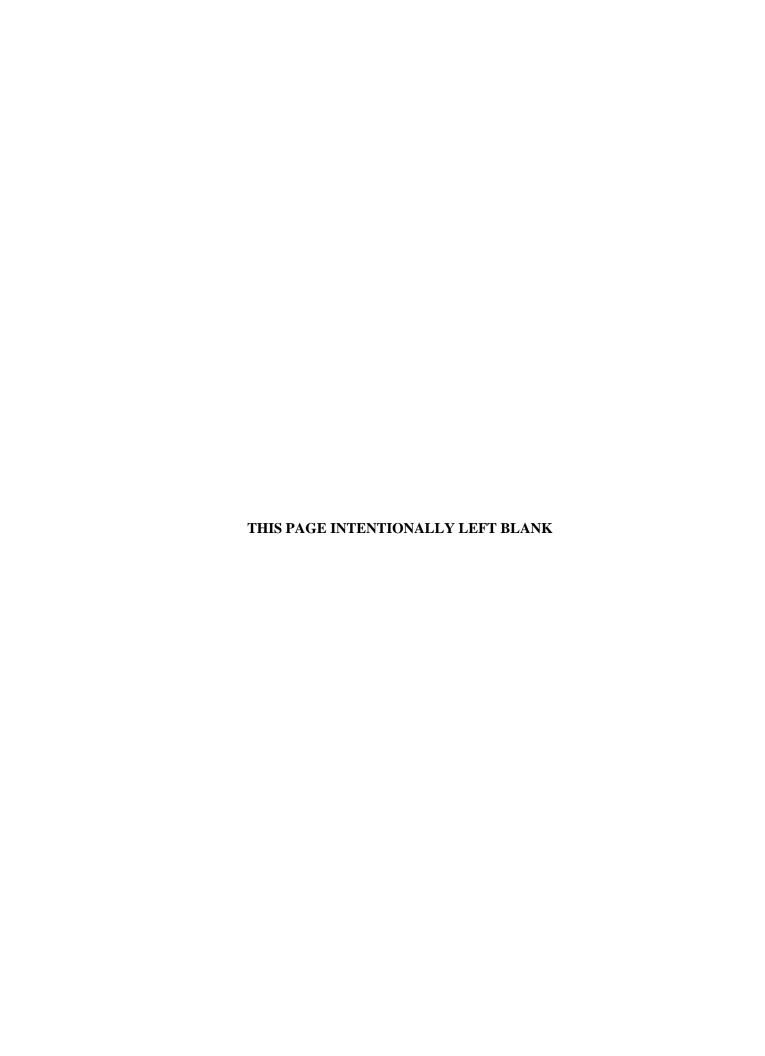
C-746-U Contained Landfill
Second Quarter Calendar Year 2014
(April—June)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

This document is approved for public release per review by:

LATA Kentucky Classification Support

Date


C-746-U Contained Landfill
Second Quarter Calendar Year 2014
(April–June)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—August 2014

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC
managing the
Environmental Remediation Activities at the
Paducah Gaseous Diffusion Plant
under contract DE-AC30-10CC40020

CLEARED FOR PUBLIC RELEASE

CONTENTS

FIGURES			v
TABLES .			v
ACRONY	MS		vii
1.1 1 1.2 1	BACKO MONIT 1.2.1 1.2.2 1.2.3	TON	1 1 3
2. DATA	A EVAL	UATION/STATISTICAL SYNOPSIS	7
3. DATA	A VALII	DATION	9
4. PROF	ESSION	NAL GEOLOGIST AUTHORIZATION	11
5. REFE	RENCE		13
APPENDI		GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
APPENDI	IX B:	FACILITY INFORMATION SHEET	B-1
APPENDI	IX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
APPENDI	IX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
APPENDI	IX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
APPENDI	IX F:	NOTIFICATIONS	F-1
APPENDI		CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES	G-1
APPENDI	IX H:	METHANE MONITORING DATA	H-1
ADDENIDI	IX I.	SURFACE WATER SAMPLE ANALYSES AND WRITTEN COMMENTS	T_1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	. 2		
2. C-746-U Landfill Surface Water Monitoring Locations				
	TABLES			
1. 2.	Summary of MCL Exceedances	.5		
	Monitoring Wells Included Historically in Statistical Analysis			

ACRONYMS

CFR Code of Federal Regulations

EPA U.S. Environmental Protection Agency
KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

