

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

MAY 2 7 2015

PPPO-02-2941722-15A

Ms. Robin Green Division of Waste Management Kentucky Department for Environmental Protection 200 Fair Oaks Lane, 2nd Floor Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 200 Fair Oaks Lane, 2nd Floor Frankfort, Kentucky 40601

Mr. Bill McDonough Division of Waste Management Kentucky Department for Environmental Protection 625 Hospital Drive Madisonville, Kentucky 42431

Dear Ms. Green, Mr. Hendricks, and Mr. McDonough:

C-746-U CONTAINED LANDFILL FIRST QUARTER CALENDAR YEAR 2015 (JANUARY–MARCH) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, PAD-ENM-0093/V1, PERMIT NUMBER 073-00045

Enclosed is the subject report for the first quarter calendar year 2015. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of C-746-U Contained Solid Waste Landfill Permit Number 073-00045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, diagrams depicting well locations, and methane monitoring results.

The statistical analyses on the first quarter 2015 monitoring well data collected from the C-746-U Landfill were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report serves as the statistical exceedance notification for the first quarter calendar year 2015, in accordance with Condition GSTR0001, Standard Requirement 8, of the C-746-U Solid Waste Landfill Permit Number 073-00045.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely, nnife Woodard

Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-U Contained Landfill First Quarter CY 2015 Compliance Monitoring Report

e-copy w/enclosure: april.webb@ky.gov, KDEP/Frankfort brian.begley@ky.gov, KDEP/Frankfort craig.jones@lataky.com, LATA/Kevil dave.dollins@lex.doe.gov, PPPO/PAD gary.hines@lataky.com, LATA/Kevil gaye.brewer@ky.gov, KDEP/PAD jennifer.johnson@lataky.com, LATA/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD joseph.towarnicky@lataky.com, LATA/Kevil john.morgan@lataky.com, LATA/Kevil karen.walker@lataky.com, LATA/Kevil ken.davis@lataky.com, LATA/Kevil latacorrespondence@lataky.com, LATA/Kevil leo.williamson@ky.gov, KDEP/Frankfort lisa.crabtree@lataky.com, LATA/Kevil mark.duff@lataky.com, LATA/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@lataky.com, LATA/Kevil pad.dmc@swiftstaley.com, SST/Kevil reinhard.knerr@lex.doe.gov, PPPO/PAD stephaniec.brock@ky.gov, KYRHB/Frankfort

PAD-ENM-0093/V1

C-746-U Contained Landfill First Quarter Calendar Year 2015 (January–March) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by: LATA Kentricky Classification Support 5/2.2/15 Date

PAD-ENM-0093/V1

C-746-U Contained Landfill First Quarter Calendar Year 2015 (January–March) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—May 2015

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC managing the Environmental Remediation Activities at the Paducah Gaseous Diffusion Plant under contract DE-AC30-10CC40020

FIC	GURES	5		v
TA	BLES			v
AC	CRONY	'MS		vii
1.	1.1	BACK	TION GROUND FORING PERIOD ACTIVITIES	1
	1.2	1.2.1 1.2.2 1.2.3	Groundwater Monitoring Methane Monitoring Surface Water Monitoring	1 3
	1.3		ESULTS	
2.	2.1		LUATION/STATISTICAL SYNOPSIS STICAL ANALYSIS OF GROUNDWATER DATA Upper Continental Recharge System Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer	8 8
			VALIDATION	9
3.	PROF	ESSIO	NAL GEOLOGIST AUTHORIZATION	11
4.	REFE	RENCI	ES	13
AP	PEND	IX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
AP	PEND	IX B:	FACILITY INFORMATION SHEET	B-1
AP	PEND	IX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
AP	PEND	IX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AP	PEND	IX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AP	PEND	IX F:	NOTIFICATIONS	F-1
AP	PEND	IX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AP	PEND	IX H:	METHANE MONITORING DATA	H-1
AP	PEND	IX I:	SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS	I-1

CONTENTS

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
2.	C-746-U Landfill Surface Water Monitoring Locations	. 5

TABLES

1.	Summary of MCL Exceedances	4
	Exceedances of Statistically Derived Historical Background Concentrations	
	Exceedances of Current Background UTL in Downgradient Wells	
	Exceedances of Current Background UTL in UCRS Wells	
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR CY EPA KAR KDWM	Code of Federal Regulations calendar year U.S. Environmental Protection Agency <i>Kentucky Administrative Regulations</i> Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LEL LRGA	lower explosive limit Lower Regional Gravel Aquifer
MCL	maximum contaminant level
MW	monitoring well
RGA UCRS	Regional Gravel Aquifer Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill First Quarter Calendar Year 2015 (January-March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number 073-00014, 073-00015, 073-00045. This report was written utilizing the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) listed in 401 *KAR* 47:030 § 6 for Kentucky solid waste facilities and for all permit required parameters listed in 40 *CFR* § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 4.

Surface water was monitored, as specified in 401 *KAR* 48:300 § 2, and the approved surface water monitoring plan. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for reporting only, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.1 BACKGROUND

The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996 under Solid Waste Landfill Permit Number 073-00045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW359, MW365, MW368, MW376, and MW377 (all screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for these locations.

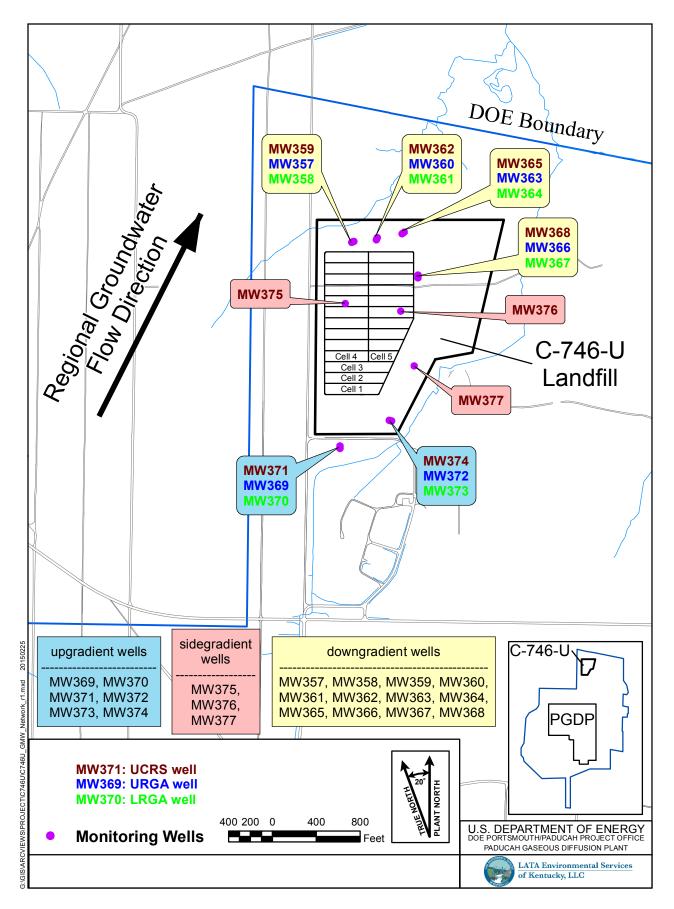


Figure 1. C-746-U Landfill Groundwater Monitoring Well Network

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014) UCRS wells are included in the monitoring program. Groundwater flow is downward through the UCRS, but flow in the underlying RGA is lateral. Groundwater flow in the RGA is in a north-northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) within the first quarter 2015 using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 28 and 29, 2015, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA.¹ Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient in the vicinity of the C-746-U Landfill in January was 3.78×10^{-4} ft/ft. The hydraulic gradient for the URGA at the C-746-U Landfill was 6.17×10^{-4} ft/ft, and the hydraulic gradient for the LRGA was 6.25×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.05 to 1.81 ft/day for the URGA and LRGA (see Table E.3).

1.2.2 Methane Monitoring

Landfill operations staff monitored for the occurrence of methane on March 12, 2015, in four on-site building locations and four locations along the landfill boundary. See Appendix H for a map of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

1.2.3 Surface Water Monitoring

Surface water was sampled in accordance with 401 *KAR* 48:300 § 2 and the approved surface water monitoring plan. Sampling was performed at three locations at the C-746-U Landfill. The C-746-U Landfill has an upstream location, L154; a downstream location, L351; and a location capturing runoff from the landfill surface, L150. Figure 2 is a map of the surface water monitoring locations. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled in report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water reports are provided in Appendix I.

1.3 KEY RESULTS

The following parameters had concentrations that either exceeded the respective MCL (Table 1) or were shown to exceed the statistically derived historical background UTL (Table 2) concentrations² during the first quarter 2015. Those constituents (present in downgradient wells) that exceed their historical UTL were further evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

UCRS	URGA	LRGA
None	MW357: Trichloroethene	MW373: Trichloroethene
	MW372: Beta activity,	
	trichloroethene	

UCRS	URGA	LRGA
MW362: Oxidation-reduction	MW357: Oxidation-reduction	MW358: Oxidation-reduction
potential	potential	potential
MW371: Oxidation-reduction	MW360: Oxidation-reduction	MW361: Oxidation-reduction
potential	potential	potential
MW374: Oxidation-reduction	MW363: Oxidation-reduction	MW364: Oxidation-reduction
potential	potential	potential; technetium-99
MW375: Oxidation-reduction	MW366: Oxidation-reduction	MW367: Oxidation-reduction
potential, sulfate	potential	potential
	MW369: Oxidation-reduction	MW370: Oxidation-reduction
	potential	potential
	MW372: Beta activity, conductivity,	MW373: Oxidation-reduction
	oxidation-reduction potential,	potential
	technetium-99	

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

² The term "concentration" may refer to a field measurement result such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

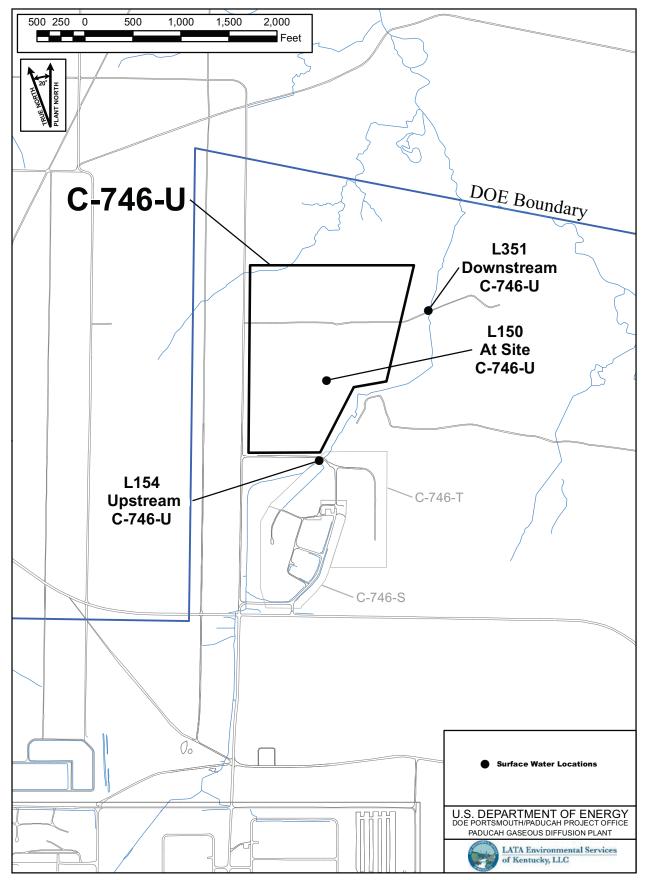


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

Table 3. Exceedances of Current Background UTL in Downgradient Wells

None

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

There were no new MCL exceedances for this quarter. The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved groundwater monitoring plan, the MCL exceedance for trichloroethene MW357 (downgradient well) does not exceed the historical background concentration and is considered to be Type I exceedance—not attributable to the C-746-U Landfill.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. If constituents were present in downgradient wells with historical UTL exceedances that were above the current UTL, then they would be summarized in Table 3. In accordance with the approved groundwater monitoring plan, these are considered to be Type 1 exceedances and are considered to be not attributable to the C-746-U Landfill.

NOTE: The gradients in UCRS wells are downward. Thus, none of the UCRS wells are properly considered to be downgradient of the landfill and are not included in Table 3. However, the statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS wells with sulfate values that exceed both the historical and current background. These exceedances are not attributable to C-746-U sources and are considered Type 1 exceedances (Table 4).

Table 4. Exceedances of Current Background UTL in UCRS Wells

UCRS	
MW375: Sulfate	

All MCL and UTL Exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2015 groundwater data collected from the C-746-U Contained Landfill MWs were performed in accordance with the *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).* The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1, D2, and D3).

For those parameters that exceed the respective Kentucky solid waste facility MCL, found in 401 *KAR* 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is properly attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. A stepwise list of the one-side tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 5.

UCRS	URGA	LRGA
MW359***	MW357	MW358
MW362	MW360	MW361
MW365***	MW363	MW364
MW368***	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376 ***		
MW377 ***		

Table 5. Monitoring Wells Included in Statistical Analysis*

*A map showing the monitoring well locations is shown on Figure 1.

**In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

***MW359, MW365, MW368, MW376, and MW377 had sufficient water to permit a water level measurement, but insufficient water to provide water samples for laboratory analysis.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. If constituents were present in downgradient wells with historical UTL exceedances that were above the current UTL, then they would be summarized in Table 3.

2.1.1 Upper Continental Recharge System

In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, oxidation-reduction potential and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Sulfate exceeded the current background UTL and is included on Table 4.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 31 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, beta activity, conductivity, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedences of the current background UTL for any downgradient wells as summarized in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, oxidation-reduction potential and technetium-99 displayed concentrations that

exceeded their respective historical UTL and are listed in Table 2. There were no exceedences of the current background UTL for any downgradient wells as summarized in Table 3.

2.2 DATA VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved groundwater monitoring plan, data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory project management or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered acceptable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill First Quarter Calendar Year 2015 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PAD-ENM-0093/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Kenneth R. Davis

PG1194

May 26, 2015 Date J

4. REFERENCES

- EPA (U.S. Environmental Protection Agency) 1989. *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Final Guidance, Office of Resource Conservation and Recovery, U.S. Environmental Protection Agency, Washington, DC.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah Gas	Activity: C-746-	U Contained Landfill			
	(As officially shown on l					
Permit No:	073-00045	Finds/Unit No:	Quarter & Year	1st Qtr. CY 2015		
Please check the following as applicable:						
Characte	erization X Quarter	ly Semiannual	Annual	Assessment		
Please check app	licable submittal(s):	X Groundwater	X Surfac	e Water		
		Leachate	X Metha	ne Monitoring		

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Mark J. Duff, Pacheah Project Manager LATA Environmental Services of Kentucky, LLC

Jennifer Woodard, Paducah Site Lead U.S. Department of Energy

Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

		r: January 2015 ter: January 2015						
Sampling Date		•	County:	McCracken Per	mit Nos. 073-00045			
Facility Name	: U.S. DOE –	Paducah Gaseous D	iffusion Plant					
·	(As officially shown on DWM Permit Face)							
Site Address:	5501	Hobbs Road	Kevil, Kentucky	4	2053			
		Street	City/State		Zip			
Phone No:	(270) 441-6800	Latitude:	N 37° 07' 45"	Longitude:	W 88° 47' 55"			

OWNER INFORMATION

Facility Owner:	U.S. DOE – W. E. Murphie, M	. DOE – W. E. Murphie, Manager Phone		(859) 219-4001	
Contact Person:	Mark J. Duff		Phone No:	(270) 441-5030	
Contact Person Title	Project Manager, LATA	Project Manager, LATA Environmental Services of Kentucky, LLC			
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053	
	Street	City/State		Zip	

SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)

Company: LATA	Environmental Services of Ke	ntucky, LLC				
Contact Person:	Jeff Boulton	Phone No: (270) 441-5444				
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky	42053			
	Street	City/State	Zip			
	LABOI	RATORY RECORD #1				
Laboratory <u>GEL I</u>	Laboratories, LLC	Lab ID No: <u>KY90129</u>				
Contact Person:	Joanne Harley	Phone No: (843) 769-7387				
Mailing Address:	2040 Savage Road	Charleston, South Carolina	29047			
	Street	City/State	Zip			
LABORATORY RECORD #2						
Laboratory:		Lab ID No:				
Contact Person:		Phone No:				
Mailing Address:						
	Street	City/State	Zip			
LABORATORY RECORD #3						
Laboratory:		Lab ID No:				
Contact Person:		Phone No:				
Mailing Address:						
-	Street	City/State	Zip			

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4798	3	8004-47	799	8004-098	31	8004-480	0
Facility's Lo	cal Well or Spring Number (e.g.,)	MW-1	, MW-2, etc	••)	357		358		359		360	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/15/2015 12	2:43	1/15/2015	10:05	NA		1/13/2015 12	2:47
Duplicate ("Y	" or "N") ²				Ν		N		N		N	
Split ("Y" or	"N") ³				Ν		N		N		N	
Facility Samp	le ID Number (if applicable)		MW357UG2	-15	MW358U0	G2-15	NA		MW360UG2	2-15		
Laboratory Sa	mple ID Number (if applicable)		36521000	1	365210	003	NA		36493300	3		
Date of Analy;	sis (Month/Day/Year) For <u>Volatile</u>	ysis	1/20/2015	5	1/20/20	15	NA		1/20/2015	5		
Gradient with	respect to Monitored Unit (UP, Do	, MWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.405		0.454			*	0.162	J
16887-00-6	Chloride(s)	т	mg/L	9056	32.1		33.7			*	10.1	
16984-48-8	Fluoride	т	mg/L	9056	0.14		0.145			*	0.242	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.28		0.325	*		*	0.523	J
14808-79-8	Sulfate	т	mg/L	9056	57.1		85.8			*	24.9	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.23		30.24			*	30.5	
s0145	Specific Conductance	т	µMH0/cm	Field	441		522			*	532	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *``*,"* then describe on *``Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4798	3	8004-479	9	8004-0981		8004-4800)
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	321.48		321.41			*	321.16	
N238	Dissolved Oxygen	т	mg/L	Field	4.11		0.96			*	0.7	
S0266	Total Dissolved Solids	т	mg/L	160.1	223		289			*	247	
50296	рН	т	Units	Field	6.05		6.23			*	6.48	
NS215	Eh	т	mV	Field	792		221			*	293	
S0907	Temperature	т	°C	Field	13		13.61			*	12.28	
7429-90-5	Aluminum	т	mg/L	6020	0.0393	J	0.0232	J		*	0.0384	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005			*	0.00245	J
7440-39-3	Barium	т	mg/L	6020	0.0653		0.0528			*	0.144	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.355	*	0.383	*		*	0.03	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	26.7		35.6			*	24.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00077	J	0.00241			*	0.0187	
7440-50-8	Copper	т	mg/L	6020	<0.001		0.00035	J		*	<0.001	
7439-89-6	Iron	т	mg/L	6020	<0.1	*	0.109	*		*	5.76	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.3		15.5			*	9.89	В
7439-96-5	Manganese	т	mg/L	6020	0.0812		0.203			*	0.23	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	99	8004-0981		8004-480	00
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7		Molybdenum	т	mg/L	6020	0.00024	J	<0.0005			*	0.00042	J
7440-02-0		Nickel	т	mg/L	6020	0.00725		0.011			*	0.00372	
7440-09-7		Potassium	т	mg/L	6020	1.66		2.39			*	0.721	
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2		Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5		Sodium	т	mg/L	6020	39.6		41.8			*	74.6	
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1		Uranium	т	mg/L	6020	<0.0002		<0.0002			*	0.00016	J
7440-62-2		Vanadium	т	mg/L	6010	<0.005		<0.005			*	<0.005	
7440-66-6		Zinc	т	mg/L	6020	<0.01		0.0111			*	<0.01	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

Ī	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798	}	8004-479	9	8004-098	1	8004-480	,0
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	357		358		359		360	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
ľ	74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
ľ	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
0-0	75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00646		0.00447			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-7

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	3	8004-479	9	8004-098	1	8004-480	0
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	1, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000202		<0.0000203			*	<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.1		<0.0971			*	<0.098	
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.0971			*	<0.098	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.0971			*	<0.098	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.0971			*	<0.098	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.0971			*	<0.098	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.0971			*	<0.098	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	0
Facility's Loc	al Well or Spring Number (e.g.,)	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.0971			*	<0.098	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.0971			*	<0.098	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.0971			*	<0.098	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.48	*	2.85	*		*	-2.94	*
12587-47-2	Gross Beta	т	pCi/L	9310	24.8	*	25.6	*		*	7.46	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.582	*	0.675	*		*	0.43	*
10098-97-2	Strontium-90	т	pCi/L	906.0	0.0964	*	-0.652	*		*	-3.54	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	37.6	*	39.5	*		*	-1.21	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.0762	*	1.2	*		*	1.52	*
10028-17-8	Tritium	т	pCi/L	906.0	71.2	*	-61	*		*	-137	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20			*	<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.19	J	1.84	J		*	2.82	
s0586	Total Organic Halides	т	mg/L	9020	0.00684	J	0.00858	J		*	0.0121	

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479)7
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	••)	361		362		363		364	
Sample Sequence	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		1/13/2015 10):20	1/15/2015	08:56	1/21/2015	09:31	1/21/2015 1	2:49
Duplicate ("Y	or "N") ²				N		Ν		Ν		Ν	
Split ("Y" or	"N") ³				N		N		Ν		N	
Facility Sampl	le ID Number (if applicable)				MW361UG2	-15	MW362U	G2-15	MW363U0	G2-15	MW364UG	2-15
Laboratory Sam	nple ID Number (if applicable)		36493300	5	365210	005	365612	001	3656120	03		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	1/20/2015	5	1/20/20	15	1/26/20	15	1/26/201	5		
Gradient with	respect to Monitored Unit (UP, DO) WN	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.41		0.137	J	0.135	J	0.409	
16887-00-6	Chloride(s)	т	mg/L	9056	30.2		9.41		25		29.4	
16984-48-8	Fluoride	т	mg/L	9056	0.147		0.239		0.173		0.133	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.19		0.677		2.14		0.976	
14808-79-8	Sulfate	т	mg/L	9056	76.7		11.2		25		65.9	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.55		30.24		30.15		30.17	
S0145	Specific Conductance	т	µMH0/cm	Field	431		652		355		451	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	5	8004-0986	3	8004-4796		8004-4797	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	321.12		332.9		321.4		321.36	
N238	Dissolved Oxygen	т	mg/L	Field	2.92		2.16		1.02		2.77	
s0266	Total Dissolved Solids	т	mg/L	160.1	240		350		177		204	
s0296	рН	т	Units	Field	6.24		6.73		6.09		5.94	
NS215	Eh	т	mV	Field	659		404		390		381	
s0907	Temperature	т	°C	Field	12.5		12.33		14		14.67	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.775		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0611		0.111		0.156		0.0735	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.104		0.00934	J*	0.02		0.00872	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	30.6		17.4		23.3		28.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00014	J	0.00088	J	0.00098	J	0.00022	J
7440-50-8	Copper	т	mg/L	6020	<0.001		0.00108		<0.001		<0.001	
7439-89-6	Iron	т	mg/L	6020	0.0492	J	0.611	*	0.0346	J	<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	14.3	В	7.51		9.4		12.2	
7439-96-5	Manganese	т	mg/L	6020	0.0175		0.0179		0.138		0.0132	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479)6	8004-479)7
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00037	J	0.0002	BJ	<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.00238		0.00527		0.00366		0.00404	
7440-09-7	Potassium	т	mg/L	6020	2.28		0.399		1.28		1.96	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.00157	J	<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	46.4		110		32.1		41.2	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.0015		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6010	<0.005		0.00195	J	<0.005		<0.005	
7440-66-6	Zinc	т	mg/L	6020	0.00484	J	<0.01		0.00373	J*	0.0311	*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-098	6	8004-479	96	8004-479	97
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00388		<0.001		0.00035	J	0.00487	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	6	8004-479	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000201		<0.0000203		<0.0000202		<0.0000201	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.098		<0.098		<0.467		<0.935	
12674-11-2	PCB-1016	т	ug/L	8082	<0.098		<0.098		<0.467		<0.935	
11104-28-2	PCB-1221	т	ug/L	8082	<0.098		<0.098		<0.467		<0.935	
11141-16-5	PCB-1232	т	ug/L	8082	<0.098		<0.098		<0.467		<0.935	
53469-21-9	PCB-1242	т	ug/L	8082	<0.098		<0.098		<0.467		<0.935	
12672-29-6	PCB-1248	т	ug/L	8082	<0.098		<0.098		<0.467		<0.935	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-0986	i	8004-479	6	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.098		<0.098		<0.467		<0.935	
11096-82-5	PCB-1260	т	ug/L	8082	<0.098		<0.098		<0.467		<0.935	
11100-14-4	PCB-1268	т	ug/L	8082	<0.098		<0.098		<0.467		<0.935	
12587-46-1	Gross Alpha	т	pCi/L	9310	3.61	*	0.46	*	-3.01	*	-0.419	*
12587-47-2	Gross Beta	т	pCi/L	9310	38.8	*	-0.375	*	12.8	*	40.2	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	-0.0411	*	0.209	*	0.37	*	0.338	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.08	*	2.24	*	-0.275	*	1.94	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	40.7	*	-4.48	*	12.5	*	58.2	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.28	*	1.27	*	0.421	*	0.512	*
10028-17-8	Tritium	т	pCi/L	906.0	-22	*	39.3	*	-176	*	-60.5	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		11	J	<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.2	J	2.78		1.55	J	1.24	J
s0586	Total Organic Halides	т	mg/L	9020	0.00558	J	0.00752	J	0.00586	J	0.00678	J

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-098	34	8004-0982	2	8004-4793	3	8004-098	3
Facility's Lo	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	.)	365		366		367		368	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		NA		1/20/2015 14	:22	1/20/2015 13	8:16	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				NA		MW366UG2	-15	MW367UG2	-15	NA	
Laboratory Sa	mple ID Number (if applicable)		NA		36549600	3	36549600	1	NA			
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	ysis	NA		1/26/2015		1/26/2015		NA			
Gradient with	respect to Monitored Unit (UP, DO	WN,	SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056		*	0.497		0.269			*
16887-00-6	Chloride(s)	т	mg/L	9056		*	41.4		20.7			*
16984-48-8	Fluoride	т	mg/L	9056		*	0.157		0.104			*
s0595	Nitrate & Nitrite	т	mg/L	9056		*	0.724		0.114			*
14808-79-8	Sulfate	т	mg/L	9056		*	44.8		30.9			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*	29.96		29.96			*
s0145	Specific Conductance	т	µMH0/cm	Field		*	469		310			*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *``*,"* then describe on *``Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793		8004-0983	3
Facility's Lo	ocal Well or Spring Number (e.g., Mw	1-1,	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*	321.75		321.69			*
N238	Dissolved Oxygen	т	mg/L	Field		*	2.15		0.6			*
S0266	Total Dissolved Solids	т	mg/L	160.1		*	231		170			*
s0296	рн	т	Units	Field		*	6.1		5.95			*
NS215	Eh	т	mV	Field		*	507		315			*
S0907	Temperature	т	°C	Field		*	15		14.78			*
7429-90-5	Aluminum	т	mg/L	6020		*	0.0159	J	0.0223	J		*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		0.00257	J		*
7440-39-3	Barium	т	mg/L	6020		*	0.153		0.172			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	0.0801		0.0175			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	29.1		19.6			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	0.0002	J	0.00412			*
7440-50-8	Copper	т	mg/L	6020		*	<0.001		<0.001			*
7439-89-6	Iron	т	mg/L	6020		*	0.0443	J	6.01			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	11.9		9.23			*
7439-96-5	Manganese	т	mg/L	6020		*	0.0113		1.39			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-098	34	8004-0982	2	8004-4793	1	8004-098	33
Facility's L	ocal Well or Spring Number (e.	g., MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0	Nickel	Т	mg/L	6020		*	0.00632		0.00528			*
7440-09-7	Potassium	Т	mg/L	6020		*	1.82		2.78			*
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	т	mg/L	6020		*	46.6	*	28	*		*
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005	*	<0.005	*		*
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2	Vanadium	Т	mg/L	6010		*	<0.005		0.00177	J		*
7440-66-6	Zinc	Т	mg/L	6020		*	<0.01		0.00676	J		*
108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.005		<0.005			*
67-64-1	Acetone	Т	mg/L	8260		*	<0.005		<0.005			*
107-02-8	Acrolein	Т	mg/L	8260		*	<0.005		<0.005			*
107-13-1	Acrylonitrile	Т	mg/L	8260		*	<0.005		<0.005			*
71-43-2	Benzene	Т	mg/L	8260		*	<0.001		<0.001			*
108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.001		<0.001			*
1330-20-7	Xylenes	Т	mg/L	8260		*	<0.003		<0.003			*
100-42-5	Styrene	Т	mg/L	8260		*	<0.001		<0.001			*
108-88-3	Toluene	Т	mg/L	8260		*	<0.001		<0.001			*
74-97-5	Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984	1	8004-0982		8004-479	3	8004-098	33
Facility's Loc	al Well or Spring Number (e.g.,)	MM-1	1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTE D VALUE OR PQL ⁶	F L G S	DE TECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005			*
75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005			*
75-00-3	Chloroethane	т	mg/L	8260		*	<0.001		<0.001			*
67-66-3	Chloroform	т	mg/L	8260		*	<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260		*	<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260		*	<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*	<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001			*
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	0.00328		0.00112			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-0982		8004-4793	3	8004-098	33
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005			*
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000205		<0.0000201			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*	<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001			*
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0935		<0.0935			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0935		<0.0935			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0935		<0.0935			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0935		<0.0935			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0935		<0.0935			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0935		<0.0935			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-0982		8004-4793		8004-098	3
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0935		<0.0935			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0935		<0.0935			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0935		<0.0935			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	0.395	*	1.17	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	47.2	*	16.8	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300		*	0.289	*	1.34	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*	2.18	*	3.47	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	58.8	*	23.2	*		*
14269-63-7	Thorium-230	т	pCi/L	TH-01-RC		*	-0.23	*	0.403	*		*
10028-17-8	Tritium	т	pCi/L	906.0		*	-141	*	-47.7	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*	29.7		55.2			*
57-12-5	Cyanide	т	mg/L	9012		*	<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060		*	1.41	J	1.74	J		*
\$0586	Total Organic Halides	т	mg/L	9020		*	0.00812	J	<0.01			*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	4819	8004-48	808
Facility's Loo	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	369		37	0	37	1	372	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/13/2015	08:22	1/13/201	5 09:13	1/21/201	5 08:04	1/21/2015	08:54
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)		MW369U0	32-15	MW370	JG2-15	MW3711	JG2-15	MW372U	G2-15		
Laboratory Sar	mple ID Number (if applicable)		3649330	007	36493	3009	36561	2005	365612	007		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	1/20/20	15	1/20/2	2015	1/26/2	2015	1/26/20)15		
Gradient with	respect to Monitored Unit (UP, DO	WN,	SIDE, UNKN	IOWN)	UP		U	Ρ	UI	C	UP	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.402		0.562		0.0826	J	0.606	
16887-00-6	Chloride(s)	т	mg/L	9056	31.9		39.4		6.67		46.3	
16984-48-8	Fluoride	т	mg/L	9056	0.181		0.141		0.275		0.152	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.657	J	1.42		0.283	J	1.23	
14808-79-8	Sulfate	т	mg/L	9056	8.7		20		9.23		109	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.53		30.53		30.11		30.16	
s0145	Specific Conductance	т	µMH0/cm	Field	374		441		776		701	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	3
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
50906	Static Water Level Elevation	т	Ft. MSL	Field	322.32		322.26		339.68		322.76	
N238	Dissolved Oxygen	т	mg/L	Field	1.15		3.64		1.79		1.44	
S0266	Total Dissolved Solids	т	mg/L	160.1	207		203		426		374	
s0296	рн	т	Units	Field	6.29		6.23		6.68		6.34	
NS215	Eh	т	mV	Field	779		691		774		693	
s0907	Temperature	т	°C	Field	10.06		10.78		12.83		14.5	
7429-90-5	Aluminum	т	mg/L	6020	0.273		<0.05		0.444		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.387		0.222		0.197		0.05	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0164		0.0339		<0.015		0.906	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	16.5		28.7		34.8		53.5	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.0124		0.00056	J	0.00019	J	0.00023	J
7440-50-8	Copper	т	mg/L	6020	0.00119		<0.001		0.00128		0.00037	J
7439-89-6	Iron	т	mg/L	6020	0.824		0.066	J	0.372		0.0711	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	7.19	В	13.4	В	14.5		20.4	
7439-96-5	Manganese	т	mg/L	6020	0.11		0.0113		0.0093		0.00314	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-482	0	8004-481	18	8004-481	9	8004-480	08
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.00018	J	<0.0005		0.00027	ВJ	0.00032	BJ
7440-02-0	Nickel	т	mg/L	6020	0.0116		0.00301		0.00127	J	0.00067	J
7440-09-7	Potassium	т	mg/L	6020	0.542		2.45		0.378		2.1	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		0.00172	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	52.2		42.8		140		55.7	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.0025		<0.0002	
7440-62-2	Vanadium	т	mg/L	6010	0.00134	J	<0.005		0.00309	J	<0.005	
7440-66-6	Zinc	т	mg/L	6020	0.00408	J	<0.01		0.00684	J*	0.0101	*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-48	30
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00146		0.00104		<0.001		0.00808	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	D	8004-481	8	8004-48	19	8004-48	08
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	., MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002		<0.0000202		<0.0000202		<0.0000202	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.099		<0.0971		<0.0935		<0.0935	
12674-11-2	PCB-1016	т	ug/L	8082	<0.099		<0.0971		<0.0935		<0.0935	
11104-28-2	PCB-1221	т	ug/L	8082	<0.099		<0.0971		<0.0935		<0.0935	
11141-16-5	PCB-1232	т	ug/L	8082	<0.099		<0.0971		<0.0935		<0.0935	
53469-21-9	PCB-1242	т	ug/L	8082	<0.099		<0.0971		<0.0935		<0.0935	
12672-29-6	PCB-1248	т	ug/L	8082	<0.099		<0.0971		<0.0935		<0.0935	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.099		<0.0971		<0.0935		<0.0935	
11096-82-5	PCB-1260	т	ug/L	8082	<0.099		<0.0971		<0.0935		<0.0935	
11100-14-4	PCB-1268	т	ug/L	8082	<0.099		<0.0971		<0.0935		<0.0935	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.63	*	0.837	*	-2.17	*	4.08	*
12587-47-2	Gross Beta	т	pCi/L	9310	33.4	*	16	*	4.47	*	115	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.664	*	0.66	*	0	*	-0.021	*
10098-97-2	Strontium-90	т	pCi/L	905.0	2.32	*	-0.025	*	2.48	*	1.91	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	45.2	*	14.8	*	5.2	*	181	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.309	*	0.324	*	0.347	*	-0.0582	*
10028-17-8	Tritium	т	pCi/L	906.0	-34.5	*	-93.2	*	-92	*	-88.3	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		8.05	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.66	J	1.15	J	2.78		1.57	J
s0586	Total Organic Halides	т	mg/L	9020	0.0213		0.00714	J	0.00718	J	0.0135	

