C-746-U Contained Landfill
Fourth Quarter Calendar Year 2014
(October–December)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

CLEARED FOR PUBLIC RELEASE

C-746-U Contained Landfill
Fourth Quarter Calendar Year 2014
(October–December)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—February 2015

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC
managing the
Environmental Remediation Activities at the
Paducah Gaseous Diffusion Plant
under contract DE-AC30-10CC40020

CLEARED FOR PUBLIC RELEASE

CONTENTS

FI	GURE	· · · · · · · · · · · · · · · · · · · ·		v
ΤA	BLES	S		v
ΑC	CRON	YMS		vii
1.	INTI	RODUC	TION	1
	1.1		GROUND	
	1.2		TORING PERIOD ACTIVITIES	
		1.2.1	Groundwater Monitoring	
		1.2.2	Methane Monitoring	
		1.2.3	Surface Water Monitoring	4
	1.3	KEY F	RESULTS	4
2.	DAT	A EVA	LUATION/STATISTICAL SYNOPSIS	7
	2.1	STAT	STICAL ANALYSIS OF GROUNDWATER DATA	8
		2.1.1	Upper Continental Recharge System	8
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	
	2.2	DATA	VALIDATION	8
3.	PRO	FESSIC	NAL GEOLOGIST AUTHORIZATION	11
4.	REF	ERENC	ES	13
ΔF	PPFNI	DIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE	
7 11	LLIVE	7171 71.	MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PPENI	OIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PENI	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PPENI	DIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PPENI	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PPENI	OIX F:	NOTIFICATIONS	F-1
ΑF	PPENI	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PENI	OIX H:	METHANE MONITORING DATA	H-1

FIGURE

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
	TABLES	
	Summary of MCL Exceedances	
2.	Exceedances of Statistically Derived Historical Background Concentrations	4
3.	Exceedances of Current Background UTL in Downgradient Wells	4
4.	Exceedances of Current Background UTL in UCRS Wells	5
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

EPA U.S. Environmental Protection Agency
KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Fourth Quarter Calendar Year 2014 (October-December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number 073-00014, 073-00015, 073-00045. This report was written utilizing the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) listed in 401 KAR 47:030 § 6 for Kentucky solid waste facilities and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence].

Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 4.

1.1 BACKGROUND

The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill was permitted in November 1996 under Solid Waste Landfill Permit Number 073-00045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW359, MW365, MW368, MW376, and MW377 (all screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for these locations.

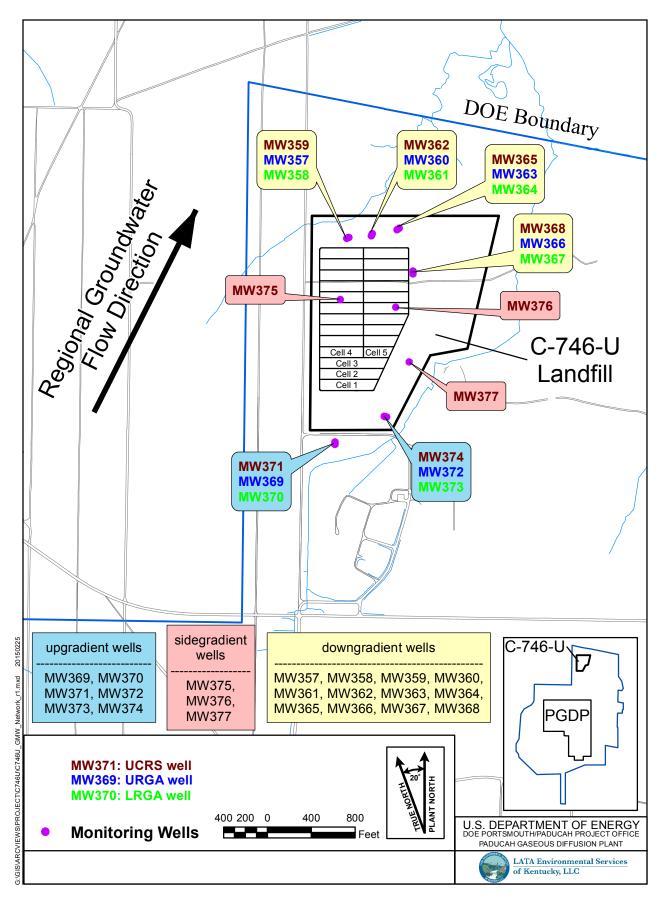


Figure 1. C-746-U Landfill Groundwater Monitoring Well Network

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014) UCRS wells are included in the monitoring program. Groundwater flow is downward through the UCRS, but flow in the underlying RGA is lateral. Groundwater flow in the RGA is in a north-northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) within the fourth quarter 2014 using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 28, 2014, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 38 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient in the vicinity of the C-746-U Landfill in October was 4.06×10^4 ft/ft. The hydraulic gradient for the URGA at the C-746-U Landfill was 8.13×10^4 ft/ft, and the hydraulic gradient for the LRGA was 8.11×10^4 ft/ft. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.38 to 2.36 ft/day for the URGA and LRGA (see Table E.3).

1.2.2 Methane Monitoring

The fourth quarter CY 2014 methane inspection was not completed during December 2014 because of inclement weather.

Landfill operations staff monitored for the occurrence of methane on January 16, 2015, in four on-site building locations and four locations along the landfill boundary. See Appendix H for a map of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

-

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

1.2.3 Surface Water Monitoring

There was no surface water sampling conducted during the fourth quarter 2014 due to insufficient rainfall during normal landfill operating hours.

1.3 KEY RESULTS

The following parameters had concentrations that either exceeded the respective MCL (Table 1) or were shown to exceed the statistically derived historical background UTL (Table 2) concentrations² during the fourth quarter 2014. Those constituents (present in downgradient wells) that exceed their historical UTL were further evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW357: Trichloroethene	MW358: Trichloroethene
	MW372: Beta activity,	MW373: Trichloroethene
	trichloroethene	

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW362: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW371: Oxidation-reduction	MW360: Sodium	MW361: Oxidation-reduction
potential		potential
MW374: Oxidation-reduction	MW363: Oxidation-reduction	MW364: Oxidation-reduction
potential, sulfate	potential	potential
MW375: Oxidation-reduction	MW366: Oxidation-reduction	MW367: Oxidation-reduction
potential, sulfate	potential,	potential
	MW369: Oxidation-reduction	MW370: Oxidation-reduction
	potential	potential
	MW372: Beta activity, calcium,	MW373: Oxidation-reduction
	conductivity, dissolved solids,	potential
	magnesium, technetium-99	

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW35, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Table 3. Exceedances of Current Background UTL in Downgradient Wells

None

² The term "concentration" may refer to a field measurement result such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

There were no new MCL exceedances for this quarter. The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. None of the MCL exceedances in downgradient wells also exceeded the statistically derived historical background concentration. In accordance with the approved groundwater monitoring plan, the MCL exceedances in downgradient wells (trichloroethene in MW357and MW358) do not exceed the historical background concentration and are considered to be Type I exceedances that are not attributable to the C-746-U Landfill.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes that the constituents present in downgradient wells with historical UTL exceedances that are below the current UTL. In accordance with the approved groundwater monitoring plan, these are considered to be Type 1 exceedances and are considered to be not attributable to the C-746-U Landfill. NOTE: The gradients in UCRS wells are downward. Thus, none of the UCRS wells are properly considered to be downgradient of the landfill and are not included in Table 3. However, the statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS wells with sulfate values that exceed both the historical and current background. These exceedances are not attributable to C-746-U sources and are considered Type 1 exceedances (Table 4).

Table 4. Exceedances of Current Background UTL in UCRS Wells

UCRS
MW362: Sulfate
MW375: Sulfate

All MCL and UTL Exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2014 groundwater data collected from the C-746-U Contained Landfill MWs were performed in accordance with the *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).* The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1, D2, and D3).

For those parameters that exceed the respective Kentucky solid waste facility MCL, found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is properly attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. A stepwise list of the one-side tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 5.

Table 5. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW359***	MW357	MW358
MW362	MW360	MW361
MW365***	MW363	MW364
MW368***	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375	,	, 10
MW376 (dry)***		
MW377 (dry)***		

^{*}A map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances.

2.1.1 Upper Continental Recharge System

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2.

2.1.2 Upper Regional Gravel Aquifer

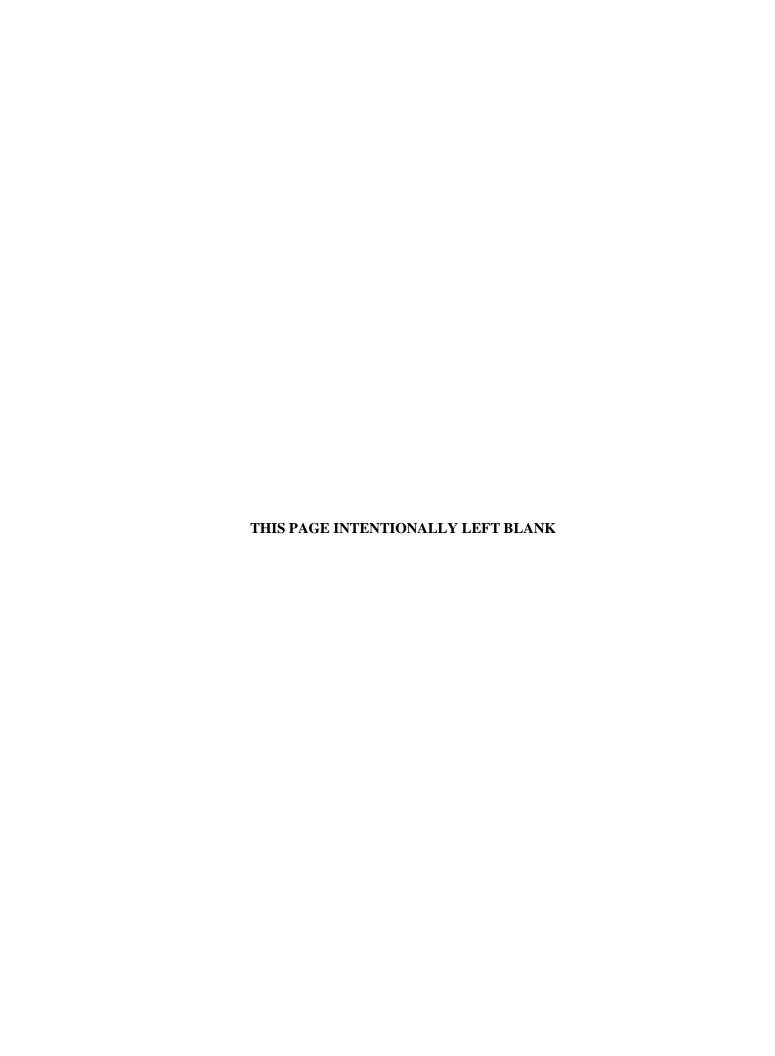
In this quarter, 32 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, oxidation-reduction potential displayed concentrations that exceeded their respective historical UTL and are listed in Table 2.

2.2 DATA VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved groundwater monitoring plan, data verification is performed for 100 percent of the data. Data are flagged as necessary.


^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}MW359, MW365, MW368, MW376, and MW377 had sufficient water to permit a water level measurement, but insufficient water to provide water samples for laboratory analysis.

Data validation was performed on 100 percent of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory project management or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered acceptable.

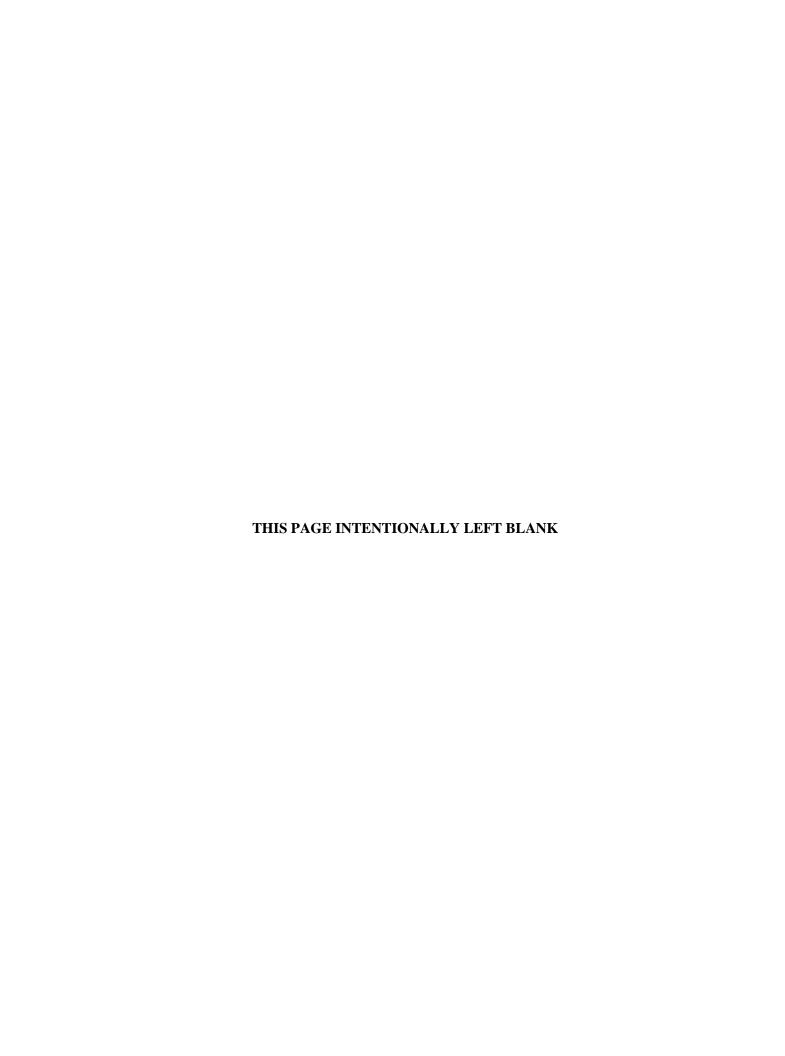
3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION: C-746-U Contained Landfill

Fourth Quarter Calendar Year 2014 (October-December)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0089/V4)


Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Hegen PG 1194 PG 1194

Kenneth R. Davis

PG1194

February 26, 2015 Date

4. REFERENCES

- EPA (U.S. Environmental Protection Agency) 1989. *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Final Guidance, Office of Resource Conservation and Recovery, U.S. Environmental Protection Agency, Washington, DC.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE–Paduca (As officially sho			Activity:	C-746-	U Contained Landfill
Permit No:	073-00045	Find	ls/Unit No:	Quarter of	& Year	4th Qtr. CY 2014
Please check the j	following as applica	ble:				
Characterization X Quarterly Semiannual Annual Assessment Please check applicable submittal(s): X Groundwater Surface Water Leachate X Methane Monitoring This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction pages. I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.						
Please check appl	icable submittal(s):	X	Groundwater		_ Surfac	e Water
			_ Leachate	X	_ Metha	ne Monitoring
45:160) or by statut jurisdiction of the D hours of making the lab report is No pages. I certify under pen accordance with a s Based on my inquir	e (Kentucky Revised strivision of Waste Mana ne determination using Considered notifically of law that the considered to assay of the person or pe	Statues Chapte agement. You ag statistical a ation. Instruct document and sure that qualions directly re	er 224) to conduct groumust report any indicinalyses, direct comparions for completing the all attachments were fied personnel properly exponsible for gathering	ndwater and station of contrison, or other form are attached prepared under gather and einformation,	surface was amination or similar ched. Do note the my direct waluate the information of the surface of the chemical control of	ter monitoring under the n within forty-eight (48) techniques. Submitting not submit the instruction ection or supervision in e information submitted. action submitted is, to the
					7 <i>-</i> 2	27-15
	ducah Project Mar nental Services of I		LC			Date
Sanfa	- Wood	and		_	2/2	27/15
Jennifer Woodar	d, Paducah Site Le	ead				Date

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Groundwater: October 2014 McCracken Permit Nos. 073-00045 Sampling Date: Methane: January 2015 County: U.S. DOE – Paducah Gaseous Diffusion Plant Facility Name: (As officially shown on DWM Permit Face) Site Address: Kevil, Kentucky 42053 Street City/State Zip N 37° 07' 45" Phone No: (270) 441-6800 Longitude: W 88° 47' 55" Latitude: OWNER INFORMATION U.S. DOE - W. E. Murphie, Manager Facility Owner: Phone No: (859) 219-4001 Contact Person: Mark J. Duff Phone No: (270) 441-5030 Contact Person Title: Project Manager, LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053 Mailing Address: Street City/State Zip SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY) LATA Environmental Services of Kentucky, LLC Company: Phone No: (270) 441-5444 Contact Person: Jeff Boulton Mailing Address: 761 Veterans Avenue Kevil, Kentucky 42053 City/State Zip Street LABORATORY RECORD #1 Laboratory GEL Laboratories, LLC Lab ID No: KY90129 Contact Person: Joanne Harley Phone No: (843) 769-7387 Mailing Address: 2040 Savage Road Charleston, South Carolina 29047 Street City/State Zip LABORATORY RECORD #2 Laboratory: Lab ID No: Phone No: Contact Person: Mailing Address: Street City/State Zip LABORATORY RECORD #3 Laboratory: Lab ID No: Contact Person: Phone No: Mailing Address: Zip Street City/State

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ , Facility Well/Spring Number					8004-4798	8	8004-4799		8004-0981		8004-4800	
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						358		359		360	
Sample Sequence #				1		1		1		1		
If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment				NA		NA		NA		NA		
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/14/2014 0	8:51	10/14/2014	10:10	NA		10/14/2014 1	4:24
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or "N") ³			N		N		N		N			
Facility Sampl	le ID Number (if applicable)				MW357UG1	-15	MW358U	G1-15	NA		MW360UG1	-15
Laboratory San	mple ID Number (if applicable)				35908500	1	359085	002	NA		359089005	
Date of Analys	Date of Analysis (Month/Day/Year) For Volatile Organics Analysis		ysis	10/18/201	4	10/18/2014		NA		10/18/2014		
Gradient with	respect to Monitored Unit (UP, DO), NWC	WN, SIDE, UNKNOWN)		DOWN		DOWN		DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.41		0.473			*	0.166	J
16887-00-6	Chloride(s)	т	mg/L	9056	32.3		34.5			*	10.3	
16984-48-8	Fluoride	Т	mg/L	9056	0.152		0.154			*	0.27	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.21		0.597			*	0.154	
14808-79-8	Sulfate	т	mg/L	9056	54.9		83.2			*	30.9	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.6		29.6			*	29.61	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	440		520			*	542	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number					3	8004-4799		8004-0981		8004-4800)
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	357		358	358		359		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	322.62		322.58			*	322.6	
N238	Dissolved Oxygen	Т	mg/L	Field	3.83		0.94			*	1.31	
s0266	Total Dissolved Solids	Т	mg/L	160.1	234		261			*	324	
s0296	Нд	Т	Units	Field	6.17		6.22			*	6.36	
NS215	Eh	Т	mV	Field	427		169			*	180	
s0907	Temperature	Т	°C	Field	15.22		15.5			*	15.33	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05			*	0.0302	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.0592		0.0515			*	0.137	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.435		0.437			*	0.0364	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	Т	mg/L	6020	28.5		35.7			*	25.9	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00011	J	0.00361			*	0.0231	
7440-50-8	Copper	Т	mg/L	6020	0.00081	J	0.0005	J		*	0.0005	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		1.38			*	4.78	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	11.3	J	15.1	J		*	9.16	J
7439-96-5	Manganese	Т	mg/L	6020	0.00214	J	0.287			*	0.255	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBI	ER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	99	8004-0981		8004-480	00
Facility's	Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		0.00018	J		*	0.00035	J
7440-02-0		Nickel	Т	mg/L	6020	0.00066	J	0.00294			*	0.00184	J
7440-09-7		Potassium	Т	mg/L	6010	1.73		2.44			*	0.719	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5		Sodium	Т	mg/L	6010	40.8		40.1			*	85.2	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.00025	J
7440-62-2		Vanadium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-66-6		Zinc	Т	mg/L	6020	0.00401	J	0.00542	J		*	<0.01	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-098	1	8004-480	0
Facility's Loca	al Well or Spring Number (e.g., 1	∕w-1	L, MW-2, et	c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00571		0.00524			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	9	8004-098	1	8004-480	0
Facility's Loc	cal Well or Spring Number (e.g., N	IW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000206		<0.0000205			*	<0.0000205	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0943		<0.0935			*	<0.0935	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0943		<0.0935			*	<0.0935	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0943		<0.0935			*	<0.0935	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0943		<0.0935			*	<0.0935	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0943		<0.0935			*	<0.0935	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0943		<0.0935			*	<0.0935	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4798		8004-4799)	8004-098	1	8004-480	10
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0943		<0.0935			*	<0.0935	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0943		<0.0935			*	<0.0935	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0943		<0.0935			*	<0.0935	
12587-46-1	Gross Alpha	т	pCi/L	9310	-3.48	*	-1.48	*		*	-0.947	*
12587-47-2	Gross Beta	Т	pCi/L	9310	21.5	*	26	*		*	-2.38	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.301	*	0.372	*		*	0.466	*
10098-97-2	Strontium-90	Т	pCi/L	906.0	1.07	*	0.943	*		*	3.02	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	38.9	*	41.9	*		*	-3.63	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.793	*	0.108	*		*	1.16	*
10028-17-8	Tritium	Т	pCi/L	906.0	103	*	62.8	*		*	24.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	19.9	7	<20			*	17.4	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.28	J	1.34	J		*	3.11	
s0586	Total Organic Halides	Т	mg/L	9020	0.0087	J	0.0062	J		*	0.0167	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	:.)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/14/2014 1	3:13	10/15/2014	08:40	10/15/2014	10:12	10/15/2014	12:55
Duplicate ("Y'	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG1	-15	MW362U0	G1-15	MW363U0	G1-15	MW364UG	1-15
Laboratory Sam	mple ID Number (if applicable)		35908500	4	359134	001	3591340	002	3591340	03		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ysis.	10/18/201	4	10/20/20	014	10/20/20	014	10/20/201	14		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWI	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.409		0.189	J	0.154	J	0.422	
16887-00-6	Chloride(s)	Т	mg/L	9056	29.7		9.97		33.2		32.6	
16984-48-8	Fluoride	Т	mg/L	9056	0.156		0.295		0.158		0.143	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.93		0.327	J	3.49		1.04	
14808-79-8	Sulfate	Т	mg/L	9056	73.9		23.4		26.4		68.4	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.61		29.8		29.81		29.84	
s0145	Specific Conductance	т	μ MH 0/cm	Field	476		706		388		454	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796	i	8004-4797	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, i	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.59		335.07		322.23		322.17	
N238	Dissolved Oxygen	т	mg/L	Field	3.62		2.73		1.13		2.58	
s0266	Total Dissolved Solids	т	mg/L	160.1	256		444		189		217	
s0296	рн	Т	Units	Field	6.07		6.98		6.19		6.23	
NS215	Eh	Т	mV	Field	345		179		344		241	
s0907	Temperature	Т	°C	Field	15.89		14.17		14		14.67	
7429-90-5	Aluminum	Т	mg/L	6020	0.0289	J	11.6		<0.05		0.0351	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.002	J	<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.0551		0.134		0.161		0.0813	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		0.00039	J	<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.145		0.0138	J	0.0217		0.0106	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	31.4		22.7		27.2		29.5	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.0111		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00038	J	0.00414		0.00116		0.00132	
7440-50-8	Copper	Т	mg/L	6020	0.00101		0.00744		0.00064	J	0.00103	
7439-89-6	Iron	т	mg/L	6020	0.239		7.92		0.0989	J	0.989	
7439-92-1	Lead	Т	mg/L	6020	<0.002		0.00482		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	13	J	9.61	J	10.3	J	11.9	J
7439-96-5	Manganese	т	mg/L	6020	0.0596		0.0622		0.158		0.325	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	16	8004-479)7
Facility's	Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		0.00119		<0.0005		0.00017	J
7440-02-0		Nickel	Т	mg/L	6020	0.00075	J	0.00703		0.00103	J	0.00159	J
7440-09-7		Potassium	Т	mg/L	6020	2.22		0.95		1.37		1.99	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	0.00175	J	<0.005		<0.005		0.00164	J
7440-22-4		Silver	Т	mg/L	6020	<0.001		0.00035	J	<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	42.5		148		33.6		41.1	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		0.0059	J	<0.0002		<0.0002	
7440-62-2		Vanadium	Т	mg/L	6010	<0.005		0.0149		<0.005		<0.005	
7440-66-6		Zinc	Т	mg/L	6020	<0.01		0.0191		<0.01		0.0284	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-4795		8004-098	6	8004-479	96	8004-47	97		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00354		<0.001		0.00427		0.00386	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	ô	8004-479	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	l, MW-2, et	:c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000201		<0.0000203		<0.0000203		<0.0000205	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0943		<0.0952		0.115		<0.0935	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0943		<0.0952		<0.0943		<0.0935	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0943		<0.0952		<0.0943		<0.0935	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0943		<0.0952		<0.0943		<0.0935	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0943		<0.0952		0.115		<0.0935	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0943		<0.0952		<0.0943		<0.0935	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479) 7
Facility's Loc	cal Well or Spring Number (e.g.,)	MW-	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0943		<0.0952		<0.0943		<0.0935	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0943		<0.0952		<0.0943		<0.0935	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0943		<0.0952		<0.0943		<0.0935	
12587-46-1	Gross Alpha	т	pCi/L	9310	2.95	*	5.85	*	0.317	*	-3.53	*
12587-47-2	Gross Beta	Т	pCi/L	9310	26.7	*	5.3	*	11.8	*	23.4	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.198	*	0.303	*	0.523	*	0.497	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.789	*	-0.767	*	-2.65	*	2.2	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	41.9	*	-6.89	*	5.23	*	39.6	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.653	*	1.2	*	1.22	*	0.688	*
10028-17-8	Tritium	Т	pCi/L	906.0	158	*	48.4	*	-20.9	*	54.5	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		17.6	J	8.1	J	8.1	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.35	J	1.44	J	4.17		1.47	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00618	J	0.0157		0.0077	J	<0.01	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-098	34	8004-0982	2	8004-4793	}	8004-098	3
Facility's Loc	cal Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	:.)	365		366		367		368	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		NA		10/16/2014 0	8:53	10/15/2014 14	1:20	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				NA		MW366UG1	-15	MW367UG1-	-15	NA	
Laboratory Sar	mple ID Number (if applicable)		NA		35928700	2	359134004	1	NA			
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	NA		10/23/2014	4	10/20/2014	ļ	NA			
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*	0.482		0.101	J		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*	37.6		8.23			*
16984-48-8	Fluoride	Т	mg/L	9056		*	0.167		0.0933	J		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*	0.803		<0.1			*
14808-79-8	Sulfate	т	mg/L	9056		*	46		21.4			*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*	29.93		29.83			*
S0145	Specific Conductance	т	μ MH 0/cm	Field		*	450		276			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793	1	8004-0983	\$
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*	322.26		322.44			*
N238	Dissolved Oxygen	Т	mg/L	Field		*	3.56		1.49			*
s0266	Total Dissolved Solids	т	mg/L	160.1		*	239		124			*
s0296	рн	т	Units	Field		*	6.12		6.11			*
NS215	Eh	т	mV	Field		*	343		195			*
s0907	Temperature	т	°C	Field		*	14.72		15			*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		0.0505			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		0.00602			*
7440-39-3	Barium	т	mg/L	6020		*	0.157		0.16			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	0.0882		0.0146	J		*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	28.9		14.6			*
7440-47-3	Chromium	Т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	Т	mg/L	6020		*	0.00065	J	0.00459			*
7440-50-8	Copper	т	mg/L	6020		*	0.00054	J	0.00081	J		*
7439-89-6	Iron	Т	mg/L	6020		*	0.107		16.6			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	T	mg/L	6020		*	12.2		7.33	J		*
7439-96-5	Manganese	Т	mg/L	6020		*	0.0329		1.95			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	R ¹ , Facility Well/Spring Number				8004-098	34	8004-0982	2	8004-4793	1	8004-098	33
Facility's I	ocal Well or Spring Number (e.g	., MW-	1, MW-2, e	ta.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0	Nickel	Т	mg/L	6020		*	0.00063	J	0.00311			*
7440-09-7	Potassium	Т	mg/L	6020		*	1.88		2.62			*
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020		*	0.00227	J	<0.005			*
7440-22-4	Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	Т	mg/L	6020		*	45.9		15.6			*
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2	Vanadium	Т	mg/L	6010		*	<0.005		0.00185	J		*
7440-66-6	Zinc	Т	mg/L	6020		*	0.00718	BJ	0.00611	J		*
108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.005		<0.005			*
67-64-1	Acetone	Т	mg/L	8260		*	<0.005		<0.005			*
107-02-8	Acrolein	Т	mg/L	8260		*	<0.005		<0.005			*
107-13-1	Acrylonitrile	Т	mg/L	8260		*	<0.005		<0.005			*
71-43-2	Benzene	Т	mg/L	8260		*	<0.001		<0.001			*
108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.001		<0.001			*
1330-20-7	Xylenes	Т	mg/L	8260		*	<0.003		<0.003			*
100-42-5	Styrene	Т	mg/L	8260		*	<0.001		<0.001			*
108-88-3	Toluene	Т	mg/L	8260		*	<0.001		<0.001			*
74-97-5	Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-0984	4	8004-0982	!	8004-479	3	8004-098	3
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1, MW-2, et	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	T mg/L	8260		*	<0.001		<0.001			*
75-25-2	Tribromomethane	T mg/L	8260		*	<0.001		<0.001			*
74-83-9	Methyl bromide	T mg/L	8260		*	<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	T mg/L	8260		*	<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260		*	<0.005		<0.005			*
75-15-0	Carbon disulfide	T mg/L	8260		*	<0.005		<0.005			*
75-00-3	Chloroethane	T mg/L	8260		*	<0.001		<0.001			*
67-66-3	Chloroform	T mg/L	8260		*	<0.001		<0.001			*
74-87-3	Methyl chloride	T mg/L	8260		*	<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260		*	<0.001		<0.001			*
74-95-3	Methylene bromide	T mg/L	8260		*	<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	T mg/L	8260		*	<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	T mg/L	8260		*	<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	T mg/L	8260		*	<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260		*	<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260		*	<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260		*	<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260		*	<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260		*	<0.001		<0.001			*
75-01-4	Vinyl chloride	T mg/L	8260		*	<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	T mg/L	8260		*	<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	T mg/L	8260		*	0.00332		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-0982		8004-4793	3	8004-098	33
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260		*	<0.001		<0.001			*
591-78-6	2-Hexanone	Т	mg/L	8260		*	<0.005		<0.005			*
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260		*	<0.001		<0.001			*
75-09-2	Dichloromethane	Т	mg/L	8260		*	<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260		*	<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011		*	<0.0000203		<0.0000201			*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260		*	<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001			*
1336-36-3	PCB,Total	Т	ug/L	80 82		*	<0.0962		<0.098			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0962		<0.098			*
11104-28-2	PCB-1221	Т	ug/L	80 82		*	<0.0962		<0.098			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0962		<0.098			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0962		<0.098			*
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.0962	_	<0.098			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	4	8004-0982		8004-4793		8004-098	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	365		366		367		368	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.0962		<0.098			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.0962		<0.098			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0962		<0.098			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	-5.26	*	-3.85	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	40.2	*	2.1	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*	0.283	*	0.772	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	2.69	*	-0.123	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	37.5	*	-3.34	*		*
14269-63-7	Thorium-230	Т	pCi/L	TH-01-RC		*	-1.05	*	0.372	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	16.2	*	19	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*	24.8		<20			*
57-12-5	Cyanide	Т	mg/L	9012		*	<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060		*	1.61	J	1.84	J		*
s0586	Total Organic Halides	Т	mg/L	9020		*	0.00604	J	<0.01			*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u>