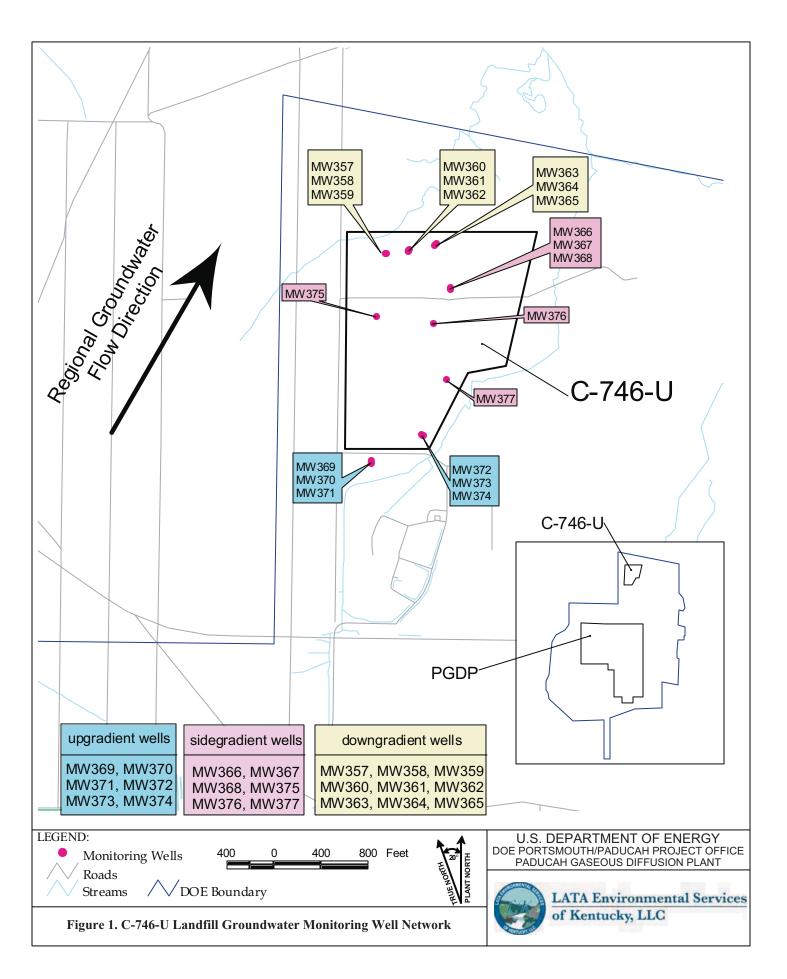
UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

1. INTRODUCTION

This report, C-746-U Contained Landfill Second Quarter Calendar Year 2014 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number 073-00045.

The groundwater, surface water, leachate, and methane monitoring sample data reporting form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The total metals results reported in Appendix C are measured in an unfiltered sample, as required by Permit Condition GSTR0001, Standard Requirement 4. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for parameters that exceed the maximum contaminant level (MCL) and for all parameters that had statistically significant increased concentrations relative to background concentrations, including those parameters listed in 40 CFR § 302.4, Appendix A. Appendix G provides a chart of MCL exceedances and statistically significant increases that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090, Section 4. Surface water was monitored as specified in 401 KAR 48:300 § 2, and the approved surface water monitoring plan. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for reporting only, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant (PGDP) and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill was permitted in November 1996 under Solid Waste Landfill Permit Number 073-00045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Groundwater sampling was conducted within the second quarter 2014 during April using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. Due to United States Emrichment Corporation ceasing operations at PGDP, laboratory analyses were contracted to an off-site laboratory. The laboratory used lower reporting limits than the previously used laboratory. The laboratory also used U.S. Environmental Protection Agency (EPA)-approved methods, as applicable.

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill; 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and

MW377 (all screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for these locations.

The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 29, 2014, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 38 vicinity wells define the potentiometric surface for the Regional Gravel Aquifer (RGA). Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient in the vicinity of the C-746-U Landfill in January was 2.86×10^{-4} ft/ft. The hydraulic gradient for the URGA at the C-746-U Landfill was 3.35×10^{-4} ft/ft, and the hydraulic gradient for the LRGA was 3.41×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.57 to 0.99 ft/day for the URGA and LRGA (see Table E.3).

1.2.2 Methane Monitoring

Landfill operations staff monitored for the occurrence of methane on June 6, 2014, in four on-site building locations and four locations along the landfill boundary. See Appendix H for a map of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was sampled in accordance with 401 KAR 48:300 § 2 and the approved surface water monitoring plan. Sampling was performed at three locations at the C-746-U Landfill. The C-746-U Landfill has an upstream location, L154; a downstream location, L351; and a location capturing runoff from the landfill surface, L150. A map of the surface water monitoring locations is presented in Figure 2. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled in report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water reports are provided in Appendix I.

