0.098			*
53469-21-9	PCB-1242	H	ng/L	8082		*	<0.0962		<0.098			*
12672-29-6	PCB-1248	H	ug/L	8082		*	<0.0962		<0.098			*

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

- (Cont.) GROUNDWATER SAMPLE ANALYSIS

0	1	្រុក្ស	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*			
0000-0000	T. BLANK	DETECTED VALUE OR PQL ⁶																			
0	\ \	មក្សស				*	*	*	*	*	*	*	*	*	*		*	*			
0000-0000	F. BLANK	DETECTED VALUE OR PQL ⁶	<0.098	<0.098	<0.098	0.771	-2.89		0.264	-0.743	3.91	0.344	-30.2			<0.5					
		មា។				*	*	*	*	*	*	*	*	*	*		*	*			
0000-0000	E. BLANK	DETECTED VALUE OR PQL ⁶	<0.0962	<0.0962	<0.0962	-0.534	-1.67		0.203	3.22	-4.99	0.169	-118			<0.5					
		គ្រុងប្រ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*			
8004-0989	377	DETECTED VALUE OR PQL ⁶																			
	etc.)	метнор	8082	8082	8082	9310	9310		HASL 300	905.0	Tc-02-RC	Th-01-RC	0.906	410.4	9012	300.0	0906	9020			
	MW-2,	Unit OF MEASURE	ng/L	ng/L	ng/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	mg/L	mg/L	mg/L	mg/L	mg/L			
	MW-1,	H Qs	T	H	H	H	H	H	H	H	H	H	H	H	T	H	H	Ŧ			
AKGWA NUMBER ¹ , Facility Well/Spring Number	Local Well or Spring Number (e.g.,	CONSTITUENT	PCB-1254	PCB-1260	PCB-1268	Gross Alpha	Gross Beta	Iodine-131	Radium-226	Strontium-90	Technetium-99	Thorium-230	Tritium	Chemical Oxygen Demand	Cyanide	Iodide	Total Organic Carbon	Total Organic Halides			
AKGWA NUMBER ¹ ,	Facility's Lo	CAS RN ⁴	11097-69-1	11096-82-5	11100-14-4	12587-46-1	12587-47-2	10043-66-0	13982-63-3	10098-97-2	14133-76-7	14269-63-7	10028-17-8	s0130	57-12-5	20461-54-5	s0268	20586			

Division of Waste Management

Solid Waste Branch

14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

LAB ID: None

FINDS/UNIT: KY8-890-008-982 / 1

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	\mathtt{AKGWA} NUMBER1, Facility Well/Spring Number			0000-0000		0000-0000		0000-0000)	0000-0000	
Facility's Local Well	or Spring Number (e.g.,	MW-1, MW-2,	etc.)	T. BLANK 2		T. BLANK 3		T. BLANK 4	4	T. BLANK 5	
Sample Sequence	# e:			1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip, ((M)ethod, or ((E)quipment	Τ		Т		Τ		Т	
Sample Date and	d Time (Month/Day/Year hour: minutes)	tes)		4/7/2015 07:30	4	4/8/2015 08:00	_	4/9/2015 07:07	203	4/13/2015 07:15	15
Duplicate ("Y"	("Y" or "N") ²			Z		Z		Z		Z	
Split ("Y" or	"И") 3			Z		Z		Z		Z	
Facility Sample	e ID Number (if applicable)			TB2UG3-15		TB3UG3-15		TB4UG3-15	5	TB5UG3-15	
Laboratory Sam	Sample ID Number (if applicable)			370578009		370669007		370820009	6	370965005	
Date of Analysis	(Month/Day/Year) For	Volatile Organics Analysis	nalysis	4/14/2015		4/15/2015		4/16/2015		4/16/2015	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,	WN, SIDE, UNKNOWN)	VIKNOWN)	NA		NA		NA		NA	
CAS RN⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD 3	DETECTED F VALUE L OR A PQL ⁶ G		DETECTED E VALUE I OR 2 PQL ⁶ C	F DE	DETECTED VALUE OR PQL ⁶	ម្បុស្ស	DETECTED VALUE OR PQL ⁶	ម្បុង ២០
24959-67-9	Bromide	I/Bw I	9906	*			*		*		*
16887-00-6	Chloride(s)	T mg/L	9026	*			*		*		*
16984-48-8	Fluoride	T mg/L	9026	*			*		*		*
s0595	Nitrate & Nitrite	I mg/L	9906	*			*		*		*
14808-79-8	Sulfate	T mg/L	9026	*			*		*		*
NS1894	Barometric Pressure Reading	T Inches/Hg	Ig Field	*			*		*		*
s0145	Specific Conductance	T µMH0/cm	n Field	*			*		*		*
											Ī

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved
6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.
7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."</pre>

STANDARD FLAGS:

^{* =} See Comments

⁼ Estimated Value
= Analyte found in blank

A = Average value N = Presumptive ID D = Concentration f

Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

Partillety's Local Well or Spring Number (s.g., 10c.), Partillety's Parti	AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000	.	0000-0000		0000-0000		0000-0000	
Particular Par	Facility's Lo	or Spring Number	V-1, M	W-2, BLANK-F		T. BLANK 2		T. BLANK 3		T. BLANK 4		T. BLANK 5	
Static Mater Level Blavation 7 Field 7 Field 7		CONSTITUENT	Η Оъ	Unit OF MEASURE	метнор			DETECTED VALUE OR PQL ⁶	F T 4 O O	DETECTED VALUE OR PQL ⁶	ម្បុង្ខេល	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ
1 Dissolved Coxygen T Field T Field T Field T Field T T T T T Field T T T T Field T <td>ı</td> <td>Static Water Level Elevation</td> <td>H</td> <td>Ft. MSL</td> <td>Field</td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td>*</td>	ı	Static Water Level Elevation	H	Ft. MSL	Field	*			*		*		*
pH 160.1 160.1 1 <t< td=""><td>N238</td><td>Dissolved Oxygen</td><td>T</td><td>mg/L</td><td>Field</td><td>*</td><td></td><td></td><td>*</td><td></td><td>*</td><td></td><td>*</td></t<>	N238	Dissolved Oxygen	T	mg/L	Field	*			*		*		*
pit rint r		Total Dissolved Solids	H	mg/L	160.1	*			*		*		*
Sthematicum r veid of period relid r <th< td=""><td></td><td>нд</td><td>T</td><td>Units</td><td>Field</td><td>*</td><td></td><td></td><td>*</td><td></td><td>*</td><td></td><td>*</td></th<>		нд	T	Units	Field	*			*		*		*
Tamperature T °C Pield Pield </td <td>NS215</td> <td>чв</td> <td>T</td> <td>νm</td> <td>Field</td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td>*</td>	NS215	чв	T	νm	Field	*			*		*		*
Aluminum T mg/L 6020 "	1	Temperature	T	၁ွ	Field	*			*		*		*
Antimony T mg/L 6020 "	7429-90-5	Aluminum	T	mg/L	6020	*			*		*		*
Arrentic T mg/L 6020 *	7440-36-0	Antimony	H	mg/L	6020	*			*		*		*
a barylitum T mg/L 6020 * * * * Beryllitum T mg/L 6020 * * * * * I boxon T mg/L 6020 * * * * * I cadmium T mg/L 6020 * * * * * I cadmium T mg/L 6020 * * * * * * I cadmium T mg/L 6020 *	7440-38-2	Arsenic	H	mg/L	6020	*			*		*		*
Beryllium T mg/L 6020 *	7440-39-3	Barium	T	mg/L	6020	*			*		*		*
Boron T mg/L 6020 * <th< td=""><td>7440-41-7</td><td>Beryllium</td><td>T</td><td>mg/L</td><td>6020</td><td>*</td><td></td><td></td><td>*</td><td></td><td>*</td><td></td><td>*</td></th<>	7440-41-7	Beryllium	T	mg/L	6020	*			*		*		*
Cademium T mg/L 6020 *	7440-42-8	Boron	T	mg/L	6020	*			*		*		*
Calcium T mg/L 6020 * * * * Chromium T mg/L 6020 * * * * * Cobalt T mg/L 6020 * * * * * Inon T mg/L 6020 * * * * * Lead T mg/L 6020 * * * * * * Manganesium T mg/L 6020 * * * * * * Manganese T mg/L 6020 *	7440-43-9	Cadmium	Ŧ	mg/L	6020	*			*		*		*
Chromium T mg/L 6020 * * * * Cobalt T mg/L 6020 * * * * Incompact T mg/L 6020 * * * * Incompact T mg/L 6020 * * * * Magnesium T mg/L 6020 * * * * Marganese T mg/L 6020 * * * * Marcury T mg/L 6020 * * * *	7440-70-2	Calcium	T	mg/L	6020	*			*		*		*
Cobalt T mg/L 6020 * <t< td=""><td>7440-47-3</td><td>Chromium</td><td>T</td><td>mg/L</td><td>6020</td><td>*</td><td></td><td></td><td>*</td><td></td><td>*</td><td></td><td>*</td></t<>	7440-47-3	Chromium	T	mg/L	6020	*			*		*		*
Copper T mg/L 6020 * <t< td=""><td>7440-48-4</td><td>Cobalt</td><td>T</td><td>mg/L</td><td>6020</td><td>*</td><td></td><td></td><td>*</td><td></td><td>*</td><td></td><td>*</td></t<>	7440-48-4	Cobalt	T	mg/L	6020	*			*		*		*
Iron T mg/L 6020 *	7440-50-8	Copper	T	mg/L	6020	*			*		*		*
Lead T mg/L 6020 *	7439-89-6	Iron	T	mg/L	6020	*			*		*		*
Magnesium T mg/L 6020 *	7439-92-1	Lead	T	mg/L	6020	*			*		*		*
Manganese T mg/L 6020 * * * Mercury T mg/L 7470 * * *	7439-95-4	Magnesium	T	mg/L	6020	*			*		*		*
Mercury T mg/L 7470 * * * *	7439-96-5	Manganese	H	mg/L	6020	*			*		*		*
	7439-97-6	Mercury	Т	mg/L	7470	*			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

(Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000	0	0000-0000	0	0000-0000	0	0000-0000	
Facility's Lo	Local Well or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	T. BLANK 2	2	T. BLANK 3	3	T. BLANK 4	4	T. BLANK 5	10
CAS RN ⁴	CONSTITUENT	НΩω	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ម្បាជ្ល	DETECTED VALUE OR PQL ⁶	គ្រុជប្រ	DETECTED VALUE OR PQL ⁶	ម្បុស្ល	DETECTED VALUE OR PQL ⁶	្ឋា៤៣០
7439-98-7	Molybdenum	Н	mg/L	6020		*		*		*		*
7440-02-0	Nickel	H	mg/L	6020		*		*		*		*
7440-09-7	Potassium	Н	mg/L	6020		*		*		*		*
7440-16-6	Rhodium	H	mg/L	6020		*		*		*		*
7782-49-2	Selenium	H	mg/L	6020		*		*		*		*
7440-22-4	Silver	H	mg/L	0209		*		*		*		*
7440-23-5	Sodium	I	mg/L	6020		*		*		*		*
7440-25-7	Tantalum	H	mg/L	0209		*		*		*		*
7440-28-0	Thallium	T	mg/L	6020		*		*		*		*
7440-61-1	Uranium	T	mg/L	6020		*		*		*		*
7440-62-2	Vanadium	T	mg/L	0109		*		*		*		*
7440-66-6	Zinc	T	mg/L	6020		*		*		*		*
108-05-4	Vinyl acetate	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	T	mg/L	8260	0.00173	ſ	<0.005		<0.005		<0.005	
107-02-8	Acrolein	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	H	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

LAB ID: None For Official Use Only

FINDS/UNIT: KY8-890-008-982 / 1

(Cont.) ı ANALYSIS SAMPLE GROUNDWATER

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		0000-0000		0000-0000	0	0000-0000	
Facility's Local	Well or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	T. BLANK 2		T. BLANK 3		T. BLANK 4	4	T. BLANK 5	5
CAS RN ⁴	CONSTITUENT	Η Оп	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	គ្មា៤ល្ល	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	្ឋា្ស្ល
75-27-4	Bromodichloromethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

(Cont.) ı GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		0000-0000		0000-0000	00	0000-0000	Q
Facility's Local	Well or Spring Number (e.g.,	MW-1,	, MW-2, etc.)	(:)	T. BLANK 2	2	T. BLANK 3	3	T. BLANK	4 4	T. BLANK	(5
CAS RN⁴	CONSTITUENT	ΗДω	Unit OF MEASURE	МЕТНОБ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្រុជ្ល	DETECTED VALUE OR PQL ⁶	គ្រុ៩២៧	DETECTED VALUE OR PQL ⁶	ក្រុស្ល
100-41-4	Ethylbenzene	Н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	I	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Ŧ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Ŧ	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	H	mg/L	8011	<0.00002		<0.00002		<0.00002		<0.00002	
78-87-5	Propane, 1,2-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Ŧ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	T	ng/L	8082		*		*		*		*
12674-11-2	PCB-1016	Ŧ	ng/L	8082		*		*		*		*
11104-28-2	PCB-1221	Н	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	H	ng/L	8082		*		*		*		*
53469-21-9	PCB-1242	H	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

(Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		0000-0000		0000-0000		0000-0000	
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1	, MW-2,	etc.)	T. BLANK 2	<u>~</u> :	T. BLANK 3		T. BLANK 4	4	T. BLANK 5	
CAS RN ⁴	CONSTITUENT	НОυ	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ក្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	ម្បាស្ល	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ
11097-69-1	PCB-1254	H	ng/L	8082		*		*		*		*
11096-82-5	PCB-1260	H	ng/L	8082		*		*		*		*
11100-14-4	PCB-1268	Ŧ	ng/L	8082		*		*		*		*
12587-46-1	Gross Alpha	H	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	H	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Ŧ	pCi/L			*		*		*		*
13982-63-3	Radium-226	H	pCi/L	HASL 300		*		*		*		*
10098-97-2	Strontium-90	H	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	H	pCi/L	TC-02-RC		*		*		*		*
14269-63-7	Thorium-230	H	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	H	pCi/L	0.906		*		*		*		*
s0130	Chemical Oxygen Demand	Ŧ	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	H	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Ŧ	mg/L	300.0		*		*		*		*
s0268	Total Organic Carbon	H	mg/L	0906		*		*		*		*
s0586	Total Organic Halides	H	mg/L	9020		*		*		*		*

Division of Waste Management

Solid Waste Branch

14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

For Official Use Only LAB ID: None

FINDS/UNIT: KY8-890-008-982 / 1

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4819							
Facility's Local Well or	Spring Number (e.g.,	MW-1,	MW-2, etc.))	371							
Sample Sequence	# 01				2		/					
If sample is a B	a Blank, specify Type: (F)ield, (T)rip, (M)ethod,	(M)et	я Я	(E)quipment	AN							
Sample Date an	and Time (Month/Day/Year hour: minutes)	tes)			4/13/2015 08:16	16						
Duplicate ("Y"	OF "N") ²				>						\	
Split ("Y" or	"N")				z							
Facility Sampl	Facility Sample ID Number (if applicable)				MW371DUG3-15	15						
Laboratory Sam	Laboratory Sample ID Number (if applicable)				370965003							
Date of Analys	Analysis (Month/Day/Year) For Volatile Organics Analysis	e Orç	anics Analy	sis	4/16/2015							
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,		SIDE, UNKNOWN)	WN)	UP				\times			
CAS RN ⁴	CONSTITUENT	I	Unit	МЕТНОБ	DETECTED	Ħ	DETECTED	Ħ	ретестер	F	DETECTED	ъ
		D s	OF MEASURE		VALUE	пď	VALUE	ן∢	VAZUE	ц	VALUE OR	14
					POL	מ,מ	PQL	ប្រា	POL	o s	PQL	ច្ច
24959-67-9	Bromide	H	mg/L	9026	0.0952	-						
16887-00-6	Chloride(s)	H	mg/L	9026	5.85							
16984-48-8	Fluoride	Н	mg/L	9026	0.272							
80595	Nitrate & Nitrite	H	mg/L	9026	0.682							
14808-79-8	Sulfate	Н	mg/L	9026	13.2							
NS1894	Barometric Pressure Reading	H	Inches/Hg	Field	30.04							
s0145	Specific Conductance	H	µMH0/cm	Field	711							
									STANDARD FLAGS:	FLAGS:		

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

[&]quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

⁼ See Comments

⁼ Estimated Value
= Analyte found in blank

Concentration from analysis of a secondary dilution A = Average value N = Presumptive ID D = Concentration f

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4819							
Facility's Loc	Local Well or Spring Number (e.g., MW-	MW-1, MW	W-2, BLANK-F	', etc.)	371							
CAS RN⁴	CONSTITUENT	НΩς	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ម្បុង្ខេល	DETRICTED VALUE OR POL	ម្បុស្ន	DETECTED VALUE OR PQL ⁶	គ្រុ៩២០	DETECTED VALUE OR PQL ⁶	គ្រាជ្
90608	Static Water Level Elevation	H	Ft. MSL	Field	341.47							
N238	Dissolved Oxygen	H	mg/L	Field	4.44							
s0266	Total Dissolved Solids	H	mg/L	160.1	384							
s0296	на	H	Units	Field	6.75							
NS215	чв	H	Λm	Field	384							
70608	Temperature	H	ပွ	Field	16.67							
7429-90-5	Aluminum	H	mg/L	6020	1.69	*						
7440-36-0	Antimony	H	mg/L	6020	<0.003				$/ \setminus$			
7440-38-2	Arsenic	H	mg/L	6020	0.00182	7			X			
7440-39-3	Barium	H	mg/L	6020	0.125				\setminus			
7440-41-7	Beryllium	H	mg/L	6020	<0.0005							
7440-42-8	Boron	H	mg/L	6020	0.00459	7						
7440-43-9	Cadmium	Н	mg/L	6020	<0.001							
7440-70-2	Calcium	T	mg/L	6020	28.8							
7440-47-3	Chromium	H	mg/L	6020	<0.01			/				
7440-48-4	Cobalt	H	mg/L	6020	0.00034	_		/				
7440-50-8	Copper	H	mg/L	6020	0.00131							
7439-89-6	Iron	H	mg/L	6020	0.962							
7439-92-1	Lead	H	mg/L	6020	9000'0	7						
7439-95-4	Magnesium	T	mg/L	6020	12.8							
7439-96-5	Manganese	H	mg/L	6020	0.0149							
7439-97-6	Mercury	H	mg/L	7470	<0.0002							

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4819							
Facility's Lo	Local Well or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	371							
CAS RN⁴	CONSTITUENT	H Qs	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ម្មជ្ល	DETECTED VALUE OR POL®	ក្រុងបេល	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ 11 4 ប ល
7439-98-7	Molybdenum	EH	mg/L	6020	0.00044	J						
7440-02-0	Nickel	H	mg/L	6020	0.00144	ſ						
7440-09-7	Potassium	ı	mg/L	6020	0.508							
7440-16-6	Rhodium	H	mg/L	6020	<0.005				\			
7782-49-2	Selenium	H	mg/L	6020	<0.005							
7440-22-4	Silver	H	mg/L	6020	<0.001							
7440-23-5	Sodium	H	mg/L	6020	129							
7440-25-7	Tantalum	H	mg/L	0209	<0.005	*			$/ \setminus$			
7440-28-0	Thallium	ī	mg/L	0209	<0.002				X			
7440-61-1	Uranium	T	mg/L	6020	0.00128				\setminus			
7440-62-2	Vanadium	H	mg/L	6010	0.00673				/			
7440-66-6	Zinc	H	mg/L	6020	0.00471	J			/			
108-05-4	Vinyl acetate	ī	mg/L	8260	<0.005					\		
67-64-1	Acetone	H	mg/L	8260	<0.005				/			
107-02-8	Acrolein	H	mg/L	8260	<0.005							
107-13-1	Acrylonitrile	H	mg/L	8260	<0.005							
71-43-2	Benzene	H	mg/L	8260	<0.001							
108-90-7	Chlorobenzene	H	mg/L	8260	<0.001							
1330-20-7	Xylenes	H	mg/L	8260	<0.003		/					
100-42-5	Styrene	H	mg/L	8260	<0.001		/					
108-88-3	Toluene	H	mg/L	8260	<0.001		/					
74-97-5	Chlorobromoethane	H	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

(Cont.) ı SAMPLE ANALYSIS GROUNDWATER

		មក្នុល ល																						<i>-</i>
		DETECTED VALUE OR PQL																						
		គ្រុងប្រ																						
		DETECTED VALUE OR PQL ⁶						/			\times		/	/	_									
		ម្បី៩០ល																						
		DETECTED VALUE OR POL																		/	/		/	_
		គ្រុជប្រ																						
8004-4819	371	DETECTED VALUE OR PQL ⁶	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00139
	etc.)	METHOD	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260
	MW-2,	Unit OF MEASURE	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	MW-1,	Η Оς	H	H	H	Н	Н	H	H	H	H	H	H	Н	H	H	H	H	H	Н	Н	T	H	H
AKGWA NUMBER ¹ , Facility Well/Spring Number	al Well or Spring Number (e.g.,	CONSTITUENT	Bromodichloromethane	Tribromomethane	Methyl bromide	Methyl ethyl ketone	trans-1,4-Dichloro-2-butene	Carbon disulfide	Chloroethane	Chloroform	Methyl chloride	cis-1,2-Dichloroethene	Methylene bromide	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	Ethane, 1,2-dibromo	Ethane, 1,1,2,2-Tetrachloro	Ethane, 1,1,1-Trichloro-	Ethane, 1,1,2-Trichloro	Ethane, 1,1,1,2-Tetrachloro	Vinyl chloride	Ethene, Tetrachloro-	Ethene, Trichloro-
AKGWA NUMBER ¹ ,	Facility's Local	CAS RN⁴	75-27-4	75-25-2	74-83-9	78-93-3	110-57-6	75-15-0	75-00-3	67-66-3	74-87-3	156-59-2	74-95-3	75-34-3	107-06-2	75-35-4	106-93-4	79-34-5	71-55-6	79-00-5	630-20-6	75-01-4	127-18-4	79-01-6

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4819	\vdash						
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1,	MW-2,	etc.)	371							
CAS RN⁴	CONSTITUENT	НΩς	Unit OF MEASURE	метнор	DETECTED 1	គ្រុជ្ល	DETECTED VALUE OR POI	ម្បាជ្ន	DETECTED VALUE OR PQL ⁶	គ្រា៩២០	DETECTED VALUE OR PQL	ម្បៈជ្រ
100-41-4	Ethylbenzene	H	mg/L	8260	<0.001							
591-78-6	2-Hexanone	H	mg/L	8260	<0.005							
74-88-4	Iodomethane	H	mg/L	8260	<0.005							
124-48-1	Methane, Dibromochloro-	Н	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	H	mg/L	8260	<0.001							
75-09-2	Dichloromethane	H	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	Н	mg/L	8260	<0.005							
96-12-8	Propane, 1,2-Dibromo-3-chloro	H	mg/L	1108	<0.00002							
78-87-5	Propane, 1,2-Dichloro-	I	mg/L	8260	<0.001				X			
10061-02-6	trans-1,3-Dichloro-1-propene	H	mg/L	0978	<0.001				\setminus			
10061-01-5	cis-1,3-Dichloro-1-propene	Ŧ	mg/L	8260	<0.001							
156-60-5	trans-1,2-Dichloroethene	H	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	H	mg/L	8260	<0.001							
96-18-4	1,2,3-Trichloropropane	Ŧ	mg/L	8260	<0.001							
95-50-1	Benzene, 1,2-Dichloro-	I	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	H	mg/L	8260	<0.001							
1336-36-3	PCB, Total	H	ng/L	8082	<0.0962							
12674-11-2	PCB-1016	Ŧ	ug/L	8082	<0.0962							
11104-28-2	PCB-1221	H	ug/L	8082	<0.0962							
11141-16-5	PCB-1232	H	ug/L	8082	<0.0962							
53469-21-9	PCB-1242	H	ug/L	8082	<0.0962							
12672-29-6	PCB-1248	H	ug/L	8082	<0.0962	\dashv						

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

(Cont.) GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4819							
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1,	MW-2,	etc.)	371							
CAS RN ⁴	CONSTITUENT	НДω	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR POL	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	គ្រុងប្រ	DETECTED VALUE OR PQL ⁶	ក្រុងប្រ
11097-69-1	PCB-1254	H	ng/L	8082	<0.0962							
11096-82-5	PCB-1260	H	ng/L	8082	<0.0962							
11100-14-4	PCB-1268	H	ng/L	8082	<0.0962							
12587-46-1	Gross Alpha	H	pCi/L	9310	-2.29	*				`		
12587-47-2	Gross Beta	H	pCi/L	9310	-3.25	*						
10043-66-0	Iodine-131	T	pCi/L			*						
13982-63-3	Radium-226	H	pCi/L	HASL 300	0.485	*						
10098-97-2	Strontium-90	T	pCi/L	905.0	-1.05	*			$ \bigwedge $			
14133-76-7	Technetium-99	T	pCi/L	TC-02-RC	-2.82	*						
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	-0.0807	*						
10028-17-8	Tritium	T	pCi/L	0.906	-13.8	*						
s0130	Chemical Oxygen Demand	H	mg/L	410.4	<20							
57-12-5	Cyanide	T	mg/L	9012	<0.2							
20461-54-5	Iodide	Ŧ	mg/L	300.0	<0.5							
s0268	Total Organic Carbon	T	mg/L	0906	1.3							
98508	Total Organic Halides	T	mg/L	9020	900.0	BJ						