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-09	990	8004-09	985	8004-098	38
Facility's Loo	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	.)	373		374		375		376	
Sample Sequend	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour:minu	tes)		1/21/2015 13	3:44	1/21/2015	13:45	1/21/2015	08:28	NA	
Duplicate ("Y	or "N") ²				Ν		Ν		Ν		Ν	
Split ("Y" or	"N") ³				Ν		N		Ν		Ν	
Facility Samp	le ID Number (if applicable)				MW373UG2	-15	MW374U	G2-15	MW375U0	G2-15	NA	
Laboratory Sar	mple ID Number (if applicable)			36561200	9	365612	011	365612	013	NA		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/26/2015	5	1/26/20	15	1/26/20	15	NA	
Gradient with	respect to Monitored Unit (UP, DC), AWC	SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.602		0.979		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	42.8		82.4		5.42			*
16984-48-8	Fluoride	т	mg/L	9056	0.148		0.165		0.261			*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.672		<0.1		1.3			*
14808-79-8	Sulfate	т	mg/L	9056	197		5.39		27.6			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.15		30.17		30.13			*
S0145	Specific Conductance	т	µMH0/cm	Field	933		705		375			*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-099	0	8004-0985		8004-0988	3
Facility's Lo	ocal Well or Spring Number (e.g., Mv	1-1, 1	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	322.76		333.5		336.3			*
N238	Dissolved Oxygen	т	mg/L	Field	1.34		0.66		1.05			*
S0266	Total Dissolved Solids	т	mg/L	160.1	499		347		184			*
S0296	рн	т	Units	Field	5.99		6.63		6.29			*
NS215	Eh	т	mV	Field	336		530		542			*
s0907	Temperature	т	°C	Field	15.44		15.56		13.5			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0368	J		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00173	J	<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.028		0.165		0.175			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.77		0.0117	J	0.00884	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	71.5		21.8		14.8			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		0.00407	J		*
7440-48-4	Cobalt	т	mg/L	6020	0.00069	J	0.0036		0.00051	J		*
7440-50-8	Copper	т	mg/L	6020	<0.001		0.00084	J	<0.001			*
7439-89-6	Iron	т	mg/L	6020	0.071	J	0.638		0.157			*
7439-92-1	Lead	т	mg/L	6020	<0.002		0.0007	J	<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	28.2		5.97		5.74			*
7439-96-5	Manganese	т	mg/L	6020	0.123		0.268		0.00989			*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	8
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	373		374		375		376	
CAS RN^4		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7		Molybdenum	т	mg/L	6020	<0.0005		0.00025	ВJ	0.00057	В		*
7440-02-0		Nickel	т	mg/L	6020	0.00494		0.00147	J	0.00405			*
7440-09-7		Potassium	т	mg/L	6020	2.9		0.499		0.286	J		*
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	т	mg/L	6020	<0.005		<0.005		0.00194	J		*
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5		Sodium	т	mg/L	6020	61.5		121		58.2			*
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*		*
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	т	mg/L	6020	<0.0002		0.00047		0.000086	J		*
7440-62-2		Vanadium	т	mg/L	6010	<0.005		<0.005		<0.005			*
7440-66-6		Zinc	т	mg/L	6020	<0.01	*	0.127	*	<0.01	*		*
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00767		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	D	8004-098	85	8004-09	988
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000202		<0.0000202		<0.0000201			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	т	ug/L	8082	<0.467		<9.35		<0.467			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.467		<9.35		<0.467			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.467		<9.35		<0.467			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.467		<9.35		<0.467			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.467		<9.35		<0.467			*
12672-29-6	PCB-1248	т	ug/L	8082	<0.467		<9.35		<0.467			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Loo	al Well or Spring Number (e.g., 1	MW-1	, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.467		<9.35		<0.467			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.467		<9.35		<0.467			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.467		<9.35		<0.467			*
12587-46-1	Gross Alpha	т	pCi/L	9310	8.21	*	3.52	*	4.43	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	14.1	*	4.05	*	-5.86	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.055	*	0.82	*	0.303	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.105	*	-0.109	*	1.16	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	28.8	*	4.93	*	5.06	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.66	*	2.49	*	1.25	*		*
10028-17-8	Tritium	т	pCi/L	906.0	-58	*	-161	*	-114	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		13.3	J		*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060	1.9	J	3.16		1.79	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.0141		0.0219		0.0156			*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	39	0000-00	00	0000-000	00	0000-000	0
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	.)	377		E. BLAN	IK	F. BLAN	IK	T. BLANK	(1
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		E		F		Т	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		NA		1/21/2015 (07:27	1/21/2015 0	08:30	1/13/2015 0	7:15
Duplicate ("Y	or "N") ²				N		Ν		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				NA		RI1UG2-	·15	FB1UG2-	·15	TB1UG2-	15
Laboratory San	nple ID Number (if applicable)		NA		3656120	16	3656120	15	36493301	1		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	NA		1/26/20 ⁻	15	1/26/201	15	1/20/201	5		
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *``*,"* then describe on *``Written Comments Page."*

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	9	0000-0000)	0000-0000		0000-0000)
Facility's Lo	cal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
50906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.002		<0.002			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	<0.001		<0.001			*
7439-89-6	Iron	т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	0.000067	J	<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	PB-7MolybdenumTMEASURE-98-7MolybdenumTmg/L-02-0NickelTmg/L-09-7PotassiumTmg/L-16-6RhodiumTmg/L-49-2SeleniumTmg/L-22-4SilverTmg/L-23-5SodiumTmg/L-23-5SodiumTmg/L-28-0ThalliumTmg/L-61-1UraniumTmg/L-66-6ZincTmg/L05-4Vinyl acetateTmg/L4-1AcetoneTmg/L0-2-8AcroleinTmg/L				8004-098	9	0000-000	00	0000-000	0	0000-000	0	
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	К	F. BLAN	K	T. BLANK	1
CAS RN ⁴		CONSTITUENT	D	OF	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7		Molybdenum	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0		Nickel	т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7		Potassium	т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6		Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5		Sodium	т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7		Tantalum	т	mg/L	6020		*	<0.005	*	<0.005	*		*
7440-28-0		Thallium	т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2		Vanadium	т	mg/L	6010		*	<0.005		<0.005			*
7440-66-6		Zinc	т	mg/L	6020		*	<0.01	*	<0.01	*		*
108-05-4		Vinyl acetate	т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-000	0	0000-00	00	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	377		E. BLAN	<	F. BLAN	IK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260		*	0.0008	J	0.00086	J	0.0008	J
74-87-3	Methyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1,	Facility Well/Spring Number				8004-098	9	0000-0000	0	0000-00	00	0000-00	00
Facility's Loo	cal Well or Spring Number (e.g., M	IW -1	L, MW-2, et	.c.)	377		E. BLANK	<	F. BLAN	IK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000201		<0.0000195		<0.0000202	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0935		<0.0935			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0935		<0.0935			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0935		<0.0935			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0935		<0.0935			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0935		<0.0935			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0935		<0.0935			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-000	00
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	377		E. BLANK		F. BLAN	к	T. BLANK	(1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0935		<0.0935			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.0935		<0.0935			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0935		<0.0935			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	-2.77	*	-0.905	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	4.5	*	2.53	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300		*	0.307	*	0.27	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*	1.51	*	0.165	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	4.34	*	6.92	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	0.344	*	2.68	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	-17.3	*	-107	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER1,	, Facility Well/Spring Number				000-000	00	0000-00	00	0000-000	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g., M	MW-1	, MW-2, etc	.)	T. BLANK	(2	T. BLAN	К 3	T. BLAN	٢4	T. BLANK	(5
Sample Sequen	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	Т		т		т		т	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/15/2015 0	00:80	1/20/2015	12:00	1/21/2015 ()7:24	1/21/2015 0	7:15
Duplicate ("Y	" or "N") ²				Ν		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				TB2UG2-	15	TB3UG2	-15	TB4UG2-	15	TB5UG2-	15
Laboratory Sa	mple ID Number (if applicable)		3652100	07	3654960	05	3656120	17	3656120 ⁷	18		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	1/20/201	5	1/26/20 ⁻	15	1/26/201	5	1/26/201	5		
Gradient with	respect to Monitored Unit (UP, Do	JWN,	SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	C	0000-0000)	0000-0000		0000-0000)
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK 4	1	T. BLANK	5
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
\$0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	т	mg/L	6020		*		*		*		*
7439-89-6	Iron	т	mg/L	6020		*		*		*		*
7439-92-1	Lead	т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				0000-000	0	0000-000	00	0000-000	00	0000-000	00
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLANI	〈 3	T. BLANK	ζ4	T. BLANK	(5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*		*
7440-02-0	Nickel	т	mg/L	6020		*		*		*		*
7440-09-7	Potassium	т	mg/L	6020		*		*		*		*
7440-16-6	Rhodium	т	mg/L	6020		*		*		*		*
7782-49-2	Selenium	т	mg/L	6020		*		*		*		*
7440-22-4	Silver	т	mg/L	6020		*		*		*		*
7440-23-5	Sodium	т	mg/L	6020		*		*		*		*
7440-25-7	Tantalum	т	mg/L	6020		*		*		*		*
7440-28-0	Thallium	т	mg/L	6020		*		*		*		*
7440-61-1	Uranium	т	mg/L	6020		*		*		*		*
7440-62-2	Vanadium	т	mg/L	6010		*		*		*		*
7440-66-6	Zinc	т	mg/L	6020		*		*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-000	0	0000-00	00	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	T. BLAN	K 4	T. BLAN	∢5
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	0.00054	J	0.00072	J	0.0008	J	0.00082	J
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		0.00032	J	<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-000)	0000-000	0	0000-00	00	0000-00	00		
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK	3	T. BLAN	、 4	T. BLAN	K 5
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00105	J	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000204		<0.0000199		<0.0000203		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				0000-000	0	0000-0000		0000-000	0	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		T. BLANK	4	T. BLANK	5
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300		*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*		*		*		*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	0	Ν					/
Facility's Loc	al Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	360		\square					
Sample Sequenc	:e #				2							/
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA							
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/13/2015 12	2:47		\backslash				
Duplicate ("Y"	or "N") ²				Y							
Split ("Y" or	"N") ³				Ν							
Facility Sampl	lity Sample ID Number (if applicable)					2-15			\backslash	/		
Laboratory Sam	ratory Sample ID Number (if applicable)					1						
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/20/2015	5				/		
Gradient with	respect to Monitored Unit (UP, DC	wn,	SIDE, UNKN	OWN)	DOWN							
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.159	J					\backslash	
16887-00-6	Chloride(s)	т	mg/L	9056	10.2							
16984-48-8	Fluoride	т	mg/L	9056	0.247			V				
s0595	Nitrate & Nitrite	т	mg/L	9056	0.569	J						
14808-79-8	Sulfate	т	mg/L	9056	24.9							
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.5							
S0145	Specific Conductance	т	µMH0/cm	Field	532							

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *``*,"* then describe on *``Written Comments Page."* STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

IT						-	τ		ŕ		1	
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4800	0	Λ					
Facility's Loc	al Well or Spring Number (e.g., MW	-1,1	W-2, BLANK-	F, etc.)	360							
CAS RN ⁴	CONSTITUENT	H D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	321.16							
N238	Dissolved Oxygen	т	mg/L	Field	0.7			\backslash				
s0266	Total Dissolved Solids	т	mg/L	160.1	243							
s0296	рн	т	Units	Field	6.48						/	
NS215	Eh	т	mV	Field	293				\backslash			
s0907	Temperature	т	°C	Field	12.28							
7429-90-5	Aluminum	т	mg/L	6020	0.0416	J				/		
7440-36-0	Antimony	т	mg/L	6020	<0.003				$ \land /$			
7440-38-2	Arsenic	т	mg/L	6020	0.00241	J			Х			
7440-39-3	Barium	т	mg/L	6020	0.143							
7440-41-7	Beryllium	т	mg/L	6020	<0.0005							
7440-42-8	Boron	т	mg/L	6020	0.0325							
7440-43-9	Cadmium	т	mg/L	6020	<0.001							
7440-70-2	Calcium	т	mg/L	6020	24.4						\backslash	
7440-47-3	Chromium	т	mg/L	6020	<0.01							
7440-48-4	Cobalt	т	mg/L	6020	0.0179			/				
7440-50-8	Copper	т	mg/L	6020	0.00048	J						
7439-89-6	Iron	т	mg/L	6020	5.42							
7439-92-1	Lead	т	mg/L	6020	<0.002							
7439-95-4	Magnesium	т	mg/L	6020	10.1	В						\backslash
7439-96-5	Manganese	т	mg/L	6020	0.217							
7439-97-6	Mercury	т	mg/L	7470	<0.0002							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-480	0	\backslash					
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	360							
CAS RN ⁴		CONSTITUENT	H D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7		Molybdenum	т	mg/L	6020	0.00041	J						
7440-02-0		Nickel	т	mg/L	6020	0.00414			\backslash				
7440-09-7		Potassium	т	mg/L	6020	0.754			$ \rangle$				
7440-16-6		Rhodium	Т	mg/L	6020	<0.005				N		\vee	
7782-49-2		Selenium	Т	mg/L	6020	<0.005							
7440-22-4		Silver	т	mg/L	6020	<0.001							
7440-23-5		Sodium	т	mg/L	6020	75					\langle		
7440-25-7		Tantalum	т	mg/L	6020	0.00141	J			$ \rangle /$			
7440-28-0		Thallium	т	mg/L	6020	<0.002				X			
7440-61-1		Uranium	т	mg/L	6020	0.00018	J						
7440-62-2		Vanadium	т	mg/L	6010	<0.005					\square		
7440-66-6		Zinc	т	mg/L	6020	<0.01					$ \rangle$		
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005							
67-64-1		Acetone	т	mg/L	8260	<0.005						\backslash	
107-02-8		Acrolein	т	mg/L	8260	<0.005							
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005			\langle				
71-43-2		Benzene	т	mg/L	8260	<0.001							
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001							
1330-20-7		Xylenes	т	mg/L	8260	<0.003							
100-42-5		Styrene	т	mg/L	8260	<0.001							\backslash
108-88-3		Toluene	т	mg/L	8260	<0.001							
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4800)	\setminus					
Facility's Loc	al Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	360		\backslash					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DERECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	т	mg/L	8260	<0.001			_				
74-83-9	Methyl bromide	т	mg/L	8260	<0.001			<u> </u>				
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005							
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005				\backslash			
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005							
75-00-3	Chloroethane	т	mg/L	8260	<0.001					\mathbf{V}		
67-66-3	Chloroform	т	mg/L	8260	<0.001				$ \land /$			
74-87-3	Methyl chloride	т	mg/L	8260	<0.001				X			
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001							
74-95-3	Methylene bromide	т	mg/L	8260	<0.001					\backslash		
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001				/			
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001						\backslash	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001							
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001							
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001							
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001							\backslash
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-49

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	0	\backslash					/
Facility's Loc	al Well or Spring Number (e.g., M	MW- 1	L, MW-2, et)	360							
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	т	mg/L	8260	<0.005							
74-88-4	Iodomethane	т	mg/L	8260	<0.005			\backslash				
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001				\backslash			
75-09-2	Dichloromethane	т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005					\mathbf{V}		
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000202				$ \rangle /$			
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				X			
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001				$ / \rangle$			
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001					Ν		
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001							
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001						\backslash	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001							
1336-36-3	PCB,Total	т	ug/L	8082	<0.099							
12674-11-2	PCB-1016	т	ug/L	8082	<0.099							
11104-28-2	PCB-1221	т	ug/L	8082	<0.099							
11141-16-5	PCB-1232	т	ug/L	8082	<0.099							\square
53469-21-9	PCB-1242	т	ug/L	8082	<0.099							
12672-29-6	PCB-1248	т	ug/L	8082	<0.099		\vee					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	C	Ν					/
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	360		$\left[\right. \right]$					
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.099							
11096-82-5	PCB-1260	т	ug/L	8082	<0.099							
11100-14-4	PCB-1268	т	ug/L	8082	<0.099						/	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.798	*					/	
12587-47-2	Gross Beta	т	pCi/L	9310	13.1	*			\backslash			
10043-66-0	Iodine-131	т	pCi/L			*				/		
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.421	*				ſ		
10098-97-2	Strontium-90	т	pCi/L	905.0	0.526	*						
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-1.8	*						
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.0865	*						
10028-17-8	Tritium	т	pCi/L	906.0	43.1	*				$\left \right\rangle$		
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20							
57-12-5	Cyanide	т	mg/L	9012	<0.2						\backslash	
20461-54-5	Iodide	т	mg/L	300.0	<0.5			/				
s0268	Total Organic Carbon	т	mg/L	9060	2.43			/				
s0586	Total Organic Halides	т	mg/L	9020	0.0148							
												Ν
												$\left[\right]$
							\bigvee					