1.3 KEY RESULTS

The following parameters had concentrations that either exceeded the MCL (Table 1) or were shown to have statistically significant increases (Table 2) in concentrations² relative to background concentrations during the second quarter 2014.

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

The term "concentration" may refer to a field measurement result such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls (PCBs).

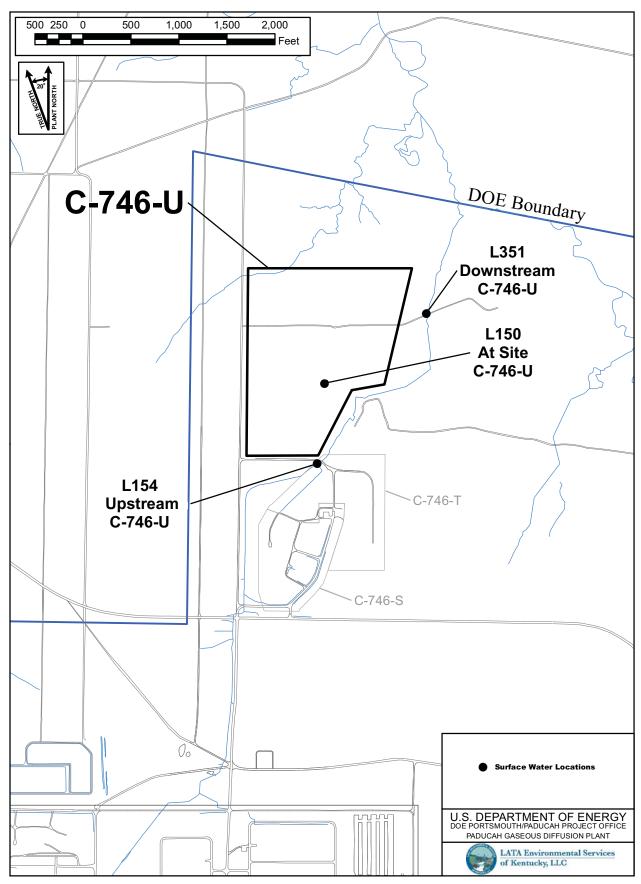


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

Table 1. Summary of MCL Exceedances

<u>UCRS</u>	<u>URGA</u>	<u>LRGA</u>
NONE	MW372: Trichloroethene	MW358: Trichloroethene
		MW361: Trichloroethene

Table 2. Summary of Statistically Significant Increases

<u>UCRS</u>	<u>URGA</u>	<u>LRGA</u>
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW362: Dissolved oxygen,	MW360: Oxidation-reduction	MW361: Oxidation-reduction
oxidation-reduction potential	potential	potential
MW365: Dissolved oxygen,	MW363: Oxidation-reduction	MW364: Dissolved oxygen,
oxidation-reduction potential, sulfate	potential	oxidation-reduction potential,
		technetium-99
MW368: Dissolved oxygen,	MW366: Oxidation-reduction	MW367: Oxidation-reduction
oxidation-reduction potential, sulfate	potential, toluene	potential
MW371: Dissolved oxygen,	MW369: Oxidation-reduction	MW370: Oxidation-reduction
oxidation-reduction potential, sulfate	potential, toluene	potential
MW374: Dissolved oxygen,	MW372: Calcium, chloride,	MW373: Calcium, oxidation-
oxidation-reduction potential	conductivity, dissolved solids,	reduction potential
	magnesium, oxidation-reduction	
	potential, sulfate	
MW375: Oxidation-reduction		
potential, sulfate		

Sidegradient wells: MW366, MW367, MW368, MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

There were no new MCL exceedances for this quarter. The MCL exceedances, trichloroethene in MW358, MW361, and MW372, are related to sources of contamination that are upgradient of the C-746-U Landfill. The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM in accordance with 401 *KAR* 48:300, Section 7, prior to the submittal of this report.

There were two new statistically significant increases for toluene this quarter. Toluene was detected in MW366 and MC369. Please note that toluene also was detected in the trip blanks and some data qualified as "U" (nondetect). The source is believed to be the sealing process that was used on the samples in preparation for shipment. Dissolved oxygen was also a statistically significant increase for MW364.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to background concentrations, as required by Permit Number 073-00045, Condition GSTR0001, Standard Requirement 8, and 401 KAR 48:300, Section 7.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2014 groundwater data collected from the C-746-U Contained Landfill MWs were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the EPA guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the statistician. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (D-23–D-104).

For chemicals with an established MCL, no statistical analysis is required. Parameters that have an MCL can be found in 401 KAR 47:030, Section 6. For parameters with no established MCL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistically significant increase in concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. A stepwise list of the one-side tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 3.