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	4819	8004-48	808
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	:.)	369		37	0	37	1	372	,
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/20/2014	08:42	10/20/20	14 13:47	10/20/20	14 13:06	10/16/2014	1 13:05
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW369UG	91-15	MW370	JG1-15	MW3711	JG1-15	MW372U	G1-15
Laboratory San	mple ID Number (if applicable)		3595060	001	35950	6002	35950	6003	359287	003		
Date of Analys	sis (Month/Day/Year) For Volatile	ganics Anal	ysis	10/23/20)14	10/23/	2014	10/23/	2014	10/23/2	014	
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	UP		U	Р	UI	P	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.402		0.55		0.103	J	0.629	
16887-00-6	Chloride(s)	т	mg/L	9056	31.8		40		6.81		47.3	
16984-48-8	Fluoride	т	mg/L	9056	0.19		0.158		0.28		0.176	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.474		1.22		0.427		0.798	
14808-79-8	Sulfate	т	mg/L	9056	7.65		19.1		10.5		118	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		29.98		30.01		29.93	
s0145	Specific Conductance	т	μ MH 0/cm	Field	371		437		782		766	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, i	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.43		323.51		340.85		323.61	
N238	Dissolved Oxygen	т	mg/L	Field	2.1		3.74		0.98		0.98	
s0266	Total Dissolved Solids	т	mg/L	160.1	193		190		394		476	
s0296	рн	т	Units	Field	6.09		6.03		6.52		6.16	
NS215	Eh	т	mV	Field	405		363		360		88	
s0907	Temperature	т	°C	Field	14.5		19.5		17.89		17.39	
7429-90-5	Aluminum	Т	mg/L	6020	0.184		<0.05		0.156		0.0506	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00171	J	<0.005		<0.005		0.00186	J
7440-39-3	Barium	т	mg/L	6020	0.368		0.2		0.182		0.0678	
7440-41-7	Beryllium	т	mg/L	6020	0.00022	J	<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0139	J	0.0323		<0.015		1.08	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	16.8		28		32.6		59.3	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00805		0.00074	J	<0.001		0.00031	J
7440-50-8	Copper	Т	mg/L	6020	0.00143		0.00075	J	0.00151		0.00041	J
7439-89-6	Iron	т	mg/L	6020	0.339		0.0369	J	0.104		0.476	
7439-92-1	Lead	Т	mg/L	6020	<0.002		0.00065	J	<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	7.03		12.2		13.3		22.4	
7439-96-5	Manganese	Т	mg/L	6020	0.038		0.0099		0.00145	J	0.0208	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-482	0	8004-48	18	8004-481	9	8004-480)8
Facility's	Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	0.0002	J	0.00022	J	0.00023	J	0.00041	J
7440-02-0		Nickel	Т	mg/L	6020	0.00827	J	0.00081	BJ	0.00079	BJ	0.00166	J
7440-09-7		Potassium	Т	mg/L	6020	0.534		2.38		0.352		2.37	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	0.00169	J	<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	53.4		42.9		133		59.7	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.00201		<0.0002	
7440-62-2		Vanadium	Т	mg/L	6010	0.00109	J	<0.005		0.00256	J	<0.005	
7440-66-6		Zinc	Т	mg/L	6020	0.00607	J	0.00417	J	0.00586	J	0.00799	BJ
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818	8	8004-48	19	8004-486	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00127		0.00111		<0.001		0.00779	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	8	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., N	ſW−1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002		<0.0000202		<0.00002		<0.0000204	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	0.0385	J	<0.0962		<0.0943		0.103	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0943		<0.0962		<0.0943		<0.0962	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0943		<0.0962		<0.0943		<0.0962	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0943		<0.0962		<0.0943		<0.0962	
53469-21-9	PCB-1242	Т	ug/L	8082	0.0385	J	<0.0962		<0.0943		0.103	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0943		<0.0962		<0.0943		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820)	8004-4818	}	8004-481	9	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0943		<0.0962		<0.0943		<0.0962	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0943		<0.0962		<0.0943		<0.0962	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0943		<0.0962		<0.0943		<0.0962	
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.45	*	-3.22	*	-1.48	*	6.26	*
12587-47-2	Gross Beta	Т	pCi/L	9310	32.1	*	14.5	*	9.51	*	74	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.748	*	0.818	*	1.11	*	0.461	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.216	*	-1.54	*	-2.29	*	-1.49	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	43.3	*	22.5	*	-6.47	*	107	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	4.4	*	3.82	*	5.33	*	4.97	*
10028-17-8	Tritium	Т	pCi/L	906.0	-66.2	*	26.1	*	1.42	*	-2.17	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		31.2		<20		12.9	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.59	J	0.853	J	2.55		2.74	
s0586	Total Organic Halides	т	mg/L	9020	0.0137		0.0038	J	0.00338	J	0.00642	J
						<u> </u>						

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-09	990	8004-09	985	8004-098	8
Facility's Loc	cal Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	:.)	373		374		375		376	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/16/2014 1	2:26	10/16/2014	12:41	10/16/2014	13:39	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG1	-15	MW374U	G1-15	MW375U0	G1-15	NA	
Laboratory San	mple ID Number (if applicable)		35928700	4	359287	005	359287	006	NA			
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	10/23/201	4	10/23/2	014	10/23/20	014	NA		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.609		1.01		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	43.5		83.3		6.19			*
16984-48-8	Fluoride	т	mg/L	9056	0.18		0.17		0.267			*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.908		<0.1		1.62			*
14808-79-8	Sulfate	т	mg/L	9056	181		5.73		23.6			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.93		29.93		29.91			*
s0145	Specific Conductance	т	μ MH 0/cm	Field	901		710		352			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	3
Facility's Loca	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	323.58		334		330.52			*
N238	Dissolved Oxygen	T	mg/L	Field	1.37		0.86		1.42			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	536		416		237			*
s0296	рН	Т	Units	Field	6.22		6.44		6.32			*
NS215	Eh	Т	mV	Field	404		257		335			*
s0907	Temperature	т	°C	Field	16.83		17.89		17.72			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0629		0.0529			*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00178	J		*
7440-39-3	Barium	т	mg/L	6020	0.0264		0.164		0.173			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.65		0.0394		0.0213			*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	T	mg/L	6020	72.4		22.1		14.3			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.00098	J	0.00367		<0.001			*
7440-50-8	Copper	Т	mg/L	6020	<0.001		0.00046	J	0.00042	J		*
7439-89-6	Iron	Т	mg/L	6020	0.2		0.284		0.0939	J		*
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020	27.4		6.27		5.9			*
7439-96-5	Manganese	Т	mg/L	6020	0.0598		0.334		0.00298	J		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBI	ER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	35	8004-098	38
Facility's	Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-02-0		Nickel	Т	mg/L	6020	0.00255		0.00152	J	0.00142	J		*
7440-09-7		Potassium	Т	mg/L	6020	2.92		0.467		0.291	J		*
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020	<0.005		0.00586		0.00282	J		*
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5		Sodium	Т	mg/L	6020	61		126		54.6			*
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0		Thallium	T	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	T	mg/L	6020	<0.0002		0.00044		0.000077	J		*
7440-62-2		Vanadium	Т	mg/L	6010	<0.005		<0.005		<0.005			*
7440-66-6		Zinc	Т	mg/L	6020	0.00704	BJ	0.00811	BJ	0.00666	BJ		*
108-05-4		Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-099)	8004-09	85	8004-09	88
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	l, MW-2, et	:c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00767		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	0	8004-09	85	8004-09	88
Facility's Loc	al Well or Spring Number (e.g., M	ſW−1	l, MW-2, et	:c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000203		<0.0000203		<0.00002			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0943		<0.0943		<0.0952			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0943		<0.0943		<0.0952			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0943		<0.0943		<0.0952			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0943		<0.0943		<0.0952			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0943		<0.0943		<0.0952			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0943		<0.0943		<0.0952			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0943		<0.0943		<0.0952			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0943		<0.0943		<0.0952			*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0943		<0.0943		<0.0952			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.21	*	3.6	*	-3.1	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	24.9	*	3.55	*	-7.2	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.42	*	0.859	*	0.392	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-2	*	0.659	*	-1.7	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	38	*	-5.81	*	-7.14	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	3.9	*	1.41	*	-1.94	*		*
10028-17-8	Tritium	Т	pCi/L	906.0	18.7	*	19.1	*	66.1	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	12.9	J	10.5	J	15.2	J		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060	1.89	J	3.35		1.49	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.028		0.0116		0.0102			*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	39	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	cal Well or Spring Number (e.g., N	1W-1	, MW-2, etc	:.)	377		E. BLAN	١K	F. BLAN	K	T. BLANK	(1
Sample Sequence	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M)∈	thod, or (E)	quipment	NA		Е		F		Т	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		NA		10/14/2014	07:50	10/14/2014 (08:53	10/14/2014 ()7:45
Duplicate ("Y	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				NA		RI1UG1	-15	FB1UG1-	15	TB1UG1-	15
Laboratory San	mple ID Number (if applicable)		NA		3590890	10	35908500	09	35908500)7		
Date of Analys	ce of Analysis (Month/Day/Year) For Volatile Organics Analysis						10/18/20)14	10/18/20	14	10/18/201	14
Gradient with	respect to Monitored Unit (UP, DC	NWC	SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	Т	μ MHO /cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989)	0000-0000)	0000-0000		0000-0000)
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	377		E. BLANK		F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рН	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.002		<0.002			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	Т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	T	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	Т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	Т	mg/L	6020		*	<0.001		<0.001			*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	Т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	R ¹ , Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	00	0000-000	00
Facility's I	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	377		E. BLAN	IK	F. BLAN	K	T. BLANK	(1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0	Nickel	т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7	Potassium	Т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	Т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2	Vanadium	Т	mg/L	6010		*	<0.005		<0.005			*
7440-66-6	Zinc	Т	mg/L	6020		*	<0.01		<0.01			*
108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000)	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	377		E. BLAN	(F. BLAN	IK	T. BLAN	< 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-0000)	0000-00	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	377		E. BLAN	(F. BLAN	IK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000204		<0.0000203		<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.0926		<0.0926			*
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.0926		<0.0926			*
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.0926		<0.0926			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0926		<0.0926			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0926		<0.0926			*
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.0926		<0.0926			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	:c.)	377		E. BLANK		F. BLAN	K	T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0926		<0.0926			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0926		<0.0926			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0926		<0.0926			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	1.2	*	-2.66	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	18.2	*	3.23	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*	0.423	*	0.08	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	-1.17	*	-1.17	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	-2.07	*	-1.83	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	0.434	*	0.653	*		*
10028-17-8	Tritium	т	pCi/L	906.0		*	136	*	77.5	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	cal Well or Spring Number (e.g., N	MW−1	, MW-2, etc	:.)	T. BLANK	(2	T. BLAN	К 3	T. BLANK	(4	T. BLANK	(5
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	Т		Т		Т		Т	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/15/2014 (07:25	10/16/2014	07:10	10/16/2014	11:40	10/20/2014 ()7:27
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				TB2UG1-	15	TB3UG1	-15	TB4UG1-	15	TB5UG1-	15
Laboratory San	mple ID Number (if applicable)		35913400	05	3592870	07	3592870	08	35950600)4		
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis						10/22/20	14	10/22/20	14	10/23/201	14
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	Т	μ MHO /cm	Field		*		*		*		*

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-0000		0000-0000)
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK	4	T. BLANK	5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рН	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	Т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	Т	mg/L	6020		*		*		*		*
7440-39-3	Barium	Т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	Т	mg/L	6020		*		*		*		*
7440-42-8	Boron	Т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	Т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	Т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	Т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	Т	mg/L	6020		*		*		*		*
7440-50-8	Copper	Т	mg/L	6020		*		*		*		*
7439-89-6	Iron	Т	mg/L	6020		*		*		*		*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	Т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	00	0000-000	0	0000-000	00
Facility's	Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	(3	T. BLANK	. 4	T. BLANK	(5
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020		*		*		*		*
7440-02-0		Nickel	Т	mg/L	6020		*		*		*		*
7440-09-7		Potassium	Т	mg/L	6020		*		*		*		*
7440-16-6		Rhodium	Т	mg/L	6020		*		*		*		*
7782-49-2		Selenium	Т	mg/L	6020		*		*		*		*
7440-22-4		Silver	Т	mg/L	6020		*		*		*		*
7440-23-5		Sodium	Т	mg/L	6020		*		*		*		*
7440-25-7		Tantalum	Т	mg/L	6020		*		*		*		*
7440-28-0		Thallium	T	mg/L	6020		*		*		*		*
7440-61-1		Uranium	Т	mg/L	6020		*		*		*		*
7440-62-2		Vanadium	T	mg/L	6010		*		*		*		*
7440-66-6		Zinc	T	mg/L	6020		*		*		*		*
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-0000		0000-000	0	0000-000	00	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	T. BLAN	K 4	T. BLANI	K 5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000	0	0000-00	00	0000-00	000
Facility's Loc	al Well or Spring Number (e.g., M	ſW−1	l, MW-2, et	.c.)	T. BLANK	2	T. BLANK	3	T. BLANI	< 4	T. BLAN	K 5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000203		<0.0000203		<0.0000201		<0.0000201	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-0000		0000-0000)	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		T. BLANK	4	T. BLANK	(5
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*		*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	GWA NUMBER ¹ , Facility Well/Spring Number					2						
Facility's Loc	al Well or Spring Number (e.g., M	w−1	, MW-2, etc	:.)	366							
Sample Sequenc	e #				2						/	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)∈	thod, or (E)	quipment	NA							
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		10/16/2014 0	8:53	`					
Duplicate ("Y"	uplicate ("Y" or "N") ²				Y							
Split ("Y" or	plit ("Y" or "N") ³				N							
Facility Sampl	Facility Sample ID Number (if applicable)				MW366DUG	1-15						
Laboratory Sam	ple ID Number (if applicable)				35928700	1						
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/23/201	4				/		
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	SIDE				X			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VAZUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.49							
16887-00-6	Chloride(s)	т	mg/L	9056	37.5							
16984-48-8	Fluoride	Т	mg/L	9056	0.166							
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.802							
14808-79-8	Sulfate	Т	mg/L	9056	45.9							
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.93							
s0145	Specific Conductance	т	μ MH 0/cm	Field	450							

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

					(00110	, ,						
AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number					2						
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	366							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.26							
N238	Dissolved Oxygen	т	mg/L	Field	3.56			$\overline{\ \ }$				
s0266	Total Dissolved Solids	т	mg/L	160.1	214							
s0296	рH	т	Units	Field	6.12						/	
NS215	Eh	т	mV	Field	343							
s0907	Temperature	т	°C	Field	14.72					/		
7429-90-5	Aluminum	т	mg/L	6020	0.0171	J				/		
7440-36-0	Antimony	т	mg/L	6020	<0.003							
7440-38-2	Arsenic	т	mg/L	6020	<0.005				X			
7440-39-3	Barium	т	mg/L	6020	0.157							
7440-41-7	Beryllium	т	mg/L	6020	<0.0005							
7440-42-8	Boron	т	mg/L	6020	0.0876							
7440-43-9	Cadmium	т	mg/L	6020	<0.001							
7440-70-2	Calcium	т	mg/L	6020	28.2			/				
7440-47-3	Chromium	т	mg/L	6020	<0.01							
7440-48-4	Cobalt	т	mg/L	6020	0.00066	J		/				
7440-50-8	Copper	т	mg/L	6020	0.00057	J						
7439-89-6	Iron	т	mg/L	6020	0.121							
7439-92-1	Lead	т	mg/L	6020	<0.002							
7439-95-4	Magnesium	т	mg/L	6020	11.8							
7439-96-5	Manganese	т	mg/L	6020	0.0358							
7439-97-6	Mercury	т	mg/L	7470	<0.0002							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

ARCEAN ARTER	m ¹ Resilite Well (Greine Well)				8004-098		Λ					
	ER ¹ , Facility Well/Spring Number				366	_						-/
Facility's	Local Well or Spring Number (e.g.,	, MW-	1, MW-2, e	tc.)	300				1	 		$-\!\!\!/-$
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005							
7440-02-0	Nickel	Т	mg/L	6020	0.00054	J						
7440-09-7	Potassium	Т	mg/L	6020	1.86							
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			`	\			
7782-49-2	Selenium	Т	mg/L	6020	0.00165	J						
7440-22-4	Silver	Т	mg/L	6020	<0.001							
7440-23-5	Sodium	Т	mg/L	6020	44.6					/		
7440-25-7	Tantalum	Т	mg/L	6020	<0.005							
7440-28-0	Thallium	Т	mg/L	6020	<0.002				X			
7440-61-1	Uranium	Т	mg/L	6020	<0.0002							
7440-62-2	Vanadium	Т	mg/L	6010	<0.005							
7440-66-6	Zinc	Т	mg/L	6020	0.00619	BJ						
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005							
67-64-1	Acetone	Т	mg/L	8260	<0.005				/			
107-02-8	Acrolein	Т	mg/L	8260	<0.005							
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005							
71-43-2	Benzene	Т	mg/L	8260	<0.001							
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001							
1330-20-7	Xylenes	Т	mg/L	8260	<0.003							
100-42-5	Styrene	Т	mg/L	8260	<0.001							\setminus
108-88-3	Toluene	Т	mg/L	8260	<0.001							
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0982							
Facility's Loca	al Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	c.)	366							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	т	mg/L	8260	<0.001							
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001							
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005			\				
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005							
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005							
75-00-3	Chloroethane	Т	mg/L	8260	<0.001							
67-66-3	Chloroform	Т	mg/L	8260	<0.001							
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001				X			
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001				/ \			
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001							
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001					\	\	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001							
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001							
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001							
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001							
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001							
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00359		/					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number					2						/
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	366							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQD ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005							
74-88-4	Iodomethane	т	mg/L	8260	<0.005							
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001							
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005					/		
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000201							
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001				X			
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001							
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001							
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001						\	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001							
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001							
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0935							
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0935							
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0935							
11141-16-5	PCB-1232	т	ug/L	8082	<0.0935							
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0935		/					
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0935		/					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0982		\setminus					
Facility's Loc	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	366							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DE LECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0935							
11096-82-5	PCB-1260	т	ug/L	8082	<0.0935		\	\				
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0935							
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.83	*						
12587-47-2	Gross Beta	т	pCi/L	9310	33	*						
10043-66-0	Iodine-131	т	pCi/L			*						
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.707	*				ľ		
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.39	*						
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	64.4	*						
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	4.85	*						
10028-17-8	Tritium	Т	pCi/L	906.0	185	*						
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	10.5	J						
57-12-5	Cyanide	Т	mg/L	9012	<0.2							
20461-54-5	Iodide	T	mg/L	300.0	<0.5							
s0268	Total Organic Carbon	Т	mg/L	9060	1.54	J	/					
s0586	Total Organic Halides	Т	mg/L	9020	0.006	J						
												\setminus

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4798 MW357	MW357UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.82. Rad error is 5.82.
		Gross beta		TPU is 11.1. Rad error is 10.5.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.397. Rad error is 0.391.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.12. Rad error is 3.12.
		Technetium-99		TPU is 14.9. Rad error is 14.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.91. Rad error is 1.89.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 157. Rad error is 156.
8004-4799 MW358	MW358UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.88. Rad error is 1.88.
		Gross beta		TPU is 10.6. Rad error is 9.69.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.378. Rad error is 0.371.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.1. Rad error is 2.1.
		Technetium-99		TPU is 15.4. Rad error is 14.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.45. Rad error is 1.44.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 157. Rad error is 156.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	·	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sampl was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sampl was collected.
		Eh		During sampling, the well went dry; therefore, no sampl was collected.
		Temperature		During sampling, the well went dry; therefore, no sampl was collected.
		Aluminum		During sampling, the well went dry; therefore, no sampl was collected.
		Antimony		During sampling, the well went dry; therefore, no sampl was collected.
		Arsenic		During sampling, the well went dry; therefore, no sampl was collected.
		Barium		During sampling, the well went dry; therefore, no sampl was collected.
		Beryllium		During sampling, the well went dry; therefore, no sampl was collected.
		Boron		During sampling, the well went dry; therefore, no sampl was collected.
		Cadmium		During sampling, the well went dry; therefore, no sampl was collected.
		Calcium		During sampling, the well went dry; therefore, no sampl was collected.
		Chromium		During sampling, the well went dry; therefore, no sampl was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.
		Copper		During sampling, the well went dry; therefore, no sampl was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359		Magnesium	3	During sampling, the well went dry; therefore, no sampl was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.
		Nickel		During sampling, the well went dry; therefore, no samp was collected.
		Potassium		During sampling, the well went dry; therefore, no sampl was collected.
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.
		Selenium		During sampling, the well went dry; therefore, no samp was collected.
		Silver		During sampling, the well went dry; therefore, no samp was collected.
		Sodium		During sampling, the well went dry; therefore, no samp was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359		Tribromomethane	3	During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sampling was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359		Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0981 MW359	·	Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
8004-4800 MW360	MW360UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.31. Rad error is 4.31.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.34. Rad error is 4.34.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.378. Rad error is 0.365.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.09. Rad error is 3.05.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.1. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.16. Rad error is 2.13.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 142. Rad error is 142.
8004-4795 MW361	MW361UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.95. Rad error is 6.93.
		Gross beta		TPU is 10.9. Rad error is 9.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.278. Rad error is 0.276.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.41. Rad error is 2.41.
		Technetium-99		TPU is 14.8. Rad error is 14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.88. Rad error is 1.86.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 158. Rad error is 155.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0986 MW362	MW362UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.3. Rad error is 7.24.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.71. Rad error is 5.62.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.427. Rad error is 0.422.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.4. Rad error is 3.4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.6. Rad error is 13.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.99. Rad error is 1.96.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 145. Rad error is 145.
8004-4796 MW363	MW363UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.22. Rad error is 5.21.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.81. Rad error is 9.62.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.423. Rad error is 0.411.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.95. Rad error is 1.95.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.2. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.95. Rad error is 1.92.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 147. Rad error is 147.
8004-4797 MW364	MW364UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.83. Rad error is 3.83.
		Gross beta		TPU is 9.72. Rad error is 8.95.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.347. Rad error is 0.331.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.48. Rad error is 4.47.
		Technetium-99		TPU is 15.2. Rad error is 14.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.94. Rad error is 1.92.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 147.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365		Bromide		During sampling, the well went dry; therefore, no samp was collected.
		Chloride		During sampling, the well went dry; therefore, no samp was collected.
		Fluoride		During sampling, the well went dry; therefore, no samp was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no samp was collected.
		Sulfate		During sampling, the well went dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no samp was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no samp was collected.
		рН		During sampling, the well went dry; therefore, no samp was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no sam was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sam was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no samp was collected.
		Cobalt		During sampling, the well went dry; therefore, no samp was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Point 004-0984 MW365	Sample ID	Constituent	Flag	Description
3004-0984 MW365		Magnesium	· ·	During sampling, the well went dry; therefore, no sampl was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no samp was collected.
		Nickel		During sampling, the well went dry; therefore, no samp was collected.
		Potassium		During sampling, the well went dry; therefore, no samp was collected.
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.
		Selenium		During sampling, the well went dry; therefore, no samp was collected.
		Silver		During sampling, the well went dry; therefore, no samp was collected.
		Sodium		During sampling, the well went dry; therefore, no samp was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365		Tribromomethane	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sampling was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sampling was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sampling was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0984 MW365	·	Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
8004-0982 MW366	MW366UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.81. Rad error is 3.8.
		Gross beta		TPU is 12.7. Rad error is 10.8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.359. Rad error is 0.355.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.28. Rad error is 3.25.
		Technetium-99		TPU is 14.5. Rad error is 13.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.64. Rad error is 4.63.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 141. Rad error is 141.
8004-4793 MW367	MW367UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.88. Rad error is 4.87.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.77. Rad error is 5.76.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.467. Rad error is 0.443.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.47. Rad error is 2.47.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.3. Rad error is 13.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.59. Rad error is 1.58.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 141. Rad error is 141.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0983 MW368	•	Bromide	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sampling was collected.
		Cadmium		During sampling, the well went dry; therefore, no sampling was collected.
		Calcium		During sampling, the well went dry; therefore, no sampl was collected.
		Chromium		During sampling, the well went dry; therefore, no sampling was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.
		Copper		During sampling, the well went dry; therefore, no sampl was collected.
		Iron		During sampling, the well went dry; therefore, no sampl was collected.
		Lead		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	•	Magnesium	V	During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sampl was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sampl was collected.
		Zinc		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampl was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samplwas collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	·	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sampling was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	·	Dichloromethane	•	During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
8004-4820 MW369	MW369UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.58. Rad error is 4.57.
		Gross beta		TPU is 10.1. Rad error is 8.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.543. Rad error is 0.515.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.91. Rad error is 1.91.
		Technetium-99		TPU is 15.6. Rad error is 14.8.
		Thorium-230		TPU is 2.54. Rad error is 2.45.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 146. Rad error is 146.
8004-4818 MW370	MW370UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.86. Rad error is 5.86.
		Gross beta		TPU is 8.53. Rad error is 8.13.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.64. Rad error is 0.619.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.92. Rad error is 1.92.
		Technetium-99		TPU is 13.8. Rad error is 13.6.
		Thorium-230		TPU is 2.24. Rad error is 2.15.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 151. Rad error is 151.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4819 MW371	MW371UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.29. Rad error is 5.28.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.73. Rad error is 6.54.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.726. Rad error is 0.685.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.26. Rad error is 2.26.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.7. Rad error is 13.7.
		Thorium-230		TPU is 2.71. Rad error is 2.59.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 147. Rad error is 147.
8004-4808 MW372	MW372UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.87. Rad error is 7.72.
		Gross beta		TPU is 16.9. Rad error is 11.9.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.404. Rad error is 0.391.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.17. Rad error is 2.17.
		Technetium-99		TPU is 19.8. Rad error is 15.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.32. Rad error is 7.2.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 151. Rad error is 151.
8004-4792 MW373	MW373UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.59. Rad error is 4.59.
		Gross beta		TPU is 8.8. Rad error is 7.8.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.427. Rad error is 0.419.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.51. Rad error is 2.51.
		Technetium-99		TPU is 14.6. Rad error is 13.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.86. Rad error is 7.77.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 147. Rad error is 147.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0990 MW374	MW374UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.17. Rad error is 5.13.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.2. Rad error is 6.17.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.605. Rad error is 0.573.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.42. Rad error is 4.42.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.5. Rad error is 13.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.08. Rad error is 5.04.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 147. Rad error is 147.
3004-0985 MW375	MW375UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.18. Rad error is 5.18.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.3. Rad error is 5.3.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.38. Rad error is 0.373.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.95. Rad error is 1.95.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.52. Rad error is 6.51.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 151. Rad error is 151.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	·	Bromide		During sampling, the well went dry; therefore, no samplings collected.
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well went dry; therefore, no sampl was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sampl was collected.
		Sulfate		During sampling, the well went dry; therefore, no sampl was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sampl was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sampl was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sampl was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no samp was collected.
		рН		During sampling, the well went dry; therefore, no samp was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no samp was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no samp was collected.
		Cobalt		During sampling, the well went dry; therefore, no samp was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description							
3004-0988 MW376	•	Magnesium	<u>U</u>	During sampling, the well went dry; therefore, no sample was collected.							
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.							
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.							
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.							
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.							
		Potassium		During sampling, the well went dry; therefore, no sampl was collected.							
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.							
		Selenium		During sampling, the well went dry; therefore, no samp was collected.							
		Silver		During sampling, the well went dry; therefore, no samp was collected.							
		Sodium		During sampling, the well went dry; therefore, no samp was collected.							
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.							
		Thallium		During sampling, the well went dry; therefore, no samp was collected.							
		Uranium		During sampling, the well went dry; therefore, no samp was collected.							
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.							
		Zinc		During sampling, the well went dry; therefore, no samp was collected.							
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.							
		Acetone		During sampling, the well went dry; therefore, no samp was collected.							
									Acrolein		During sampling, the well went dry; therefore, no samp was collected.
						Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.			
		Benzene		During sampling, the well went dry; therefore, no samp was collected.							
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.							
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.							
		Styrene		During sampling, the well went dry; therefore, no samp was collected.							
		Toluene		During sampling, the well went dry; therefore, no samp was collected.							
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.							
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.							

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	·	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sampl was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	·	Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Thorium-230		During sampling, the well went dry; therefore, no sampl was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Bromide	<u> </u>	During sampling, the well went dry; therefore, no sampl was collected.
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well went dry; therefore, no sampl was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sampl was collected.
		Sulfate		During sampling, the well went dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no samp was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no samp was collected.
		рН		During sampling, the well went dry; therefore, no samp was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no samp was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no samp was collected.
		Cobalt		During sampling, the well went dry; therefore, no samp was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Magnesium	J	During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sampl was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sampling was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampl was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	·	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description						
004-0989 MW377		Dichloromethane		During sampling, the well went dry; therefore, no samp was collected.						
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no samp was collected.						
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no samp was collected.						
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no samp was collected.						
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.						
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.						
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.						
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.						
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.						
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.						
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.						
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.						
		PCB-1016		During sampling, the well went dry; therefore, no sam was collected.						
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.						
		PCB-1232		During sampling, the well went dry; therefore, no sam was collected.						
		PCB-1242		During sampling, the well went dry; therefore, no sam was collected.						
		PCB-1248		During sampling, the well went dry; therefore, no sam was collected.						
		PCB-1254		During sampling, the well went dry; therefore, no sam was collected.						
								PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.						
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.						
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.						
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.						
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.						
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.						
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.						

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
0000-0000 QC	RI1UG1-15	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.35. Rad error is 5.34.
		Gross beta		TPU is 8. Rad error is 7.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.381. Rad error is 0.373.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.31. Rad error is 2.31.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.1. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.89. Rad error is 1.88.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 158.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1UG1-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.91. Rad error is 4.9.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.48. Rad error is 8.47.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.276. Rad error is 0.275.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.44. Rad error is 2.44.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13. Rad error is 13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.71. Rad error is 1.69.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 156. Rad error is 156.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG1-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG1-15	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG1-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG1-15	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG1-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		pН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG1-15	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG1-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe
		Vanadium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG1-15	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB5UG1-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5UG1-15	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed
8004-0982 MW366	MW366DUG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.45. Rad error is 3.45.
		Gross beta		TPU is 11.4. Rad error is 10.1.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.444. Rad error is 0.417.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.4. Rad error is 2.4.
		Technetium-99		TPU is 16.3. Rad error is 14.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.91. Rad error is 7.8.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 156.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

CONTAINED – QUARTERLY, 4th Quarter 2014 Facility: U.S. DOE – Paducah Gaseous Diffusion Plant Permit Number: SW7300014, SW7300015, SW7300043

Finds/Unit:

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2014 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with at least three test wells or sidegradient wells (Exhibit 1). The fourth quarter 2014 data used to conduct the statistical analyses were collected in October 2014. The statistical analyses for this report first utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses is run, utilizing the last eight quarters, on analytes that had at least one downgradient well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals of concern that have Kentucky maximum contaminant levels (MCLs) and the results that do not exceed their respective MCL, no exceedance is reported. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted for pH. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, was conducted. The second one-sided tolerance interval statistical test was conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper tolerance limit using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower tolerance limit to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The tolerance limit (TL) was calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit 2 presents the parameters by groundwater system from the available data set and the statistical test performed using the one-sided tolerance interval.

lower $TL = X - (K \times S)$

 $^{^1}$ For pH, two-sided TL (upper and lower) were calculated with an adjusted K factor using the following equations: upper TL = X + (K \times S)

Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations (wells were dry this quarter and groundwater samples could not be collected) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, fourth quarter 2014. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a well is sampled on two different dates, the most current available data are used.