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4798 MW357	MW357UG2-15	Boron	N	Sample spike recovery not within control limits.
		Iron	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.22. Rad error is 6.22.
		Gross beta		TPU is 11. Rad error is 10.2.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.489. Rad error is 0.481.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.91. Rad error is 1.91.
		Technetium-99		TPU is 13.6. Rad error is 13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.23. Rad error is 1.22.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 163. Rad error is 163.
004-4799 MW358	MW358UG2-15	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Boron	Ν	Sample spike recovery not within control limits.
		Iron	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.56. Rad error is 6.51.
		Gross beta		TPU is 10.9. Rad error is 10.1.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.476. Rad error is 0.465.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.69. Rad error is 1.69.
		Technetium-99		TPU is 13. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.71. Rad error is 1.68.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 159. Rad error is 159.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0981 MW359		Bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well went dry; therefore, no sampl was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sampl was collected.
		Sulfate		During sampling, the well went dry; therefore, no sampl was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sampl was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sampl was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sampl was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sampl was collected.
		рН		During sampling, the well went dry; therefore, no sampl was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no sampling was collected.
		Aluminum		During sampling, the well went dry; therefore, no sampling was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no sampling was collected.
		Boron		During sampling, the well went dry; therefore, no sampl was collected.
		Cadmium		During sampling, the well went dry; therefore, no sampling was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no sampl was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampling was collected.
		Copper		During sampling, the well went dry; therefore, no sampl was collected.
		Iron		During sampling, the well went dry; therefore, no sampl was collected.
		Lead		During sampling, the well went dry; therefore, no sampl was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0981 MW359		Magnesium		During sampling, the well went dry; therefore, no sampl was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry; therefore, no samplivas collected.
		Molybdenum		During sampling, the well went dry; therefore, no samplivas collected.
		Nickel		During sampling, the well went dry; therefore, no sampling sampling, the well went dry; therefore, no sampling samples are collected.
		Potassium		During sampling, the well went dry; therefore, no sampl was collected.
		Rhodium		During sampling, the well went dry; therefore, no sampl was collected.
		Selenium		During sampling, the well went dry; therefore, no sampl was collected.
		Silver		During sampling, the well went dry; therefore, no sampl was collected.
		Sodium		During sampling, the well went dry; therefore, no sampl was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0981 MW359		Tribromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.
		lodomethane		During sampling, the well went dry; therefore, no sampling was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0981 MW359		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0981 MW359		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
8004-4800 MW360	MW360UG2-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.07. Rad error is 6.06.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.64. Rad error is 7.54.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.465. Rad error is 0.461.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.36. Rad error is 2.36.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.09. Rad error is 2.06.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 152. Rad error is 152.
8004-4795 MW361	MW361UG2-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.32. Rad error is 6.29.
		Gross beta		TPU is 12.4. Rad error is 10.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.342. Rad error is 0.341.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.37. Rad error is 2.36.
		Technetium-99		TPU is 13.5. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.68. Rad error is 1.65.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 157. Rad error is 157.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.341. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.03. Rad error is 2. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.33. Rad error is 1.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.86. Rad error is 1.83. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.86. Rad error is 161. 0004-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. Zinc * Duplicate analyte/nuclide was analyzed for, but not detected. TPU is 5.93. Rad error is 5.93. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.93. Rad error is 0.505. Iodine-131 Analysis of constituent not required and not perform Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82. W04-4797 MW364 MW364UG2-15 Tantalum V Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82. 8004-4797 MW364 MW364UG2-15 Tantalum U Indicates analyte/nuclide was analyzed fo	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4,71. Rad error is 0.34. Iodine-131 Analysis of constituent not required and not perform Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.341. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.38. Rad error is 10.34. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.38. Rad error is 1.35. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.36. Rad error is 1.35. 004-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.36. Rad error is 1.63. 004-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.39. Rad error is 5.33. Iodine-131 Analysis of constituent not required and not perform spike recovery not within control limits. Gross alpha U Indicates analytefonu	004-0986 MW362	MW362UG2-15	Boron	Ν	Sample spike recovery not within control limits.
Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.01. Rad error is 5. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.71. Rad error is 4.7. Iodine-131 Analysis of constituent not required and not perform Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.23. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.83. Rad error is 0.34. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.83. Rad error is 1.83. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.86. Rad error is 1.63. 004-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 6.30. 004-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 6.33. Iodine-131 Corss beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 0.36. 004-4797 MW364 MW364UG2			Iron	Ν	Sample spike recovery not within control limits.
detected. TPU is 5.0. Rad error is 5. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.71. Rad error is 4.7. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.03. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.03. Rad error is 12. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.03. Rad error is 1.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.03. Rad error is 1.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.03. Rad error is 1.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.03. Rad error is 1.3. Cot4-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. Zinc Duplicate analyte/nuclide was analyzed for, but not detected. TPU is 15.9. Rad error is 5.9. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.50. Iodine-131 Analysis of constituent not required and not perform Radium-226 Dublicate analyte/nuclide was analyzed for, but not detected. TPU is 1.08. Rad error is 1.08. Thorium-230 TPU is 1.			Tantalum	Ν	Sample spike recovery not within control limits.
Iodine-131 Analysis of constituent not required and not perform Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.341. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.33. Rad error is 0.34. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 1.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 161. 004-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. 004-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. 004-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. 004-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. 004-4796 MW363 MW363UG2-15 Tantalum N Sample arror is 5.3. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.508. Red error is 0.50. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.09. Rad error is 0.51.			Gross alpha	U	
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.341. Rad error is 0.34. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.38. Rad error is 2. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.38. Rad error is 13.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.86. Rad error is 13.3. Out-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. Out-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. Cinc * Duplicate analysis not within control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.93. Rad error is 5.33. Iodine-131 Analysis of constituent not required and not perform Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 0.83. 004-4797 MW364 MW364UG2-15 Tantalum N Sample spike recovery not within control limits. Data analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 0.50.5. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad erro			Gross beta	U	
Multiple analysis Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.03. Rad error is 2. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 1.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 1.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12. 04-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. 204-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.93. Rad error is 5.93. Iodine-131 Analysis of constituent not required and not perform Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.50. Rad error is 0.505. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.50. Rad error is 1.82. N04-4797 MW364 MW364UG2-15 Tantalum N Sample spike recovery not within control limits. Zinc * Duplicate analyte/nuclide was analyzed for, but not detected. TPU is 0.50. Rad error is 1.82. N04-4797 MW364 MW364UG2-1			lodine-131		Analysis of constituent not required and not performe
Jack Structure Jack			Radium-226	U	
044-4796 MW363 MW363UG2-15 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.68. Rad error is 1.83. 044-4796 MW363 MW363UG2-15 Tantalum U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.68. Rad error is 1.83. 04-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. 0504 Titium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.93. Rad error is 5.93. 0504 Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.93. Rad error is 5.53. 0504 Iodine-131 Analysis of constituent not required and not perform Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82. 0504 Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82. 0504-4797 MW364 MW364UG2-15 Tantalum N Sample spike recovery not within control limits. 0504-4797 MW364 MW364UG2-15 Tantalum N Sample spike recovery not within control limits. 0504-4797 MW364 MW364UG2-15 Tantalum N<			Strontium-90	U	
D04-4796 MW363 MW363UG2-15TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 18.8. Rad error is 16.1. Indicates analyte/nuclide was analyzed for, but not detected. TPU is 162. Rad error is 16.1. Duplicate analysis not within control limits.204-4796 MW363 MW363UG2-15TantalumNSample spike recovery not within control limits. Gross alpha204-4796 MW363 MW363UG2-15TantalumNSample spike recovery not within control limits. Gross beta204-4797 MW364 MW364UG2-15TantalumNSample spike recovery not within control limits. Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.508. Rad error is 0.505. Strontium-90204-4797 MW364 MW364UG2-15TantalumNSample spike recovery not within control limits. Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.508. Rad error is 1.82.204-4797 MW364 MW364UG2-15TantalumNSample spike recovery not within control limits. Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.321. Rad error is 1.81.204-4797 MW364 MW364UG2-15TantalumNSample spike recovery not within control limits. Zinc204-4797 MW364 MW364UG2-15TantalumNSample spike recovery not within control limits. Gross alpha204-4797 MW364 MW364UG2-15TantalumNSample spike recovery not within control limits. Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.48. Rad error is 1.1. Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.48. Rad error is 1.1.204-4797 MW364MW364UG2-15TantalumN204-4797 MW364<			Technetium-99	U	
004-4796 MW363 MW363UG2-15 Tantalum N Sample spike recovery not within control limits. Zinc * Duplicate analysis not within control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.93. Rad error is 5.93. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.79. Rad error is 8.53. Iodine-131 Analysis of constituent not required and not perform Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.508. Rad error is 0.505. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82. Thorium-230 TPU is 0.321. Rad error is 0.311. Tritium D04-4797 MW364 MW364UG2-15 Tantalum N Sample spike recovery not within control limits. Zinc * Duplicate analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 1.48. Sample spike recovery not within control limits. D04-4797 MW364 MW364UG2-15 Tantalum N Sample spike recovery not within control limits. Gross alpha U Indicates analyte/nuclide was analyze					detected. TPU is 1.86. Rad error is 1.83.
ZincDuplicate analysis not within control limits.Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 5.93. Rad error is 5.93.Gross betaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 8.79. Rad error is 8.53.Iodine-131Analysis of constituent not required and not perform Radium-226Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.508. Rad error is 1.82.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.508. Rad error is 1.82.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.321. Rad error is 0.311.D04-4797 MW364MW364UG2-15TantalumNSample spike recovery not within control limits.Zinc*Duplicate analysis not within control limits.Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 1.48.D04-4797MW364MW364UG2-15TantalumNSample spike recovery not within control limits.D04-4797Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 5.09.D04-4797MW364MW364UG2-15TantalumNSample spike recovery not within control limits.Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 5.09. TPU is 14.6. Rad				_	detected. TPU is 162. Rad error is 161.
Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.93. Rad error is 5.93. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.93. Rad error is 8.53. Iodine-131 Analysis of constituent not required and not perform Radium-226 U Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.508. Rad error is 0.505. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82. Thorium-230 Tru is 0.321. Rad error is 1.83. Thorium-230 Thrui U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 148. 004-4797 MW364 MW364UG2-15 Tantalum N Sample spike recovery not within control limits. 004-4797 MW364 MW364UG2-15 Tantalum N Sample spike recovery not within control limits. 004-4797 MW364 MW364UG2-15 Tantalum N Sample spike recovery not within control limits. 004-4797 MW364 MW364UG2-15 Tantalum N Sample spike recovery not within control limits. 00	04-4796 MW363	MW363UG2-15			
With the state of the stat					
Iodine-131 Analysis of constituent not required and not perform Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.508. Rad error is 0.505. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 0.505. Thorium-230 TPU is 0.321. Rad error is 0.311. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 1.48. I04-4797 MW364 MW364UG2-15 Tantalum N Sample spike recovery not within control limits. Zinc * Duplicate analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 1.3.1. Iodine-131 Analysis of constituent not required and not perform Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474. Iodine-131 Analysis of constituent not required and not perform Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474. Iodine-131 Analysis of constituent not required and not perform Radium-226 U Indicates analyte/nuclide was analyzed for, b			•		detected. TPU is 5.93. Rad error is 5.93.
Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.508. Rad error is 0.505.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 10.8.Thorium-230TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.321. Rad error is 10.8.Thorium-230TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 148.004-4797 MW364MW364UG2-15TantalumNSample spike recovery not within control limits.Zinc*Duplicate analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 5.09.Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 14.6. Rad error is 13.1.Iodine-131Analysis of constituent not required and not perform Radium-226Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.472. Rad error is 0.321.Technetium-99TPU is 14.2. Rad error is 0.321.Technetium-99TPU is 14.2. Rad error is 0.321.Technetium-99TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.332. Rad error is 0.321.				U	detected. TPU is 8.79. Rad error is 8.53.
detected. TPU is 0.508. Rad error is 0.505.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.321. Rad error is 0.311.Thorium-230TPU is 0.321. Rad error is 0.311.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 148.004-4797 MW364 MW364UG2-15TantalumNSample spike recovery not within control limits.Zinc*Duplicate analysis not within control limits.Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 5.09.Gross betaTPU is 14.6. Rad error is 13.1.Iodine-131Analysis of constituent not required and not perform Radium-226Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.321. Rad error is 12.7. TPU is 14.2. Rad error is 12.7.Thorium-230TPU is 0.332. Rad error is 0.321.TruiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.332. Rad error is 0.321.			lodine-131		
detected. TPU is 1.82. Rad error is 1.82.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 10.9. Rad error is 0.311.Thorium-230TPU is 0.321. Rad error is 0.311.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 148.004-4797 MW364 MW364UG2-15TantalumNSample spike recovery not within control limits.2inc*Duplicate analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 5.09.Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 14.6. Rad error is 13.1.Iodine-131Analysis of constituent not required and not perform Radium-226Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Technetium-99TPU is 14.2. Rad error is 0.321.Thorium-230TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.332. Rad error is 0.321.			Radium-226	U	
D04-4797 MW364 MW364UG2-15Thorium-230TPU is 0.321. Rad error is 0.311.D04-4797 MW364 MW364UG2-15TantalumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 148.D04-4797 MW364 MW364UG2-15TantalumNSample spike recovery not within control limits.Zinc*Duplicate analysis not within control limits.Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 5.09.Gross betaTPU is 14.6. Rad error is 13.1.Iodine-131Analysis of constituent not required and not perform Radium-226Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 2.14. Rad error is 2.12.Technetium-99TPU is 14.2. Rad error is 0.321.Thorium-230TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.332. Rad error is 0.321.			Strontium-90	U	
D04-4797 MW364 MW364UG2-15TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 148.D04-4797 MW364 MW364UG2-15TantalumNSample spike recovery not within control limits.Zinc*Duplicate analysis not within control limits.Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 5.09.Gross betaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 5.09.Gross betaTPU is 14.6. Rad error is 13.1.Iodine-131Analysis of constituent not required and not perform Radium-226Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 2.14. Rad error is 2.12.Technetium-99TPU is 14.2. Rad error is 12.7.Thorium-230TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not			Technetium-99	U	
004-4797 MW364 MW364UG2-15TantalumNSample spike recovery not within control limits.2inc*Duplicate analysis not within control limits.Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 5.09.Gross betaTPU is 14.6. Rad error is 13.1.Iodine-131Analysis of constituent not required and not perform Radium-226Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 2.14. Rad error is 2.12.Technetium-99TPU is 14.2. Rad error is 12.7.Thorium-230TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.322. Rad error is 0.321.			Thorium-230		TPU is 0.321. Rad error is 0.311.
Zinc*Duplicate analysis not within control limits.Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 5.09.Gross betaTPU is 14.6. Rad error is 13.1.Iodine-131Analysis of constituent not required and not perform Radium-226Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 2.14. Rad error is 2.12.Technetium-99TPU is 14.2. Rad error is 12.7.Thorium-230TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.332. Rad error is 0.321.			Tritium	U	detected. TPU is 148. Rad error is 148.
Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 5.09. Rad error is 5.09.Gross betaTPU is 14.6. Rad error is 13.1.Iodine-131Analysis of constituent not required and not perform Radium-226Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 2.14. Rad error is 2.12.Technetium-99TPU is 14.2. Rad error is 12.7.Thorium-230TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not	004-4797 MW364	MW364UG2-15	Tantalum	Ν	Sample spike recovery not within control limits.
detected. TPU is 5.09. Rad error is 5.09.Gross betaTPU is 14.6. Rad error is 13.1.Iodine-131Analysis of constituent not required and not performRadium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 2.14. Rad error is 2.12.Technetium-99TPU is 14.2. Rad error is 12.7.Thorium-230TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not			Zinc	*	Duplicate analysis not within control limits.
Iodine-131Analysis of constituent not required and not performRadium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 2.14. Rad error is 2.12.Technetium-99TPU is 14.2. Rad error is 12.7.Thorium-230TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not			Gross alpha	U	
Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 2.14. Rad error is 2.12. TPU is 14.2. Rad error is 12.7.Thorium-230TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.332. Rad error is 0.321.			Gross beta		TPU is 14.6. Rad error is 13.1.
detected. TPU is 0.477. Rad error is 0.474.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TPU is 2.14. Rad error is 2.12.Technetium-99TPU is 14.2. Rad error is 12.7.Thorium-230TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. TPU is 0.332.			lodine-131		Analysis of constituent not required and not perform
detected. TPU is 2.14. Rad error is 2.12.Technetium-99TPU is 14.2. Rad error is 12.7.Thorium-230TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not			Radium-226	U	
Thorium-230TPU is 0.332. Rad error is 0.321.TritiumUIndicates analyte/nuclide was analyzed for, but not			Strontium-90	U	
Tritium U Indicates analyte/nuclide was analyzed for, but not			Technetium-99		TPU is 14.2. Rad error is 12.7.
			Thorium-230		TPU is 0.332. Rad error is 0.321.
			Tritium	U	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0984 MW365		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sampl was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0984 MW365		Magnesium		During sampling, the well went dry; therefore, no sampl was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.
		Potassium		During sampling, the well went dry; therefore, no sampl was collected.
		Rhodium		During sampling, the well went dry; therefore, no sampl was collected.
		Selenium		During sampling, the well went dry; therefore, no sampl was collected.
		Silver		During sampling, the well went dry; therefore, no sampl was collected.
		Sodium		During sampling, the well went dry; therefore, no sampl was collected.
		Tantalum		During sampling, the well went dry; therefore, no sampl was collected.
		Thallium		During sampling, the well went dry; therefore, no sampl was collected.
		Uranium		During sampling, the well went dry; therefore, no sampl was collected.
		Vanadium		During sampling, the well went dry; therefore, no sampl was collected.
		Zinc		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sampl was collected.
		Acetone		During sampling, the well went dry; therefore, no sampl was collected.
		Acrolein		During sampling, the well went dry; therefore, no sampl was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sampl was collected.
		Benzene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampl was collected.
		Styrene		During sampling, the well went dry; therefore, no samplwas collected.
		Toluene		During sampling, the well went dry; therefore, no sampli was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampling was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samplivas collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0984 MW365		Tribromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no samplives collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampli was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sampling was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampling was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sampl was collected.
		lodomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0984 MW365		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0984 MW365		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
8004-0982 MW366	MW366UG2-15	Sodium	Х	Other specific flags and footnotes may be required to properly define the results.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.42. Rad error is 4.42.
		Gross beta		TPU is 13.4. Rad error is 11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.435. Rad error is 0.433.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.18. Rad error is 2.15.
		Technetium-99		TPU is 14.6. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.88. Rad error is 1.87.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 154. Rad error is 154.
8004-4793 MW367	MW367UG2-15	Sodium	х	Other specific flags and footnotes may be required to properly define the results.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.87. Rad error is 6.86.
		Gross beta		TPU is 8.96. Rad error is 8.53.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 1.01. Rad error is 0.985.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.47. Rad error is 3.43.
		Technetium-99		TPU is 12.5. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.59. Rad error is 1.58.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 160.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0983 MW368		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sampl was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0983 MW368		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sampl was collected.
		Thallium		During sampling, the well went dry; therefore, no sampl was collected.
		Uranium		During sampling, the well went dry; therefore, no sampl was collected.
		Vanadium		During sampling, the well went dry; therefore, no sampl was collected.
		Zinc		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sampl was collected.
		Acetone		During sampling, the well went dry; therefore, no sampl was collected.
		Acrolein		During sampling, the well went dry; therefore, no sampl was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampl was collected.
		Styrene		During sampling, the well went dry; therefore, no sampl was collected.
		Toluene		During sampling, the well went dry; therefore, no samplwas collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samplwas collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampl was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
8004-4820 MW369	MW369UG2-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.99. Rad error is 5.98.
		Gross beta		TPU is 11.8. Rad error is 10.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.572. Rad error is 0.564.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.92. Rad error is 1.89.
		Technetium-99		TPU is 14.2. Rad error is 13.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.66. Rad error is 1.65.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 153. Rad error is 153.
8004-4818 MW370	MW370UG2-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.95. Rad error is 3.95.
		Gross beta		TPU is 8.4. Rad error is 7.96.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.511. Rad error is 0.5.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.56. Rad error is 1.56.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.7. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.289. Rad error is 0.282.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 158. Rad error is 158.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4819 MW371	MW371UG2-15	Tantalum	Ν	Sample spike recovery not within control limits.
		Zinc	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.75. Rad error is 4.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.71. Rad error is 5.66.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.321. Rad error is 0.32.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.21. Rad error is 2.18.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.55. Rad error is 1.54.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 149. Rad error is 149.
3004-4808 MW372	MW372UG2-15	Tantalum	Ν	Sample spike recovery not within control limits.
		Zinc	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.11. Rad error is 7.02.
		Gross beta		TPU is 23.9. Rad error is 14.9.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.349. Rad error is 0.348.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.86. Rad error is 1.83.
		Technetium-99		TPU is 25.1. Rad error is 15.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.224. Rad error is 0.223.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 152. Rad error is 152.
8004-4792 MW373	MW373UG2-15	Tantalum	Ν	Sample spike recovery not within control limits.
		Zinc	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.66. Rad error is 8.52.
		Gross beta		TPU is 8.9. Rad error is 8.59.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.318. Rad error is 0.317.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.93. Rad error is 1.93.
		Technetium-99		TPU is 11.7. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.76. Rad error is 1.72.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 144. Rad error is 144.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0990 MW374		Tantalum	N	Sample spike recovery not within control limits.
		Zinc	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.1. Rad error is 8.07.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.45. Rad error is 6.41.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.861. Rad error is 0.853.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.3. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.2. Rad error is 2.13.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 142. Rad error is 142.
004-0985 MW375	MW375UG2-15	Tantalum	Ν	Sample spike recovery not within control limits.
		Zinc	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6. Rad error is 5.95.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.06. Rad error is 6.06.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.28. Rad error is 0.277.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.17. Rad error is 1.16.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.06. Rad error is 2.03.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 145. Rad error is 145.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sampli was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Magnesium	333	During sampling, the well went dry; therefore, no sampling was collected.
		Manganese		During sampling, the well went dry; therefore, no samplivas collected.
		Mercury		During sampling, the well went dry; therefore, no sampling was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sampling was collected.
		Nickel		During sampling, the well went dry; therefore, no samp was collected.
		Potassium		During sampling, the well went dry; therefore, no samp was collected.
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.
		Selenium		During sampling, the well went dry; therefore, no samp was collected.
		Silver		During sampling, the well went dry; therefore, no samp was collected.
		Sodium		During sampling, the well went dry; therefore, no samp was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376	·	Tribromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.
		lodomethane		During sampling, the well went dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
	,	Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well went dry; therefore, no sampl was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sampl was collected.
		Sulfate		During sampling, the well went dry; therefore, no sampl was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sampl was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sampl was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sampl was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sampl was collected.
		рН		During sampling, the well went dry; therefore, no sampling was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no samp was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no sampli was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampling was collected.
		Copper		During sampling, the well went dry; therefore, no sampl was collected.
		Iron		During sampling, the well went dry; therefore, no sampl was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Magnesium	333 - 3	During sampling, the well went dry; therefore, no sampl was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.
		Potassium		During sampling, the well went dry; therefore, no sampl was collected.
		Rhodium		During sampling, the well went dry; therefore, no sampl was collected.
		Selenium		During sampling, the well went dry; therefore, no sampl was collected.
		Silver		During sampling, the well went dry; therefore, no sampl was collected.
		Sodium		During sampling, the well went dry; therefore, no sampl was collected.
		Tantalum		During sampling, the well went dry; therefore, no sampl was collected.
		Thallium		During sampling, the well went dry; therefore, no sampling sampling, the well went dry; therefore, no sampling samples are collected.
		Uranium		During sampling, the well went dry; therefore, no sampl was collected.
		Vanadium		During sampling, the well went dry; therefore, no sampl was collected.
		Zinc		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sampling was collected.
		Acetone		During sampling, the well went dry; therefore, no sampling was collected.
		Acrolein		During sampling, the well went dry; therefore, no sampl was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sampl was collected.
		Benzene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampl was collected.
		Styrene		During sampling, the well went dry; therefore, no sampl was collected.
		Toluene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampl was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampli was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sampl was collected.
		lodomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Dichloromethane		During sampling, the well went dry; therefore, no samp was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sam was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sam was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sam was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sam was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sam was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sam was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sam was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sam was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sam was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no sam was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sam was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sam was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377	Campione	Thorium-230	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG2-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Tantalum	Ν	Sample spike recovery not within control limits.
		Zinc	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.94. Rad error is 3.94.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.48. Rad error is 6.43.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.792. Rad error is 0.79.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.18. Rad error is 2.16.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.2. Rad error is 10.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.91. Rad error is 1.91.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 150. Rad error is 150.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG2-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performe
		Tantalum	Ν	Sample spike recovery not within control limits.
		Zinc	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.58. Rad error is 4.57.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.69. Rad error is 8.68.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.253. Rad error is 0.25.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.59. Rad error is 1.59.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.48. Rad error is 2.41.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 144. Rad error is 144.
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG2-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		pН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG2-15	Zinc	i iag	Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG2-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рH		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG2-15	Zinc	i iag	Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG2-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe
		Vanadium		Analysis of constituent not required and not performe

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG2-15	Zinc	Flay	Analysis of constituent not required and not performed.
	100002 10	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG2-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Facility	Constituent	Flog	Description
		Flay	Analysis of constituent not required and not performed.
10100210			Analysis of constituent not required and not performed.
	,		Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
	•		Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed. Analysis of constituent not required and not performed.
	20		
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
	I otal Organic Halides		Analysis of constituent not required and not performed.
	Facility Sample ID TB4UG2-15	Sample ID Constituent	Sample IDConstituentFlagTB4UG2-15ZincPCB, TotalPCB, TotalPCB-1016PCB-1221PCB-1222PCB-1232PCB-1242PCB-1248PCB-1254PCB-1260PCB-1268Gross alphaGross betaIodine-131Radium-226Strontium-90Technetium-99Thorium-230TritiumChemical Oxygen DemandCyanideIodideTotal Organic Carbon

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB5UG2-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5UG2-15	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed
3004-4800 MW360	MW360DUG2-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.63. Rad error is 6.63.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.65. Rad error is 8.37.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.471. Rad error is 0.466.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.43. Rad error is 3.43.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.216. Rad error is 0.216.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 165. Rad error is 165.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

CONTAINED – QUARTERLY, 1st Quarter 2015 Facility: U.S. DOE – Paducah Gaseous Diffusion Plant Permit Number: SW7300014, SW7300015, SW7300043 Finds/Unit:

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2015 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with at least three test wells or sidegradient wells (Exhibit D.1). The first quarter 2015 data used to conduct the statistical analyses were collected in January 2015. The statistical analyses for this report first utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses is run, utilizing the last eight quarters, on analytes that had at least one downgradient well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals of concern that have Kentucky maximum contaminant levels (MCLs) and the results that do not exceed their respective MCL, no exceedance is reported. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted for pH. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, was conducted. The second one-sided tolerance interval statistical test was conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper tolerance limit using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower tolerance limit to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The tolerance limit (TL) was calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters by groundwater system from the available data set and the statistical test performed using the one-sided tolerance interval.

¹ For pH, two-sided TL (upper and lower) were calculated with an adjusted K factor using the following equations: $upper TL = X + (K \times S)$ $lower TL = X - (K \times S)$

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2015. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a well is sampled on two different dates, the most current available data are used. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Station.	Trues	Groundwater
Station	Туре	Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359*	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365*	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368*	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374	BG	UCRS
MW375	SG	UCRS
MW376*	SG	UCRS
MW377*	SG	UCRS

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Parameters
Aluminum
Beta Activity
Boron
Bromide
Calcium
Chemical Oxygen Demand
Chloride
Cobalt
Conductivity
Copper
Dissolved Oxygen
Dissolved Solids
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
pH*
Potassium
Radium-226
Sodium
Sulfate
Technetium-99
Thorium-230
Total Organic Carbon
Total Organic Halides
Trichloroethene
Uranium
Vanadium
Zinc

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	1	3	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	3	1	Yes
Bromide	4	1	3	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand	4	2	2	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	0	4	Yes
Conductivity	4	0	4	Yes
Copper	4	1	3	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Oxygen Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	4	0	No
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	0	4	Yes
Methylene chloride	4	4	4 0	No
mentylene chioride	4	4	0	INU

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	4	4	0	No
Nickel	4	0	4	Yes
Oxidation-Reduction Potential	4	0	4	Yes
PCB, Total	4	4	0	No
PCB-1016	4	4	0	No
PCB-1221	4	4	0	No
PCB-1232	4	4	0	No
PCB-1242	4	4	0	No
PCB-1248	4	4	0	No
PCB-1254	4	4	0	No
PCB-1260	4	4	0	No
PCB-1268	4	4	0	No
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	4	0	No
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon	4	0	4	Yes
Total Organic Halides	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Uranium	4	0	4	Yes
Vanadium	4	2	2	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	2	2	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Actylointrie	6	2	4	Yes
Antimony	6	6	4 0	No
Beryllium	6	6	0	No
Beta Activity	6	2	4	Yes
Boron	6	<u>2</u> 1	<u> </u>	Yes
Bromide	6	0	<u> </u>	Yes
	6	6	0	
Bromochloromethane Bromodichloromethane	6	6	0	No No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand	6	4	2	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene		6	0	No
Cobalt Com de attricter	6	0	6	Yes
Conductivity		0	6	Yes
Copper	6	3	3	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Methylene chloride	6	6	0	No
Molybdenum	6	4	2	Yes
Nickel	6	0	6	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	5	1	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	5	1	Yes
Toluene	6	6	0	No
Total Organic Carbon	6	0	6	Yes
Total Organic Halides	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Uranium	6	5	1	Yes
Vanadium	6	5	1	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored	Uncensored	Statistical
1110 T (Observation	Observation	Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane 1,2-Dichlorobenzene	6	6	0	No
1	6	6	0	No
1,2-Dichloropropane	6	6 6	0	No No
2-Butanone			0	
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Boron	6	1	5	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand	6	5	1	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	0	6	Yes
Conductivity	6	0	6	Yes
Copper	6	5	1	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No
Molybdenum	6	6	0	No

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored	Uncensored	Statistical
Nickel	6	Observation 0	Observation 6	Analysis? Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	3	3	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	1	5	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	5	1	Yes
Toluene	6	6	0	No
Total Organic Carbon	6	0	6	Yes
Total Organic Halides	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Uranium	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	2	4	Yes

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 25, 31, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5 plus those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

<u>UCRS</u>

This quarter's results identified historical background exceedances for oxidation-reduction potential and sulfate.

<u>URGA</u>

This quarter's results identified historical background exceedances for beta activity, conductivity, oxidation-reduction potential, and technetium-99.

LRGA

This quarter's results identified historical background exceedances for oxidation-reduction potential and technetium-99.

Conclusion

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW362: Oxidation-Reduction Potential	MW357: Oxidation-Reduction Potential	MW358: Oxidation-Reduction Potential
MW371: Oxidation-Reduction Potential	MW360: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential
MW374: Oxidation-Reduction Potential	MW363: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential, Technetium-99
MW375: Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential
	MW369: Oxidation-Reduction Potential	MW370: Oxidation-Reduction Potential
	MW372: Beta Activity, Conductivity, Oxidation-Reduction Potential, Technetium-99	MW373: Oxidation-Reduction Potential

Exhibit D.6. Summary of Exceedances	of Statistically Derived	l Historical Background	Concentrations
	<u> </u>		• • • • • • • • • • • • • • • • • • • •

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Chemical Oxygen Demand	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration
Copper	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration
Oxidation- Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW362, MW371, MW374, and MW375

Exhibit D.7. Test Summaries for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW375
Total Organic Carbon	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration
Total Organic Halides	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration
Uranium	Tolerance Interval	1.68	No exceedance of statistically derived historical background concentration
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration

Exhibit D.7. Tests Summary for Qualified Parameters—UCRS (Continued)

_

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration
Beta Activity ¹	Tolerance Interval	0.74	Current results exceed statistically derived historical background concentration in MW372
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration
Chemical Oxygen Demand	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	0.85	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration
Dissolved Solids	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration

Exhibit D.8. Test Summaries for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360 MW363, MW366, MW369, and MW372
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration
Radium-226	Tolerance Interval	2.61	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW372
Thorium-230	Tolerance Interval	1.03	No exceedance of statistically derived historical background concentration
Total Organic Carbon	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration
Total Organic Halides	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Trichloroethene ¹	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration
Uranium	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration
Vanadium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration

Exhibit D.8. Tests Summary for Qualified Parameters—URGA (Continued)

 $\overline{\text{CV}}$: coefficient of variation *If $\overline{\text{CV}} > 1.0$, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration
Chemical Oxygen Demand	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373

Exhibit D.9. Test Summaries for Qualified Parameters-LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted		
pH	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration		
Potassium	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration		
Radium-226	Tolerance Interval	2.66	No exceedance of statistically derived historical background concentration		
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration		
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration		
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW364		
Thorium-230	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration		
Total Organic Carbon	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration		
Total Organic Halides	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration		
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration		
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration		

Exhibit D.9. Tests Summary for Qualified Parameters—LRGA (Continued)

CV: coefficient of variation

*If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the results of the one-sided upper tolerance interval test compared to current background, and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 2, 5, and 4 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

<u>UCRS</u>

Because gradients in the UCRS are downward, there are no truly downgradient UCRS wells that exceed the current background TL derived using the most recent eight quarters of data. NOTE: Sulfate concentrations in one UCRS well exceeded the current TL this quarter.

<u>URGA</u>

This quarter's results showed no exceedances of the current TL in wells located downgradient of the landfill.

LRGA

This quarter's results showed no exceedances of the current TL in wells located downgradient of the landfill.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.10. Summary of Exceedances (in downgradient wells) of the TL Calculated Using Current Background Concentrations			
URGA LRGA			
None			

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted		
Oxidation-Reduction Potential	Tolerance Interval	0.36	No exceedance of statistically derived current background concentration		
Sulfate	Tolerance Interval	0.51	Because gradients in UCRS wells are downward, there are no UCRS wells that are actually downgradient of the landfill. However, sulfate concentrations exceeded the TL calculated using current background data in MW375		

Exhibit D.11. Test Summaries for Qualified Parameters—UCRS

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted		
Beta Activity	Tolerance Interval	0.92	No exceedance of statistically derived current background concentration		
Conductivity	Tolerance Interval		No exceedance of statistically derived current background concentration		
Oxidation-Reduction Potential	Tolerance Interval	0.63	No exceedance of statistically derived current background concentration		
Technetium-99	Tolerance Interval	0.96	No exceedance of statistically derived current background concentration		

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted	
Oxidation-Reduction Potential	Tolerance Interval	0.35	No exceedance of statistically derived current background concentration	
Technetium-99	Tolerance Interval	0.51	No exceedance of statistically derived current background concentration	

Exhibit D.13. Test Summaries for Qualified Parameters—LRGA

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 3.300
 S= 6.859
 CV(1)=2.078
 K factor**= 2.523
 TL(1)= 20.604
 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.371
 S= 1.678
 CV(2)=-4.521
 K factor**= 2.523
 TL(2)= 3.863
 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** Well Number: MW371 Date Collected Result LN(Result) 3/18/2002 0.806 2.24 4/22/2002 0.2 -1.6097/15/2002 0.2 -1.609 10/8/2002 0.2 -1.609 0.2 1/8/2003 -1.609 4/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW374 Date Collected LN(Result) Result 10/8/2002 21.3 3.059 1/7/2003 20 2.996 4/2/2003 4.11 1.413 7/9/2003 1.41 0.344 10/7/2003 1.09 0.086 1/6/2004 0.854 -0.158 4/7/2004 0.2 -1.6097/14/2004 0.2 -1.609

Data

Dry/Partially Dry Wells			
Well No.	Gradient		
MW359	Downgradient		
MW365	Downgradient		
MW368	Sidegradient		

MW376 Sidegradient

MW377 Sidegradient

nt utilizi gradient gradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.775	N/A	-0.255	NO
MW371	Upgradient	Yes	0.444	N/A	-0.812	NO
MW374	Upgradient	No	0.05	N/A	-2.996	N/A
MW375	Sidegradient	Yes	0.0368	N/A	-3.302	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.650 S = 0.805 CV(1) = 1.238 K factor**= 2.523
 TL(1) = 2.681 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.034 S = 1.030 CV(2) = -0.996 K factor**= 2.523
 TL(2) = 1.564 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	2	0.693			
4/22/2002	2	0.693			
7/15/2002	2	0.693			
10/8/2002	0.2	-1.609			
1/8/2003	0.2	-1.609			
4/3/2003	0.2	-1.609			
7/9/2003	0.2	-1.609			
10/6/2003	0.2	-1.609			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	2	0.693			
1/7/2003	0.2	-1.609			
4/2/2003	0.2	-1.609			
7/9/2003	0.2	-1.609			
10/7/2003	0.2	-1.609			
1/6/2004	0.2	-1.609			
4/7/2004	0.2	-1.609			
7/14/2004	0.2	-1.609			

Data

Dry/Partially Dry Wells		
Well No. Gradient		

MW359	Downgradient	
MW365	Downgradient	
MW368	Sidegradient	
MW376	Sidegradient	
MW377	Sidegradient	
Current	Quarter Data	
	~	-
Well No.	Gradient	Det
MW362	Downgradient	Y
MW271	Ungradiant	N

gradient radient radient er Data

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated

utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	t Yes	0.00934	N/A	-4.673	NO
MW371	Upgradient	No	0.015	N/A	-4.200	N/A
MW374	Upgradient	No	0.0117	N/A	-4.448	N/A
MW375	Sidegradient	No	0.00884	N/A	-4.728	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.394	S = 0.474	CV(1)= 0.340	K factor**= 2.523	TL(1)= 2.590	LL(1)= N/A
Statistics-Transformed Background	X =0.279	S = 0.332	CV(2) =1.190	K factor**= 2.523	TL(2)= 1.118	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resu				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	1	0.000		
4/22/2002	1	0.000		
7/15/2002	1	0.000		
10/8/2002	1	0.000		
1/8/2003	1	0.000		
4/3/2003	1	0.000		
7/9/2003	1	0.000		
10/6/2003	1	0.000		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	2.1	0.742		
1/7/2003	2.1	0.742		
4/2/2003	1.9	0.642		
7/9/2003	1	0.000		
10/7/2003	1.9	0.642		
1/6/2004	1.9	0.642		
4/7/2004	1.8	0.588		
7/14/2004	1.6	0.470		

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW359	Downgradient					
MW365	Downgradient					
MW368	Sidegradient					
MW376	Sidegradient					
MW377	Sidegradient					
Current	Quarter Data					
Well No.	Gradient	Dete				
MW362	Downgradient	Ye				
MW371	Upgradient	Ye				
MW374						
	Upgradient	Ye				
MW375	Upgradient Sidegradient	Ye No				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.137	NO	-1.988	N/A
MW371	Upgradient	Yes	0.0826	NO	-2.494	N/A
MW374	Upgradient	Yes	0.979	NO	-0.021	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A
N/A - Resu	Its identified as N	Non-Detects	during lab	oratory analysis or	data validation	and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=34.100 S= 13.637 CV(1)=0.400 **K factor**=** 2.523 **Statistics-Background Data** TL(1)= 68.505 LL(1)=N/A **Statistics-Transformed Background K factor**=** 2.523 TL(2)= 4.364 LL(2)=N/A

X= 3.466 **S**= 0.356 **CV(2)**=0.103 Data

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	17.2	2.845				
4/22/2002	22.4	3.109				
7/15/2002	25.5	3.239				
10/8/2002	26.4	3.273				
1/8/2003	27.2	3.303				
4/3/2003	30.3	3.411				
7/9/2003	25.9	3.254				
10/6/2003	27	3.296				
10/0/2003	21	5.290				
Well Number:	27 MW374	5.270				
		LN(Result)				
Well Number:	MW374					
Well Number: Date Collected	MW374 Result	LN(Result)				
Well Number: Date Collected 10/8/2002	MW374 Result 67.3	LN(Result) 4.209				
Well Number: Date Collected 10/8/2002 1/7/2003	MW374 Result 67.3 60.6	LN(Result) 4.209 4.104				
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 67.3 60.6 47.2	LN(Result) 4.209 4.104 3.854				
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 67.3 60.6 47.2 34.7	LN(Result) 4.209 4.104 3.854 3.547				
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 67.3 60.6 47.2 34.7 37.1	LN(Result) 4.209 4.104 3.854 3.547 3.614				

			-	i, assume not	mar anstri	button und
Well No.	Gradient			continue with		l analysis
MW359	Downgradient			utilizing TL(1	.)•	
MW365	Downgradient					
MW368	Sidegradient					
MW376	Sidegradient					
MW377	Sidegradient					
0	0					
Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	17.4	NO	2.856	N/A
MW371	Upgradient	Yes	34.8	NO	3.550	N/A
MW374	Upgradient	Yes	21.8	NO	3.082	N/A
MW375	Sidegradient	Yes	14.8	NO	2.695	N/A