Table 3. Monitoring Wells Included Historically in Statistical Analysis*

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371 (upgradient)	MW369 (upgradient)	MW370 (upgradient)
MW374 (upgradient)	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376 (dry)**		
MW377 (dry)**		

^{*}A map showing the monitoring well locations is shown on Figure 1.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining statistically significant increases is provided in Appendix D under Statistical Analysis Process. Appendix G summarizes the occurrences (by well and by quarter) of statistically significant increases and MCL exceedances.

^{**}MW376 and MW377 had sufficient water to permit a water level measurement, but insufficient water to provide water samples for laboratory analysis.

Upper Continental Recharge System

In this quarter, 27 parameters required statistical analysis in the UCRS. During the second quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed elevated concentrations that were determined to qualify as statistically significant increases relative to background data and are listed in Table 2.

Upper Regional Gravel Aquifer

In this quarter, 28 parameters required statistical analysis in the URGA. During the second quarter, calcium, chloride, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and toluene displayed elevated concentrations that were determined to qualify as statistically significant increases relative to background data and are listed in Table 2.

Lower Regional Gravel Aquifer

In this quarter, 22 parameters required statistical analysis in the LRGA. During the second quarter, calcium, dissolved oxygen, oxidation-reduction potential, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases relative to background data and are listed in Table 2.

3. DATA VALIDATION

Data validation was performed on the organic, inorganic, and radiochemical analytical data by an independent third-party validator. Validation qualifiers are not requested on the groundwater reporting forms. Validation qualifiers are used in the statistical analysis. Validation qualifiers are added by the third-party validator and not the laboratory.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

The following summary from the data validation report is included to provide more information regarding the presence of toluene and radium-226 in the second quarter 2014 sampling event.

All laboratory and field blanks analyzed with the sample set were found to be acceptable. Toluene was detected in the trip blanks, and the following results have been qualified "U" (nondetect) by the third-party data validator: MW368, MW371, MW358, MW363, MW364, MW365, MW366, MW370, MW375, and MW362.

Radium-226 was detected in the rinseate blank. Based on the blank results, the following samples have been qualified "U" (nondetect) by the third-party data validator: MW357, MW358, MW360, MW361, MW367, MW369, MW370, MW371, and MW374.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

Second Quarter Calendar Year 2014 (April-June)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0089/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Kenneth R Davis

PG1194

5. REFERENCE

EPA (U.S. Environmental Protection Agency) 1989. *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Final Guidance, Office of Resource Conservation and Recovery, U.S. Environmental Protection Agency, Washington, DC.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah Ga (As officially shown or		Activity:	C-746-U Contained Landfill
Permit No:	073-00045	Finds/Unit No:	Quarter &	& Year2 nd Qtr. CY 2014
Please check the f	following as applicable:			
Characte	rization X Quarte	erly Semiannual	Annu	ual Assessment
Please check appl	icable submittal(s):	X Groundwater	. X	Surface Water
	-	Leachate	X	_ Methane Monitoring
45:160) or by statute jurisdiction of the D hours of making the	e (Kentucky Revised Statue Division of Waste Management The determination using sta	es Chapter 224) to conduct ground the conduct ground. You must report any inditistical analyses, direct comparts.	undwater and s ication of cont arison, or othe	t Regulations-401 KAR 48:300 and surface water monitoring under the amination within forty-eight (48) or similar techniques. Submitting ched. Do not submit the instruction
accordance with a s Based on my inquiry best of my knowledge	system designed to assure the y of the person or persons dige and belief, true, accurate,	hat qualified personnel properly irectly responsible for gathering	y gather and e g information, t there are signi	er my direction or supervision in valuate the information submitted. the information submitted is, to the ficant penalties for submitting false
MAR	P		<u></u>	8-29-14
	ducah Project Manager nental Services of Kent			Date
Junic Jennifer Woodar U.S. Department	Moodard rd, Paducah Site Lead t of Energy	<u></u>	:	8/29/14 Date