Exhibit 1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359*	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365*	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368*	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374	BG	UCRS
MW375	SG	UCRS
MW376*	SG	UCRS
MW377*	SG	UCRS

NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells **TW:** downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Exhibit 2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters

Aluminum

Beryllium

Beta Activity

Boron

Bromide

Calcium

Chemical Oxygen Demand (COD)

Chloride

Cobalt

Conductivity

Copper

Dissolved Oxygen

Dissolved Solids

Iron

Magnesium

Manganese

Molybdenum

Nickel

Oxidation-Reduction Potential

PCB, Total

PCB-1242

pH*

Potassium

Radium-226

Sodium

Sulfate

Technetium-99

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Uranium

Vanadium

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	0	4	0	No
1,1,2,2-Tetrachloroethane	4	0	4	0	No
1,1,2-Trichloroethane	4	0	4	0	No
1,1-Dichloroethane	4	0	4	0	No
1,2,3-Trichloropropane	4	0	4	0	No
1,2-Dibromo-3-chloropropane	4	0	4	0	No
1,2-Dibromoethane	4	0	4	0	No
1,2-Dichlorobenzene	4	0	4	0	No
1,2-Dichloropropane	4	0	4	0	No
2-Butanone	4	0	4	0	No
2-Hexanone	4	0	4	0	No
4-Methyl-2-pentanone	4	0	4	0	No
Acetone	4	0	4	0	No
Acrolein	4	0	4	0	No
Acrylonitrile	4	0	4	0	No
Aluminum	4	0	0	4	YES
Antimony	4	0	4	0	No
Beryllium	4	0	3	1	YES
Boron	4	0	3	1	YES
Bromide	4	0	1	3	YES
Bromochloromethane	4	0	4	0	No
Bromodichloromethane	4	0	4	0	No
Bromoform	4	0	4	0	No
Bromomethane	4	0	4	0	No
Calcium	4	0	0	4	YES
Carbon disulfide	4	0	4	0	No
Chemical Oxygen Demand (COD)	4	0	1	3	YES
Chloride	4	0	0	4	YES
Chlorobenzene	4	0	4	0	No
Chloroethane	4	0	4	0	No
Chloroform	4	0	4	0	No
Chloromethane	4	0	4	0	No
cis-1,2-Dichloroethene	4	0	4	0	No
cis-1,3-Dichloropropene	4	0	4	0	No
Cobalt	4	0	2	2	YES
Conductivity	4	0	0	4	YES
Copper	4	0	0	4	YES
Cyanide	4	0	4	0	No
Dibromochloromethane	4	0	4	0	No
Dibromomethane	4	0	4	0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total	4	0	4	0	No
Dissolved Oxygen	4	0	0	4	YES
Dissolved Solids	4	0	0	4	YES
Ethylbenzene	4	0	4	0	No
Iodide	4	0	4	0	No
Iodomethane	4	0	4	0	No
Iron	4	0	0	4	YES
Magnesium	4	0	0	4	YES
Manganese	4	0	0	4	YES
Methylene chloride	4	0	4	0	No
Molybdenum	4	0	2	2	YES
Nickel	4	0	1	3	YES
Oxidation-Reduction Potential	4	0	0	4	YES
PCB, Total	4	0	4	0	No
PCB-1016	4	0	4	0	No
PCB-1221	4	0	4	0	No
PCB-1232	4	0	4	0	No
PCB-1242	4	0	4	0	No
PCB-1248	4	0	4	0	No
PCB-1254	4	0	4	0	No
PCB-1260	4	0	4	0	No
PCB-1268	4	0	4	0	No
рН	4	0	0	4	YES
Potassium	4	0	0	4	YES
Radium-226	4	0	2	2	YES
Rhodium	4	0	4	0	No
Sodium	4	0	0	4	YES
Styrene	4	0	4	0	No
Sulfate	4	0	0	4	YES
Tantalum	4	0	4	0	No
Technetium-99	4	0	4	0	No
Tetrachloroethene	4	0	4	0	No
Thallium	4	0	4	0	No
Thorium-230	4	0	4	0	No
Toluene	4	0	4	0	No
Total Organic Carbon (TOC)	4	0	0	4	YES
Total Organic Halides (TOX)	4	0	0	4	YES
trans-1,2-Dichloroethene	4	0	4	0	No
trans-1,3-Dichloropropene	4	0	4	0	No
trans-1,4-Dichloro-2-butene	4	0	4	0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

	Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Trichloroflu	oromethane	4	0	4	0	No
Uranium		4	0	0	4	YES
Vanadium		4	0	2	2	YES
Vinyl acetate	e	4	0	4	0	No
Zinc		4	0	2	2	YES

Bold denotes parameters with at least one uncensored observation.

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	No
1,1,2,2-Tetrachloroethane	6	0	6	0	No
1,1,2-Trichloroethane	6	0	6	0	No
1,1-Dichloroethane	6	0	6	0	No
1,2,3-Trichloropropane	6	0	6	0	No
1,2-Dibromo-3-chloropropane	6	0	6	0	No
1,2-Dibromoethane	6	0	6	0	No
1,2-Dichlorobenzene	6	0	6	0	No
1,2-Dichloropropane	6	0	6	0	No
2-Butanone	6	0	6	0	No
2-Hexanone	6	0	6	0	No
4-Methyl-2-pentanone	6	0	6	0	No
Acetone	6	0	6	0	No
Acrolein	6	0	6	0	No
Acrylonitrile	6	0	6	0	No
Aluminum	6	0	2	4	YES
Antimony	6	0	6	0	No
Beryllium	6	0	5	1	YES
Boron	6	0	1	5	YES
Bromide	6	0	0	6	YES
Bromochloromethane	6	0	6	0	No
Bromodichloromethane	6	0	6	0	No
Bromoform	6	0	6	0	No
Bromomethane	6	0	6	0	No
Calcium	6	0	0	6	YES
Carbon disulfide	6	0	6	0	No
Chemical Oxygen Demand (COD)	6	0	1	5	YES
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	No
Chloroethane	6	0	6	0	No
Chloroform	6	0	6	0	No
Chloromethane	6	0	6	0	No
cis-1,2-Dichloroethene	6	0	6	0	No
cis-1,3-Dichloropropene	6	0	6	0	No
Cobalt	6	0	0	6	YES
Conductivity	6	0	0	6	YES
Copper	6	0	0	6	YES
Cyanide	6	0	6	0	No
Dibromochloromethane	6	0	6	0	No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dibromomethane	6	0	6	0	No
Dimethylbenzene, Total	6	0	6	0	No
Dissolved Oxygen	6	0	0	6	YES
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	No
Iodide	6	0	6	0	No
Iodomethane	6	0	6	0	No
Iron	6	0	1	5	YES
Magnesium	6	0	0	6	YES
Manganese	6	0	0	6	YES
Methylene chloride	6	0	6	0	No
Molybdenum	6	0	3	3	YES
Nickel	6	0	0	6	YES
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	3	3	YES
PCB-1016	6	0	6	0	No
PCB-1221	6	0	6	0	No
PCB-1232	6	0	6	0	No
PCB-1242	6	0	3	3	YES
PCB-1248	6	0	6	0	No
PCB-1254	6	0	6	0	No
PCB-1260	6	0	6	0	No
PCB-1268	6	0	6	0	No
pН	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	1	5	YES
Rhodium	6	0	6	0	No
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	No
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	No
Technetium-99	6	0	2	4	YES
Tetrachloroethene	6	0	6	0	No
Thallium	6	0	6	0	No
Thorium-230	6	0	6	0	No
Toluene	6	0	6	0	No
Total Organic Carbon (TOC)	6	0	0	6	YES
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	No
trans-1,3-Dichloropropene	6	0	6	0	No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
trans-1,4-Dichloro-2-butene	6	0	6	0	No
Trichlorofluoromethane	6	0	6	0	No
Uranium	6	0	6	0	No
Vanadium	6	0	5	1	YES
Vinyl acetate	6	0	6	0	No
Zinc	6	0	4	2	YES

Bold denotes parameters with at least one uncensored observation.

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	No
1,1,2,2-Tetrachloroethane	6	0	6	0	No
1,1,2-Trichloroethane	6	0	6	0	No
1,1-Dichloroethane	6	0	6	0	No
1,2,3-Trichloropropane	6	0	6	0	No
1,2-Dibromo-3-chloropropane	6	0	6	0	No
1,2-Dibromoethane	6	0	6	0	No
1,2-Dichlorobenzene	6	0	6	0	No
1,2-Dichloropropane	6	0	6	0	No
2-Butanone	6	0	6	0	No
2-Hexanone	6	0	6	0	No
4-Methyl-2-pentanone	6	0	6	0	No
Acetone	6	0	6	0	No
Acrolein	6	0	6	0	No
Acrylonitrile	6	0	6	0	No
Aluminum	6	0	3	3	YES
Antimony	6	0	6	0	No
Beryllium	6	0	6	0	No
Boron	6	0	2	4	YES
Bromide	6	0	0	6	YES
Bromochloromethane	6	0	6	0	No
Bromodichloromethane	6	0	6	0	No
Bromoform	6	0	6	0	No
Bromomethane	6	0	6	0	No
Calcium	6	0	0	6	YES
Carbon disulfide	6	0	6	0	No
Chemical Oxygen Demand (COD)	6	0	3	3	YES
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	No
Chloroethane	6	0	6	0	No
Chloroform	6	0	6	0	No
Chloromethane	6	0	6	0	No
cis-1,2-Dichloroethene	6	0	6	0	No
cis-1,3-Dichloropropene	6	0	6	0	No
Cobalt	6	0	0	6	YES
Conductivity	6	0	0	6	YES
Copper	6	0	1	5	YES
Cyanide	6	0	6	0	No
Dibromochloromethane	6	0	6	0	No
Dibromomethane	6	0	6	0	No
Dimethylbenzene, Total	6	0	6	0	No
Dissolved Oxygen	6	0	0	6	YES

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	No
Iodide	6	0	6	0	No
Iodomethane	6	0	6	0	No
Iron	6	0	0	6	YES
Magnesium	6	0	0	6	YES
Manganese	6	0	0	6	YES
Methylene chloride	6	0	6	0	No
Molybdenum	6	0	3	3	YES
Nickel	6	0	1	5	YES
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	6	0	No
PCB-1016	6	0	6	0	No
PCB-1221	6	0	6	0	No
PCB-1232	6	0	6	0	No
PCB-1242	6	0	6	0	No
PCB-1248	6	0	6	0	No
PCB-1254	6	0	6	0	No
PCB-1260	6	0	6	0	No
PCB-1268	6	0	6	0	No
рH	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	3	3	YES
Rhodium	6	0	6	0	No
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	No
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	No
Technetium-99	6	0	1	5	YES
Tetrachloroethene	6	0	6	0	No
Thallium	6	0	6	0	No
Thorium-230	6	0	6	0	No
Toluene	6	0	6	0	No
Total Organic Carbon (TOC)	6	0	0	6	YES
Total Organic Halides (TOX)	6	0	2	4	YES
trans-1,2-Dichloroethene	6	0	6	0	No
trans-1,3-Dichloropropene	6	0	6	0	No
trans-1,4-Dichloro-2-butene	6	0	6	0	No
Trichlorofluoromethane	6	0	6	0	No
Uranium	6	0	6	0	No
Vanadium	6	0	5	1	YES
Vinyl acetate	6	0	6	0	No

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

	Parameters	Observations	Missing Observation	Censored Observation		Statistical Analysis?
Zinc		6	0	2	4	YES

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 28, 32, and 28 parameters, respectively, including those listed in bold print in Exhibits 3, 4, and 5 plus those constituents (Beta Activity and TCE) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradiant background by well number is shown in Exhibit 6.

UCRS

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

<u>URGA</u>

This quarter's results identified historical background exceedances for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, and technetium-99.

LRGA

This quarter's results identified historical background exceedances for oxidation-reduction potential.

Conclusion

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

Exhibit 6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW358: Oxidation-Reduction Potential
MW371: Oxidation-Reduction Potential	MW360: Sodium	MW361: Oxidation-Reduction Potential
MW374: Oxidation-Reduction Potential	MW363: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential
	MW369: Oxidation-Reduction Potential	MW370: Oxidation-Reduction Potential
	MW372: Beta activity, Calcium, Conductivity, Dissolved Solids, Magnesium, Technetium-99	MW373: Oxidation-Reduction Potential

Exhibit 7. Test Summaries for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration
Beryllium	Tolerance Interval	1.12	No exceedance of statistically derived historical background concentration
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW362
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration

Exhibit 7. Tests Summary for Qualified Parameters—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration
Oxidation- Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW362, MW371, MW374, and MW375
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration
Radium-226	Tolerance Interval	3.79	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW362 and MW375
Total Organic Carbon	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration
Total Organic Halides	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration
Uranium	Tolerance Interval	1.68	No exceedance of statistically derived historical background concentration
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit 8. Test Summaries for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration
Beryllium	Tolerance Interval	0.80	No exceedance of statistically derived historical background concentration
Beta activity ¹	Tolerance Interval	0.74	Current results exceed statistically derived historical background concentration in MW372
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.29	Current results exceed statistically derived historical background concentration in MW372
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	0.85	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW372
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration

Exhibit 8. Tests Summary for Qualified Parameters—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW363, MW366, and MW369
PCB, Total	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration
PCB-1242	Tolerance Interval	1.36	No exceedance of statistically derived historical background concentration
pH	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration
Radium-226	Tolerance Interval	2.61	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.26	Current results exceed statistically derived historical background concentration in MW360
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW372
Total Organic Carbon	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration
Total Organic Halides	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration
Trichloroethene ¹	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration
Vanadium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Exhibit 9. Test Summaries for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration
Cobalt	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration

Exhibit 9. Tests Summary for Qualified Parameters—LRGA (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373
pН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration
Potassium	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration
Radium-226	Tolerance Interval	2.66	No exceedance of statistically derived historical background concentration
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration
Technetium-99	Tolerance Interval	1.73	No exceedance of statistically derived historical background concentration
Total Organic Carbon	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration
Total Organic Halides	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration
Vanadium	Tolerance Interval	0.32	No exceedance of statistically derived historical background concentration
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the results of the one-sided upper tolerance interval test compared to current background, and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 8, and 1 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit 10, presented by well number.

UCRS

Because gradients in the UCRS are downward, there are no truly downgradient UCRS wells that exceed the current background TL derived using the most recent eight quarters of data. NOTE: Sulfate concentrations in some UCRS wells exceeded the current TL this quarter.

URGA

This quarter's results showed no exceedances of the current TL in wells located downgradient of the landfill.

LRGA

This quarter's results showed no exceedances of the current TL in wells located downgradient of the landfill.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit 11, Exhibit 12, and Exhibit 13, respectively.

Exhibit 10. Summary of
Exceedances (in downgradient wells)
of the TL Calculated Using
Current Background Concentrations

None

Exhibit 11. Test Summaries for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.49	No exceedance of statistically derived current background concentration
Oxidation-Reduction Potential	Tolerance Interval	0.36	No exceedance of statistically derived current background concentration
Sulfate	Tolerance Interval	0.51	Because gradients in UCRS wells are downward, there are no UCRS wells that are actually downgradient of the landfill. However, sulfate concentrations exceeded the TL calculated using current background data in MW362 and MW375

CV: coefficient of variation

Exhibit 12. Test Summaries for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta activity	Tolerance Interval	0.96	No exceedance of statistically derived current background concentration
Calcium	Tolerance Interval	0.61	No exceedance of statistically derived current background concentration
Conductivity	Tolerance Interval	0.38	No exceedance of statistically derived current background concentration
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived current background concentration
Magnesium	Tolerance Interval	0.60	No exceedance of statistically derived current background concentration
Oxidation-Reduction Potential	Tolerance Interval	0.66	No exceedance of statistically derived current background concentration
Sodium	Tolerance Interval	0.31	No exceedance of statistically derived current background concentration
Technetium-99	Tolerance Interval	0.99	No exceedance of statistically derived current background concentration

CV: coefficient of variation

Exhibit 13. Test Summaries for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.34	No exceedance of statistically derived current background concentration

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Fourth Quarter 2014 Statistical Analysis Aluminum UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Background Data from Upgradient Well	
Well Number:	MW371	X=3.300		Well Number:	MW371
Date Collected	Result	S = 6.859		Date Collected	LN(Result)
3/18/2002	2.240	CV= 2.078 K factor** = 2.523		3/18/2002	0.806
4/22/2002	0.200	TL = 20.604		4/22/2002	-1.609
7/15/2002	0.200	12 20001		7/15/2002	-1.609
10/8/2002	0.200	Because CV is greater the		10/8/2002	-1.609
1/8/2003	0.200	logarithm of background	d and test well results	1/8/2003	-1.609
4/3/2003	0.200	were calculated.		4/3/2003	-1.609
7/9/2003	0.200	Statistics on		7/9/2003	-1.609
10/6/2003	0.200	Transformed		10/6/2003	-1.609
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X = -0.371		Date Collected	LN(Result)
10/8/2002	21.300	S= 1.678		10/8/2002	3.059
1/7/2003	20.000	CV= -4.521		1/7/2003	2.996
4/2/2003	4.110	K factor** = 2.523		4/2/2003	1.413
7/9/2003	1.410			7/9/2003	0.344
10/7/2003	1.090	TL= 3.863		10/7/2003	0.086
1/6/2004	0.854			1/6/2004	-0.158
4/7/2004	0.200			4/7/2004	-1.609
7/14/2004	0.200			7/14/2004	-1.609

October	2014			
Well No.	Result	Gradient	Resu	lt >TL?
MW362	11.600	Downgrad	lient	N/A
MW371	0.156	Upgradien	nt	N/A

Upgradient

Sidegradient

Fourth Ouarter 2014 Data Collected in

MW374

MW375

0.063

0.053

	Quarter 2014 tially Dry Wells	Transformed Fourth Quarter 2014 Data Collected in October 2014			
Well No.	Gradient	Well Number	LN(Result)	Result >TL?	
MW359	Downgradient	MW362	2.451	NO	
MW365	Downgradient	MW371	-1.858	NO	
MW368	Sidegradient	MW374	-2.766	NO	
MW376	Sidegradient	MW375	-2.939	NO	
MW377	Sidegradient				

Conclusion of Statistical Analysis on Transformed Historical Data

N/A

N/A

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D1-3

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis **UCRS** UNITS: mg/L **Beryllium**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed I Data from Upg	
Well Number:	MW371	X= 0.002	·	Well Number:	MW371
Date Collected	Result	S= 0.003 CV= 1.125		Date Collected	LN(Result)
3/18/2002	0.005	K factor** = 2.523		3/18/2002	-5.298
4/22/2002	0.005	TL = 0.009		4/22/2002	-5.298
7/15/2002	0.005	12 0.00		7/15/2002	-5.298
10/8/2002	0.001	Because CV is greater than 1, the		10/8/2002	-6.908
1/8/2003	0.001	logarithm of background and test	well results	1/8/2003	-6.908
4/3/2003	0.001	were calculated.		4/3/2003	-6.908
7/9/2003	0.001	Statistics on		7/9/2003	-6.908
10/6/2003	0.001	Transformed		10/6/2003	-6.908
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= -6.462		Date Collected	LN(Result)
10/8/2002	0.010	S= 0.812		10/8/2002	-4.605
1/7/2003	0.001	CV = -0.126		1/7/2003	-6.908
4/2/2003	0.001	K factor** = 2.523		4/2/2003	-6.908
7/9/2003	0.001			7/9/2003	-6.908
10/7/2003	0.001	TL= -4.413		10/7/2003	-6.908
1/6/2004	0.001			1/6/2004	-6.908
4/7/2004	0.001			4/7/2004	-6.908
7/14/2004	0.001			7/14/2004	-6.908

Fourth Quarter 2014 Data Collected in October 2014						
Well No.	Result	Gradient	Resu	lt >TL		
MANAGO	0.000	D	1:4	NT/A		

Well No.	Result	Gradient	Result >TL?
MW362	0.000	Downgradie	nt N/A
MW371	0.001	Upgradient	N/A
MW374	0.001	Upgradient	N/A
MW375	0.001	Sidegradient	N/A

Fourth Quarter 2014
Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Transformed Fourth Quarter 2014 Data Collected in October 2014

ı			
	Well Number	LN(Result)	Result >TL?
	MW362	-7.849	NO
	MW371	-7.601	NO
	MW374	-7.601	NO
	MW375	-7.601	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statisticallysignificant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis **UCRS** UNITS: mg/L **Boron**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells	
Well Number:	MW371	X= 0.650	•	Well Number:	MW371	
Date Collected	Result	S= 0.805 CV= 1.238	•	Date Collected	LN(Result)	
3/18/2002	2.000	K factor** = 2.523		3/18/2002	0.693	
4/22/2002	2.000	TL= 2.681		4/22/2002	0.693	
7/15/2002	2.000	12 2.001		7/15/2002	0.693	
10/8/2002	0.200	Because CV is greater that		10/8/2002	-1.609	
1/8/2003	0.200	logarithm of background	and test well results	1/8/2003	-1.609	
4/3/2003	0.200	were calculated.		4/3/2003	-1.609	
7/9/2003	0.200	Statistics on		7/9/2003	-1.609	
10/6/2003	0.200	Transformed		10/6/2003	-1.609	
Well Number:	MW374	Background Data		Well Number:	MW374	
Date Collected	Result	X = -1.034	•	Date Collected	LN(Result)	
10/8/2002	2.000	S= 1.030		10/8/2002	0.693	
1/7/2003	0.200	CV= -0.996		1/7/2003	-1.609	
4/2/2003	0.200	K factor** = 2.523		4/2/2003	-1.609	
7/9/2003	0.200			7/9/2003	-1.609	
10/7/2003	0.200	TL= 1.564		10/7/2003	-1.609	
1/6/2004	0.200			1/6/2004	-1.609	
4/7/2004	0.200			4/7/2004	-1.609	
7/14/2004	0.200			7/14/2004	-1.609	

Fourth Quarter 2014 Data Collected in October 2014				Fourth (Dry/Par	Quarter 2014 tially Dry We
Well No.	Result	Gradient F	Result >TL?	Well No.	Gradient
MW362	0.014	Downgradien	t N/A	MW359	Downgradie
MW371	0.015	Upgradient	N/A		Downgradie
MW374	0.039	Upgradient	N/A	MW368	Sidegradient

Sidegradient

ells	Data Collected in October 2014		
	Well Number	LN(Result)	Result >TL?
ent	MW362	-4.283	NO
ent	MW371	-4.200	NO
ıt	MW374	-3.234	NO
ıt	MW375	-3.849	NO

Conclusion of Statistical Analysis on Transformed Historical Data

N/A

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statisticallysignificant level.

MW376 Sidegradien MW377 Sidegradient

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S)

MW375

0.021

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Bromide UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	1.000
4/22/2002	1.000
7/15/2002	1.000
10/8/2002	1.000
1/8/2003	1.000
4/3/2003	1.000
7/9/2003	1.000
10/6/2003	1.000
Well Number:	MW374
Date Collected	Result
10/8/2002	2.100
1/7/2003	2.100
4/2/2003	1.900
7/9/2003	1.000

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data

X= 1.394 S= 0.474 CV= 0.340 K factor** = 2.523 TL= 2.590

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

1.900

1.900

1.800

1.600

Well No.	Result	Gradient	Result >TL?
MW362	0.189	Downgradie	nt NO
MW371	0.103	Upgradient	NO
MW374	1.010	Upgradient	NO
MW375	0.200	Sidegradient	NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Calcium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	17.200
4/22/2002	22.400
7/15/2002	25.500
10/8/2002	26.400
1/8/2003	27.200
4/3/2003	30.300
7/9/2003	25.900
10/6/2003	27.000
Well Number:	MW374
Date Collected	Result
10/8/2002	67.300
	07.300
1/7/2003	60.600
1/7/2003 4/2/2003	
	60.600
4/2/2003	60.600 47.200
4/2/2003 7/9/2003	60.600 47.200 34.700
4/2/2003 7/9/2003 10/7/2003	60.600 47.200 34.700 37.100

7/14/2004

Statistics on Background Data

X= 34.100 S= 13.637 CV= 0.400 K factor** = 2.523 TL= 68.505

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

26,900

Well No.	Result	Gradient	Result >TL?
MW362	22.700	Downgradie	nt NO
MW371	32.600	Upgradient	NO
MW374	22.100	Upgradient	NO
MW375	14.300	Sidegradient	NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	35.000
4/22/2002	35.000
7/15/2002	35.000
10/8/2002	35.000
1/8/2003	35.000
4/3/2003	35.000
7/9/2003	35.000
10/6/2003	35.000
Well Number:	MW374
Date Collected	Result
10/8/2002	260.000

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data

X= 72.938 S= 70.749 CV= 0.970 K factor** = 2.523 TL= 251.437

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

214.000

147.000

72.000

56.000

68.000

35.000

35.000

Well No.	Result	Gradient	Result >TL?
MW362	17.600	Downgradie	nt NO
MW371	20.000	Upgradient	NO
MW374	10.500	Upgradient	NO
MW375	15.200	Sidegradient	NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Chloride UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
7/15/2002	8.300
10/8/2002	7.600
1/8/2003	7.700
4/3/2003	8.800
7/9/2003	8.100
10/6/2003	8.600
1/7/2004	7.600
4/6/2004	7.600
Well Number:	MW374
Date Collected	Result

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data

X= 91.300 S= 86.959 CV= 0.952 K factor** = 2.523 TL= 310.697

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

199,200

199.700

171.800

178.700

175.600

170.400

156,400

144.700

Well No.	Result	Gradient	Result >TL?
MW362	9.970	Downgradie	nt NO
MW371	6.810	Upgradient	NO
MW374	83.300	Upgradient	NO
MW375	6.190	Sidegradient	NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis **UCRS** UNITS: mg/L Cobalt

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Background Data from Upgradient Well	
Well Number: MW	W371	X=0.007		Well Number:	MW371
Date Collected Ro	esult	S = 0.009		Date Collected	LN(Result)
3/18/2002 0.	.025	CV= 1.314 K factor** = 2.523		3/18/2002	-3.689
4/22/2002 0.	.025	TL = 0.031		4/22/2002	-3.689
7/15/2002 0.	.025	112 0.051		7/15/2002	-3.689
10/8/2002 0.		Because CV is greater to		10/8/2002	-6.908
1/8/2003 0.		ogarithm of background	d and test well results	1/8/2003	-6.908
4/3/2003 0.	.001	were calculated.		4/3/2003	-6.908
7/9/2003 0.	.001	Statistics on		7/9/2003	-6.908
10/6/2003 0.	.001	Transformed Background Data		10/6/2003	-6.908
Well Number: MW	W374			Well Number:	MW374
Date Collected Re	esult	X= -5.843		Date Collected	LN(Result)
10/8/2002 0.	.010	S= 1.392		10/8/2002	-4.605
1/7/2003 0.	.010	CV= -0.238		1/7/2003	-4.605
4/2/2003 0.	.010	K factor** = 2.523		4/2/2003	-4.605
7/9/2003 0.	.002			7/9/2003	-6.432
10/7/2003 0.	.001	TL = -2.331		10/7/2003	-6.908
1/6/2004 0.	.001			1/6/2004	-6.908
4/7/2004 0.	.001			4/7/2004	-6.908
7/14/2004 0.	.001			7/14/2004	-6.908

Fourth Quarter 2014 Data Collected in October 2014				
Well No.	Result	Gradient	Resu	lt>TL
MUUACA	0.004	D	11	NT/A

Well No.	Result	Gradient	Result >TL?
MW362	0.004	Downgradie	nt N/A
MW371	0.001	Upgradient	N/A
MW374	0.004	Upgradient	N/A
MW375	0.001	Sidegradient	N/A

Fourth Quarter 2014
Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Transformed Fourth Quarter 2014 **Data Collected in October 2014**

ı			
	Well Number	LN(Result)	Result >TL?
•	MW362	-5.487	NO
	MW371	-6.908	NO
	MW374	-5.608	NO
	MW375	-6.908	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statisticallysignificant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Conductivity UCRS UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	541.000
4/22/2002	643.000
7/15/2002	632.000
10/8/2002	631.000
1/8/2003	680.000
4/3/2003	749.000
7/9/2003	734.000
10/6/2003	753.000
Well Number:	MW374
Date Collected	Result
3/18/2002	1007.00
10/8/2002	1680.00
1/7/2003	1715.90
4/2/2003	172.000
	1/2.000
7/9/2003	1231.00
7/9/2003 10/7/2003	
	1231.00

Statistics on Background Data

X= 918.744 S= 417.257 CV= 0.454 K factor** = 2.523 TL= 1971.483

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient	Result >TL?
MW362	706.00	Downgradie	nt NO
MW371	782.00	Upgradient	NO
MW374	710.00	Upgradient	NO
MW375	352.00	Sidegradient	NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis **UCRS** UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data	~ *************************************		Transformed Background Data from Upgradient Wells	
/ell Number:	MW371	X= 0.056		Well Number:	MW371	
Date Collected	Result	S= 0.072 CV= 1.275		Date Collected	LN(Result)	
3/18/2002	0.025	K = 1.275 K factor** = 2.523		3/18/2002	-3.689	
4/22/2002	0.025	TL = 0.237		4/22/2002	-3.689	
7/15/2002	0.050	12 0.207		7/15/2002	-2.996	
10/8/2002	0.020	Because CV is greater t		10/8/2002	-3.912	
1/8/2003	0.020	logarithm of backgroun	d and test well results	1/8/2003	-3.912	
4/3/2003	0.020	were calculated.	were calculated.		-3.912	
7/9/2003	0.020	Statistics on		7/9/2003	-3.912	
10/6/2003	0.020	Transformed	Transformed	10/6/2003	-3.912	
Vell Number:	MW374	Background Data		Well Number:	MW374	
Date Collected	Result	X = -3.395		Date Collected	LN(Result)	
10/8/2002	0.200	S = 0.915		10/8/2002	-1.609	
1/7/2003	0.200	CV = -0.270		1/7/2003	-1.609	
4/2/2003	0.200	K factor** = 2.523		4/2/2003	-1.609	
7/9/2003	0.020			7/9/2003	-3.912	
10/7/2003	0.020	TL = -1.086		10/7/2003	-3.912	
1/6/2004	0.020			1/6/2004	-3.912	
4/7/2004	0.020			4/7/2004	-3.912	
7/14/2004	0.020			7/14/2004	-3.912	

Fourth Quarter 2014 Data Collected in October 2014						
Well No.	Result	Gradient		Res	ult >TL	,
) (III/2/2	0.007	ъ	1.		3.7/4	

Well No.	Result	Gradient	Result >TL?
MW362	0.007	Downgradie	nt N/A
MW371	0.002	Upgradient	N/A
MW374	0.000	Upgradient	N/A
MW375	0.000	Sidegradient	N/A

Fourth Quarter 2014
Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Transformed Fourth Quarter 2014 **Data Collected in October 2014**

ı			
	Well Number	LN(Result)	Result >TL?
	MW362	-4.901	NO
	MW371	-6.496	NO
	MW374	-7.684	NO
	MW375	-7.775	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statisticallysignificant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Dissolved Oxygen UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371	
Date Collected	Result	
3/18/2002	2.260	
4/22/2002	1.150	
7/15/2002	0.940	
10/8/2002	0.740	
1/8/2003	2.620	
4/3/2003	1.500	
7/9/2003	1.660	
10/6/2003	1.280	
Well Number:	MW374	
Date Collected	Result	
3/18/2002	0.600	
10/8/2002	0.670	
1/7/2003	0.230	
4/2/2003	0.650	
7/9/2003	0.920	
10/7/2003	0.990	
1/6/2004	1.110	
4/7/2004		