Dry/Partially Dry Wells

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

MW371	Upgradient	Yes	34.8	NO	3.550	N/A
MW374	Upgradient	Yes	21.8	NO	3.082	N/A
MW375	Sidegradient	Yes	14.8	NO	2.695	N/A
N/A - Resu	ilts identified as N	on-Detects	during laborate	ory analysis or	data validation an	d were not
included in	the statistical eval	luation Ad	ditionally for	narameters that	have MCLs whe	re the result for a

well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=72.938 S= 70.749 CV(1)=0.970 **K factor**=** 2.523 **Statistics-Background Data** TL(1)= 251.437 LL(1)=N/A **Statistics-Transformed Background X=**4.000 **S**= 0.702 **CV(2)**=0.175 **K factor**=** 2.523 **TL(2)**= 5.770 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	35	3.555			
4/22/2002	35	3.555			
7/15/2002	35	3.555			
10/8/2002	35	3.555			
1/8/2003	35	3.555			
4/3/2003	35	3.555			
7/9/2003	35	3.555			
10/6/2003	35	3.555			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	260	5.561			
1/7/2003	214	5.366			
4/2/2003	147	4.990			
7/9/2003	72	4.277			
10/7/2003	56	4.025			
1/6/2004	68	4.220			
4/7/2004	35	3.555			
7/14/2004	35	3.555			

Data

			-	i, assume nor	mai distri	bution and
Well No.	Gradient			continue with		l analysis
MW359	Downgradient			utilizing TL(1	.).	
MW365	Downgradient					
MW368	Sidegradient					
MW376	Sidegradient					
MW377	Sidegradient					
Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	11	NO	2.398	N/A
MW371	Upgradient	No	20	N/A	2.996	N/A
MW374	Upgradient	No	20	N/A	2.996	N/A

Dry/Partially Dry Wells

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

MW371	Upgradient	No	20	N/A	2.996	N/A
MW374	Upgradient	No	20	N/A	2.996	N/A
MW375	Sidegradient	Yes	13.3	NO	2.588	N/A
N/A - Resu	ilts identified as N	Ion-Detects	during laborat	tory analysis or	data validation a	nd were not
included in	the statistical eva	luation. Ac	ditionally for	parameters that	t have MCLs, who	ere the result for a

well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 91.300
 S= 86.959
 CV(1)=0.952
 K factor**= 2.523
 TL(1)= 310.697
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.620
 S= 1.590
 CV(2)=0.439
 K factor**= 2.523
 TL(2)= 7.631
 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** Well Number: MW371 Date Collected Result LN(Result) 7/15/2002 8.3 2.116 10/8/2002 7.6 2.028 1/8/2003 7.7 2.041 4/3/2003 8.8 2.175 7/9/2003 8.1 2.092 10/6/2003 8.6 2.152 1/7/2004 7.6 2.028 4/6/2004 7.6 2.028 Well Number: MW374 Date Collected Result LN(Result) 10/8/2002 199.2 5.294 1/7/2003 199.7 5.297 4/2/2003 171.8 5.146 7/9/2003 178.7 5.186 10/7/2003 175.6 5.168 1/6/2004 170.4 5.138 4/7/2004 156.4 5.052 7/14/2004 144.7 4.975

Data

Dry/Partially Dry wells					
Well No.	Gradient				
MW359	Downgradient				
MW365	Downgradient				
MW368	Sidegradient				
MW376	Sidegradient				
MW377	Sidegradient				
~					
Current	Quarter Data				
Well No.	Gradient	Dete			
MW362	Downgradient	Ye			
MW371	Upgradient	Ye			

Dry/Partially Dry Walls

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradient	Yes	9.41	NO	2.242	N/A	
MW371	Upgradient	Yes	6.67	NO	1.898	N/A	
MW374	Upgradient	Yes	82.4	NO	4.412	N/A	
MW375	Sidegradient	Yes	5.42	NO	1.690	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.007
 S= 0.009
 CV(1)=1.314
 K factor**= 2.523
 TL(1)= 0.031
 LL(1)=N/A

 Statistics-Transformed Background
 X= -5.843
 S= 1.392
 CV(2)=-0.238
 K factor**= 2.523
 TL(2)= -2.331
 LL(2)=N/A

-		
Historical Bac		
Upgradient w	ens with 1 ra	insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.01	-4.605
1/7/2003	0.01	-4.605
4/2/2003	0.01	-4.605
7/9/2003	0.00161	-6.432
10/7/2003	0.001	-6.908
1/6/2004	0.001	-6.908
4/7/2004	0.001	-6.908
7/14/2004	0.001	-6.908

Data

Dry/Par	tially Dry Wells
Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.00088	N/A	-7.036	NO
MW371	Upgradient	Yes	0.00019	N/A	-8.568	NO
MW374	Upgradient	Yes	0.0036	N/A	-5.627	NO
MW375	Sidegradient	Yes	0.00051	N/A	-7.581	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 918.744 S= 417.257 CV(1)=0.454
 K factor**= 2.523
 TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background X = 6.705 S= 0.550 CV(2)=0.082 Data

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	541	6.293			
4/22/2002	643	6.466			
7/15/2002	632	6.449			
10/8/2002	631	6.447			
1/8/2003	680	6.522			
4/3/2003	749	6.619			
7/9/2003	734	6.599			
10/6/2003	753	6.624			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
3/18/2002	1007	6.915			
10/8/2002	1680	7.427			
1/7/2003	1715.9	7.448			
4/2/2003	172	5.147			
7/9/2003	1231	7.116			
10/7/2003	1214	7.102			
1/6/2004	1172	7.066			
4/7/2004	1145	7.043			

Dry/Par	tially Dry Well	s
Well No.	Gradient	
MW359	Downgradient	
MW365	Downgradient	
MW368	Sidegradient	
MW376	Sidegradient	
MW377	Sidegradient	
Current	Quarter Data	
Well No.	Gradient	Dete
MW362	Downgradient	Ye
MW371	Upgradient	Ye
MW374	Upgradient	Ye

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 8.092

LL(2)=N/A

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	t Yes	652	NO	6.480	N/A
MW371	Upgradient	Yes	776	NO	6.654	N/A
MW374	Upgradient	Yes	705	NO	6.558	N/A
MW375	Sidegradient	Yes	375	NO	5.927	N/A
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

K factor=** 2.523

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L UCRS Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Dry/Partially Dry Wells

Statistics-Background Data	X =0.056	S = 0.072	CV(1)= 1.275	K factor**= 2.523	TL(1)= 0.237	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.395	S = 0.915	CV(2) =-0.270	K factor**= 2.523	TL(2)= -1.086	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	0.025	-3.689		
4/22/2002	0.025	-3.689		
7/15/2002	0.05	-2.996		
10/8/2002	0.02	-3.912		
1/8/2003	0.02	-3.912		
4/3/2003	0.02	-3.912		
7/9/2003	0.02	-3.912		
10/6/2003	0.02	-3.912		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	0.2	-1.609		
1/7/2003	0.2	-1.609		
4/2/2003	0.2	-1.609		
7/9/2003	0.02	-3.912		
10/7/2003	0.02	-3.912		
1/6/2004	0.02	-3.912		
4/7/2004	0.02	-3.912		
7/14/2004	0.02	-3.912		

Well No.	Gradient			est well resul		
MW359	Downgradient		ι	tilizing TL(2	() for com	parison.
MW365	Downgradient					
MW368	Sidegradient					
MW376	Sidegradient					
MW377	Sidegradient					
Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.00108	N/A	-6.831	NO
MW371	Upgradient	Yes	0.00128	N/A	-6.661	NO
MW374	Upgradient	Yes	0.00084	N/A	-7.082	NO
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A
included i	n the statistical ev	aluation. Ad	lditionally	oratory analysis or for parameters that not included in the	have MCLs,	where the result for a

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

MW371	Upgradient	Yes	0.00128	N/A	-6.661	NO	
MW374	Upgradient	Yes	0.00084	N/A	-7.082	NO	
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A	
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not							

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 **Statistics-Background Data** X=1.138 **S**= 0.621 CV(1)=0.546 TL(1)= 2.704 LL(1)=N/A **Statistics-Transformed Background X**=-0.013 **S**= 0.577 CV(2)=-43.069 **K factor**=** 2.523 **TL(2)**= 1.441 LL(2)=N/A

Historical Bac Upgradient W		
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Date Collected	Result	LN(Result)
3/18/2002	0.6	-0.511
10/8/2002	0.67	-0.400
1/7/2003	0.23	-1.470
4/2/2003	0.65	-0.431
7/9/2003	0.92	-0.083
10/7/2003	0.99	-0.010
1/6/2004	1.11	0.104
4/7/2004	0.88	-0.128

Data

Dry/Par	tially Dry Well	s	1, assume normal distribution and			
Well No.	Gradient			continue with		l analysis
MW359	Downgradient		I	utilizing TL(1	.).	
MW365	Downgradient					
MW368	Sidegradient					
MW376	Sidegradient					
MW377	Sidegradient					
Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	2.16	NO	0.770	N/A
MW362 MW371	Downgradient Upgradient	Yes Yes	2.16 1.79	NO NO	0.770 0.582	N/A N/A
	e					
MW371	Upgradient	Yes	1.79	NO	0.582	N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 590.000 S= 248.068 CV(1)=0.420
 K factor**= 2.523
 TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background X=6.308 S= 0.383 CV(2)=0.061 Data

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	274	5.613			
4/22/2002	409	6.014			
7/15/2002	418	6.035			
10/8/2002	424	6.050			
1/8/2003	431	6.066			
4/3/2003	444	6.096			
7/9/2003	445	6.098			
10/6/2003	438	6.082			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	1136	7.035			
1/7/2003	1101	7.004			
4/2/2003	863	6.760			
7/9/2003	682	6.525			
10/7/2003	589	6.378			
1/6/2004	603	6.402			
4/7/2004	601	6.399			
7/14/2004	582	6.366			

Well No.	Gradient	
MW359	Downgradient	
MW365	Downgradient	
MW368	Sidegradient	
MW376	Sidegradient	
MW377	Sidegradient	
Current	Quarter Data	
Well No.	Gradient	Det
MW362	Downgradient	Y
MW371	Upgradient	Ye
MW374	Upgradient	Ye
MW375	Sidegradient	Y

Dry/Partially Dry Wells

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis

TL(2)= 7.274

LL(2)=N/A

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	350	NO	5.858	N/A
MW371	Upgradient	Yes	426	NO	6.054	N/A
MW374	Upgradient	Yes	347	NO	5.849	N/A
MW375	Sidegradient	Yes	184	NO	5.215	N/A

K factor=** 2.523

utilizing TL(1).

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L UCRS Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Г

K factor=** 2.523 **Statistics-Background Data X**= 6.612 **S**= 6.487 CV(1)=0.981 TL(1)= 22.979 LL(1)=N/A **Statistics-Transformed Background X**=1.363 **S**= 1.147 CV(2)=0.841 **K factor**=** 2.523 TL(2)= 4.256 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** Well Number: MW371 Date Collected Result LN(Result) 3/18/2002 0.270 1.31 4/22/2002 0.913 -0.091-0.127 7/15/2002 0.881 10/8/2002 3.86 1.351 1/8/2003 1.88 0.631 4/3/2003 3.18 1.157 7/9/2003 0.484 -0.726 10/6/2003 2.72 1.001 Well Number: MW374 Date Collected Result LN(Result) 10/8/2002 23 3.135 1/7/2003 13.9 2.632 4/2/2003 14 2.639 7/9/2003 14.2 2.653 10/7/2003 7.92 2.069 1/6/2004 2.062 7.86 4/7/2004 4.82 1.573 7/14/2004 4.87 1.583

Data

Dry/Par	tially Dry Well	s	1, assume normal distribution and				
Well No.	Gradient		continue with statistical analysis utilizing TL(1).				
MW359	Downgradient		,	utilizing TL()	.).		
MW365	Downgradient						
MW368	Sidegradient						
MW376	Sidegradient						
MW377	Sidegradient						
Current	Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradient	Yes	0.611	NO	-0.493	N/A	
MW371	Upgradient	Yes	0.372	NO	-0.989	N/A	
MW374	Upgradient	Yes	0.638	NO	-0.449	N/A	
MW375	Sidegradient	Yes	0.157	NO	-1.852	N/A	
N/A - Rest	ults identified as I	Non-Detects	during lat	oratory analysis or	data validation	n and were not	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

MW362	Downgradient	Yes	0.611	NO	-0.493	N/A
MW371	Upgradient	Yes	0.372	NO	-0.989	N/A
MW374	Upgradient	Yes	0.638	NO	-0.449	N/A
MW375	Sidegradient	Yes	0.157	NO	-1.852	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 **Statistics-Background Data X**=11.347 **S**= 3.019 CV(1)=0.266 **TL(1)**= 18.963 LL(1)=N/A **Statistics-Transformed Background X**= 2.401 **S**= 0.237 **CV(2)**=0.099 **K factor**=** 2.523 TL(2)= 2.999 LL(2)=N/A

	ells with Tr	
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	20	2.996
1/7/2003	16.1	2.779
4/2/2003	13.1	2.573
7/9/2003	10.3	2.332
10/7/2003	11.1	2.407
1/6/2004	11	2.398
4/7/2004	9.69	2.271
7/14/2004	8.49	2.139

Data

Well No.	Gradient		continue with statistical analysis			
MW359	Downgradient		1	utilizing TL(1	l) .	
MW365	Downgradient					
MW368	Sidegradient					
MW376	Sidegradient					
MW377	Sidegradient					
Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	7.51	NO	2.016	N/A
MW371	Upgradient	Yes	14.5	NO	2.674	N/A
MW374	Upgradient	Yes	5.97	NO	1.787	N/A
MW375	Sidegradient	Yes	5.74	NO	1.747	N/A
N						

Dry/Partially Dry Wells

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.74 NO 1.747 N/A N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Dry/Partially Dry Wells

 Statistics-Background Data
 X= 0.248
 S= 0.222
 CV(1)=0.894
 K factor**= 2.523
 TL(1)= 0.809
 LL(1)=N/A

 Statistics-Transformed Background
 X= -1.873
 S= 1.068
 CV(2)=-0.570
 K factor**= 2.523
 TL(2)= 0.821
 LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Resu
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.596	-0.518
1/7/2003	0.565	-0.571
4/2/2003	0.675	-0.393
7/9/2003	0.397	-0.924
10/7/2003	0.312	-1.165
1/6/2004	0.299	-1.207
4/7/2004	0.329	-1.112
7/14/2004	0.342	-1.073

Data

Well No.	Gradient	
MW359	Downgradient	
MW365	Downgradient	
MW368	Sidegradient	
MW376	Sidegradient	
MW377	Sidegradient	
Current	Quarter Data	
Well No.	Gradient	Dete
Well No. MW362	Gradient Downgradient	Dete Ye
MW362	Downgradient	Ye
MW362 MW371	Downgradient Upgradient	Ye Ye

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	t Yes	0.0179	NO	-4.023	N/A
MW371	Upgradient	Yes	0.0093	NO	-4.678	N/A
MW374	Upgradient	Yes	0.268	NO	-1.317	N/A
MW375	Sidegradient	Yes	0.00989) NO	-4.616	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.023	S = 0.022	CV(1)= 0.980	K factor**= 2.523	TL(1)= 0.078	LL(1)= N/A
Statistics-Transformed Background	X =-4.349	S = 1.109	CV(2) =-0.255	K factor**= 2.523	TL(2)= -1.552	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.05	-2.996				
4/22/2002	0.05	-2.996				
7/15/2002	0.05	-2.996				
10/8/2002	0.0124	-4.390				
1/8/2003	0.005	-5.298				
4/3/2003	0.005	-5.298				
7/9/2003	0.005	-5.298				
10/6/2003	0.005	-5.298				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.05	-2.996				
1/7/2003	0.05	-2.996				
4/2/2003	0.05	-2.996				
7/9/2003	0.00794	-4.836				
10/7/2003	0.005	-5.298				
1/6/2004	0.005	-5.298				
4/7/2004	0.005	-5.298				
7/14/2004	0.005	-5.298				

Data

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
Current	Quarter Data
Well No.	Gradient Det
MW362	Downgradient Y

Dry/Partially Dry Wells

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW362	Downgradient	t Yes	0.00527	NO	-5.246	N/A		
MW371	Upgradient	Yes	0.00127	NO	-6.669	N/A		
MW374	Upgradient	Yes	0.00147	NO	-6.522	N/A		
MW375	Sidegradient	Yes	0.00405	NO	-5.509	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV** UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=22.281 S= 78.889 CV(1)=3.541 **K factor**=** 2.523 **Statistics-Background Data** TL(1)= 221.319 LL(1)=N/A **K factor**=** 2.523 TL(2)= 5.106 LL(2)=N/A

Statistics-Transformed Background X= 3.642 **S**= 1.729 **CV(2)**=0.475 Data

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	75	4.317				
4/22/2002	165	5.106				
7/15/2002	65	4.174				
4/3/2003	-19	#Func!				
7/9/2003	114	4.736				
10/6/2003	-22	#Func!				
1/7/2004	20.5	3.020				
4/6/2004	113	4.727				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
3/18/2002	135	4.905				
4/2/2003	-56	#Func!				
7/9/2003	-68	#Func!				
10/7/2003	-50	#Func!				
1/6/2004	-85	#Func!				
4/7/2004	6	1.792				
7/14/2004	-38	#Func!				
10/7/2004	1	0.000				

Dry/Partially Dry Wells						
Well No.	Gradient					
MW359	Downgradient					
MW365	Downgradient					
MW368	Sidegradient					
MW376	Sidegradient					
MW377	Sidegradient					

MW375 Sidegradient

Yes

C W N N N

4W377	Sidegradient	maximum background value.						
Current	Quarter Data							
Vell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW362	Downgradient	Yes	404	N/A	6.001	YES		
MW371	Upgradient	Yes	774	N/A	6.652	YES		
AW374	Upgradient	Yes	530	N/A	6.273	YES		

N/A

Because CV(1) is greater than 1, the

test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the

TL was considered equal to the

6.295

natural logarithm of background and

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

542

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW362	
MW371	
MW374	
MW375	

YES

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.619	S = 0.295	CV(1)= 0.045	K factor**= 2.904	TL(1)= 7.475	LL(1)=5.7635
Statistics-Transformed Background	X =1.889	S = 0.046	CV(2) =0.024	K factor**= 2.904	TL(2)= 2.023	LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Resul						
epgradient (
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	6.3	1.841				
4/22/2002	6.5	1.872				
7/15/2002	6.5	1.872				
10/8/2002	6.6	1.887				
1/8/2003	6.6	1.887				
4/3/2003	6.9	1.932				
7/9/2003	6.7	1.902				
10/6/2003	7	1.946				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
3/18/2002	5.75	1.749				
10/8/2002	6.6	1.887				
1/7/2003	6.82	1.920				
4/2/2003	6.86	1.926				
7/9/2003	6.7	1.902				
10/7/2003	6.6	1.887				
1/6/2004	6.9	1.932				
4/7/2004	6.58	1.884				

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW365	Downgradient				
MW368	Sidegradient				
MW376	Sidegradient				
MW377	Sidegradient				
Current	Quarter Data				
Well No.	Gradient	Detec			
MW362	Downgradient	t Yes			
MW371	Upgradient	Yes			
MW374	Upgradient	Yes			
MW375	Sidegradient	Yes			
included in	lts identified as N the statistical eva	luation			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW362	Downgradien	t Yes	6.73	NO	1.907	N/A
MW371	Upgradient	Yes	6.68	NO	1.899	N/A
MW374	Upgradient	Yes	6.63	NO	1.892	N/A
MW375	Sidegradient	Yes	6.29	NO	1.839	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 **Statistics-Background Data X**=1.262 **S**= 0.907 CV(1)=0.718 TL(1)= 3.549 LL(1)=N/A **Statistics-Transformed Background X**=-0.023 **S**= 0.752 CV(2)=-32.218 **K factor**=** 2.523 **TL(2)=** 1.874 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	2	0.693				
4/22/2002	2	0.693				
7/15/2002	2	0.693				
10/8/2002	0.408	-0.896				
1/8/2003	0.384	-0.957				
4/3/2003	0.368	-1.000				
7/9/2003	0.587	-0.533				
10/6/2003	0.382	-0.962				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	3.04	1.112				
1/7/2003	2.83	1.040				
4/2/2003	2	0.693				
7/9/2003	1.09	0.086				
10/7/2003	0.802	-0.221				
1/6/2004	0.897	-0.109				
4/7/2004	0.689	-0.373				
7/14/2004	0.716	-0.334				

Dry/Par	tially Dry Well	1, assume normal distribution and					
Well No.	Gradient		continue with statistical analysis				
MW359	Downgradient		l l	utilizing TL(1	L)•		
MW365	Downgradient						
MW368	Sidegradient						
MW376	Sidegradient						
MW377	Sidegradient						
Current	Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradient	Yes	0.399	NO	-0.919	N/A	
MW371	Upgradient	Yes	0.378	NO	-0.973	N/A	
MW374	Upgradient	Yes	0.499	NO	-0.695	N/A	
MW375	Sidegradient	Yes	0.286	NO	-1.252	N/A	
N/A - Res	ults identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=183.063 S= 73.222 CV(1)=0.400 **K factor**=** 2.523 **Statistics-Background Data** TL(1)= 367.800 LL(1)=N/A **Statistics-Transformed Background K factor**=** 2.523 TL(2)= 6.044 LL(2)=N/A

X = 5.146 S = 0.356 CV(2) = 0.069Data

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	129	4.860				
4/22/2002	131	4.875				
7/15/2002	127	4.844				
10/8/2002	123	4.812				
1/8/2003	128	4.852				
4/3/2003	144	4.970				
7/9/2003	126	4.836				
10/6/2003	120	4.787				
Well Number:	MW374					
Well Number: Date Collected	MW374 Result	LN(Result)				
		LN(Result) 5.817				
Date Collected	Result					
Date Collected 10/8/2002	Result 336	5.817				
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796				
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659				
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198				
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204				

Dry/Par	tially Dry Well	s	Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).			
Well No.	Gradient					
MW359	Downgradient		l l	utilizing TL(I	.)•	
MW365	Downgradient					
MW368	Sidegradient					
MW376	Sidegradient					
MW377	Sidegradient					
Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	110	NO	4.700	N/A
MW371	Upgradient	Yes	140	NO	4.942	N/A
MW374	Upgradient	Yes	121	NO	4.796	N/A
MW375	Sidegradient	Yes	58.2	NO	4.064	N/A
included in	n the statistical eva	aluation. Ad	ditionally	poratory analysis or for parameters that not included in the	have MCLs,	where the result for a

				()	()		
MW362	Downgradient	Yes	110	NO	4.700	N/A	
MW371	Upgradient	Yes	140	NO	4.942	N/A	
MW374	Upgradient	Yes	121	NO	4.796	N/A	
MW375	Sidegradient	Yes	58.2	NO	4.064	N/A	
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not							

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis **Historical Background Comparison** Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.469	S = 3.153	CV(1)= 0.487	K factor**= 2.523	TL(1)= 14.423	LL(1)= N/A
Statistics-Transformed Background	X= 1.794	S = 0.357	CV(2) =0.199	K factor**= 2.523	TL(2)= 2.694	LL(2)= N/A

Historical Background Data from					
	ansformed Resul				
MW371					
Result	LN(Result)				
16.3	2.791				
8.6	2.152				
6.7	1.902				
5	1.609				
5	1.609				
5	1.609				
5	1.609				
5	1.609				
MW374					
Result	LN(Result)				
5	1.609				
5	1.609				
5	1.609				
5.6	1.723				
5	1.609				
5	1.609				
11.3	2.425				
5	1.609				
	ells with Tra MW371 Result 16.3 8.6 6.7 5 5 5 5 5 5 5 5 5 5 5 5 5				

Data

Dry/Partially Dry Wells						
Well No.	Gradient					

Well No.	Gradient	D
Current	Quarter Data	
MW377	Sidegradient	
MW376	Sidegradient	
MW368	Sidegradient	
MW365	Downgradient	
MW359	Downgradient	

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	t Yes	11.2	NO	2.416	N/A
MW371	Upgradient	Yes	9.23	NO	2.222	N/A
MW374	Upgradient	Yes	5.39	NO	1.685	N/A
MW375	Sidegradient	Yes	27.6	YES	3.318	N/A

utilizing TL(1).

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW375

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 17.631
 S= 24.314
 CV(1)=1.379
 K factor**= 2.523
 TL(1)= 78.977
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.318
 S= 0.979
 CV(2)=0.422
 K factor**= 2.523
 TL(2)= 4.788
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW371	ansiormed Rest			
Date Collected	Result	LN(Result)			
3/18/2002	11.1	2.407			
4/22/2002	7	1.946			
7/15/2002	, 4.1	1.411			
10/8/2002	6	1.792			
1/8/2003	5.3	1.668			
4/3/2003	5.3	1.668			
7/9/2003	2.9	1.065			
10/6/2003	3.2	1.163			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	90	4.500			
1/7/2003	64	4.159			
4/2/2003	25	3.219			
7/9/2003	16	2.773			
10/7/2003	13	2.565			
1/6/2004	10	2.303			
4/7/2004	7.2	1.974			
7/14/2004	12	2.485			

Data

Dry/Partially Dry Wells	
Well No. Gradient	

•	Gradient	D
Current	Quarter Data	
MW377	Sidegradient	
MW376	Sidegradient	
MW368	Sidegradient	
MW365	Downgradien	t
MW359	Downgradien	t
wen no.	Oradicit	

Current	Qualiter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	2.78	N/A	1.022	NO
MW371	Upgradient	Yes	2.78	N/A	1.022	NO
MW374	Upgradient	Yes	3.16	N/A	1.151	NO
MW375	Sidegradient	Yes	1.79	N/A	0.582	NO

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated

utilizing TL(2) for comparison.

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 214.094 S= 231.089 CV(1)=1.079
 K factor**= 2.523
 TL(1)=797.131
 LL(1)=N/A

Statistics-Transformed Background X=4.867 S= 1.065 CV(2)=0.219 Data

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	50	3.912		
4/22/2002	105	4.654		
7/15/2002	70	4.248		
10/8/2002	52	3.951		
1/8/2003	20.2	3.006		
4/3/2003	104	4.644		
7/9/2003	34.2	3.532		
10/6/2003	46.1	3.831		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	903	6.806		
1/7/2003	539	6.290		
4/2/2003	295	5.687		
7/9/2003	272	5.606		
10/7/2003	197	5.283		
1/6/2004	330	5.799		
4/7/2004	183	5.209		
7/14/2004	225	5.416		

Diy/i al tially Diy wells					
Well No.	Gradient				
MW359	Downgradient				
MW365	Downgradient				
MW368	Sidegradient				

MW376 Sidegradient MW377 Sidegradient

Dry/Portiolly Dry Wolle

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

TL(2)= 7.554

LL(2)=N/A

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradient	Yes	7.52	N/A	2.018	NO	
MW371	Upgradient	Yes	7.18	N/A	1.971	NO	
MW374	Upgradient	Yes	21.9	N/A	3.086	NO	
MW375	Sidegradient	Yes	15.6	N/A	2.747	NO	

K factor=** 2.523

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.007	S = 0.012	CV(1)= 1.678	K factor**= 2.523	TL(1)= 0.037	LL(1)= N/A
Statistics-Transformed Background	X =-5.884	S = 1.299	CV(2) =-0.221	K factor**= 2.523	TL(2)= -2.607	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	0.001	-6.908			
4/22/2002	0.001	-6.908			
7/15/2002	0.001	-6.908			
10/8/2002	0.027	-3.612			
1/8/2003	0.001	-6.908			
4/3/2003	0.001	-6.908			
7/9/2003	0.00109	-6.822			
10/6/2003	0.001	-6.908			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	0.0438	-3.128			
1/7/2003	0.011	-4.510			
4/2/2003	0.00905	-4.705			
7/9/2003	0.00694	-4.970			
10/7/2003	0.001	-6.908			
1/6/2004	0.00315	-5.760			
4/7/2004	0.00258	-5.960			
7/14/2004	0.0018	-6.320			

Data

Dry/Partially Dry Wells	

-	Gradient	D
Current	Quarter Data	1
MW377	Sidegradient	
MW376	Sidegradient	
MW368	Sidegradient	
MW365	Downgradien	t
MW359	Downgradien	t
Well No.	Gradient	

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradient	Yes	0.0015	N/A	-6.502	NO	
MW371	Upgradient	Yes	0.0025	N/A	-5.991	NO	
MW374	Upgradient	Yes	0.00047	N/A	-7.663	NO	
MW375	Sidegradient	Yes	0.00008	6 N/A	-9.361	NO	

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonVanadiumUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Dry/Partially Dry Wells

 Statistics-Background Data
 X=0.055
 S=0.072
 CV(1)=1.319
 K factor**= 2.523
 TL(1)=0.237
 LL(1)=N/A

 Statistics-Transformed Background
 X=-3.438
 S=0.912
 CV(2)=-0.265
 K factor**= 2.523
 TL(2)=-1.138
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	0.025	-3.689			
4/22/2002	0.025	-3.689			
7/15/2002	0.025	-3.689			
10/8/2002	0.02	-3.912			
1/8/2003	0.02	-3.912			
4/3/2003	0.02	-3.912			
7/9/2003	0.02	-3.912			
10/6/2003	0.02	-3.912			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	0.2	-1.609			
1/7/2003	0.2	-1.609			
4/2/2003	0.2	-1.609			
7/9/2003	0.02	-3.912			
10/7/2003	0.02	-3.912			
1/6/2004	0.02	-3.912			
4/7/2004	0.02	-3.912			
7/14/2004	0.02	-3.912			

Data

Well No.	Gradient	
MW359	Downgradient	
MW365	Downgradient	
MW368	Sidegradient	
MW376	Sidegradient	
MW377	Sidegradient	
Current	Quarter Data	
Well No.	Gradient	Dete
MW362	Downgradient	Ye
MW371	Upgradient	Ye
MW374	Upgradient	No
MW375	Sidegradient	No
N/A - Res	ults identified as N	lon-D
	n the statistical eva ot exceed the MCI	

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	Yes	0.00195	N/A	-6.240	NO
MW371	Upgradient	Yes	0.00309	N/A	-5.780	NO
MW374	Upgradient	No	0.005	N/A	-5.298	N/A
MW375	Sidegradient	No	0.005	N/A	-5.298	N/A

V/A - Results identified as Non-Detects during laboratory analysis or data validation and were not ncluded in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.060
 S= 0.083
 CV(1)=1.380
 K factor**= 2.523
 TL(1)= 0.270
 LL(1)=N/A

 Statistics-Transformed Background
 X= -3.259
 S= 0.840
 CV(2)=-0.258
 K factor**= 2.523
 TL(2)= -1.140
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW371					
Date Collected	Result	LN(Result)				
3/18/2002	0.1	-2.303				
4/22/2002	0.1	-2.303				
7/15/2002	0.1	-2.303				
10/8/2002	0.025	-3.689				
1/8/2003	0.035	-3.352				
4/3/2003	0.035	-3.352				
7/9/2003	0.0376	-3.281				
10/6/2003	0.02	-3.912				
Well Number:	MW374					
Date Collected	Result	LN(Result)				
10/8/2002	0.025	-3.689				
1/7/2003	0.35	-1.050				
4/2/2003	0.035	-3.352				
7/9/2003	0.02	-3.912				
10/7/2003	0.02	-3.912				
1/6/2004	0.02	-3.912				
4/7/2004	0.02	-3.912				
7/14/2004	0.02	-3.912				