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Groundwater, April, 2014 Surface Water: April, 2014 Sampling Date: Methane June 2014 County: McCracken Permit Nos. 073-00045 Facility Name: U.S. DOE - Paducah Gaseous Diffusion Plant (As officially shown on DWM Permit Face) Site Address: 5600 Hobbs Road Kevil, Kentucky 42053 Street City/State Latitude: N 37° 07' 45" Phone No: (270) 441-6800 Longitude: W 88° 47' 55" OWNER INFORMATION Facility Owner: U.S. DOE – W. E. Murphie, Manager Phone No: (859) 219-4001 Contact Person: Phone No: (270) 441-5030 Mark J. Duff Contact Person Title: Project Manager, LATA Environmental Services of Kentucky, LLC Mailing Address: 761 Veterans Avenue Kevil, Kentucky 42053 City/State Zip Street SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY) Company: LATA Environmental Services of Kentucky, LLC Phone No: (270) 441-5444 Contact Person: Jeff Boulton 761 Veterans Avenue 42053 Mailing Address: Kevil, Kentucky Street City/State Zip LABORATORY RECORD #1 Laboratory GEL Laboratories, LLC Lab ID No: SC00012 (EPA ID Number) Contact Person: Joanne Harley Phone No: (843) 769-7387 29047 Mailing Address: 2040 Savage Road Charleston, South Carolina Street City/State Zip LABORATORY RECORD #2 Laboratory: TestAmerica Laboratories, Inc. Lab ID No: MO00054 (EPA ID Number) Contact Person: Elaine Wild Phone No: (314) 298-8566 Earth City, Missouri Mailing Address: 13715 Rider Trail North 63045 City/State Street Zip LABORATORY RECORD #3 Laboratory: Lab ID No: Contact Person: Phone No: Mailing Address: Street City/State Zip

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4798	3	8004-4799		8004-0981		8004-4800		
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)					357 358		359	359		360		
Sample Sequence #				1		1		1	1		1	
If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment				NA		NA		NA		NA		
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/21/2014 08	3:47	4/15/2014	12:12	4/21/2014	09:43	4/16/2014 0	9:05
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or '	'N") ³				N		N		N		N	
Facility Sample ID Number (if applicable)			MW357UG3	-14	MW358U	G3-14	MW359U0	33-14	MW360UG	3-14		
Laboratory Samp	ole ID Number (if applicable)				34719600	1	346770007		347196002		346873002	
Date of Analysi	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	4/25/2014		4/22/2014		4/25/2014		4/23/2014	
Gradient with m	respect to Monitored Unit (UP, DO	, NWC	NN, SIDE, UNKNOWN)		DOWN		DOWN		DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.351		0.486		<0.2		0.147	J
16887-00-6	Chloride(s)	т	mg/L	9056	31.5		36.4		1.3		9.87	
16984-48-8	Fluoride	т	mg/L	9056	0.209		0.163		0.0486	J	0.267	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.24		0.892		2.44		0.0515	J
14808-79-8	Sulfate	т	mg/L	9056	56.9		88.5		58.9		38.1	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.05		30.2		30.05		30.12	
S0145	Specific Conductance	т	μ M H0/cm	Field	431		522		255		505	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ , Facility Well/Spring Number					8004-4798		8004-4799		8004-0981		8004-4800	
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.)		F, etc.)	357		358		359		360			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	T	Ft. MSL	Field	326.63		326.05		337.61		325.83	
N238	Dissolved Oxygen	T	mg/L	Field	4.55		2.71		4.91		2.49	
s0266	Total Dissolved Solids	T	mg/L	160.1	213		299		154		294	
S0296	рн	Т	Units	Field	6.11		6.22		5.89		6.3	
NS215	Eh	Т	mV	Field	438		234		442		277	
S0907	Temperature	T	°C	Field	17.94		14.22		18.11		13.67	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.135		0.131	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	T	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	T	mg/L	6020	0.0552		0.0497		0.0293		0.154	
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	T	mg/L	6020	0.332		0.369		<0.015		0.0601	
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	27.1		36.1		7.32		24.8	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		0.00213	J	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00463		0.00281		0.00025	J	0.0189	
7440-50-8	Copper	Т	mg/L	6020	0.00112		0.00066	J	0.00359		0.0009	J
7439-89-6	Iron	Т	mg/L	6020	0.0894	J	1.74		0.245		4.27	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.2		15.5		4.2		8.76	
7439-96-5	Manganese	т	mg/L	6020	0.167		0.314		0.00279	J	0.22	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	1	8004-480	00
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		<0.0005		0.00032	J
7440-02-0	Nickel	т	mg/L	6020	0.00132	J	0.00421		0.00119	J	0.00287	
7440-09-7	Potassium	т	mg/L	6020	1.59		2.43		0.117	J	0.676	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00276	٦	<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	42.1		41.9		42.7		74.1	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005	*	<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.00015	J	0.00019	J
7440-62-2	Vanadium	т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00535	J	<0.01		<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		0.0128		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-09	81	8004-486	00
Facility's Loc	al Well or Spring Number (e.g., 1	MW-1	1, MW-2, et	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	Î
67-66-3	Chloroform	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T	mg/L	8260	0.00479		0.00631		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-4798	3	8004-479	9	8004-098	31	8004-48	00
Facility's Lo	ocal Well or Spring Number (e.g., M	⁄W−1	., MW-2, et	:c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		0.00168	J	<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	T	mg/L	8011	<0.0000206		<0.0000201		<0.0000202		<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.098		<0.098		<0.102		<0.0952	
12674-11-2	PCB-1016	т	ug/L	8082	<0.098		<0.098		<0.102		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.098		<0.098		<0.102		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.098		<0.098		<0.102		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.098		<0.098		<0.102		<0.0952	
12672-29-6	PCB-1248	т	ug/L	8082	<0.098		<0.098		<0.102		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798		8004-4799)	8004-098	1	8004-480	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	l, MW−2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.098		<0.098		<0.102		<0.0952	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.098		<0.098		<0.102		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.098		<0.098		<0.102		<0.0952	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.201	*	0.595	*	-2.44	*	-3.55	*
12587-47-2	Gross Beta	T	pCi/L	9310	12.2	*	43.4	*	5.51	*	-0.175	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	903.1	2.52	*	3.96	*	0.924	*	3.15	*
10098-97-2	Strontium-90	T	pCi/L	905.0	3.68	*	3.69	*	-2.49	*	0.804	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	27.8	*	44.4	*	1.95	*	9	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	3.16	*	1.83	*	0.808	*	-0.24	*
10028-17-8	Tritium	T	pCi/L	906.0	9.31	*	18.1	*	-35.2	*	26.5	*
s0130	Chemical Oxygen Demand	T	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.1		<0.1		<0.1		<0.1	
S0268	Total Organic Carbon	T	mg/L	9060	0.882	J	1.12	J	0.877	J	2.49	
S0586	Total Organic Halides	Т	mg/L	9020	0.00842	J	0.00932	J	<0.01		0.0173	
		П										