Statistics on Background Data

X= 1.138 S= 0.621 CV= 0.546 K factor** = 2.523 TL= 2.704

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Result	Gradient	Resul	lt>TL?
2.730	Downgradi	ent	YES
0.980	Upgradient		NO
0.860	Upgradient		NO
1.420	Sidegradier	nt	NO
	2.730 0.980 0.860	2.730 Downgradi 0.980 Upgradient 0.860 Upgradient	Result Gradient Result 2.730 Downgradient 0.980 Upgradient 0.860 Upgradient 1.420 Sidegradient

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW362

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Dissolved Solids UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	274.000
4/22/2002	409.000
7/15/2002	418.000
10/8/2002	424.000
1/8/2003	431.000
4/3/2003	444.000
7/9/2003	445.000
10/6/2003	438.000
Well Number:	MW374
Date Collected	Result
10/8/2002	1136.00
1/7/2003	1101.00
4/2/2003	863.000
7/9/2003	682.000
10/7/2003	589.000
1/6/2004	603.000

4/7/2004

7/14/2004

Statistics on Background Data

X= 590.000 S= 248.068 CV= 0.420 K factor** = 2.523 TL= 1215.876

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

601.000

582.000

Well No.	Result	Gradient	Result >TL
MW362	444.00	Downgradie	nt NO
MW371	394.00	Upgradient	NO
MW374	416.00	Upgradient	NO
MW375	237.00	Sidegradien	. NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Iron UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	1.310
4/22/2002	0.913
7/15/2002	0.881
10/8/2002	3.860
1/8/2003	1.880
4/3/2003	3.180
7/9/2003	0.484
10/6/2003	2.720
Well Number:	MW374
Date Collected	Result
10/8/2002	23.000
1/7/2003	13.900
4/2/2003	14.000
7/9/2003	14.200
10/7/2003	7.920
1/6/2004	7.860
4/7/2004	4.820
7/14/2004	4.870

Statistics on Background Data

X= 6.612 S= 6.487 CV= 0.981 K factor** = 2.523 TL= 22.979

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient	Result >TL?
MW362	7.920	Downgradie	nt NO
MW371	0.104	Upgradient	NO
MW374	0.284	Upgradient	NO
MW375	0.094	Sidegradient	NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Magnesium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	7.100
4/22/2002	9.770
7/15/2002	10.400
10/8/2002	10.200
1/8/2003	10.700
4/3/2003	11.900
7/9/2003	10.800
10/6/2003	10.900
Well Number:	MW374
Date Collected	Result
10/8/2002	20.000
1/7/2003	16.100
4/2/2003	13.100
7/9/2003	10.300
10/7/2003	11.100
1/6/2004	11.000

4/7/2004

7/14/2004

Statistics on Background Data

X= 11.347 S= 3.019 CV= 0.266 K factor** = 2.523 TL= 18.963

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

9.690

8.490

Well No.	Result	Gradient	Result >TL?
MW362	9.610	Downgradie	nt NO
MW371	13.300	Upgradient	NO
MW374	6.270	Upgradient	NO
MW375	5.900	Sidegradient	NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

Dĭ1-16

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Manganese UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	0.063
4/22/2002	0.067
7/15/2002	0.074
10/8/2002	0.052
1/8/2003	0.039
4/3/2003	0.055
7/9/2003	0.055
10/6/2003	0.054
Well Number:	MW374
Date Collected	Result
10/8/2002	0.596
1/7/2003	0.565
4/2/2003	0.675

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data

X= 0.248 S= 0.222 CV= 0.894 K factor** = 2.523 TL= 0.809

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

0.397

0.312

0.299

0.329

0.342

Well No.	Result	Gradient	Result >TL?
MW362	0.062	Downgradie	nt NO
MW371	0.001	Upgradient	NO
MW374	0.334	Upgradient	NO
MW375	0.003	Sidegradient	NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis **UCRS** UNITS: mg/L Molybdenum

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

ackground D pgradient W		Statistics on Background Data		Transformed l Data from Up	
Vell Number:	MW371	X= 0.006		Well Number:	MW371
Date Collected	Result	S= 0.010 CV= 1.650		Date Collected	LN(Result)
3/18/2002	0.025	K factor** = 2.523		3/18/2002	-3.689
4/22/2002	0.025	TL= 0.030		4/22/2002	-3.689
7/15/2002	0.025	12 0000	J	7/15/2002	-3.689
10/8/2002	0.001	Because CV is greater t		10/8/2002	-6.908
1/8/2003	0.001	logarithm of backgroun	d and test well results	1/8/2003	-6.717
4/3/2003	0.001	were calculated.	_	4/3/2003	-6.908
7/9/2003	0.001	Statistics on		7/9/2003	-6.803
10/6/2003	0.001	Transformed		10/6/2003	-6.908
Vell Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X = -6.108		Date Collected	LN(Result)
10/8/2002	0.002	S= 1.239		10/8/2002	-6.110
1/7/2003	0.002	CV = -0.203		1/7/2003	-6.210
4/2/2003	0.002	K factor** = 2.523		4/2/2003	-6.444
7/9/2003	0.002	1		7/9/2003	-6.024
10/7/2003	0.001	TL = -2.983	j	10/7/2003	-6.908
1/6/2004	0.001			1/6/2004	-6.908
4/7/2004	0.001			4/7/2004	-6.908
7/14/2004	0.001			7/14/2004	-6.908

Fourth Q October	Quarter 2 2014	014 Data C	oll	ected	l in
Well No.	Result	Gradient		Res	ult >TL
) (III/2/2	0.001	ъ	1.		3.7/4

Well No.	Result	Gradient	Result >TL?
MW362	0.001	Downgradie	nt N/A
MW371	0.000	Upgradient	N/A
MW374	0.001	Upgradient	N/A
MW375	0.001	Sidegradient	N/A

Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Transformed Fourth Quarter 2014 Data Collected in October 2014

П				
	Well Number	LN(Result)	Result >TL?	
	MW362	-6.734	NO	
	MW371	-8.377	NO	
	MW374	-7.601	NO	
	MW375	-7.601	NO	

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statisticallysignificant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Nickel UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

MW371
Result
0.050
0.050
0.050
0.012
0.005
0.005
0.005
0.005
MW374
Result
0.050
0.050
0.050
0.008
0.005
0.005
0.005
0.005

Statistics on Background Data

X= 0.023 S= 0.022 CV= 0.980 K factor** = 2.523 TL= 0.078

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient	Result >TL?
MW362	0.007	Downgradie	nt NO
MW371	0.001	Upgradient	NO
MW374	0.002	Upgradient	NO
MW375	0.001	Sidegradient	NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UCRS UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Bata Irom		Statistics on Background Data			Transformed Background Data from Upgradient Wells	
Well Number:	MW371	X= 22.281		Well Number:	MW371	
Date Collected	Result	S= 78.889 CV= 3.541		Date Collected	LN(Result)	
3/18/2002	75.000	CV = 3.541 K factor** = 2.523		3/18/2002	4.317	
4/22/2002	165.000	TL= 221.319		4/22/2002	5.106	
7/15/2002	65.000	12 221.017		7/15/2002	4.174	
4/3/2003	-19.000	Because CV is greater t		4/3/2003	#Func!	
7/9/2003	114.000	logarithm of backgroun	d and test well results	7/9/2003	4.736	
10/6/2003	-22.000	were calculated.	_	10/6/2003	#Func!	
1/7/2004	20.500	Statistics on		1/7/2004	3.020	
4/6/2004	113.000	Transformed		4/6/2004	4.727	
Well Number:	MW374	Background Data		Well Number:	MW374	
Date Collected	Result	X = error		Date Collected	LN(Result)	
3/18/2002	135.000	S = error		3/18/2002	4.905	
4/2/2003	-56.000	CV = error		4/2/2003	#Func!	
7/9/2003	-68.000	K factor** = 2.523		7/9/2003	#Func!	
10/7/2003	-50.000			10/7/2003	#Func!	
1/6/2004	-85.000	TL# = 5.106		1/6/2004	#Func!	
4/7/2004	6.000	# Because the natural lo	g was not possible for	4/7/2004	1.792	
7/14/2004	-38.000	all background values, t		7/14/2004	#Func!	
10/7/2004	1.000	equal to the maximum b	oackground value.	10/7/2004	0.000	

Fourth Quarter 2014	Data Collected in
October 2014	

Well No.	Result	Gradient	Result >TL
MW362	179.000	Downgradie	nt N/A
MW371	360.000	Upgradient	N/A
MW374	257.000	Upgradient	N/A
MW375	335.000	Sidegradient	N/A

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number LN(Result) Result >TL			
MW362	5.187	YES	
MW371	5.886	YES	
MW374	5.549	YES	
MW375	5.814	VES	

Conclusion of Statistical Analysis on Transformed Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW362

MW371

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis	UCRS
Oxidation-Reduction Potential (Continued)	UNITS: mV

MW374
MW375

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D1-21

C-746-U Fourth Quarter 2014 Statistical Analysis pH

UCRS
UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	6.300
4/22/2002	6.500
7/15/2002	6.500
10/8/2002	6.600
1/8/2003	6.600
4/3/2003	6.900
7/9/2003	6.700
10/6/2003	7.000
Well Number:	MW374
Date Collected	Result
3/18/2002	5.750
10/8/2002	6.600
1/7/2003	6.820
4/2/2003	6.860
7/9/2003	6.700
10/7/2003	6.600
1/6/2004	6.900
4/7/2004	6.580

Statistics on Background Data
X= 6.619
S = 0.295
CV = 0.045
K factor** = 2.904
TL= 7.475
LL= 5.764

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient F	Result >TL?	Result <ll?< th=""></ll?<>
MW362	6.980	Downgradio	ent NO	NO
MW371	6.520	Upgradier	nt NO	NO
MW374	6.440	Upgradier	nt NO	NO
MW375	6.320	Sidegradie	nt NO	NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Fourth Quarter 2014 Statistical Analysis Potassium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	2.000
4/22/2002	2.000
7/15/2002	2.000
10/8/2002	0.408
1/8/2003	0.384
4/3/2003	0.368
7/9/2003	0.587
10/6/2003	0.382
Well Number:	MW374
Date Collected	Result
10/8/2002	3.040
1/7/2003	2.830
4/2/2003	2.000
7/9/2003	1.090
10/7/2003	0.802
1/6/2004	0.897
4/7/2004	0.689
7/14/2004	0.716

Statistics on Background Data

X= 1.262 S= 0.907 CV= 0.718 K factor** = 2.523 TL= 3.549

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient	Result >TL
MW362	0.950	Downgradie	nt NO
MW371	0.352	Upgradient	NO
MW374	0.467	Upgradient	NO
MW375	0.291	Sidegradient	. NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Radium-226 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed I Data from Up	Background gradient Wells
Well Number:	MW371	X= 3.560		Well Number:	MW371
Date Collected	Result	S= 13.483 CV= 3.787		Date Collected	LN(Result)
7/15/2002	54.100	K = 3.787 K factor** = 2.523		7/15/2002	3.991
10/8/2002	0.094	TL= 37.577		10/8/2002	-2.368
1/8/2003	0.378	TE Gristi		1/8/2003	-0.973
10/6/2003	0.179	Because CV is greater to		10/6/2003	-1.720
1/7/2004	0.898	logarithm of background	d and test well results	1/7/2004	-0.108
4/6/2004	0.108	were calculated.	_	4/6/2004	-2.226
7/13/2004	-0.149	Statistics on		7/13/2004	#Func!
10/7/2004	0.154	Transformed		10/7/2004	-1.871
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X = error		Date Collected	LN(Result)
10/8/2002	0.298	S = error		10/8/2002	-1.211
1/7/2003	-0.844	CV = error		1/7/2003	#Func!
10/7/2003	0.806	K factor** = 2.523		10/7/2003	-0.216
1/6/2004	0.031	1020		1/6/2004	-3.487
4/7/2004	0.350	TL# = 3.991		4/7/2004	-1.050
7/14/2004	0.273	# Because the natural lo		7/14/2004	-1.298
10/7/2004	0.205	all background values, t		10/7/2004	-1.585
1/11/2005	0.080	equal to the maximum b	equal to the maximum background value.		-2.527

Fourth Quarter	2014	Data	Collected in
October 2014			

Well No.	Result	Gradient 1	Result >TL?
MW362	0.303	Downgradier	nt N/A
MW371	1.110	Upgradient	N/A
MW374	0.859	Upgradient	N/A
MW375	0.392	Sidegradient	N/A

Fourth Quarter 2014
Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number LN(Result) Result >TL?			
MW362	-1.194	NO	
MW371	0.104	NO	
MW374	-0.152	NO	
MW375	-0.936	NO	

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Sodium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	129.000
4/22/2002	131.000
7/15/2002	127.000
10/8/2002	123.000
1/8/2003	128.000
4/3/2003	144.000
7/9/2003	126.000
10/6/2003	120.000
Well Number:	MW374
Date Collected	Result
10/8/2002	336.000
1/7/2003	329.000
4/2/2003	287.000
7/9/2003	181.000
10/7/2003	182.000
1/6/2004	206.000
4/7/2004	182.000

Statistics on Background Data

X= 183.063 S= 73.222 CV= 0.400 K factor** = 2.523 TL= 367.800

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

198.000

7/14/2004

Well No.	Result	Gradient	Result >TL?
MW362	148.00	Downgradie	nt NO
MW371	133.00	Upgradient	NO
MW374	126.00	Upgradient	NO
MW375	54.600	Sidegradient	NO

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Sulfate UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	16.300
4/22/2002	8.600
7/15/2002	6.700
10/8/2002	5.000
1/8/2003	5.000
4/3/2003	5.000
7/9/2003	5.000
10/6/2003	5.000
Well Number:	MW374
Date Collected	Result
10/8/2002	5.000
1/7/2003	5.000
4/2/2003	5.000
7/9/2003	5.600
10/7/2003	5.000
1/6/2004	5.000
4/7/2004	11.300

7/14/2004

Statistics on Background Data

X= 6.469 S= 3.153 CV= 0.487 K factor** = 2.523 TL= 14.423

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

5.000

Well No.	Result	Gradient	Resul	t>TL?
MW362	23.400	Downgradie	nt	YES
MW371	10.500	Upgradient		NO
MW374	5.730	Upgradient		NO
MW375	23.600	Sidegradient		YES

Fourth Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW362

MW375

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Total Organic Carbon (TOC) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

ckground D gradient W		Statistics on Background Data		Transformed Data from Upg	
ell Number:	MW371	X= 17.631		Well Number:	MW371
ate Collected	Result	S= 24.314 CV= 1.379		Date Collected	LN(Result)
3/18/2002	11.100	K = 1.579 K factor** = 2.523		3/18/2002	2.407
4/22/2002	7.000	TL= 78.977		4/22/2002	1.946
7/15/2002	4.100	12 /0///		7/15/2002	1.411
10/8/2002	6.000	Because CV is greater to		10/8/2002	1.792
1/8/2003	5.300	logarithm of background	d and test well results	1/8/2003	1.668
4/3/2003	5.300	were calculated.		4/3/2003	1.668
7/9/2003	2.900	Statistics on		7/9/2003	1.065
10/6/2003	3.200	Transformed		10/6/2003	1.163
Vell Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X = 2.318		Date Collected	LN(Result)
10/8/2002	90.000	S = 0.979		10/8/2002	4.500
1/7/2003	64.000	CV = 0.422		1/7/2003	4.159
4/2/2003	25.000	K factor** = 2.523		4/2/2003	3.219
7/9/2003	16.000			7/9/2003	2.773
10/7/2003	13.000	TL= 4.788		10/7/2003	2.565
1/6/2004	10.000			1/6/2004	2.303
4/7/2004	7.200			4/7/2004	1.974
7/14/2004	12.000			7/14/2004	2.485

Fourth Quarter 2014 Data Collected in October 2014				
Well No.	Result	Gradient	Resul	lt >TL?
MW362	1.440	Downgradient N/		N/A
MW371	2.550	Upgradient N/A		N/A

Upgradient

Sidegradient

MW374

MW375

3.350

1.490

Fourth Quarter 2014 Dry/Partially Dry Wells		Transformed Fourth Quarter 2014 Data Collected in October 2014			
Well No.	Gradient	Well Number	LN(Result)	Result >TL?	
MW359	Downgradient	MW362	0.365	NO	
MW365	Downgradient	MW371	0.936	NO	
MW368	Sidegradient	MW374	1.209	NO	
MW376	Sidegradient	MW375	0.399	NO	
MW377	Sidegradient				

Conclusion of Statistical Analysis on Transformed Historical Data

N/A

N/A

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D1-27

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis **UCRS Total Organic Halides (TOX)** UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

nckground D pgradient W		Statistics on Background Data		Transformed l Data from Up	
ell Number:	MW371	X= 214.094		Well Number:	MW371
ate Collected	Result	S= 231.089 CV= 1.079		Date Collected	LN(Result)
3/18/2002	50.000	K = 1.079 $K = 2.523$		3/18/2002	3.912
4/22/2002	105.000	TL= 797.131		4/22/2002	4.654
7/15/2002	70.000	12 ////	l	7/15/2002	4.248
10/8/2002	52.000	Because CV is greater t		10/8/2002	3.951
1/8/2003	20.200	logarithm of backgroun	d and test well results	1/8/2003	3.006
4/3/2003	104.000	were calculated.	_	4/3/2003	4.644
7/9/2003	34.200	Statistics on		7/9/2003	3.532
10/6/2003	46.100	Transformed		10/6/2003	3.831
Vell Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= 4.867		Date Collected	LN(Result)
10/8/2002	903.000	S= 1.065		10/8/2002	6.806
1/7/2003	539.000	CV= 0.219		1/7/2003	6.290
4/2/2003	295.000	K factor** = 2.523		4/2/2003	5.687
7/9/2003	272.000			7/9/2003	5.606
10/7/2003	197.000	TL= 7.554		10/7/2003	5.283
1/6/2004	330.000			1/6/2004	5.799
4/7/2004	183.000			4/7/2004	5.209
7/14/2004	225.000			7/14/2004	5.416

October	-	014 Data C	mected in
Well No.	Result	Gradient	Result >TL

Well No.	Result	Gradient	Result >TL?
MW362	15.700	Downgradie	nt N/A
MW371	3.380	Upgradient	N/A
MW374	11.600	Upgradient	N/A
MW375	10.200	Sidegradient	N/A

Fourth Quarter 2014
Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Transformed Fourth Quarter 2014 Data Collected in October 2014

	Well Number	LN(Result)	Result >TL?
-	MW362	2.754	NO
	MW371	1.218	NO
	MW374	2.451	NO
	MW375	2.322	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statisticallysignificant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis **UCRS** UNITS: mg/L Uranium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells	
ell Number:	MW371	X = 0.007		Well Number:	MW371	
ate Collected	Result	S= 0.012 CV= 1.678		Date Collected	LN(Result)	
3/18/2002	0.001	CV = 1.078 K factor** = 2.523		3/18/2002	-6.908	
4/22/2002	0.001	TL = 0.037		4/22/2002	-6.908	
7/15/2002	0.001	111 0.007		7/15/2002	-6.908	
10/8/2002	0.027	Because CV is greater to		10/8/2002	-3.612	
1/8/2003	0.001	logarithm of backgroun	d and test well results	1/8/2003	-6.908	
4/3/2003	0.001	were calculated.	_	4/3/2003	-6.908	
7/9/2003	0.001	Statistics on		7/9/2003	-6.822	
10/6/2003	0.001	Transformed		10/6/2003	-6.908	
Vell Number:	MW374	Background Data		Well Number:	MW374	
Date Collected	Result	X= -5.884		Date Collected	LN(Result)	
10/8/2002	0.044	S= 1.299		10/8/2002	-3.128	
1/7/2003	0.011	CV= -0.221		1/7/2003	-4.510	
4/2/2003	0.009	K factor** = 2.523		4/2/2003	-4.705	
7/9/2003	0.007			7/9/2003	-4.970	
10/7/2003	0.001	TL = -2.607]	10/7/2003	-6.908	
1/6/2004	0.003			1/6/2004	-5.760	
4/7/2004	0.003			4/7/2004	-5.960	
7/14/2004	0.002			7/14/2004	-6.320	

Fourth Q October	Quarter 20 2014	014 Data Co	llected	in
Well No.	Result	Gradient	Resu	lt >TL
MW262	0.006	Darrmanad	iont	NT/A

We	ell No.	Result	Gradient	Result >TL?
M	W362	0.006	Downgradie	nt N/A
M	W371	0.002	Upgradient	N/A
M	W374	0.000	Upgradient	N/A
M	W375	0.000	Sidegradient	t N/A

Fourth Qua	rter 2014
Dry/Partial	ly Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Transformed Fourth Quarter 2014 Data Collected in October 2014

ш			
	Well Number	LN(Result)	Result >TL?
	MW362	-5.133	NO
	MW371	-6.210	NO
	MW374	-7.729	NO
	MW375	-9.472	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statisticallysignificant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis **UCRS** Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells	
/ell Number:	MW371	X= 0.055		Well Number:	MW371	
ate Collected	Result	S= 0.072 CV= 1.319		Date Collected	LN(Result)	
3/18/2002	0.025	K = 1.519 K factor** = 2.523		3/18/2002	-3.689	
4/22/2002	0.025	TL = 0.237		4/22/2002	-3.689	
7/15/2002	0.025	12 0,20	l	7/15/2002	-3.689	
10/8/2002	0.020	Because CV is greater t		10/8/2002	-3.912	
1/8/2003	0.020	logarithm of backgroun were calculated.	d and test well results	1/8/2003	-3.912	
4/3/2003	0.020	were calculated.	_	4/3/2003	-3.912	
7/9/2003	0.020	Statistics on		7/9/2003	-3.912	
10/6/2003	0.020	Transformed		10/6/2003	-3.912	
Vell Number:	MW374	Background Data		Well Number:	MW374	
Date Collected	Result	X = -3.438		Date Collected	LN(Result)	
10/8/2002	0.200	S = 0.912		10/8/2002	-1.609	
1/7/2003	0.200	CV= -0.265		1/7/2003	-1.609	
4/2/2003	0.200	K factor** = 2.523		4/2/2003	-1.609	
7/9/2003	0.020	1		7/9/2003	-3.912	
10/7/2003	0.020	TL = -1.138		10/7/2003	-3.912	
1/6/2004	0.020			1/6/2004	-3.912	
4/7/2004	0.020			4/7/2004	-3.912	
7/14/2004	0.020			7/14/2004	-3.912	

Fourth Quarter 2014 Data Collected in October 2014						
Well No.	Result	Gradient	Resu	ılt>TL?		
MW362	0.015	Downgrad	ient	N/A		

October			
Well No.	Result	Gradient	Result >TL?
MW362	0.015	Downgradie	nt N/A
MW371	0.003	Upgradient	N/A
MW374	0.005	Upgradient N	
MW375	0.005	Sidegradient	N/A

Fourth Quarter 2014 Dry/Partially Dry Wells	Transformed Fourth Quarter 2014 Data Collected in October 2014			
Well No. Gradient	Well Number	LN(Result)	Result >	
MW359 Downgradient	MW362	-4.206	NO	

Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW359	Downgradient	MW362	-4.206	NO
MW365	Downgradient	MW371	-5.968	NO
MW368	Sidegradient	MW374	-5.298	NO
MW376	Sidegradient	MW375	-5.298	NO
MW377	Sidegradient			

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statisticallysignificant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Zinc UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data fr Jpgradient Wells	om Statistics on Background Data		Transformed I Data from Up	
Well Number: MW3	X= 0.060		Well Number:	MW371
Date Collected Res	S= 0.083 CV= 1.380		Date Collected	LN(Result)
3/18/2002 0.1			3/18/2002	-2.303
4/22/2002 0.1			4/22/2002	-2.303
7/15/2002 0.1			7/15/2002	-2.303
10/8/2002 0.0			10/8/2002	-3.689
1/8/2003 0.0		nd and test well results	1/8/2003	-3.352
4/3/2003 0.0	were calculated.	<u></u>	4/3/2003	-3.352
7/9/2003 0.0	Statistics on		7/9/2003	-3.281
10/6/2003 0.0	20 Transformed		10/6/2003	-3.912
Well Number: MW3	Background Data	Background Data	Well Number:	MW374
Date Collected Res	ult X= -3.259		Date Collected	LN(Result)
10/8/2002 0.03	S = 0.840		10/8/2002	-3.689
1/7/2003 0.3	50 CV= -0.258		1/7/2003	-1.050
4/2/2003 0.0			4/2/2003	-3.352
7/9/2003 0.0	20		7/9/2003	-3.912
10/7/2003 0.0	TL= -1.140		10/7/2003	-3.912
1/6/2004 0.0	20		1/6/2004	-3.912
4/7/2004 0.0	20		4/7/2004	-3.912
7/14/2004 0.03	20		7/14/2004	-3.912

Fourth Quarter 2014 Data Collected in October 2014					
Well No.	Result	Gradient	Resu	lt >TL?	
MW362	0.019	Downgrad	ient	N/A	
MW371	0.006	Ungradien	t	N/A	

Upgradient

Sidegradient

MW374

MW375

0.008

0.007

n	Fourth Quarter 2014 Dry/Partially Dry Wells		Transformed Fourth Quarter 2014 Data Collected in October 2014		ter 2014 2014	
>TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?	
N/A	MW359	Downgradient	MW362	-3.958	NO	•
N/A	MW365	Downgradient	MW371	-5.140	NO	
N/A	MW368	Sidegradient	MW374	-4.815	NO	
N/A	MW376	Sidegradient	MW375	-5.012	NO	
	MW377	Sidegradient				

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Aluminum URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed I Data from Up	
Well Number:	MW369	X=0.625		Well Number:	MW369
Date Collected	Result	S= 0.774 CV= 1.239		Date Collected	LN(Result)
3/18/2002	0.255	K factor** = 2.523		3/18/2002	-1.366
4/22/2002	0.200	TL= 2.578		4/22/2002	-1.609
7/15/2002	0.322	11 2.570		7/15/2002	-1.133
10/8/2002	0.200	Because CV is greater t		10/8/2002	-1.609
1/8/2003	0.200	logarithm of backgroun	d and test well results	1/8/2003	-1.609
4/3/2003	0.200	were calculated.		4/3/2003	-1.609
7/8/2003	0.200	Statistics on		7/8/2003	-1.609
10/6/2003	0.689	Transformed		10/6/2003	-0.373
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X = -0.973		Date Collected	LN(Result)
3/19/2002	2.610	S = 0.935		3/19/2002	0.959
4/23/2002	0.200	CV= -0.961		4/23/2002	-1.609
7/16/2002	1.140	K factor** = 2.523		7/16/2002	0.131
10/8/2002	0.862			10/8/2002	-0.149
1/7/2003	2.320	TL= 1.386		1/7/2003	0.842
4/2/2003	0.200			4/2/2003	-1.609
7/9/2003	0.200			7/9/2003	-1.609
10/7/2003	0.200			10/7/2003	-1.609

Fourth Quarter 2014 Data Collected in
October 2014

Well No.	Result	Gradient	Resul	t>TL?
MW357	0.050	Downgradi	ent	N/A
MW360	0.030	Downgradi	ent	N/A
MW363	0.050	Downgradi	ent	N/A
MW366	0.017	Sidegradier	ıt	N/A
MW369	0.184	Upgradient		N/A
MW372	0.051	Upgradient		N/A

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number	LN(Result)	Result >TL?
MW357	-2.996	NO
MW360	-3.500	NO
MW363	-2.996	NO
MW366	-4.069	NO
MW369	-1.693	NO
MW372	-2.984	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Beryllium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.005
4/22/2002	0.005
7/15/2002	0.005
10/8/2002	0.001
1/8/2003	0.001
4/3/2003	0.001
7/8/2003	0.001
10/6/2003	0.001
Well Number:	MW372
Date Collected	Result
Date Collected 3/19/2002	Result 0.005
	1100011
3/19/2002	0.005
3/19/2002 4/23/2002	0.005 0.005
3/19/2002 4/23/2002 7/16/2002	0.005 0.005 0.005
3/19/2002 4/23/2002 7/16/2002 10/8/2002	0.005 0.005 0.005 0.001
3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	0.005 0.005 0.005 0.005 0.001

Statistics on Background Data

X= 0.003 S= 0.002 CV= 0.800 K factor** = 2.523 TL= 0.008

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient I	Result >TL?
MW357	0.001	Downgradier	nt NO
MW360	0.001	Downgradier	nt NO
MW363	0.001	Downgradier	nt NO
MW366	0.001	Sidegradient	NO
MW369	0.000	Upgradient	NO
MW372	0.001	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	32.500
4/22/2002	35.400
7/15/2002	12.900
10/8/2002	7.590
1/8/2003	9.580
4/3/2003	6.690
7/8/2003	9.100
10/6/2003	7.310
Well Number:	MW372
Date Collected	Result
3/19/2002	28.500
4/23/2002	5.370
7/16/2002	19.900

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 15.996 S= 11.899 CV= 0.744 K factor** = 2.523 TL= 46.017

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

38.700

13.000

3.940

3.560

21.900

Well No.	Result	Gradient	Resul	t>TL?
MW372	74.000	Upgradient		YES

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	2.000
4/22/2002	2.000
7/15/2002	2.000
10/8/2002	0.200
1/8/2003	0.200
4/3/2003	0.200
7/8/2003	0.200
10/6/2003	0.200
Well Number:	MW372
Date Collected	Result
3/19/2002	2.000
4/23/2002	2.000
7/16/2002	2.000
10/8/2002	0.492
1/7/2003	0.492

4/2/2003	0.600

10/7/2003

Statistics on Background Data

X= 0.985 S= 0.825 CV= 0.838 K factor** = 2.523 TL= 3.067

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

0.604

Well No.	Result	Gradient F	Result >TL?
MW357	0.435	Downgradien	t NO
MW360	0.036	Downgradien	t NO
MW363	0.022	Downgradien	t NO
MW366	0.088	Sidegradient	NO
MW369	0.014	Upgradient	NO
MW372	1.080	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Bromide URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	1.000
4/22/2002	1.000
7/15/2002	1.000
10/8/2002	1.000
1/8/2003	1.000
4/3/2003	1.000
7/8/2003	1.000
10/6/2003	1.000
Well Number:	MW372
Date Collected	Result
3/19/2002	1.000
4/23/2002	1.000
7/16/2002	1.000
10/8/2002	1.000
1/7/2003	1.000
4/2/2003	1.000
7/9/2003	1.000
10/7/2003	

Statistics on Background Data

X= 1.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 1.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient R	Result >TL?
MW357	0.410	Downgradien	t NO
MW360	0.166	Downgradien	t NO
MW363	0.154	Downgradien	t NO
MW366	0.490	Sidegradient	NO
MW369	0.402	Upgradient	NO
MW372	0.629	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Calcium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	29.500
4/22/2002	29.800
7/15/2002	25.300
10/8/2002	21.900
1/8/2003	20.900
4/3/2003	22.200
7/8/2003	22.900
10/6/2003	21.700
Well Number:	MW372
Date Collected	Result
3/19/2002	41.500
4/23/2002	43.600
7/16/2002	40.400
10/8/2002	38.800
1/7/2003	41.100
4/2/2003	42.900
7/9/2003	35.100

10/7/2003

Statistics on Background Data

X= 32.763 S= 9.391 CV= 0.287 K factor** = 2.523 TL= 56.456

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

46.600

Well No.	Result	Gradient Resi	ult >TL?
MW357	28.500	Downgradient	NO
MW360	25.900	Downgradient	NO
MW363	27.200	Downgradient	NO
MW366	28.900	Sidegradient	NO
MW369	16.800	Upgradient	NO
MW372	59.300	Upgradient	YES