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4798 MW357	MW357UG3-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3. Rad error is 2.99.
		Gross beta		TPU is 8.08. Rad error is 7.48.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.495. Rad error is 0.491.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.76. Rad error is 3.76.
		Technetium-99		TPU is 12.4. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.535. Rad error is 0.52.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 161. Rad error is 161.
8004-4799 MW358	MW358UG3-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.24. Rad error is 5.23.
		Gross beta		TPU is 10.7. Rad error is 9.62.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.571. Rad error is 0.556.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.26. Rad error is 4.25.
		Technetium-99		TPU is 12.4. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.463. Rad error is 0.449.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 160.
8004-0981 MW359	MW359UG3-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.73. Rad error is 4.73.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.45. Rad error is 4.45.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.465. Rad error is 0.461.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.47. Rad error is 2.47.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.525. Rad error is 0.517.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 167. Rad error is 167.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4800 MW360	MW360UG3-15	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.13. Rad error is 5.12.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.51. Rad error is 8.41.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.461. Rad error is 0.448.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.69. Rad error is 1.69.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.4. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.61. Rad error is 0.601.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 163. Rad error is 163.
8004-4795 MW361	MW361UG3-15	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.51. Rad error is 3.51.
		Gross beta		TPU is 9.31. Rad error is 8.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.282. Rad error is 0.281.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.6. Rad error is 2.59.
		Technetium-99		TPU is 12.6. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.668. Rad error is 0.652.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 160.
8004-0986 MW362	MW362UG3-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.8. Rad error is 7.74.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.39. Rad error is 9.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.635. Rad error is 0.621.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.52. Rad error is 2.47.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.461. Rad error is 0.455.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 163. Rad error is 163.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4796 MW363	MW363UG3-15	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.04. Rad error is 3.03.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.67. Rad error is 4.67.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.456. Rad error is 0.451.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.49. Rad error is 4.48.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.708. Rad error is 0.689.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 163. Rad error is 163.
8004-4797 MW364	MW364UG3-15	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.68. Rad error is 5.68.
		Gross beta		TPU is 12.5. Rad error is 10.5.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.537. Rad error is 0.528.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.03. Rad error is 2.03.
		Technetium-99		TPU is 13.1. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.561. Rad error is 0.554.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 157. Rad error is 157.
8004-0984 MW365	MW365UG3-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.26. Rad error is 7.16.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.46. Rad error is 8.41.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.452. Rad error is 0.445.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.92. Rad error is 2.89.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.478. Rad error is 0.473.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 160.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0982 MW366	MW366UG3-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.69. Rad error is 3.69.
		Gross beta		TPU is 11.6. Rad error is 9.51.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.529. Rad error is 0.517.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.52. Rad error is 2.52.
		Technetium-99		TPU is 13.8. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.503. Rad error is 0.496.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 166. Rad error is 166.
8004-4793 MW367	MW367UG3-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.84. Rad error is 4.84.
		Gross beta		TPU is 15. Rad error is 12.4.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.656. Rad error is 0.629.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.34. Rad error is 3.34.
		Technetium-99		TPU is 14.5. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.375. Rad error is 0.375.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 164. Rad error is 164.
8004-0983 MW368	MW368UG3-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.82. Rad error is 4.81.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.3. Rad error is 6.26.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.478. Rad error is 0.474.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.15. Rad error is 2.15.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.444. Rad error is 0.439.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 162. Rad error is 162.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4820 MW369	MW369UG3-15	Aluminum	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.09. Rad error is 4.09.
		Gross beta		TPU is 9.25. Rad error is 8.15.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.538. Rad error is 0.532.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.6. Rad error is 1.6.
		Technetium-99		TPU is 13.5. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.265. Rad error is 0.264.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 154. Rad error is 153.
3004-4818 MW370	MW370UG3-15	Aluminum	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.17. Rad error is 5.17.
		Gross beta		TPU is 7.24. Rad error is 6.84.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		TPU is 0.636. Rad error is 0.623.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.51. Rad error is 1.51.
		Technetium-99		TPU is 12.3. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.364. Rad error is 0.364.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 153. Rad error is 152.
3004-4819 MW371	MW371UG3-15	Aluminum	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.48. Rad error is 7.45.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.74. Rad error is 9.5.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.701. Rad error is 0.69.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.63. Rad error is 1.63.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.5.
		Thorium-230	U 	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.596. Rad error is 0.576.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 145. Rad error is 145.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

CDOUNDWATED

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4808 MW372	MW372UG3-15	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.02. Rad error is 6.01.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.17. Rad error is 9.06.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.516. Rad error is 0.505.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.74. Rad error is 2.74.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.4. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.555. Rad error is 0.55.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 163. Rad error is 160.
8004-4792 MW373	MW373UG3-15	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.73. Rad error is 4.72.
		Gross beta		TPU is 9.52. Rad error is 8.53.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.377. Rad error is 0.37.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.31. Rad error is 2.28.
		Technetium-99		TPU is 12.1. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.631. Rad error is 0.621.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 156. Rad error is 156.
8004-0990 MW374	MW374UG3-15	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.39. Rad error is 9.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.72. Rad error is 7.72.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.415. Rad error is 0.411.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.52. Rad error is 3.52.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.7. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.528. Rad error is 0.523.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 156. Rad error is 156.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0985 MW375	MW375UG3-15	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.04. Rad error is 5.04.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.49. Rad error is 8.45.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.285. Rad error is 0.284.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.17. Rad error is 2.17.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.469. Rad error is 0.465.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 164. Rad error is 164.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description																		
8004-0988 MW376	•	Bromide	· ·	During sampling, the well went dry; therefore, no sample was collected.																		
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.																		
		Fluoride		During sampling, the well went dry; therefore, no sampl was collected.																		
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sampl was collected.																		
		Sulfate		During sampling, the well went dry; therefore, no samp was collected.																		
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no samp was collected.																		
		Specific Conductance		During sampling, the well went dry; therefore, no samp was collected.																		
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sampling was collected.																		
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sampl was collected.																		
		Total Dissolved Solids		During sampling, the well went dry; therefore, no samp was collected.																		
		рН		During sampling, the well went dry; therefore, no samp was collected.																		
		Eh		During sampling, the well went dry; therefore, no samp was collected.																		
		Temperature		During sampling, the well went dry; therefore, no samp was collected.																		
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.																		
		Antimony		During sampling, the well went dry; therefore, no samp was collected.																		
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.																		
		Barium		During sampling, the well went dry; therefore, no samp was collected.																		
																				Beryllium		During sampling, the well went dry; therefore, no samp was collected.
														Boron		During sampling, the well went dry; therefore, no samp was collected.						
			Cadmium		During sampling, the well went dry; therefore, no samp was collected.																	
		Calcium		During sampling, the well went dry; therefore, no samp was collected.																		
		Chromium		During sampling, the well went dry; therefore, no samp was collected.																		
		Cobalt		During sampling, the well went dry; therefore, no samp was collected.																		
		Copper		During sampling, the well went dry; therefore, no samp was collected.																		
		Iron		During sampling, the well went dry; therefore, no samp was collected.																		
		Lead		During sampling, the well went dry; therefore, no samp was collected.																		

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description				
3004-0988 MW376		Magnesium	J	During sampling, the well went dry; therefore, no sample was collected.				
		Manganese		During sampling, the well went dry; therefore, no sample was collected.				
		Mercury		During sampling, the well went dry; therefore, no sample was collected.				
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.				
		Nickel		During sampling, the well went dry; therefore, no sample was collected.				
		Potassium		During sampling, the well went dry; therefore, no sample was collected.				
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.				
		Selenium		During sampling, the well went dry; therefore, no sample was collected.				
		Silver		During sampling, the well went dry; therefore, no sample was collected.				
		Sodium		During sampling, the well went dry; therefore, no sample was collected.				
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.				
		Thallium		During sampling, the well went dry; therefore, no sample was collected.				
		Uranium		During sampling, the well went dry; therefore, no sample was collected.				
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.				
		Zinc		During sampling, the well went dry; therefore, no sampl was collected.				
		Vinyl acetate		During sampling, the well went dry; therefore, no sampl was collected.				
		Acetone		During sampling, the well went dry; therefore, no sampl was collected.				
		Acrolein		During sampling, the well went dry; therefore, no sampl was collected.				
		Acrylonitrile		During sampling, the well went dry; therefore, no sampl was collected.				
						Benzene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.				
		Xylenes		During sampling, the well went dry; therefore, no sampl was collected.				
		Styrene		During sampling, the well went dry; therefore, no sampl was collected.				
		Toluene		During sampling, the well went dry; therefore, no sampl was collected.				
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampl was collected.				
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampl was collected.				

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376	·	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sampl was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376	•	Dichloromethane	J	During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	·	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sampl was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sampl was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sampl was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sampl was collected.
		рН		During sampling, the well went dry; therefore, no sampl was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no samp was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no samp was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Magnesium	J	During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sampl was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sampling was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampl was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	·	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	·	Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Thorium-230		During sampling, the well went dry; therefore, no sampling was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
0000-0000 QC	RI1UG3-15	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.2. Rad error is 3.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.71. Rad error is 6.71.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.351. Rad error is 0.349.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.15. Rad error is 3.1.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.519. Rad error is 0.515.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 160.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

 $Finds/Unit: \underline{KY8-890-008-982 \ / \ 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1UG3-15	Bromide	<u>J</u>	Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.72. Rad error is 4.71.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.18. Rad error is 8.18.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.33. Rad error is 0.327.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.5. Rad error is 2.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.461. Rad error is 0.454.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 165. Rad error is 165.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG3-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG3-15	Zinc	<u> </u>	Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG3-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG3-15	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG3-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG3-15	Zinc	<u> </u>	Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		Iodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG3-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG3-15	Zinc	<u> </u>	Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5UG3-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

RESIDENTIAL/CONTAINED – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5UG3-15	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed
8004-4819 MW371	MW371DUG3-15	Aluminum	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.03. Rad error is 4.03.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.19. Rad error is 4.19.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.501. Rad error is 0.496.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.48. Rad error is 1.48.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.245. Rad error is 0.244.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 150. Rad error is 150.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/CONTAINED—QUARTERLY, 2nd CY 2015

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-980-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2015 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with at least three test wells or sidegradient wells (Exhibit D.1). The second quarter 2015 data used to conduct the statistical analyses were collected in April 2015. The statistical analyses for this report first utilized data from the first eight quarters that had been sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run, utilizing the last eight quarters, on analytes that had at least one downgradient well that had exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Chemicals of concern that have Kentucky maximum contaminant levels (MCLs) and the results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper tolerance limit using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower tolerance limit to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current guarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:1

- 1. The tolerance limit (TL) is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage is determined (Table 5, Appendix B, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit is calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters by groundwater system from the available data set and the statistical test performed using the one-sided tolerance interval.

D-4

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

lower $TL = X - (K \times S)$

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2015. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a well is sampled on two different dates, the most current available data are used. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374	BG	UCRS
MW375	SG	UCRS
MW376*	SG	UCRS
MW377*	SG	UCRS

NOTE: The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are considered neither upgradient, downgradient, nor sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters

Aluminum

Beta Activity

Boron

Bromide

Calcium

Chemical Oxygen Demand (COD)

Chloride

cis-1,2-Dichloroethene

Cobalt

Conductivity

Copper

Dissolved Oxygen

Dissolved Solids

Iron

Magnesium

Manganese

Molybdenum

Nickel

Oxidation-Reduction Potential

PCB, Total

PCB-1242

рН*

Potassium

Radium-226

Sodium

Sulfate

Technetium-99

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Uranium

Vanadium

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7		No
1,1,2,2-Tetrachloroethane	7	7		No
1,1,2-Trichloroethane	7	7		No
1,1-Dichloroethane	7	7		No
1,2,3-Trichloropropane	7	7		No
1,2-Dibromo-3-chloropropane	7	7		No
1,2-Dibromoethane	7	7		No
1,2-Dichlorobenzene	7	7		No
1,2-Dichloropropane	7	7		No
2-Butanone	7	7		No
2-Hexanone	7	7		No
4-Methyl-2-pentanone	7	7		No
Acetone	7	7		No
Acrolein	7	7		No
Acrylonitrile	7	7		No
Aluminum	7	2	5	Yes
Antimony	7	7		No
Beryllium	7	7		No
Boron	7	2	5	Yes
Bromide	7	4	3	Yes
Bromochloromethane	7	7		No
Bromodichloromethane	7	7		No
Bromoform	7	7		No
Bromomethane	7	7		No
Calcium	7	0	7	Yes
Carbon disulfide	7	7		No
Chemical Oxygen Demand (COD)	7	3	4	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7		No
Chloroethane	7	7		No
Chloroform	7	7		No
Chloromethane	7	7		No
cis-1,2-Dichloroethene	7	7		No
cis-1,3-Dichloropropene	7	7		No
Cobalt	7	0	7	Yes
Conductivity	7	0	7	Yes
Copper	7	2	5	Yes
Cyanide	7	7		No
Dibromochloromethane	7	7		No
Dibromomethane	7	7		No
Dimethylbenzene, Total	7	7		No
Dissolved Oxygen	7	0	7	Yes
Dissolved Oxygen Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	/	No
Iodide	7	7		No
	7	7		No
Iodomethane	7	0	7	
Iron	7			Yes
Magnesium	7	0	7	Yes
Manganese Mathedaga ablagida		0	7	Yes
Methylene chloride	7	7		No
Molybdenum	7	2	5	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	7	1	6	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	7		No
PCB-1016	7	7		No
PCB-1221	7	7		No
PCB-1232	7	7		No
PCB-1242	7	7		No
PCB-1248	7	7		No
PCB-1254	7	7		No
PCB-1260	7	7		No
pН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	6	1	Yes
Rhodium	7	7		No
Sodium	7	0	7	Yes
Styrene	7	7		No
Sulfate	7	0	7	Yes
Tantalum	7	7		No
Technetium-99	7	7		No
Tetrachloroethene	7	7		No
Thallium	7	7		No
Thorium-230	7	7		No
Toluene	7	7		No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	5	2	Yes
trans-1,2-Dichloroethene	7	7		No
trans-1,3-Dichloropropene	7	7		No
trans-1,4-Dichloro-2-Butene	7	7		No
Trichloroethene	7	0	7	Yes
Trichlorofluoromethane	7	7		No
Uranium	7	2	5	Yes
Vanadium	7	4	3	Yes
Vinyl Acetate	7	7		No
Zinc	7	2	5	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6		No
1,1,2,2-Tetrachloroethane	6	6		No
1,1,2-Trichloroethane	6	6		No
1,1-Dichloroethane	6	6		No
1,2,3-Trichloropropane	6	6		No
1,2-Dibromo-3-chloropropane	6	6		No
1,2-Dibromoethane	6	6		No
1,2-Dichlorobenzene	6	6		No
1,2-Dichloropropane	6	6		No
2-Butanone	6	6		No
2-Hexanone	6	6		No
4-Methyl-2-pentanone	6	6		No
Acetone	6	6		No
Acrolein	6	6		No
Acrylonitrile	6	6		No
Aluminum	6	2	4	Yes
Antimony	6	6		No
Beryllium	6	6		No
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	<u> </u>	No
Bromodichloromethane	6	6		No
Bromoform	6	6		No
Bromomethane	6	6		No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	<u> </u>	No
Chemical Oxygen Demand (COD)	6	4	2	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6		No
Chloroethane	6	6		No
Chloroform	6	6		No
Chloromethane	6	6		No
cis-1,2-Dichloroethene	6	6		No
cis-1,3-Dichloropropene	6	6		No
Cobalt	6	0	6	Yes
Conductivity	6	0	6	Yes
Copper	6	2	4	Yes
Cyanide	6	6	•	No
Dibromochloromethane	6	6		No
Dibromomethane	6	6		No
Dimethylbenzene, Total	6	6		No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	<u> </u>	No
Iodide	6	6		No
Iodomethane	6	6		No
Iron	6	3	3	Yes
Magnesium	6	0	6	Yes
Manganese	6	A !	6	Vec
Manganese Methylene chloride	6	6	6	Yes No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	6	4	2	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	5	1	Yes
PCB-1016	6	6		No
PCB-1221	6	6		No
PCB-1232	6	6		No
PCB-1242	6	5	1	Yes
PCB-1248	6	6		No
PCB-1254	6	6		No
PCB-1260	6	6		No
pH	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	3	3	Yes
Rhodium	6	6		No
Sodium	6	0	6	Yes
Styrene	6	6		No
Sulfate	6	0	6	Yes
Tantalum	6	6		No
Technetium-99	6	3	3	Yes
Tetrachloroethene	6	6		No
Thallium	6	6		No
Thorium-230	6	6		No
Toluene	6	6		No
Total Organic Carbon (TOC)	6	1	5	Yes
Total Organic Halides (TOX)	6	2	4	Yes
trans-1,2-Dichloroethene	6	6		No
trans-1,3-Dichloropropene	6	6		No
trans-1,4-Dichloro-2-Butene	6	6		No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6		No
Uranium	6	5	1	Yes
Vanadium	6	5	1	Yes
Vinyl Acetate	6	6		No
Zinc	6	4	2	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6		No
1,1,2,2-Tetrachloroethane	6	6		No
1,1,2-Trichloroethane	6	6		No
1,1-Dichloroethane	6	6		No
1,2,3-Trichloropropane	6	6		No
1,2-Dibromo-3-chloropropane	6	6		No
1,2-Dibromoethane	6	6		No
1,2-Dichlorobenzene	6	6		No
1,2-Dichloropropane	6	6		No
2-Butanone	6	6		No
2-Hexanone	6	6		No
4-Methyl-2-pentanone	6	6		No
Acetone	6	6		No
Acrolein	6	6		No
Acrylonitrile	6	6		No
Aluminum	6	5	1	Yes
Antimony	6	6		No
Beryllium	6	6		No
Beta activity	6	0	6	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6		No
Bromodichloromethane	6	6		No
Bromoform	6	6		No
Bromomethane	6	6		No
Calcium	6	0	6	Yes
Carbon disulfide	6	6		No
Chemical Oxygen Demand (COD)	6	2	4	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6		No
Chloroethane	6	6		No
Chloroform	6	6		No
Chloromethane	6	6		No
cis-1,2-Dichloroethene	6	5	1	Yes
cis-1,3-Dichloropropene	6	6		No
Cobalt	6	2	4	Yes
Conductivity	6	0	6	Yes
Copper	6	1	5	Yes
Cyanide	6	6		No
Dibromochloromethane	6	6		No
Dibromomethane	6	6		No
Dimethylbenzene, Total	6	6		No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6		No
Iodide	6	6		No
Iodomethane	6	6		No
Iron	6	4	2	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6		No

Exhibit D.5. Tests Summary for Qualified ParametersLRGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	6		No
Nickel	6	3	3	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6		No
PCB-1016	6	6		No
PCB-1221	6	6		No
PCB-1232	6	6		No
PCB-1242	6	6		No
PCB-1248	6	6		No
PCB-1254	6	6		No
PCB-1260	6	6		No
pH	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	1	5	Yes
Rhodium	6	6		No
Sodium	6	0	6	Yes
Styrene	6	6		No
Sulfate	6	0	6	Yes
Tantalum	6	6		No
Technetium-99	6	0	6	Yes
Tetrachloroethene	6	6		No
Thallium	6	6		No
Thorium-230	6	6		No
Toluene	6	6		No
Total Organic Carbon (TOC)	6	1	5	Yes
Total Organic Halides (TOX)	6	2	4	Yes
trans-1,2-Dichloroethene	6	6		No
trans-1,3-Dichloropropene	6	6		No
trans-1,4-Dichloro-2-Butene	6	6		No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6		No
Uranium	6	6		No
Vanadium	6	6		No
Vinyl Acetate	6	6		No
Zinc	6	4	2	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 28, 31, and 28 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, sulfate, and trichloroethene.

URGA

This quarter's results identified historical background exceedances for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, and sulfate.

LRGA

This quarter's results identified historical background exceedances for beta activity, oxidation-reduction potential, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate, Trichloroethene	MW357: Oxidation-Reduction Potential	MW358: Oxidation-Reduction Potential
MW362: Dissolved Oxygen, Oxidation-Reduction Potential	MW360: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential
MW368: Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW367: Beta Activity, Oxidation-Reduction Potential, Technetium-99
MW371: Dissolved Oxygen, Oxidation-Reduction Potential	MW369: Oxidation-Reduction Potential	MW370: Oxidation-Reduction Potential
MW374: Oxidation-Reduction Potential	MW372: Calcium, Conductivity, Dissolved Solids, Magnesium, Oxidation-Reduction Potential, Sulfate	MW373: Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate		

Exhibit D.7. Test Summaries for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, and MW371
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration

Exhibit D.7. Tests Summary for Qualified Parameters—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration
Radium-226	Tolerance Interval	3.79	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW365, MW368, and MW375
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration
Trichloroethene ¹	Tolerance Interval	0.91	Current results exceed statistically derived historical background concentration in MW359
Uranium	Tolerance Interval	1.68	No exceedance of statistically derived historical background concentration
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Exhibit D.8. Test Summaries for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW372
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372

Exhibit D.8. Test Summaries for Qualified Parameters—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
PCB, Total	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration
PCB-1242	Tolerance Interval	1.36	No exceedance of statistically derived historical background concentration
pН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration
Radium-226	Tolerance Interval	2.61	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration
Sulfate	Tolerance Interval	0.75	Current results exceed statistically derived historical background concentration in MW372
Technetium-99	Tolerance Interval	0.87	No exceedance of statistically derived historical background concentration
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Trichloroethene	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration
Uranium	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration
Vanadium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.9. Test Summaries for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration
Beta activity ¹	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW367
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration
cis-1,2-Dichloroethene	Tolerance Interval	0.80	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration

Exhibit D.9. Tests Summary for Qualified Parameters—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration
Radium-226	Tolerance Interval	2.66	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW367
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration
Trichloroethene	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the results of the one-sided upper tolerance interval test compared to current background, and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 4, 6, and 3 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

Exhibit D.10. Summary of Exceedances (in downgradient wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
	None

UCRS

Because gradients in the UCRS are downward, there are no hydrogeologically downgradient UCRS wells that exceed the current background TL derived using the most recent eight quarters of data. NOTE: Sulfate concentrations in four UCRS wells and trichloroethene in one UCRS well exceeded the current TL this quarter.

URGA

This quarter's results showed no exceedances of the current TL in wells located downgradient of the landfill.

LRGA

This quarter's results showed no exceedances of the current TL in wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.64	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.37	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Sulfate	Tolerance Interval	0.50	MW359, MW365, MW368, and MW375 listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.
Trichloroethene	Tolerance Interval	0.00	MW359 exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation

Exhibit D.12. Test Summaries for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.60	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Conductivity	Tolerance Interval	0.37	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Dissolved Solids	Tolerance Interval	0.42	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Magnesium	Tolerance Interval	0.57	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.57	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Sulfate	Tolerance Interval	0.94	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV: coefficient of variation

Exhibit D.13. Test Summaries for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta activity	Tolerance Interval	0.51	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.28	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.
Technetium-99	Tolerance Interval	0.51	None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

S= 6.859

CV(1)=2.078

K factor=** 2.523

TL(1)= 20.604

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.371 S = 1.678

CV(2) = -4.521

K factor=** 2.523

TL(2) = 3.863

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.059
Date Collected	Result	
Date Collected 10/8/2002	Result 21.3	3.059
Date Collected 10/8/2002 1/7/2003	Result 21.3 20	3.059 2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 21.3 20 4.11	3.059 2.996 1.413
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 21.3 20 4.11 1.41	3.059 2.996 1.413 0.344
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 21.3 20 4.11 1.41 1.09	3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0606	N/A	-2.803	NO
MW362	Downgradient	Yes	2.18	N/A	0.779	NO
MW365	Downgradient	Yes	0.0314	N/A	-3.461	NO
MW368	Sidegradient	Yes	1.56	N/A	0.445	NO
MW371	Upgradient	Yes	1.69	N/A	0.525	NO
MW374	Upgradient	No	0.0186	N/A	-3.985	N/A
MW375	Sidegradient	No	0.0325	N/A	-3.427	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805 CV(1) = 1.238

K factor=** 2.523

TL(1) = 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 10/8/2002	Result 2	0.693
Date Collected 10/8/2002 1/7/2003	Result 2 0.2	0.693 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2 0.2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

ı	Current	Quarter	Data
•			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0125	N/A	-4.382	NO
MW362	Downgradient	Yes	0.0132	N/A	-4.328	NO
MW365	Downgradient	Yes	0.00543	N/A	-5.216	NO
MW368	Sidegradient	No	0.015	N/A	-4.200	N/A
MW371	Upgradient	Yes	0.00541	N/A	-5.220	NO
MW374	Upgradient	Yes	0.0453	N/A	-3.094	NO
MW375	Sidegradient	No	0.0194	N/A	-3.942	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394

S= 0.474 **CV(1)**=0.340

K factor=** 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.279 S = 0.332

CV(2)=1.190

K factor=** 2.523

TL(2) = 1.118

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.742
Date Collected	Result	
Date Collected 10/8/2002	Result 2.1	0.742
Date Collected 10/8/2002 1/7/2003	Result 2.1 2.1	0.742 0.742
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2.1 2.1 1.9	0.742 0.742 0.642
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2.1 2.1 1.9 1	0.742 0.742 0.642 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2.1 2.1 1.9 1 1.9	0.742 0.742 0.642 0.000 0.642

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	Yes	0.12	NO	-2.120	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Sidegradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	Yes	0.0969	NO	-2.334	N/A
MW374	Upgradient	Yes	0.892	NO	-0.114	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 34.100 **S**= 13.637 **CV(1)**= 0.400

K factor=** 2.523

TL(1) = 68.505 LL(1) = N/A

Statistics-Transformed Background Data

X= 3.466 **S**= 0.356

CV(2) = 0.103

K factor=** 2.523

TL(2) = 4.364

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.209
Date Collected	Result	
Date Collected 10/8/2002	Result 67.3	4.209
Date Collected 10/8/2002 1/7/2003	Result 67.3 60.6	4.209 4.104
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 67.3 60.6 47.2	4.209 4.104 3.854
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 67.3 60.6 47.2 34.7	4.209 4.104 3.854 3.547
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 67.3 60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter	Data
_			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	7.19	NO	1.973	N/A
MW362	Downgradient	Yes	16.6	NO	2.809	N/A
MW365	Downgradient	Yes	23.1	NO	3.140	N/A
MW368	Sidegradient	Yes	22.7	NO	3.122	N/A
MW371	Upgradient	Yes	28.8	NO	3.360	N/A
MW374	Upgradient	Yes	21.5	NO	3.068	N/A
MW375	Sidegradient	Yes	15.1	NO	2.715	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=72.938 **S**= 70.749 **CV(1)**=0.970

K factor=** 2.523

TL(1)= 251.437 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.000S = 0.702 CV(2) = 0.175

K factor=** 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.561
Date Collected	Result	
Date Collected 10/8/2002	Result 260	5.561
Date Collected 10/8/2002 1/7/2003	Result 260 214	5.561 5.366
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 260 214 147	5.561 5.366 4.990
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 260 214 147 72	5.561 5.366 4.990 4.277
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 260 214 147 72 56	5.561 5.366 4.990 4.277 4.025

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	17.4	NO	2.856	N/A
MW362	Downgradient	Yes	27.4	NO	3.311	N/A
MW365	Downgradient	Yes	11.3	NO	2.425	N/A
MW368	Sidegradient	Yes	7.04	NO	1.952	N/A
MW371	Upgradient	No	20	N/A	2.996	N/A
MW374	Upgradient	No	20	N/A	2.996	N/A
MW375	Sidegradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

K factor=** 2.523

TL(1)= 310.697 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 3.620 **S**= 1.590

CV(2) = 0.439

K factor=** 2.523

TL(2) = 7.631

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.294
Date Collected	Result	
Date Collected 10/8/2002	Result 199.2	5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	1.15	NO	0.140	N/A
MW362	Downgradient	Yes	9.02	NO	2.199	N/A
MW365	Downgradient	Yes	3.98	NO	1.381	N/A
MW368	Sidegradient	Yes	0.729	NO	-0.316	N/A
MW371	Upgradient	Yes	5.85	NO	1.766	N/A
MW374	Upgradient	Yes	72.5	NO	4.284	N/A
MW375	Sidegradient	Yes	4.42	NO	1.486	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.009

CV(1) = 1.314

K factor=** 2.523

TL(1) = 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

CV(2) = -0.238

K factor=** 2.523

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.01	-4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.01 0.01	-4.605 -4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.01 0.01 0.001 0.00161	-4.605 -4.605 -4.605 -6.432
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.01 0.01 0.00161 0.001	-4.605 -4.605 -4.605 -6.432 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00018	N/A	-8.623	NO
MW362	Downgradient	Yes	0.0009	N/A	-7.013	NO
MW365	Downgradient	Yes	0.00205	N/A	-6.190	NO
MW368	Sidegradient	Yes	0.00051	N/A	-7.581	NO
MW371	Upgradient	Yes	0.00034	N/A	-7.987	NO
MW374	Upgradient	Yes	0.00014	N/A	-8.874	NO
MW375	Sidegradient	Yes	0.00046	N/A	-7.684	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison Conductivity UNITS:** umho/cm **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor=** 2.523

TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.705 S = 0.550 CV(2) = 0.082

K factor=** 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 6.915
Date Collected	Result	` '
Date Collected 3/18/2002	Result 1007	6.915
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9 172	6.915 7.427 7.448 5.147
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW359	Downgradient	Yes	255	NO	5.541	N/A		
MW362	Downgradient	Yes	592	NO	6.384	N/A		
MW365	Downgradient	Yes	458	NO	6.127	N/A		
MW368	Sidegradient	Yes	455	NO	6.120	N/A		
MW371	Upgradient	Yes	711	NO	6.567	N/A		
MW374	Upgradient	Yes	702	NO	6.554	N/A		
MW375	Sidegradient	Yes	395	NO	5.979	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S = 0.072

CV(1) = 1.275

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915

CV(2) = -0.270

K factor=** 2.523

TL(2) = -1.086

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00181	N/A	-6.314	NO
MW362	Downgradient	Yes	0.00235	N/A	-6.053	NO
MW365	Downgradient	Yes	0.00233	N/A	-6.062	NO
MW368	Sidegradient	Yes	0.00107	N/A	-6.840	NO
MW371	Upgradient	Yes	0.00131	N/A	-6.638	NO
MW374	Upgradient	No	0.001	N/A	-6.908	N/A
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.138

S = 0.621

CV(1)=0.546

K factor=** 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

K factor=** 2.523

TL(2) = 1.441

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

utilizing TL(1).