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479	97
Facility's Loca	al Well or Spring Number (e.g., N	⁄W−1	l, MW-2, etc	:.)	361		362		363		364	
Sample Sequence	e #				1		1		1		1	
If sample is a Bl	Lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/16/2014 07	7:50	4/16/2014	08:27	4/15/2014	08:33	4/15/2014 0	9:47
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or "	'N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				MW361UG3	-14	MW362U	G3-14	MW363U0	G3-14	MW364UG	3-14
Laboratory Samp	ole ID Number (if applicable)		34687300	4	346873	005	346770	003	34677000	05		
Date of Analysi	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						4/23/20	14	4/21/20	14	4/22/201	4
Gradient with r	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.431		0.161	J	0.135	J	0.374	
16887-00-6	Chloride(s)	т	mg/L	9056	33.7		9.81		29.7		31.1	
16984-48-8	Fluoride	т	mg/L	9056	0.181		0.388		0.238		0.15	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.02		0.721		3.67		0.939	
14808-79-8	Sulfate	т	mg/L	9056	82.3		14.4		27.8		67.1	
NS1894	Barometric Pressure Reading	T	Inches/Hg	Field	30.06		30.09		30.17		30.19	
S0145	Specific Conductance	т	μ M H0/cm	Field	489		597		402		457	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796		8004-4797	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1 , 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.97		336.61		325.78		325.75	
N238	Dissolved Oxygen	т	mg/L	Field	3.68		8		1.6		5.55	
S0266	Total Dissolved Solids	т	mg/L	160.1	273		671		241		254	
S0296	рн	т	Units	Field	6.14		6.85		6.29		6.38	
NS215	Eh	т	mV	Field	445		382		399		358	
S0907	Temperature	т	°c	Field	12.17		12.89		14.06		14.11	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		15.4		<0.05		0.0226	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00199	J	0.00309	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.052		0.122		0.181		0.0762	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		0.00044	J	<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.347		0.0306		0.0167		0.0123	J
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	32.7		16.9		25.3		28.7	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.013		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.0001	J	0.00356		0.00135		0.00081	J
7440-50-8	Copper	т	mg/L	6020	0.00051	J	0.00785		0.00072	J	0.00072	J
7439-89-6	Iron	т	mg/L	6020	0.0871	J	9.91		0.144		0.564	
7439-92-1	Lead	т	mg/L	6020	<0.002		0.00621		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	12.9		7.4		9.66		11.3	
7439-96-5	Manganese	т	mg/L	6020	0.00186	J	0.0415		0.31		0.14	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	6	8004-479	7
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	FLAGS	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	T	mg/L	6020	<0.0005		0.00164		0.00017	J	<0.0005	
7440-02-0		Nickel	т	mg/L	6020	0.00131	٦	0.00778		0.00153	J	0.00117	J
7440-09-7		Potassium	т	mg/L	6020	1.82		1.04		1.2		1.79	
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		0.00027	J	<0.001		<0.001	
7440-23-5		Sodium	T	mg/L	6020	44.2		121		36.6		43.3	
7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005	*	<0.005	*
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	т	mg/L	6020	<0.0002		0.00662		<0.0002		<0.0002	
7440-62-2		Vanadium	T	mg/L	6010	<0.005		0.0044	J	<0.005		<0.005	
7440-66-6		Zinc	т	mg/L	6020	<0.01		0.0198		<0.01		0.0253	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260	<0.001		0.00058	J	0.00132		0.01	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-098	6	8004-479	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00535		<0.001		0.00041	J	0.00425	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	5	8004-0986	ô	8004-479	96	8004-47	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		0.00157	J
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002		<0.0000203		<0.0000202		<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	T	ug/L	8082	<0.0952		<0.098		0.127		<0.106	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.098		<0.104		<0.106	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0952		<0.098		<0.104		<0.106	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.098		<0.104		<0.106	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0952		<0.098		0.127		<0.106	
12672-29-6	PCB-1248	T	ug/L	8082	<0.0952		<0.098		<0.104		<0.106	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986	i	8004-479	6	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g., N	4W−1	l, MW−2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.098		<0.104		<0.106	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.098		<0.104		<0.106	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.098		<0.104		<0.106	
12587-46-1	Gross Alpha	т	pCi/L	9310	2.36	*	9.11	*	-1.82	*	1.75	*
12587-47-2	Gross Beta	T	pCi/L	9310	27.8	*	5.23	*	10.7	*	36.5	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	903.1	3.27	*	0.484	*	1.51	*	-0.587	*
10098-97-2	Strontium-90	T	pCi/L	905.0	-0.784	*	-0.222	*	-2.57	*	0.387	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	40.6	*	5.69	*	18.3	*	52.5	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.506	*	-0.699	*	-1.01	*	-1.6	*
10028-17-8	Tritium	т	pCi/L	906.0	54.4	*	-26.4	*	66.7	*	63.2	*
s0130	Chemical Oxygen Demand	T	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.1		<0.1		<0.1		<0.1	
S0268	Total Organic Carbon	T	mg/L	9060	0.67	J	2.57		1.08	J	0.728	J
S0586	Total Organic Halides	т	mg/L	9020	0.00938	J	0.013		0.00884	J	0.0082	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