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	35.000
4/22/2002	35.000
7/15/2002	35.000
10/8/2002	50.000
1/8/2003	35.000
4/3/2003	35.000
7/8/2003	35.000
10/6/2003	35.000
10/0/2003	33.000
Well Number:	
- 0, 0, - 0 0	
Well Number:	MW372
Well Number: Date Collected	MW372 Result
Well Number: Date Collected 3/19/2002	MW372 Result 35.000
Well Number: Date Collected 3/19/2002 4/23/2002	MW372 Result 35.000 35.000
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002	MW372 Result 35.000 35.000 35.000
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	MW372 Result 35.000 35.000 35.000 35.000
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	MW372 Result 35.000 35.000 35.000 35.000 35.000

Statistics on Background Data

X= 35.938 S= 3.750 CV= 0.104 K factor** = 2.523 TL= 45.399

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient I	Result >TL?
MW357	19.900	Downgradier	nt NO
MW360	17.400	Downgradier	nt NO
MW363	8.100	Downgradier	nt NO
MW366	24.800	Sidegradient	NO
MW369	20.000	Upgradient	NO
MW372	12.900	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

MW369
Result
48.300
47.700
45.700
47.400
55.900
47.400
45.500
43.400
43.400 MW372
MW372
MW372 Result
MW372 Result 39.800
MW372 Result 39.800 41.000
MW372 Result 39.800 41.000 39.400
MW372 Result 39.800 41.000 39.400 39.200

4/5/2004

Statistics on Background Data

X= 44.119 S= 4.554 CV= 0.103 K factor** = 2.523 TL= 55.607

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

42.000

Well No.	Result	Gradient I	Result >TL?
MW357	32.300	Downgradier	t NO
MW360	10.300	Downgradier	t NO
MW363	33.200	Downgradier	t NO
MW366	37.600	Sidegradient	NO
MW369	31.800	Upgradient	NO
MW372	47.300	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Cobalt URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.025
4/22/2002	0.025
7/15/2002	0.025
10/8/2002	0.009
1/8/2003	0.005
4/3/2003	0.006
7/8/2003	0.054
	0.060
10/6/2003	0.069
10/6/2003 Well Number:	*****
- 0, 0, - 0 0	MW372
Well Number:	MW372
Well Number: Date Collected	MW372 Result
Well Number: Date Collected 3/19/2002	MW372 Result 0.025
Well Number: Date Collected 3/19/2002 4/23/2002	MW372 Result 0.025 0.025
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002	MW372 Result 0.025 0.025 0.025
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	MW372 Result 0.025 0.025 0.025 0.002
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	MW372 Result 0.025 0.025 0.025 0.002 0.015

10/7/2003

Statistics on Background Data

X= 0.025 S= 0.021 CV= 0.845 K factor** = 2.523 TL= 0.077

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

0.008

Well No.	Result	Gradient R	Result >TL?
MW357	0.000	Downgradien	t NO
MW360	0.023	Downgradien	t NO
MW363	0.001	Downgradien	t NO
MW366	0.001	Sidegradient	NO
MW369	0.008	Upgradient	NO
MW372	0.000	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Conductivity URGA UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	388.000
4/22/2002	404.000
7/15/2002	394.000
10/8/2002	403.000
1/8/2003	520.000
4/3/2003	487.000
7/8/2003	478.000
10/6/2003	476.000
Well Number:	MW372
Date Collected	Result
3/19/2002	508.000
4/23/2002	501.000
7/16/2002	507.000
10/8/2002	495.000
1/7/2003	508.700
4/2/2003	515.000

Statistics on Background Data

X= 482.856 S= 57.603 CV= 0.119 K factor** = 2.523 TL= 628.189

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

576.000

565.000

Well No.	Result	Gradient Res	sult >TL?
MW357	440.00	Downgradient	NO
MW360	542.00	Downgradient	NO
MW363	388.00	Downgradient	NO
MW366	450.00	Sidegradient	NO
MW369	371.00	Upgradient	NO
MW372	766.00	Upgradient	YES

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

7/9/2003

10/7/2003

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Copper UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.025
4/22/2002	0.025
7/15/2002	0.050
10/8/2002	0.020
1/8/2003	0.020
4/3/2003	0.020
7/8/2003	0.020
10/6/2003	0.020
Well Number:	MW372
Date Collected	Result
	Result
3/19/2002	0.025
3/19/2002 4/23/2002	
	0.025
4/23/2002	0.025 0.025
4/23/2002 7/16/2002	0.025 0.025 0.050
4/23/2002 7/16/2002 10/8/2002	0.025 0.025 0.050 0.020
4/23/2002 7/16/2002 10/8/2002 1/7/2003	0.025 0.025 0.050 0.020 0.020

10/7/2003

Statistics on Background Data

X= 0.025 S= 0.010 CV= 0.400 K factor** = 2.523 TL= 0.050

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

0.020

Well No.	Result	Gradient F	Result >TL?
MW357	0.001	Downgradien	t NO
MW360	0.001	Downgradien	t NO
MW363	0.001	Downgradien	t NO
MW366	0.001	Sidegradient	NO
MW369	0.001	Upgradient	NO
MW372	0.000	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	5.410
4/22/2002	1.570
7/15/2002	0.800
10/8/2002	1.090
1/8/2003	2.690
4/3/2003	2.040
7/8/2003	1.190
10/6/2003	1.780
Well Number:	MW372
Date Collected	Result
3/19/2002	3.890
4/23/2002	0.050
7/16/2002	1.330
7/16/2002 10/8/2002	1.330 2.660
,,,	-100
10/8/2002	2.660
10/8/2002 1/7/2003	2.660 0.400

Statistics on Background Data

X= 1.781 S= 1.351 CV= 0.759 K factor** = 2.523 TL= 5.190

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient R	esult >TL?
MW357	3.830	Downgradient	NO
MW360	1.310	Downgradient	NO
MW363	1.130	Downgradient	NO
MW366	3.560	Sidegradient	NO
MW369	2.100	Upgradient	NO
MW372	0.980	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Dissolved Solids URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

MW369
Result
173.000
246.000
232.000
275.000
269.000
250.000
295.000
276.000
MW372
Result
295.000
322.000
329.000
290.000

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 285.188 S= 44.908 CV= 0.157 K factor** = 2.523 TL= 398.489

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

316.000

311.000

347.000

337.000

Well No.	Result	Gradient Res	ult >TL?
MW357	234.00	Downgradient	NO
MW360	324.00	Downgradient	NO
MW363	189.00	Downgradient	NO
MW366	239.00	Sidegradient	NO
MW369	193.00	Upgradient	NO
MW372	476.00	Upgradient	YES

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.656
4/22/2002	0.695
7/15/2002	7.100
10/8/2002	21.500
1/8/2003	18.500
4/3/2003	14.900
7/8/2003	11.300
10/6/2003	14.900
Well Number:	MW372
	111 11 3 / 2
Date Collected	
Date Collected	Result
Date Collected 3/19/2002	Result 5.950
Date Collected 3/19/2002 4/23/2002	Result 5.950 0.792
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5.950 0.792 1.780
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5.950 0.792 1.780 0.776
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5.950 0.792 1.780 0.776 3.550

Statistics on Background Data

X= 7.385 S= 6.991 CV= 0.947 K factor** = 2.523 TL= 25.024

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient R	lesult >TL?
MW357	0.100	Downgradien	t NO
MW360	4.780	Downgradien	t NO
MW363	0.099	Downgradien	t NO
MW366	0.121	Sidegradient	NO
MW369	0.339	Upgradient	NO
MW372	0.476	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Magnesium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	11.400
4/22/2002	12.000
7/15/2002	10.000
10/8/2002	8.620
1/8/2003	7.890
4/3/2003	7.970
7/8/2003	10.300
10/6/2003	9.140
Well Number:	MW372
Date Collected	Result
3/19/2002	15.700
4/23/2002	16.600
7/16/2002	15.400
10/8/2002	15.800
1/7/2003	15.800
4/2/2003	16.400

7/9/2003

10/7/2003

Statistics on Background Data

X= 12.864 S= 3.505 CV= 0.272 K factor** = 2.523 TL= 21.707

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

15.200

17.600

Well No.	Result	Gradient Res	sult >TL?
MW357	11.300	Downgradient	NO
MW360	9.160	Downgradient	NO
MW363	10.300	Downgradient	NO
MW366	12.200	Sidegradient	NO
MW369	7.030	Upgradient	NO
MW372	22.400	Upgradient	YES

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.034
4/22/2002	0.062
7/15/2002	0.436
10/8/2002	0.867
1/8/2003	0.828
4/3/2003	0.672
7/8/2003	0.321
10/6/2003	0.714
Well Number:	1411272
	MW 3/2
Date Collected	Result
Date Collected 3/19/2002	
	Result
3/19/2002	Result 0.205
3/19/2002 4/23/2002	Result 0.205 0.345
3/19/2002 4/23/2002 7/16/2002	Result 0.205 0.345 0.210
3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.205 0.345 0.210 0.054

10/7/2003

Statistics on Background Data

X= 0.413 S= 0.274 CV= 0.664 K factor** = 2.523 TL= 1.105

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

0.254

Well No.	Result	Gradient R	esult >TL?
MW357	0.002	Downgradient	NO
MW360	0.255	Downgradient	NO
MW363	0.158	Downgradient	NO
MW366	0.036	Sidegradient	NO
MW369	0.038	Upgradient	NO
MW372	0.021	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed I Data from Upg	Background gradient Wells
Well Number:	MW369	X = 0.010		Well Number:	MW369
Date Collected	Result	S= 0.012 CV= 1.199		Date Collected	LN(Result)
3/18/2002	0.025	K factor** = 2.523		3/18/2002	-3.689
4/22/2002	0.025	TL = 0.040		4/22/2002	-3.689
7/15/2002	0.025	12 000		7/15/2002	-3.689
10/8/2002	0.001	Because CV is greater the		10/8/2002	-6.908
1/8/2003	0.001	logarithm of background were calculated.	d and test well results	1/8/2003	-6.908
4/3/2003	0.001	were calculated.		4/3/2003	-6.908
7/8/2003	0.001	Statistics on		7/8/2003	-6.908
10/6/2003	0.001	Transformed		10/6/2003	-6.908
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X= -5.698		Date Collected	LN(Result)
3/19/2002	0.025	S = 1.607		3/19/2002	-3.689
4/23/2002	0.025	CV = -0.282		4/23/2002	-3.689
7/16/2002	0.025	K factor** = 2.523		7/16/2002	-3.689
10/8/2002	0.001			10/8/2002	-6.908
1/7/2003	0.001	TL = -1.643		1/7/2003	-6.908
4/2/2003	0.001			4/2/2003	-6.908
7/9/2003	0.001			7/9/2003	-6.859
10/7/2003	0.001			10/7/2003	-6.908

Fourth Quarter 2014 Data Collected in October 2014
October 2014

Well No.	Result	Gradient	Result >TL?
MW357	0.001	Downgradie	nt N/A
MW360	0.000	Downgradie	nt N/A
MW363	0.001	Downgradie	nt N/A
MW366	0.001	Sidegradien	t N/A
MW369	0.000	Upgradient	N/A
MW372	0.000	Upgradient	N/A

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number	LN(Result)	Result >TL?
MW357	-7.601	NO
MW360	-7.958	NO
MW363	-7.601	NO
MW366	-7.601	NO
MW369	-8.517	NO
MW372	-7.799	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.050
4/22/2002	0.050
7/15/2002	0.050
10/8/2002	0.005
1/8/2003	0.005
4/3/2003	0.005
7/8/2003	0.013
10/6/2003	0.010
10,0,2002	0.010
Well Number:	****
	MW372
Well Number:	MW372
Well Number: Date Collected	MW372 Result
Well Number: Date Collected 3/19/2002	MW372 Result 0.050
Well Number: Date Collected 3/19/2002 4/23/2002	MW372 Result 0.050 0.050
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002	MW372 Result 0.050 0.050 0.050
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	MW372 Result 0.050 0.050 0.050 0.050
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	MW372 Result 0.050 0.050 0.050 0.005 0.005

Statistics on Background Data

X= 0.024 S= 0.021 CV= 0.910 K factor** = 2.523 TL= 0.078

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient R	Result >TL?
MW357	0.001	Downgradien	t NO
MW360	0.002	Downgradien	t NO
MW363	0.001	Downgradien	t NO
MW366	0.001	Sidegradient	NO
MW369	0.008	Upgradient	NO
MW372	0.002	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed I Data from Upg	
Well Number:	MW369	X= 74.563		Well Number:	MW369
Date Collected	Result	S= 94.243		Date Collected	LN(Result)
3/18/2002	215.000	CV= 1.264 K factor** = 2.523		3/18/2002	5.371
4/22/2002	110.000	TL= 312.337		4/22/2002	4.700
7/15/2002	20.000	12 012.007		7/15/2002	2.996
1/8/2003	-5.000	Because CV is greater than		1/8/2003	#Func!
4/3/2003	-18.000	logarithm of background a	nd test well results	4/3/2003	#Func!
7/8/2003	-67.000	were calculated.		7/8/2003	#Func!
10/6/2003	-1.000	Statistics on		10/6/2003	#Func!
1/7/2004	55.000	Transformed		1/7/2004	4.007
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X = error		Date Collected	LN(Result)
3/19/2002	210.000	S = error		3/19/2002	5.347
4/23/2002	65.000	CV = error		4/23/2002	4.174
7/16/2002	215.000	K factor** = 2.523		7/16/2002	5.371
10/8/2002	185.000	=======================================		10/8/2002	5.220
1/7/2003	45.000	TL# = 5.371		1/7/2003	3.807
4/2/2003	65.000	# Because the natural log v		4/2/2003	4.174
7/9/2003	-39.000	all background values, the		7/9/2003	#Func!
10/7/2003	138.000	equal to the maximum back	kground value.	10/7/2003	4.927

Fourth Quarter 2014 Data Collected in
October 2014

Well No.	Result	Gradient	Result >TL?
MW357	427.000	Downgradie	nt N/A
MW360	180.000	Downgradie	nt N/A
MW363	344.000	Downgradie	nt N/A
MW366	343.000	Sidegradient	N/A
MW369	405.000	Upgradient	N/A
MW372	88.000	Upgradient	N/A

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number LN(Result) Result >TL?

MW357	6.057	YES
MW360	5.193	NO
MW363	5.841	YES
MW366	5.838	YES
MW369	6.004	YES
MW372	4.477	NO

Conclusion of Statistical Analysis on Transformed Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW357

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D1-50

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Oxidation-Reduction Potential (Continued) UNITS: mV

MW363	
MW366	
MW369	

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis PCB, total UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW260
Date Collected	Result
3/18/2002	1.000
4/22/2002	0.170
7/15/2002	0.170
7/8/2003	1.150
10/6/2003	0.605
7/13/2004	0.420
7/20/2005	0.280
4/4/2006	0.230
XX7 . 11 . X 1	
Well Number:	MW372
Date Collected	MW372 Result
Date Collected	Result
Date Collected 3/19/2002	Result 1.000
Date Collected 3/19/2002 4/23/2002	Result 1.000 0.170
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1.000 0.170 0.170
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003	Result 1.000 0.170 0.170 0.170
Date Collected 3/19/2002 4/23/2002 7/16/2002 7/9/2003 10/7/2003	Result 1.000 0.170 0.170 0.170 0.170

Statistics on Background Data

X= 0.390 S= 0.350 CV= 0.897 K factor** = 2.523 TL= 1.272

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient R	lesult >TL?
MW357	0.094	Downgradien	t NO
MW360	0.094	Downgradien	t NO
MW363	0.115	Downgradien	t NO
MW366	0.096	Sidegradient	NO
MW369	0.039	Upgradient	NO
MW372	0.103	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D1-52

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis PCB-1242 UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed I Data from Up	
Well Number:	MW369	X=0.281		Well Number:	MW369
Date Collected	Result	S= 0.383 CV= 1.361		Date Collected	LN(Result)
3/18/2002	1.000	K factor** = 2.523		3/18/2002	0.000
4/22/2002	0.110	TL= 1.247		4/22/2002	-2.207
7/15/2002	0.110	12 11217		7/15/2002	-2.207
7/8/2003	1.150	Because CV is greater to	-	7/8/2003	0.140
10/6/2003	0.090	logarithm of background	d and test well results	10/6/2003	-2.408
7/13/2004	0.100	were calculated.		7/13/2004	-2.303
7/20/2005	0.100	Statistics on		7/20/2005	-2.303
4/4/2006	0.100	Transformed		4/4/2006	-2.303
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X = -1.835		Date Collected	LN(Result)
3/19/2002	1.000	S = 0.938		3/19/2002	0.000
4/23/2002	0.110	CV= -0.511		4/23/2002	-2.207
7/16/2002	0.110	K factor** = 2.523		7/16/2002	-2.207
7/9/2003	0.130			7/9/2003	-2.040
10/7/2003	0.090	TL=0.532		10/7/2003	-2.408
7/14/2004	0.100			7/14/2004	-2.303
7/21/2005	0.100			7/21/2005	-2.303
4/5/2006	0.100			4/5/2006	-2.303

Fourth Quarter 2014 Data Collected in October 2014
October 2014

Well No.	Result	Gradient	Result >TL?
MW357	0.094	Downgradie	nt N/A
MW360	0.094	Downgradie	nt N/A
MW363	0.115	Downgradie	nt N/A
MW366	0.096	Sidegradient	N/A
MW369	0.039	Upgradient	N/A
MW372	0.103	Upgradient	N/A

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number	LN(Result)	Result >TL?
MW357	-2.361	NO
MW360	-2.370	NO
MW363	-2.163	NO
MW366	-2.341	NO
MW369	-3.257	NO
MW372	-2.273	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis pH

URGA
UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	6.100
4/22/2002	6.100
7/15/2002	6.100
10/8/2002	6.500
1/8/2003	6.500
4/3/2003	6.600
7/8/2003	6.500
10/6/2003	6.500
Well Number:	MW372
Well Number: Date Collected	MW372 Result
Date Collected	Result
Date Collected 3/19/2002	Result 6.100
Date Collected 3/19/2002 4/23/2002	Result 6.100 6.120
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 6.100 6.120 6.100
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.100 6.120 6.100 6.060
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.100 6.120 6.100 6.060 6.260

Statistics on Background Data
X= 6.274
S = 0.194
CV = 0.031
K factor** = 2.904
TL = 6.837
LL = 5.711

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Result	Gradient R	esult >TL?	Result <ll?< td=""></ll?<>
6.170	Downgradie	ent NO	NO
6.360	Downgradie	ent NO	NO
6.190	Downgradie	ent NO	NO
6.120	Sidegradier	nt NO	NO
6.090	Upgradien	t NO	NO
6.160	Upgradien	t NO	NO
	6.170 6.360 6.190 6.120 6.090	6.170 Downgradie 6.360 Downgradie 6.190 Downgradie 6.120 Sidegradier 6.090 Upgradien	6.170 Downgradient NO 6.360 Downgradient NO 6.190 Downgradient NO 6.120 Sidegradient NO 6.090 Upgradient NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Fourth Quarter 2014 Statistical Analysis Potassium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	2.000
4/22/2002	2.210
7/15/2002	2.000
10/8/2002	0.966
1/8/2003	0.727
4/3/2003	0.800
7/8/2003	1.620
10/6/2003	1.140
Well Number:	MW372
Date Collected	Result
3/19/2002	2.040
4/23/2002	2.030
7/16/2002	2.000
10/8/2002	1.540
1/7/2003	1.880

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 1.663 S= 0.488 CV= 0.293 K factor** = 2.523 TL= 2.895

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

2.090

1.780

1.790

Well No.	Result	Gradient R	esult >TL?
MW357	1.730	Downgradient	t NO
MW360	0.719	Downgradient	t NO
MW363	1.370	Downgradient	t NO
MW366	1.880	Sidegradient	NO
MW369	0.534	Upgradient	NO
MW372	2.370	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Radium-226 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed l Data from Upg	Background gradient Wells
Well Number:	MW369	X = 3.398		Well Number:	MW369
Date Collected	Result	S= 8.854 CV= 2.605		Date Collected	LN(Result)
7/15/2002	28.400	K factor** = 2.523		7/15/2002	3.346
10/8/2002	0.167	TL= 25.736		10/8/2002	-1.790
1/8/2003	0.173	12 20000		1/8/2003	-1.754
10/6/2003	0.168	Because CV is greater to		10/6/2003	-1.784
1/7/2004	0.702	logarithm of backgroun were calculated.	d and test well results	1/7/2004	-0.354
4/7/2004	0.195	were calculated.	_	4/7/2004	-1.635
7/13/2004	0.256	Statistics on		7/13/2004	-1.363
10/7/2004	0.228	Transformed		10/7/2004	-1.478
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X = error		Date Collected	LN(Result)
7/16/2002	23.500	S = error		7/16/2002	3.157
10/8/2002	0.195	CV = error		10/8/2002	-1.635
1/7/2003	-0.844	K factor** = 2.523		1/7/2003	#Func!
10/7/2003	0.349			10/7/2003	-1.053
1/5/2004	0.239	TL# = 3.346		1/5/2004	-1.431
4/5/2004	0.308	# Because the natural lo		4/5/2004	-1.178
7/14/2004	0.147	all background values,		7/14/2004	-1.917
10/7/2004	0.188	equal to the maximum	oackground value.	10/7/2004	-1.671

Fourth Q October	-	014 Data Co	llected	in
Well No.	Result	Gradient	Resu	ılt >TL?
MW357	0.301	Downgrac	lient	N/A

MW357	0.301	Downgradient	N/A			
MW360	0.466	Downgradient	N/A	MW357	-1.201	NO
MW363	0.523	Downgradient	N/A	MW360	-0.764	NO
MW366	0.707	Sidegradient	N/A	MW363	-0.648	NO
MW369	0.748	Upgradient	N/A	MW366	-0.347	NO
MW372	0.461	Upgradient	N/A	MW369	-0.290	NO
				MW372	-0.774	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Sodium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	35.700
4/22/2002	37.600
7/15/2002	42.400
10/8/2002	66.900
1/8/2003	67.900
4/3/2003	61.800
7/8/2003	45.600
10/6/2003	59.100
10/6/2003 Well Number:	27.100
- 0, 0, - 0 0	27.100
Well Number:	MW372
Well Number: Date Collected	MW372 Result
Well Number: Date Collected 3/19/2002	MW372 Result 37.200
Well Number: Date Collected 3/19/2002 4/23/2002	MW372 Result 37.200 38.600
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002	MW372 Result 37.200 38.600 35.600
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	MW372 Result 37.200 38.600 35.600 37.500

Statistics on Background Data

X= 45.100 S= 11.875 CV= 0.263 K factor** = 2.523 TL= 75.061

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

43.100

Well No.	Result	Gradient Re	sult >TL?
MW357	40.800	Downgradient	NO
MW360	85.200	Downgradient	YES
MW363	33.600	Downgradient	NO
MW366	45.900	Sidegradient	NO
MW369	53.400	Upgradient	NO
MW372	59.700	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW360

10/7/2003

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	15.500
4/22/2002	15.800
7/15/2002	13.800
10/8/2002	6.900
1/8/2003	10.500
4/3/2003	10.500
7/8/2003	10.900
10/6/2002	
10/6/2003	16.300
Well Number:	
	MW372
Well Number:	MW372
Well Number: Date Collected	MW372 Result
Well Number: Date Collected 3/19/2002	MW372 Result 71.700
Well Number: Date Collected 3/19/2002 4/23/2002	MW372 Result 71.700 74.700
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002	MW372 Result 71.700 74.700 74.100
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	MW372 Result 71.700 74.700 74.100 70.500

10/7/2003

Statistics on Background Data

X= 45.031 S= 33.919 CV= 0.753 K factor** = 2.523 TL= 130.609

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

88.100

Well No.	Result	Gradient I	Result >TI	L?
MW357	54.900	Downgradier	nt NO)
MW360	30.900	Downgradier	nt NO	C
MW363	26.400	Downgradier	nt NO	C
MW366	46.000	Sidegradient	NO	C
MW369	7.650	Upgradient	NO	C
MW372	118.00	Upgradient	NO	C

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D1-58

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	41.700
4/22/2002	53.100
7/15/2002	18.100
10/8/2002	16.400
1/8/2003	3.490
4/3/2003	9.340
7/8/2003	17.500
10/6/2003	17.000
Well Number:	MW372
Well Number: Date Collected	MW372 Result
Date Collected	Result
Date Collected 3/19/2002	Result 44.800
Date Collected 3/19/2002 4/23/2002	Result 44.800 0.802
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 44.800 0.802 19.800
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 44.800 0.802 19.800 46.100
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 44.800 0.802 19.800 46.100 -0.973

Statistics on Background Data

X= 20.821 S= 18.044 CV= 0.867 K factor** = 2.523 TL= 66.344

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient Res	sult >TL?
MW357	38.900	Downgradient	NO
MW360	-3.630	Downgradient	NO
MW363	5.230	Downgradient	NO
MW366	64.400	Sidegradient	NO
MW369	43.300	Upgradient	NO
MW372	107.00	Upgradient	YES

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Total Organic Carbon (TOC) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Upg	
Well Number:	MW369	X= 3.513		Well Number:	MW369
Date Collected	Result	S= 4.307		Date Collected	LN(Result)
3/18/2002	1.700	CV= 1.226 K factor** = 2.523		3/18/2002	0.531
4/22/2002	1.600	TL= 14.378		4/22/2002	0.470
7/15/2002	3.100	11 14.570		7/15/2002	1.131
10/8/2002	17.700	Because CV is greater t		10/8/2002	2.874
1/8/2003	9.000		logarithm of background and test well results were calculated.		2.197
4/3/2003	4.000	were calculated.			1.386
7/8/2003	4.900	Statistics on		7/8/2003	1.589
10/6/2003	2.400	Transformed		10/6/2003	0.875
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X = 0.851		Date Collected	LN(Result)
3/19/2002	1.000	S = 0.828		3/19/2002	0.000
4/23/2002	1.200	CV= 0.973		4/23/2002	0.182
7/16/2002	1.000	K factor** = 2.523		7/16/2002	0.000
10/8/2002	1.000			10/8/2002	0.000
1/7/2003	1.600	TL= 2.940		1/7/2003	0.470
4/2/2003	1.500			4/2/2003	0.405
7/9/2003	3.000			7/9/2003	1.099
10/7/2003	1.500			10/7/2003	0.405

Fourth Quarter 2014 Data Collected in
October 2014

Well No.	Result	Gradient	Result >TL?
MW357	1.280	Downgradie	nt N/A
MW360	3.110	Downgradie	nt N/A
MW363	4.170	Downgradie	nt N/A
MW366	1.610	Sidegradient	t N/A
MW369	1.590	Upgradient	N/A
MW372	2.740	Upgradient	N/A

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number	LN(Result)	Result >TL?
MW357	0.247	NO
MW360	1.135	NO
MW363	1.428	NO
MW366	0.476	NO
MW369	0.464	NO
MW372	1.008	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Total Organic Halides (TOX) UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from	
Upgradient Wells	

Well Number:	MW369
Date Collected	Result
3/18/2002	50.000
4/22/2002	50.000
7/15/2002	81.000
10/8/2002	202.000
1/8/2003	177.000
4/3/2003	93.100
7/8/2003	17.500
10/6/2003	37.500
Well Number:	MW372
Date Collected	Result
3/19/2002	184.000
4/23/2002	
4/23/2002	50.000
7/16/2002	50.000 50.000
7/16/2002	50.000
7/16/2002 10/8/2002	50.000 50.000

10/7/2003

Statistics on Background Data

X= 67.963 S= 64.316 CV= 0.946 K factor** = 2.523 TL= 230.231

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

12.600

Well No.	Result	Gradient I	Result >TL?	
MW357	8.700	Downgradier	nt NO	
MW360	16.700	Downgradier	nt NO	
MW363	7.700	Downgradier	nt NO	
MW366	6.040	Sidegradient	NO	
MW369	13.700	Upgradient	NO	
MW372	6.420	Upgradient	NO	

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Trichloroethene UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	11.000
4/22/2002	16.000
7/15/2002	8.000
10/8/2002	3.000
1/8/2003	2.000
4/3/2003	3.000
7/8/2003	3.000
10/6/2003	2.000
Well Number:	MW372
Well Number: Date Collected	MW372 Result
Date Collected	Result
Date Collected 3/19/2002	Result 5.000
Date Collected 3/19/2002 4/23/2002	Result 5.000 5.000
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 5.000 5.000 4.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 5.000 5.000 4.000 6.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 5.000 5.000 4.000 6.000 5.000

Statistics on Background Data

X= 5.625 S= 3.594 CV= 0.639 K factor** = 2.523 TL= 14.693

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient	Result >TL?
MW357	5.710	Downgradie	nt NO
MW372	7.790	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Vanadium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.025
4/22/2002	0.027
7/15/2002	0.025
10/8/2002	0.020
1/8/2003	0.020
4/3/2003	0.020
7/8/2003	0.020
10/6/2003	0.020
Well Number:	MW372
Date Collected	Result
3/19/2002	0.039
4/23/2002	0.037
7/16/2002	0.025
10/8/2002	0.020
1/7/2003	0.020
4/2/2003	0.020
7/9/2003	0.020

10/7/2003

Statistics on Background Data

X= 0.024 S= 0.006 CV= 0.259 K factor** = 2.523 TL= 0.039

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

0.020

Well No.	Result	Gradient F	Result >TL?
MW357	0.005	Downgradien	t NO
MW360	0.005	Downgradien	t NO
MW363	0.005	Downgradien	t NO
MW366	0.005	Sidegradient	NO
MW369	0.001	Upgradient	NO
MW372	0.005	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Zinc URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data	Transformed Backgrou Data from Upgradient		
Well Number:	MW369	X= 0.116		Well Number:	MW369
Date Collected	Result	S= 0.173 CV= 1.490		Date Collected	LN(Result)
3/18/2002	0.100	K factor** = 2.523		3/18/2002	-2.303
4/22/2002	0.100	TL= 0.552		4/22/2002	-2.303
7/15/2002	0.100	12 0.002		7/15/2002	-2.303
10/8/2002	0.025	Because CV is greater to		10/8/2002	-3.689
1/8/2003	0.035	2 2	ogarithm of background and test well results		-3.352
4/3/2003	0.035	were calculated.	_	4/3/2003	-3.352
7/8/2003	0.020	Statistics on		7/8/2003	-3.912
10/6/2003	0.020	Transformed		10/6/2003	-3.912
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X = -2.729		Date Collected	LN(Result)
3/19/2002	0.725	S= 1.014		3/19/2002	-0.322
4/23/2002	0.100	CV = -0.371		4/23/2002	-2.303
7/16/2002	0.100	K factor** = 2.523		7/16/2002	-2.303
10/8/2002	0.025			10/8/2002	-3.689
1/7/2003	0.035	TL = -0.172		1/7/2003	-3.352
4/2/2003	0.035			4/2/2003	-3.352
7/9/2003	0.200			7/9/2003	-1.609
10/7/2003	0.200			10/7/2003	-1.609

Fourth Quarter 2014 Data Collected in October 2014	1
October 2014	

Well No.	Result	Gradient	Result >TL?
MW357	0.004	Downgradie	nt N/A
MW360	0.010	Downgradie	nt N/A
MW363	0.010	Downgradie	nt N/A
MW366	0.007	Sidegradient	N/A
MW369	0.006	Upgradient	N/A
MW372	0.008	Upgradient	N/A