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW359	Downgradient				
MW365	Downgradient				
MW368	Sidegradient				
MW376	Sidegradient				
MW377	Sidegradient				
Current	Quarter Data				
Well No.	Gradient	Dete			
MW362	Downgradient	No			
MW371	Upgradient	Yes			
MW374	Upgradient	Yes			
MW375	Sidegradient	No			
	ults identified as N n the statistical eva				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW362	Downgradient	t No	0.01	N/A	-4.605	N/A
MW371	Upgradient	Yes	0.00684	N/A	-4.985	NO
MW374	Upgradient	Yes	0.127	N/A	-2.064	NO
MW375	Sidegradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.625	S= 0.774	CV(1)= 1.239	K factor**= 2.523	TL(1)= 2.578	LL(1)= N/A
Statistics-Transformed Background	X =-0.973	S = 0.935	CV(2) =-0.961	K factor**= 2.523	TL(2)= 1.386	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

wen Number.	IVI VV 509	
Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.689	-0.373
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.959
Date Collected	Result	
Date Collected 3/19/2002	Result 2.61	0.959
Date Collected 3/19/2002 4/23/2002	Result 2.61 0.2	0.959 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2.61 0.2 1.14	0.959 -1.609 0.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.61 0.2 1.14 0.862	0.959 -1.609 0.131 -0.149
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.61 0.2 1.14 0.862 2.32	0.959 -1.609 0.131 -0.149 0.842
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2.61 0.2 1.14 0.862 2.32 0.2	0.959 -1.609 0.131 -0.149 0.842 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0393	N/A	-3.237	NO
MW360	Downgradient	Yes	0.0416	N/A	-3.180	NO
MW363	Downgradient	No	0.05	N/A	-2.996	N/A
MW366	Sidegradient	Yes	0.0159	N/A	-4.141	NO
MW369	Upgradient	Yes	0.273	N/A	-1.298	NO
MW372	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =15.996	S = 11.899	CV(1)= 0.744	K factor**= 2.523	TL(1)= 46.017	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.497	S = 0.783	CV(2)= 0.314	K factor**= 2.523	TL(2)= 4.473	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	32.5	3.481			
4/22/2002	35.4	3.567			
7/15/2002	12.9	2.557			
10/8/2002	7.59	2.027			
1/8/2003	9.58	2.260			
4/3/2003	6.69	1.901			
7/8/2003	9.1	2.208			
10/6/2003	7.31	1.989			
Well Number:	MW372				
Date Collected	Result	LN(Result)			
3/19/2002	28.5	3.350			

Date Collected	Result	LN(Result)
3/19/2002	28.5	3.350
4/23/2002	5.37	1.681
7/16/2002	19.9	2.991
10/8/2002	38.7	3.656
1/7/2003	13	2.565
4/2/2003	3.94	1.371
7/9/2003	3.56	1.270
10/7/2003	21.9	3.086

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	24.8	N/A	3.211	N/A
MW360	Downgradient	No	13.1	N/A	2.573	N/A
MW363	Downgradient	No	12.8	N/A	2.549	N/A
MW366	Sidegradient	Yes	47.2	N/A	3.854	N/A
MW369	Upgradient	Yes	33.4	N/A	3.509	N/A
MW372	Upgradient	Yes	115	YES	4.745	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.985	S = 0.825	CV(1)= 0.838	K factor**= 2.523	TL(1)= 3.067	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.430	S = 0.990	CV(2) =-2.302	K factor**= 2.523	TL(2)= 2.068	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW369			

Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW372	
() en i (uniceri	101 00 572	
Date Collected	Result	LN(Result)
Date Collected 3/19/2002		LN(Result) 0.693
	Result	. ,
3/19/2002	Result 2	0.693
3/19/2002 4/23/2002	Result 2 2	0.693 0.693
3/19/2002 4/23/2002 7/16/2002	Result 2 2 2	0.693 0.693 0.693
3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 2 2 0.492	0.693 0.693 0.693 -0.709
3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 2 0.492 0.492	0.693 0.693 0.693 -0.709 -0.709

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.355	NO	-1.036	N/A
MW360	Downgradient	Yes	0.0325	NO	-3.427	N/A
MW363	Downgradient	No	0.02	N/A	-3.912	N/A
MW366	Sidegradient	Yes	0.0801	NO	-2.524	N/A
MW369	Upgradient	Yes	0.0164	NO	-4.110	N/A
MW372	Upgradient	Yes	0.906	NO	-0.099	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2015 Statistical Analysis **Historical Background Comparison Bromide** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed R	esult
10	

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/8/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · · ·
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.405	NO	-0.904	N/A	
MW360	Downgradient	Yes	0.162	NO	-1.820	N/A	
MW363	Downgradient	Yes	0.135	NO	-2.002	N/A	
MW366	Sidegradient	Yes	0.497	NO	-0.699	N/A	
MW369	Upgradient	Yes	0.402	NO	-0.911	N/A	
MW372	Upgradient	Yes	0.606	NO	-0.501	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Х Mean, X = (sum of background results)/(count of background results)

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =32.763 S = 9.393	CV(1)= 0.287	K factor**= 2.523	TL(1)= 56.456	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.449 S = 0.299	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.202	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				

Date Collected	Result	LN(Result)
3/18/2002	29.5	3.384
4/22/2002	29.8	3.395
7/15/2002	25.3	3.231
10/8/2002	21.9	3.086
1/8/2003	20.9	3.040
4/3/2003	22.2	3.100
7/8/2003	22.9	3.131
10/6/2003	21.7	3.077
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.726
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 41.5	3.726
Date Collected 3/19/2002 4/23/2002	Result 41.5 43.6	3.726 3.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 41.5 43.6 40.4	3.726 3.775 3.699
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 41.5 43.6 40.4 38.8	3.726 3.775 3.699 3.658
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 41.5 43.6 40.4 38.8 41.1	3.726 3.775 3.699 3.658 3.716

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	26.7	NO	3.285	N/A
MW360	Downgradient	Yes	24.4	NO	3.195	N/A
MW363	Downgradient	Yes	23.3	NO	3.148	N/A
MW366	Sidegradient	Yes	29.1	NO	3.371	N/A
MW369	Upgradient	Yes	16.5	NO	2.803	N/A
MW372	Upgradient	Yes	53.5	NO	3.980	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonChemical Oxygen Demand (COD)UNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.938 S = 3.750	CV(1)= 0.104	K factor**= 2.523	TL(1)= 45.399	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.578 S = 0.089	CV(2)= 0.025	K factor**= 2.523	TL(2)= 3.803	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number: MW369							
Result	LN(Result)						
35	3.555						
35	3.555						
35	3.555						
	MW369 Result 35 35						

50

35

35

35

35

MW372

Result

35

35

35

35

35

35

35

35

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	20	N/A	2.996	N/A
MW360	Downgradient	No	20	N/A	2.996	N/A
MW363	Downgradient	No	20	N/A	2.996	N/A
MW366	Sidegradient	Yes	29.7	NO	3.391	N/A
MW369	Upgradient	No	20	N/A	2.996	N/A
MW372	Upgradient	Yes	8.05	NO	2.086	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.912

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

3.555

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =44.119 S = 4.554	CV(1)= 0.103	K factor**= 2.523	TL(1)= 55.607	LL(1)= N/A
Statistics-Transformed Background Data	X =3.782 S = 0.099	CV(2)= 0.026	K factor**= 2.523	TL(2)= 4.033	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				

Date Collected	Result	LN(Result)
7/15/2002	48.3	3.877
10/8/2002	47.7	3.865
1/8/2003	45.7	3.822
4/3/2003	47.4	3.859
7/8/2003	55.9	4.024
10/6/2003	47.4	3.859
1/7/2004	45.5	3.818
4/7/2004	43.4	3.770
Well Number:	MW372	
wen Number.	IVI VV 372	
Date Collected		LN(Result)
		LN(Result) 3.684
Date Collected	Result	· · · · · ·
Date Collected 7/16/2002	Result 39.8	3.684
Date Collected 7/16/2002 10/8/2002	Result 39.8 41	3.684 3.714
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 39.8 41 39.4	3.684 3.714 3.674
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 39.8 41 39.4 39.2	3.684 3.714 3.674 3.669
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 39.8 41 39.4 39.2 39.8	3.684 3.714 3.674 3.669 3.684
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 39.8 41 39.4 39.2 39.8 40	3.684 3.714 3.674 3.669 3.684 3.689

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	32.1	NO	3.469	N/A
MW360	Downgradient	Yes	10.2	NO	2.322	N/A
MW363	Downgradient	Yes	25	NO	3.219	N/A
MW366	Sidegradient	Yes	41.4	NO	3.723	N/A
MW369	Upgradient	Yes	31.9	NO	3.463	N/A
MW372	Upgradient	Yes	46.3	NO	3.835	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.025	S = 0.021	CV(1)= 0.845	K factor**= 2.523	TL(1)= 0.077	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.090	S= 1.006	CV(2)= -0.246	K factor**= 2.523	TL(2)= -1.553	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW369

wen number.	IVI VV 309	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138
7/8/2003	0.0541	-2.917
10/6/2003	0.0689	-2.675
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.00158	-3.689 -3.689 -3.689 -6.450
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.00158 0.00147	-3.689 -3.689 -3.689 -6.450 -4.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.00158 0.0147 0.0116	-3.689 -3.689 -3.689 -6.450 -4.220 -4.457

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00077	NO	-7.169	N/A
MW360	Downgradient	Yes	0.0187	NO	-3.979	N/A
MW363	Downgradient	Yes	0.00098	NO	-6.928	N/A
MW366	Sidegradient	Yes	0.0002	NO	-8.517	N/A
MW369	Upgradient	Yes	0.0124	NO	-4.390	N/A
MW372	Upgradient	Yes	0.00023	NO	-8.377	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =482.856 S = 57.603	CV(1)= 0.119	K factor**= 2.523	TL(1)= 628.189	LL(1)= N/A
Statistics-Transformed Background Data	X = 6.173 S = 0.123	CV(2) =0.020	K factor**= 2.523	TL(2)= 6.484	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 508 501 507 495 508.7 515	6.230 6.217 6.229 6.205 6.232 6.244

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	441	NO	6.089	N/A
MW360	Downgradient	Yes	532	NO	6.277	N/A
MW363	Downgradient	Yes	355	NO	5.872	N/A
MW366	Sidegradient	Yes	469	NO	6.151	N/A
MW369	Upgradient	Yes	374	NO	5.924	N/A
MW372	Upgradient	Yes	701	YES	6.553	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.025	S = 0.010	CV(1)= 0.400	K factor**= 2.523	TL(1)= 0.050	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.742	S= 0.307	CV(2)= -0.082	K factor**= 2.523	TL(2)= -2.967	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					

ii en i tunio en	11211000	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.05	-3.689 -3.689 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.05 0.02	-3.689 -3.689 -2.996 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.05 0.02 0.02	-3.689 -3.689 -2.996 -3.912 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.05 0.02 0.02 0.02 0.02	-3.689 -3.689 -2.996 -3.912 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	Yes	0.00048	NO	-7.642	N/A
MW363	Downgradient	No	0.001	N/A	-6.908	N/A
MW366	Sidegradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	Yes	0.00119	NO	-6.734	N/A
MW372	Upgradient	Yes	0.00037	NO	-7.902	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.781	S = 1.351	CV(1)= 0.759	K factor**= 2.523	TL(1)= 5.190	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.228	S = 1.065	CV(2) =4.665	K factor**= 2.523	TL(2)= 2.915	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number: MW369							
Date Collected	Result	LN(Result)					
3/18/2002	5 4 1	1 688					

Date concetted	neosun	En (Result)
3/18/2002	5.41	1.688
4/22/2002	1.57	0.451
7/15/2002	0.8	-0.223
10/8/2002	1.09	0.086
1/8/2003	2.69	0.990
4/3/2003	2.04	0.713
7/8/2003	1.19	0.174
10/6/2003	1.78	0.577
Well Number:	MW372	
Date Collected	Result	LN(Result)
Date Collected 3/19/2002	Result 3.89	LN(Result) 1.358
		. ,
3/19/2002	3.89	1.358
3/19/2002 4/23/2002	3.89 0.05	1.358 -2.996
3/19/2002 4/23/2002 7/16/2002	3.89 0.05 1.33	1.358 -2.996 0.285
3/19/2002 4/23/2002 7/16/2002 10/8/2002	3.89 0.05 1.33 2.66	1.358 -2.996 0.285 0.978
3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	3.89 0.05 1.33 2.66 0.4	1.358 -2.996 0.285 0.978 -0.916
3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	3.89 0.05 1.33 2.66 0.4 0.91	1.358 -2.996 0.285 0.978 -0.916 -0.094

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	4.11	NO	1.413	N/A
MW360	Downgradient	Yes	0.7	NO	-0.357	N/A
MW363	Downgradient	Yes	1.02	NO	0.020	N/A
MW366	Sidegradient	Yes	2.15	NO	0.765	N/A
MW369	Upgradient	Yes	1.15	NO	0.140	N/A
MW372	Upgradient	Yes	1.44	NO	0.365	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 285.188 S = 44.908	CV(1)= 0.157	K factor**= 2.523	TL(1)= 398.489	LL(1)= N/A
Statistics-Transformed Background Data	X =5.640 S = 0.175	CV(2)= 0.031	K factor**= 2.523	TL(2)= 6.080	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number	MW369					

wen Number:	WI W 309	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.687
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 295 322 329 290 316 311	5.687 5.775 5.796 5.670 5.756 5.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	223	NO	5.407	N/A
MW360	Downgradient	Yes	247	NO	5.509	N/A
MW363	Downgradient	Yes	177	NO	5.176	N/A
MW366	Sidegradient	Yes	231	NO	5.442	N/A
MW369	Upgradient	Yes	207	NO	5.333	N/A
MW372	Upgradient	Yes	374	NO	5.924	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.385	S= 6.991	CV(1)= 0.947	K factor**= 2.523	TL(1)= 25.024	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.358	S = 1.323	CV(2)= 0.974	K factor**= 2.523	TL(2)= 4.697	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW369

wen runiber.	11111200	
Date Collected	Result	LN(Result)
3/18/2002	0.656	-0.422
4/22/2002	0.695	-0.364
7/15/2002	7.1	1.960
10/8/2002	21.5	3.068
1/8/2003	18.5	2.918
4/3/2003	14.9	2.701
7/8/2003	11.3	2.425
10/6/2003	14.9	2.701
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.783
Date Collected	Result	
Date Collected 3/19/2002	Result 5.95	1.783
Date Collected 3/19/2002 4/23/2002	Result 5.95 0.792	1.783 -0.233
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5.95 0.792 1.78	1.783 -0.233 0.577
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5.95 0.792 1.78 0.776	1.783 -0.233 0.577 -0.254
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5.95 0.792 1.78 0.776 3.55	1.783 -0.233 0.577 -0.254 1.267
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.95 0.792 1.78 0.776 3.55 5.02	1.783 -0.233 0.577 -0.254 1.267 1.613

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.1	N/A	-2.303	N/A
MW360	Downgradient	Yes	5.76	NO	1.751	N/A
MW363	Downgradient	Yes	0.0346	NO	-3.364	N/A
MW366	Sidegradient	Yes	0.0443	NO	-3.117	N/A
MW369	Upgradient	Yes	0.824	NO	-0.194	N/A
MW372	Upgradient	Yes	0.0711	NO	-2.644	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.864 S = 3.505	CV(1)= 0.272	K factor**= 2.523	TL(1)= 21.707	LL(1)= N/A
Statistics-Transformed Background Data	X =2.517 S = 0.290	CV(2)= 0.115	K factor**= 2.523	TL(2)= 3.248	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW369				

Date Collected	Result	LN(Result)
3/18/2002	11.4	2.434
4/22/2002	12	2.485
7/15/2002	10	2.303
10/8/2002	8.62	2.154
1/8/2003	7.89	2.066
4/3/2003	7.97	2.076
7/8/2003	10.3	2.332
10/6/2003	9.14	2.213
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 2.754
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 15.7	2.754
Date Collected 3/19/2002 4/23/2002	Result 15.7 16.6	2.754 2.809
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 15.7 16.6 15.4	2.754 2.809 2.734
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 15.7 16.6 15.4 15.8	2.754 2.809 2.734 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 15.7 16.6 15.4 15.8 15.8	2.754 2.809 2.734 2.760 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 15.7 16.6 15.4 15.8 15.8 15.8 16.4	2.754 2.809 2.734 2.760 2.760 2.797

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	11.3	NO	2.425	N/A
MW360	Downgradient	Yes	10.1	NO	2.313	N/A
MW363	Downgradient	Yes	9.4	NO	2.241	N/A
MW366	Sidegradient	Yes	11.9	NO	2.477	N/A
MW369	Upgradient	Yes	7.19	NO	1.973	N/A
MW372	Upgradient	Yes	20.4	NO	3.016	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.413	S= 0.274	CV(1)= 0.664	K factor**= 2.523	TL(1)= 1.105	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.226	S = 1.008	CV(2) =-0.822	K factor**= 2.523	TL(2)= 1.317	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number: MW369							

i en i anioen	11111000	
Date Collected	Result	LN(Result)
3/18/2002	0.034	-3.381
4/22/2002	0.062	-2.781
7/15/2002	0.436	-0.830
10/8/2002	0.867	-0.143
1/8/2003	0.828	-0.189
4/3/2003	0.672	-0.397
7/8/2003	0.321	-1.136
10/6/2003	0.714	-0.337
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) -1.585
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 0.205	-1.585
Date Collected 3/19/2002 4/23/2002	Result 0.205 0.345	-1.585 -1.064
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.205 0.345 0.21	-1.585 -1.064 -1.561
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.205 0.345 0.21 0.0539	-1.585 -1.064 -1.561 -2.921
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.205 0.345 0.21 0.0539 0.537	-1.585 -1.064 -1.561 -2.921 -0.622
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.205 0.345 0.21 0.0539 0.537 0.415	-1.585 -1.064 -1.561 -2.921 -0.622 -0.879

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0812	NO	-2.511	N/A
MW360	Downgradient	Yes	0.23	NO	-1.470	N/A
MW363	Downgradient	Yes	0.138	NO	-1.981	N/A
MW366	Sidegradient	Yes	0.0113	NO	-4.483	N/A
MW369	Upgradient	Yes	0.11	NO	-2.207	N/A
MW372	Upgradient	Yes	0.00314	NO	-5.764	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.010	S = 0.012	CV(1)= 1.199	K factor**= 2.523	TL(1)= 0.040	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.698	S= 1.607	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.643	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.00024	N/A	-8.335	N/A	
MW360	Downgradient	Yes	0.00042	N/A	-7.775	NO	
MW363	Downgradient	No	0.0002	N/A	-8.517	N/A	
MW366	Sidegradient	No	0.0005	N/A	-7.601	N/A	
MW369	Upgradient	Yes	0.00018	N/A	-8.623	NO	
MW372	Upgradient	No	0.00032	N/A	-8.047	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.024	S = 0.021	CV(1)= 0.910	K factor**= 2.523	TL(1)= 0.078	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.246	S = 1.075	CV(2) =-0.253	K factor**= 2.523	TL(2)= -1.535	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) -2.996
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00725	NO	-4.927	N/A
MW360	Downgradient	Yes	0.00414	NO	-5.487	N/A
MW363	Downgradient	Yes	0.00366	NO	-5.610	N/A
MW366	Sidegradient	Yes	0.00632	NO	-5.064	N/A
MW369	Upgradient	Yes	0.0116	NO	-4.457	N/A
MW372	Upgradient	Yes	0.00067	NO	-7.308	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =74.563	S= 94.243	CV(1)= 1.264	K factor**= 2.523	TL(1)= 312.337	LL(1)= N/A
Statistics-Transformed Background Data	X= 4.554	S = 0.784	CV(2)= 0.172	K factor**= 2.523	TL(2)= 5.371	LL(2)=N/A

Historical Background Data from	
Upgradient Wells with Transformed R	lesult

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	792	N/A	6.675	YES
MW360	Downgradient	Yes	293	N/A	5.680	YES
MW363	Downgradient	Yes	390	N/A	5.966	YES
MW366	Sidegradient	Yes	507	N/A	6.229	YES
MW369	Upgradient	Yes	779	N/A	6.658	YES
MW372	Upgradient	Yes	693	N/A	6.541	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(g) listed exceeded the Unner Telerones Limit, which is evidence of elevated	MW357
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.	MW360
	MW363
	MW366
	MW369
	MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.274	S = 0.194	CV(1)= 0.031	K factor**= 2.904	TL(1)= 6.837	LL(1)= 5.7114
Statistics-Transformed Background Data	X= 1.836	S = 0.031	CV(2)= 0.017	K factor**= 2.904	TL(2)= 1.925	LL(2)= 1.7467

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW369					

Date Collected	Result	LN(Result)
3/18/2002	6.1	1.808
4/22/2002	6.1	1.808
7/15/2002	6.1	1.808
10/8/2002	6.5	1.872
1/8/2003	6.5	1.872
4/3/2003	6.6	1.887
7/8/2003	6.5	1.872
10/6/2003	6.5	1.872
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.808
Date Collected	Result	
Date Collected 3/19/2002	Result 6.1	1.808
Date Collected 3/19/2002 4/23/2002	Result 6.1 6.12	1.808 1.812
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 6.1 6.12 6.1	1.808 1.812 1.808
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.1 6.12 6.1 6.06	1.808 1.812 1.808 1.802
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.1 6.12 6.1 6.06 6.26	1.808 1.812 1.808 1.802 1.834
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 6.1 6.12 6.1 6.06 6.26 6.15	1.808 1.812 1.808 1.802 1.834 1.816

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradien	t Yes	6.05	NO	1.800	N/A
MW360	Downgradien	t Yes	6.48	NO	1.869	N/A
MW363	Downgradien	t Yes	6.09	NO	1.807	N/A
MW366	Sidegradient	Yes	6.1	NO	1.808	N/A
MW369	Upgradient	Yes	6.29	NO	1.839	N/A
MW372	Upgradient	Yes	6.34	NO	1.847	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.663	S = 0.488	CV(1)= 0.293	K factor**= 2.523	TL(1)= 2.895	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.456	S = 0.362	CV(2)= 0.794	K factor**= 2.523	TL(2)= 1.368	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	2	0.693			
4/22/2002	2.21	0.793			
7/15/2002	2	0.693			
10/8/2002	0.966	-0.035			
1/8/2003	0.727	-0.319			
4/3/2003	0.8	-0.223			
7/8/2003	1.62	0.482			
10/6/2003	1.14	0.131			
Well Number:	MW372				
Date Collected	Result	LN(Result)			
3/19/2002	2.04	0.713			
4/23/2002	2.03	0.708			
7/16/2002	2	0.693			
10/8/2002	1.54	0.432			

1.88

2.09

1.78

1.79

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	1.66	NO	0.507	N/A
MW360	Downgradient	Yes	0.754	NO	-0.282	N/A
MW363	Downgradient	Yes	1.28	NO	0.247	N/A
MW366	Sidegradient	Yes	1.82	NO	0.599	N/A
MW369	Upgradient	Yes	0.542	NO	-0.612	N/A
MW372	Upgradient	Yes	2.1	NO	0.742	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.631

0.737

0.577

0.582

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 3.398	S = 8.854	CV(1)= 2.605	K factor**= 2.523	TL(1)= 25.736	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.836	S= 1.704	CV(2)= -2.039	K factor**= 2.523	TL(2)= 3.346	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
7/15/2002	28.4	3.346					
10/8/2002	0.167	-1.790					
1/8/2003	0.173	-1.754					
10/6/2003	0.168	-1.784					
1/7/2004	0.702	-0.354					
4/7/2004	0.195	-1.635					
7/13/2004	0.256	-1.363					
10/7/2004	0.228	-1.478					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
7/16/2002	23.5	3.157					
10/8/2002	0.195	-1.635					
1/7/2003	-0.844	#Func!					
10/7/2003	0.349	-1.053					
1/5/2004	0.239	-1.431					
4/5/2004	0.308	-1.178					

0.147

0.188

7/14/2004

10/7/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.582	N/A	-0.541	NO	
MW360	Downgradient	No	0.43	N/A	-0.844	N/A	
MW363	Downgradient	No	0.37	N/A	-0.994	N/A	
MW366	Sidegradient	No	0.289	N/A	-1.241	N/A	
MW369	Upgradient	No	0.664	N/A	-0.409	N/A	
MW372	Upgradient	No	-0.021	N/A	#Error	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.917 -1.671

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =45.100	S = 11.875	CV(1)= 0.263	K factor**= 2.523	TL(1)= 75.061	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.780	S = 0.242	CV(2) =0.064	K factor**= 2.523	TL(2)= 4.390	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	35.7	3.575						
4/22/2002	37.6	3.627						
7/15/2002	42.4	3.747						
10/8/2002	66.9	4.203						
1/8/2003	67.9	4.218						
4/3/2003	61.8	4.124						
7/8/2003	45.6	3.820						
10/6/2003	59.1	4.079						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	37.2	3.616						
4/23/2002	38.6	3.653						
7/16/2002	35.6	3.572						
10/8/2002	37.5	3.624						

34.1

34.4

44.1

43.1

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	39.6	NO	3.679	N/A		
MW360	Downgradient	Yes	75	NO	4.317	N/A		
MW363	Downgradient	Yes	32.1	NO	3.469	N/A		
MW366	Sidegradient	Yes	46.6	NO	3.842	N/A		
MW369	Upgradient	Yes	52.2	NO	3.955	N/A		
MW372	Upgradient	Yes	55.7	NO	4.020	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.529

3.538

3.786

3.764

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =45.031	S= 33.919	CV(1)= 0.753	K factor**= 2.523	TL(1)= 130.609	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.420	S = 0.981	CV(2)= 0.287	K factor**= 2.523	TL(2)= 5.894	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	15.5	2.741					
4/22/2002	15.8	2.760					

2.625

1.932

2.351

2.351

2.389

2.791

4.272

4.313

4.305

4.256

4.328

4.404

4.426

4.478

LN(Result)

13.8

6.9

10.5

10.5

10.9

16.3

MW372

Result

71.7

74.7

74.1

70.5

75.8

81.8

83.6

88.1

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	57.1	NO	4.045	N/A		
MW360	Downgradient	Yes	24.9	NO	3.215	N/A		
MW363	Downgradient	Yes	25	NO	3.219	N/A		
MW366	Sidegradient	Yes	44.8	NO	3.802	N/A		
MW369	Upgradient	Yes	8.7	NO	2.163	N/A		
MW372	Upgradient	Yes	109	NO	4.691	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonTechnetium-99UNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =20.821	S = 18.044	CV(1)= 0.867	K factor**= 2.523	TL(1)= 66.344	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.770	S= 1.150	CV(2)= 0.415	K factor**= 2.523	TL(2)= 3.972	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	41.7	3.731						
4/22/2002	53.1	3.972						
7/15/2002	18.1	2.896						
10/8/2002	16.4	2.797						
1/8/2003	3.49	1.250						
4/3/2003	9.34	2.234						
7/8/2003	17.5	2.862						
10/6/2003	17	2.833						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	44.8	3.802						
4/23/2002	0.802	-0.221						
7/16/2002	19.8	2.986						
10/8/2002	46.1	3.831						
1/7/2003	-0.973	#Func!						
4/2/2003	9.07	2.205						
7/9/2003	0	#Func!						
10/7/2003	36.9	3.608						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	37.6	NO	3.627	N/A	
MW360	Downgradient	No	-1.21	N/A	#Error	N/A	
MW363	Downgradient	No	12.5	N/A	2.526	N/A	
MW366	Sidegradient	Yes	58.8	NO	4.074	N/A	
MW369	Upgradient	Yes	45.2	NO	3.811	N/A	
MW372	Upgradient	Yes	181	YES	5.198	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Thorium-230 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.143	S= 0.148	CV(1)= 1.032	K factor**= 2.523	TL(1)= 0.517	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.235	S = 0.875	CV(2)= -0.391	K factor**= 2.523	TL(2)= -0.534	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW369	
Date Collected	Result	LN(Result)
10/7/2004	0.586	-0.534
1/12/2005	0.0362	-3.319
4/7/2005	0.224	-1.496
7/20/2005	0.029	-3.540
10/12/2005	0.0719	-2.632
1/4/2006	0.0753	-2.586
4/4/2006	0.0972	-2.331
7/6/2006	0.0491	-3.014
Well Number:	MW372	
Date Collected	Result	LN(Result)
10/7/2004	0.252	-1.378
1/6/2005	0.165	-1.802
4/13/2005	0.119	-2.129
7/21/2005	0.122	-2.104
10/11/2005	0.323	-1.130

-0.00656

0.117 0.034

1/5/2006

4/5/2006

7/10/2006

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	-0.0762	N/A	#Error	N/A
MW360	Downgradient	No	1.52	N/A	0.419	N/A
MW363	Downgradient	Yes	0.421	N/A	-0.865	NO
MW366	Sidegradient	No	-0.23	N/A	#Error	N/A
MW369	Upgradient	No	0.309	N/A	-1.174	N/A
MW372	Upgradient	No	-0.0582	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

#Func!