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	4.8	YES	1.569	N/A
MW362	Downgradient	Yes	5.78	YES	1.754	N/A
MW365	Downgradient	Yes	5.47	YES	1.699	N/A
MW368	Sidegradient	Yes	2.67	NO	0.982	N/A
MW371	Upgradient	Yes	4.44	YES	1.491	N/A
MW374	Upgradient	Yes	1.59	NO	0.464	N/A
MW375	Sidegradient	Yes	1.21	NO	0.191	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362

MW365

MW371

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 590.000 S = 248.068 CV(1) = 0.420

K factor=** 2.523

TL(1)= 1215.876 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.308 S = 0.383

CV(2) = 0.061

K factor=** 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 7.035
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 1136	7.035
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

MW375 Sidegradient

Yes

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.242

N/A

C	Current	Quarter Data					
W	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
M	1W359	Downgradient	Yes	149	NO	5.004	N/A
M	IW362	Downgradient	Yes	334	NO	5.811	N/A
M	IW365	Downgradient	Yes	236	NO	5.464	N/A
M	IW368	Sidegradient	Yes	230	NO	5.438	N/A
M	1 W371	Upgradient	Yes	413	NO	6.023	N/A
M	1 W374	Upgradient	Yes	360	NO	5.886	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

189

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612

CV(1)=0.981

K factor=** 2.523

TL(1)= 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.363

S = 1.147 CV(2) = 0.841

S = 6.487

K factor=** 2.523

TL(2) = 4.256

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.135
Date Collected	Result	
Date Collected 10/8/2002	Result 23	3.135
Date Collected 10/8/2002 1/7/2003	Result 23 13.9	3.135 2.632
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 23 13.9 14	3.135 2.632 2.639
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 23 13.9 14 14.2	3.135 2.632 2.639 2.653
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 23 13.9 14 14.2 7.92	3.135 2.632 2.639 2.653 2.069

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.069	NO	-2.674	N/A
MW362	Downgradient	Yes	1.28	NO	0.247	N/A
MW365	Downgradient	Yes	0.0358	NO	-3.330	N/A
MW368	Sidegradient	Yes	0.838	NO	-0.177	N/A
MW371	Upgradient	Yes	0.962	NO	-0.039	N/A
MW374	Upgradient	Yes	0.129	NO	-2.048	N/A
MW375	Sidegradient	Yes	0.037	NO	-3.297	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.347 **S**= 3.019

CV(1)=0.266

K factor=** 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401 S = 0.237

CV(2) = 0.099

K factor=** 2.523

TL(2)= 2.999

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.996 2.779 2.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Because CV(1) is less than or equal to

Current Quarter Data	
-----------------------------	--

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	Yes	4.38	NO	1.477	N/A
MW362	Downgradient	Yes	7.6	NO	2.028	N/A
MW365	Downgradient	Yes	10.8	NO	2.380	N/A
MW368	Sidegradient	Yes	8.68	NO	2.161	N/A
MW371	Upgradient	Yes	12.8	NO	2.549	N/A
MW374	Upgradient	Yes	5.97	NO	1.787	N/A
MW375	Sidegradient	Yes	6.34	NO	1.847	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.248

S = 0.222CV(1)=0.894 **K factor**=** 2.523

TL(1) = 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.873 S = 1.068

CV(2) = -0.570

K factor=** 2.523

TL(2) = 0.821

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.518
Date Collected	Result	
Date Collected 10/8/2002	Result 0.596	-0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	-0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	-0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	-0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	-0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW359	Downgradient	t Yes	0.00111	NO	-6.803	N/A
MW362	Downgradient	t Yes	0.0133	NO	-4.320	N/A
MW365	Downgradient	t Yes	0.0482	NO	-3.032	N/A
MW368	Sidegradient	Yes	0.028	NO	-3.576	N/A
MW371	Upgradient	Yes	0.0149	NO	-4.206	N/A
MW374	Upgradient	Yes	0.0135	NO	-4.305	N/A
MW375	Sidegradient	Yes	0.0108	NO	-4.528	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

S = 0.010

CV(1) = 1.650

K factor=** 2.523

TL(1) = 0.030

LL(1)=N/A

Statistics-Transformed Background Data

X= -6.108 **S**= 1.239

CV(2) = -0.203

K factor=** 2.523

TL(2) = -2.983

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	0.025	-3.689			
4/22/2002	0.025	-3.689			
7/15/2002	0.025	-3.689			
10/8/2002	0.001	-6.908			
1/8/2003	0.00121	-6.717			
4/3/2003	0.001	-6.908			
7/9/2003	0.00111	-6.803			
10/6/2003	0.001	-6.908			
Well Number:	MW374				
Well Number: Date Collected	MW374 Result	LN(Result)			
		LN(Result) -6.110			
Date Collected	Result	, ,			
Date Collected 10/8/2002	Result 0.00222	-6.110			
Date Collected 10/8/2002 1/7/2003	Result 0.00222 0.00201	-6.110 -6.210			
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.00222 0.00201 0.00159	-6.110 -6.210 -6.444			
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.00222 0.00201 0.00159 0.00242	-6.110 -6.210 -6.444 -6.024			
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.00222 0.00201 0.00159 0.00242 0.001	-6.110 -6.210 -6.444 -6.024 -6.908			

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data	
-----------------------------	--

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW359	Downgradient	. No	0.0005	N/A	-7.601	N/A
MW362	Downgradient	Yes	0.00086	N/A	-7.059	NO
MW365	Downgradient	No	0.00033	N/A	-8.016	N/A
MW368	Sidegradient	Yes	0.00282	N/A	-5.871	NO
MW371	Upgradient	Yes	0.00044	N/A	-7.729	NO
MW374	Upgradient	Yes	0.0002	N/A	-8.517	NO
MW375	Sidegradient	Yes	0.00022	N/A	-8.422	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S = 0.022

CV(1)=0.980

K factor=** 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349 S = 1.109

CV(2) = -0.255

K factor=** 2.523

TL(2) = -1.552

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number: MW374		
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 0.05	-2.996
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.005 0.00794	-2.996 -2.996 -2.996 -4.836
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.005 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298

Dry/Partially Dry Wells

Well No. Gradient

Sidegradient MW376 MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	
-----------------------------	--

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00156	NO	-6.463	N/A
MW362	Downgradient	Yes	0.0017	NO	-6.377	N/A
MW365	Downgradient	Yes	0.00568	NO	-5.171	N/A
MW368	Sidegradient	Yes	0.00102	NO	-6.888	N/A
MW371	Upgradient	Yes	0.00144	NO	-6.543	N/A
MW374	Upgradient	No	0.002	N/A	-6.215	N/A
MW375	Sidegradient	Yes	0.00124	NO	-6.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.281 S = 78.889 CV(1) = 3.541

K factor=** 2.523

TL(1)= 221.319 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.642

S = 1.729

CV(2) = 0.475

K factor=** 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.905
Date Collected	Result	
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	536	N/A	6.284	YES
MW362	Downgradient	Yes	355	N/A	5.872	YES
MW365	Downgradient	Yes	700	N/A	6.551	YES
MW368	Sidegradient	Yes	676	N/A	6.516	YES
MW371	Upgradient	Yes	384	N/A	5.951	YES
MW374	Upgradient	Yes	395	N/A	5.979	YES
MW375	Sidegradient	Yes	495	N/A	6.205	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW359
MW362
MW365
MW368
MW371
MW374

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S= 0.295 **CV(1)**=0.045

K factor=** 2.904

TL(1) = 7.475

LL(1)=5.7635

Statistics-Transformed Background Data

X = 1.889

S= 0.046

CV(2) = 0.024

K factor=** 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 5.75	1.749
Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well	No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<>
MW3	359	Downgradien	t Yes	5.97	NO	1.787	N/A
MW3	362	Downgradien	t Yes	6.93	NO	1.936	N/A
MW3	365	Downgradien	t Yes	6.12	NO	1.812	N/A
MW3	368	Sidegradient	Yes	6.53	NO	1.876	N/A
MW3	371	Upgradient	Yes	6.75	NO	1.910	N/A
MW3	374	Upgradient	Yes	6.54	NO	1.878	N/A
MW3	375	Sidegradient	Yes	6.25	NO	1.833	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

S = 0.907 CV(1) = 0.718

K factor=** 2.523

TL(1) = 3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

.752 CV(2) = -32.218

K factor=** 2.523

TL(2) = 1.874

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.112
Date Collected	Result	` '
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0838	NO	-2.479	N/A
MW362	Downgradient	Yes	0.453	NO	-0.792	N/A
MW365	Downgradient	Yes	0.304	NO	-1.191	N/A
MW368	Sidegradient	Yes	1.2	NO	0.182	N/A
MW371	Upgradient	Yes	0.508	NO	-0.677	N/A
MW374	Upgradient	Yes	0.458	NO	-0.781	N/A
MW375	Sidegradient	Yes	0.276	NO	-1.287	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** Radium-226 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.560

S= 13.483 **CV(1)**=3.787

K factor=** 2.523

TL(1) = 37.577

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.189 S = 1.742

CV(2) = -1.465

K factor=** 2.523

TL(2) = 3.991

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	54.1	3.991
10/8/2002	0.0937	-2.368
1/8/2003	0.378	-0.973
10/6/2003	0.179	-1.720
1/7/2004	0.898	-0.108
4/6/2004	0.108	-2.226
7/13/2004	-0.149	#Func!
10/7/2004	0.154	-1.871
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.211
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 0.298	-1.211
Date Collected 10/8/2002 1/7/2003	Result 0.298 -0.844	-1.211 #Func!
Date Collected 10/8/2002 1/7/2003 10/7/2003	Result 0.298 -0.844 0.806	-1.211 #Func! -0.216
Date Collected 10/8/2002 1/7/2003 10/7/2003 1/6/2004	Result 0.298 -0.844 0.806 0.0306	-1.211 #Func! -0.216 -3.487
Date Collected 10/8/2002 1/7/2003 10/7/2003 1/6/2004 4/7/2004	Result 0.298 -0.844 0.806 0.0306 0.35	-1.211 #Func! -0.216 -3.487 -1.050

Dry/Partially Dry Wells

Well No. Gradient Sidegradient MW376 MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	. No	0.372	N/A	-0.989	N/A
MW362	Downgradient	Yes	0.836	N/A	-0.179	NO
MW365	Downgradient	No	0.485	N/A	-0.724	N/A
MW368	Sidegradient	No	0.412	N/A	-0.887	N/A
MW371	Upgradient	No	0.88	N/A	-0.128	N/A
MW374	Upgradient	No	0.379	N/A	-0.970	N/A
MW375	Sidegradient	No	0.197	N/A	-1.625	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor=** 2.523

TL(1)= 367.800 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 5.146 **S**= 0.356

CV(2) = 0.069

K factor=** 2.523

TL(2) = 6.044

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.817
Date Collected	Result	` '
Date Collected 10/8/2002	Result 336	5.817
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	42.1	NO	3.740	N/A
MW362	Downgradient	Yes	121	NO	4.796	N/A
MW365	Downgradient	Yes	57.5	NO	4.052	N/A
MW368	Sidegradient	Yes	58.6	NO	4.071	N/A
MW371	Upgradient	Yes	135	NO	4.905	N/A
MW374	Upgradient	Yes	130	NO	4.868	N/A
MW375	Sidegradient	Yes	66	NO	4.190	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

S= 3.153 **CV(1)**=0.487

K factor=** 2.523

TL(1)= 14.423

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.794 S = 0.357

CV(2) = 0.199

K factor=** 2.523

TL(2) = 2.694

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.609
Date Collected	Result	,
Date Collected 10/8/2002	Result 5	1.609
Date Collected 10/8/2002 1/7/2003	Result 5 5	1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5	1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5.6	1.609 1.609 1.609 1.723
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.723 1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	52.8	YES	3.967	N/A
MW362	Downgradient	Yes	13	NO	2.565	N/A
MW365	Downgradient	Yes	67.6	YES	4.214	N/A
MW368	Sidegradient	Yes	28.2	YES	3.339	N/A
MW371	Upgradient	Yes	13.2	NO	2.580	N/A
MW374	Upgradient	Yes	5.7	NO	1.740	N/A
MW375	Sidegradient	Yes	30.4	YES	3.414	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW365

MW368

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.631 **S**= 24.314 **CV(1)**=1.379

K factor=** 2.523

TL(1)= 78.977 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979

CV(2) = 0.422

K factor=** 2.523

TL(2) = 4.788

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	` '
Date Collected 10/8/2002	Result 90	4.500
Date Collected 10/8/2002 1/7/2003	Result 90 64	4.500 4.159
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 90 64 25	4.500 4.159 3.219
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 90 64 25 16	4.500 4.159 3.219 2.773
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

MW374 Upgradient

MW375 Sidegradient

Yes

Yes

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

0.470

-0.163

NO

NO

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.66	N/A	-0.416	NO
MW362	Downgradient	Yes	2.3	N/A	0.833	NO
MW365	Downgradient	Yes	1.8	N/A	0.588	NO
MW368	Sidegradient	Yes	0.9	N/A	-0.105	NO
MW371	Upgradient	Yes	1.3	N/A	0.262	NO

N/A

N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

1.6

0.85

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor=** 2.523

TL(1)= 797.131 **LL(1)=**N/A

N/A

N/A

Statistics-Transformed Background Data

X = 4.867 S = 1.065

CV(2) = 0.219

K factor=** 2.523

TL(2) = 7.554

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	•
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

MW374 Upgradient

MW375 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

2.885

2.815

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	10	N/A	2.303	N/A
MW362	Downgradient	Yes	9.1	N/A	2.208	NO
MW365	Downgradient	Yes	24.6	N/A	3.203	NO
MW368	Sidegradient	No	10	N/A	2.303	N/A
MW371	Upgradient	No	6	N/A	1.792	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

N/A

17.9

16.7

No

No

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.500

S= 1.366 **CV(1)**=0.911

K factor=** 2.523

TL(1)= 4.947

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.201

S = 0.550

CV(2) = 2.733

K factor=** 2.523

TL(2)=1.588

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	5	1.609
4/22/2002	5	1.609
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 10/8/2002	Result 1	0.000
Date Collected 10/8/2002 1/7/2003	Result 1 1	0.000 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1	0.000 0.000 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	a
----------------------	---

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	5.77	YES	1.753	N/A
MW362	Downgradient	Yes	1.42	N/A	0.351	N/A
MW365	Downgradient	Yes	0.4	N/A	-0.916	N/A
MW368	Sidegradient	Yes	0.33	N/A	-1.109	N/A
MW371	Upgradient	Yes	1.39	N/A	0.329	N/A
MW374	Upgradient	Yes	0.31	N/A	-1.171	N/A
MW375	Sidegradient	Yes	0.5	N/A	-0.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.012 CV(1) = 1.678

K factor=** 2.523

TL(1)= 0.037

LL(1)=N/A

Statistics-Transformed Background Data

X= -5.884 **S**= 1.299

CV(2) = -0.221

K factor=** 2.523

TL(2) = -2.607

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.001	-6.908
4/22/2002	0.001	-6.908
7/15/2002	0.001	-6.908
10/8/2002	0.027	-3.612
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.00109	-6.822
10/6/2003	0.001	-6.908
	0.001	
Well Number:	MW374	
Well Number: Date Collected	*****	LN(Result)
	MW374	LN(Result) -3.128
Date Collected	MW374 Result	
Date Collected 10/8/2002	MW374 Result 0.0438	-3.128
Date Collected 10/8/2002 1/7/2003	MW374 Result 0.0438 0.011	-3.128 -4.510
Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 0.0438 0.011 0.00905	-3.128 -4.510 -4.705
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 0.0438 0.011 0.00905 0.00694	-3.128 -4.510 -4.705 -4.970
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 0.0438 0.011 0.00905 0.00694 0.001	-3.128 -4.510 -4.705 -4.970 -6.908

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00011	N/A	-9.115	NO
MW362	Downgradient	Yes	0.0038	N/A	-5.573	NO
MW365	Downgradient	No	0.00011	N/A	-9.115	N/A
MW368	Sidegradient	Yes	0.00027	N/A	-8.217	NO
MW371	Upgradient	Yes	0.00128	N/A	-6.661	NO
MW374	Upgradient	Yes	0.0005	N/A	-7.601	NO
MW375	Sidegradient	No	0.00007	6 N/A	-9.485	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** Vanadium UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072

CV(1) = 1.319

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912

CV(2) = -0.265

K factor=** 2.523

TL(2) = -1.138

LL(2)=N/A

 $\mathcal{L}(2)$

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	` '
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	t No	0.005	N/A	-5.298	N/A
MW362	Downgradient	t Yes	0.00356	N/A	-5.638	NO
MW365	Downgradient	t No	0.005	N/A	-5.298	N/A
MW368	Sidegradient	Yes	0.0154	N/A	-4.173	NO
MW371	Upgradient	Yes	0.00673	N/A	-5.001	NO
MW374	Upgradient	No	0.005	N/A	-5.298	N/A
MW375	Sidegradient	No	0.005	N/A	-5.298	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.083 CV(1) = 1.380

K factor=** 2.523

TL(1) = 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259

S= 0.840

CV(2) = -0.258

K factor=** 2.523

TL(2) = -1.140

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) -3.689
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.025	-3.689
Date Collected 10/8/2002 1/7/2003	Result 0.025 0.35	-3.689 -1.050
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.35 0.035	-3.689 -1.050 -3.352
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.025 0.35 0.035 0.02	-3.689 -1.050 -3.352 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.025 0.35 0.035 0.02 0.02	-3.689 -1.050 -3.352 -3.912

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00511	N/A	-5.277	NO
MW362	Downgradient	Yes	0.00526	N/A	-5.248	NO
MW365	Downgradient	Yes	0.00797	N/A	-4.832	NO
MW368	Sidegradient	Yes	0.00603	N/A	-5.111	NO
MW371	Upgradient	Yes	0.00506	N/A	-5.286	NO
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.625 S = 0.774 CV(1) = 1.239 K factor**= 2.523 TL(1) = 2.578 LL(1) = N/A Statistics-Transformed Background X = -0.973 S = 0.935 CV(2) = -0.961 K factor**= 2.523 TL(2) = 1.386 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.255 -1.3664/22/2002 0.2 -1.6097/15/2002 0.322 -1.13310/8/2002 0.2 -1.6090.2 1/8/2003 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.689 -0.373Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.61 0.959 4/23/2002 0.2 -1.609 7/16/2002 1.14 0.131 10/8/2002 0.862 -0.149 1/7/2003 2.32 0.842 4/2/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	0.0159	N/A	-4.141	NO		
MW360	Downgradient	Yes	0.0183	N/A	-4.001	NO		
MW363	Downgradient	No	0.05	N/A	-2.996	N/A		
MW366	Sidegradient	Yes	0.016	N/A	-4.135	NO		
MW369	Upgradient	Yes	0.0644	N/A	-2.743	NO		
MW372	Upgradient	No	0.0384	N/A	-3.260	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.985 S = 0.825 CV(1) = 0.838 K factor**= 2.523 TL(1) = 3.067 LL(1) = N/A Statistics-Transformed Background X = -0.430 S = 0.990 CV(2) = -2.302 K factor**= 2.523 TL(2) = 2.068 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6090.2 1/8/2003 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693

2

0.492

0.492

0.6

0.57

0.604

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	0.296	NO	-1.217	N/A		
MW360	Downgradient	Yes	0.055	NO	-2.900	N/A		
MW363	Downgradient	Yes	0.026	NO	-3.650	N/A		
MW366	Sidegradient	Yes	0.0762	NO	-2.574	N/A		
MW369	Upgradient	Yes	0.0355	NO	-3.338	N/A		
MW372	Upgradient	Yes	1.31	NO	0.270	N/A		
N/A - Resu	Its identified as N	Von-Detects	during lab	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.693

-0.709

-0.709

-0.511

-0.562 -0.504

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 1 0.000 0.000 7/15/2002 1 10/8/2002 1 0.000 1 0.000 1/8/2003 4/3/2003 1 0.000 7/8/2003 0.000 1 10/6/2003 1 0.000 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.000 1/7/2003 0.000 4/2/2003 1 0.000 7/9/2003 0.000 1 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	0.323	NO	-1.130	N/A			
MW360	Downgradient	Yes	0.152	NO	-1.884	N/A			
MW363	Downgradient	Yes	0.144	NO	-1.938	N/A			
MW366	Sidegradient	Yes	0.464	NO	-0.768	N/A			
MW369	Upgradient	Yes	0.503	NO	-0.687	N/A			
MW372	Upgradient	Yes	0.561	NO	-0.578	N/A			
N/A Page	Its identified as N	Jon Dotoots	during lob	orotory analysis or	data validation	and ware not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 32.763 S = 9.391 CV(1) = 0.287 K factor** = 2.523
 TL(1) = 56.456 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.449 S = 0.299 CV(2) = 0.087 K factor** = 2.523
 TL(2) = 4.202 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 29.5 3.384 4/22/2002 29.8 3.395 7/15/2002 25.3 3.231 10/8/2002 21.9 3.086 3.040 1/8/2003 20.9 4/3/2003 22.2 3.100 7/8/2003 22.9 3.131 10/6/2003 21.7 3.077 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 41.5 3.726 4/23/2002 43.6 3.775 7/16/2002 40.4 3.699 10/8/2002 38.8 3.658 1/7/2003 41.1 3.716 4/2/2003 42.9 3.759 7/9/2003 35.1 3.558 10/7/2003 46.6 3.842

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	23.9	NO	3.174	N/A		
MW360	Downgradient	Yes	23	NO	3.135	N/A		
MW363	Downgradient	Yes	26.7	NO	3.285	N/A		
MW366	Sidegradient	Yes	29.4	NO	3.381	N/A		
MW369	Upgradient	Yes	28	NO	3.332	N/A		
MW372	Upgradient	Yes	66.6	YES	4.199	N/A		
M/A Page	ulte identified as N	Jon Detects	during lab	oratory analysis or	data validation	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

MW372

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=35.938
 S= 3.750
 CV(1)=0.104
 K factor**= 2.523
 TL(1)= 45.399
 LL(1)=N/A

 Statistics-Transformed Background
 X=3.578
 S= 0.089
 CV(2)=0.025
 K factor**= 2.523
 TL(2)= 3.803
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35 3.555 4/22/2002 35 3.555 7/15/2002 35 3.555 10/8/2002 50 3.912 1/8/2003 35 3.555 4/3/2003 35 3.555 7/8/2003 35 3.555 10/6/2003 35 3.555 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 35 3.555 4/23/2002 35 3.555 7/16/2002 35 3.555 10/8/2002 35 3.555 1/7/2003 35 3.555 4/2/2003 35 3.555 7/9/2003 35 3.555 10/7/2003 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	20	N/A	2.996	N/A		
MW360	Downgradient	No	20	N/A	2.996	N/A		
MW363	Downgradient	Yes	7.32	NO	1.991	N/A		
MW366	Sidegradient	No	20	N/A	2.996	N/A		
MW369	Upgradient	No	20	N/A	2.996	N/A		
MW372	Upgradient	Yes	23	NO	3.135	N/A		
NI/A Dear	lta idantified on N	Jon Dotooto	المام منسيل	omotomi omolivska om	data validatio	a and ryana nat		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 44.119 S = 4.554 CV(1) = 0.103 K factor** = 2.523
 TL(1) = 55.607 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.782 S = 0.099 CV(2) = 0.026 K factor** = 2.523
 TL(2) = 4.033 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/15/2002 48.3 3.877 10/8/2002 47.7 3.865 1/8/2003 45.7 3.822 4/3/2003 47.4 3.859 7/8/2003 55.9 4.024 10/6/2003 47.4 3.859 1/7/2004 45.5 3.818 4/7/2004 43.4 3.770 Well Number: MW372 Date Collected LN(Result) Result 7/16/2002 39.8 3.684 10/8/2002 41 3.714 1/7/2003 39.4 3.674 4/2/2003 39.2 3.669 7/9/2003 39.8 3.684 10/7/2003 40 3.689 1/5/2004 43.4 3.770 4/5/2004 42 3.738

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	26.6	NO	3.281	N/A		
MW360	Downgradient	Yes	11.6	NO	2.451	N/A		
MW363	Downgradient	Yes	28.7	NO	3.357	N/A		
MW366	Sidegradient	Yes	37.6	NO	3.627	N/A		
MW369	Upgradient	Yes	37	NO	3.611	N/A		
MW372	Upgradient	Yes	44.4	NO	3.793	N/A		
NI/A Dogg	Ita idantified as N	Van Dataata	المام منسيل	omotomi omolivska om	data validatio	n and rrans not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.845 **K factor**=** 2.523 Statistics-Background Data X = 0.025S = 0.021TL(1) = 0.077LL(1)=N/A **Statistics-Transformed Background** X = -4.090 S = 1.006CV(2) = -0.246

Data

K factor=** 2.523

TL(2) = -1.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138
7/8/2003	0.0541	-2.917
10/6/2003	0.0689	-2.675
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result)
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.00158	-3.689 -3.689 -3.689 -6.450
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.00158 0.0147	-3.689 -3.689 -3.689 -6.450 -4.220