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number	LN(Result)	Result >TL?
MW357	-5.519	NO
MW360	-4.605	NO
MW363	-4.605	NO
MW366	-4.936	NO
MW369	-5.104	NO
MW372	-4.830	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D1-64

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Aluminum LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells	
Vell Number:	MW370	X=2.026		Well Number:	MW370	
Date Collected	Result	S= 5.626 CV= 2.777		Date Collected	LN(Result)	
3/17/2002	4.660	K = 2.777 $K = 2.523$		3/17/2002	1.539	
4/23/2002	0.200	TL= 16.219		4/23/2002	-1.609	
7/15/2002	0.200	12 10,217		7/15/2002	-1.609	
10/8/2002	0.200	Because CV is greater th		10/8/2002	-1.609	
1/8/2003	0.200	logarithm of background	and test well results	1/8/2003	-1.609	
4/3/2003	0.200	were calculated.	were calculated.		-1.609	
7/9/2003	0.200	Statistics on		7/9/2003	-1.609	
10/6/2003	0.200	Transformed	Transformed Background Data		-1.609	
Well Number:	MW373	Background Data			MW373	
Date Collected	Result	X = -0.803		Date Collected	LN(Result)	
3/18/2002	22.700	S= 1.380		3/18/2002	3.122	
4/23/2002	1.460	CV= -1.718		4/23/2002	0.378	
7/16/2002	0.253	K factor** = 2.523		7/16/2002	-1.374	
10/8/2002	0.482			10/8/2002	-0.730	
1/7/2003	0.608	TL= 2.678		1/7/2003	-0.498	
4/2/2003	0.446			4/2/2003	-0.807	
7/9/2003	0.200			7/9/2003	-1.609	
10/7/2003	0.200			10/7/2003	-1.609	

Fourth Quarter 2014 Data Collected in
October 2014

Well No.	Result	Gradient	Result >TL?
MW358	0.050	Downgradie	nt N/A
MW361	0.029	Downgradie	nt N/A
MW364	0.035	Downgradie	nt N/A
MW367	0.051	Sidegradient	N/A
MW370	0.050	Upgradient	N/A
MW373	0.050	Upgradient	N/A

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number	LN(Result)	Result >TL?
MW358	-2.996	NO
MW361	-3.544	NO
MW364	-3.350	NO
MW367	-2.986	NO
MW370	-2.996	NO
MW373	-2.996	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Boron LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	2.000
4/23/2002	2.000
7/15/2002	2.000
10/8/2002	0.200
1/8/2003	0.200
4/3/2003	0.200
7/9/2003	0.200
10/6/2003	0.200
Well Number:	MW373
Well Number: Date Collected	
Date Collected	Result
Date Collected 3/18/2002	Result 2.000
Date Collected 3/18/2002 4/23/2002	Result 2.000 2.000
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 2.000 2.000 2.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.000 2.000 2.000 0.790
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.000 2.000 2.000 0.790 0.807

Statistics on Background Data

X= 1.140 S= 0.780 CV= 0.684 K factor** = 2.523 TL= 3.108

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient F	Result >TL?
MW358	0.437	Downgradien	t NO
MW361	0.145	Downgradien	t NO
MW364	0.011	Downgradien	t NO
MW367	0.015	Sidegradient	NO
MW370	0.032	Upgradient	NO
MW373	1.650	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Bromide LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	1.000
4/23/2002	1.000
7/15/2002	1.000
10/8/2002	1.000
1/8/2003	1.000
4/3/2003	1.000
7/9/2003	1.000
10/6/2003	1.000
Well Number:	MW373
Date Collected	Result
3/18/2002	1.000
4/23/2002	1.000
7/16/2002	1.000
10/8/2002	1.000
1/7/2003	1.000
4/2/2003	1.000
7/9/2003	1.000

Statistics on Background Data

X= 1.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 1.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient R	esult >TL?
MW358	0.473	Downgradient	t NO
MW361	0.409	Downgradient	t NO
MW364	0.422	Downgradient	t NO
MW367	0.101	Sidegradient	NO
MW370	0.550	Upgradient	NO
MW373	0.609	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Calcium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	34.800
4/23/2002	43.400
7/15/2002	33.200
10/8/2002	29.200
1/8/2003	31.300
4/3/2003	32.400
7/9/2003	22.900
10/6/2003	28.000
Well Number:	MW373
Date Collected	Result
3/18/2002	61.900
4/23/2002	59.200
7/16/2002	47.600
10/8/2002	46.100
1/7/2003	49.200
4/2/2003	57.800
7/9/2003	52.700
10/7/2003	64.900

Statistics on Background Data

X= 43.413 S= 13.444 CV= 0.310 K factor** = 2.523 TL= 77.331

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient F	Result >TL?
MW358	35.700	Downgradien	t NO
MW361	31.400	Downgradien	t NO
MW364	29.500	Downgradien	t NO
MW367	14.600	Sidegradient	NO
MW370	28.000	Upgradient	NO
MW373	72.400	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Chemical Oxygen Demand (COD) LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	35.000
4/23/2002	134.000
7/15/2002	35.000
10/8/2002	35.000
1/8/2003	35.000
4/3/2003	35.000
7/9/2003	35.000
10/6/2003	35.000
Well Number:	MW373
Date Collected	Result
3/18/2002	35.000
4/23/2002	47.000
7/16/2002	35.000
10/8/2002	
10/6/2002	35.000
1/7/2003	35.000 35.000
1/7/2003	35.000

Statistics on Background Data

X= 41.938 S= 24.732 CV= 0.590 K factor** = 2.523 TL= 104.336

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient I	Result >TL?
MW358	20.000	Downgradier	nt NO
MW361	20.000	Downgradier	nt NO
MW364	8.100	Downgradier	nt NO
MW367	20.000	Sidegradient	NO
MW370	31.200	Upgradient	NO
MW373	12.900	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Chloride LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

MW370
Result
55.500
53.600
52.900
53.600
51.900
53.000
53.000
51 600
31.000
MW373
21.000
MW373
MW373 Result
MW373 Result 40.600
MW373 Result 40.600 38.800
MW373 Result 40.600 38.800 39.000
MW373 Result 40.600 38.800 39.000 38.400

4/7/2004

Statistics on Background Data

X= 45.919 S= 7.524 CV= 0.164 K factor** = 2.523 TL= 64.901

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

38.800

Well No.	Result	Gradient I	Result >TL	?
MW358	34.500	Downgradier	nt NO	
MW361	29.700	Downgradier	nt NO	
MW364	32.600	Downgradier	nt NO	
MW367	8.230	Sidegradient	NO	
MW370	40.000	Upgradient	NO	
MW373	43.500	Upgradient	NO	

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D1-70

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Cobalt LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed I Data from Ups	
Well Number:	MW370	X = 0.027		Well Number:	MW370
Date Collected	Result	S = 0.032		Date Collected	LN(Result)
3/17/2002	0.025	CV= 1.165 K factor** = 2.523		3/17/2002	-3.689
4/23/2002	0.025	TL= 0.108		4/23/2002	-3.689
7/15/2002	0.025	11 0.100		7/15/2002	-3.689
10/8/2002	0.017		Because CV is greater than 1, the natural logarithm of background and test well results were calculated.		-4.051
1/8/2003	0.011				-4.556
4/3/2003	0.009	were calculated.			-4.677
7/9/2003	0.137	Statistics on		7/9/2003	-1.988
10/6/2003	0.046	Transformed			-3.073
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X = -4.058		Date Collected	LN(Result)
3/18/2002	0.025	S= 1.011		3/18/2002	-3.689
4/23/2002	0.034	CV= -0.249		4/23/2002	-3.381
7/16/2002	0.025	K factor** = 2.523		7/16/2002	-3.689
10/8/2002	0.004			10/8/2002	-5.494
1/7/2003	0.003	TL = -1.507		1/7/2003	-5.672
4/2/2003	0.004			4/2/2003	-5.605
7/9/2003	0.041			7/9/2003	-3.206
10/7/2003	0.008			10/7/2003	-4.776

Fourth Quarter 2014 Data Collected in
October 2014

Well No.	Result	Gradient	Result >TL?
MW358	0.004	Downgradie	nt N/A
MW361	0.000	Downgradie	nt N/A
MW364	0.001	Downgradie	nt N/A
MW367	0.005	Sidegradient	N/A
MW370	0.001	Upgradient	N/A
MW373	0.001	Upgradient	N/A

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number	LN(Result)	Result >TL?
MW358	-5.624	NO
MW361	-7.875	NO
MW364	-6.630	NO
MW367	-5.384	NO
MW370	-7.209	NO
MW373	-6.928	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Conductivity LRGA UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	406.000
4/23/2002	543.000
7/15/2002	476.000
10/8/2002	441.000
1/8/2003	486.000
4/3/2003	466.000
7/9/2003	479.000
10/6/2003	435.000
Well Number:	MW373
Date Collected	Result
3/18/2002	661.000
4/23/2002	801.000
7/16/2002	774.000
10/8/2002	680.000
1/7/2003	686.500
4/2/2003	763.000
7/9/2003	828.000

Statistics on Background Data

X= 608.719 S= 156.157 CV= 0.257 K factor** = 2.523 TL= 1002.702

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

814.000

10/7/2003

Well No.	Result	Gradient I	Result >TL?
MW358	520.00	Downgradier	t NO
MW361	476.00	Downgradier	t NO
MW364	454.00	Downgradier	t NO
MW367	276.00	Sidegradient	NO
MW370	437.00	Upgradient	NO
MW373	901.00	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Copper LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	0.025
4/23/2002	0.025
7/15/2002	0.050
10/8/2002	0.020
1/8/2003	0.020
4/3/2003	0.020
7/9/2003	0.020
10/6/2002	0.020
10/6/2003	0.020
Well Number:	***-*
- 0, 0, - 0 0	MW373
Well Number:	MW373
Well Number: Date Collected	MW373 Result
Well Number: Date Collected 3/18/2002	MW373 Result 0.026
Well Number: Date Collected 3/18/2002 4/23/2002	MW373 Result 0.026 0.025
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002	MW373 Result 0.026 0.025 0.050
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	MW373 Result 0.026 0.025 0.050 0.020
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	MW373 Result 0.026 0.025 0.050 0.020 0.020

10/7/2003

Statistics on Background Data

X= 0.025 S= 0.010 CV= 0.399 K factor** = 2.523 TL= 0.050

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

0.020

Well No.	Result	Gradient I	Result >TL?
MW358	0.001	Downgradier	nt NO
MW361	0.001	Downgradier	nt NO
MW364	0.001	Downgradier	nt NO
MW367	0.001	Sidegradient	NO
MW370	0.001	Upgradient	NO
MW373	0.001	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Dissolved Oxygen LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from	
Upgradient Wells	

Well Number:	MW370
Date Collected	Result
3/17/2002	4.320
4/23/2002	1.240
7/15/2002	0.750
10/8/2002	0.940
1/8/2003	3.080
4/3/2003	1.450
7/9/2003	1.220
10/6/2002	1.070
10/6/2003	1.070
Well Number:	
- 0, 0, - 0 0	
Well Number:	MW373
Well Number: Date Collected	MW373 Result
Well Number: Date Collected 3/18/2002	MW373 Result 3.040
Well Number: Date Collected 3/18/2002 4/23/2002	MW373 Result 3.040 0.030
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002	MW373 Result 3.040 0.030 0.230
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	MW373 Result 3.040 0.030 0.230 0.860

10/7/2003

Statistics on Background Data

X= 1.387 S= 1.153 CV= 0.831 K factor** = 2.523 TL= 4.295

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

1.460

Well No.	Result	Gradient R	Result >TL?
MW358	0.940	Downgradien	t NO
MW361	3.620	Downgradien	t NO
MW364	2.580	Downgradien	t NO
MW367	1.490	Sidegradient	NO
MW370	3.740	Upgradient	NO
MW373	1.370	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Dissolved Solids LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	236.000
4/23/2002	337.000
7/15/2002	266.000
10/8/2002	240.000
1/8/2003	282.000
4/3/2003	238.000
7/9/2003	248.000
10/6/2003	224.000
Well Number:	MW373
Well Number: Date Collected	MW373 Result
Date Collected	Result
Date Collected 3/18/2002	Result 427.000
Date Collected 3/18/2002 4/23/2002	Result 427.000 507.000
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427.000 507.000 464.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427.000 507.000 464.000 408.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427.000 507.000 464.000 408.000 404.000

10/7/2003

Statistics on Background Data

X= 356.188 S= 106.752 CV= 0.300 K factor** = 2.523 TL= 625.523

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

481.000

Well No.	Result	Gradient I	Result >	TL?
MW358	261.00	Downgradier	nt 1	VO
MW361	256.00	Downgradier	nt 1	ON
MW364	217.00	Downgradier	nt 1	ON
MW367	124.00	Sidegradient	1	ON
MW370	190.00	Upgradient	1	ON
MW373	536.00	Upgradient	1	VO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D1-75

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Iron LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

-18	
Well Number:	MW370
Date Collected	Result
3/17/2002	9.340
4/23/2002	4.330
7/15/2002	3.520
10/8/2002	7.450
1/8/2003	7.040
4/3/2003	4.640
7/9/2003	15.800
10/6/2003	6.490
Well Number:	MW373
Date Collected	Result
3/18/2002	37.600
4/23/2002	19.000
7/16/2002	10.700
10/8/2002	3.750
1/7/2003	3.870
4/2/2003	3.500
7/9/2003	7.720
10/7/2003	2.930

Statistics on Background Data

X= 9.230 S= 8.841 CV= 0.958 K factor** = 2.523 TL= 31.535

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient F	Result >TL?
MW358	1.380	Downgradien	t NO
MW361	0.239	Downgradien	t NO
MW364	0.989	Downgradien	t NO
MW367	16.600	Sidegradient	NO
MW370	0.037	Upgradient	NO
MW373	0.200	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Magnesium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	12.100
4/23/2002	15.100
7/15/2002	12.400
10/8/2002	12.200
1/8/2003	11.500
4/3/2003	12.300
7/9/2003	10.000
10/6/2003	12.100
10/0/2003	12.100
Well Number:	
Well Number:	MW373
Well Number: Date Collected	MW373 Result
Well Number: Date Collected 3/18/2002	MW373 Result 24.800
Well Number: Date Collected 3/18/2002 4/23/2002	MW373 Result 24.800 22.700
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002	MW373 Result 24.800 22.700 18.800
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	MW373 Result 24.800 22.700 18.800 21.100

10/7/2003

Statistics on Background Data

X= 17.544 S= 5.911 CV= 0.337 K factor** = 2.523 TL= 32.458

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

26.900

Well No.	Result	Gradient 1	Result >TL?
MW358	15.100	Downgradier	nt NO
MW361	13.000	Downgradier	nt NO
MW364	11.900	Downgradier	nt NO
MW367	7.330	Sidegradient	NO
MW370	12.200	Upgradient	NO
MW373	27.400	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Manganese LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	0.244
4/23/2002	1.820
7/15/2002	1.220
10/8/2002	0.988
1/8/2003	0.729
4/3/2003	0.637
7/9/2003	2.510
10/6/2002	1 0 5 0
10/6/2003	1.050
Well Number:	1.000
	1.000
Well Number:	MW373
Well Number: Date Collected	MW373 Result
Well Number: Date Collected 3/18/2002	MW373 Result 0.355
Well Number: Date Collected 3/18/2002 4/23/2002	MW373 Result 0.355 2.160
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002	MW373 Result 0.355 2.160 1.390
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	MW373 Result 0.355 2.160 1.390 0.717
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	MW373 Result 0.355 2.160 1.390 0.717 0.587

10/7/2003

Statistics on Background Data

X= 1.080 S= 0.674 CV= 0.624 K factor** = 2.523 TL= 2.780

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

0.570

Well No.	Result	Gradient F	Result >TL?
MW358	0.287	Downgradien	t NO
MW361	0.060	Downgradien	t NO
MW364	0.325	Downgradien	t NO
MW367	1.950	Sidegradient	NO
MW370	0.010	Upgradient	NO
MW373	0.060	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

Dĭ1-78

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Molybdenum LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background D Upgradient W		Statistics on Background Data			Background gradient Wells
Well Number:	MW370	X = 0.010		Well Number:	MW370
Date Collected	Result	S= 0.012 CV= 1.198		Date Collected	LN(Result)
3/17/2002	0.025	K factor** = 2.523		3/17/2002	-3.689
4/23/2002	0.025	TL= 0.040		4/23/2002	-3.689
7/15/2002	0.025	12 0.0.0		7/15/2002	-3.689
10/8/2002	0.001	Because CV is greater to		10/8/2002	-6.786
1/8/2003	0.001	logarithm of backgroun	d and test well results	1/8/2003	-6.908
4/3/2003	0.001	were calculated.	were calculated.		-6.908
7/9/2003	0.001	Statistics on		7/9/2003	-6.908
10/6/2003	0.001	Transformed		10/6/2003	-6.908
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X = -5.693		Date Collected	LN(Result)
3/18/2002	0.025	S = 1.604		3/18/2002	-3.689
4/23/2002	0.025	CV = -0.282		4/23/2002	-3.689
7/16/2002	0.025	K factor** = 2.523		7/16/2002	-3.689
10/8/2002	0.001			10/8/2002	-6.908
1/7/2003	0.001	TL= -1.647		1/7/2003	-6.908
4/2/2003	0.001			4/2/2003	-6.908
7/9/2003	0.001			7/9/2003	-6.908
10/7/2003	0.001			10/7/2003	-6.908

Fourth Quarter 2014 Data Collected in October 2014	ı
October 2014	

Well No.	Result	Gradient	Result >Tl	L?
MW358	0.000	Downgradie	nt N/	A
MW361	0.001	Downgradie	nt N/	A
MW364	0.000	Downgradie	nt N/	A
MW367	0.001	Sidegradient	N/.	A
MW370	0.000	Upgradient	N/	A
MW373	0.001	Upgradient	N/	A

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number	LN(Result)	Result >TL?
MW358	-8.623	NO
MW361	-7.601	NO
MW364	-8.680	NO
MW367	-7.601	NO
MW370	-8.422	NO
MW373	-7.601	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Nickel LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	0.050
4/23/2002	0.050
7/15/2002	0.050
10/8/2002	0.005
1/8/2003	0.005
4/3/2003	0.005
7/9/2003	0.026
101610000	
10/6/2003	0.010
Well Number:	0.010
10,0,2005	0.010
Well Number:	MW373
Well Number: Date Collected	MW373 Result
Well Number: Date Collected 3/18/2002	MW373 Result 0.050
Well Number: Date Collected 3/18/2002 4/23/2002	MW373 Result 0.050 0.050
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002	MW373 Result 0.050 0.050 0.050
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	MW373 Result 0.050 0.050 0.050 0.050
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	MW373 Result 0.050 0.050 0.050 0.005 0.005

10/7/2003

Statistics on Background Data

X= 0.024 S= 0.022 CV= 0.901 K factor** = 2.523 TL= 0.078

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

0.005

Well No.	Result	Gradient I	Result >TL?
MW358	0.003	Downgradier	nt NO
MW361	0.001	Downgradier	nt NO
MW364	0.002	Downgradier	nt NO
MW367	0.003	Sidegradient	NO
MW370	0.001	Upgradient	NO
MW373	0.003	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Oxidation-Reduction Potential LRGA UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background D Upgradient W		Statistics on Background Data	Transformed Background Data from Upgradient Well
Well Number:	MW370	X= 46.688	Well Number: MW370
Date Collected	Result	S= 60.986	Date Collected LN(Result)
3/17/2002	140.000	CV= 1.306 K factor** = 2.523	3/17/2002 4.942
4/23/2002	-15.000	TL= 200.555	4/23/2002 #Func!
7/15/2002	5.000	12 200000	7/15/2002 1.609
4/3/2003	49.000	Because CV is greater than 1, the na	= 0.02
7/9/2003	-35.000	logarithm of background and test we	ell results 7/9/2003 #Func!
10/6/2003	40.000	were calculated.	10/6/2003 3.689
1/7/2004	101.000	Statistics on	1/7/2004 4.615
4/7/2004	105.000	Transformed	4/7/2004 4.654
Well Number:	MW373	Background Data	Well Number: MW373
Date Collected	Result	X = error	Date Collected LN(Result)
3/18/2002	140.000	S = error	3/18/2002 4.942
4/23/2002	-20.000	CV = error	4/23/2002 #Func!
10/8/2002	10.000	K factor** = 2.523	10/8/2002 2.303
1/7/2003	10.000		1/7/2003 2.303
4/2/2003	67.000	TL# = 4.942	4/2/2003 4.205
7/9/2003	-29.000	# Because the natural log was not po	
10/7/2003	127.000	all background values, the TL was c	
1/6/2004	52.000	equal to the maximum background v	value. 1/6/2004 3.951

Fourth Quarter 2014 Data Collected in
October 2014

Well No.	Result	Gradient	Result >TL?
MW358	169.000	Downgradie	nt N/A
MW361	345.000	Downgradie	nt N/A
MW364	241.000	Downgradie	nt N/A
MW367	195.000	Sidegradient	N/A
MW370	363.000	Upgradient	N/A
MW373	404.000	Upgradient	N/A

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number LN(Result) Result >TL?

MW358	5.130	YES
MW361	5.844	YES
MW364	5.485	YES
MW367	5.273	YES
MW370	5.894	YES
MW373	6.001	YES

Conclusion of Statistical Analysis on Transformed Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW358

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Oxidation-Reduction Potential (Continued) LRGA UNITS: mV

MW361	
MW364	
MW367	
MW370	
MW373	

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis pH

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	6.300
4/23/2002	6.400
7/15/2002	6.300
10/8/2002	6.300
1/8/2003	6.400
4/3/2003	6.500
7/9/2003	6.300
10/6/2003	6.500
Well Number:	MW373
Well Number: Date Collected	MW373 Result
Date Collected	Result
Date Collected 3/18/2002	Result 6.000
Date Collected 3/18/2002 4/23/2002	Result 6.000 6.300
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 6.000 6.300 6.450
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.000 6.300 6.450 6.180
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.000 6.300 6.450 6.180 6.350

Statistics on Background Data
X= 6.283
S = 0.159
CV = 0.025
K factor** = 2.904
TL = 6.745
LL = 5.820

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

LRGA

UNITS: Std Unit

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient Res	sult >TL?	Result <ll?< td=""></ll?<>
MW358	6.220	Downgradient	t NO	NO
MW361	6.070	Downgradient	t NO	NO
MW364	6.230	Downgradient	t NO	NO
MW367	6.110	Sidegradient	NO	NO
MW370	6.030	Upgradient	NO	NO
MW373	6.220	Upgradient	NO	NO

Conclusion of Statistical Analysis on Historical Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Fourth Quarter 2014 Statistical Analysis Potassium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	3.220
4/23/2002	3.430
7/15/2002	2.980
10/8/2002	2.460
1/8/2003	2.410
4/3/2003	2.430
7/9/2003	2.440
10/6/2003	2.480
Well Number:	MW373
Well Number: Date Collected	MW373 Result
Date Collected	Result
Date Collected 3/18/2002	Result 4.340
Date Collected 3/18/2002 4/23/2002	Result 4.340 3.040
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 4.340 3.040 2.930
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 4.340 3.040 2.930 2.300
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 4.340 3.040 2.930 2.300 2.450

Statistics on Background Data

X= 2.823 S= 0.522 CV= 0.185 K factor** = 2.523 TL= 4.139

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient R	lesult >TL?
MW358	2.440	Downgradien	t NO
MW361	2.220	Downgradien	t NO
MW364	1.990	Downgradien	t NO
MW367	2.620	Sidegradient	NO
MW370	2.380	Upgradient	NO
MW373	2.920	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Radium-226 LRGA UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Well	
Well Number:	MW370	X= 2.158		Well Number:	MW370	
Date Collected	Result	S= 5.739 CV= 2.660		Date Collected	LN(Result)	
7/15/2002	10.100	K factor** = 2.523		7/15/2002	2.313	
10/8/2002	-0.825	TL= 16.637		10/8/2002	#Func!	
1/8/2003	0.415	12 1000		1/8/2003	-0.879	
10/6/2003	0.520	Because CV is greater that		10/6/2003	-0.654	
1/7/2004	1.030	logarithm of background	and test well results	1/7/2004	0.030	
4/7/2004	0.434	were calculated.		4/7/2004	-0.835	
7/13/2004	0.532	Statistics on		7/13/2004	-0.631	
10/7/2004	0.299	Transformed		10/7/2004	-1.207	
Well Number:	MW373	Background Data		Well Number:	MW373	
Date Collected	Result	X = error		Date Collected	LN(Result)	
7/16/2002	21.500	S = error		7/16/2002	3.068	
10/8/2002	0.033	CV = error		10/8/2002	-3.420	
1/7/2003	-0.844	K factor** = 2.523		1/7/2003	#Func!	
10/7/2003	0.000			10/7/2003	#Func!	
1/6/2004	0.177	TL# = 3.068		1/6/2004	-1.732	
4/7/2004	0.792	# Because the natural log		4/7/2004	-0.233	
7/14/2004	0.327	all background values, the		7/14/2004	-1.118	
10/7/2004	0.033	equal to the maximum ba	ckground value.	10/7/2004	-3.411	

Fourth Quarter 2014 Data Collected in October 2014			Transformed Fourth Qua Data Collected in Octobe
Vell No. Result Gradient Result >T	ΓL?	Well Numbe	Well Number LN(Result) R
MW358 0.372 Downgradient N/.	I/A		
MW361 0.198 Downgradient N/.	I/A	MW358	MW358 -0.989
MW364 0.497 Downgradient N/.	I/A	MW361	MW361 -1.619
MW367 0.772 Sidegradient N/.	J/A	MW364	MW364 -0.699
MW370 0.818 Upgradient N/A	J/A	MW367	MW367 -0.259

MW370

MW373

-0.201

-0.868

NO

NO

Conclusion of Statistical Analysis on Transformed Historical Data

Upgradient

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)

MW373

0.420

X Mean, X = (sum of background results)/(count of background results)

N/A

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Sodium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	31.800
4/23/2002	50.000
7/15/2002	44.700
10/8/2002	40.000
1/8/2003	44.600
4/3/2003	41.900
7/9/2003	40.000
10/6/2003	38.100
Well Number:	MW373
Date Collected	Result
3/18/2002	43.400
4/23/2002	79.800
7/16/2002	87.700
10/8/2002	61.600
1/7/2003	59.300
4/2/2003	62.100
7/9/2003	50.100
10/7/2003	49.600

Statistics on Background Data

X= 51.544 S= 15.227 CV= 0.295 K factor** = 2.523 TL= 89.962

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient I	Result >TL?
MW358	40.100	Downgradier	nt NO
MW361	42.500	Downgradier	nt NO
MW364	41.100	Downgradier	nt NO
MW367	15.600	Sidegradient	NO
MW370	42.900	Upgradient	NO
MW373	61.000	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Sulfate LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			ansformed Background ta from Upgradient Wells	
Well Number:	MW370	X= 122.381		Well Number:	MW370	
Date Collected	Result	S= 195.095 CV= 1.594		Date Collected	LN(Result)	
3/17/2002	17.400	K factor** = 2.523		3/17/2002	2.856	
4/23/2002	37.900	TL= 614.606		4/23/2002	3.635	
7/15/2002	15.700	12 0111000	l	7/15/2002	2.754	
10/8/2002	13.400	Because CV is greater t	-	10/8/2002	2.595	
1/8/2003	14.400	logarithm of backgroun	d and test well results	1/8/2003	2.667	
4/3/2003	18.100	were calculated.	_	4/3/2003	2.896	
7/9/2003	9.600	Statistics on		7/9/2003	2.262	
10/6/2003	16.500	Transformed		10/6/2003	2.803	
Vell Number:	MW373	Background Data		Well Number:	MW373	
Date Collected	Result	X = 3.985		Date Collected	LN(Result)	
3/18/2002	163.300	S= 1.323		3/18/2002	5.096	
4/23/2002	809.600	CV = 0.332		4/23/2002	6.697	
7/16/2002	109.400	K factor** = 2.523		7/16/2002	4.695	
10/8/2002	110.600			10/8/2002	4.706	
1/7/2003	113.700	TL= 7.322		1/7/2003	4.734	
4/2/2003	133.000			4/2/2003	4.890	
7/9/2003	182.100			7/9/2003	5.205	
10/7/2003	193.400			10/7/2003	5.265	

Fourth Quarter 2014 Data Collected in
October 2014

Well No.	Result	Gradient	Result >TL?
MW358	83.200	Downgradie	nt N/A
MW361	73.900	Downgradie	nt N/A
MW364	68.400	Downgradie	nt N/A
MW367	21.400	Sidegradient	N/A
MW370	19.100	Upgradient	N/A
MW373	181.000	Upgradient	N/A

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number	LN(Result)	Result >TL?
MW358	4.421	NO
MW361	4.303	NO
MW364	4.225	NO
MW367	3.063	NO
MW370	2.950	NO
MW373	5.198	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Technetium-99 LRGA UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Background Data from Upgradient Wells		
Well Number:	MW370	X = 7.655		Well Number:	MW370	
Date Collected	Result	S= 13.274 CV= 1.734		Date Collected	LN(Result)	
3/17/2002	10.800	K = 1.734 K factor** = 2.523		3/17/2002	2.380	
4/23/2002	8.530	TL= 41.146		4/23/2002	2.144	
7/15/2002	5.090	12 11110		7/15/2002	1.627	
10/8/2002	4.780	Because CV is greater t		10/8/2002	1.564	
1/8/2003	-5.120		logarithm of background and test well results		#Func!	
4/3/2003	5.110	were calculated.	_	4/3/2003	1.631	
7/9/2003	4.250	Statistics on		7/9/2003	1.447	
10/6/2003	6.540	Transformed		10/6/2003	1.878	
Well Number:	MW373	Background Data		Well Number:	MW373	
Date Collected	Result	X = error		Date Collected	LN(Result)	
3/18/2002	16.500	S = error		3/18/2002	2.803	
4/23/2002	3.490	CV = error		4/23/2002	1.250	
7/16/2002	1.420	K factor** = 2.523		7/16/2002	0.351	
10/8/2002	-6.060			10/8/2002	#Func!	
1/7/2003	-8.410	TL# = 3.833		1/7/2003	#Func!	
4/2/2003	26.300	# Because the natural lo	g was not possible for	4/2/2003	3.270	
7/9/2003	3.060	all background values, t		7/9/2003	1.118	
10/7/2003	46.200	equal to the maximum b	packground value.	10/7/2003	3.833	

October	2014	014 Data Co		
Well No.	Result	Gradient	Resu	lt >TL?
MW358	41.900	Downgrad	lient	N/A
MW361	41.900	Downgrad	lient	N/A
MW364	39.600	Downgrad	lient	N/A

MW364 3.679 NO MW367 -3.340Sidegradient N/A MW367 NO #Error MW370 22.500 Upgradient N/A MW370 3.114 NO MW373 38.000 Upgradient N/A MW373 3.638 NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Total Organic Carbon (TOC) LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background E Upgradient W		Statistics on Background Data		Transformed Data from Up	
Well Number:	MW370	X= 6.169		Well Number:	MW370
Date Collected	Result	S= 12.072 CV= 1.957		Date Collected	LN(Result
3/17/2002	1.200	K factor** = 2.523		3/17/2002	0.182
4/23/2002	4.300	TL= 36.626		4/23/2002	1.459
7/15/2002	2.600	12 00.020		7/15/2002	0.956
10/8/2002	2.300	Because CV is greater th		10/8/2002	0.833
1/8/2003	3.000	logarithm of background	l and test well results	1/8/2003	1.099
4/3/2003	1.200	were calculated.		4/3/2003	0.182
7/9/2003	2.600	Statistics on		7/9/2003	0.956
10/6/2003	1.700	Transformed		10/6/2003	0.531
Vell Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X= 1.069		Date Collected	LN(Result
3/18/2002	1.100	S= 1.014		3/18/2002	0.095
4/23/2002	17.500	CV= 0.948		4/23/2002	2.862
7/16/2002	49.000	K factor** = 2.523		7/16/2002	3.892
10/8/2002	2.900			10/8/2002	1.065
1/7/2003	3.900	TL= 3.626		1/7/2003	1.361
4/2/2003	2.500			4/2/2003	0.916
7/9/2003	1.700			7/9/2003	0.531
10/7/2003	1.200			10/7/2003	0.182