-3.381

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 3.513	S = 4.307	CV(1)= 1.226	K factor**= 2.523	TL(1)= 14.378	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.851	S = 0.828	CV(2) =0.973	K factor**= 2.523	TL(2)= 2.940	LL(2)= N/A

Historical Bac Upgradient W	0	ta from insformed Result
Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	1.7	0.531
4/22/2002	1.6	0.470
7/15/2002	3.1	1.131
10/8/2002	17.7	2.874
1/8/2003	9	2.197
4/3/2003	4	1.386
7/8/2003	4.9	1.589
10/6/2003	2.4	0.875
Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	1	0.000
4/23/2002	1.2	0.182
7/16/2002	1	0.000
10/8/2002	1	0.000

1.6

1.5

3

1.5

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	1.19	N/A	0.174	NO
MW360	Downgradient	Yes	2.82	N/A	1.037	NO
MW363	Downgradient	Yes	1.55	N/A	0.438	NO
MW366	Sidegradient	Yes	1.41	N/A	0.344	NO
MW369	Upgradient	Yes	1.66	N/A	0.507	NO
MW372	Upgradient	Yes	1.57	N/A	0.451	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.470

0.405

1.099

0.405

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 67.963	S= 64.316	CV(1)= 0.946	K factor**= 2.523	TL(1)= 230.231	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.772	S = 1.023	CV(2)= 0.271	K factor**= 2.523	TL(2)= 6.353	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW369

ii en i tunioen	1111100)	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.215
Date Collected	Result	· · · ·
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50 10	5.215 3.912 3.912 3.912 2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 184 50 50 50 10 12.7	5.215 3.912 3.912 3.912 2.303 2.542

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	6.84	NO	1.923	N/A
MW360	Downgradient	Yes	14.8	NO	2.695	N/A
MW363	Downgradient	Yes	5.86	NO	1.768	N/A
MW366	Sidegradient	Yes	8.12	NO	2.094	N/A
MW369	Upgradient	Yes	21.3	NO	3.059	N/A
MW372	Upgradient	Yes	13.5	NO	2.603	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.625	S= 3.594	CV(1)= 0.639	K factor**= 2.523	TL(1)= 14.693	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.571	S = 0.565	CV(2)= 0.360	K factor**= 2.523	TL(2)= 2.995	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW369

wen number:	WI W 509	
Date Collected	Result	LN(Result)
3/18/2002	11	2.398
4/22/2002	16	2.773
7/15/2002	8	2.079
10/8/2002	3	1.099
1/8/2003	2	0.693
4/3/2003	3	1.099
7/8/2003	3	1.099
10/6/2003	2	0.693
XX7 11 X7 1	101/272	
Well Number:	MW372	
Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 3/19/2002	Result 5	1.609
Date Collected 3/19/2002 4/23/2002	Result 5 5	1.609 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5 5 4	1.609 1.609 1.386
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5 5 4 6	1.609 1.609 1.386 1.792
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5 5 4 6 5	1.609 1.609 1.386 1.792 1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 5 5 4 6 5 6	1.609 1.609 1.386 1.792 1.609 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	6.46	NO	1.866	N/A
MW360	Downgradient	No	1	N/A	0.000	N/A
MW363	Downgradient	Yes	0.35	N/A	-1.050	N/A
MW366	Sidegradient	Yes	3.28	N/A	1.188	N/A
MW369	Upgradient	Yes	1.46	N/A	0.378	N/A
MW372	Upgradient	Yes	8.08	NO	2.089	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonUraniumUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.001	S = 0.001	CV(1)= 0.917	K factor**= 2.523	TL(1)= 0.005	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.718	S = 0.528	CV(2) =-0.079	K factor**= 2.523	TL(2)= -5.385	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.001	-6.908
4/22/2002	0.001	-6.908
7/15/2002	0.001	-6.908
10/8/2002	0.00355	-5.641
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -6.908
Date Collected	Result	
Date Collected 3/19/2002	Result 0.001	-6.908
Date Collected 3/19/2002 4/23/2002	Result 0.001 0.001	-6.908 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.001 0.001 0.001	-6.908 -6.908 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.001 0.001 0.001 0.00591	-6.908 -6.908 -6.908 -5.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.001 0.001 0.001 0.00591 0.001	-6.908 -6.908 -6.908 -5.131 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.001 0.001 0.001 0.00591 0.001 0.001	-6.908 -6.908 -6.908 -5.131 -6.908 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.0002	N/A	-8.517	N/A
MW360	Downgradient	Yes	0.00018	NO	-8.623	N/A
MW363	Downgradient	No	0.0002	N/A	-8.517	N/A
MW366	Sidegradient	No	0.0002	N/A	-8.517	N/A
MW369	Upgradient	No	0.0002	N/A	-8.517	N/A
MW372	Upgradient	No	0.0002	N/A	-8.517	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S = 0.006	CV(1)= 0.259	K factor**= 2.523	TL(1)= 0.039	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.771	S= 0.223	CV(2) =-0.059	K factor**= 2.523	TL(2)= -3.208	LL(2)= N/A

kground Da ells with Tra	ta from ansformed Result
MW369	
Result	LN(Result)
0.025	-3.689
0.027	-3.612
0.025	-3.689
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
	MW369 Result 0.025 0.027 0.025 0.02 0.02 0.02 0.02 0.02 0.02

Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	0.039	-3.244
4/23/2002	0.037	-3.297
7/16/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/7/2003	0.02	-3.912
4/2/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.005	N/A	-5.298	N/A
MW360	Downgradient	No	0.005	N/A	-5.298	N/A
MW363	Downgradient	No	0.005	N/A	-5.298	N/A
MW366	Sidegradient	No	0.005	N/A	-5.298	N/A
MW369	Upgradient	Yes	0.00134	NO	-6.615	N/A
MW372	Upgradient	No	0.005	N/A	-5.298	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.116	S = 0.173	CV(1)= 1.490	K factor**= 2.523	TL(1)= 0.552	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.729	S= 1.014	CV(2)= -0.371	K factor**= 2.523	TL(2)= -0.172	LL(2)= N/A

	kground Data from Yells with Transformed Result
Wall Number	MW260

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -0.322
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 0.725	-0.322
Date Collected 3/19/2002 4/23/2002	Result 0.725 0.1	-0.322 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.725 0.1 0.1	-0.322 -2.303 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.725 0.1 0.1 0.025	-0.322 -2.303 -2.303 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.725 0.1 0.1 0.025 0.035	-0.322 -2.303 -2.303 -3.689 -3.352

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.01	N/A	-4.605	N/A
MW360	Downgradient	No	0.01	N/A	-4.605	N/A
MW363	Downgradient	Yes	0.00373	N/A	-5.591	NO
MW366	Sidegradient	No	0.01	N/A	-4.605	N/A
MW369	Upgradient	Yes	0.00408	N/A	-5.502	NO
MW372	Upgradient	Yes	0.0101	N/A	-4.595	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.026	S = 5.626	CV(1)= 2.777	K factor**= 2.523	TL(1)= 16.219	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.803	S= 1.380	CV(2)= -1.718	K factor**= 2.523	TL(2)= 2.678	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW370

Result	LN(Result)
4.66	1.539
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
MW373	
11111010	
Result	LN(Result)
	LN(Result) 3.122
Result	
Result 22.7	3.122
Result 22.7 1.46	3.122 0.378
Result 22.7 1.46 0.253	3.122 0.378 -1.374
Result 22.7 1.46 0.253 0.482	3.122 0.378 -1.374 -0.730
Result 22.7 1.46 0.253 0.482 0.608	3.122 0.378 -1.374 -0.730 -0.498
	4.66 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0232	N/A	-3.764	NO
MW361	Downgradient	No	0.05	N/A	-2.996	N/A
MW364	Downgradient	No	0.05	N/A	-2.996	N/A
MW367	Sidegradient	Yes	0.0223	N/A	-3.803	NO
MW370	Upgradient	No	0.05	N/A	-2.996	N/A
MW373	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.140	S = 0.780	CV(1)= 0.684	K factor**= 2.523	TL(1)= 3.108	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.235	S= 1.006	CV(2)= -4.287	K factor**= 2.523	TL(2)= 2.303	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW370

Date Collected	Result	LN(Result)
3/17/2002	2	0.693
4/23/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
	1111070	LN(Result) 0.693
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 2	0.693
Date Collected 3/18/2002 4/23/2002	Result 2 2	0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 2 2 2	0.693 0.693 0.693
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 2 2 2 0.79	0.693 0.693 0.693 -0.236
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2 2 2 0.79 0.807	0.693 0.693 0.693 -0.236 -0.214
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 2 2 0.79 0.807 1.13	0.693 0.693 0.693 -0.236 -0.214 0.122

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.383	NO	-0.960	N/A
MW361	Downgradient	Yes	0.104	NO	-2.263	N/A
MW364	Downgradient	No	0.00872	N/A	-4.742	N/A
MW367	Sidegradient	Yes	0.0175	NO	-4.046	N/A
MW370	Upgradient	Yes	0.0339	NO	-3.384	N/A
MW373	Upgradient	Yes	1.77	NO	0.571	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370

wen Number.	IVI VV 370	
Date Collected	Result	LN(Result)
3/17/2002	1	0.000
4/23/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 1	0.000
Date Collected 3/18/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.454	NO	-0.790	N/A	
MW361	Downgradient	Yes	0.41	NO	-0.892	N/A	
MW364	Downgradient	Yes	0.409	NO	-0.894	N/A	
MW367	Sidegradient	Yes	0.269	NO	-1.313	N/A	
MW370	Upgradient	Yes	0.562	NO	-0.576	N/A	
MW373	Upgradient	Yes	0.602	NO	-0.507	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =43.413	S = 13.444	CV(1)= 0.310	K factor**= 2.523	TL(1)= 77.331	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.723	S= 0.323	CV(2)= 0.087	K factor**= 2.523	TL(2)= 4.539	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			
Date Collected	Result	LN(Result)		
3/17/2002	34.8	3.550		
4/23/2002	43.4	3.770		
7/15/2002	33.2	3.503		
10/8/2002	29.2	3.374		
1/8/2003	31.3	3.444		
4/3/2003	32.4	3.478		
7/9/2003	22.9	3.131		
10/6/2003	28	3.332		
Well Number:	MW373			
Date Collected	Result	LN(Result)		
3/18/2002	61.9	4.126		
4/23/2002	59.2	4.081		
7/16/2002	47.6	3.863		
10/8/2002	46.1	3.831		
1/7/2003	49.2	3.896		

57.8

52.7

64.9

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	35.6	NO	3.572	N/A	
MW361	Downgradient	Yes	30.6	NO	3.421	N/A	
MW364	Downgradient	Yes	28.4	NO	3.346	N/A	
MW367	Sidegradient	Yes	19.6	NO	2.976	N/A	
MW370	Upgradient	Yes	28.7	NO	3.357	N/A	
MW373	Upgradient	Yes	71.5	NO	4.270	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.057

3.965

4.173

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonChemical Oxygen Demand (COD)UNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =41.938	S= 24.732	CV(1)= 0.590	K factor**= 2.523	TL(1)= 104.336	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.658	S = 0.339	CV(2)= 0.093	K factor**= 2.523	TL(2)= 4.512	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW370

ii en i tunio en	11111070	
Date Collected	Result	LN(Result)
3/17/2002	35	3.555
4/23/2002	134	4.898
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.555
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 35	3.555
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 35 47 35 35 35 35 35	3.555 3.850 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	20	N/A	2.996	N/A	
MW361	Downgradient	No	20	N/A	2.996	N/A	
MW364	Downgradient	No	20	N/A	2.996	N/A	
MW367	Sidegradient	Yes	55.2	NO	4.011	N/A	
MW370	Upgradient	No	20	N/A	2.996	N/A	
MW373	Upgradient	No	20	N/A	2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =45.919 S = 7.524	CV(1)= 0.164	K factor**= 2.523	TL(1)= 64.901	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.814 S = 0.165	CV(2)= 0.043	K factor**= 2.523	TL(2)= 4.231	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW370

Date Collected	Result	LN(Result)
7/15/2002	55.5	4.016
10/8/2002	53.6	3.982
1/8/2003	52.9	3.968
4/3/2003	53.6	3.982
7/9/2003	51.9	3.949
10/6/2003	53	3.970
1/7/2004	53	3.970
4/7/2004	51.6	3.944
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.704
Date Collected	Result	. ,
Date Collected 7/16/2002	Result 40.6	3.704
Date Collected 7/16/2002 10/8/2002	Result 40.6 38.8	3.704 3.658
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 40.6 38.8 39	3.704 3.658 3.664
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 40.6 38.8 39 38.4	3.704 3.658 3.664 3.648
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 40.6 38.8 39 38.4 38.1	3.704 3.658 3.664 3.648 3.640
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 40.6 38.8 39 38.4 38.1 38	3.704 3.658 3.664 3.648 3.640 3.638

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	33.7	NO	3.517	N/A	
MW361	Downgradient	Yes	30.2	NO	3.408	N/A	
MW364	Downgradient	Yes	29.4	NO	3.381	N/A	
MW367	Sidegradient	Yes	20.7	NO	3.030	N/A	
MW370	Upgradient	Yes	39.4	NO	3.674	N/A	
MW373	Upgradient	Yes	42.8	NO	3.757	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.027	S = 0.032	CV(1)= 1.165	K factor**= 2.523	TL(1)= 0.108	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.058	S = 1.011	CV(2) =-0.249	K factor**= 2.523	TL(2)= -1.507	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				

Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.0174	-4.051
1/8/2003	0.0105	-4.556
4/3/2003	0.00931	-4.677
7/9/2003	0.137	-1.988
10/6/2003	0.0463	-3.073
*** 11 ** 1		
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.034	-3.689 -3.381
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.034 0.025	-3.689 -3.381 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.034 0.025 0.00411	-3.689 -3.381 -3.689 -5.494
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.034 0.025 0.00411 0.00344	-3.689 -3.381 -3.689 -5.494 -5.672
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.034 0.025 0.00411 0.00344 0.00368	-3.689 -3.381 -3.689 -5.494 -5.672 -5.605

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00241	N/A	-6.028	NO
MW361	Downgradient	Yes	0.00014	N/A	-8.874	NO
MW364	Downgradient	Yes	0.00022	N/A	-8.422	NO
MW367	Sidegradient	Yes	0.00412	N/A	-5.492	NO
MW370	Upgradient	Yes	0.00056	N/A	-7.488	NO
MW373	Upgradient	Yes	0.00069	N/A	-7.279	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Historical Background Comparison C-746-U First Quarter 2015 Statistical Analysis Conductivity **UNITS: umho/cm** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=608.719 S= 156.157 CV(1)=0.257 **K factor**=** 2.523 TL(1)= 1002.702 LL(1)=N/A **Statistics-Background Data Statistics-Transformed Background X**= 6.380 S = 0.260 CV(2) = 0.041**K factor**=** 2.523 TL(2)= 7.036 LL(2)=N/A

	kground Data from Yells with Transformed Result					
Well Number:	Well Number: MW370					

Data

wen rumber.	11110 570	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 661 801 774 680 686.5 763	6.494 6.686 6.652 6.522 6.532 6.637

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	522	NO	6.258	N/A
MW361	Downgradient	Yes	431	NO	6.066	N/A
MW364	Downgradient	Yes	451	NO	6.111	N/A
MW367	Sidegradient	Yes	310	NO	5.737	N/A
MW370	Upgradient	Yes	441	NO	6.089	N/A
MW373	Upgradient	Yes	933	NO	6.838	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.025	S = 0.010	CV(1)= 0.399	K factor**= 2.523	TL(1)= 0.050	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.739	S = 0.308	CV(2)= -0.082	K factor**= 2.523	TL(2)= -2.963	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	0.025	-3.689				

3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW373	
Date Collected		LN(Result)
		LN(Result) -3.650
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 0.026	-3.650
Date Collected 3/18/2002 4/23/2002	Result 0.026 0.025	-3.650 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.026 0.025 0.05	-3.650 -3.689 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.026 0.025 0.05 0.02	-3.650 -3.689 -2.996 -3.912
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.026 0.025 0.05 0.02 0.02	-3.650 -3.689 -2.996 -3.912 -3.912
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.026 0.025 0.05 0.02 0.02 0.02 0.02	-3.650 -3.689 -2.996 -3.912 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00035	NO	-7.958	N/A
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	No	0.001	N/A	-6.908	N/A
MW367	Sidegradient	No	0.001	N/A	-6.908	N/A
MW370	Upgradient	No	0.001	N/A	-6.908	N/A
MW373	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.387	S = 1.153	CV(1)= 0.831	K factor**= 2.523	TL(1)= 4.295	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.115	S = 1.207	CV(2)= -10.514	K factor**= 2.523	TL(2)= 2.930	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	4.32	1.463					
4/23/2002	1.24	0.215					

-0.288

-0.062 1.125

0.372

0.199

0.068

1.112

-3.507

-1.470

-0.151

-1.561

0.174

0.095

0.378

LN(Result)

0.75

0.94

3.08

1.45

1.22

1.07

MW373

Result

3.04

0.03

0.23

0.86

0.21

1.19

1.1

1.46

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.96	NO	-0.041	N/A		
MW361	Downgradient	Yes	2.92	NO	1.072	N/A		
MW364	Downgradient	Yes	2.77	NO	1.019	N/A		
MW367	Sidegradient	Yes	0.6	NO	-0.511	N/A		
MW370	Upgradient	Yes	3.64	NO	1.292	N/A		
MW373	Upgradient	Yes	1.34	NO	0.293	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 356.188	8 S = 106.752	CV(1)= 0.300	K factor**= 2.523	TL(1)= 625.523	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.831	S = 0.311	CV(2) =0.053	K factor**= 2.523	TL(2)= 6.616	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	236	5.464			
4/23/2002	337	5.820			
7/15/2002	266	5.583			
10/8/2002	240	5.481			

282

238

248

224

MW373

Result

427

507

464

408

404

450

487

481

1/8/2003

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	289	NO	5.666	N/A
MW361	Downgradient	Yes	240	NO	5.481	N/A
MW364	Downgradient	Yes	204	NO	5.318	N/A
MW367	Sidegradient	Yes	170	NO	5.136	N/A
MW370	Upgradient	Yes	203	NO	5.313	N/A
MW373	Upgradient	Yes	499	NO	6.213	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

5.642

5.472

5.513

5.412

6.057

6.229

6.140

6.011

6.001

6.109

6.188

6.176

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.230	S = 8.841	CV(1)= 0.958	K factor**= 2.523	TL(1)= 31.535	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.942	S = 0.713	CV(2)= 0.367	K factor**= 2.523	TL(2)= 3.740	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
2/17/2002	0.04	2 224			

Date Collected	Result	LN(Result)
3/17/2002	9.34	2.234
4/23/2002	4.33	1.466
7/15/2002	3.52	1.258
10/8/2002	7.45	2.008
1/8/2003	7.04	1.952
4/3/2003	4.64	1.535
7/9/2003	15.8	2.760
10/6/2003	6.49	1.870
Well Number:	MW373	
ii en riamber.	1111 575	
Date Collected		LN(Result)
		LN(Result) 3.627
Date Collected	Result	()
Date Collected 3/18/2002	Result 37.6	3.627
Date Collected 3/18/2002 4/23/2002	Result 37.6 19	3.627 2.944
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 37.6 19 10.7	3.627 2.944 2.370
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 37.6 19 10.7 3.75	3.627 2.944 2.370 1.322
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 37.6 19 10.7 3.75 3.87	3.627 2.944 2.370 1.322 1.353
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 37.6 19 10.7 3.75 3.87 3.5	3.627 2.944 2.370 1.322 1.353 1.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.109	NO	-2.216	N/A
MW361	Downgradient	Yes	0.0492	NO	-3.012	N/A
MW364	Downgradient	No	0.1	N/A	-2.303	N/A
MW367	Sidegradient	Yes	6.01	NO	1.793	N/A
MW370	Upgradient	Yes	0.066	NO	-2.718	N/A
MW373	Upgradient	Yes	0.071	NO	-2.645	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =17.544 S	S = 5.911	CV(1)= 0.337	K factor**= 2.523	TL(1)= 32.458	LL(1)= N/A
Statistics-Transformed Background Data	X =2.810 S	S= 0.343	CV(2)= 0.122	K factor**= 2.523	TL(2)= 3.676	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	12.1	2.493			
4/23/2002	15.1	2.715			
7/15/2002	12.4	2.518			
10/8/2002	12.2	2.501			
1/8/2003	11.5	2.442			
4/3/2003	12.3	2.510			
7/9/2003	10	2.303			
10/6/2003	12.1	2.493			

MW373

Result

24.8

22.7

18.8

21.1

19.9

25.5

23.3

26.9

Well Number:

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	15.5	NO	2.741	N/A
MW361	Downgradient	Yes	14.3	NO	2.660	N/A
MW364	Downgradient	Yes	12.2	NO	2.501	N/A
MW367	Sidegradient	Yes	9.23	NO	2.222	N/A
MW370	Upgradient	Yes	13.4	NO	2.595	N/A
MW373	Upgradient	Yes	28.2	NO	3.339	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

LN(Result)

3.211

3.122

2.934

3.049

2.991

3.239

3.148

3.292

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.080	S= 0.674	CV(1)= 0.624	K factor**= 2.523	TL(1)= 2.780	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.114	S= 0.658	CV(2) =-5.762	K factor**= 2.523	TL(2)= 1.547	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	0.244	-1.411			
4/23/2002	1.82	0.599			
7/15/2002	1.22	0.199			
10/8/2002	0.988	-0.012			
1/8/2003	0.729	-0.316			
4/3/2003	0.637	-0.451			
7/9/2003	2.51	0.920			
10/6/2003	1.05	0.049			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
2/10/2002	0.255	1.026			

Date Collected	Result	LN(Result)
3/18/2002	0.355	-1.036
4/23/2002	2.16	0.770
7/16/2002	1.39	0.329
10/8/2002	0.717	-0.333
1/7/2003	0.587	-0.533
4/2/2003	0.545	-0.607
7/9/2003	1.76	0.565
10/7/2003	0.57	-0.562

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.203	NO	-1.595	N/A
MW361	Downgradient	Yes	0.0175	NO	-4.046	N/A
MW364	Downgradient	Yes	0.0132	NO	-4.328	N/A
MW367	Sidegradient	Yes	1.39	NO	0.329	N/A
MW370	Upgradient	Yes	0.0113	NO	-4.483	N/A
MW373	Upgradient	Yes	0.123	NO	-2.096	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.024	S = 0.022	CV(1)= 0.901	K factor**= 2.523	TL(1)= 0.078	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.239	S= 1.087	CV(2)= -0.256	K factor**= 2.523	TL(2)= -1.497	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 0.05	-2.996
Date Collected 3/18/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.011	NO	-4.510	N/A
MW361	Downgradient	Yes	0.00238	NO	-6.041	N/A
MW364	Downgradient	Yes	0.00404	NO	-5.512	N/A
MW367	Sidegradient	Yes	0.00528	NO	-5.244	N/A
MW370	Upgradient	Yes	0.00301	NO	-5.806	N/A
MW373	Upgradient	Yes	0.00494	NO	-5.310	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 46.688	S = 60.986	CV(1)= 1.306	K factor**= 2.523	TL(1)= 200.555	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.829	S = 1.151	CV(2)= 0.301	K factor**= 2.523	TL(2)= 4.942	LL(2)= N/A

Historical Background Data from	
Upgradient Wells with Transformed Resul	t

I N/D - ---14)

Well Number:	MW370
Data Collected	Docult

Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
	11211010	
Date Collected		LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 140 -20 10 10 67 -29	4.942 #Func! 2.303 2.303 4.205 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	221	N/A	5.398	YES	
MW361	Downgradient	Yes	659	N/A	6.491	YES	
MW364	Downgradient	Yes	381	N/A	5.943	YES	
MW367	Sidegradient	Yes	315	N/A	5.753	YES	
MW370	Upgradient	Yes	691	N/A	6.538	YES	
MW373	Upgradient	Yes	336	N/A	5.817	YES	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW358
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW361
concentration with respect to historical background data.	MW364
	MW367
	MW370
	MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonpHUNITS: Std UnitLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.283	S = 0.159	CV(1)= 0.025	K factor**= 2.904	TL(1)= 6.745	LL(1)=5.8202
Statistics-Transformed Background	X= 1.837	S= 0.025	CV(2)= 0.014	K factor**= 2.904	TL(2)= 1.911	LL(2)= 1.7634

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	6.3	1.841					
4/23/2002	6.4	1.856					
7/15/2002	6.3	1.841					
10/8/2002	6.3	1.841					
1/8/2003	6.4	1.856					
4/3/2003	6.5	1.872					
7/9/2003	6.3	1.841					
10/6/2003	6.5	1.872					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	6	1.792					
4/23/2002	6.3	1.841					
7/16/2002	6.45	1.864					
10/8/2002	6.18	1.821					

6.35

6.14

6.1

6

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>. ,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	. ,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.23	NO	1.829	N/A
MW361	Downgradien	t Yes	6.24	NO	1.831	N/A
MW364	Downgradien	t Yes	5.94	NO	1.782	N/A
MW367	Sidegradient	Yes	5.95	NO	1.783	N/A
MW370	Upgradient	Yes	6.23	NO	1.829	N/A
MW373	Upgradient	Yes	5.99	NO	1.790	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.848

1.815

1.808

1.792

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.823	S = 0.522	CV(1)= 0.185	K factor**= 2.523	TL(1)= 4.139	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.024	S= 0.167	CV(2)= 0.163	K factor**= 2.523	TL(2)= 1.445	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW370							
Date Collected	Result	LN(Result)						
3/17/2002 3.22 1.169								

Date contented	resure	En ((result)
3/17/2002	3.22	1.169
4/23/2002	3.43	1.233
7/15/2002	2.98	1.092
10/8/2002	2.46	0.900
1/8/2003	2.41	0.880
4/3/2003	2.43	0.888
7/9/2003	2.44	0.892
10/6/2003	2.48	0.908
Well Number:	MW373	
Date Collected	Result	LN(Result)
Date Collected 3/18/2002	Result 4.34	LN(Result) 1.468
		. ,
3/18/2002	4.34	1.468
3/18/2002 4/23/2002	4.34 3.04	1.468 1.112
3/18/2002 4/23/2002 7/16/2002	4.34 3.04 2.93	1.468 1.112 1.075
3/18/2002 4/23/2002 7/16/2002 10/8/2002	4.34 3.04 2.93 2.3	1.468 1.112 1.075 0.833
3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	4.34 3.04 2.93 2.3 2.45	1.468 1.112 1.075 0.833 0.896
3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	4.34 3.04 2.93 2.3 2.45 2.7	1.468 1.112 1.075 0.833 0.896 0.993

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	2.39	NO	0.871	N/A	
MW361	Downgradient	Yes	2.28	NO	0.824	N/A	
MW364	Downgradient	Yes	1.96	NO	0.673	N/A	
MW367	Sidegradient	Yes	2.78	NO	1.022	N/A	
MW370	Upgradient	Yes	2.45	NO	0.896	N/A	
MW373	Upgradient	Yes	2.9	NO	1.065	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonRadium-226UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 2.158	S = 5.739	CV(1)= 2.660	K factor**= 2.523	TL(1)= 16.637	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.670	S= 1.833	CV(2) =-2.736	K factor**= 2.523	TL(2)= 3.068	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	I N(Result)					

Date Collected	Result	LN(Result)
7/15/2002	10.1	2.313
10/8/2002	-0.825	#Func!
1/8/2003	0.415	-0.879
10/6/2003	0.52	-0.654
1/7/2004	1.03	0.030
4/7/2004	0.434	-0.835
7/13/2004	0.532	-0.631
10/7/2004	0.299	-1.207
Well Number:	MW373	
wen rumber.	11110375	
Date Collected		LN(Result)
		LN(Result) 3.068
Date Collected	Result	. ,
Date Collected 7/16/2002	Result 21.5	3.068
Date Collected 7/16/2002 10/8/2002	Result 21.5 0.0327	3.068 -3.420
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 21.5 0.0327 -0.844	3.068 -3.420 #Func!
Date Collected 7/16/2002 10/8/2002 1/7/2003 10/7/2003	Result 21.5 0.0327 -0.844 0	3.068 -3.420 #Func! #Func!
Date Collected 7/16/2002 10/8/2002 1/7/2003 10/7/2003 1/6/2004	Result 21.5 0.0327 -0.844 0 0.177	3.068 -3.420 #Func! #Func! -1.732
Date Collected 7/16/2002 10/8/2002 1/7/2003 10/7/2003 1/6/2004 4/7/2004	Result 21.5 0.0327 -0.844 0 0.177 0.792	3.068 -3.420 #Func! #Func! -1.732 -0.233

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.675	N/A	-0.393	NO	
MW361	Downgradient	No	-0.0411	N/A	#Error	N/A	
MW364	Downgradient	No	0.338	N/A	-1.085	N/A	
MW367	Sidegradient	Yes	1.34	N/A	0.293	NO	
MW370	Upgradient	Yes	0.66	N/A	-0.416	NO	
MW373	Upgradient	No	0.055	N/A	-2.900	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =51.544	S = 15.22	7 CV(1) =0.295	K factor**= 2.523	TL(1)= 89.962	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.906	S= 0.272	CV(2)= 0.070	K factor**= 2.523	TL(2)= 4.592	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW370

Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640

Well Number:	MW373	
Date Collected	MW373 Result	LN(Result)
	1111070	LN(Result) 3.770
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 43.4 79.8 87.7 61.6 59.3 62.1	3.770 4.380 4.474 4.121 4.083 4.129

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	41.8	NO	3.733	N/A
MW361	Downgradient	Yes	46.4	NO	3.837	N/A
MW364	Downgradient	Yes	41.2	NO	3.718	N/A
MW367	Sidegradient	Yes	28	NO	3.332	N/A
MW370	Upgradient	Yes	42.8	NO	3.757	N/A
MW373	Upgradient	Yes	61.5	NO	4.119	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 122.381 S= 195.095 CV(1)=1.594
 K factor**= 2.523
 TL(1)= 614.606
 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 3.985
 S= 1.323
 CV(2)=0.332
 K factor**= 2.523
 TL(2)= 7.322
 LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW370

Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.096
Date Collected	Result	
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 163.3 809.6 109.4 110.6 113.7 133	5.096 6.697 4.695 4.706 4.734 4.890

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	85.8	N/A	4.452	NO
MW361	Downgradient	Yes	76.7	N/A	4.340	NO
MW364	Downgradient	Yes	65.9	N/A	4.188	NO
MW367	Sidegradient	Yes	30.9	N/A	3.431	NO
MW370	Upgradient	Yes	20	N/A	2.996	NO
MW373	Upgradient	Yes	197	N/A	5.283	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.655	S= 13.274	CV(1)= 1.734	K factor**= 2.523	TL(1)= 41.146	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.946	S= 0.939	CV(2)= 0.483	K factor**= 2.523	TL(2)= 3.833	LL(2)=N/A

Historical Bac Upgradient W	-	ta from insformed Result
Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	10.8	2.380
4/23/2002	8.53	2.144
7/15/2002	5.09	1.627
10/8/2002	4.78	1.564
1/8/2003	-5.12	#Func!
4/3/2003	5.11	1.631
7/9/2003	4.25	1.447
10/6/2003	6.54	1.878
Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	16.5	2.803
4/23/2002	3.49	1.250
7/16/2002	1.42	0.351
10/8/2002	-6.06	#Func!
1/7/2003	-8.41	#Func!
4/2/2003	26.3	3.270
7/9/2003	3.06	1.118

46.2

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	39.5	N/A	3.676	NO
MW361	Downgradient	Yes	40.7	N/A	3.706	NO
MW364	Downgradient	Yes	58.2	N/A	4.064	YES
MW367	Sidegradient	Yes	23.2	N/A	3.144	NO
MW370	Upgradient	No	14.8	N/A	2.695	N/A
MW373	Upgradient	Yes	28.8	N/A	3.360	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.833

Wells with Exceedances MW364

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Thorium-230 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.127	S = 0.175	CV(1)= 1.382	K factor**= 2.523	TL(1)= 0.568	LL(1)= N/A
Statistics-Transformed Background	X =-3.222	S = 2.322	CV(2)= -0.721	K factor**= 2.523	TL(2)= -0.629	LL(2)= N/A

Historical Bac Upgradient W		ata from ansformed Result
Well Number:	MW370	
Data Callestad	D14	L N/(D14)