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00099	NO	-6.918	N/A
MW360	Downgradient	Yes	0.00814	NO	-4.811	N/A
MW363	Downgradient	Yes	0.0012	NO	-6.725	N/A
MW366	Sidegradient	Yes	0.00019	NO	-8.568	N/A
MW369	Upgradient	Yes	0.00062	NO	-7.386	N/A
MW372	Upgradient	Yes	0.00153	NO	-6.482	N/A
37/4 D	1. 11 1				11.1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 482.856 **S**= 57.603 **CV(1)**=0.119

K factor**= 2.523

TL(1)= 628.189 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123 CV(2) = 0.020

K factor=** 2.523

TL(2)= 6.484

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 5.961 388 4/22/2002 404 6.001 7/15/2002 394 5.976 10/8/2002 403 5.999 1/8/2003 520 6.254 4/3/2003 487 6.188 7/8/2003 478 6.170 10/6/2003 476 6.165 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 508 6.230 4/23/2002 501 6.217 7/16/2002 507 6.229 10/8/2002 495 6.205 1/7/2003 508.7 6.232 4/2/2003 515 6.244 7/9/2003 576 6.356 10/7/2003 565 6.337

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	385	NO	5.953	N/A			
MW360	Downgradient	Yes	445	NO	6.098	N/A			
MW363	Downgradient	Yes	391	NO	5.969	N/A			
MW366	Sidegradient	Yes	488	NO	6.190	N/A			
MW369	Upgradient	Yes	434	NO	6.073	N/A			
MW372	Upgradient	Yes	769	YES	6.645	N/A			
N/A Pacults identified as Non Detects during laboratory analysis or data validation and were not									

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.400 **K factor**=** 2.523 Statistics-Background Data X = 0.025S = 0.010TL(1) = 0.050LL(1)=N/A **Statistics-Transformed Background** X = -3.742 S = 0.307CV(2) = -0.082**K factor**=** 2.523 TL(2) = -2.967LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.025 -3.6890.05 -2.996 7/15/2002 10/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.912 7/8/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.025 -3.6894/23/2002 0.025 -3.689 -2.9967/16/2002 0.05 10/8/2002 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00037	NO	-7.902	N/A
MW360	Downgradient	Yes	0.00062	. NO	-7.386	N/A
MW363	Downgradient	No	0.001	N/A	-6.908	N/A
MW366	Sidegradient	Yes	0.00042	. NO	-7.775	N/A
MW369	Upgradient	Yes	0.00055	NO	-7.506	N/A
MW372	Upgradient	No	0.001	N/A	-6.908	N/A
M/A Door	.14. : .14:£:1 N	.I D.44.	4		3-41:3-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.781 S = 1.351 CV(1) = 0.759 K factor**= 2.523 TL(1) = 5.190 LL(1) = N/A Statistics-Transformed Background X = 0.228 S = 1.065 CV(2) = 4.665 K factor**= 2.523 TL(2) = 2.915 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.688 5.41 4/22/2002 1.57 0.451 -0.223 7/15/2002 0.8 10/8/2002 1.09 0.086 0.990 1/8/2003 2.69 4/3/2003 2.04 0.713 7/8/2003 0.174 1.19 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.9967/16/2002 1.33 0.285 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.9164/2/2003 0.91 -0.0947/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	4	NO	1.386	N/A
MW360	Downgradient	Yes	2.08	NO	0.732	N/A
MW363	Downgradient	Yes	1.69	NO	0.525	N/A
MW366	Sidegradient	Yes	1.99	NO	0.688	N/A
MW369	Upgradient	Yes	3.38	NO	1.218	N/A
MW372	Upgradient	Yes	1.18	NO	0.166	N/A
3.T/A D	1. 11 .10 1 3					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 285.188 **S**= 44.908 **CV(1)**=0.157

K factor=** 2.523

TL(1)= 398.489 LL(

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

K factor=** 2.523

TL(2) = 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.687
Date Collected	Result	•
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	189	NO	5.242	N/A	
MW360	Downgradient	Yes	253	NO	5.533	N/A	
MW363	Downgradient	Yes	196	NO	5.278	N/A	
MW366	Sidegradient	Yes	226	NO	5.421	N/A	
MW369	Upgradient	Yes	201	NO	5.303	N/A	
MW372	Upgradient	Yes	421	YES	6.043	N/A	
NT/A D	1. 11 1	T D			1 . 111 .		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 7.385 S = 6.991 CV(1) = 0.947 K factor**= 2.523 TL(1) = 25.024 LL(1) = N/A Statistics-Transformed Background X = 1.358 S = 1.323 CV(2) = 0.974 K factor**= 2.523 TL(2) = 4.697 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.656 -0.422 4/22/2002 0.695 -0.3641.960 7/15/2002 7.1 10/8/2002 21.5 3.068 1/8/2003 18.5 2.918 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 1.78 0.577 10/8/2002 0.776 -0.2541/7/2003 3.55 1.267 4/2/2003 5.02 1.613 7/9/2003 10 2.303 10/7/2003 0.733 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	0.1	N/A	-2.303	N/A		
MW360	Downgradient	Yes	0.54	NO	-0.616	N/A		
MW363	Downgradient	No	0.0465	N/A	-3.068	N/A		
MW366	Sidegradient	No	0.1	N/A	-2.303	N/A		
MW369	Upgradient	Yes	0.0871	NO	-2.441	N/A		
MW372	Upgradient	Yes	1.65	NO	0.501	N/A		
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not								

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 12.864 **S**= 3.505

K factor=** 2.523

TL(1)= 21.707

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.517 S = 0.290

CV(2) = 0.115

CV(1)=0.272

K factor=** 2.523

TL(2)= 3.248

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11.4 2.434 4/22/2002 12 2.485 10 7/15/2002 2.303 10/8/2002 8.62 2.154 1/8/2003 7.89 2.066 4/3/2003 7.97 2.076 7/8/2003 10.3 2.332 10/6/2003 9.14 2.213 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 15.7 2.754 4/23/2002 16.6 2.809 7/16/2002 15.4 2.734 10/8/2002 15.8 2.760 1/7/2003 15.8 2.760 4/2/2003 2.797 16.4 7/9/2003 2.721 15.2 10/7/2003 17.6 2.868

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data								
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
•	MW357	Downgradient	Yes	10.4	NO	2.342	N/A		
	MW360	Downgradient	Yes	9.46	NO	2.247	N/A		
	MW363	Downgradient	Yes	10.4	NO	2.342	N/A		
	MW366	Sidegradient	Yes	12.5	NO	2.526	N/A		
	MW369	Upgradient	Yes	12.7	NO	2.542	N/A		
	MW372	Upgradient	Yes	25.2	YES	3.227	N/A		
	37/4 D	1. 11 .10 1 3	T . D			1.1.1.1.1			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.664 **K factor**=** 2.523 Statistics-Background Data X = 0.413S = 0.274TL(1)=1.105LL(1)=N/A **Statistics-Transformed Background** X = -1.226 S = 1.008CV(2) = -0.822TL(2) = 1.317

Data

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.034 -3.3814/22/2002 0.062 -2.7817/15/2002 0.436 -0.83010/8/2002 0.867-0.143-0.189 1/8/2003 0.828 4/3/2003 0.672 -0.3977/8/2003 0.321 -1.136 10/6/2003 0.714 -0.337Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.205 -1.5854/23/2002 0.345 -1.064 7/16/2002 0.21 -1.56110/8/2002 0.0539 -2.921 1/7/2003 0.537 -0.6224/2/2003 0.415 -0.8797/9/2003 0.654 -0.425-1.370 10/7/2003 0.254

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00369	NO	-5.602	N/A
MW360	Downgradient	Yes	0.0734	NO	-2.612	N/A
MW363	Downgradient	Yes	0.371	NO	-0.992	N/A
MW366	Sidegradient	Yes	0.00558	NO NO	-5.189	N/A
MW369	Upgradient	Yes	0.00599	NO	-5.118	N/A
MW372	Upgradient	Yes	0.0295	NO	-3.523	N/A
27/4 2	1 11 10 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.010

S = 0.012

CV(1)=1.199

K factor=** 2.523

TL(1)= 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X=-5.698 **S**= 1.607

CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.643

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/16/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/7/2003	0.001	-6.908
4/2/2003	0.001	-6.908
7/9/2003	0.00105	-6.859

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0005	N/A	-7.601	N/A
MW360	Downgradient	No	0.00032	N/A	-8.047	N/A
MW363	Downgradient	No	0.0005	N/A	-7.601	N/A
MW366	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW369	Upgradient	No	0.0005	N/A	-7.601	N/A
MW372	Upgradient	Yes	0.00088	N/A	-7.036	NO
NT/A D	1, 11, 2011 31	. D		. 1 .	1 . 111 .	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024

CV(1)=0.910

K factor=** 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.246 S = 1.075

S = 0.021

CV(2) = -0.253

K factor=** 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.002	N/A	-6.215	N/A
MW360	Downgradient	No	0.0018	N/A	-6.320	N/A
MW363	Downgradient	No	0.00079	N/A	-7.143	N/A
MW366	Sidegradient	No	0.002	N/A	-6.215	N/A
MW369	Upgradient	Yes	0.0014	NO	-6.571	N/A
MW372	Upgradient	Yes	0.00119	NO	-6.734	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison UNITS: mV Oxidation-Reduction Potential URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 74.563 S = 94.243 CV(1) = 1.264

K factor=** 2.523

TL(1)= 312.337 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784 CV(2) = 0.172

K factor=** 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	546	N/A	6.303	YES
MW360	Downgradient	Yes	276	N/A	5.620	YES
MW363	Downgradient	Yes	379	N/A	5.938	YES
MW366	Sidegradient	Yes	692	N/A	6.540	YES
MW369	Upgradient	Yes	404	N/A	6.001	YES
MW372	Upgradient	Yes	283	N/A	5.645	YES
NI/A D	Ita idantified on N	I D-44-	J 1 - 1-	omotomy omolyssis om	3-41:3-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW357 MW360

MW363

MW366

MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison **UNITS: UG/L** PCB, Total **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.897 **K factor**=** 2.523 Statistics-Background Data X = 0.390S = 0.350TL(1)=1.272LL(1)=N/A **Statistics-Transformed Background**

Data

X = -1.238 S = 0.737CV(2) = -0.595 **K factor**=** 2.523 TL(2) = 0.622

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 0.17 -1.772-1.7727/15/2002 0.17 7/8/2003 1.15 0.140 0.605 -0.503 10/6/2003 7/13/2004 0.42 -0.8687/20/2005 0.28 -1.2734/4/2006 0.23 -1.470Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.000 4/23/2002 0.17 -1.772-1.7727/16/2002 0.17 7/9/2003 0.17 -1.772-1.772 10/7/2003 0.17 7/14/2004 0.18 -1.715 7/21/2005 0.17 -1.772-1.715 4/5/2006 0.18

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0952	N/A	-2.352	N/A
MW360	Downgradient	No	0.1	N/A	-2.303	N/A
MW363	Downgradient	No	0.0971	N/A	-2.332	N/A
MW366	Sidegradient	No	0.1	N/A	-2.303	N/A
MW369	Upgradient	No	0.0952	N/A	-2.352	N/A
MW372	Upgradient	Yes	0.0729	NO	-2.619	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: UG/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.281 S = 0.383 CV(1) = 1.361 K factor**= 2.523
 TL(1) = 1.247 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.835 S = 0.938 CV(2) = -0.511 K factor**= 2.523
 TL(2) = 0.532 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 0.11 -2.207-2.207 7/15/2002 0.11 7/8/2003 1.15 0.140 0.09 -2.40810/6/2003 7/13/2004 0.1 -2.3037/20/2005 0.1 -2.303 4/4/2006 0.1 -2.303Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.000 4/23/2002 0.11 -2.2077/16/2002 0.11 -2.2077/9/2003 0.13 -2.040 10/7/2003 0.09 -2.408-2.303 7/14/2004 0.1 7/21/2005 -2.3030.1 -2.303 4/5/2006 0.1

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0952	N/A	-2.352	N/A
MW360	Downgradient	No	0.1	N/A	-2.303	N/A
MW363	Downgradient	No	0.0971	N/A	-2.332	N/A
MW366	Sidegradient	No	0.1	N/A	-2.303	N/A
MW369	Upgradient	No	0.0952	N/A	-2.352	N/A
MW372	Upgradient	Yes	0.0729	N/A	-2.619	NO
27/1 75						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison pН **UNITS: Std Unit URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.031 **K factor**=** 2.904 Statistics-Background Data X = 6.274S = 0.194TL(1) = 6.837LL(1)=5.7114 **Statistics-Transformed Background** X = 1.836S = 0.031CV(2) = 0.017**K factor**=** 2.904 TL(2) = 1.925**LL(2)=**1.7467

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 7/15/2002 6.1 1.808 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 1/7/2003 6.26 1.834 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841 10/7/2003 6.4 1.856

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarte	r Data
----------------	--------

Wel	ll No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<>
MV	W357	Downgradien	t Yes	6.13	NO	1.813	N/A
MV	W360	Downgradien	t Yes	6.1	NO	1.808	N/A
MV	W363	Downgradien	t Yes	6.05	NO	1.800	N/A
MV	W366	Sidegradient	Yes	6.01	NO	1.793	N/A
MV	W369	Upgradient	Yes	6.11	NO	1.810	N/A
MV	W372	Upgradient	Yes	6.06	NO	1.802	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.663 S = 0.488 CV(1) = 0.293 K factor**= 2.523 TL(1) = 2.895 LL(1) = N/A Statistics-Transformed Background X = 0.456 S = 0.362 CV(2) = 0.794 K factor**= 2.523 TL(2) = 1.368 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.693 2. 4/22/2002 2.21 0.793 7/15/2002 2 0.693 10/8/2002 0.966 -0.0351/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 1.62 0.482 10/6/2003 1.14 0.131 Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 7/16/2002 2 0.693 10/8/2002 1.54 0.432 1/7/2003 1.88 0.631 4/2/2003 2.09 0.737 7/9/2003 1.78 0.577

1.79

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	1.52	NO	0.419	N/A
MW360	Downgradient	Yes	0.871	NO	-0.138	N/A
MW363	Downgradient	Yes	1.27	NO	0.239	N/A
MW366	Sidegradient	Yes	1.9	NO	0.642	N/A
MW369	Upgradient	Yes	1.47	NO	0.385	N/A
MW372	Upgradient	Yes	2.65	NO	0.975	N/A
NI/A D	1, 11, 2011	T D	1 . 11		1 / 11 /	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.582

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 3.398
 S= 8.854
 CV(1)=2.605 K factor**= 2.523
 TL(1)=25.736 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.836
 S= 1.704
 CV(2)=-2.039 K factor**= 2.523
 TL(2)=3.346 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/15/2002	28.4	3.346
10/8/2002	0.167	-1.790
1/8/2003	0.173	-1.754
10/6/2003	0.168	-1.784
1/7/2004	0.702	-0.354
4/7/2004	0.195	-1.635
7/13/2004	0.256	-1.363
10/7/2004	0.228	-1.478
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.157
Date Collected	Result	
Date Collected 7/16/2002	Result 23.5	3.157
Date Collected 7/16/2002 10/8/2002	Result 23.5 0.195	3.157 -1.635
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 23.5 0.195 -0.844	3.157 -1.635 #Func!
Date Collected 7/16/2002 10/8/2002 1/7/2003 10/7/2003	Result 23.5 0.195 -0.844 0.349	3.157 -1.635 #Func! -1.053
Date Collected 7/16/2002 10/8/2002 1/7/2003 10/7/2003 1/5/2004	Result 23.5 0.195 -0.844 0.349 0.239	3.157 -1.635 #Func! -1.053 -1.431

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.396	N/A	-0.926	N/A
MW360	Downgradient	Yes	0.655	N/A	-0.423	NO
MW363	Downgradient	No	0.474	N/A	-0.747	N/A
MW366	Sidegradient	Yes	0.677	N/A	-0.390	NO
MW369	Upgradient	No	0.521	N/A	-0.652	N/A
MW372	Upgradient	Yes	0.643	N/A	-0.442	NO
37/4 5						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 45.100 S = 11.875 CV(1) = 0.263 K factor**= 2.523
 TL(1) = 75.061 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.780 S = 0.242 CV(2) = 0.064 K factor**= 2.523
 TL(2) = 4.390 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35.7 3.575 4/22/2002 37.6 3.627 7/15/2002 42.4 3.747 10/8/2002 66.9 4.203 1/8/2003 67.9 4.218 4/3/2003 61.8 4.124 7/8/2003 45.6 3.820 10/6/2003 59.1 4.079 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 37.2 3.616 4/23/2002 38.6 3.653 7/16/2002 35.6 3.572 10/8/2002 37.5 3.624 1/7/2003 34.1 3.529 4/2/2003 34.4 3.538 7/9/2003 44.1 3.786 10/7/2003 43.1 3.764

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW357	Downgradient	Yes	39.5	NO	3.676	N/A
	MW360	Downgradient	Yes	58.5	NO	4.069	N/A
	MW363	Downgradient	Yes	36.3	NO	3.592	N/A
	MW366	Sidegradient	Yes	45.2	NO	3.811	N/A
	MW369	Upgradient	Yes	46.2	NO	3.833	N/A
	MW372	Upgradient	Yes	60.5	NO	4.103	N/A
	3.7/A D	1. 11 .10 1 3					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 45.031 **S**= 33.919 **CV(1)**=0.753

K factor**= 2.523

TL(1)= 130.609

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.420 S = 0.981

CV(2) = 0.287

K factor=** 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 15.5 2.741 4/22/2002 15.8 2.760 7/15/2002 13.8 2.625 10/8/2002 6.9 1.932 2.351 1/8/2003 10.5 4/3/2003 10.5 2.351 7/8/2003 10.9 2.389 10/6/2003 16.3 2.791 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 71.7 4.272 4/23/2002 74.7 4.313 4.305 7/16/2002 74.1 10/8/2002 70.5 4.256 1/7/2003 75.8 4.328 4/2/2003 81.8 4.404 7/9/2003 83.6 4.426 4.478 10/7/2003 88.1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	40	NO	3.689	N/A
	MW360	Downgradient	Yes	23	NO	3.135	N/A
	MW363	Downgradient	Yes	26.7	NO	3.285	N/A
	MW366	Sidegradient	Yes	42.6	NO	3.752	N/A
	MW369	Upgradient	Yes	19.4	NO	2.965	N/A
	MW372	Upgradient	Yes	138	YES	4.927	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 20.821 S = 18.044 CV(1) = 0.867 K factor** = 2.523
 TL(1) = 66.344 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.770 S = 1.150 CV(2) = 0.415 K factor** = 2.523
 TL(2) = 3.972 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	41.7	3.731
4/22/2002	53.1	3.972
7/15/2002	18.1	2.896
10/8/2002	16.4	2.797
1/8/2003	3.49	1.250
4/3/2003	9.34	2.234
7/8/2003	17.5	2.862
10/6/2003	17	2.833
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
***************************************	11111212	LN(Result) 3.802
Date Collected	Result	,
Date Collected 3/19/2002	Result 44.8	3.802
Date Collected 3/19/2002 4/23/2002	Result 44.8 0.802	3.802 -0.221
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 44.8 0.802 19.8	3.802 -0.221 2.986
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 44.8 0.802 19.8 46.1	3.802 -0.221 2.986 3.831
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 44.8 0.802 19.8 46.1 -0.973	3.802 -0.221 2.986 3.831 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	30.4	NO	3.414	N/A
MW360	Downgradient	No	11.1	N/A	2.407	N/A
MW363	Downgradient	No	4.84	N/A	1.577	N/A
MW366	Sidegradient	Yes	51	NO	3.932	N/A
MW369	Upgradient	Yes	37.3	NO	3.619	N/A
MW372	Upgradient	No	10.8	N/A	2.380	N/A
NI/A Dagu	Ita idantified on N	Jon Dotooto	dumin a lah	omotomy omolyssis om	data validation	a and rrians not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Total Organic Carbon (TOC) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.226**K factor**=** 2.523 Statistics-Background Data X = 3.513S = 4.307TL(1) = 14.378LL(1)=N/A **Statistics-Transformed Background**

Data

X = 0.851S = 0.828CV(2) = 0.973 **K factor**=** 2.523 TL(2) = 2.940

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.531 1.7 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 9 1/8/2003 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1.2 0.182 0.000 7/16/2002 1 10/8/2002 1 0.000 1/7/2003 1.6 0.470 4/2/2003 1.5 0.405 7/9/2003 3 1.099

1.5

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	1	N/A	0.000	N/A
MW360	Downgradient	Yes	1.5	N/A	0.405	NO
MW363	Downgradient	Yes	0.86	N/A	-0.151	NO
MW366	Sidegradient	Yes	0.75	N/A	-0.288	NO
MW369	Upgradient	Yes	0.46	N/A	-0.777	NO
MW372	Upgradient	Yes	0.67	N/A	-0.400	NO
NT/A D	1, 11, 1	T D	1 . 11		1 / 11 /	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.405

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

K factor=** 2.523

TL(1)= 230.231 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.772 S = 1.023 CV(2) = 0.271

K factor=** 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.215
Date Collected	Result	` ′
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50 10	5.215 3.912 3.912 3.912 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	4.96	NO	1.601	N/A
MW360	Downgradient	Yes	8.08	NO	2.089	N/A
MW363	Downgradient	Yes	7.94	NO	2.072	N/A
MW366	Sidegradient	Yes	6.18	NO	1.821	N/A
MW369	Upgradient	No	9.14	N/A	2.213	N/A
MW372	Upgradient	No	8.9	N/A	2.186	N/A
27/4 75						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.625 S = 3.594 CV(1) = 0.639 K factor** = 2.523
 TL(1) = 14.693 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.571 X = 0.565 X = 0.565

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11 2.398 4/22/2002 16 2.773 2.079 7/15/2002 8 10/8/2002 3 1.099 2 1/8/2003 0.693 4/3/2003 3 1.099 7/8/2003 3 1.099 2 10/6/2003 0.693 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 5 1.609 4/23/2002 5 1.609 7/16/2002 4 1.386 10/8/2002 1.792 6 1/7/2003 5 1.609 4/2/2003 6 1.792 7/9/2003 5 1.609 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	4.84	N/A	1.577	N/A
MW360	Downgradient	Yes	0.81	N/A	-0.211	N/A
MW363	Downgradient	Yes	2.65	N/A	0.975	N/A
MW366	Sidegradient	Yes	3.39	N/A	1.221	N/A
MW369	Upgradient	Yes	1.52	N/A	0.419	N/A
MW372	Upgradient	Yes	8.96	NO	2.193	N/A
NI/A Dogg	Ita idantified as N	Van Dataata	المام منسيل	omotomi omolivska om	data validatio	a and ryana nat

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** Uranium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.917 **K factor**=** 2.523 Statistics-Background Data X = 0.001S = 0.001TL(1) = 0.005LL(1)=N/A **Statistics-Transformed Background** X = -6.718 S = 0.528CV(2) = -0.079TL(2) = -5.385

Data

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.001 -6.908 4/22/2002 0.001 -6.9087/15/2002 0.001 -6.90810/8/2002 0.00355 -5.641 -6.908 0.001 1/8/2003 4/3/2003 0.001 -6.9087/8/2003 0.001 -6.908 10/6/2003 0.001 -6.908Well Number: MW372 Result Date Collected LN(Result) 3/19/2002 0.001 -6.908 4/23/2002 0.001 -6.908 7/16/2002 0.001 -6.90810/8/2002 0.00591 -5.131 1/7/2003 0.001 -6.9084/2/2003 0.001 -6.9087/9/2003 0.001 -6.908 10/7/2003 0.001 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
W	Vell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
N	AW357	Downgradient	No	0.0002	N/A	-8.517	N/A
N	AW 360	Downgradient	Yes	0.000094	4 NO	-9.272	N/A
N	AW363	Downgradient	No	0.0002	N/A	-8.517	N/A
N	/W366	Sidegradient	No	0.0002	N/A	-8.517	N/A
N	AW 369	Upgradient	No	0.0002	N/A	-8.517	N/A
N	AW372	Upgradient	No	0.0002	N/A	-8.517	N/A
		1 11 10 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.006 CV(1) = 0.259 K factor** = 2.523
 TL(1) = 0.039 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.771 S = 0.223 CV(2) = -0.059 K factor** = 2.523
 TL(2) = -3.208 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/22/2002 0.027 -3.6120.025 7/15/2002 -3.68910/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.912 7/8/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW372 Date Collected LN(Result) Result 3/19/2002 0.039 -3.2444/23/2002 0.037 -3.2977/16/2002 0.025 -3.68910/8/2002 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.005	N/A	-5.298	N/A
MW360	Downgradient	No	0.005	N/A	-5.298	N/A
MW363	Downgradient	No	0.005	N/A	-5.298	N/A
MW366	Sidegradient	No	0.005	N/A	-5.298	N/A
MW369	Upgradient	Yes	0.00151	NO	-6.496	N/A
MW372	Upgradient	No	0.005	N/A	-5.298	N/A
27/1 75						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.116 S = 0.173 CV(1) = 1.490

K factor=** 2.523

TL(1) = 0.552

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.729 S = 1.014

CV(2) = -0.371

K factor=** 2.523

TL(2) = -0.172

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -0.322
Date Collected	Result	` ,
Date Collected 3/19/2002	Result 0.725	-0.322
Date Collected 3/19/2002 4/23/2002	Result 0.725 0.1	-0.322 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.725 0.1 0.1	-0.322 -2.303 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.725 0.1 0.1 0.025	-0.322 -2.303 -2.303 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.725 0.1 0.1 0.025 0.035	-0.322 -2.303 -2.303 -3.689 -3.352

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	0.00782	N/A	-4.851	NO		
MW360	Downgradient	No	0.01	N/A	-4.605	N/A		
MW363	Downgradient	No	0.01	N/A	-4.605	N/A		
MW366	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW369	Upgradient	No	0.01	N/A	-4.605	N/A		
MW372	Upgradient	Yes	0.00622	N/A	-5.080	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

CV(1)=2.777X = 2.026S = 5.626

K factor=** 2.523

TL(1)= 16.219

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.803 S = 1.380CV(2) = -1.718

K factor=** 2.523

TL(2) = 2.678

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.539 4.66 4/23/2002 0.2 -1.6097/15/2002 0.2 -1.60910/8/2002 0.2 -1.6090.2 -1.609 1/8/2003 4/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 22.7 3.122 4/23/2002 1.46 0.378 7/16/2002 0.253 -1.37410/8/2002 0.482 -0.730 1/7/2003 0.608 -0.4984/2/2003 0.446 -0.8077/9/2003 0.2 -1.609 10/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.05	N/A	-2.996	N/A
MW361	Downgradient	No	0.05	N/A	-2.996	N/A
MW364	Downgradient	No	0.05	N/A	-2.996	N/A
MW367	Sidegradient	Yes	0.0185	N/A	-3.990	NO
MW370	Upgradient	No	0.05	N/A	-2.996	N/A
MW373	Upgradient	No	0.0177	N/A	-4.034	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 9.815 S = 7.838 CV(1) = 0.799 K factor**= 2.523
 TL(1) = 29.591 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.072 S = 0.630 CV(2) = 0.304 K factor**= 2.523
 TL(2) = 3.662 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 10.1 2.313 4/23/2002 4.46 1.495 7/15/2002 6.58 1.884 10/8/2002 4.9 1.589 1/8/2003 4.47 1.497 4/3/2003 8.65 2.158 7/9/2003 1.297 3.66 10/6/2003 5.38 1.683 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 15.1 2.715 4/23/2002 6.26 1.834 7/16/2002 6.22 1.828 10/8/2002 4.06 1.401 1/7/2003 11.2 2.416 4/2/2003 18.5 2.918 7/9/2003 13.3 2.588 10/7/2003 34.2 3.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	28.1	N/A	3.336	N/A			
MW361	Downgradient	Yes	24.8	N/A	3.211	N/A			
MW364	Downgradient	Yes	41.2	N/A	3.718	N/A			
MW367	Sidegradient	Yes	50.5	YES	3.922	N/A			
MW370	Upgradient	Yes	14.5	N/A	2.674	N/A			
MW373	Upgradient	Yes	25.1	N/A	3.223	N/A			
N/A Pagu	Its identified as N	Jon-Detects	during lab	oratory analysis or	data validation	and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW367