Fourth Quarter 2014 Data Collected in October 2014	1
October 2014	

Well No.	Result	Gradient	Result >TL?
MW358	1.340	Downgradie	nt N/A
MW361	1.350	Downgradie	nt N/A
MW364	1.470	Downgradie	nt N/A
MW367	1.840	Sidegradient	t N/A
MW370	0.853	Upgradient	N/A
MW373	1.890	Upgradient	N/A

Transformed Fourth Quarter 2014 Data Collected in October 2014

Well Number	LN(Result)	Result >TL?
MW358	0.293	NO
MW361	0.300	NO
MW364	0.385	NO
MW367	0.610	NO
MW370	-0.159	NO
MW373	0.637	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Total Organic Halides (TOX) LRGA UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

MW370
Result
50.000
228.000
88.000
58.000
72.400
26.600
16.400
31.100
MW373
Result
50.000
276.000
177.000
76.000
45.900
57.800

7/9/2003

10/7/2003

Statistics on Background Data

X= 79.819 S= 78.470 CV= 0.983 K factor** = 2.523 TL= 277.798

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

10.000

13.900

Well No.	Result	Gradient F	Result >TL?
MW358	6.200	Downgradien	t NO
MW361	6.180	Downgradien	t NO
MW364	10.000	Downgradien	t NO
MW367	10.000	Sidegradient	NO
MW370	3.800	Upgradient	NO
MW373	28.000	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Trichloroethene LRGA UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	19.000
4/23/2002	17.000
7/15/2002	15.000
10/8/2002	18.000
1/8/2003	17.000
4/3/2003	18.000
7/9/2003	15.000
10/6/2003	16.000
Well Number:	MW373
Date Collected	Result
3/18/2002	5.000
4/23/2002	25.000
7/16/2002	3.000
10/8/2002	4.000
1/7/2003	6.000
4/2/2003	5.000
7/9/2003	6.000
10/7/2003	6.000

Statistics on Background Data

X= 12.188 S= 6.950 CV= 0.570 K factor** = 2.523 TL= 29.721

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient	Result >TL?
MW358	5.240	Downgradie	nt NO
MW373	7.670	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Vanadium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	0.035
4/23/2002	0.033
7/15/2002	0.025
10/8/2002	0.020
1/8/2003	0.020
4/3/2003	0.020
7/9/2003	0.020
10/6/2003	0.020
Well Number:	MW373
Date Collected	Result
3/18/2002	0.048
4/23/2002	0.025
7/16/2002	0.025
10/8/2002	0.020
1/7/2003	0.020
4/2/2003	0.020
7/9/2003	0.020

10/7/2003

Statistics on Background Data

X= 0.024 S= 0.008 CV= 0.324 K factor** = 2.523 TL= 0.044

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

0.020

Well No.	Result	Gradient F	Result >TL?
MW358	0.005	Downgradien	t NO
MW361	0.005	Downgradien	t NO
MW364	0.005	Downgradien	t NO
MW367	0.002	Sidegradient	NO
MW370	0.005	Upgradient	NO
MW373	0.005	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Zinc LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	0.100
4/23/2002	0.100
7/15/2002	0.100
10/8/2002	0.025
1/8/2003	0.035
4/3/2003	0.035
7/9/2003	0.020
10/6/2003	0.020
Well Number:	MW373
Date Collected	Result
3/18/2002	0.100
4/23/2002	0.100
4/23/2002 7/16/2002	
	0.100
7/16/2002	0.100 0.100
7/16/2002 10/8/2002	0.100 0.100 0.025
7/16/2002 10/8/2002 1/7/2003	0.100 0.100 0.025 0.035

Statistics on Background Data

X= 0.055 S= 0.037 CV= 0.673 K factor** = 2.523 TL= 0.147

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient I	Result >TL?
MW358	0.005	Downgradier	nt NO
MW361	0.010	Downgradier	nt NO
MW364	0.028	Downgradier	nt NO
MW367	0.006	Sidegradient	NO
MW370	0.004	Upgradient	NO
MW373	0.007	Upgradient	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-U Fourth Quarter 2014 Statistical Analysis Dissolved Oxygen UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
10/3/2012	1.650
1/10/2013	1.350
4/9/2013	1.610
7/16/2013	2.760
10/8/2013	1.380
1/14/2014	1.970
4/14/2014	3.870
7/8/2014	2.640
Well Number:	MW374
Date Collected	Result
10/2/2012	2.980

1/9/2013

4/8/2013

7/16/2013

10/9/2013

1/14/2014

4/15/2014

7/7/2014

Statistics on Background Data

X= 2.728 S= 1.338 CV= 0.490 K factor** = 2.523 TL= 6.102

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

3.890

6.520

3.410

2.740

1.670

3.440

1.760

Well No.	Result	Gradient	Result >TL?
MW362	2.730	Downgradient	NO
MW371	0.980	Upgradient	NO
MW374	0.860	Upgradient	NO
MW375	1.420	Sidegradient	NO

Conclusion of Statistical Analysis on Current Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UCRS UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
10/3/2012	524.000
1/10/2013	286.000
4/9/2013	690.000
7/16/2013	390.000
10/8/2013	544.000
1/14/2014	374.000
4/14/2014	476.000
7/8/2014	335.000
Well Number:	MW374
Date Collected	Result
10/2/2012	211.000
1/9/2013	534.000
4/8/2013	313.000
7/16/2013	344.000

10/9/2013

1/14/2014

4/15/2014

7/7/2014

Statistics on Background Data

X= 443.500 S= 159.708 CV= 0.360 K factor** = 2.523 TL= 846.445

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

802.000

515.000

499,000

259.000

Well No.	Result	Gradient	Result >TL?
MW362	179.000	Downgradient	NO
MW371	360.000	Upgradient	NO
MW374	257.000	Upgradient	NO
MW375	335.000	Sidegradient	NO

Conclusion of Statistical Analysis on Current Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Sulfate UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
10/3/2012	11.000
1/10/2013	9.600
4/9/2013	14.000
7/16/2013	19.000
10/8/2013	13.000
1/14/2014	9.900
4/14/2014	16.400
7/8/2014	18.600
Well Number:	MW374
Date Collected	Result

10/2/2012

1/9/2013

4/8/2013

7/16/2013

10/9/2013

1/14/2014

4/15/2014

7/7/2014

Statistics on Background Data

X= 9.779 S= 5.010 CV= 0.512 K factor** = 2.523 TL= 22.419

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

5.100

5.300

6.000

5.600

6.600

5.100

5.630

5.640

Well No.	Result	Gradient	Result >TL?
MW362	23.400	Downgradient	YES
MW371	10.500	Upgradient	NO
MW374	5.730	Upgradient	NO
MW375	23.600	Sidegradient	YES

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW362

MW375

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
10/3/2012	15.000
1/10/2013	16.800
4/10/2013	22.000
7/16/2013	16.700
10/8/2013	17.300
1/14/2014	26.800
4/14/2014	15.700
7/8/2014	5.760
Well Number:	MW372
Date Collected	Result

10/2/2012

1/9/2013

4/8/2013

7/16/2013

10/9/2013

1/14/2014

4/16/2014

7/7/2014

Statistics on Background Data

X = 44.908

S= 43.047 CV= 0.959 K factor** = 2.523 TL= 153.516

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

77.800

95.600

23.200

115.000

131.000

102.000

7.560

30.300

Well No.	Result	Gradient	Result >TL?
MW372	74.000	Upgradient	NO

Conclusion of Statistical Analysis on Current Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Calcium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
10/3/2012	16.400
1/10/2013	16.300
4/10/2013	16.400
7/16/2013	19.900
10/8/2013	16.200
1/14/2014	21.800
4/14/2014	16.400
7/8/2014	15.500
Well Number:	MW372
Date Collected	Result
10/2/2012	67.000
1/9/2013	66.900
4/8/2013	65.900
7/16/2013	63.500

10/9/2013

1/14/2014

4/16/2014

7/7/2014

Statistics on Background Data

X= 38.956 S= 23.905 CV= 0.614 K factor** = 2.523 TL= 99.268

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

60.200

31.300

70.500

59.100

Well No.	Result	Gradient	Result >TL?
MW357	28.500	Downgradient	NO
MW360	25.900	Downgradient	NO
MW363	27.200	Downgradient	NO
MW366	28.900	Sidegradient	NO
MW369	16.800	Upgradient	NO
MW372	59.300	Upgradient	NO

Conclusion of Statistical Analysis on Current Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
10/3/2012	392.000
1/10/2013	365.000
4/10/2013	392.000
7/16/2013	427.000
10/8/2013	376.000
1/14/2014	392.000
4/14/2014	380.000
7/8/2014	364.000
Well Number:	MW372
Date Collected	Result
10/2/2012	855.000
1/9/2013	860.000
4/8/2013	879.000
7/16/2013	822.000
10/9/2013	791.000
1/14/2014	759.000
4/16/2014	837.000
7/7/2014	839.000

Statistics on Background Data

S= 231.367 CV= 0.380 K factor** = 2.523 TL= 1191.865

X = 608.125

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient	Result >TL?
MW357	440.000	Downgradient	NO
MW360	542.000	Downgradient	NO
MW363	388.000	Downgradient	NO
MW366	450.000	Sidegradient	NO
MW369	371.000	Upgradient	NO
MW372	766.000	Upgradient	NO

Conclusion of Statistical Analysis on Current Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Dissolved Solids URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369	
Date Collected	Result	
10/3/2012	226.000	
1/10/2013	213.000	
4/10/2013	237.000	
7/16/2013	232.000	
10/8/2013	228.000	
1/14/2014	216.000	
4/14/2014	213.000	
7/8/2014	150.000	
Well Number:	MW372	
Date Collected	Result	
10/2/2012	513.000	
1/9/2013	506.000	
4/8/2013	526.000	
7/16/2013	503.000	

10/9/2013

1/14/2014

4/16/2014

7/7/2014

Statistics on Background Data

X= 347.438 S= 147.316 CV= 0.424 K factor** = 2.523 TL= 719.116

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

481.000

455.000

546.000

314.000

Well No.	Result	Gradient	Result >TL?
MW357	234.000	Downgradient	NO
MW360	324.000	Downgradient	NO
MW363	189.000	Downgradient	NO
MW366	239.000	Sidegradient	NO
MW369	193.000	Upgradient	NO
MW372	476.000	Upgradient	NO

Conclusion of Statistical Analysis on Current Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
10/3/2012	6.310
1/10/2013	6.090
4/10/2013	6.380
7/16/2013	7.620
10/8/2013	6.500
1/14/2014	9.540
4/14/2014	6.700
7/8/2014	5.660
Well Number:	MW372
Date Collected	Result
10/2/2012	25.500
1/9/2013	26.000
4/8/2013	26.000
7/16/2013	23.800
10/9/2013	22.800
1/14/2014	12.800
4/16/2014	26.100

Statistics on Background Data

X= 14.963 S= 8.959 CV= 0.599 K factor** = 2.523 TL= 37.566

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

21.600

7/7/2014

Well No.	Result	Gradient	Result >TL?
MW357	11.300	Downgradient	NO
MW360	9.160	Downgradient	NO
MW363	10.300	Downgradient	NO
MW366	12.200	Sidegradient	NO
MW369	7.030	Upgradient	NO
MW372	22.400	Upgradient	NO

Conclusion of Statistical Analysis on Current Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
10/3/2012	588.000
1/10/2013	675.000
4/10/2013	580.000
7/16/2013	284.000
10/8/2013	750.000
1/14/2014	438.000
4/14/2014	514.000
7/8/2014	409.000
Well Number:	MW372
Date Collected	Result
10/2/2012	-6.000
1/9/2013	43.000
4/8/2013	28.000
7/16/2013	273.000
10/9/2013	519.000
1/14/2014	740.000

7/7/2014

Statistics on Background Data X= 387.313 S= 254.270

CV= 0.656 K factor** = 2.523 TL= 1028.837

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

126.000

Well No.	Result	Gradient	Result >TL?
MW357	427.000	Downgradient	NO
MW360	180.000	Downgradient	NO
MW363	344.000	Downgradient	NO
MW366	343.000	Sidegradient	NO
MW369	405.000	Upgradient	NO
MW372	88.000	Upgradient	NO

Conclusion of Statistical Analysis on Current Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Sodium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
10/3/2012	56.500
1/10/2013	54.000
4/10/2013	52.400
7/16/2013	54.700
10/8/2013	52.600
1/14/2014	30.600
4/14/2014	58.700
7/8/2014	48.800
Well Number:	MW372
Date Collected	Result
10/2/2012	64.300
1/9/2013	63.700
4/8/2013	59.700
7/16/2013	61.600
10/9/2013	61.500
1/14/2014	123.000
4/16/2014	65.500
7/7/2014	60.700

Statistics on Background Data

X= 60.519 S= 18.642 CV= 0.308 K factor** = 2.523 TL= 107.553

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient	Result >TL?
MW357	40.800	Downgradient	NO
MW360	85.200	Downgradient	NO
MW363	33.600	Downgradient	NO
MW366	45.900	Sidegradient	NO
MW369	53.400	Upgradient	NO
MW372	59.700	Upgradient	NO

Conclusion of Statistical Analysis on Current Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
10/3/2012	26.900
1/10/2013	30.500
4/10/2013	25.500
7/16/2013	23.000
10/8/2013	29.700
1/14/2014	25.300
4/14/2014	35.400
7/8/2014	15.800
Well Number:	MW372

Date Collected

10/2/2012

1/9/2013

4/8/2013

Statistics on Background Data
X= 57.100
S= 56.269
CV= 0.985
K factor** = 2.523
TL= 199.067

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

7/16/2013 176.000 10/9/2013 176.000 1/14/2014 131.000 4/16/2014 13.400 7/7/2014 26.600

Fourth Quarter 2014 Data Collected in October 2014

Result

105.000

30.600

42.900

Well No.	Result	Gradient	Result >TL?
MW357	38.900	Downgradient	NO
MW360	-3.630	Downgradient	NO
MW363	5.230	Downgradient	NO
MW366	64.400	Sidegradient	NO
MW369	43.300	Upgradient	NO
MW372	107.000	Upgradient	NO

Conclusion of Statistical Analysis on Current Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2014 Statistical Analysis Oxidation-Reduction Potential LRGA UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
10/3/2012	551.000
1/14/2013	725.000
4/10/2013	505.000
7/16/2013	387.000
10/8/2013	811.000
1/14/2014	443.000
4/15/2014	535.000
7/8/2014	363.000
Well Number:	MW373
Date Collected	Result
10/2/2012	664.000
1/9/2013	83.000
4/9/2013	498.000
7/16/2013	500.000
10/9/2013	627.000
1/14/2014	494.000
4/16/2014	398.000
7/7/2014	374.000

Statistics on Background Data

X= 497.375 S= 169.137 CV= 0.340 K factor** = 2.523 TL= 924.107

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014

Well No.	Result	Gradient	Result >TL?
MW358	169.000	Downgradient	NO
MW361	345.000	Downgradient	NO
MW364	241.000	Downgradient	NO
MW367	195.000	Sidegradient	NO
MW370	363.000	Upgradient	NO
MW373	404.000	Upgradient	NO

Conclusion of Statistical Analysis on Current Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

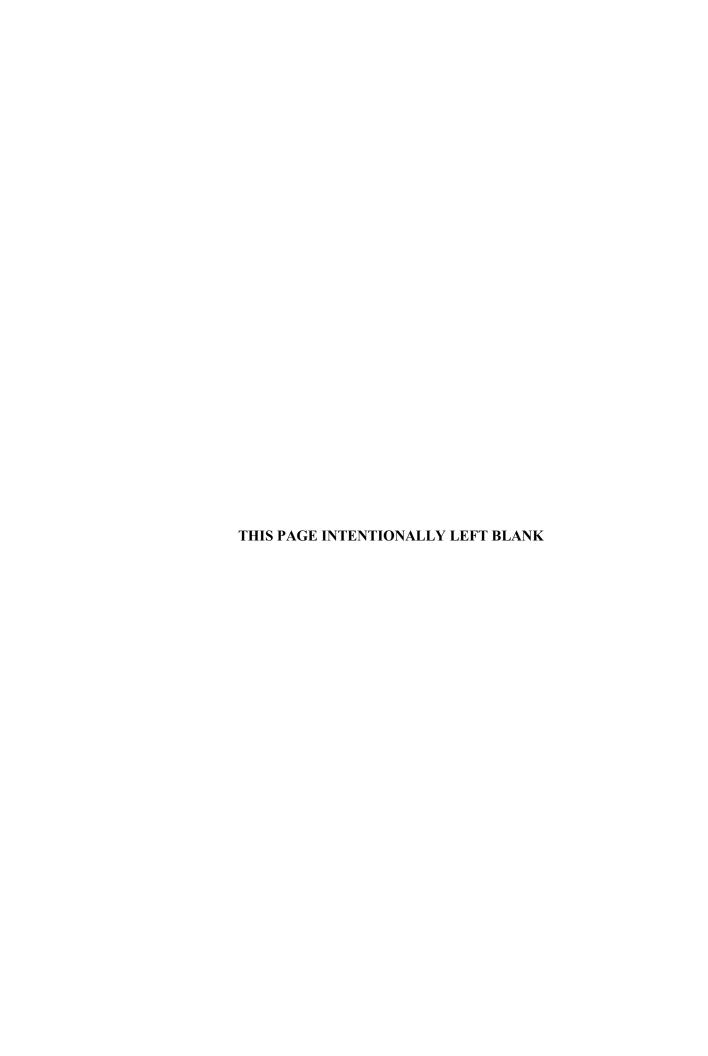
ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

January 15th, 2015

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.


As a Chemist, with a Bachelor of Science degree in chemistry and a minor in mathematics, I have over two years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with LATA.

For this project, the statistical analyses conducted on the fourth quarter 2014 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely.

Cory Tackett

LATA Project Chemist

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

GROUNDWATER FLOW RATE AND DIRECTION

Finds/Unit: KY8-890-008-982/1

LAB ID: None

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2014 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on October 28, 2014. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradient for both the URGA and LRGA at the C-746-U Landfill were similar (8.13×10^{-4} ft/ft and 8.11×10^{-4} ft/ft, respectively). Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 4.06×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for October 2014, the groundwater flow direction in the immediate area of the landfill conforms to the typical regional flow direction.

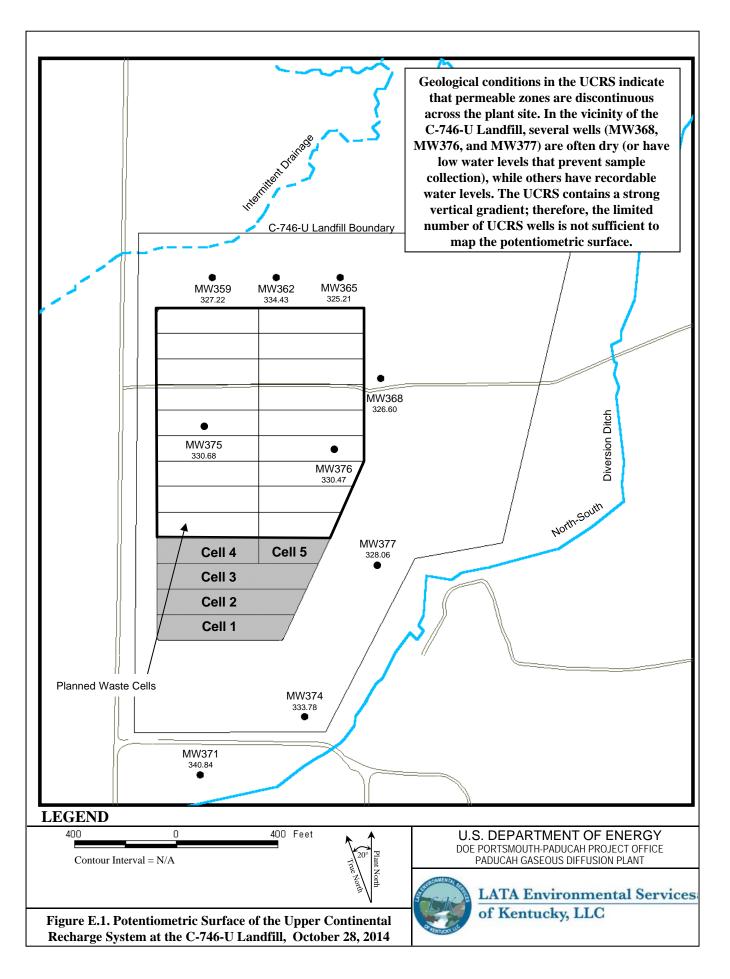


Table E.1. C-746-U Landfill Fourth Quarter 2014 (October) Water Levels

C-746-U Landfill (October 2014) Water Levels										
							Raw Data *Corrected Date			ected Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/28/2014	9:38	MW357	URGA	368.99	30.00	0.03	46.92	322.07	46.95	322.04
10/28/2014	9:40	MW358	LRGA	369.13	30.00	0.03	47.07	322.06	47.10	322.03
10/28/2014	9:39	MW359	UCRS	369.11	30.00	0.03	41.86	327.25	41.89	327.22
10/28/2014	9:37	MW360	URGA	362.30	30.00	0.03	40.22	322.08	40.25	322.05
10/28/2014	9:35	MW361	LRGA	361.54	30.00	0.03	39.49	322.05	39.52	322.02
10/28/2014	9:36	MW362	UCRS	362.04	30.00	0.03	27.58	334.46	27.61	334.43
10/28/2014	9:26	MW363	URGA	368.83	30.00	0.03	46.80	322.03	46.83	322.00
10/28/2014	9:28	MW364	LRGA	367.75	30.00	0.03	45.77	321.98	45.80	321.95
10/28/2014	9:27	MW365	UCRS	368.37	30.00	0.03	43.13	325.24	43.16	325.21
10/28/2014	9:32	MW366	URGA	369.27	30.00	0.03	47.01	322.26	47.04	322.23
10/28/2014	9:30	MW367	LRGA	369.66	30.00	0.03	47.43	322.23	47.46	322.20
10/28/2014	9:31	MW368	UCRS	369.27	30.00	0.03	42.64	326.63	42.67	326.60
10/28/2014	10:00	MW369	URGA	364.48	30.02	0.01	40.97	323.51	40.98	323.50
10/28/2014	10:03	MW370	LRGA	365.35	30.02	0.01	41.85	323.50	41.86	323.49
10/28/2014	10:02	MW371	UCRS	364.88	30.02	0.01	24.03	340.85	24.04	340.84
10/28/2014	10:06	MW372	URGA	359.66	30.02	0.01	36.17	323.49	36.18	323.48
10/28/2014	10:08	MW373	LRGA	359.95	30.02	0.01	36.48	323.47	36.49	323.46
10/28/2014	10:07	MW374	UCRS	359.71	30.02	0.01	25.92	333.79	25.93	333.78
10/28/2014	10:16	MW375	UCRS	370.53	30.03	0.00	39.85	330.68	39.85	330.68
10/28/2014	10:13	MW376	UCRS	370.61	30.03	0.00	40.14	330.47	40.14	330.47
10/28/2014	10:10	MW377	UCRS	365.92	30.03	0.00	37.86	328.06	37.86	328.06

Initial Barometric Pressure

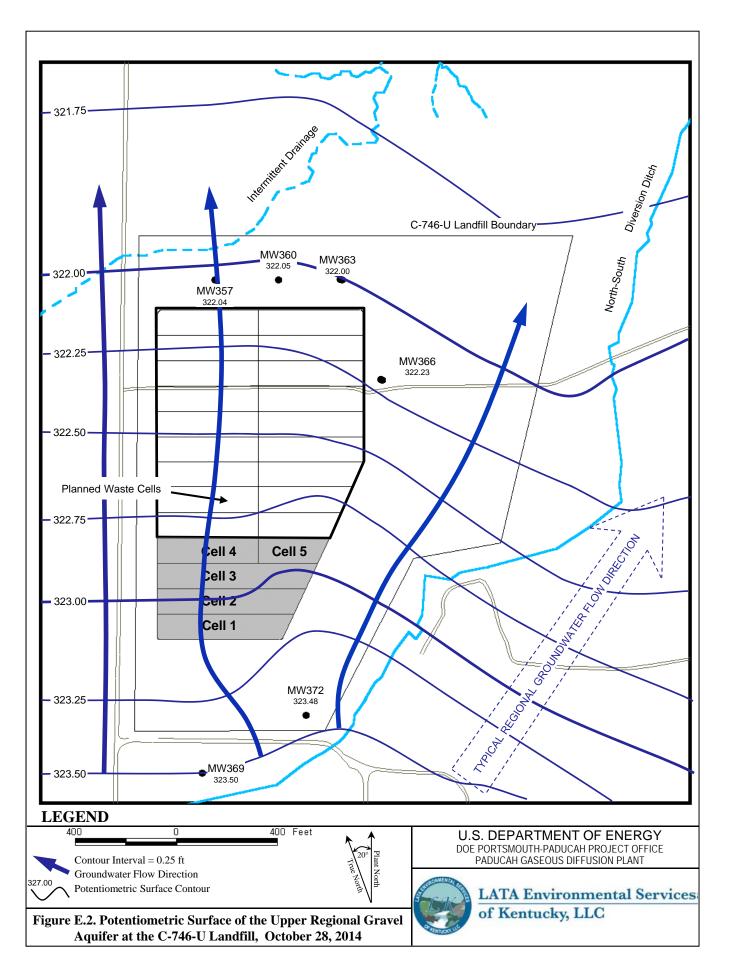
30.03

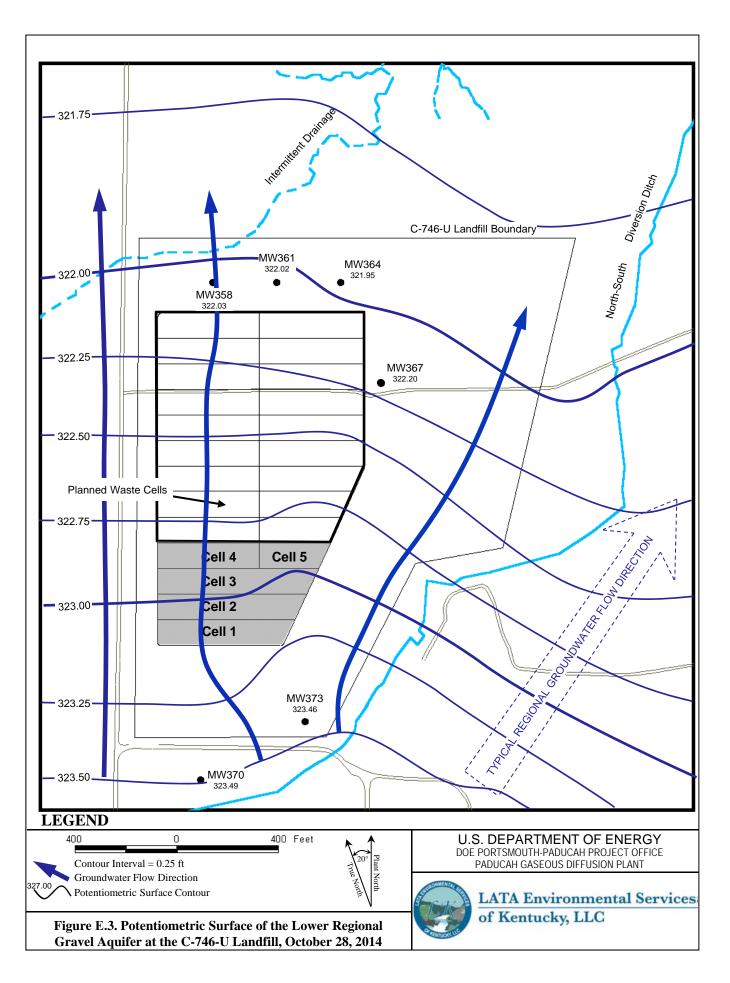
Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer


LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

ND = No data acquired

*Assumes a barometric efficiency of 1.0

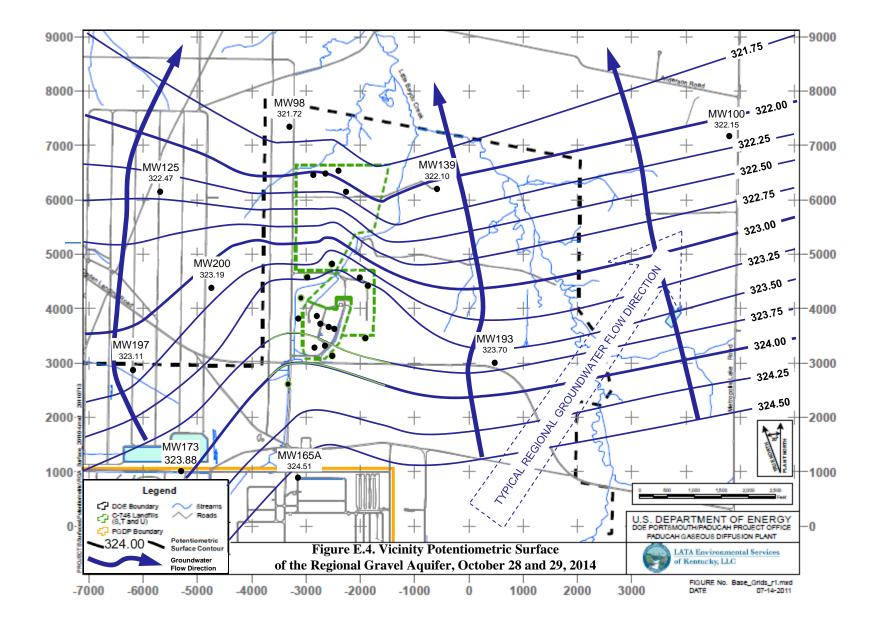
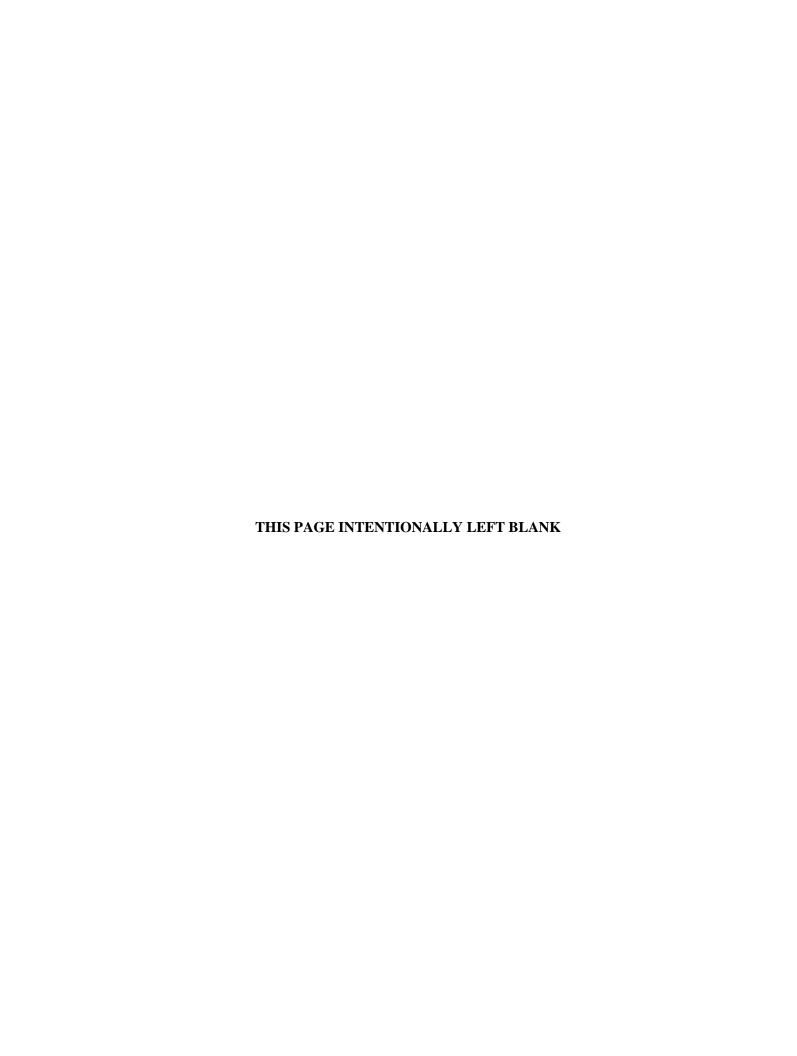