RESIDENTIAL/CONTAINED-QUARTERLY

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	4793	8004-09	983
Facility's Loca	al Well or Spring Number (e.g., M	w-1	., MW-2, etc	.)	365		36	66	36	7	368	1
Sample Sequence	e #				1		1		1		1	
If sample is a Bl	Lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/15/2014	09:09	4/15/201	4 07:52	4/14/201	4 12:33	4/14/2014	13:09
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or '	'N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				MW365U0	33-14	MW366	UG3-14	MW3671	JG3-14	MW368U	G3-14
Laboratory Samp	ple ID Number (if applicable)				3467700	006	34677	0004	34670	0003	346700	004
Date of Analysi	is (Month/Day/Year) For Volatile	ysis	4/22/20	14	4/21/2	2014	4/21/2	2014	4/21/20	014		
Gradient with r	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	OWN)	DOW	V	SIE	DE	SIE	ÞΕ	SIDE	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.497		0.435		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	4.62		40.1		34.2		2.33	
16984-48-8	Fluoride	Т	mg/L	9056	0.352		0.176		0.144		0.669	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.526		0.875		0.36		0.0629	J
14808-79-8	Sulfate	т	mg/L	9056	69.5		43.8		41.5		67.7	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.17		30.17		29.81		29.81	
S0145	Specific Conductance	т	μ M H0/cm	Field	449		456		421		798	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984	1	8004-0982	2	8004-4793		8004-0983	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	333.87		325.81		326.19		334.39	
N238	Dissolved Oxygen	т	mg/L	Field	5.49		3.48		2.27		5.47	
S0266	Total Dissolved Solids	т	mg/L	160.1	279		241		229		639	
S0296	рн	т	Units	Field	6.32		6.49		6.01		6.63	
NS215	Eh	т	mV	Field	410		463		446		417	
s0907	Temperature	т	°c	Field	14.67		12.44		14.61		14.11	
7429-90-5	Aluminum	т	mg/L	6020	0.0459	J	<0.05		<0.05		2.14	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.0143	
7440-39-3	Barium	т	mg/L	6020	0.0763		0.154		0.193		0.0142	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	<0.015		0.0766		0.0173		0.027	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.4		28.5		27.2		19.6	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		0.00348	J
7440-48-4	Cobalt	т	mg/L	6020	0.00187		0.00045	J	0.00158		0.00133	
7440-50-8	Copper	т	mg/L	6020	0.00211		0.00054	J	0.00077	J	0.00197	
7439-89-6	Iron	т	mg/L	6020	0.0963	J	0.1		0.827		1.16	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		0.00134	J
7439-95-4	Magnesium	т	mg/L	6020	10		11.1		11.1		5.96	
7439-96-5	Manganese	т	mg/L	6020	0.0557		0.0353		0.455		0.00919	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R¹,	Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	3
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	FLAGS	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	T	mg/L	6020	0.00053		<0.0005		<0.0005		0.00556	
7440-02-0		Nickel	т	mg/L	6020	0.0074		0.00117	J	0.00164	J	0.00564	
7440-09-7		Potassium	т	mg/L	6020	0.348		1.71		2.75		1.12	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	т	mg/L	6020	<0.005		0.00206	J	<0.005		<0.005	
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	T	mg/L	6020	58.8		43.7		36.3		191	
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	т	mg/L	6020	0.000081	J	<0.0002		<0.0002		0.00156	
7440-62-2		Vanadium	T	mg/L	6010	<0.005		<0.005		<0.005		0.008	
7440-66-6		Zinc	т	mg/L	6020	0.00623	٦	<0.01		<0.01		0.00697	J
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260	0.0203		0.0128		<0.001		0.00056	J
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982	2	8004-479	93	8004-098	83