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA Boron**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.684 **K factor**=** 2.523 Statistics-Background Data X = 1.140S = 0.780TL(1) = 3.108LL(1)=N/A **Statistics-Transformed Background** X = -0.235 S = 1.006 CV(2) = -4.287**K factor**=** 2.523 TL(2) = 2.303LL(2)=N/AData

Historical Background Data from **Upgradient Wells with Transformed Result** Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	2	0.693
4/23/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	` ,
Date Collected 3/18/2002	Result 2	0.693
Date Collected 3/18/2002 4/23/2002	Result 2	0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 2 2 2	0.693 0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 2 2 0.79	0.693 0.693 0.693 -0.236
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 2 2 0.79 0.807	0.693 0.693 0.693 -0.236 -0.214

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.431	NO	-0.842	N/A		
MW361	Downgradient	Yes	0.347	NO	-1.058	N/A		
MW364	Downgradient	Yes	0.012	NO	-4.423	N/A		
MW367	Sidegradient	Yes	0.024	NO	-3.730	N/A		
MW370	Upgradient	Yes	0.0351	NO	-3.350	N/A		
MW373	Upgradient	Yes	1.67	NO	0.513	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.000 4/23/2002 1 0.000 0.000 7/15/2002 1 10/8/2002 1 0.000 1 0.000 1/8/2003 4/3/2003 1 0.000 7/9/2003 0.000 1 10/6/2003 1 0.000 Well Number: MW373 Result Date Collected LN(Result) 3/18/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 1 0.000 10/8/2002 0.000 1/7/2003 0.000 4/2/2003 1 0.000 7/9/2003 0.000 1 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.445	NO	-0.810	N/A		
MW361	Downgradient	Yes	0.445	NO	-0.810	N/A		
MW364	Downgradient	Yes	0.409	NO	-0.894	N/A		
MW367	Sidegradient	Yes	0.487	NO	-0.719	N/A		
MW370	Upgradient	Yes	0.519	NO	-0.656	N/A		
MW373	Upgradient	Yes	0.584	NO	-0.538	N/A		
M/A Dagu	Ita idantified on N	Jon Datasta	ما ما ماسراه	omotomy omolyssis om	data validatio	a and rrians not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 43.413 S = 13.444 CV(1) = 0.310 K factor** = 2.523
 TL(1) = 77.331 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.723 S = 0.323 CV(2) = 0.087 K factor** = 2.523
 TL(2) = 4.539 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 34.8 3.550 4/23/2002 43.4 3.770 7/15/2002 33.2 3.503 10/8/2002 29.2 3.374 1/8/2003 31.3 3.444 4/3/2003 32.4 3.478 7/9/2003 22.9 3.131 10/6/2003 28 3.332 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 61.9 4.126 4/23/2002 59.2 4.081 7/16/2002 47.6 3.863 10/8/2002 46.1 3.831 1/7/2003 49.2 3.896 4/2/2003 57.8 4.057 7/9/2003 3.965 52.7 10/7/2003 64.9 4.173

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	35.7	NO	3.575	N/A		
MW361	Downgradient	Yes	33.3	NO	3.506	N/A		
MW364	Downgradient	Yes	30.6	NO	3.421	N/A		
MW367	Sidegradient	Yes	30.9	NO	3.431	N/A		
MW370	Upgradient	Yes	28.3	NO	3.343	N/A		
MW373	Upgradient	Yes	73.5	NO	4.297	N/A		
M/A Dogg	Its identified as I	Von Dotoots	durina lak	orotory analysis or	data validatio	n and ware not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Chemical Oxygen Demand (COD) LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 41.938 **S**= 24.732 **CV(1)**=0.590

K factor=** 2.523

TL(1)= 104.336 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.658 S = 0.339

CV(2) = 0.093

K factor=** 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	35	3.555
4/23/2002	134	4.898
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 35	3.555
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	14	NO	2.639	N/A		
MW361	Downgradient	Yes	19.3	NO	2.960	N/A		
MW364	Downgradient	No	20	N/A	2.996	N/A		
MW367	Sidegradient	Yes	7.32	NO	1.991	N/A		
MW370	Upgradient	No	20	N/A	2.996	N/A		
MW373	Upgradient	Yes	11	NO	2.398	N/A		
NT/A D	1, 11, 20, 1, 3	T D.	1 . 11	. 1 .	1.7	1 .		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 45.919 S = 7.524 CV(1) = 0.164 K factor**= 2.523
 TL(1) = 64.901 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.814 S = 0.165 CV(2) = 0.043 K factor**= 2.523
 TL(2) = 4.231 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/15/2002 4.016 55.5 10/8/2002 53.6 3.982 1/8/2003 52.9 3.968 4/3/2003 53.6 3.982 7/9/2003 51.9 3.949 10/6/2003 53 3.970 1/7/2004 53 3.970 4/7/2004 51.6 3.944 Well Number: MW373 Date Collected LN(Result) Result 7/16/2002 40.6 3.704 10/8/2002 38.8 3.658 1/7/2003 39 3.664 4/2/2003 38.4 3.648 7/9/2003 38.1 3.640 10/7/2003 38 3.638 1/6/2004 37.9 3.635 4/7/2004 38.8 3.658

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	34.3	NO	3.535	N/A		
MW361	Downgradient	Yes	35.6	NO	3.572	N/A		
MW364	Downgradient	Yes	29.4	NO	3.381	N/A		
MW367	Sidegradient	Yes	37.3	NO	3.619	N/A		
MW370	Upgradient	Yes	38.6	NO	3.653	N/A		
MW373	Upgradient	Yes	42.4	NO	3.747	N/A		
NI/A Dear	Ita idantified as N	Van Dataata	المام منسيل	anotomy on alvaia om	data validatio	a and ryana nat		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.800 **K factor**=** 2.523 Statistics-Background Data X = 6.250S = 5.000TL(1) = 18.865LL(1)=N/A **Statistics-Transformed Background**

Data

X = 1.710 S = 0.402CV(2) = 0.235 **K factor**=** 2.523

TL(2) = 2.725

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.609 5 4/23/2002 5 1.609 7/15/2002 5 1.609 10/8/2002 5 1.609 5 1/8/2003 1.609 4/3/2003 5 1.609 7/9/2003 5 1.609 5 10/6/2003 1.609 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 7/16/2002 5 1.609 10/8/2002 5 1.609 5 1/7/2003 1.609 4/2/2003 5 1.609 7/9/2003 5 1.609 5

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	1.45	NO	0.372	N/A		
MW361	Downgradient	No	1	N/A	0.000	N/A		
MW364	Downgradient	No	1	N/A	0.000	N/A		
MW367	Sidegradient	No	1	N/A	0.000	N/A		
MW370	Upgradient	No	1	N/A	0.000	N/A		
MW373	Upgradient	No	1	N/A	0.000	N/A		
NI/A D	Ita idantified on N	I D-44-	J 1 - 1-		3-41:3-4:	4		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.027 S = 0.032 CV(1) = 1.165 K factor** = 2.523
 TL(1) = 0.108 LL(1) = N/A

 Statistics-Transformed Background
 X = -4.058 S = 1.011 CV(2) = -0.249 K factor** = 2.523
 TL(2) = -1.507 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6897/15/2002 0.025 -3.68910/8/2002 0.0174 -4.051 0.0105 1/8/2003 -4.5564/3/2003 0.00931 -4.6777/9/2003 0.137 -1.988 10/6/2003 0.0463 -3.073Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.025 -3.6894/23/2002 0.034 -3.381 7/16/2002 0.025 -3.68910/8/2002 0.00411 -5.494 1/7/2003 0.00344 -5.672-5.605 4/2/2003 0.00368 -3.206 7/9/2003 0.0405

0.00843

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.00113	N/A	-6.786	NO		
MW361	Downgradient	No	0.001	N/A	-6.908	N/A		
MW364	Downgradient	Yes	0.00019	N/A	-8.568	NO		
MW367	Sidegradient	Yes	0.00058	N/A	-7.452	NO		
MW370	Upgradient	Yes	0.00052	N/A	-7.562	NO		
MW373	Upgradient	No	0.001	N/A	-6.908	N/A		
N/A - Resu	ilte identified as N	Non-Detects	during lah	oratory analysis or	data validation	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-4.776

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 608.719 S = 156.157 CV(1) = 0.257

K factor=** 2.523

TL(1)= 1002.702 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor=** 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 406 6.006 4/23/2002 543 6.297 7/15/2002 476 6.165 10/8/2002 441 6.089 1/8/2003 486 6.186 4/3/2003 466 6.144 7/9/2003 479 6.172 10/6/2003 435 6.075 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 661 6.494 4/23/2002 801 6.686 7/16/2002 774 6.652 10/8/2002 680 6.522 1/7/2003 686.5 6.532 4/2/2003 763 6.637 7/9/2003 828 6.719 10/7/2003 814 6.702

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	511	NO	6.236	N/A
MW361	Downgradient	Yes	498	NO	6.211	N/A
MW364	Downgradient	Yes	464	NO	6.140	N/A
MW367	Sidegradient	Yes	472	NO	6.157	N/A
MW370	Upgradient	Yes	432	NO	6.068	N/A
MW373	Upgradient	Yes	873	NO	6.772	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.010 CV(1) = 0.399 K factor** = 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background Data
 X = -3.739 S = 0.308 CV(2) = -0.082 K factor** = 2.523
 TL(2) = -2.963 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.6894/23/2002 0.025 -3.6890.05 -2.996 7/15/2002 10/8/2002 0.02 -3.912 0.02 -3.912 1/8/2003 4/3/2003 0.02 -3.912 7/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.026 -3.6504/23/2002 0.025 -3.689 -2.9967/16/2002 0.05 10/8/2002 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 0.02 -3.912 7/9/2003 0.02 -3.912 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00066	NO	-7.323	N/A
MW361	Downgradient	Yes	0.0004	NO	-7.824	N/A
MW364	Downgradient	Yes	0.00042	NO	-7.775	N/A
MW367	Sidegradient	Yes	0.00047	NO	-7.663	N/A
MW370	Upgradient	Yes	0.00056	NO	-7.488	N/A
MW373	Upgradient	No	0.001	N/A	-6.908	N/A
NI/A D	14- 1141C-1 N	Von Dotooto	J 1 - 1.		3-41:3-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.387

S = 1.153

CV(1)=0.831

K factor=** 2.523

TL(1) = 4.295

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.115 S = 1.207

CV(2) = -10.514

K factor=** 2.523

TL(2) = 2.930

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 1.112
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 3.04	1.112
Date Collected 3/18/2002 4/23/2002	Result 3.04 0.03	1.112 -3.507
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 3.04 0.03 0.23	1.112 -3.507 -1.470
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.04 0.03 0.23 0.86	1.112 -3.507 -1.470 -0.151
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.04 0.03 0.23 0.86 0.21	1.112 -3.507 -1.470 -0.151 -1.561

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.78	NO	-0.248	N/A
MW361	Downgradient	Yes	3.3	NO	1.194	N/A
MW364	Downgradient	Yes	2.56	NO	0.940	N/A
MW367	Sidegradient	Yes	1.98	NO	0.683	N/A
MW370	Upgradient	Yes	4.18	NO	1.430	N/A
MW373	Upgradient	Yes	2.09	NO	0.737	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 356.188 **S**= 106.752 **CV(1)**=0.300

K factor=** 2.523

TL(1)= 625.523 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor=** 2.523

TL(2) = 6.616

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.057
Date Collected	Result	
Date Collected 3/18/2002	Result 427	6.057
Date Collected 3/18/2002 4/23/2002	Result 427 507	6.057 6.229
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427 507 464	6.057 6.229 6.140
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427 507 464 408	6.057 6.229 6.140 6.011
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427 507 464 408 404	6.057 6.229 6.140 6.011 6.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW358	Downgradient	Yes	279	NO	5.631	N/A
	MW361	Downgradient	Yes	266	NO	5.583	N/A
	MW364	Downgradient	Yes	241	NO	5.485	N/A
	MW367	Sidegradient	Yes	214	NO	5.366	N/A
	MW370	Upgradient	Yes	194	NO	5.268	N/A
	MW373	Upgradient	Yes	476	NO	6.165	N/A
	37/4 D	1. 11 1	T D			1 . 111 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 9.230
 S= 8.841
 CV(1)=0.958
 K factor**= 2.523
 TL(1)= 31.535
 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 1.942
 S= 0.713
 CV(2)=0.367
 K factor**= 2.523
 TL(2)= 3.740
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 7/15/2002 3.52 1.258 10/8/2002 7.45 2.008 7.04 1/8/2003 1.952 4/3/2003 4.64 1.535 7/9/2003 15.8 2.760 10/6/2003 6.49 1.870 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 7/16/2002 10.7 2.370 10/8/2002 3.75 1.322 1/7/2003 3.87 1.353 4/2/2003 3.5 1.253 7/9/2003 7.72 2.044 10/7/2003 2.93 1.075

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.462	NO	-0.772	N/A
MW361	Downgradient	No	0.1	N/A	-2.303	N/A
MW364	Downgradient	No	0.0398	N/A	-3.224	N/A
MW367	Sidegradient	Yes	0.899	NO	-0.106	N/A
MW370	Upgradient	No	0.1	N/A	-2.303	N/A
MW373	Upgradient	No	0.1	N/A	-2.303	N/A
27/4 75						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.544 **S**= 5.911 **CV(1)**=0.337

K factor=** 2.523

TL(1) = 32.458

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.810 **S**= 0.343

CV(2)=0.122

K factor=** 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	12.1	2.493
4/23/2002	15.1	2.715
7/15/2002	12.4	2.518
10/8/2002	12.2	2.501
1/8/2003	11.5	2.442
4/3/2003	12.3	2.510
7/9/2003	10	2.303
10/6/2003	12.1	2.493
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.211
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 24.8	3.211
Date Collected 3/18/2002 4/23/2002	Result 24.8 22.7	3.211 3.122
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 24.8 22.7 18.8	3.211 3.122 2.934
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 24.8 22.7 18.8 21.1	3.211 3.122 2.934 3.049
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 24.8 22.7 18.8 21.1 19.9	3.211 3.122 2.934 3.049 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	15.8	NO	2.760	N/A
MW361	Downgradient	Yes	14.3	NO	2.660	N/A
MW364	Downgradient	Yes	13.1	NO	2.573	N/A
MW367	Sidegradient	Yes	12.9	NO	2.557	N/A
MW370	Upgradient	Yes	12.9	NO	2.557	N/A
MW373	Upgradient	Yes	28.1	NO	3.336	N/A
NT/A D	1, 11, 20, 1, 3	T D.		. 1 .	1.7	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.080 S = 0.674 CV(1) = 0.624 K factor**= 2.523 TL(1) = 2.780 LL(1) = N/A Statistics-Transformed Background X = -0.114 S = 0.658 CV(2) = -5.762 K factor**= 2.523 TL(2) = 1.547 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.244 -1.411 0.599 4/23/2002 1.82 0.199 7/15/2002 1.22 10/8/2002 0.988 -0.012 -0.316 1/8/2003 0.729 4/3/2003 0.637 -0.4517/9/2003 2.51 0.920 0.049 10/6/2003 1.05 Well Number: MW373 Result Date Collected LN(Result) 3/18/2002 0.355 -1.036 4/23/2002 2.16 0.770 0.329 7/16/2002 1.39 10/8/2002 0.717 -0.333 1/7/2003 0.587 -0.5334/2/2003 0.545 -0.6077/9/2003 0.565 1.76 10/7/2003 0.57 -0.562

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.145	NO	-1.931	N/A
MW361	Downgradient	Yes	0.00801	NO	-4.827	N/A
MW364	Downgradient	Yes	0.0111	NO	-4.501	N/A
MW367	Sidegradient	Yes	0.178	NO	-1.726	N/A
MW370	Upgradient	Yes	0.00282	. NO	-5.871	N/A
MW373	Upgradient	Yes	0.00318	NO NO	-5.751	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.901 **K factor**=** 2.523 Statistics-Background Data X = 0.024S = 0.022TL(1) = 0.078LL(1)=N/A **Statistics-Transformed Background** X = -4.239 S = 1.087

Data

CV(2) = -0.256

K factor=** 2.523

TL(2) = -1.497

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.05 -2.9964/23/2002 0.05 -2.9967/15/2002 0.05 -2.99610/8/2002 0.005 -5.2980.005 1/8/2003 -5.2984/3/2003 0.005 -5.2987/9/2003 0.0264 -3.634 10/6/2003 0.00971 -4.635Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.05 -2.996 4/23/2002 0.05 -2.996 7/16/2002 0.05 -2.99610/8/2002 0.005 -5.298 1/7/2003 0.005 -5.2984/2/2003 0.005 -5.2987/9/2003 0.0112 -4.4920.005 -5.298 10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00243	NO	-6.020	N/A
MW361	Downgradient	No	0.002	N/A	-6.215	N/A
MW364	Downgradient	No	0.002	N/A	-6.215	N/A
MW367	Sidegradient	Yes	0.0007	NO	-7.264	N/A
MW370	Upgradient	Yes	0.00095	NO	-6.959	N/A
MW373	Upgradient	No	0.002	N/A	-6.215	N/A
3.7/A D	1. 11 .:0 1 3	T . D			1 . 111	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 46.688 **S**= 60.986 **CV(1)**=1.306

K factor=** 2.523

TL(1) = 200.555 LL(1) = N/A

Statistics-Transformed Background Data

X = 3.829

 $S= 1.151 \quad CV(2)=0.301$

K factor=** 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.942
Date Collected	Result	` ′
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	320	N/A	5.768	YES			
MW361	Downgradient	Yes	422	N/A	6.045	YES			
MW364	Downgradient	Yes	401	N/A	5.994	YES			
MW367	Sidegradient	Yes	751	N/A	6.621	YES			
MW370	Upgradient	Yes	380	N/A	5.940	YES			
MW373	Upgradient	Yes	507	N/A	6.229	YES			
NT/A D	1. 11 .:0 1 3					1			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW361

MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.283 S = 0.159 CV(1) = 0.025 K factor**= 2.904
 TL(1) = 6.745 LL(1) = 5.8202

 Statistics-Transformed Background Data
 X = 1.837 X = 0.025 X = 0.025</th

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 6.3 1.841 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 1/7/2003 6.35 1.848 4/2/2003 6.14 1.815 7/9/2003 1.808 6.1 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>				
MW358	Downgradien	t Yes	6.16	NO	1.818	N/A				
MW361	Downgradien	t Yes	5.93	NO	1.780	N/A				
MW364	Downgradien	t Yes	5.93	NO	1.780	N/A				
MW367	Sidegradient	Yes	5.98	NO	1.788	N/A				
MW370	Upgradient	Yes	6.1	NO	1.808	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

1.795

N/A

6.02

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW373 Upgradient

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 2.823 S = 0.522 CV(1) = 0.185 K factor**= 2.523 TL(1) = 4.139 LL(1) = N/A Statistics-Transformed Background X = 1.024 S = 0.167 CV(2) = 0.163 K factor**= 2.523 TL(2) = 1.445 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.22 1.169 4/23/2002 3.43 1.233 1.092 7/15/2002 2.98 10/8/2002 2.46 0.900 2.41 1/8/2003 0.8804/3/2003 2.43 0.888 7/9/2003 2.44 0.892 10/6/2003 2.48 0.908 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 4.34 1.468 4/23/2002 3.04 1.112 7/16/2002 2.93 1.075 10/8/2002 2.3 0.833 1/7/2003 2.45 0.896 4/2/2003 2.7 0.993 7/9/2003 0.986 2.68 10/7/2003 2.88 1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	2.38	NO	0.867	N/A			
MW361	Downgradient	Yes	2.01	NO	0.698	N/A			
MW364	Downgradient	Yes	2.12	NO	0.751	N/A			
MW367	Sidegradient	Yes	2.92	NO	1.072	N/A			
MW370	Upgradient	Yes	2.49	NO	0.912	N/A			
MW373	Upgradient	Yes	2.89	NO	1.061	N/A			
NI/A Dagu	Ita idantified on N	Jon Dotooto	dumin a lah	omotomy omolyssis om	data validation	n and rrans not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: pCi/L Radium-226 **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=2.660**K factor**=** 2.523 Statistics-Background Data X = 2.158S = 5.739**TL(1)=** 16.637 LL(1)=N/A **Statistics-Transformed Background** TL(2) = 3.068

Data

X = -0.670 S = 1.833CV(2) = -2.736 **K factor**=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 7/15/2002 2.313 10.1 10/8/2002 -0.825#Func! 0.415 -0.879 1/8/2003 10/6/2003 0.52 -0.6541.03 0.030 1/7/2004 4/7/2004 0.434 -0.8357/13/2004 0.532 -0.631 10/7/2004 0.299 -1.207Well Number: MW373 Date Collected Result LN(Result) 7/16/2002 21.5 3.068 10/8/2002 0.0327 -3.420-0.8441/7/2003 #Func! 0 #Func! 10/7/2003 1/6/2004 0.177 -1.7324/7/2004 0.792 -0.2337/14/2004 0.327 -1.118 0.033 10/7/2004 -3.411

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	0.898	N/A	-0.108	NO			
MW361	Downgradient	No	0.141	N/A	-1.959	N/A			
MW364	Downgradient	Yes	0.623	N/A	-0.473	NO			
MW367	Sidegradient	Yes	1.18	N/A	0.166	NO			
MW370	Upgradient	Yes	0.905	N/A	-0.100	NO			
MW373	Upgradient	Yes	0.436	N/A	-0.830	NO			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 51.544 S = 15.227 CV(1) = 0.295 K factor** = 2.523
 TL(1) = 89.962 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.906 S = 0.272 CV(2) = 0.070 K factor** = 2.523
 TL(2) = 4.592 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 31.8 3.459 4/23/2002 50 3.912 44.7 7/15/2002 3.800 10/8/2002 40 3.689 44.6 1/8/2003 3.798 4/3/2003 41.9 3.735 7/9/2003 40 3.689 10/6/2003 38.1 3.640 Well Number: MW373 Date Collected LN(Result) Result 3/18/2002 43.4 3.770 4/23/2002 79.8 4.380 7/16/2002 87.7 4.474 10/8/2002 4.121 61.6 1/7/2003 59.3 4.083 4/2/2003 62.1 4.129 7/9/2003 50.1 3.914 10/7/2003 49.6 3.904

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	42.3	NO	3.745	N/A			
MW361	Downgradient	Yes	44.3	NO	3.791	N/A			
MW364	Downgradient	Yes	43.7	NO	3.777	N/A			
MW367	Sidegradient	Yes	42.8	NO	3.757	N/A			
MW370	Upgradient	Yes	42.4	NO	3.747	N/A			
MW373	Upgradient	Yes	63.4	NO	4.149	N/A			
3.T/A D	1. 11 .:0 1 3	T D			1 . 111				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 122.381 S = 195.095 CV(1) = 1.594

K factor=** 2.523

TL(1)= 614.606 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.985 S = 1.323 CV(2) = 0.332

K factor=** 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.096
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	80.8	N/A	4.392	NO			
MW361	Downgradient	Yes	71.4	N/A	4.268	NO			
MW364	Downgradient	Yes	66.9	N/A	4.203	NO			
MW367	Sidegradient	Yes	43.6	N/A	3.775	NO			
MW370	Upgradient	Yes	19.1	N/A	2.950	NO			
MW373	Upgradient	Yes	165	N/A	5.106	NO			
NI/A D	1. 11 .:0 1 3				1. 1.1.				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 7.655 S = 13.274 CV(1) = 1.734 K factor** = 2.523
 TL(1) = 41.146 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.946 X = 0.939 X = 0.483 X = 0.483 X = 0.939 X = 0.939 X = 0.483 X = 0.939 X = 0.939

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	10.8	2.380
4/23/2002	8.53	2.144
7/15/2002	5.09	1.627
10/8/2002	4.78	1.564
1/8/2003	-5.12	#Func!
4/3/2003	5.11	1.631
7/9/2003	4.25	1.447
10/6/2003	6.54	1.878
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 2.803
Date Collected	Result	
Date Collected 3/18/2002	Result 16.5	2.803
Date Collected 3/18/2002 4/23/2002	Result 16.5 3.49	2.803 1.250
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 16.5 3.49 1.42	2.803 1.250 0.351
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 16.5 3.49 1.42 -6.06	2.803 1.250 0.351 #Func!
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 16.5 3.49 1.42 -6.06 -8.41	2.803 1.250 0.351 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	32.8	N/A	3.490	NO
MW361	Downgradient	Yes	37.8	N/A	3.632	NO
MW364	Downgradient	Yes	43.3	N/A	3.768	NO
MW367	Sidegradient	Yes	60.6	N/A	4.104	YES
MW370	Upgradient	Yes	20.9	N/A	3.040	NO
MW373	Upgradient	Yes	33.7	N/A	3.517	NO
M/A Dagu	Ita identified on N	Jon Dotoots	Jurina lah	orotory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW367

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 6.169 **S**= 12.072 **CV(1)**=1.957

K factor=** 2.523

TL(1)= 36.626 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 1.069 **S**=

S= 1.014 **CV(2)**=0.948

K factor=** 2.523

TL(2)= 3.626

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.2 0.182 4/23/2002 4.3 1.459 0.956 7/15/2002 2.6 10/8/2002 2.3 0.8331/8/2003 3 1.099 4/3/2003 1.2 0.182 7/9/2003 2.6 0.956 10/6/2003 1.7 0.531 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1.1 0.095 4/23/2002 17.5 2.862 49 7/16/2002 3.892 10/8/2002 2.9 1.065 1/7/2003 3.9 1.361 4/2/2003 2.5 0.916 7/9/2003 1.7 0.531 10/7/2003 1.2 0.182

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	0.8	N/A	-0.223	NO			
MW361	Downgradient	Yes	0.84	N/A	-0.174	NO			
MW364	Downgradient	Yes	0.52	N/A	-0.654	NO			
MW367	Sidegradient	No	1	N/A	0.000	N/A			
MW370	Upgradient	Yes	0.37	N/A	-0.994	NO			
MW373	Upgradient	Yes	0.51	N/A	-0.673	NO			
NI/A D	14- 1141C1-1 N	I D-44-	J 1 - 1-		3-41:3-4:	4			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