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill – Upper RGA	8.13×10^{-4}
Beneath Landfill – Lower RGA	8.11×10^{-4}
Vicinity	4.06×10^{-4}

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific Discharge (q)		Average	Linear Velocity (v)
ft/day	cm/s	ft/day cm/s		ft/day	cm/s
Upper RGA					
725	0.256	0.59	2.08×10^{-4}	2.36	8.32×10^{-4}
425	0.150	0.35	1.22×10^{-4}	1.38	4.88×10^{-4}
Lower RGA					
725	0.256	0.59	2.08×10^{-4}	2.35	8.30×10^{-4}
425	0.150	0.34	1.22×10^{-4}	1.38	4.87×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the fourth quarter 2014 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill)* at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW360 MW372
Lower Regional Gravel Aquifer	None	

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

12/15/2014

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

PERMIT NUMBER 073-00045 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4798	MW357	Trichloroethene	8260B	5.71	ug/L	5
8004-4799	MW358	Trichloroethene	8260B	5.24	ug/L	5
8004-4808	MW372	Beta activity Trichloroethene	900.0 8260B	74 7.79	pCi/L ug/L	50 5
8004-4792	MW373	Trichloroethene	8260B	7.67	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Groundwater Flow System				UCR	RS							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368				359	362		371	374	366	360			369		367	361	364			
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*			*	-						
Quarter 3, 2004						*										*					
Quarter 3, 2005						*															
Quarter 4, 2005						*															
ALPHA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004	1																				
Quarter 3, 2009																					
ALUMINUM						_															
Quarter 3, 2003											*										
BETA ACTIVITY											Ť										
Quarter 1, 2004																					
Quarter 2, 2004	+																				
Quarter 3, 2004	1	1	1	-		-	-		1		-	1					-	-	-		-
Quarter 4, 2004	1	1	1	-		-	-		1		-	1					-	-	-		\vdash
Quarter 4, 2005																					
Quarter 1, 2006																					
	-														-						
Quarter 2, 2006 Quarter 3, 2006	-																				
	-														i						
Quarter 4, 2006	-																				
Quarter 1, 2007 Quarter 2, 2007	-									-					i						
	-									_											_
Quarter 3, 2007	-														-						
Quarter 4, 2007	-																				-
Quarter 1, 2008																_					
Quarter 2, 2008										_					_						
Quarter 3, 2008															_						
Quarter 4, 2008	-														_						
Quarter 1, 2009															_	_	_				
Quarter 2, 2009															_						
Quarter 3, 2009															_						
Quarter 4, 2009															_						
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010		ļ	<u> </u>					ļ	ļ			ļ									
Quarter 2, 2011		ļ	<u> </u>					ļ	ļ			ļ									<u> </u>
Quarter 4, 2011					ļ			ļ	ļ												
Quarter 1, 2012		ļ	<u> </u>					ļ	ļ			ļ									<u> </u>
Quarter 2, 2012								<u> </u>				<u> </u>									<u> </u>
Quarter 3, 2012		<u> </u>	<u> </u>																		
Quarter 4, 2012		<u> </u>	<u> </u>																		
Quarter 1, 2013																					
Quarter 3, 2013																					
Quarter 4, 2013																					
Quarter 1, 2014																					
Quarter 4, 2014																					
BROMIDE																					
Quarter 2, 2004													*								

Groundwater Flow System	T			UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM																					
Quarter 3, 2003										*											
Quarter 2, 2005																					*
Quarter 3, 2006															*						
Quarter 2, 2008															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010	1														*						
Quarter 3, 2010	1														*						
Quarter 1, 2011	1														*						
Quarter 2, 2011															*						
Quarter 3, 2011															т .						*
Quarter 4, 2011	+														*						*
Quarter 1, 2012	+														*						*
Quarter 1, 2012 Quarter 2, 2012	+														*						*
	+														*						*
Quarter 3, 2012	1														*						不
Quarter 4, 2012	1	-	-				-		-		-		-				-			-	<u>.</u>
Quarter 1, 2013	-								 				 		*		-				*
Quarter 2, 2013	1	<u> </u>	<u> </u>						<u> </u>		<u> </u>		<u> </u>		*		<u> </u>			<u> </u>	
Quarter 3, 2013	1	ļ	ļ				ļ		ļ		ļ		ļ		*		ļ			ļ	*
Quarter 4, 2013															*						<u>↓</u>
Quarter 2, 2014															*						*
Quarter 3, 2014															*						*
Quarter 4, 2014															*						Щ
CARBON DISULFIDE																					
Quarter 3, 2003										*											
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006						*															
Quarter 3, 2010		*									*										
Quarter 4, 2010														*							
Quarter 1, 2011															*						
CHEMICAL OXYGEN DEM	AND																				
Quarter 3, 2002	Т									*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					<u> </u>
Quarter 4, 2003	+"-					*				*	*										
Quarter 3, 2004						***				*	*1*										
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*				*					т .	*		*	*		
Quarter 1, 2006						т												т	*		
CHLORIDE																			т .		
Quarter 1, 2006																				*	
	+	 	 				-		 	-	 	-	<u> </u>	-	*	-	 	-	-	不	₩
Quarter 2, 2014 COBALT															不						
	Ψ.						T.			4	Ψ.		J.	T.	w	4	4	¥		4	
Quarter 3, 2003	*	-	-				*		-	*	*		*	*	*	*	*	*		*	\vdash
Quarter 1, 2004														不							
CONDUCTIVITY																					
Quarter 4, 2002	1									*							ļ				<u> </u>
Quarter 1, 2003	1									*	L		ļ				ļ				Ь—
Quarter 2, 2003										*	*		ļ				ļ				<u> </u>
Quarter 4, 2003	1								ļ	*			ļ				ļ				<u> </u>
		Ì	Ì		1	1	I	1	l	*	Ī	1	l	1			1	1	1	l	
Quarter 1, 2004										т.											

	S 68	\$ 375	S 376	S 377	D 359	**	D 365	U 371	U 374	S 366 * *	D 360	D 363	D 357	U 369	**	S 367	D 361	D 364		370	373
Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010	68	375	376	377	359		365	371	374	*	360	363	357	369	*	367	361	364		370	373
Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010						*															
Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010						*															
Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010						*				*											
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010						*															
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010						*									*						-
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010						*									_						l
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010												_					l		*		
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010															*			*			
Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010									i						*						
Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010															*						
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010															*						
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010															*						
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010															*						
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010					l										*						
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010															*						
Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010				i											*						
Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010														\vdash	*						-
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010														\vdash	*						-
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010				-	-		-							$\vdash\vdash$	*		 				\vdash
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010														$\vdash\vdash$	*						\vdash
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010					<u> </u>									$\vdash \vdash$	*	-	<u> </u>				
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010					<u> </u>									$\vdash \vdash$		-	<u> </u>				
Quarter 1, 2010 Quarter 2, 2010					 									$\vdash \vdash$	*		 				
Quarter 2, 2010														 	*						<u> </u>
														 	*						<u> </u>
Ouarter 3 2010															*						
															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 1, 2014														\vdash	*						
Quarter 2, 2014														\vdash	*						-
Quarter 3, 2014														\vdash	*						
														$\vdash \vdash$	_						_
Quarter 4, 2014 DISSOLVED OXYGEN															*						
					4	4				*											
Quarter 1, 2003					*	*				*				$\vdash \vdash$	-						
Quarter 3, 2003					*					*				$\vdash \vdash$							
Quarter 4, 2003					*									\longmapsto	\vdash						
Quarter 1, 2004					*																
Quarter 2, 2004								*								*					
Quarter 1, 2005					*																
Quarter 2, 2005								*													
Quarter 1, 2006					*																L_
Quarter 2, 2006					*			*													
Quarter 3, 2006					*			*						oxdot							
Quarter 4, 2006					*				*												
Quarter 2, 2007					*			*													
Quarter 3, 2007					*			*	*												
Quarter 1, 2008					*														*		
Quarter 2, 2008								*	*						\neg						
Quarter 3, 2008								*						\sqcap	-						1
Quarter 1, 2009							*							\vdash	\neg						
Quarter 2, 2009					*		т	*	*	 				$\vdash \vdash \vdash$			 				\vdash
Quarter 3, 2009					т .	*		*	*					\vdash			!	!			\vdash
Quarter 3, 2009					Ц	不	1	-					1	ı i	, ,		ı				İ

Groundwater Flow System				UCR	RS							URG	A			I		LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well		375	376			362			374	366				369		367	361		358		
DISSOLVED OXYGEN																					
Quarter 1, 2010					*		*														
Quarter 2, 2010					*	*		*	*											*	*
Quarter 3, 2010					*	*															
Quarter 4, 2010							*					*								*	
Quarter 1, 2011						*															
Quarter 2, 2011					*	*	*	*	*					*							
Quarter 3, 2011						*			*												
Quarter 1, 2012							*		*												
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012						*															
Quarter 4, 2012									*												
Quarter 1, 2013						*			*												
Quarter 2, 2013							*		*												
Quarter 3, 2013	*				*		*	*	*												
Quarter 4, 2013									*											*	
Quarter 2, 2014	*				*	*	*	*	*									*			
Quarter 3, 2014	*				*	*	*													<u> </u>	└
Quarter 4, 2014						*															\perp
DISSOLVED SOLIDS																					
Quarter 4, 2002	1							<u> </u>	<u> </u>	*							<u> </u>			<u> </u>	₩
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003							*			*	*										
Quarter 4, 2003	_									*											ـــــ
Quarter 3, 2005						*															
Quarter 4, 2006	_														*						ـــــ
Quarter 1, 2007	_														*						ـــــ
Quarter 2, 2007	-							-							*					<u> </u>	—
Quarter 4, 2008	4														*					<u> </u>	—
Quarter 1, 2009	-							-							*					<u> </u>	—
Quarter 2, 2009	-														*					<u> </u>	—
Quarter 3, 2009	-							-							*					<u> </u>	—
Quarter 4, 2009	-														*					-	₩
Quarter 1, 2010	-														*					-	₩
Quarter 2, 2010	+														*					-	_
Quarter 3, 2010	+														*					-	_
Quarter 4, 2010 Quarter 1, 2011	+														*					-	_
Quarter 1, 2011 Quarter 2, 2011	-														*					<u> </u>	₩
	-														*					<u> </u>	₩
Quarter 3, 2011	-														*					<u> </u>	₩
Quarter 4, 2011 Quarter 1, 2012	+													*	*					-	
Quarter 2, 2012	1													Ψ	*						*
Quarter 3, 2012	+														*					 	*
Quarter 4, 2012	1														*						*
Quarter 1, 2013	1		 		 			1	 						*	-	-		 		+
Quarter 2, 2013	1		 		 			1	 						*		-		 		+
Quarter 3, 2013	1														*	1					
Quarter 4, 2013	1														*	1	1				
Quarter 1, 2014															*	1					
Quarter 2, 2014															*	1					
Quarter 4, 2014	1														*	1					
IODIDE																					
Quarter 2, 2003																*					
Quarter 3, 2003	*									*						-					†
Quarter 4, 2003	+						*			· ·						1					
Quarter 3, 2010	1					*	Ė	*					*				*				†
IODINE-131								Ë													
	_																				_
Quarter 3, 2010																				,	

Groundwater Flow System	1			UCR	S					I		URG	A			I		LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
IODOMETHANE																					
Quarter 4, 2003						*															
IRON																					
Quarter 4, 2002						*															
Quarter 3, 2003																*					
Quarter 4, 2003										*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005															*						*
Quarter 3, 2005						*															*
Quarter 2, 2006	1														*						*
Quarter 3, 2006															*						
Quarter 1, 2007	1														*						
Quarter 2, 2008															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						\vdash
Quarter 4, 2009	1														*						<u> </u>
Quarter 1, 2010	1														*						
Quarter 2, 2010	1									1					*	1					
Quarter 3, 2010	1														*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						\vdash
Quarter 3, 2011	+														*						
Quarter 4, 2011															*						
Quarter 1, 2012	+														*						—
Quarter 2, 2012															*						
Quarter 3, 2012	+														*						—
Quarter 4, 2012	+														*						-
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013	+														*						
Quarter 4, 2013															*						
Quarter 2, 2014															*						
Quarter 4, 2014	+														*						—
MANGANESE															T						
Quarter 3, 2002										*		*									
Quarter 3, 2002 Quarter 4, 2002	+	*				*	*			*		*		*							
Quarter 4, 2002 Quarter 2, 2003	+	不				不	不			*		*		不							
	-												4			<u>*</u>	<u>ж</u>	<u></u>	4		\vdash
Quarter 3, 2003 Quarter 4, 2003	+									*	*	*	*			*	*	*	*		-
										*	*	*	不			*	*	*			├
Quarter 1, 2004 Quarter 2, 2004	+						*			*	*	*				不	不	*			
Quarter 2, 2004 Quarter 3, 2004	+						*			*	*	*				*		不			
,	-						不			*	不	*				*					
Quarter 4, 2004	-									*		*				不					
Quarter 1, 2005										*		*									├
Quarter 2, 2005	-									*		*				Ψ					
Quarter 3, 2005	+					<u> </u>		 		*	<u> </u>	不		<u> </u>		*	<u> </u>				
Quarter 4, 2005	+	 		-		 		<u> </u>	 	*	 		-	 		不	<u> </u>	-			
Quarter 1, 2006	1	1					.	1	1			.				-		1			
Quarter 2, 2006	+	-				 	*	 	-	*	 	*		 		<u>.</u>	 	-			
Quarter 3, 2006	1							<u> </u>								*	<u> </u>				
Quarter 4, 2006	+	-				 		 	-	*	 			 		.	 	-			
Quarter 1, 2007	+	 					4	-	 	*						.		 			
Quarter 2, 2007	1	<u> </u>				<u> </u>	*	<u> </u>	<u> </u>	*	<u> </u>			<u> </u>			<u> </u>	<u> </u>			
Quarter 3, 2007	1	ļ		ļ		ļ	*	ļ	ļ	.	ļ			ļ		.	ļ	ļ			Н—
Quarter 3, 2008	1	1					*	ļ	1	ļ						ļ		<u> </u>			Н—
Quarter 4, 2008	1	<u> </u>				ļ	*	ļ	<u> </u>		ļ			ļ			ļ	<u> </u>			Ь—
Quarter 3, 2009	_	<u> </u>				<u> </u>	*	ļ	<u> </u>		<u> </u>			<u> </u>			<u> </u>	<u> </u>			<u> </u>
Quarter 3, 2011			<u> </u>	<u> </u>		<u> </u>	*	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		

Groundwater Flow System	_			UCR	RS							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375		377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358		373
NICKEL																					
Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTE	NTIA	L																		
Quarter 4, 2002																	*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004													*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005	Ь	*						*					*				*			*	
Quarter 1, 2006	Ь.				*			*	*								*				*
Quarter 2, 2006	Ь.				*		*	*					*				*			*	
Quarter 3, 2006	Ь—	Ь—	<u> </u>		*			*		L			*				*	<u> </u>		*	
Quarter 4, 2006	Ь—	<u> </u>			*		*			*		*	*				*			*	*
Quarter 1, 2007	Ь—	*	<u> </u>		*			*					*				*	<u> </u>		*	*
Quarter 2, 2007	<u> </u>				*								*				*			*	*
Quarter 3, 2007	Ь—	Ь—	<u> </u>		*			*									*	<u> </u>		*	
Quarter 4, 2007	—	—	 					5 1-				ų.	.			.	*	 	,	*	*
Quarter 1, 2008	<u> </u>				*			*				*	*						*	*	
Quarter 2, 2008	<u> </u>				*			*		*		ala	*	*			-11	*	.1.	*	*
Quarter 3, 2008	<u> </u>				*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008	<u> </u>						110	*		*		*	*				*	*		*	*
Quarter 1, 2009	<u> </u>				NI4		*	*		*		*	*				14	*		*	110
Quarter 2, 2009	₽	4			*	4	*	*	4	*		*	*	4			*	*	4	*	*
Quarter 3, 2009	₽	*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009	₽	*			4	*	*	*	*	*		*	*			4	*	*	*	*	木
Quarter 1, 2010	₽	*			*	4	*	*		*	.	.	*			*	*	*	4	*	4
Quarter 2, 2010	<u> </u>	.	ļ		_	*	.	_	4	*	*	*	*	4	Ψ.	*	*	*	*	*	*
Quarter 3, 2010	<u> </u>	*			*	*	*	*	*	*	*	· ·	_	*	*	*	*	*	*	*	
Quarter 4, 2010	<u> </u>	*				*	不	*	*	*	*	*	*	*			*	*	*	*	*
Quarter 1, 2011	<u> </u>	*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2011 Quarter 3, 2011	₩	*			不	*	不	*	*	*	不	*	*	*		*	*	*	*	*	*
Quarter 3, 2011 Quarter 4, 2011	₩	*				*		*	*	*	*	*	*	*		*	*	*	不	*	*
Quarter 4, 2011 Ouarter 1, 2012	₩	*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
C	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	<u></u>	-		不	不		不		不		不	— :				-	-	-	-	-	-
Quarter 3, 2012 Quarter 4, 2012	 	*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 4, 2012 Quarter 1, 2013	 	*				*		*	*	*	*	*	*	*		*	*	*	不	*	不
Quarter 1, 2013 Quarter 2, 2013	\vdash	*		-	-	*	-	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2013 Quarter 3, 2013	*	*	 		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013 Quarter 4, 2013		*			_ ~	*	_ ~	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014	\vdash	*	 		 	-17		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014 Quarter 2, 2014	*	*	 		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*	 		*	*	*	*	*	*	-15	*	*	*	-17	*	*	*	*	*	*
Quarter 3, 2014 Quarter 4, 2014	<u> </u>	*	 		_ T	*	_ T	*	*	*		*	*	*		*	*	*	*	*	*
PCB, TOTAL		-17				-10		**	-15	-		**	**	**		- T	_	T	-T	**	T
Quarter 4, 2003																	*				
Quarter 3, 2004	\vdash	 	1									*				1	-	1			
Quarter 3, 2004 Quarter 3, 2005	\vdash						*									1		1			
Quarter 2, 2006	\vdash	 	1				*									1		1			
Quarter 3, 2006	\vdash	-	 		 		*									-		 			
Quarter 1, 2007	\vdash	 	 				*									1		 			
	\vdash	-	 		 		*											 			
Ouarter 2 2007		1	1		<u> </u>			-								 	-	1	-	1	
Quarter 2, 2007	\vdash						*														
Quarter 3, 2007							*														
							* *														

Groundwater Flow System Gradient Monitoring Well PCB, TOTAL Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2009 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2012 PCB-1248 Quarter 2, 2008 PCB-1260		S 375	S 376	S 377	D 359	D 362	D 365 * * * * * *	U 371	U 374	S 366	D 360	D 363	D 357	U 369	372	S 367	D 361	D 364	S 358	370	U 373
PCB, TOTAL Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2010 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008	58	375	376	377	359	362	* * * * *	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2008 Quarter 2, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							* * * *														
Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 PCB-1242 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							* * * *														
Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2008 Quarter 2, 2010 Quarter 2, 2010 PCB-1242 Quarter 3, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							* * *														
Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							* *														1
Quarter 2, 2010 Quarter 4, 2010 PCB-1016 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							*														
PCB-1016 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							*														
PCB-1016 Quarter 3, 2004 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008											i l										
Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008																					
Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008												*									
Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							*					*									
Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							-1.														
Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							*														
Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							*														
Quarter 4, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							*														
Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							*														
Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							*														
Quarter 2, 2010 Quarter 4, 2010 PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008			l				*														
PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							*														
PCB-1242 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008		1					*														
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008																					
Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008							*					*									
Quarter 1, 2008 Quarter 2, 2012 PCB-1248 Quarter 2, 2008										*											
Quarter 2, 2012 PCB-1248 Quarter 2, 2008							*														
PCB-1248 Quarter 2, 2008	1						*														
Quarter 2, 2008																					
							*														
Quarter 2, 2006							*														
pH																					
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
	K						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005						*												*	*		
Quarter 4, 2005						*													*		
Quarter 3, 2006																*					
Quarter 2, 2011														*							
Quarter 3, 2011														*							
Quarter 4, 2011														*							
Quarter 1, 2012																*	*				
Quarter 2, 2012												*									<u> </u>
Quarter 1, 2013	\dashv									*		*		\Box		*					
POTASSIUM																					
Quarter 1, 2014																*					
RADIUM-228																					
Quarter 2, 2005																					
Quarter 4, 2005	_													_	\vdash						†
SELENIUM												_									
Quarter 4, 2003																					
SODIUM									_												
Quarter 3, 2002										*	*		*								
Quarter 4, 2002	┪		 							*	*		***	*	\vdash					 	\vdash
Quarter 1, 2003	┪									*	т			т						 	\vdash
Quarter 2, 2003	+		 							*	*									 	\vdash
Quarter 3, 2003 Quarter 3, 2003	\dashv									™	*			$\vdash\vdash\vdash$	\vdash						+
	+										*			$\vdash \vdash \vdash$	\vdash						
Quarter 1, 2007	-									—	不			*	\vdash	—				<u> </u>	
Quarter 1, 2012	_													木	<u>4</u>						<u> </u>
Quarter 1, 2014	_										· w			\vdash	*	 					-
Quarter 3, 2014			-							L	*			igwdapsilon	└	—				-	-
Quarter 4, 2014					1		•				*			. 1							

Groundwater Flow System				UCR								URG	_					LRG			
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
STRONTIUM-90																					
Quarter 4, 2008																					<u> </u>
SULFATE																					
Quarter 1, 2003							*														
Quarter 2, 2003						*	*														
Quarter 3, 2003	*					*															
Quarter 4, 2003					*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005															*						
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 4, 2007		*																			
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008	ĺ	*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008		*				*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*									*						
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010		*			*	*	*								*						
Quarter 3, 2010		*			*	*	*								*						
Quarter 4, 2010		*				*	*								*						
Quarter 1, 2011		*																			
Quarter 2, 2011		*			*	*	*								*						
Quarter 3, 2011		*				*	*	*							*						
Quarter 4, 2011		*				*									*						
Quarter 1, 2012		*					*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*													*						
Quarter 3, 2013	*	*		*	*	*	*								*	1					
Quarter 4, 2013	1	*													*	İ					
Quarter 1, 2014		*													*						T
Quarter 2, 2014	*	*			*		*	*							*	İ					
Quarter 3, 2014	*	*			*	*	*	*							*						1
Quarter 4, 2014		*				*															T
TECHNETIUM-99																					
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003																T -	*				Ť
Quarter 4, 2003																1	*				*
Quarter 1, 2004															*	1	*				*
Quarter 2, 2004															*	1	<u> </u>				*
Quarter 3, 2004	1														*	1					*
Quarter 4, 2004	-			 	 			 			 			 	*	1	*		 	 	*
Quarter 4, 2004 Quarter 3, 2005										1					т —		*				^
Quarter 3, 2005 Quarter 1, 2006															*		· *				*
	-	*						1	*						Т	1	1				*
Quarter 2, 2006		*			 			<u> </u>	*		-					-	 				*
Ouarter 3, 2006																					

Groundwater Flow System	1			UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368		376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TECHNETIUM-99																					
Quarter 4, 2006															*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007															*		*	*			
Quarter 4, 2007										*					*				*		*
Quarter 1, 2008															*					*	*
Quarter 2, 2008							*	*						*		*			*		
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010																		*			
Quarter 1, 2011		*								*							*				
Quarter 2, 2011																*	*	*	*		
Quarter 1, 2012																l	*	*			
Quarter 2, 2012								*										*			
Quarter 3, 2012																l	*	*			
Quarter 4, 2012															*	l		*			*
Quarter 1, 2013																		*			*
Quarter 2, 2013																					*
Quarter 3, 2013										*											*
Quarter 4, 2013															*		*	*			*
Quarter 1, 2014															*		*	*			
Quarter 2, 2014																		*			
Quarter 3, 2014																	*	*	*		
Quarter 4, 2014															*						
TOLUENE																					
Ouarter 2, 2014										*				*							
TOTAL ORGANIC CARBON																					
Quarter 3, 2002	Π									*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003										-	*										
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										
Quarter 1, 2004											*										
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006						-													*		
TOTAL ORGANIC HALIDES																					
Quarter 4, 2002										*											
Quarter 1, 2003		 								*	 				 		 		 		
Quarter 1, 2003 Quarter 2, 2003	1	 								*					 	1	 				
Quarter 1, 2004		 								-15	 				-	*	-		 		
TRICHLOROETHENE																_					
Quarter 3, 2002																					
Quarter 3, 2002 Ouarter 4, 2002																1					
Quarter 4, 2002 Quarter 1, 2003	1															1					
Quarter 1, 2003 Quarter 2, 2003	 															1					
Quarter 2, 2003 Quarter 3, 2003	1															1					
Quarter 3, 2003 Quarter 4, 2003	1	-														-	-				
Quarter 4, 2003 Quarter 1, 2004	 															1					
	1	-														-	-				
Quarter 2, 2004	-	-									-					-	-		-	=	=
Quarter 3, 2004	-	<u> </u>														1	<u> </u>				
Quarter 4, 2004	 															-					
Quarter 1, 2005	-	-														-	-				_
Quarter 2, 2005		<u> </u>									<u> </u>				-	 	<u> </u>		<u> </u>		
Quarter 3, 2005																					_

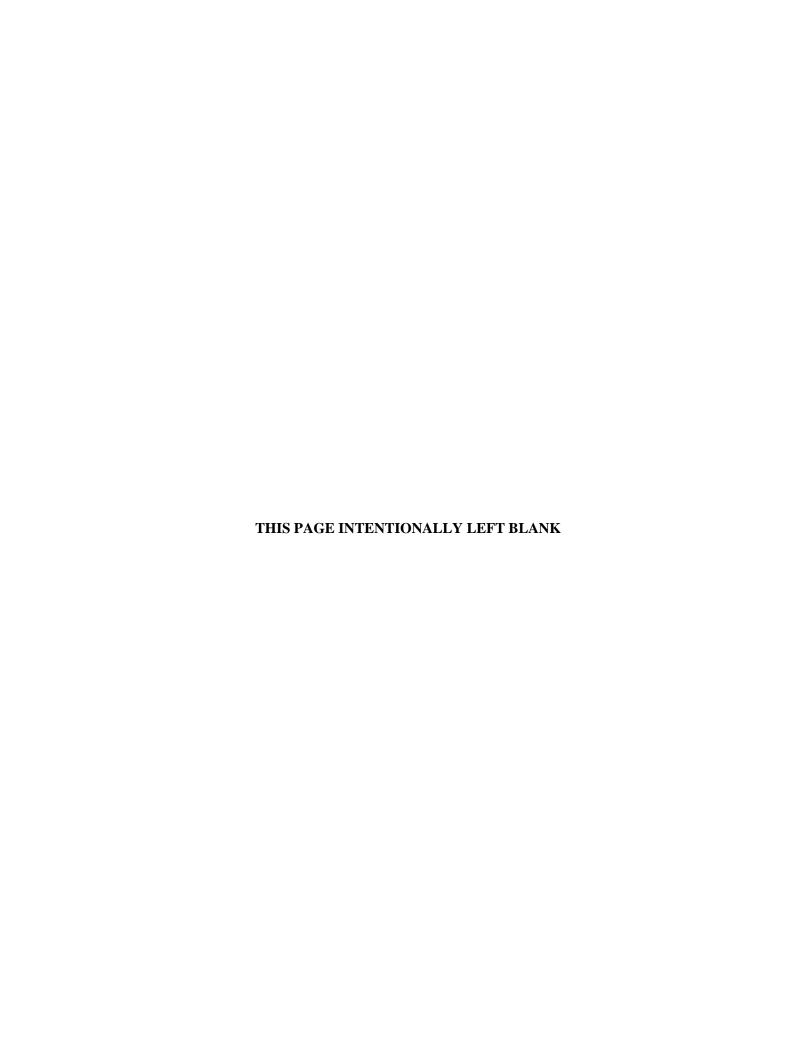
Groundwater Flow System				UCR	S							URG	A					LRG	A		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	S	U	U
Monitoring Well	368	375		377	359		365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE	200	5,6	5.0	511	507	502	000	5,1	0,1	200	200	505	507	207	0,2	207	501	50.	550	2.0	0.0
Ouarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																				1	
Quarter 3, 2006																				1	
Quarter 4, 2006																					
Quarter 1, 2007															ī						
Quarter 2, 2007															=					-	
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 4, 2007 Ouarter 1, 2008	-																				
,																					
Quarter 2, 2008																			_		
Quarter 3, 2008	ļ																				
Quarter 4, 2008	 																				
Quarter 1, 2009															_						
Quarter 2, 2009	!														_						
Quarter 3, 2009	<u> </u>					_	_				L_		_	L_			L_				
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 3, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013																					
Quarter 2, 2013																					
Quarter 3, 2013													ī								
Quarter 4, 2013															Ŧ						
Quarter 1, 2014																					
Quarter 2, 2014	 						-														
Quarter 3, 2014	1																				
Quarter 4, 2014																					
TURBIDITY																			_		
										*											
Quarter 1, 2003										不											
URANIUM		AP.			N.	Ap.	440			AP.	46	Alt-	AP.	46	10	, tr		J.	AP.	J.	- VI
Quarter 4, 2002	<u> </u>	*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an eleva	ted con	centrati	on (i.e.	, a stati	istical e	exceed	ance).														
■ MCL Exceedance																					
UCRS Upper Continental Recharge Syste	m																				
URGA Upper Regional Gravel Aquifer																					
LRGA Lower Regional Gravel Aquifer																					

APPENDIX H METHANE MONITORING DATA

C-746-U LANDFILL METHANE LOG

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>


McCracken County, Kentucky

Date: <u>January 16, 2015</u>

Time	Location	% LEL of Methane Reading	Remarks	Weather Conditions
11:00	C-746-U1	0	checked at floor level	Inside office
11:05	C-746-U2	0	checked at floor level	Inside office
11:10	C-746-U-T-14	0	checked at floor level	Inside office
11:17	C-746-U15	0	checked at floor level	Inside office
11:13	MG1	0	wet casing	80
11:22	MG2	0	wet casing	1301
12:40	MG3	0	dry casing	Cure Sind out his
12:30	MG4	0	dry casing	color the
N/A	Suspect or Problem Areas	N/A	No problems noted	N/A
			1-16-15	
		13	الماران	
<u></u>				

WD-F-0053 (8/19/13) PAD-WD-0017 Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms In Accordance With PAD-WC-0044

Signature