Data

Date Collected	Result	LN(Result)
10/7/2004	0.533	-0.629
1/12/2005	0.0808	-2.516
4/7/2005	0.174	-1.749
7/20/2005	0.000167	-8.698
10/12/2005	0.00661	-5.019
1/9/2006	0.00128	-6.661
4/5/2006	-0.0055	#Func!
7/6/2006	0.0775	-2.557
Well Number:	MW373	
wen Number.	IVI VV 575	
Date Collected	Result	LN(Result)
		LN(Result) -0.970
Date Collected	Result	
Date Collected 10/7/2004	Result 0.379	-0.970
Date Collected 10/7/2004 1/11/2005	Result 0.379 0.461	-0.970 -0.774
Date Collected 10/7/2004 1/11/2005 4/13/2005	Result 0.379 0.461 0.029	-0.970 -0.774 -3.540
Date Collected 10/7/2004 1/11/2005 4/13/2005 7/26/2005	Result 0.379 0.461 0.029 0.143	-0.970 -0.774 -3.540 -1.945
Date Collected 10/7/2004 1/11/2005 4/13/2005 7/26/2005 10/11/2005	Result 0.379 0.461 0.029 0.143 0.0894	-0.970 -0.774 -3.540 -1.945 -2.415

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	1.2	N/A	0.182	N/A
MW361	Downgradient	No	1.28	N/A	0.247	N/A
MW364	Downgradient	Yes	0.512	N/A	-0.669	NO
MW367	Sidegradient	No	0.403	N/A	-0.909	N/A
MW370	Upgradient	No	0.324	N/A	-1.127	N/A
MW373	Upgradient	No	1.66	N/A	0.507	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.169	S = 12.072	CV(1)= 1.957	K factor**= 2.523	TL(1)= 36.626	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.069	S = 1.014	CV(2)= 0.948	K factor**= 2.523	TL(2)= 3.626	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Data Collocted	Docult	I N(Docult)			

Date Collected	Result	LN(Result)	
3/17/2002	1.2	0.182	
4/23/2002	4.3	1.459	
7/15/2002	2.6	0.956	
10/8/2002	2.3	0.833	
1/8/2003	3	1.099	
4/3/2003	1.2	0.182	
7/9/2003	2.6	0.956	
10/6/2003	1.7	0.531	
Well Number:	1111272		
wen Number:	MW373		
Date Collected		LN(Result)	
		LN(Result) 0.095	
Date Collected	Result	· · · · · ·	
Date Collected 3/18/2002	Result 1.1	0.095	
Date Collected 3/18/2002 4/23/2002	Result 1.1 17.5	0.095 2.862	
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1.1 17.5 49	0.095 2.862 3.892	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1.1 17.5 49 2.9	0.095 2.862 3.892 1.065	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1.1 17.5 49 2.9 3.9	0.095 2.862 3.892 1.065 1.361	

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.84	N/A	0.610	NO
MW361	Downgradient	Yes	1.2	N/A	0.182	NO
MW364	Downgradient	Yes	1.24	N/A	0.215	NO
MW367	Sidegradient	Yes	1.74	N/A	0.554	NO
MW370	Upgradient	Yes	1.15	N/A	0.140	NO
MW373	Upgradient	Yes	1.9	N/A	0.642	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =79.819	S = 78.470	CV(1)= 0.983	K factor**= 2.523	TL(1)= 277.798	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.971	S = 0.950	CV(2)= 0.239	K factor**= 2.523	TL(2)= 6.368	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	50	3 912			

3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Date Collected	Result	LN(Result)
Date Collected 3/18/2002	Result 50	LN(Result) 3.912
		. ,
3/18/2002	50	3.912
3/18/2002 4/23/2002	50 276	3.912 5.620
3/18/2002 4/23/2002 7/16/2002	50 276 177	3.912 5.620 5.176
3/18/2002 4/23/2002 7/16/2002 10/8/2002	50 276 177 76	3.912 5.620 5.176 4.331
3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826
3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	50 276 177 76 45.9 57.8	3.912 5.620 5.176 4.331 3.826 4.057

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	8.58	NO	2.149	N/A
MW361	Downgradient	Yes	5.58	NO	1.719	N/A
MW364	Downgradient	Yes	6.78	NO	1.914	N/A
MW367	Sidegradient	No	10	N/A	2.303	N/A
MW370	Upgradient	Yes	7.14	NO	1.966	N/A
MW373	Upgradient	Yes	14.1	NO	2.646	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 12.188	S= 6.950	CV(1)= 0.570	K factor**= 2.523	TL(1)= 29.721	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.305	S = 0.687	CV(2)= 0.298	K factor**= 2.523	TL(2)= 4.039	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	19	2.944				
4/23/2002	17	2.833				
7/15/2002	15	2.708				
10/8/2002	18	2.890				
1/8/2003	17	2.833				

18

15

16

MW373

Result

5

25

3

4

6

5

6

6

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	4.47	N/A	1.497	N/A
MW361	Downgradient	Yes	3.88	N/A	1.356	N/A
MW364	Downgradient	Yes	4.87	N/A	1.583	N/A
MW367	Sidegradient	Yes	1.12	N/A	0.113	N/A
MW370	Upgradient	Yes	1.04	N/A	0.039	N/A
MW373	Upgradient	Yes	7.67	NO	2.037	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.890

2.708

2.773

1.609

3.219

1.099

1.386

1.792

1.609

1.792

1.792

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.055	S = 0.037	CV(1)= 0.673	K factor**= 2.523	TL(1)= 0.147	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.131	S= 0.691	CV(2)= -0.221	K factor**= 2.523	TL(2)= -1.388	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW370

wen rumber.	11110370	
Date Collected	Result	LN(Result)
3/17/2002	0.1	-2.303
4/23/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) -2.303
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 0.1	-2.303
Date Collected 3/18/2002 4/23/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.1 0.1 0.1	-2.303 -2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.1 0.1 0.1 0.025	-2.303 -2.303 -2.303 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.1 0.1 0.1 0.025 0.035	-2.303 -2.303 -2.303 -3.689 -3.352
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.1 0.1 0.1 0.025 0.035 0.035	-2.303 -2.303 -2.303 -3.689 -3.352 -3.352

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.0111	NO	-4.501	N/A	
MW361	Downgradient	Yes	0.00484	NO	-5.331	N/A	
MW364	Downgradient	Yes	0.0311	NO	-3.471	N/A	
MW367	Sidegradient	Yes	0.00676	NO	-4.997	N/A	
MW370	Upgradient	No	0.01	N/A	-4.605	N/A	
MW373	Upgradient	No	0.01	N/A	-4.605	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-U First Quarter 2015 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =436.125 S = 155.55	3 CV(1)= 0.357	K factor**= 2.523	TL(1)= 828.585	LL(1)= N/A
Statistics-Transformed Background Data	X = 6.023 S = 0.338	CV(2) =0.056	K factor**= 2.523	TL(2)= 6.876	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW362	Downgradien	t Yes	404	NO	6.001	N/A	
MW371	Upgradient	Yes	774	NO	6.652	N/A	
MW374	Upgradient	Yes	530	NO	6.273	N/A	
MW375	Sidegradient	Yes	542	NO	6.295	N/A	

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

5.656

6.537

5.966

6.299

5.924

6.165

5.814

5.886

6.280

5.746

5.841

6.687

6.244

6.213

5.557

5.549

LN(Result)

MW371

Result

286

690

390

544

374

476

335

360

MW374

Result

534

313

344

802

515

499

259

257

Wells with Transformed Result

Well Number:

Date Collected

1/10/2013

4/9/2013

7/16/2013

10/8/2013

1/14/2014

4/14/2014

7/8/2014

1/9/2013

4/8/2013

7/16/2013

10/9/2013

1/14/2014

4/15/2014

7/7/2014

10/16/2014

10/20/2014

Well Number:

Date Collected

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisCurrent Background ComparisonSulfateUNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =9.788	S= 4.966	CV(1)= 0.507	K factor**= 2.523	TL(1)= 22.318	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.167	S = 0.485	CV(2) =0.224	K factor**= 2.523	TL(2)= 3.391	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

9.6	2.262
14	2.639
19	2.944
13	2.565
9.9	2.293
16.4	2.797
18.6	2.923
10.5	2.351
MW274	
MW374	
Result	LN(Result)
	LN(Result) 1.668
Result	
Result 5.3	1.668
Result 5.3 6	1.668 1.792
Result 5.3 6 5.6	1.668 1.792 1.723
Result 5.3 6 5.6 6.6	1.668 1.792 1.723 1.887
Result 5.3 6 5.6 6.6 5.1	1.668 1.792 1.723 1.887 1.629
	14 19 13 9.9 16.4 18.6 10.5

Current Background Data from Upgradient

LN(Result)

Wells with Transformed Result

Well Number: Date Collected MW371

Result

Current	t Quarter Data	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW375	Sidegradient	Yes	27.6	YES	3.318	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW375

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisCurrent Background ComparisonBeta activityUNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 45.739	S= 42.284	CV(1)= 0.924	K factor**= 2.523	TL(1)= 152.421	LL(1)= N/A
Statistics-Transformed Background	X = 3.408	S = 0.960	CV(2) =0.282	K factor**= 2.523	TL(2) = 5.831	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
1/10/2013	16.8	2.821
4/10/2013	22	3.091
7/16/2013	16.7	2.815
10/8/2013	17.3	2.851
1/14/2014	26.8	3.288
4/14/2014	15.7	2.754
7/8/2014	5.76	1.751
10/20/2014	32.1	3.469
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 4.560
Date Collected	Result	
Date Collected 1/9/2013	Result 95.6	4.560
Date Collected 1/9/2013 4/8/2013	Result 95.6 23.2	4.560 3.144
Date Collected 1/9/2013 4/8/2013 7/16/2013	Result 95.6 23.2 115	4.560 3.144 4.745
Date Collected 1/9/2013 4/8/2013 7/16/2013 10/9/2013	Result 95.6 23.2 115 131	4.560 3.144 4.745 4.875
Date Collected 1/9/2013 4/8/2013 7/16/2013 10/9/2013 1/14/2014	Result 95.6 23.2 115 131 102	4.560 3.144 4.745 4.875 4.625

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	115	NO	4.745	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisCurrent Background ComparisonConductivityUNITS: umho/cmURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 601.25	0 S = 227.400	5 CV(1)= 0.378	K factor**= 2.523	TL(1)= 1174.99	6 LL(1)= N/A
Statistics-Transformed Background	X= 6.327	S = 0.395	CV(2) =0.062	K factor**= 2.523	TL(2)= 7.325	LL(2)= N/A

Statistics-Transformed Background X=6.327 S= 0.395 CV(2)=0.062 K factor**=2.523 Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
1/10/2013	365	5.900
4/10/2013	392	5.971
7/16/2013	427	6.057
10/8/2013	376	5.930
1/14/2014	392	5.971
4/14/2014	380	5.940
7/8/2014	364	5.897
10/20/2014	371	5.916
Well Number:	MW372	
	1111072	
Date Collected		LN(Result)
		LN(Result) 6.757
Date Collected	Result	
Date Collected 1/9/2013	Result 860	6.757
Date Collected 1/9/2013 4/8/2013	Result 860 879	6.757 6.779
Date Collected 1/9/2013 4/8/2013 7/16/2013	Result 860 879 822	6.757 6.779 6.712
Date Collected 1/9/2013 4/8/2013 7/16/2013 10/9/2013	Result 860 879 822 791	6.757 6.779 6.712 6.673
Date Collected 1/9/2013 4/8/2013 7/16/2013 10/9/2013 1/14/2014	Result 860 879 822 791 759	6.757 6.779 6.712 6.673 6.632
Date Collected 1/9/2013 4/8/2013 7/16/2013 10/9/2013 1/14/2014 4/16/2014	Result 860 879 822 791 759 837	6.757 6.779 6.712 6.673 6.632 6.730

Current Background Data from Upgradient

Wells with Transformed Result

MW369

Well Number:

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	701	NO	6.553	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 381.750 S = 240.033	3 CV(1)=0.629	K factor**= 2.523	TL(1)= 987.353	LL(1)= N/A
Statistics-Transformed Background Data	X =5.614 S = 1.009	CV(2)= 0.180	K factor**= 2.523	TL(2)= 8.159	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradien	t Yes	792	NO	6.675	N/A
MW360	Downgradien	t Yes	293	NO	5.680	N/A
MW363	Downgradien	t Yes	390	NO	5.966	N/A
MW366	Sidegradient	Yes	507	NO	6.229	N/A
MW369	Upgradient	Yes	779	NO	6.658	N/A
MW372	Upgradient	Yes	693	NO	6.541	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

6.515

6.363

5.649

6.620

6.082

6.242

6.014

6.004

3.761

3.332

5.609

6.252

6.607

5.464

4.836

4.477

LN(Result)

MW369

Result

675

580

284

750

438

514

409

405

MW372

Result

43

28

273

519

740

236

126

88

Wells with Transformed Result

Well Number:

Date Collected

1/10/2013

4/10/2013

7/16/2013

10/8/2013

1/14/2014

4/14/2014

7/8/2014

1/9/2013

4/8/2013

7/16/2013

10/9/2013

1/14/2014

4/16/2014

7/7/2014

10/16/2014

10/20/2014

Well Number:

Date Collected

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 58.250	S = 55.944	CV(1)= 0.960	K factor**= 2.523	TL(1)= 199.397	LL(1)= N/A
Statistics-Transformed Background	X= 3 716	S = 0.815	CV(2)= 0.219	K factor**= 2,523	TL(2) = 5.772	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
1/10/2013	30.5	3.418
4/10/2013	25.5	3.239
7/16/2013	23	3.135
10/8/2013	29.7	3.391
1/14/2014	25.3	3.231
4/14/2014	35.4	3.567
7/8/2014	15.8	2.760
10/20/2014	43.3	3.768
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.421
Date Collected	Result	
Date Collected 1/9/2013	Result 30.6	3.421
Date Collected 1/9/2013 4/8/2013	Result 30.6 42.9	3.421 3.759
Date Collected 1/9/2013 4/8/2013 7/16/2013	Result 30.6 42.9 176	3.421 3.759 5.170
Date Collected 1/9/2013 4/8/2013 7/16/2013 10/9/2013	Result 30.6 42.9 176 176	3.421 3.759 5.170 5.170
Date Collected 1/9/2013 4/8/2013 7/16/2013 10/9/2013 1/14/2014	Result 30.6 42.9 176 176 131	3.421 3.759 5.170 5.170 4.875

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	181	NO	5.198	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =469.375 S = 165.5	871 CV(1)=0.353	K factor**= 2.523	TL(1)= 887.869	LL(1)= N/A
Statistics-Transformed Background Data	X = 6.064 S = 0.50	1 CV(2)= 0.083	K factor**= 2.523	TL(2)= 7.328	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data	l				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradien	t Yes	221	NO	5.398	N/A
MW361	Downgradien	t Yes	659	NO	6.491	N/A
MW364	Downgradien	t Yes	381	NO	5.943	N/A
MW367	Sidegradient	Yes	315	NO	5.753	N/A
MW370	Upgradient	Yes	691	NO	6.538	N/A
MW373	Upgradient	Yes	336	NO	5.817	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

6.586

6.225 5.958

6.698

6.094

6.282

5.894

5.894

4.419

6.211

6.215

6.441

6.203

5.986

5.924

6.001

LN(Result)

MW370

Result

725

505

387

811

443

535

363

363

MW373

Result

83

498

500

627

494

398

374

404

Wells with Transformed Result

Well Number:

Date Collected

1/14/2013

4/10/2013

7/16/2013

10/8/2013

1/14/2014

4/15/2014

7/8/2014

1/9/2013

4/9/2013

7/16/2013

10/9/2013

1/14/2014

4/16/2014

7/7/2014

10/16/2014

10/20/2014

Well Number:

Date Collected

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-U First Quarter 2015 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 35.875	S = 18.421	CV(1)= 0.513	K factor**= 2.523	TL(1)= 82.352	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.441	S= 0.568	CV(2)= 0.165	K factor**= 2.523	TL(2)= 4.874	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW370	
Date Collected	Result	LN(Result)
1/14/2013	18.3	2.907
4/10/2013	12	2.485
7/16/2013	33.2	3.503
10/8/2013	27.9	3.329
1/14/2014	10.6	2.361
4/15/2014	27.9	3.329
7/8/2014	30.8	3.428
10/20/2014	22.5	3.114
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.159
Date Collected	Result	. ,
Date Collected 1/9/2013	Result 64	4.159
Date Collected 1/9/2013 4/9/2013	Result 64 63.7	4.159 4.154
Date Collected 1/9/2013 4/9/2013 7/16/2013	Result 64 63.7 63.7	4.159 4.154 4.154
Date Collected 1/9/2013 4/9/2013 7/16/2013 10/9/2013	Result 64 63.7 63.7 59.9	4.159 4.154 4.154 4.093
Date Collected 1/9/2013 4/9/2013 7/16/2013 10/9/2013 1/14/2014	Result 64 63.7 63.7 59.9 37.8	4.159 4.154 4.154 4.093 3.632

Current Background Data from Upgradient

Wells with Transformed Result

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW364	Downgradien	t Yes	58.2	NO	4.064	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

April 9th, 2015

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in mathematics, I have over two years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with LATA.

For this project, the statistical analyses conducted on the first quarter 2015 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely.

Cory Tackett LATA Project Chemist

THIS PAGE INTENTIONALLY LEFT BLANK

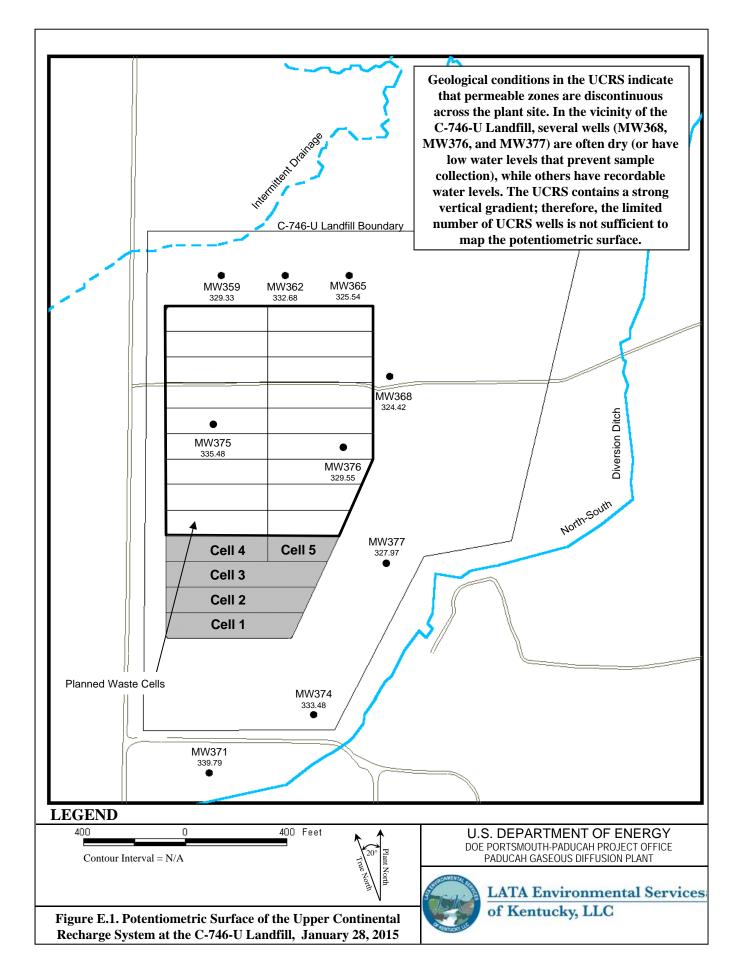
APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

THIS PAGE INTENTIONALLY LEFT BLANK

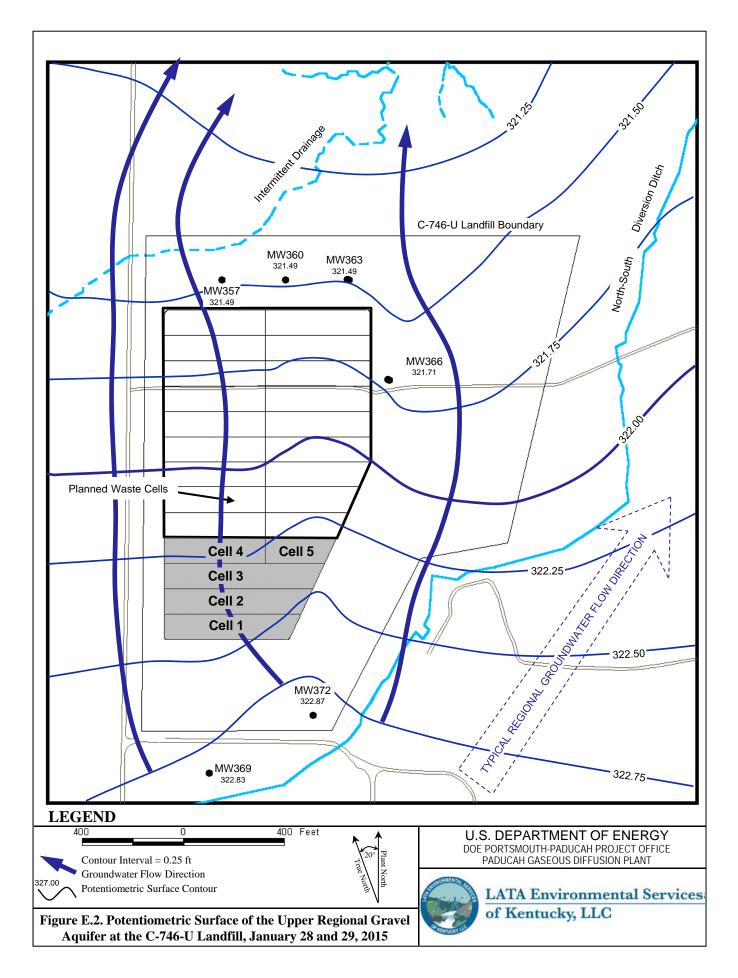
RESIDENTIAL/CONTAINED—QUARTERLY, 1st CY 2015 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: 073-00045 Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u>

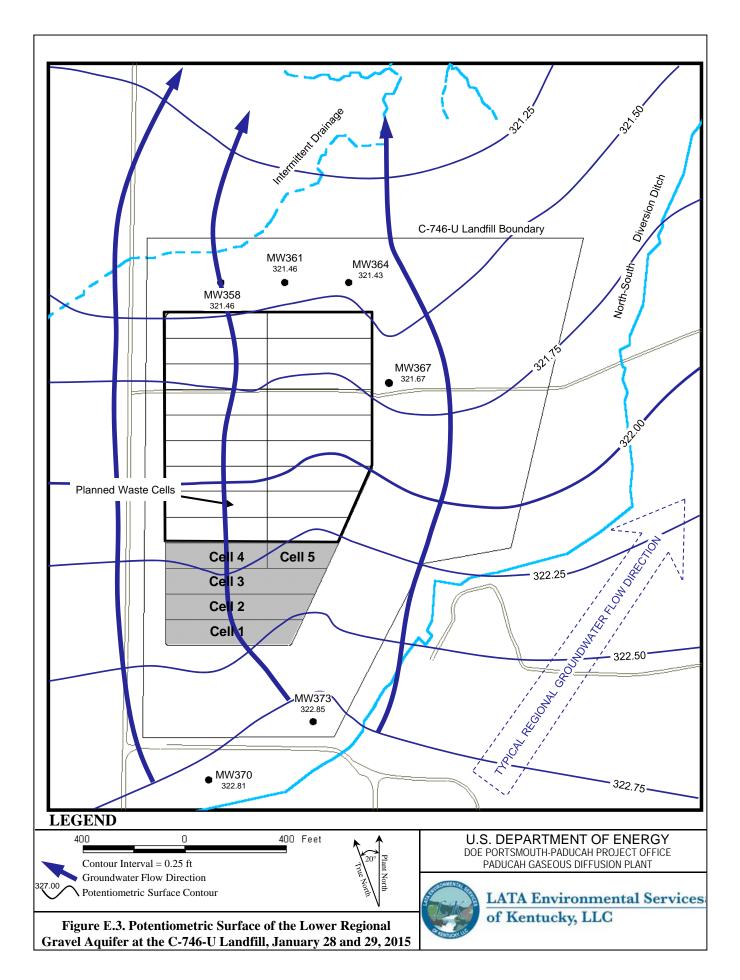
GROUNDWATER FLOW RATE AND DIRECTION

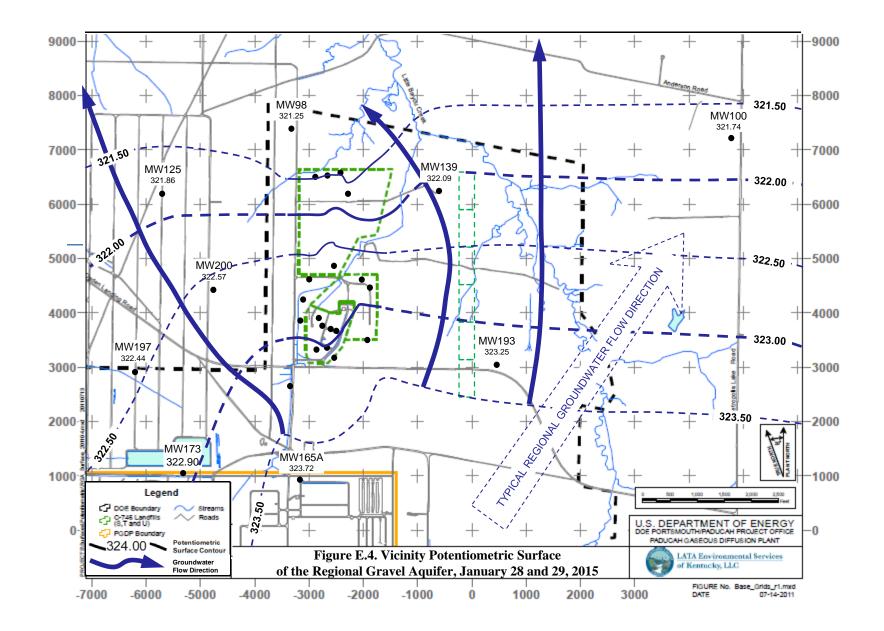

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 *KAR* 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2015 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on January 28 and 29, 2015. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW359, MW365, MW368, MW376, and MW377 had insufficient water to permit sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradient for both the URGA and LRGA at the C-746-U Landfill were similar (6.17×10^{-4} ft/ft and 6.25×10^{-4} ft/ft, respectively). Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA as a whole in the vicinity of the C-746-U Landfill was 3.78×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.


The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.


Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for January 2015, the groundwater flow direction in the immediate area of the landfill is oriented westward to the typical regional flow direction.



							Ra	w Data	*Corre	ected Data
Date	•		Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev	
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/28/2015	7:31	MW357	URGA	368.99	30.30	0.00	47.50	321.49	47.50	321.49
1/28/2015	7:33	MW358	LRGA	369.13	30.30	0.00	47.67	321.46	47.67	321.46
1/28/2015	7:32	MW359	UCRS	369.11	30.30	0.00	39.78	329.33	39.78	329.33
1/28/2015	7:29	MW360	URGA	362.30	30.30	0.00	40.81	321.49	40.81	321.49
1/28/2015	7:26	MW361	LRGA	361.54	30.30	0.00	40.08	321.46	40.08	321.46
1/28/2015	7:28	MW362	UCRS	362.04	30.30	0.00	29.36	332.68	29.36	332.68
1/29/2015	9:32	MW363	URGA	368.83	30.04	0.29	47.05	321.78	47.34	321.49
1/29/2015	9:30	MW364	LRGA	367.75	30.04	0.29	46.03	321.72	46.32	321.43
1/28/2015	7:37	MW365	UCRS	368.37	30.30	0.00	42.83	325.54	42.83	325.54
1/29/2015	9:28	MW366	URGA	369.27	30.04	0.29	47.27	322.00	47.56	321.71
1/29/2015	9:26	MW367	LRGA	369.66	30.04	0.29	47.70	321.96	47.99	321.67
1/28/2015	7:44	MW368	UCRS	369.27	30.30	0.00	44.85	324.42	44.85	324.42
1/28/2015	8:08	MW369	URGA	364.48	30.30	0.00	41.65	322.83	41.65	322.83
1/28/2015	8:09	MW370	LRGA	365.35	30.30	0.00	42.54	322.81	42.54	322.81
1/28/2015	8:10	MW371	UCRS	364.88	30.30	0.00	25.09	339.79	25.09	339.79
1/29/2015	9:05	MW372	URGA	359.66	30.04	0.29	36.50	323.16	36.79	322.87
1/29/2015	9:07	MW373	LRGA	359.95	30.04	0.29	36.81	323.14	37.10	322.85
1/28/2015	8:08	MW374	UCRS	359.71	30.30	0.00	26.23	333.48	26.23	333.48
1/28/2015	7:57	MW375	UCRS	370.53	30.30	0.00	35.05	335.48	35.05	335.48
1/28/2015	7:59	MW376	UCRS	370.61	30.30	0.00	41.06	329.55	41.06	329.55
1/28/2015	8:01	MW377	UCRS	365.92	30.30	0.00	37.95	327.97	37.95	327.97
Initial Baror Elev = eleva amsl = abov	tion		30.30							
BP = barom										
DTW = dept	-		low datum							
URGA = Up										
LRGA = Lo			-							
UCRS = Up	-		-	m						
ND = No da	•									
*Assumes a										

Table E.1. C-746-U Landfill First Quarter 2015 (January) Water Levels

	ft/ft
Beneath Landfill—Upper RGA	$6.17 imes 10^{-4}$
Beneath Landfill—Lower RGA	$6.25 imes 10^{-4}$
Vicinity	$3.78 imes 10^{-4}$

 Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specifi	c Discharge (q)	Average Linear Velocity (v)						
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s					
Upper RGA										
725	0.256	0.45	$1.58 imes 10^{-4}$	1.79	6.32×10^{-4}					
425	0.150	0.26	$9.25 imes 10^{-5}$	1.05	$3.70 imes 10^{-4}$					
Lower RGA										
725	0.256	0.45	1.60×10^{-4}	1.81	$6.40 imes 10^{-4}$					
425	0.150	0.27	9.37×10^{-5}	1.06	$3.75 imes 10^{-4}$					

APPENDIX F

NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the first quarter 2015 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Technetium-99	MW372
Lower Regional Gravel Aquifer	Technetium-99	MW364

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

2/23/2015

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL PERMIT NUMBER 073-00045 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4798	MW357	Trichloroethene	8260B	6.46	ug/L	5
8004-4808	MW372	Beta activity Trichloroethene	900.0 8260B	115 8.08	pCi/L ug/L	50 5
8004-4792	MW373	Trichloroethene	8260B	7.67	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UT	Exceedances for the C-74	6-U Contained Landfill
--------------------------------	--------------------------	------------------------

Groundwater Flow System				UCR	S							URG	βA					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376		359		365	371		366	360	363	357	369	372	367	361		358	370	
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*			*							
Quarter 3, 2004						*										*					
Quarter 3, 2005						*															
Quarter 4, 2005						*															
ALPHA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2009																					
ALUMINUM																					
Quarter 3, 2003											*										
BETA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004		1	1	İ —			1	1			1	İ —	İ —				İ —	1	1		
Quarter 4, 2004	1			1								1	1	1		1	1				1
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																					
Quarter 3, 2012	1			1								1	1	1		I	1				
Quarter 4, 2012	1			1								1	1	1		I	1				
Quarter 1, 2013	1			1								1	1	1		1	1				
Quarter 3, 2013	1			1								1	1	1		I	1				
Quarter 4, 2013	1			1								1	1	1		I	1				
Quarter 1, 2014	1			1								1	1	1		I	1				
Quarter 4, 2014	1			1								1	1	1		1	1				
Quarter 1, 2015	1																				
BROMIDE																					
	1								1					1							1
Quarter 2, 2004													*								