K factor=** 2.523

TL(1)= 277.798 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.971 S = 0.950 CV(2) = 0.239

K factor=** 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	,
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	9.04	NO	2.202	N/A			
MW361	Downgradient	Yes	7.78	NO	2.052	N/A			
MW364	Downgradient	Yes	6.56	NO	1.881	N/A			
MW367	Sidegradient	Yes	7.3	NO	1.988	N/A			
MW370	Upgradient	No	7	N/A	1.946	N/A			
MW373	Upgradient	No	13.9	N/A	2.632	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis Historical Background Comparison UNITS: ug/L **Trichloroethene LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X= 12.188 **S**= 6.950 **CV(1)**=0.570 **K factor**=** 2.523 Statistics-Background Data TL(1) = 29.721LL(1)=N/A **Statistics-Transformed Background** X = 2.305S = 0.687

Data

CV(2) = 0.298

K factor=** 2.523

TL(2) = 4.039

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 19 2.944 4/23/2002 17 2.833 15 7/15/2002 2.708 10/8/2002 18 2.890 17 1/8/2003 2.833 4/3/2003 18 2.890 7/9/2003 15 2.708 10/6/2003 16 2.773 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 7/16/2002 3 1.099 10/8/2002 4 1.386 1/7/2003 6 1.792 4/2/2003 5 1.609 7/9/2003 1.792 6 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	15.8	NO	2.760	N/A			
MW361	Downgradient	No	1	N/A	0.000	N/A			
MW364	Downgradient	Yes	4.78	N/A	1.564	N/A			
MW367	Sidegradient	Yes	4.19	N/A	1.433	N/A			
MW370	Upgradient	Yes	1.29	N/A	0.255	N/A			
MW373	Upgradient	Yes	8.61	NO	2.153	N/A			
NI/A D	1, 11, 2011				1. 1.1.				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.673 **K factor**=** 2.523 Statistics-Background Data X = 0.055S = 0.037TL(1) = 0.147LL(1)=N/A **Statistics-Transformed Background**

Data

X = -3.131 S = 0.691CV(2) = -0.221 **K factor**=** 2.523 TL(2) = -1.388

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 -2.303 0.1 4/23/2002 0.1 -2.3037/15/2002 0.1 -2.30310/8/2002 0.025 -3.6890.035 1/8/2003 -3.3524/3/2003 0.035 -3.3527/9/2003 0.02 -3.912 10/6/2003 0.02 -3.912Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.1 -2.303 4/23/2002 0.1 -2.303-2.3037/16/2002 0.1 10/8/2002 0.025 -3.689 1/7/2003 0.035 -3.352 4/2/2003 0.035 -3.3527/9/2003 0.0234 -3.755 -3.912 10/7/2003 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	0.00925	NO	-4.683	N/A			
MW361	Downgradient	No	0.01	N/A	-4.605	N/A			
MW364	Downgradient	Yes	0.034	NO	-3.381	N/A			
MW367	Sidegradient	No	0.01	N/A	-4.605	N/A			
MW370	Upgradient	No	0.01	N/A	-4.605	N/A			
MW373	Upgradient	No	0.01	N/A	-4.605	N/A			
27/4 75									

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

Current Background Comparison

Dissolved Oxygen

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: mg/L

Statistics-Background Data	X = 2.298	S = 1.484	CV(1)= 0.646	K factor**= 2.523	TL(1)= 6.041	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.660	S = 0.603	CV(2)= 0.914	K factor**= 2.523	TL(2)= 2.181	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 4/9/2013 1.61 0.476 7/16/2013 1.015 2.76 10/8/2013 0.322 1.38 1/14/2014 1.97 0.678 4/14/2014 3.87 1.353 9/22/2014 1.34 0.293 10/20/2014 0.98 -0.0201/21/2015 1.79 0.582 Well Number: MW374 Date Collected Result LN(Result) 4/8/2013 6.52 1.875 7/16/2013 3.41 1.227 10/9/2013 2.74 1.008 1/14/2014 1.67 0.513

3.44

1.76

0.86

0.66

4/15/2014

7/7/2014

10/16/2014

1/21/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	
----------------------	--

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	4.8	NO	1.569	N/A
MW362	Downgradien	t Yes	5.78	NO	1.754	N/A
MW365	Downgradien	t Yes	5.47	NO	1.699	N/A
MW371	Upgradient	Yes	4.44	NO	1.491	N/A

Conclusion of Statistical Analysis on Current Data

1.235

0.565

-0.151

-0.416

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 464.875 S = 172.435 CV(1) = 0.371

K factor**= 2.523

TL(1)= 899.930 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.080

S = 0.361CV(2)=0.059 K factor**= 2.523

TL(2)= 6.991

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 4/9/2013 690 6.537 7/16/2013 5.966 390 10/8/2013 6.299 544 5.924 1/14/2014 374 4/14/2014 476 6.165 9/22/2014 311 5.740 10/20/2014 360 5.886 1/21/2015 774 6.652 Well Number: MW374 Date Collected Result LN(Result) 4/8/2013 313 5.746 7/16/2013 344 5.841 10/9/2013 802 6.687 1/14/2014 515 6.244 4/15/2014 499 6.213 7/7/2014 259 5.557 10/16/2014 257 5.549 1/21/2015 530 6.273

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Qualter	Data

Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	536	NO	6.284	N/A
MW362	Downgradient	Yes	355	NO	5.872	N/A
MW365	Downgradient	Yes	700	NO	6.551	N/A
MW368	Sidegradient	Yes	676	NO	6.516	N/A
MW371	Upgradient	Yes	384	NO	5.951	N/A
MW374	Upgradient	Yes	395	NO	5.979	N/A
MW375	Sidegradient	Yes	495	NO	6.205	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
 - Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Second Quarter 2015 Statistical Analysis **Sulfate** UNITS: mg/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.770

S= 4.963

K factor=** 2.523

TL(1)= 22.291

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.166

S = 0.484

CV(2)=0.223

CV(1)=0.508

K factor=** 2.523

TL(2) = 3.386

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 4/9/2013 14 2.639 7/16/2013 19 2.944 10/8/2013 13 2.565 9.9 1/14/2014 2.293 4/14/2014 16.4 2.797 7/8/2014 18.6 2.923 10/20/2014 10.5 2.351 1/21/2015 9.23 2.222 Well Number: MW374 Date Collected Result LN(Result)

6

5.6

6.6

5.1

5.63

5.64

5.73

5.39

4/8/2013

7/16/2013

10/9/2013

1/14/2014

4/15/2014

7/7/2014

10/16/2014

1/21/2015

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	52.8	YES	3.967	N/A
MW365	Downgradien	t Yes	67.6	YES	4.214	N/A
MW368	Sidegradient	Yes	28.2	YES	3.339	N/A
MW375	Sidegradient	Yes	30.4	YES	3.414	N/A

Conclusion of Statistical Analysis on Current Data

1.792

1.723

1.887

1.629

1.728

1.730

1.746

1.685

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW359 MW365

MW368

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Trichloroethene

X = 1.000

CV(1)=0.000

UNITS: ug/L

K factor=** 2.523

TL(1)= 1.000

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.000 S = 0.000

S = 0.000

CV(2)=#Num!

K factor=** 2.523

TL(2) = 0.000

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
4/9/2013	1	0.000
7/16/2013	1	0.000
10/8/2013	1	0.000
1/14/2014	1	0.000
4/14/2014	1	0.000
7/8/2014	1	0.000
10/20/2014	1	0.000
1/21/2015	1	0.000

1/21/2013	1	0.000
Well Number:	MW374	
Date Collected	Result	LN(Result)
4/8/2013	1	0.000
7/16/2013	1	0.000
10/9/2013	1	0.000
1/14/2014	1	0.000
4/15/2014	1	0.000
7/7/2014	1	0.000
10/16/2014	1	0.000
1/21/2015	1	0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current (Quarter	Data
-----------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Ves	5 77	YFS	1 753	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW359

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 $\overline{\text{CV}}$ Coefficient-of-Variation, $\overline{\text{CV}} = S/X$ If $\overline{\text{CV}}$ is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 37.675 S = 22.474 CV(1) = 0.597

K factor=** 2.523

TL(1)= 94.378

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.443 S = 0.640 CV(2) = 0.186

K factor=** 2.523

TL(2) = 5.057

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 4/10/2013 16.4 2.797 7/16/2013 19.9 2.991 10/8/2013 2.785 16.2 1/14/2014 21.8 3.082 4/14/2014 16.4 2.797 7/8/2014 15.5 2.741 10/20/2014 16.8 2.821 1/13/2015 16.5 2.803

1/13/2013	10.5	2.003
Well Number:	MW372	
Date Collected	Result	LN(Result)
4/8/2013	65.9	4.188
7/16/2013	63.5	4.151
10/9/2013	60.2	4.098
1/14/2014	31.3	3.444
4/16/2014	70.5	4.256
7/7/2014	59.1	4.079
10/16/2014	59.3	4.083
1/21/2015	53.5	3.980

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	66.6	NO	4 199	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Conductivity UNITS: umho/cm

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 592.250 S = 217.627 CV(1) = 0.367

K factor**= 2.523

TL(1)= 1141.323 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.317 S = 0.381

CV(2)=0.060

K factor**= 2.523

TL(2) = 7.278

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/10/2013	392	5.971
7/16/2013	427	6.057
10/8/2013	376	5.930
1/14/2014	392	5.971
4/14/2014	380	5.940
9/22/2014	370	5.914
10/20/2014	371	5.916
1/13/2015	374	5.924

374	5.924
MW372	
Result	LN(Result)
879	6.779
822	6.712
791	6.673
759	6.632
837	6.730
839	6.732
766	6.641
701	6.553
	MW372 Result 879 822 791 759 837 839 766

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	769	NO	6 645	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 334.438 S = 141.011 CV(1) = 0.422

K factor=** 2.523

TL(1) = 690.207

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.726 S = 0.434 CV(2) = 0.076

K factor**= 2.523

TL(2)= 6.821

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Date Collected Result LN(Result) 4/10/2013 237 5.468
1/10/2019 25/
7/16/2013 232 5.447
10/8/2013 228 5.429
1/14/2014 216 5.375
4/14/2014 213 5.361
7/8/2014 150 5.011
10/20/2014 193 5.263
1/13/2015 207 5.333

10/20/2014	193	5.263
1/13/2015	207	5.333
Well Number:	MW372	
Date Collected	Result	LN(Result)
4/8/2013	526	6.265
7/16/2013	503	6.221
10/9/2013	481	6.176
1/14/2014	455	6.120
4/16/2014	546	6.303
7/7/2014	314	5.749
10/16/2014	476	6.165
1/21/2015	374	5.924

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	42.1	NO	6.043	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
 - Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 14.533 **S**= 8.257

CV(1)=0.568

K factor**= 2.523

TL(1)= 35.366

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.508

S = 0.610

CV(2) = 0.243

K factor=** 2.523

TL(2) = 4.047

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/10/2013	6.38	1.853
7/16/2013	7.62	2.031
10/8/2013	6.5	1.872
1/14/2014	9.54	2.255
4/14/2014	6.7	1.902
7/8/2014	5.66	1.733
10/20/2014	7.03	1.950
1/13/2015	7.19	1.973

1/13/2013	7.17	1.773
Well Number:	MW372	
Date Collected	Result	LN(Result)
4/8/2013	26	3.258
7/16/2013	23.8	3.170
10/9/2013	22.8	3.127
1/14/2014	12.8	2.549
4/16/2014	26.1	3.262
7/7/2014	21.6	3.073
10/16/2014	22.4	3.109
1/21/2015	20.4	3.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	25.2	NO	3 227	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2015 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 424.000 S = 243.782 CV(1) = 0.575

K factor**= 2.523

TL(1)= 1039.062 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.784S = 0.909CV(2)=0.157 **K factor**=** 2.523

TL(2)= 8.076

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 4/10/2013 580 6.363 7/16/2013 284 5.649 10/8/2013 750 6.620 6.082 1/14/2014 438 4/14/2014 514 6.242 9/22/2014 331 5.802 10/20/2014 405 6.004 1/13/2015 779 6.658

Well Number:	MW372	
Date Collected	Result	LN(Result)
4/8/2013	28	3.332
7/16/2013	273	5.609
10/9/2013	519	6.252
1/14/2014	740	6.607
4/16/2014	236	5.464
7/7/2014	126	4.836
10/16/2014	88	4.477
1/21/2015	693	6.541

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Qualter	Data

Well N	No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW3	357	Downgradien	t Yes	546	NO	6.303	N/A
MW3	360	Downgradien	t Yes	276	NO	5.620	N/A
MW3	363	Downgradien	t Yes	379	NO	5.938	N/A
MW3	366	Sidegradient	Yes	692	NO	6.540	N/A
MW3	369	Upgradient	Yes	404	NO	6.001	N/A
MW3	372	Upgradient	Yes	283	NO	5.645	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- TL Upper Tolerance Limit, TL = X + (K * S), Mean, X = (sum of background results)/(count of background results)
- LL Lower Tolerance Limit, LL = X (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 78.307 S = 73.803 CV(1) = 0.942

K factor**= 2.523

TL(1)= 264.511 L

LL(1)=N/A

Statistics-Transformed Background
Data

X= 3.568 **S**= 1.471

CV(2)=0.412

K factor=** 2.523

TL(2) = 7.280

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/10/2013	7.5	2.015
7/16/2013	8.7	2.163
10/8/2013	13	2.565
1/14/2014	8.1	2.092
4/14/2014	8.09	2.091
7/8/2014	8.17	2.100
10/20/2014	7.65	2.035
1/13/2015	8.7	2.163

//8/2014	8.17	2.100
10/20/2014	7.65	2.035
1/13/2015	8.7	2.163
Well Number:	MW372	
Date Collected	Result	LN(Result)
4/8/2013	170	5.136
7/16/2013	150	5.011
10/9/2013	150	5.011
1/14/2014	140	4.942
4/16/2014	176	5.170
7/7/2014	170	5.136
10/16/2014	118	4.771
1/21/2015	109	4.691

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current (Quarter	Data
-----------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	138	NO	4 927	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2015 Statistical Analysis Beta activity UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 24.244 S = 12.341 CV(1) = 0.509

K factor**= 2.523

TL(1)= 55.380

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.083

S = 0.459CV(2)=0.149

K factor=** 2.523

TL(2) = 4.241

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
4/10/2013	17.2	2.845
7/16/2013	19	2.944
10/8/2013	15.1	2.715
1/14/2014	11.4	2.434
4/15/2014	27.2	3.303
7/8/2014	19.2	2.955
10/20/2014	14.5	2.674
1/13/2015	16	2.773

1/13/2013	10	2.113
Well Number:	MW373	
Date Collected	Result	LN(Result)
4/9/2013	40.3	3.696
7/16/2013	52.2	3.955
10/9/2013	42.4	3.747
1/14/2014	38.6	3.653
4/16/2014	19.1	2.950
7/7/2014	16.7	2.815
10/16/2014	24.9	3.215
1/21/2015	14.1	2.646

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No. Gradient		Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW367	Sidegradient	Ves	50.5	NO	3 922	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-U Second Quarter 2015 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 482.438 S = 132.784 CV(1) = 0.275

K factor**= 2.523

TL(1)= 817.452 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.147S = 0.254CV(2)=0.041 **K** factor**= 2.523

TL(2) = 6.787

LL(2)=N/A

 $(2)^{c}$

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 4/10/2013 505 6.225 7/16/2013 5.958 387 10/8/2013 811 6.698 6.094 1/14/2014 443 4/15/2014 535 6.282 9/22/2014 353 5.866 10/20/2014 363 5.894 1/13/2015 691 6.538 Well Number: MW373 Date Collected Result LN(Result) 4/9/2013 498 6.211 7/16/2013 500 6.215 10/9/2013 627 6.441 1/14/2014 494 6.203 5.986 4/16/2014 398 7/7/2014 374 5.924 10/16/2014 404 6.001

336

1/21/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Culltuit	Qualter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW358	Downgradient	Yes	320	NO	5.768	N/A
MW361	Downgradient	Yes	422	NO	6.045	N/A
MW364	Downgradient	Yes	401	NO	5.994	N/A
MW367	Sidegradient	Yes	751	NO	6.621	N/A
MW370	Upgradient	Yes	380	NO	5.940	N/A
MW373	Upgradient	Yes	507	NO	6.229	N/A

Conclusion of Statistical Analysis on Current Data

5.817

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the

UNITS: pCi/L

Statistics-Background Data

Technetium-99

LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 33.456 S = 17.109 CV(1) = 0.511

K factor**= 2.523

TL(1)= 76.623

LRGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.378

S = 0.550CV(2)=0.163

K factor**= 2.523

TL(2) = 4.766

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 4/10/2013 12 2.485 7/16/2013 33.2 3.503 10/8/2013 27.9 3.329 1/14/2014 10.6 2.361 4/15/2014 27.9 3.329 7/8/2014 30.8 3.428

77072014	30.6	3.420
10/20/2014	22.5	3.114
1/13/2015	14.8	2.695
Well Number:	MW373	
Date Collected	Result	LN(Result)
4/9/2013	63.7	4.154
7/16/2013	63.7	4.154
10/9/2013	59.9	4.093
1/14/2014	37.8	3.632
4/16/2014	43.6	3.775
7/7/2014	20.1	3.001
10/16/2014	38	3.638
1/21/2015	28.8	3.360

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Qu	ıarter Data
------------	-------------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW367	Sidegradient	Ves	60.6	NO	4 104	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Fluor Federal Services, Inc. Paducah Deactivation Project P.O. Box 369 Kevil, KY 42053 USA

July 18, 2015

Ms. Myrna Redfield Fluor Federal Services, Inc. 5511 Hobbs Road Kevil, Kentucky 42053

Dear Ms. Redfield:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over twenty years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Fluor Federal Services, Inc.

For this project, the statistical analyses conducted on the second quarter 2015 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely,

Jennifer R. Blewett

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED—QUARTERLY, 2nd CY 2015

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2015 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on April 29 and 30, 2015. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradient for both the URGA and LRGA at the C-746-U Landfill were similar (2.61×10^{-4} ft/ft). Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW125, MW139, MW165A, MW173, MW193, MW197, MW200 and MW471), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 3.25×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. The Ohio River stage was elevated during much of March and April 2015 such that RGA groundwater could not discharge to the Ohio River and the typical regional gradient was disrupted. As demonstrated on the potentiometric map for April 2015, the groundwater flow direction in the immediate area of the landfill was oriented eastward.

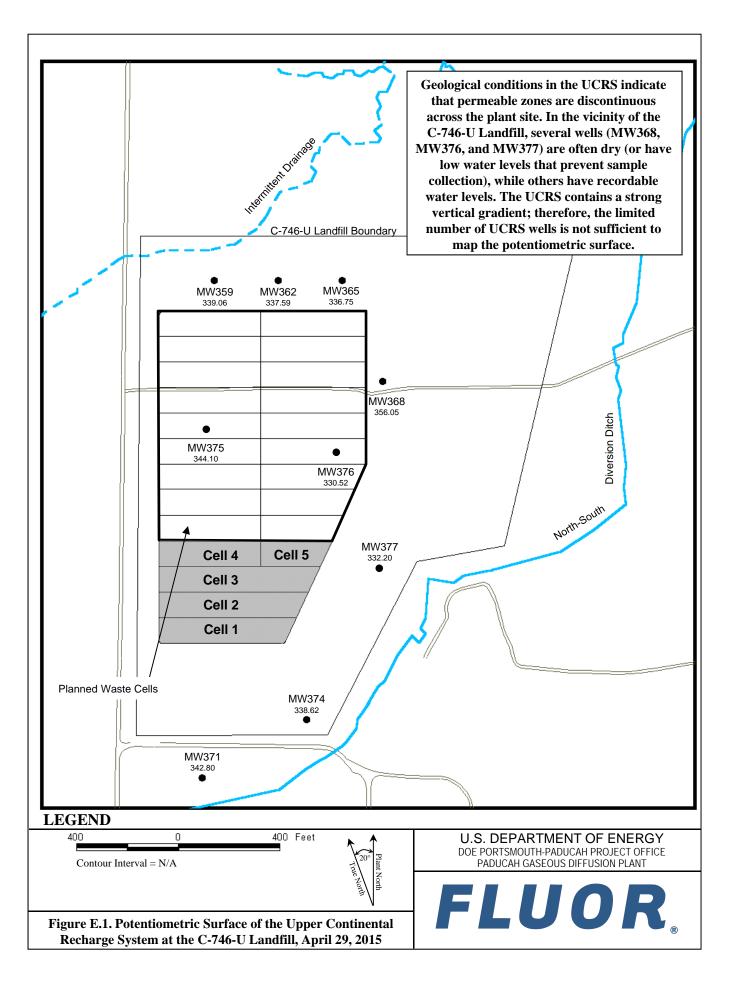


Table E.1. C-746-U Landfill Second Quarter 2015 (April) Water Levels

C-746-U Landfill (April 2015) Water Levels											
							Rav	w Data	*Corrected Data		
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev	
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)	
4/29/2015	8:59	MW357	URGA	368.99	29.92	0.00	40.40	328.59	40.40	328.59	
4/29/2015	9:02	MW358	LRGA	369.13	29.92	0.00	40.54	328.59	40.54	328.59	
4/29/2015	9:01	MW359	UCRS	369.11	29.92	0.00	30.05	339.06	30.05	339.06	
4/29/2015	8:57	MW360	URGA	362.30	29.92	0.00	33.79	328.51	33.79	328.51	
4/29/2015	8:55	MW361	LRGA	361.54	29.92	0.00	33.01	328.53	33.01	328.53	
4/29/2015	8:56	MW362	UCRS	362.04	29.92	0.00	24.45	337.59	24.45	337.59	
4/29/2015	8:45	MW363	URGA	368.83	29.92	0.00	40.38	328.45	40.38	328.45	
4/29/2015	8:43	MW364	LRGA	367.75	29.92	0.00	39.37	328.38	39.37	328.38	
4/29/2015	8:44	MW365	UCRS	368.37	29.92	0.00	31.62	336.75	31.62	336.75	
4/29/2015	8:51	MW366	URGA	369.27	29.92	0.00	40.83	328.44	40.83	328.44	
4/30/2015	9:38	MW367	LRGA	369.66	29.86	0.07	41.16	328.50	41.23	328.43	
4/29/2015	8:50	MW368	UCRS	369.27	29.92	0.00	13.22	356.05	13.22	356.05	
4/30/2015	9:30	MW369	URGA	364.48	29.86	0.07	36.02	328.46	36.09	328.39	
4/30/2015	9:32	MW370	LRGA	365.35	29.86	0.07	36.90	328.45	36.97	328.38	
4/29/2015	8:16	MW371	UCRS	364.88	29.91	0.01	22.07	342.81	22.08	342.80	
4/29/2015	8:22	MW372	URGA	359.66	29.92	0.00	31.42	328.24	31.42	328.24	
4/29/2015	8:19	MW373	LRGA	359.95	29.92	0.00	31.73	328.22	31.73	328.22	
4/29/2015	8:20	MW374	UCRS	359.71	29.92	0.00	21.09	338.62	21.09	338.62	
4/29/2015	8:31	MW375	UCRS	370.53	29.92	0.00	26.43	344.10	26.43	344.10	
4/29/2015	8:29	MW376	UCRS	370.61	29.92	0.00	40.09	330.52	40.09	330.52	
4/29/2015	8:26	MW377	UCRS	365.92	29.92	0.00	33.72	332.20	33.72	332.20	

Initial Barometric Pressure

29.92

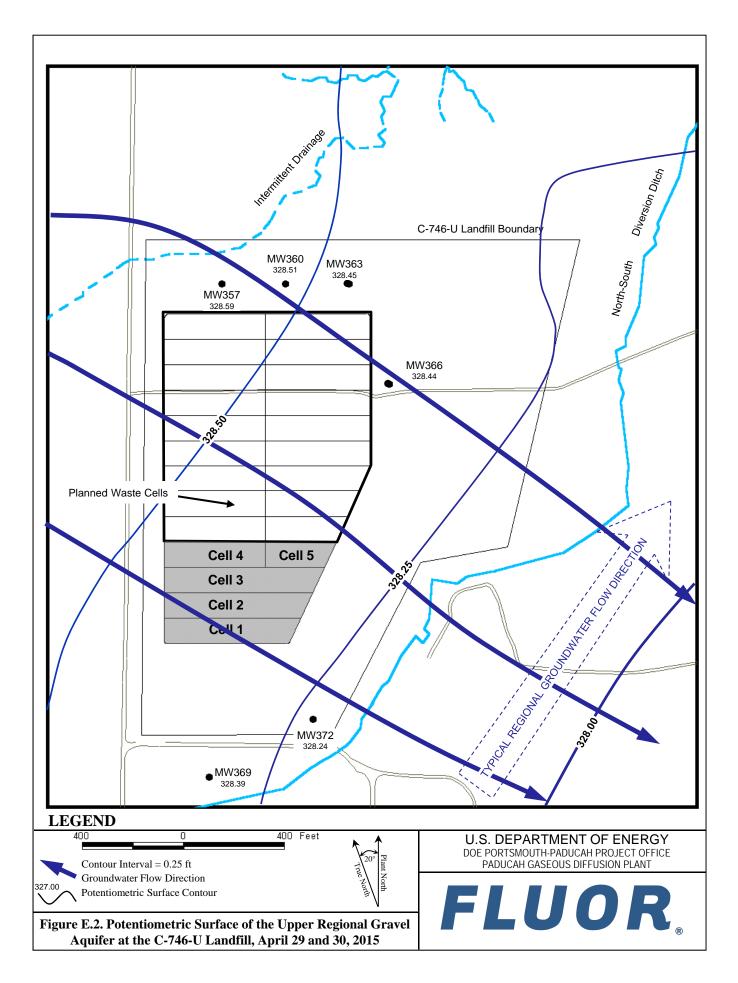
Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below

datum


URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge

System

ND = No Data acquired

*Assumes a barometric efficiency of 1.0

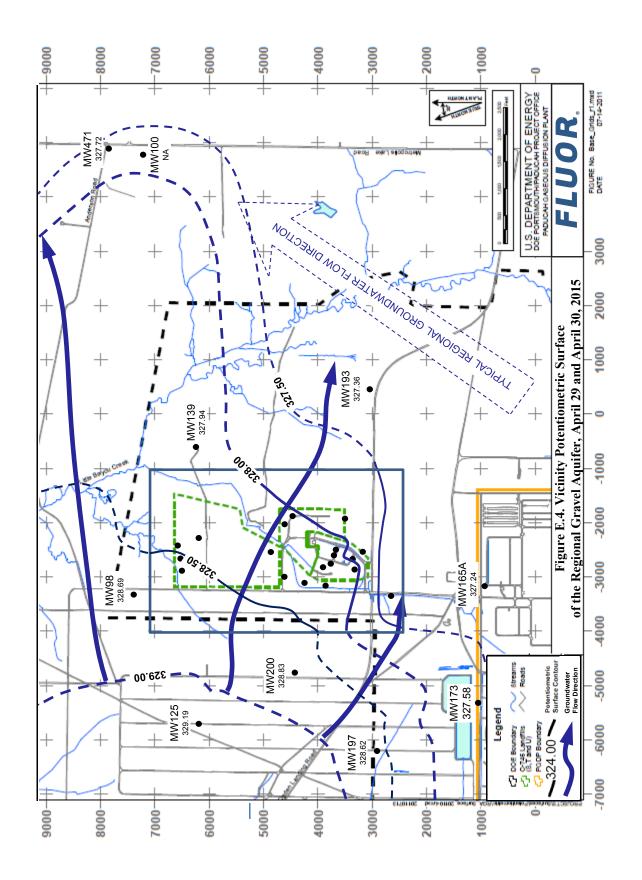
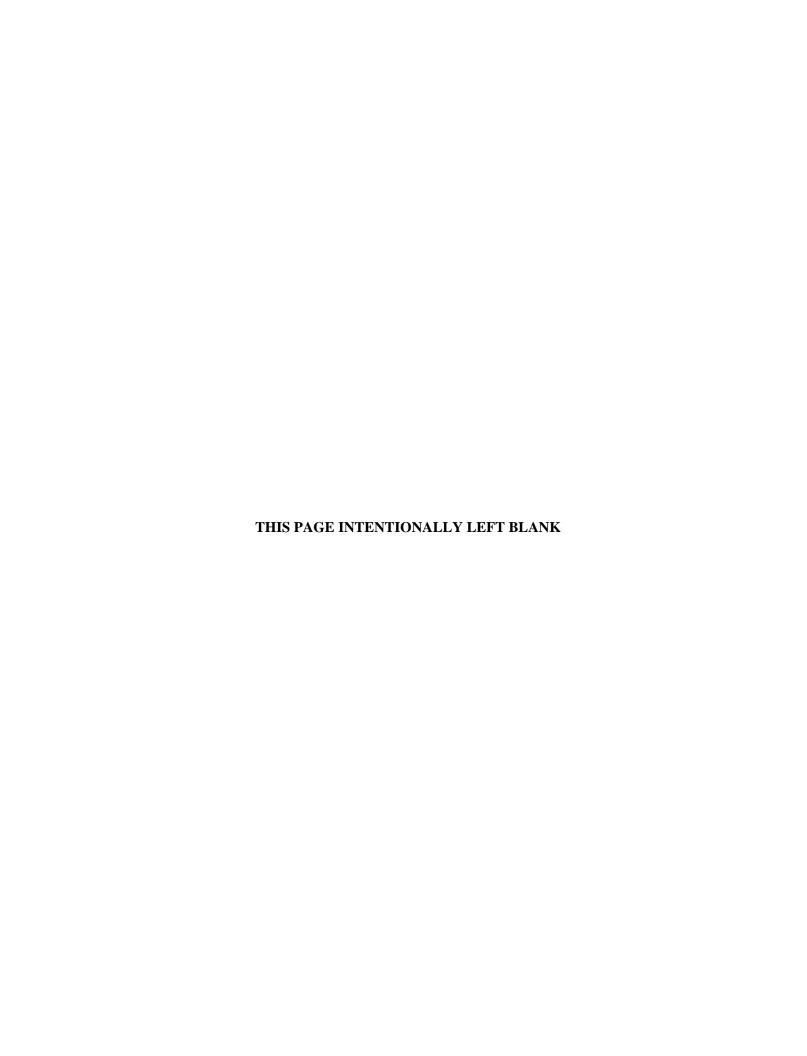



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	2.61×10^{-4}
Beneath Landfill—Lower RGA	2.61×10^{-4}
Vicinity	3.25×10^{-4}

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specifi	c Discharge (q)	Average	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.19	6.68×10^{-5}	0.76	2.67×10^{-4}
425	0.150	0.11	3.91×10^{-5}	0.44	1.56×10^{-4}
Lower RGA					
725	0.256	0.19	6.69×10^{-5}	0.76	2.67×10^{-4}
425	0.150	0.11	3.92×10^{-5}	0.44	1.57×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the second quarter 2015 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill)* at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	None	
Lower Regional Gravel Aquifer	Technetium-99	MW367

6/2/2015

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

PERMIT NUMBER 073-00045 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4799	MW358	Trichloroethene	8260B	15.8	ug/L	5
8004-0981	MW359	Trichloroethene	8260B	5.77	ug/L	5
8004-4793	MW367	Beta activity	900.0	50.5	pCi/L	50
8004-4808	MW372	Trichloroethene	8260B	8.96	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	8.61	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill

Gradient S S S S D D D U U S D D U U S D D S U	Groundwater Flow System	I		UCR	S							URG	A					LRG	A		
Monitoring Well 368 375 376 377 339 362 365 371 374 366 360 363 373 389 372 367 361 364 388 370		S	S			D	D	U	U	S	D			U	U	S	D			U	U
ACETONE																					
Ounter 3, 2002 Ounter 1, 2003 Ounter 1, 2003 Ounter 2, 2003 Ounter 3, 2004 Ounter 3, 2004 Ounter 3, 2004 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2007 Ounter 4, 2007 Ounter 4, 2008 Ounter 3, 2008 Ounter 3, 2008 Ounter 3, 2008 Ounter 3, 2008 Ounter 4, 2008 Ounter 3, 2008 Ounter 3, 2008 Ounter 3, 2008 Ounter 4, 2004 Ounter 2, 2004 Ounter 2, 2004 Ounter 3, 2009 Ounter 3, 2008 Ounter 3, 2009 Ounter 4, 2004 Ounter 3, 2006 Ounter 4, 2006 Ounter 2, 2007 Ounter 4, 2006 Ounter 2, 2007 Ounter 2, 2007 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2006 Ounter 5, 2007 Ounter 6, 2007 Ounter																					
Ounter 4, 2002 Ounter 1, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 4, 2003 Ounter 4, 2003 Ounter 4, 2003 Ounter 4, 2004 Ounter 3, 2004 Ounter 3, 2005 Ounter 4, 2006 Ounter 3, 2005 Ounter 4, 2006 Ounter 3, 2006 Ounter 4, 2006 Ounter 3, 2006 Ounter 2, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2006 Ounter 4, 2006 Ounter 2, 2006 Ounter 3, 2007 Ounter 4, 2006 Ounter 4, 2007 Ounter 4, 2009 Ounter 4, 2001 Ounter 5, 2001 Ounter 6, 2001 Ounter										*	*	*									
Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2004 Quarter 2, 2000 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2001 Quarter 5, 2001 Quarter 6, 200																					
Oustret 2, 2003																					
Quarter 3, 2003												*									
Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2004 Quarter 1, 2004 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2010 Quarter 5, 2015 Quarter 5, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 5, 2015 Quarter 6, 201		*					*			*					*			*			
Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 ALUMINUM Quarter 3, 2003 BETA ACTIVITY Quarter 2, 2004 Quarter 3, 2003 BETA ACTIVITY Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter						*								*							
Quarter 3, 2005 ALPHA ACTIVITY Quarter 1, 2004 Quarter 3, 2009 Quarter 2, 2004 Quarter 3, 2009 Quarter 1, 2004 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 4, 2001 Quarter 3, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 6, 2011 Quarter 7, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 201						*										*					
ALPHA ACTIVITY																					
ALPHA ACTIVITY																					
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2009 ALUMINUM Quarter 3, 2003 BETA ACTIVITY Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 5, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 5, 2016 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2016 Quarter 9, 2016 Quarte																					
Quarter 2, 2004 Quarter 3, 2009 ALLMINUM Quarter 3, 2003 BETA ACTIVITY Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2013 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 5, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 9, 2015 Quart																					
Quarter 3, 2009 ALUMINUM Quarter 3, 2003 BETA ACTIVITY Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2012 Quarter 4, 2013 Quarter 1, 2015 Quarter 2, 2016 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 5, 2016 Quarter 6, 2015 Quarter 7, 2015 Quarter 9, 2015 Quarte																					
ALUNINUM																					
Quarter 3, 2003 BETA ACTIVITY Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 5, 2012 Quarter 6, 2011 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE																					
Description											*										
Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015																					
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015																					
Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2015 Quarter 2, 2015	Ouarter 2, 2004																				
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 8, 2009 Quarter 9, 200		1																			
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2015		1																			
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015																					
Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 201	` .																				
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015																					
Quarter 1, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 BROMIDE	` .																				
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 BROMIDE																					
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 BROMIDE	` .																				
Quarter 2, 2008 Image: Control of the control of t																					
Quarter 3, 2008 Image: Control of the control of t																					
Quarter 4, 2008 Image: Composition of the c																					
Quarter 1, 2009 Image: Company of the company of t																					
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 BROMIDE	Quarter 2, 2009																				
Quarter 1, 2010 Image: Control of the control of t	Quarter 3, 2009																				
Quarter 2, 2010 Image: square of the content of th	Quarter 4, 2009																				
Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE	Quarter 1, 2010																				
Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE	Quarter 2, 2010																				
Quarter 2, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 4, 2015 Quarter 2, 2015 BROMIDE	Quarter 4, 2010																				
Quarter 1, 2012 Image: square of the content of th	Quarter 2, 2011																				
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE	Quarter 4, 2011																				
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE	Quarter 1, 2012																				
Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE	Quarter 3, 2012																				
Quarter 3, 2013 Image: Control of the control of t																					
Quarter 4, 2013 Image: Control of the control of t	Quarter 1, 2013																				
Quarter 1, 2014 Image: Control of the control of t	Quarter 3, 2013																				
Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 BROMIDE																					
Quarter 4, 2014 Image: Control of the control of t	Quarter 1, 2014																				
Quarter 1, 2015 Image: Control of the control of t																					
BROMIDE																					
	Quarter 2, 2015																				
Quarter 2, 2004 *	BROMIDE																				
	Quarter 2, 2004												*								

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Gradient	S											URG	r A					LRG	rΑ		
	S)	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375		377		362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM																					
Quarter 3, 2003										*											
Ouarter 2, 2005										•••											*
Quarter 3, 2006															*						<u> </u>
Quarter 2, 2008															*						┼─
															*						₩
Quarter 3, 2009	-																				₩
Quarter 4, 2009															*						↓
Quarter 1, 2010															*						—
Quarter 2, 2010															*						<u> </u>
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011																					*
Quarter 4, 2011															*						*
Quarter 1, 2012															*						*
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						+
Quarter 1, 2013															*						*
Quarter 2, 2013															*						<u>.</u>
Quarter 3, 2013															*						*
Quarter 4, 2013															*						<u> </u>
Quarter 2, 2014															*						*
Quarter 3, 2014															*						*
Quarter 4, 2014															*						<u> </u>
Quarter 2, 2015															*						
CARBON DISULFIDE																					
Quarter 3, 2003										*											
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006						*															†
Quarter 2, 2006						*															
Quarter 3, 2010		*				***					*										
Quarter 4, 2010		т									т			*							\vdash
Quarter 1, 2011														*	*						₩
` :	NID														不						_
CHEMICAL OXYGEN DEMA	IND									ala	ala.	ala	ala	ala.	ala						-
Quarter 3, 2002										*	*	*	*	*	*						—
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										<u> </u>
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003						*				*	*										
Quarter 3, 2004										*											
Quarter 3, 2005						*				*					*	*			*		1
Ouarter 4, 2005						*				-					-			*	*		1
Quarter 1, 2006						•••												***	*		+
CHLORIDE																			~		
Quarter 1, 2006																				*	
	 										<u> </u>			<u> </u>	4		<u> </u>		<u> </u>	ᅏ	\vdash
Quarter 2, 2014															*						
COBALT	Al.						ala			ala	44.		ala	-14	ala		44	ale		ale	
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	—
Quarter 1, 2004														*							Щ
CONDUCTIVITY																					
Quarter 4, 2002									\Box	*	L			L		L	L		L		\perp
Quarter 1, 2003										*											
Quarter 2, 2003										*	*										
										*											1
Ouarter 4 2003									1	*	1			1			 	 	-		+-
Quarter 4, 2003 Quarter 1, 2004										*											

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Groundwater Flow System	1			UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY																					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 1, 2005															*						
Quarter 2, 2005															*						<u>. </u>
Quarter 3, 2005						*									4			34	*		
Quarter 4, 2005 Quarter 1, 2006	-														*			*			
Quarter 1, 2006 Quarter 2, 2006															*						\vdash
Quarter 3, 2006	1														*						\vdash
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 3, 2007															*						
Quarter 4, 2007															*						
Quarter 1, 2008															*						
Quarter 2, 2008															*						
Quarter 3, 2008															*						
Quarter 4, 2008															*						<u> </u>
Quarter 1, 2009															*						<u> </u>
Quarter 2, 2009	1		ļ	ļ		ļ					ļ				*						<u> </u>
Quarter 3, 2009	1-		-	-		-					-				*						
Quarter 4, 2009 Quarter 1, 2010	1									-					*	-					
Quarter 1, 2010 Quarter 2, 2010	-														*						
Quarter 3, 2010															*						\vdash
Quarter 4, 2010	1														*						
Quarter 1, 2011															*						\vdash
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						<u> </u>
Quarter 3, 2013	1														*						<u> </u>
Quarter 4, 2013	-														*						<u> </u>
Quarter 1, 2014	-														*						-
Quarter 2, 2014 Quarter 3, 2014															*						\vdash
Quarter 4, 2014	1														*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
DISSOLVED OXYGEN																					
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*					*											
Quarter 4, 2003					*																
Quarter 1, 2004					*																
Quarter 2, 2004	<u> </u>		<u> </u>	<u> </u>		<u> </u>		*								*					<u> </u>
Quarter 1, 2005	1		ļ	ļ	*	ļ					<u> </u>										<u> </u>
Quarter 2, 2005	1				J.			*													<u> </u>
Quarter 1, 2006	1-		-	-	*	-		J.			-										
Quarter 2, 2006	1	-	 	 	*	 		*	\vdash	 	 			-		 	-	-			
Quarter 3, 2006 Quarter 4, 2006	1		1	1	*	1		不	*	-						-					\vdash
Quarter 4, 2006 Quarter 2, 2007	1				*			*	π'												$\vdash \vdash$
Quarter 3, 2007	1		 	 	*	 		*	*		 										H
Quarter 1, 2008	1				*			т	т										*		\vdash
Quarter 2, 2008	1							*	*												\vdash
Quarter 3, 2008	1							*													
Quarter 1, 2009	1						*														
Quarter 2, 2009					*			*	*												
Quarter 3, 2009						*		*	*												
								_								_					-

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Gradient	Groundwater Flow System	Π			UCR	S							URG	A					LRG	A		
DISSOLVED OXYGEN	Gradient		S	S	S		D		U	U	S	D	D	D	U	U	S	D	D	S	U	U
Quarter 2010		368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2010	DISSOLVED OXYGEN																					
Ouaner 3. 2010 Ouaner 4. 2010 Ouaner 1. 2011 Ouaner 3. 2012 Ouaner 4. 2013 Ouaner 3. 2014 Ouaner 3. 2014 Ouaner 3. 2013 Ouaner 2. 2013 Ouaner 3. 2013 Ouaner 3. 2014 Ouaner 3. 2015 Ouaner 4. 2003 Ouaner 5. 2003 Ouaner 5. 2003 Ouaner 6. 2003 Ouaner						*		*														
Quanter 4, 2010 Quanter 1, 2011 Quanter 2, 2011 Quanter 2, 2011 Quanter 3, 2011 Quanter 3, 2012 Quanter 3, 2012 Quanter 4, 2012 Quanter 4, 2012 Quanter 4, 2013 Quanter 4, 2013 Quanter 2, 2014 Quanter 3, 2013 Quanter 4, 2013 Quanter 4, 2014 Quanter 3, 2014 Quanter 3, 2014 Quanter 4, 2015 Quanter 4, 2016 Quanter 4, 2016 Quanter 4, 2017 Quanter 4, 2018 Quanter 4, 2018 Quanter 4, 2018 Quanter 4, 2019 Quanter 3, 2019 Quanter 4, 2019 Quanter 4, 2019 Quanter 4, 2019 Quanter 3, 2019 Quanter 4, 2010 Quanter 3, 2010 Quanter 3, 2010 Quanter 4, 2011 Quanter 4, 2010 Quanter 3, 2010 Quanter 3, 2010 Quanter 4, 2010 Quanter 3, 2010 Quanter 3, 2010 Quanter 3, 2010 Quanter 3, 2010 Quanter 4, 2010 Quanter 5, 2010 Quanter 6, 201	Quarter 2, 2010					*	*		*	*											*	*
Ouarier 1, 2011 Ouarier 3, 2011 Ouarier 3, 2011 Ouarier 3, 2011 Ouarier 2, 2012 Ouarier 4, 2012 Ouarier 4, 2012 Ouarier 4, 2012 Ouarier 4, 2012 Ouarier 2, 2013 Ouarier 3, 2013 Ouarier 2, 2013 Ouarier 4, 2014 Ouarier 2, 2015 DISSOUVED SOLIDS DISSOUVED SOLIDS DISSOUVED SOLIDS DISSOUVED SOLIDS Ouarier 2, 2003 Ouarier 3, 2003 Ouarier 3, 2003 Ouarier 3, 2003 Ouarier 4, 2004 Ouarier 1, 2007 Ouarier 4, 2004 Ouarier 1, 2007 Ouarier 4, 2008 Ouarier 1, 2007 Ouarier 4, 2006 Ouarier 1, 2007 Ouarier 2, 2007 Ouarier 3, 2009 Ouarier 1, 2009 Ouarier 1, 2009 Ouarier 2, 2007 Ouarier 2, 2007 Ouarier 3, 2009 Ouarier 1, 2009 Ouarier 1, 2009 Ouarier 2, 2010 Ouarier 2, 2010 Ouarier 3, 2010 Ouarier 3, 2010 Ouarier 4, 2010 Ouarier 3, 2010 Ouarier 3, 2010 Ouarier 4, 2010 Ouarier 3, 2010 Ouarier 4, 2010 Ouarier 3, 2010 Ouarier 4, 2011 Ouarier 2, 2011 Ouarier 3, 2013 Ouarier 3, 2010 Ouarier 4, 2014 Ouarier 4, 2014 Ouarier 2, 2015 DIDIDE Ouarier 4, 2015 DIDIDE Ouarier 3, 2003 ** Ouarier 4, 2003 Ouarier 3, 2004 Ouarier 4, 2004 Ouarier 4, 2004 Ouarier 5, 2004 Ouarier 5, 2004 Ouarier 6, 2004	Quarter 3, 2010					*	*															
Ounter 2, 2011 Ounter 1, 2012 Ounter 2, 2012 Ounter 2, 2012 Ounter 3, 2012 Ounter 3, 2012 Ounter 2, 2012 Ounter 3, 2012 Ounter 2, 2012 Ounter 2, 2012 Ounter 2, 2013 Ounter 2, 2014 ** ** ** ** Ounter 2, 2014 Ounter 2, 2015 Ounter 2, 2003 Ounter 2, 2004 Ounter 2, 2005 Ounter 2, 2006 Ounter 2, 2007 Ounter 2, 2007 Ounter 2, 2009 Ounter 2, 2001 Ounter 3, 2000 Ounter 3, 2000	Quarter 4, 2010							*					*								*	
Ounter 3, 2011 Ounter 2, 2012 Ounter 2, 2012 Ounter 4, 2013 Ounter 2, 2014 Ounter 4, 2014 Ounter 5, 2015 Ounter 5, 2015 Ounter 6, 2015 Ounter 7, 2005 Ounter 7, 2005 Ounter 7, 2006 Ounter 1, 2007 Ounter 4, 2008 Ounter 1, 2009 Ounter 2, 2009 Ounter 1, 2009 Ounter 2, 2009 Ounter 1, 2009 Ounter 2, 2009 Ounter 1, 2001 Ounter 2, 2001 Ounter 3, 2001 Ounter 4, 2001 Ounter 4, 2001 Ounter 2, 2001 Ounter 2, 2001 Ounter 3, 2001 Ounter 4, 2001 Ounter 4, 2001 Ounter 6, 2011 Ounter	Quarter 1, 2011						*															
Quarter 1, 2012	Quarter 2, 2011					*	*	*	*	*					*							
Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2014 Quarter 4, 2015 DISSOLVED SOLIDS Quarter 1, 2003 Quarter 2, 2000 Quarter 1, 2003 Quarter 2, 2000 Quarter 1, 2003 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2007 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2001 Quarter 5, 2001 Quarter 6, 2001 Quarter 6, 2001 Quarter 7, 2001 Quarter 7, 2001 Quarter 8, 2001 Quarter 9, 2003 ** Quarter 4, 2003 Quarter 8, 2003 Quarter 9, 2003 Quarter 9, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *	Quarter 3, 2011						*			*												
Quarter 2, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 200								*		*												
Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 * * * * * * * * * * * * * * * * * * *	Quarter 2, 2012	*			*	*	*		*	*												
Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2014 Quarter 4, 2015 DISSOLVED SOLIDS DISSOLVED SOLIDS Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2009 Quarter 1, 2003 Quarter 2, 2009 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 1, 2000 Quarter 3, 2000 Quarter 1, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2011 Quarter 2, 2010 Quarter 4, 2011 Quarter 2, 2010 Quarter 4, 2011 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2							*															
Ouater 1, 2013	,									*												
Quarter 2, 2013							*			*												
Quarter 3, 2013							-	*														
Quarter 4, 2013		*				*			*													
Quarter 2, 2014 * * * * * * * * Quarter 3, 2014 *		+**							***												*	
Quarter 3, 2014 * * * Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 *		*				*	*	*	*										*			
Quarter 4, 2014			1		1				-				1	1	1			1	-	1		
Dissolved Solids	,	+**				45		-		 											 	\vdash
DISSOLVED SOLIDS		1-				*		*	*	 											 	\vdash
Quarter 4, 2002	,					不	*	*	*													
Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2010 Quarter 1, 2012 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 1, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2016 Quarter 5, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 4, 2000 Quarter 6, 2000 Quarter 7, 200											*											
Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 3, 2015 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2014 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 5, 2012 Quarter 6, 2012 Quarter 7, 2013 Quarter 7, 2014 Quarter 7, 2015 IODINE IODINE IODINE IODINEI3		1								-											 	<u> </u>
Quarter 3, 2003 * * * * * Quarter 4, 2003 Quarter 4, 2006 * * Quarter 1, 2007 Quarter 1, 2007 * * Quarter 1, 2007 Quarter 1, 2007 * * Quarter 2, 2007 * * Quarter 2, 2009 * * Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 3, 2010 * * * * * Quarter 3, 2010 * * * * * * * * * * * * * * * * * * *		-																				
Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2001 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2003 Quarter 4, 2001 Quarter 4, 2001 Quarter 2, 2015 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2003 W* W* W* W* W* W* W* W* W* W		 																				<u> </u>
Quarter 3, 2005 * -		<u> </u>						*				*										
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 5, 2012 Quarter 6, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 8, 2012 Quarter 9, 2012 Quarter 9, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2003 Quarter 7, 2003 Quarter 7, 2000 Quarter 7, 2000 Quarter 7, 2010 Quarter 7, 2000 Quarter 7, 2010 Quarter 7, 201		<u> </u>									*											<u> </u>
Quarter 1, 2007							*															
Quarter 2, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 5, 2012 Quarter 6, 2012 Quarter 7, 2013 Quarter 7, 2014 Quarter 7, 2014 Quarter 1, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2000 Quarter 4, 200																						
Quarter 4, 2008 * * Quarter 1, 2009 * * Quarter 2, 2009 * * Quarter 3, 2009 * * Quarter 4, 2009 * * Quarter 1, 2010 * * Quarter 2, 2010 * * Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 4, 2010 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 4, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 4, 2012 * * Quarter 4, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 4, 2014 * * Quarter 2, 2014 * * Quarter 3, 2003 * * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																*						
Quarter 1, 2009 # Quarter 2, 2009 # Quarter 4, 2009 # Quarter 1, 2010 # Quarter 2, 2010 # Quarter 3, 2010 # Quarter 3, 2010 # Quarter 4, 2010 # Quarter 1, 2011 # Quarter 2, 2011 # Quarter 3, 2011 # Quarter 4, 2011 # Quarter 4, 2011 # Quarter 4, 2012 # Quarter 3, 2012 # Quarter 4, 2012 # Quarter 4, 2012 # Quarter 4, 2013 # Quarter 1, 2014 # Quarter 1, 2014 # Quarter 2, 2015 # IODIDE # Quarter 3, 2010 # Quarter 3, 2000 # Quarter 3, 20010 #																*						
Quarter 2, 2009 ** Quarter 3, 2009 ** Quarter 4, 2009 ** Quarter 1, 2010 ** Quarter 2, 2010 ** Quarter 3, 2010 ** Quarter 4, 2010 ** Quarter 4, 2011 ** Quarter 2, 2011 ** Quarter 3, 2011 ** Quarter 4, 2011 ** Quarter 4, 2012 ** Quarter 2, 2012 ** Quarter 3, 2012 ** Quarter 4, 2012 ** Quarter 4, 2013 ** Quarter 2, 2013 ** Quarter 3, 2013 ** Quarter 4, 2013 ** Quarter 4, 2014 ** Quarter 2, 2015 ** Quarter 2, 2015 ** Quarter 2, 2005 ** IODIDE ** Quarter 3, 2000 ** Quarter 3, 2010 ** IODINE-131 **	Quarter 4, 2008															*						
Quarter 3, 2009 ** Quarter 1, 2010 ** Quarter 2, 2010 ** Quarter 3, 2010 ** Quarter 3, 2010 ** Quarter 4, 2010 ** Quarter 1, 2011 ** Quarter 2, 2011 ** Quarter 3, 2011 ** Quarter 4, 2011 ** Quarter 1, 2012 ** Quarter 1, 2012 ** Quarter 2, 2012 ** Quarter 3, 2012 ** Quarter 4, 2012 ** Quarter 1, 2013 ** Quarter 2, 2013 ** Quarter 3, 2013 ** Quarter 4, 2013 ** Quarter 1, 2014 ** Quarter 2, 2014 ** Quarter 4, 2014 ** Quarter 2, 2015 ** IODIDE ** Quarter 3, 2003 ** Quarter 3, 2010 **																*						
Quarter 3, 2009 ** Quarter 1, 2010 ** Quarter 2, 2010 ** Quarter 3, 2010 ** Quarter 3, 2010 ** Quarter 4, 2010 ** Quarter 1, 2011 ** Quarter 2, 2011 ** Quarter 3, 2011 ** Quarter 4, 2011 ** Quarter 1, 2012 ** Quarter 1, 2012 ** Quarter 2, 2012 ** Quarter 3, 2012 ** Quarter 4, 2012 ** Quarter 1, 2013 ** Quarter 2, 2013 ** Quarter 3, 2013 ** Quarter 4, 2013 ** Quarter 1, 2014 ** Quarter 2, 2014 ** Quarter 4, 2014 ** Quarter 2, 2015 ** IODIDE ** Quarter 3, 2003 ** Quarter 3, 2010 **	Quarter 2, 2009															*						
Quarter 1, 2010 ** Quarter 2, 2010 ** Quarter 3, 2010 ** Quarter 4, 2010 ** Quarter 1, 2011 ** Quarter 2, 2011 ** Quarter 3, 2011 ** Quarter 4, 2011 ** Quarter 4, 2012 ** Quarter 2, 2012 ** Quarter 3, 2012 ** Quarter 4, 2012 ** Quarter 1, 2013 ** Quarter 2, 2013 ** Quarter 4, 2013 ** Quarter 4, 2014 ** Quarter 2, 2014 ** Quarter 2, 2015 ** IODIDE ** Quarter 3, 2010 ** Quarter 3, 2010 **																*						
Quarter 2, 2010 * * Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 4, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 4, 2013 * * Quarter 4, 2014 * * Quarter 2, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 4, 2003 * * Quarter 3, 2010 * * Quarter 4, 2003 * * Quarter 3, 2010 * *	Quarter 4, 2009															*						
Quarter 2, 2010 * * Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 4, 2014 * * Quarter 4, 2014 * * Quarter 2, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 3, 2003 * * Quarter 3, 2010 * * Quarter 3, 2010 * *	Quarter 1, 2010															*						
Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * *	Quarter 2, 2010															*						
Quarter 4, 2010 # Quarter 1, 2011 # Quarter 2, 2011 # Quarter 3, 2011 # Quarter 4, 2011 # Quarter 1, 2012 # Quarter 2, 2012 # Quarter 3, 2012 # Quarter 4, 2012 # Quarter 1, 2013 # Quarter 2, 2013 # Quarter 3, 2013 # Quarter 4, 2013 # Quarter 4, 2014 # Quarter 2, 2014 # Quarter 4, 2014 # Quarter 2, 2015 # IODIDE # Quarter 3, 2003 # Quarter 4, 2003 # Quarter 3, 2010 #																*						
Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 4, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 3, 2003 * * Quarter 3, 2010 * * IODINE-131 * *	,															*						
Quarter 2, 2011 # Quarter 3, 2011 # Quarter 4, 2011 # Quarter 1, 2012 # Quarter 2, 2012 # Quarter 3, 2012 # Quarter 4, 2012 # Quarter 4, 2013 # Quarter 2, 2013 # Quarter 3, 2013 # Quarter 4, 2013 # Quarter 1, 2014 # Quarter 2, 2014 # Quarter 4, 2014 # Quarter 2, 2015 # IODIDE # Quarter 3, 2003 # Quarter 4, 2003 # Quarter 3, 2010 # Warter 3, 2010 # Warter 3, 2010 #																						
Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *																						
Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *		t								H												\vdash
Quarter 1, 2012 ** ** Quarter 2, 2012 ** ** Quarter 3, 2012 ** * Quarter 4, 2012 ** * Quarter 1, 2013 ** * Quarter 2, 2013 ** * Quarter 3, 2013 ** * Quarter 4, 2013 ** * Quarter 1, 2014 ** * Quarter 2, 2014 ** * Quarter 4, 2014 ** * Quarter 2, 2015 ** * IODIDE ** * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 ** * IODINE-131 ** *		1																				
Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *		1-								 					*						 	\vdash
Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131		1-								 					т .						 	*
Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 2, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *		1	1		1			1		1			1	1	1			1		1	 	*
Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *		1-								 											-	Ψ.
Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *		1-								 											-	┢
Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *		1								-											 	<u> </u>
Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * IODIDE * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *	,	1								1											 	
Quarter 1, 2014 # Quarter 2, 2014 # Quarter 4, 2014 # Quarter 2, 2015 # IODIDE * Quarter 2, 2003 # Quarter 3, 2003 # Quarter 4, 2003 # Quarter 3, 2010 # IODINE-131 #		╀—	<u> </u>		<u> </u>			<u> </u>	<u> </u>	-		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	 	
Quarter 2, 2014 # Quarter 4, 2014 # Quarter 2, 2015 # IODIDE # Quarter 2, 2003 # Quarter 3, 2003 # Quarter 4, 2003 # Quarter 3, 2010 # IODINE-131 #		1	<u> </u>		<u> </u>			<u> </u>					<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>	Ь—	<u> </u>
Quarter 4, 2014 * * * Quarter 2, 2015 * * * IODIDE * * * Quarter 2, 2003 * * * Quarter 3, 2003 * * * Quarter 4, 2003 * * * Quarter 3, 2010 * * * IODINE-131 * * *		1	 		 			 		 			 	 	 			 		 	<u> </u>	—
Quarter 2, 2015 * IODIDE * Quarter 2, 2003 * Quarter 3, 2003 * Quarter 4, 2003 * Quarter 3, 2010 * IODINE-131 *		1-																			<u> </u>	₩
IODIDE Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * Quarter 3, 2010 * * * IODINE-131 * * *	,	1																			<u> </u>	Ь—
Quarter 2, 2003 * * * * Quarter 3, 2003 * * * * * * Quarter 4, 2003 *																*						
Quarter 3, 2003 * Quarter 4, 2003 * Quarter 3, 2010 * *																						
Quarter 4, 2003 * Quarter 3, 2010 * * * * *																	*				<u> </u>	
Quarter 3, 2010		*									*											
IODINE-131	Quarter 4, 2003	\mathbb{L}^{-}	\Box		L			*		LT			\Box	L	L			L		L		L
IODINE-131	Quarter 3, 2010						*		*					*				*				