Gradient S S S S D D D U U S D D U U S D D D U U S D D S U U U U S D D D U U U S D D D D U U U S D D D D U U U S D D D D U U U S D<	Groundwater Flow System	I			UCR	S							URG	A					LRG	A		
Monitoring Weil 368 375 376 377 367 361 364 388 370 377 367 361 364 388 370 370 378	Gradient	S	S	S			D	D	U	U	S	D			U	U	S				U	U
2.N.C.10.M 0									-	-					-						-	-
Junier 2, 2003 Image: Another and Another anoother and Another and Another another and Another and	CALCIUM																					
Junter 2.2005 Image: Source 2.	Quarter 3, 2003	1									*	1	1									
Junter 2.000 Image: August 2.000	Quarter 2, 2005																					*
Junter 2.2008 Junter 4.2009 Junter 4.2011 Junter 4.2011 Junter 4.2011 Junter 4.2011 Junter 4.2012 Junter 4																*	-					
Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2009 Junter 4. 2019 Junter 4. 2019 Junter 4. 2011 Junter 4. 2012 Junter 4. 2013 Junter 4. 2014 Junter																						
Junter 4.2009 Image																						
Durter 2.000 Description																	-					
Junter 3, 2010 Image: Applie of the second sec																						
Junter 1, 2010 Image: Answer 1, 2011 Image: Answer 1, 2011 Image: Answer 1, 2011 Image: Answer 1, 2011 Image: Answer 1, 2012 Image: Answer 1, 2013 Image: Answer 1, 2014 Im																						
Junter 1. 2011 Image: Solution of the solution of the																						
Durter 2, 2011 Durter 3, 2011 Durter 4, 2011 Durter 4, 2011 Durter 4, 2011 Durter 4, 2011 Durter 4, 2011 Durter 4, 2011 Durter 4, 2011 Durter 4, 2012 Durter 4, 2013 Durter 4, 2014 Durter 4, 2005 Durter 4, 2002 Durter 4, 2003 Durter																						
Durter 4, 2011 Durter 4, 2011 Durter 4, 2011 Durter 4, 2011 Durter 4, 2011 Durter 4, 2011 Durter 4, 2012 Durter 4, 2013 Durter 4, 2013 Durter 4, 2013 Durter 4, 2013 Durter 4, 2014 Durter																	-					
Junter 4, 2011 Junter 1, 2012 Junter 1, 2013 Junter 1, 2014 Junter 1, 2005 Junter 1, 2005 Junter 1, 2005 Junter 1, 2006 Junter 1, 2006 Junter 1, 2006 Junter 1, 2014 Junter 1, 2014 Junter 1, 2016 Junter																						*
Junter 1. 2012 Image 1. 2012 Image 2. 2012 Ima																*						
Duarter 2. 2012 Image: Application of the second of th																						
uarter 3. 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2012 Image: A 2013 Image: A 2014																						
Danter 1, 2013Danter 1, 2014Danter		1																				
Duarter 1. 2013Duarter 3. 2013Duarter 3. 2013Duarter 3. 2013Duarter 3. 2013Duarter 3. 2013Duarter 3. 2013Duarter 3. 2013Duarter 3. 2013Duarter 3. 2014Duarter 3. 2015Duarter 3. 2014Duarter 3. 2014Duarter 3. 2015Duarter 3. 2014Duarter 3. 2015Duarter 3. 2014Duarter 3. 201		1																				
Quarter 2, 2013 Image: Solution of the solution																						*
Duarter 3. 2013 Image: Solution of the solution		1																				
uarter 4, 2013 <																						*
Quarter 2, 2014 Image: Constraint of the second		1																				
Quarter 3, 2014Image: Solution of the second se																						*
Quarter 4, 2014 Image: Constraint of the second s																-						
CARBON DISULFIDE Image: Constraint of the second secon																						
Duarter 3, 2003 Image: Constraint of the second																						
Quarter 2, 2005 Image: Amage of the second seco											*											
Quarter 3, 2005 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								*														
Quarter 4, 2005							*															
Quarter 1, 2006																						
uarter 2, 2006 <																						
Quarter 3, 2010 * * * <																						
Quarter 4, 2010 Image: Constraint of the second			*				Ŧ					*										
Quarter 1, 2011 Image: Constraint of the second			Ŧ									T			*							
CHEMICAL OXYGEN DEMAND Image: Constraint of the second															-	*						
Quarter 3, 2002III		ND														*						
Quarter 4, 2002 Image: Constraint of the second											*	*	*	*	*	*						
Quarter 1, 2003 Image: Constraint of the second													Ť	Ŧ	Ŧ	Ŧ						
Quarter 2, 2003 *																						
Quarter 3, 2003 * * * * * *													*									
Quarter 4, 2003 Image: Constraint of the second		*											Ť				*					
Quarter 3, 2004 Image: Constraint of the second		*					*										-					
Quarter 3, 2005III							Ŧ					<u>т</u>										
Quarter 4, 2005Image: style s							*				414					*	*			*		
Quarter 1, 2006 Image: Construction of the second seco											Ŧ					Ŧ	Ŧ		*			
CHLORIDE Image: Constraint of the state of the sta							Ŧ												Ŧ			
Quarter 1, 2006 Image: Construction of the system of t																						
Quarter 2, 2014 Image: Construction of the second seco																					*	
COBALT Image: Company of the system Image: Compan																*					-1-	
Quarter 3, 2003 *																-						
Quarter 1, 2004 Image: Conductivity of the conductivity of t		*						*			*	*		*	*	*	*	*	*		*	
CONDUCTIVITY Image: Conductivity of the conductity of the conductivity of the conductity of the conductivi		- -						T			Ŧ	<u>т</u>		T		Ŧ	Ŧ	T	Ŧ		Ŧ	
Quarter 4, 2002 Image: Constraint of the constraint of t															T							
Quarter 1, 2003 Image: Constraint of the con											*											
Quarter 2, 2003 # # # Image: Constraint of the constraint of the		 																				
Quarter 4, 2003 * *		 										*										
		<u> </u>										*	<u> </u>			<u> </u>						
	Quarter 1, 2004	L					L		L		*	L					L					

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY																					
Quarter 2, 2004										*											
Quarter 3, 2004										*											└──┦
Quarter 1, 2005															*						
Quarter 2, 2005						J.									*				J.		
Quarter 3, 2005 Quarter 4, 2005						*									*			*	*		
Quarter 1, 2005															*			*			
Quarter 2, 2006															*						
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 3, 2007															*						
Quarter 4, 2007															*						
Quarter 1, 2008															*						
Quarter 2, 2008															*						
Quarter 3, 2008															*						
Quarter 4, 2008	ļ														*						⊢
Quarter 1, 2009															*						⊢
Quarter 2, 2009										<u> </u>					*		<u> </u>				⊢
Quarter 3, 2009 Quarter 4, 2009															*						
Quarter 4, 2009 Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2010															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013 Quarter 1, 2014															*						
Quarter 1, 2014 Quarter 2, 2014															*						
Quarter 3, 2014															*						
Quarter 4, 2014															*						
Quarter 1, 2015															*						
DISSOLVED OXYGEN																					
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*					*											
Quarter 4, 2003					*																
Quarter 1, 2004					*																
Quarter 2, 2004								*								*					
Quarter 1, 2005	 				*					ļ							<u> </u>				⊢
Quarter 2, 2005					4			*													
Quarter 1, 2006					*			*								<u> </u>					⊢
Quarter 2, 2006					*			*													
Quarter 3, 2006 Quarter 4, 2006					* *			*	*												
Quarter 2, 2006 Quarter 2, 2007					*			*	*												
Quarter 3, 2007					*			*	*								1				
Quarter 1, 2008					*														*		
Quarter 2, 2008	1							*	*								1	1			
Quarter 3, 2008	l							*	l									l			
Quarter 1, 2009	l						*		1									1			
Quarter 2, 2009					*			*	*												
Quarter 3, 2009						*		*	*												

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
DISSOLVED OXYGEN																					
Quarter 1, 2010					*		*														
Quarter 2, 2010					*	*		*	*											*	*
Quarter 3, 2010					*	*															
Quarter 4, 2010							*					*								*	
Quarter 1, 2011						*															
Quarter 2, 2011					*	*	*	*	*					*							
Quarter 3, 2011					-	*	-		*												
Quarter 1, 2012						-1-	*		*												
Quarter 2, 2012	*			*	*	*	-	*	*												-
Quarter 3, 2012	4			-	-	*		~	~												
Quarter 4, 2012	-					Ŧ			*												-
	-					*			*												
Quarter 1, 2013						*	*		*												
Quarter 2, 2013	44				44		*	44													
Quarter 3, 2013	*				*		*	*	*											444	
Quarter 4, 2013		-							*											*	
Quarter 2, 2014	*				*	*	*	*	*									*			Ļ
Quarter 3, 2014	*				*	*	*														
Quarter 4, 2014						*															
DISSOLVED SOLIDS																					
Quarter 4, 2002										*										-	
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003							*			*	*										
Quarter 4, 2003										*											
Quarter 3, 2005						*															
Quarter 4, 2006															*						1
Quarter 1, 2007															*						1
Quarter 2, 2007															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2009															*						-
Quarter 2, 2010															*						
Quarter 3, 2010	-														*						-
Quarter 4, 2010	-														*						
															*						
Quarter 1, 2011																					
Quarter 2, 2011															*						
Quarter 3, 2011															*						<u> </u>
Quarter 4, 2011															*						<u> </u>
Quarter 1, 2012														*	*						<u> </u>
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*					-	
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013								ſ	ſ			[ſ	*		ſ		ſ		Γ
Quarter 1, 2014	1														*						1
Quarter 2, 2014	1														*						1
Quarter 4, 2014	1														*						1
IODIDE	1																				
Quarter 2, 2003																*					
Quarter 3, 2003	*							1	1	*		1		1		-	1		1		1
Quarter 4, 2003	1		1				*	1	1			1		1			1		1		+
Quarter 3, 2010	1		-			*		*					*				*	-			
						~		T.					~				Ť				
IODINE 121																					1
IODINE-131 Quarter 3, 2010																					

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
IODOMETHANE																					
Quarter 4, 2003						*															
IRON																					
Quarter 4, 2002						*															
Quarter 3, 2003								_								*					
Quarter 4, 2003										*						*					
Quarter 1, 2004								_		*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005															*						*
Quarter 3, 2005						*															*
Quarter 2, 2006															*						*
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2008	Ĩ														*		l		l		
Quarter 2, 2009															*						
Quarter 3, 2009	1														*			1			
Quarter 4, 2009	1														*						
Quarter 1, 2010	1														*						
Quarter 2, 2010	1														*		1		1		
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011	-														*						
Quarter 3, 2011	-														*						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						
Quarter 3, 2012	-														*						
Quarter 4, 2012															*						
															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013																					
Quarter 2, 2014															*						
Quarter 4, 2014										_					*	_					
MANGANESE																					
Quarter 3, 2002										*		*									
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2003										*		*									
Quarter 3, 2003										*		*	*			*	*	*	*		
Quarter 4, 2003										*	*	*	*				*	*			
Quarter 1, 2004										*	*	*				*	*	*			
Quarter 2, 2004							*			*	*	*						*			
Quarter 3, 2004							*	-		*	*	*				*					
Quarter 4, 2004										*		*				*					
Quarter 1, 2005										*		*									
Quarter 2, 2005										*		*									
Quarter 3, 2005										*		*				*					
Quarter 4, 2005										*						*					
Quarter 1, 2006	1									*							1		1		
Quarter 2, 2006	1		1				*			*	1	*	1					1			
Quarter 3, 2006	1									*						*	1		1		
Quarter 4, 2006	1									*							i		i		
Quarter 1, 2000	1									*											
Quarter 2, 2007	1						*	1		*											
Zum 101 2, 2007	1						*			-r-											
Quarter 3 2007	1						*														
Quarter 3, 2007																					
Quarter 3, 2008																					
Quarter 3, 2008 Quarter 4, 2008							*														
Quarter 3, 2008																					

Groundwater Flow System	1			UCR	s							URG	A			1		LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
NICKEL																					
Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTE	NTIA	L							-											
Quarter 4, 2002																	*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004													*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006					*			*	*								*				*
Quarter 2, 2006					*		*	*					*				*			*	
Quarter 3, 2006					*			*					*				*			*	
Quarter 4, 2006					*		*			*		*	*				*			*	*
Quarter 1, 2007		*			*			*					*				*			*	*
Quarter 2, 2007					*								*				*			*	*
Quarter 3, 2007					*			*									*			*	
Quarter 4, 2007																	*			*	*
Quarter 1, 2008					*			*				*	*						*	*	
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011						*		*		*	*	*	*	*		*	*	*	*	*	
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*			*	*	*	*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2014		*				*		*	*	*	.14	*	*	*		*	*	*	*	*	*
Quarter 1, 2015		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
PCB, TOTAL																	40				
Quarter 4, 2003												ىك					*				
Quarter 3, 2004	<u> </u>		<u> </u>			<u> </u>	ملد	<u> </u>				*				<u> </u>	<u> </u>	<u> </u>			
Quarter 3, 2005	1		<u> </u>				*					<u> </u>				<u> </u>	<u> </u>	<u> </u>			
Quarter 2, 2006	<u> </u>		<u> </u>			<u> </u>	*	<u> </u>				<u> </u>				<u> </u>	<u> </u>	<u> </u>			
Quarter 3, 2006	1		<u> </u>				*					<u> </u>				<u> </u>	<u> </u>	<u> </u>			
		1	1	l		l I	*										1		1		
Quarter 1, 2007							48.1														
Quarter 1, 2007 Quarter 2, 2007							*														
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007							*														
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008							*														
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007							*														

Groundwater Flow System	1			UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368		376		359		365		374	366	360		357	369		367			358		373
PCB, TOTAL																					
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004												*									
Quarter 2, 2006							*					*									
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010	1						*								1		1				
PCB-1242																					
Quarter 3, 2006							*					*									
Quarter 4, 2006	1									*		-									
Quarter 1, 2008	1						*														
Quarter 2, 2012							*														
PCB-1248																					
Quarter 2, 2008							*														
PCB-1260							-1-														
Quarter 2, 2006							*														
pH							-1-														
Quarter 3, 2002										*											_
Quarter 4, 2002										*											
Quarter 1, 2002										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2003							*									*					
Quarter 3, 2005						*	-1-											*	*		
Quarter 4, 2005						*												~	*		
Quarter 3, 2006						Ŧ										*			*		
Quarter 2, 2000														*		Ŧ					
Quarter 3, 2011														*							
Quarter 4, 2011														*							
Quarter 1, 2012														÷		*	*				
Quarter 2, 2012												*				Ť	Ť				
	1									*						*					
Quarter 1, 2013 POTASSIUM										*		*				*					
Quarter 1, 2014																*					
RADIUM-228																*					
Quarter 2, 2005																					
	-						-	-	-												
Quarter 4, 2005																					
SELENIUM																					
Quarter 4, 2003																					
SODIUM										*	*		*								
Quarter 3, 2002										*	* *		*	ىك.							
Quarter 4, 2002										*	*			*							
Quarter 1, 2003										* *	ىرى										
I mortor 1 1001	1									*	*										
Quarter 2, 2003								ļ	ļ		*										
Quarter 3, 2003																					
Quarter 3, 2003 Quarter 1, 2007											*										
Quarter 3, 2003 Quarter 1, 2007 Quarter 1, 2012											*			*							
Quarter 3, 2003 Quarter 1, 2007 Quarter 1, 2012 Quarter 1, 2014														*	*						
Quarter 3, 2003 Quarter 1, 2007 Quarter 1, 2012 Quarter 1, 2014 Quarter 3, 2014											*			*	*						
Quarter 3, 2003 Quarter 1, 2007 Quarter 1, 2012 Quarter 1, 2014														*	*						

Groundwater Flow System				UCR	RS							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
STRONTIUM-90																					
Quarter 4, 2008																					
SULFATE																					
Quarter 1, 2003							*														
Quarter 2, 2003						*	*														
Quarter 3, 2003	*					*															
Quarter 4, 2003	_				*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004	_				*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005	_														*						
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006							*														
Quarter 1, 2007	4	ļ	ļ				*		ļ									ļ			
Quarter 2, 2007	4	ļ	ļ				*		ļ									ļ			
Quarter 3, 2007	4		ļ				*		ļ									ļ			
Quarter 4, 2007		*																			
Quarter 1, 2008	∔	*			*	- 41	*		*												<u> </u>
Quarter 2, 2008	⊢	*			*	*	*														
Quarter 3, 2008	⊢	*			*	*	*														
Quarter 4, 2008	⊢	*				*	*														
Quarter 1, 2009	┥	*					*									I					<u> </u>
Quarter 2, 2009	╂	*			*	*	*								-11-						
Quarter 3, 2009	╂	*			*	*	*								*						
Quarter 4, 2009	—	*			*	*	4.	<u> </u>							*		<u> </u>	<u> </u>			
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010	4	*			*	*	*	<u> </u>							* *		<u> </u>	<u> </u>			
Quarter 3, 2010	<u> </u>	*			*	*	*								*						
Quarter 4, 2010	4	*				*	*								*						
Quarter 1, 2011	┥	*			ملح	مله	4								مله	I					<u> </u>
Quarter 2, 2011	—	*			*	*	*	4.							*		<u> </u>	<u> </u>			
Quarter 3, 2011	4	*				*	*	*							*						
Quarter 4, 2011		*				*	بر	42							*						
Quarter 1, 2012	-	* *		ملو	ىلىر	ملو	*	*	ىلىر						*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012						未									*						
Quarter 4, 2012		*				*									*						
Quarter 1, 2013						*															
Quarter 2, 2013	-	*		*	*	ىلىر	ىلەر								*						
Quarter 3, 2013	*	* *		木	*	*	*	<u> </u>							* *		<u> </u>	<u> </u>			
Quarter 4, 2013	+																				
Quarter 1, 2014	4	*			4		<u>ب</u> د	42							*						
Quarter 2, 2014	*	*			*	*	*	*							*		<u> </u>	<u> </u>			
Quarter 3, 2014	*	*			ボ	*	ボ	ボ							ボ						
Quarter 4, 2014		*				*															
Quarter 1, 2015 TECHNETIUM-99		*																			
Quarter 4, 2002																	*	*	*		
Quarter 4, 2002 Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 2, 2003 Quarter 3, 2003							*						*			-	*	*	*		*
Quarter 3, 2003 Quarter 4, 2003	+																*				*
Quarter 4, 2003 Quarter 1, 2004	+														*		*				*
Quarter 1, 2004 Quarter 2, 2004															*		~				*
															*						*
Quarter 3, 2004															* *		*				*
Quarter 4, 2004 Quarter 3, 2005															*		*				*
· · ·								<u> </u>			<u> </u>				*		*	<u> </u>			*
Quarter 1, 2006		*						<u> </u>	*						*		<u> </u>	<u> </u>			*
		一不	i i				1	1	*									I			
Quarter 2, 2006 Quarter 3, 2006	-																				*

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained	ed Landfill (Continued)
---	-------------------------

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TECHNETIUM-99																					
Quarter 4, 2006															*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007	_														*		*	*			
Quarter 4, 2007										*					*				*		*
Quarter 1, 2008	_														*					*	*
Quarter 2, 2008	_						*	*						*		*			*		<u> </u>
Quarter 3, 2008	_														*				- 44		<u> </u>
Quarter 4, 2008	_									*							*		*		<u> </u>
Quarter 1, 2009	_									*											
Quarter 2, 2009	_									444					444			*			
Quarter 3, 2009	_							*		*					*						<u> </u>
Quarter 4, 2009	_									*					*			*	*		
Quarter 2, 2010	_									*					444	*	*	*	*		
Quarter 3, 2010	_									*					*						<u> </u>
Quarter 4, 2010	_																	*			
Quarter 1, 2011	_	*								*							*	.			µ
Quarter 2, 2011	_															*	* *	* *	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012	_							*									.14	*			
Quarter 3, 2012	_														ىلەر		*	* *			
Quarter 4, 2012	_														*			*			*
Quarter 1, 2013	_																	*			*
Quarter 2, 2013	_																				*
Quarter 3, 2013	_									*					44		44	4			*
Quarter 4, 2013	_														*		*	*			*
Quarter 1, 2014	_														*		*	*			
Quarter 2, 2014	_																4	*	ىلە		
Quarter 3, 2014	-														ł.	-	*	*	*	-	
Quarter 4, 2014	-														*			.			
Quarter 1, 2015	-														*			*			
TOLUENE	-									*				*							
Quarter 2, 2014 TOTAL ORGANIC CARBO										*				不							
Quarter 3, 2002										*	*	*		*							*
Quarter 3, 2002 Quarter 4, 2002	-									*	*	*		*							*
Quarter 1, 2002 Quarter 1, 2003	-									Ť	*			Ť							
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003	Ţ.									*	*					Ť					
Quarter 1, 2003	-									Ť	*										
Quarter 3, 2005	-					*				*	Ŧ				*	*			*		
Quarter 4, 2005	-					*				*					Ŧ	Ŧ		*	*		
Quarter 1, 2005	-					Ŧ												Ŧ	*		
TOTAL ORGANIC HALIDE	5																		Ŧ		
Quarter 4, 2002	<i>.</i>									*						_					
Quarter 1, 2002 Quarter 1, 2003	-									*											
Quarter 1, 2003 Quarter 2, 2003	-									*											
Quarter 1, 2003	-									÷						*					
	-															*					
TRICHLOROETHENE Quarter 3, 2002														-							
Quarter 3, 2002 Quarter 4, 2002	-																				
Quarter 4, 2002 Quarter 1, 2003	-																				
Quarter 1, 2003 Quarter 2, 2003	-																				
Quarter 2, 2003 Quarter 3, 2003	-																				
Quarter 3, 2003 Quarter 4, 2003	-				-	-					-		-					-			
Quarter 4, 2003 Quarter 1, 2004	-																				
Quarter 1, 2004 Quarter 2, 2004	-				-	-	-				-		-					-			
Quarter 2, 2004 Quarter 3, 2004	_																				
	_								-												
Quarter 4, 2004																					
Quarter 1, 2005	_								-												
Quarter 2, 2005																					
Quarter 3, 2005									L							L					

Groundwater Flow System	1	UCRS								URGA							LRGA					
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S D D S U U						
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373	
TRICHLOROETHENE																						
Quarter 4, 2005																						
Quarter 1, 2005																						
Quarter 2, 2006																						
Quarter 3, 2006																						
Quarter 4, 2006																						
Quarter 1, 2007																						
Quarter 2, 2007																				_		
Quarter 3, 2007																						
Quarter 4, 2007																						
Quarter 1, 2008																						
Quarter 2, 2008																						
Quarter 3, 2008																						
Quarter 4, 2008																						
Quarter 1, 2009																						
Quarter 2, 2009																						
Quarter 3, 2009																						
Quarter 4, 2009																						
Quarter 1, 2010						_	_				_			_			-					
Quarter 2, 2010																						
Quarter 3, 2010																						
Quarter 4, 2010																						
Quarter 2, 2011																						
Quarter 3, 2011																						
Quarter 4, 2011													_									
Quarter 1, 2012																						
Quarter 2, 2012																						
Quarter 3, 2012														_								
Quarter 4, 2012													-									
Quarter 1, 2013																						
Quarter 2, 2013																						
Quarter 3, 2013																			_			
Quarter 4, 2013																						
Quarter 1, 2014																	_					
Quarter 2, 2014													-									
Quarter 3, 2014																						
Quarter 4, 2014																						
Quarter 1, 2015																						
TURBIDITY																						
Quarter 1, 2003										*												
URANIUM																					- 14	
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*	ļ	*	*	*	*	
Quarter 4, 2006																					*	
ZINC																						
Quarter 3, 2005	1		Ļ		L		<u> </u>												*		<u> </u>	
* Statistical test results indicate an elevated concentration (i.e., a statistical exceedance).																						
MCL Exceedance																						
JCRS Upper Continental Recharge System																						
URGA Upper Regional Gravel Aquifer	RGA Upper Regional Gravel Aquifer																					
LRGA Lower Regional Gravel Aquifer																						

APPENDIX H

METHANE MONITORING DATA

C-746-U LANDFILL METHANE LOG

PADUCAH GASEOUS DIFFUSION PLANT Permit #: 073-00045 McCracken County, Kentucky

Date: March 12, 2015

Time	Location	% LEL of Methane Reading	Remarks	Weather Conditions
08:20	C-746-U1	0	checked at floor level	Inside office
08:25	C-746-U2	0	checked at floor level	Inside office
08:30	C-746-U-T-14	0	checked at floor level	Inside office
08:45	C-746-U15	0	checked at floor level	Inside office
08:35	MG1	0	wet casing	.1°1
08:50	MG2	0	wet casing	Q. F. da
09:45	MG3	0	wet casing	a love the we
09:40	MG4	0	wet casing	Char can
N/A	Suspect or Problem Areas	N/A	No problems noted	N/A
			18 3-12-15	
			18 3-10-	

mith lammet. 0 Signature

WD-F-0053 (8/19/13) PAD-WD-0017 Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms In Accordance With PAD-WC-0044

APPENDIX I

SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS

Division of Waste Management **RESIDENTIAL/CONTAINED-QUARTERLY** Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

For Official Use Only

LAB ID: None

SURFACE WATER SAMPLE ANALYSIS (5)

Monitoring Po	int	: (KPDES Discharge Number, or "	OWNSTREAM")	L150 AT SITE		L154 UPSTREAM		L351 DOWNSTREAI		F. BLANK			
Sample Seque	nce	#				1	1		1		1		
If sample is	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment							NA		NA		F	
Sample Date a	and	Time (Month/Day/Year hour: n	ninu	tes)		1/12/2015 10):26	1/12/2015 10	0:38	1/12/2015 1	0:16	1/12/2015 10:27	
Duplicate ("	Y" (or "N") ¹				N		N		N		N	
Split ('Y' o	r "]	N") ²				N		N	Ν			N	
Facility Sam	ple	ID Number (if applicable)				L150US2-1	15	L154US2-	15	L351US2-	-15	FB1US2-2	15
Laboratory Sa	Laboratory Sample ID Number (if applicable)							364810003		3648100	04	364810005	
Date of Anal	Date of Analysis (Month/Day/Year)						2/1/2015		2/6/2015		2/6/2015		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷
A200-00-0	0	Flow	т	MGD	Field	0.01		0.07		0.14			*
16887-00-6	2	Chloride(s)	т	mg/L	300.0	15.3		22.8		11.3		<0.2	
14808-79-8	0	Sulfate	т	mg/L	300.0	19.6		27.2		19.9		<0.4	
7439-89-6	0	Iron	т	mg/L	200.8	0.686		0.331		1.98		<0.1	
7440-23-5	0	Sodium	т	mg/L	200.8	2.45		13.1		7.85		<0.25	
S0268	0	Organic Carbon ⁶	т	mg/L	9060	21		19.7		17.2			*
S0097	0	BOD ⁶	т	mg/L	not applicable		*		*		*		*
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	65.4		85.4		65.4			*

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

F

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	: (KPDES Discharge Number, or	יינ	JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTREAM		L351 DOWNSTREAM		F. BLANK	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
S0145	1	Specific Conductance	т	µmho/cm	Field	281		421		237			*
S0270	0	Total Suspended Solids	т	mg/L	160.2	8.53		8.13		23.2			*
S0266	0	Total Dissolved Solids	т	mg/L	160.1	139		229		169			*
S0269	0	Total Solids	т	mg/L	SM-2540B	202		292		216			*
s0296	0	рН	т	Units	Field	7.83		7.69		7.76			*
7440-61-1		Uranium	т	mg/L	200.8	0.00513		0.0206		0.0238		<0.0002	
12587-46-1		Gross Alpha (α)	т	pCi/L	900.0	-0.422	*	9.62	*	11.3	*	3.4	*
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	24.5	*	17.6	*	16.5	*	-5.48	*

Division of Waste Management **RESIDENTIAL/CONTAINED-QUARTERLY** Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number: 073-00045 14 Reilly Road LAB ID: None

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (5)

li								N.					7
Monitoring Po	int	(KPDES Discharge Number, or "U	OWNSTREAM")	L154 UPSTRE	L154 UPSTREAM					$ \bot$			
Sample Sequer	ce	#				2							/
If sample is a	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment												
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		1/12/2015 10:	38						
Duplicate ("Y	" с	or "N") ¹				Y							
Split ('Y' or	"N	[") ²				Ν			$\overline{\ }$				
Facility Samp	le	ID Number (if applicable)				L154DUS2-1	5					/	
Laboratory Sa	Laboratory Sample ID Number (if applicable)										7		
Date of Analy	Date of Analysis (Month/Day/Year)										/		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUS OF FQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
A200-00-0	0	Flow	т	MGD	Field	0.07					\backslash		
16887-00-6	2	Chloride(s)	т	mg/L	300.0	22.8				1			
14808-79-8	0	Sulfate	т	mg/L	300.0	27.1			\bigvee				
7439-89-6	0	Iron	т	mg/L	200.8	1.07			1				
7440-23-5	0	Sodium	т	mg/L	200.8	12.9							
S0268	0	Organic Carbon ⁶	т	mg/L	9060	18.7							
S0097	0	BOD ⁶	т	mg/L	not applicable		*						\setminus
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	55.4		/					

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

P

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	(KPDES Discharge Number, or	"DOWNSTREAM")	L154 UPSTRI	EAM	\backslash				/			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQD ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	VALUE OR PQL ⁵	F L G S ⁷
s0145	1	Specific Conductance	т	µmho/cm	Field	421		\setminus					
s0270	0	Total Suspended Solids	т	mg/L	160.2	18							
S0266	0	Total Dissolved Solids	т	mg/L	160.1	234							
S0269	0	Total Solids	т	mg/L	SM-2540B	296							
S0296	0	рН	т	Units	Field	7.69				\backslash			
7440-61-1		Uranium	т	mg/L	200.8	0.0207							
12587-46-1		Gross Alpha (α)	т	pCi/L	900.0	6.73	*				/		
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	15.6	*			X			
											\backslash		
									/				
												$ \rightarrow $	
												<u>}</u>	
								/					\setminus

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ing Facility Sample ID	Constituent	Flag	Description
L150	L150US2-15	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.61. Rad error is 6.6.
		Beta activity		TPU is 10.3. Rad error is 9.43.
L154	L154US2-15	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 3.18. Rad error is 2.67.
		Beta activity		TPU is 4.02. Rad error is 2.79.
L351	L351US2-15	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 3.47. Rad error is 2.82.
		Beta activity		TPU is 4.6. Rad error is 3.7.
QC	FB1US2-15	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.99. Rad error is 5.96.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.52. Rad error is 8.52.
L154	L154DUS2-15	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 2.66. Rad error is 2.41.
		Beta activity		TPU is 3.94. Rad error is 2.96.