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System				UCR	S							URG	SA					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368		376			362	365	371					357		372		361				
IODOMETHANE																					
Quarter 4, 2003						*															
IRON																					
Quarter 4, 2002						*															
Quarter 3, 2003																*					
Quarter 4, 2003										*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005															*						*
Quarter 3, 2005						*															*
Quarter 2, 2006															*						*
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2008															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009	ĺ														*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 2, 2014															*						
Quarter 4, 2014															*						
Quarter 2, 2015															*						
MANGANESE																					
Quarter 3, 2002										*		*									
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2003										*		*									
Quarter 3, 2003										*		*	*			*	*	*	*		<u> </u>
Quarter 4, 2003										*	*	*	*					*			
Quarter 1, 2004										*	*	*				*	*	*			<u> </u>
Quarter 2, 2004							*			*	*	*						*			
Quarter 3, 2004							*			*	*	*				*					
Quarter 4, 2004										*		*				*					
Quarter 1, 2005										*		*									<u> </u>
Quarter 2, 2005										*		*									
Quarter 3, 2005										*		*				*					<u> </u>
Quarter 4, 2005										*						*					
Quarter 1, 2006										*											<u> </u>
Quarter 2, 2006							*			*		*									
Quarter 3, 2006	1								ļ	*		ļ				*		<u> </u>			<u> </u>
Quarter 4, 2006	1	<u> </u>	<u> </u>	<u> </u>					<u> </u>	*		<u> </u>				<u> </u>		<u> </u>		<u> </u>	Щ
Quarter 1, 2007	1								ļ	*		ļ				<u> </u>		<u> </u>			<u> </u>
Quarter 2, 2007	1	ļ	ļ	ļ			*		ļ	*		ļ						<u> </u>		ļ	
Quarter 3, 2007	1		<u> </u>	<u> </u>			*		<u> </u>			<u> </u>						<u> </u>		<u> </u>	<u> </u>
Quarter 3, 2008	1		<u> </u>	<u> </u>			*		<u> </u>			<u> </u>						<u> </u>		<u> </u>	₩
Quarter 4, 2008	1	ļ	ļ	ļ			*		ļ			ļ						<u> </u>		ļ	
Quarter 3, 2009	1	ļ	ļ	ļ			*		ļ			ļ						<u> </u>		ļ	<u> </u>
Quarter 3, 2011							*									$oldsymbol{ol}}}}}}}}}}}}}}}}}$		<u> </u>			

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
NICKEL																					
Quarter 3, 2003										*											
OXIDATION-REDUCTION PO	OTEN	NTIA	L																		
Quarter 4, 2002																	*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004													*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006					*			*	*								*				*
Quarter 2, 2006					*		*	*					*				*			*	
Quarter 3, 2006					*			*					*				*			*	
Quarter 4, 2006					*		*			*		*	*				*			*	*
Quarter 1, 2007		*			*			*					*				*			*	*
Quarter 2, 2007					*								*				*			*	*
Quarter 3, 2007					*			*									*			*	
Quarter 4, 2007																	*			*	*
Quarter 1, 2008					*			*				*	*						*	*	
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011						*		*		*	*	*	*	*		*	*	*	*	*	
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*			-	*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2012 Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*		71		*		*	***	*	71	*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2012 Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*	т.	*	-
Quarter 1, 2013 Quarter 2, 2013	1	*				ボ	 	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2013 Quarter 3, 2013	*	*	-	-	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	~	*	-	-	不	*	<u> </u>	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013	 	*	-	-		ᅏ	<u> </u>	*	*	*	*	*	*	*	*	*	*		*	*	*
Quarter 1, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*				*		*		*	*	不	*		*	*	*		*		*	*
Quarter 3, 2014	木	*			木	*	木	*					*				*		*		
Quarter 4, 2014	.	*				*		*	*	*	طو	*	*	*	مدر	*	*	*	*	*	*
Quarter 1, 2015	110	*			مار	*	110	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
PCB, TOTAL																	111				
Quarter 4, 2003		<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>			<u> </u>	4.	<u> </u>	<u> </u>	<u> </u>		*	<u> </u>	<u> </u>	$ldsymbol{ldsymbol{\sqcup}}$	├ ─
Quarter 3, 2004	.									.		*						 		igspace	₽
Quarter 3, 2005		<u> </u>					*	<u> </u>					<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	↓
Quarter 2, 2006	<u> </u>	ļ					*	ļ		<u> </u>			ļ	ļ	ļ		ļ	ļ	ļ		Ь—
Quarter 3, 2006							*														<u> </u>
Quarter 1, 2007							*														<u> </u>
Quarter 2, 2007							*														
Quarter 3, 2007							*														
							*														
Quarter 1, 2008							***														
Quarter 1, 2008 Quarter 2, 2008							*														

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
PCB, TOTAL																					
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004 Quarter 2, 2006							*					*									
Quarter 1, 2007	-						*					不									
Quarter 1, 2007 Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 3, 2007 Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242																					
Quarter 3, 2006							*					*									
Quarter 4, 2006										*											
Quarter 1, 2008							*														
Quarter 2, 2012							*														
PCB-1248																					
Quarter 2, 2008							*														
PCB-1260																					
Quarter 2, 2006							*														
pН																					
Quarter 3, 2002										*											
Quarter 4, 2002										*											igsquare
Quarter 1, 2003										*											
Quarter 2, 2003	L									*											
Quarter 3, 2003	*						*			*						484					
Quarter 4, 2003							*									*					
Quarter 1, 2004						.	*									*		.	<u>.</u>		
Quarter 3, 2005						*												*	*		
Quarter 4, 2005						不										*			不		
Quarter 3, 2006 Quarter 2, 2011														*		*					
Quarter 3, 2011														*							
Quarter 4, 2011														*							
Quarter 1, 2011		 	 	 			 	 			 		 			*	*	 	 	 	\vdash
Quarter 1, 2012 Quarter 2, 2012	1											*				'''					
Quarter 1, 2013										*		*				*					
POTASSIUM																					
Quarter 1, 2014																*					
RADIUM-228																					
Quarter 2, 2005																					
Quarter 4, 2005																					
SELENIUM																					
Quarter 4, 2003																					
SODIUM																					
Quarter 3, 2002										*	*		*								
Quarter 4, 2002		ļ	ļ	ļ			ļ	ļ		*	*		ļ	*				ļ	ļ	ļ	
Quarter 1, 2003										*	<u> </u>										
Quarter 2, 2003		<u> </u>		<u> </u>			<u> </u>	<u> </u>		*	*		<u> </u>						<u> </u>		
Quarter 3, 2003	!										*										<u> </u>
Quarter 1, 2007	<u> </u>	ļ	ļ	ļ			ļ	ļ			*		ļ	şi.				ļ	ļ	ļ	<u> </u>
Quarter 1, 2012	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>			<u> </u>		<u> </u>	*	.			<u> </u>	<u> </u>	<u> </u>	
Quarter 1, 2014	_	-	-	-			-	-			40		-		*			-	-	-	_
Quarter 3, 2014	1	-		-			-	-			*		-			-			-		\vdash
Quarter 4, 2014											*					_					_

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375		377	359		365	371		366	360		357		372	367	361		358	370	
STRONTIUM-90																					
Quarter 4, 2008																					
SULFATE																					
Quarter 1, 2003							*														
Quarter 2, 2003	ala					*	*														
Quarter 3, 2003	*				40	*	- N														
Quarter 4, 2003 Quarter 1, 2004	_				*	*	*														—
Quarter 1, 2004 Quarter 2, 2004					*	*	*														
Quarter 3, 2004 Quarter 3, 2004					*	*	*														
Quarter 1, 2005	+				*	*			*												
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005															*						
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007	+	-	<u> </u>	<u> </u>			*	<u> </u>	<u> </u>		<u> </u>	-		-				-			\vdash
Quarter 3, 2007	+	مدو	<u> </u>	<u> </u>			*	<u> </u>	<u> </u>		<u> </u>	-		-				-			\vdash
Quarter 4, 2007	_	*			*		*		*												—
Quarter 1, 2008 Quarter 2, 2008	+	*	-	-	*	*	*	-	不		-										
Quarter 2, 2008 Quarter 3, 2008	+	*	-	-	*	*	*	 	 		 										\vdash
Quarter 4, 2008		*				*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*									*						
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010		*			*	*	*								*						
Quarter 3, 2010		*			*	*	*								*						
Quarter 4, 2010		*				*	*								*						
Quarter 1, 2011		*			414		ala.								ala.						
Quarter 2, 2011		*			*	*	*	44							*						
Quarter 3, 2011		*				*	*	*							*						
Quarter 4, 2011 Quarter 1, 2012	-	*				不	*	*							*						
Quarter 1, 2012 Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 2, 2012 Quarter 3, 2012	-	*		· *	~	*	т.		*						*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*													*						
Quarter 3, 2013	*	*		*	*	*	*								*						
Quarter 4, 2013		*													*						
Quarter 1, 2014		*													*						
Quarter 2, 2014	*	*			*		*	*							*						
Quarter 3, 2014	*	*	<u> </u>	<u> </u>	*	*	*	*					<u> </u>		*						
Quarter 4, 2014	\perp	*				*		ļ	ļ												\vdash
Quarter 1, 2015	4	*	<u> </u>	<u> </u>	Ψ.		4	<u> </u>	<u> </u>		 	-		-	.			-			\vdash
Quarter 2, 2015 TECHNETIUM-99	*	*			*		*								*						
Quarter 4, 2002																	*	*	*		
Quarter 4, 2002 Quarter 2, 2003	-						*	1	1				*			*	*	*	*		*
Quarter 3, 2003	1		1	1			<u> </u>				1					- "	*	711	-,-		-11-
Quarter 4, 2003								 									*				*
Quarter 1, 2004	1														*		*				*
Quarter 2, 2004															*						*
Quarter 3, 2004								Ì	Ì						*						*
Quarter 4, 2004															*		*				*
Quarter 3, 2005																	*				
Quarter 1, 2006															*						*
Quarter 2, 2006		*	<u> </u>	<u> </u>		<u> </u>			*		<u> </u>		<u> </u>								*
Quarter 3, 2006		<u> </u>	L	L		<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>				*

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TECHNETIUM-99																					
Quarter 4, 2006															*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007															*		*	*			
Quarter 4, 2007										*					*				*		*
Quarter 1, 2008															*					*	*
Quarter 2, 2008							*	*						*		*			*		
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010																		*			
Quarter 1, 2011		*								*							*				
Quarter 2, 2011																*	*	*	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012								*										*			
Quarter 3, 2012																	*	*			
Quarter 4, 2012															*			*			*
Quarter 1, 2013																		*			*
Quarter 2, 2013																					*
Quarter 3, 2013										*											*
Quarter 4, 2013															*		*	*			*
Quarter 1, 2014															*		*	*			
Quarter 2, 2014																	-11	*			
Quarter 3, 2014																	*	*	*		
Quarter 4, 2014															*		-11		***		
Quarter 1, 2015															*			*			
Quarter 2, 2015															-	*		4.			
TOLUENE																7					
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON										-				*							
Quarter 3, 2002		Π								*	*	*		*							*
Quarter 4, 2002										*	*	т		*							_
Quarter 1, 2003										*	*			т.						\vdash	
Quarter 3, 2003	*									*	*					*				\vdash	
	T									*	*					•				\vdash	
Quarter 4, 2003										*	*									-	
Quarter 1, 2004						*				*	*				*	*			*	-	
Quarter 3, 2005						*				*					不	不		*	*	-	<u> </u>
Quarter 4, 2005						*												木	*	$\vdash \vdash \vdash$	-
Quarter 1, 2006																			ボ		
TOTAL ORGANIC HALIDES		1								-11-											
Quarter 4, 2002		<u> </u>	<u> </u>	<u> </u>						*	<u> </u>		<u> </u>				<u> </u>	<u> </u>		$\vdash \vdash$	├—
Quarter 1, 2003		 	 	 						*	 		 				 	 		ш	<u> </u>
Quarter 2, 2003		 	 	 						*	 		 			40.	 	 		ш	<u> </u>
Quarter 1, 2004																*					
TRICHLOROETHENE																					
Quarter 3, 2002		<u> </u>	<u> </u>	<u> </u>							<u> </u>		<u> </u>				<u> </u>	<u> </u>			<u> </u>
Quarter 4, 2002		<u> </u>	<u> </u>	<u> </u>							<u> </u>		<u> </u>				<u> </u>	<u> </u>			<u> </u>
Quarter 1, 2003		<u> </u>	<u> </u>	<u> </u>							<u> </u>		<u> </u>		L		<u> </u>	<u> </u>			
Quarter 2, 2003		ļ	ļ	ļ							ļ		ļ				ļ	ļ			
Quarter 3, 2003																					
Quarter 4, 2003																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					
																					_

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-U\ Contained\ Landfill\ (Continued)$

Groundwater Flow System	1			UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364		370	373
TRICHLOROETHENE																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																				┢═╌	
Quarter 1, 2007	1																				
Quarter 1, 2007 Quarter 2, 2007	1																				
Quarter 3, 2007	1																			\vdash	
Quarter 4, 2007	1																				
Quarter 1, 2008	-																			\vdash	
Quarter 1, 2008 Quarter 2, 2008	-																			\vdash	
	-																			\vdash	
Quarter 3, 2008																				╁	
Quarter 4, 2008	-																			\vdash	
Quarter 1, 2009	-																			<u> </u>	
Quarter 2, 2009	1																				
Quarter 3, 2009							L_						_							<u> </u>	
Quarter 4, 2009																				<u> </u>	
Quarter 1, 2010																				<u> </u>	
Quarter 2, 2010																				<u> </u>	
Quarter 3, 2010																				<u> </u>	
Quarter 4, 2010																				L	
Quarter 2, 2011																				<u> </u>	
Quarter 3, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																				L'	
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013																					
Quarter 2, 2013																					
Quarter 3, 2013																					
Quarter 4, 2013																					
Quarter 1, 2014																					
Quarter 2, 2014																					
Quarter 3, 2014																					
Quarter 4, 2014	1																			Г	
Quarter 1, 2015	1															l					
Quarter 2, 2015																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2002 Quarter 4, 2006	1		-			-		-	1							- "	-			- 	*
ZINC																					<u> </u>
Quarter 3, 2005																			*		
* Statistical test results indicate an elev	rated ac-	contro	tion G	0.040	tietiee1	AV COC	danco	l	<u> </u>		l	i .		1	l		l	l	т.		-
■ MCL Exceedance	aica col	icciiud	(1.0	o., a sta	asucal	CALCE	aante).														-
UCRS Upper Continental Recharge Sys	tom																				
OCKS Opper Conunental Recharge Sys	CIII																				

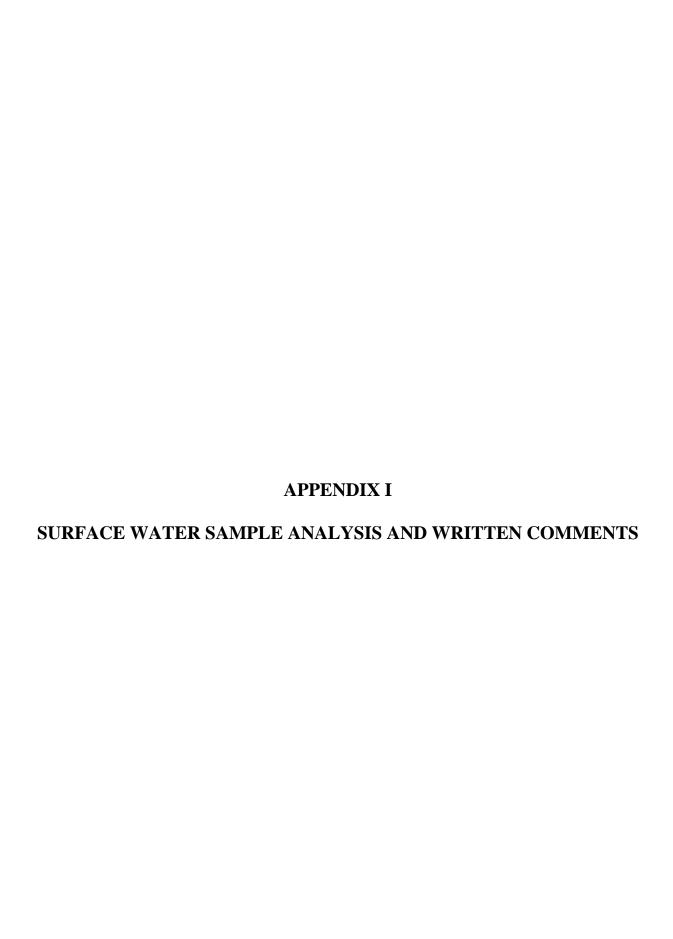
UCRS Upper Continental Recharge Syste URGA Upper Regional Gravel Aquifer LRGA Lower Regional Gravel Aquifer

APPENDIX H METHANE MONITORING DATA

C-746-U LANDFILL METHANE LOG

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>


McCracken County, Kentucky

Date: <u>June 04, 2015</u>

Time	Location	% LEL of Methane Reading	Remarks	Weather Conditions
09:00	C-746-U1	0	checked at floor level	inside office
	C-746-U2	0	checked at floor level	inside shop
	C-746-U-T-14	0	checked at floor level	inside trailer
	C-746-U15	0	checked at floor level	inside building
	MG1	0	dry casing	
	MG2	0	dry casing	Junta 24.3°
	MG3	0	dry casing	a with the same of
10:20	MG4	0	dry casing	Surv
N/A	Suspect or Problem Areas	N/A	No problems noted	N/A
			115	
	·	18	6/04/15	
		1		

Lammer Smith
Signature

Division of Waste Management

Solid Waste Branch

14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant RESIDENTIAL/CONTAINED-QUARTERLY

Permit Number: 073-00045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1 For Official Use Only None LAB ID:

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Poir	Monitoring Point (KPDES Discharge Number, or "UPSTREAM"	PSTREAM", or "]	, or "DOWNSTREAM")	L150 AT SITE		L154 UPSTREAM	L351 DOWNSTREAM	M.		
Sample Sequence	# 0			1		1	1			
If sample is a	Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment	[)rip, (M)etho	d, or (E)quipment	Ν		NA	NA			
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)	inutes)		4/14/2015 08:28		4/14/2015 08:40	4/14/2015 07:56			
Duplicate ("Y" or	or "N") ¹			Z		Z	z		/	
Split ('Y' or	"N") ²			Z		Z	z			
Facility Sample	e ID Number (if applicable)			L150US3-15		L154US3-15	L351US3-15			
Laboratory Sample	ple ID Number (if applicable)			371075001		371075002	371075003		_	
Date of Analys	Date of Analysis (Month/Day/Year)			5/6/2015		5/6/2015	5/6/2015			
CAS RN ³	CONSTITUENT	T Unit D OF 4 MEASURE	метнор	DETECTED VALUE OR	ጉር	DETECTED F VALUE L OR A	DETECTED F VALUE L OR A		DETECTED VALUE OR	FIE
				PQL	מ מ	PQL G	PQL ² G		PQI/°	₇ ຜ
A200-00-0	0 Flow	T	Field	0.08		6.3	5.17		$ \cdot $	
16887-00-6	2 Chloride(s)	T mg/L	300.0	0.353		0.552	0.551		\setminus	
14808-79-8	0 Sulfate	T mg/L	300.0	6.27		1.76	2.16		\ /	
7439-89-6	0 Iron	T mg/L	200.8	1.4		2.11	2.66			
7440-23-5	0 sodium	T mg/L	200.8	1.08		1.17	1.2			
s0268	0 Organic Carbon ⁶	T mg/L	9060	9		9.6	9.2			
	0 BOD ⁶	T mg/L	not applicable	-	*	*	*			
80130	0 Chemical Oxygen Demand	T mg/L	410.4	29.4		60.2	44.8	/		

Respond "Y" if the sample was a duplicate of another sample in this report

blank = Analyte found in J = Estimated Value ф

A = Average value N = Presumptive ID D = Concentration from analysis of a secondary dilution factor

^{&#}x27;Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{4&}quot;T" = Total; "D" = Dissolved

Pacility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required 5"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

 $\mathtt{Facility}\colon \mathtt{US}\ \mathtt{DOE}\ \mathtt{-}\ \mathtt{Paducah}\ \mathtt{Gaseous}\ \mathtt{Diffusion}\ \mathtt{Plant}$

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For official Use Only

SAMPLE ANALYSIS - (Cont.) SURFACE WATER

Monitoring Poi	Monitoring Point (KPDEs Discharge Number, or "UPSTREAM"	μ	PSTREAM" or	"DOWNSTREAM")	L150 AT SITE	된	L154 UPSTREAM	EAM	L351 DOWNSTREAM	REAM		
CAS RN ³	CONSTITUENT	H D4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	គ្នា៤០,ល	DETECTED VALUE OR PQL ⁵	គ្ម⊄្ល	DETECTED VALUE OR PQL ⁵	គកា∢ពុល	DETECTED VALUE OR PQL ⁵	E H 4 D N
s0145	1 Specific Conductance	H	umho/cm	Field	217		73		99			
s0270	0 Total Suspended Solids	H	mg/L	160.2	11.3		22.6		40.8			
s0266	0 Total Dissolved Solids	Н	mg/L	160.1	67.1		58.6		81.4			
s0269	0 Total Solids	Н	mg/L	SM-2540 B 17	113		113		152			
967	Hď 0	I	Units	Field	7.46		7.57		7.42			
7440-61-1	Uranium	H	mg/L	200.8	0.00536		0.00111		0.00235			
12587-46-1	Gross Alpha (α)	H	pCi/L	0.006	6:29	*	2	*	2.06	*		
12587-47-2	Gross Beta (β)	Н	pCi/L	0.006	0.12	*	2.21	*	7.97	*	>	
											\bigcup	
											\setminus	
											/	
												_

${\bf RESIDENTIAL/CONTAINED-QUARTERLY}$

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ing Facility Sample ID	Constituent	Flag	Description
L150	L150US3-15	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.46. Rad error is 7.37.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.94. Rad error is 6.94.
L154	L154US3-15	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.12. Rad error is 5.11.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.29. Rad error is 7.28.
L351	L351US3-15	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.73. Rad error is 7.63.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.27. Rad error is 8.16.