Facility's Loca	al Well or Spring Number (e.g., N	-w-	l, MW-2, et	:c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		0.00287	J	<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Ŧ	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Ħ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Ŧ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Ħ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Ŧ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T	mg/L	8260	<0.001		0.00358		0.00304		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	ı,	Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-479	93	8004-09	83
Facility's Lo	oca	al Well or Spring Number (e.g., 1	MW-:	1, MW-2, et	cc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
100-41-4		Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6		2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4		Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1		Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5		Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2		Dichloromethane	т	mg/L	8260	0.00162	J	<0.005		<0.005		<0.005	
108-10-1		Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8		Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000213		<0.000199		<0.0000199		<0.0000202	
78-87-5		Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6		trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5		cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5		trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4		Trichlorofluoromethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4		1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1		Benzene, 1,2-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7		Benzene, 1,4-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3		PCB,Total	T	ug/L	8082	0.18		<0.1		<0.104		0.168	
12674-11-2		PCB-1016	т	ug/L	8082	<0.102		<0.1		<0.104		<0.102	
11104-28-2		PCB-1221	т	ug/L	8082	<0.102		<0.1		<0.104		<0.102	
11141-16-5		PCB-1232	т	ug/L	8082	<0.102		<0.1		<0.104		<0.102	
53469-21-9		PCB-1242	т	ug/L	8082	0.18		<0.1		<0.104		0.168	
12672-29-6		PCB-1248	т	ug/L	8082	<0.102		<0.1		<0.104		<0.102	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's Lo	cal Well or Spring Number (e.g., N	⁄W−1	l, MW−2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.102		<0.1		<0.104		<0.102	
11096-82-5	PCB-1260	т	ug/L	8082	<0.102		<0.1		<0.104		<0.102	
11100-14-4	PCB-1268	т	ug/L	8082	<0.102		<0.1		<0.104		<0.102	
12587-46-1	Gross Alpha	т	pCi/L	9310	-3.71	*	-0.427	*	-0.0213	*	5.6	*
12587-47-2	Gross Beta	Т	pCi/L	9310	2.95	*	44.3	*	48.7	*	2.41	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	903.1	0.32	*	1.6	*	4.32	*	1.58	*
10098-97-2	Strontium-90	T	pCi/L	905.0	-2.2	*	3.4	*	-1.67	*	-3.38	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-7.68	*	53.5	*	38.1	*	-0.402	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.15	*	1.1	*	-1.73	*	-0.475	*
10028-17-8	Tritium	т	pCi/L	906.0	39.2	*	-52.9	*	98.5	*	17.8	*
s0130	Chemical Oxygen Demand	T	mg/L	410.4	<20		7.49	J	<20		7.49	۲
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.1		<0.1		<0.1		<0.1	
S0268	Total Organic Carbon	T	mg/L	9060	1.89	J	1.14	J	0.98	J	2.38	
S0586	Total Organic Halides	т	mg/L	9020	0.017		0.0074	J	0.00662	J	0.0152	
		П										

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-48	20	8004-	4818	8004-	4819	8004-48	808
Facility's Loca	al Well or Spring Number (e.g., N	ſW−1	., MW-2, etc	:.)	369		37	0	37	1	372	
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/14/2014	09:49	4/15/201	4 08:27	4/14/201	4 13:04	4/16/2014	08:02
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or '	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				MW369UG	3-14	MW370	JG3-14	MW3711	JG3-14	MW372U	G3-14
Laboratory Samp	ple ID Number (if applicable)				3467000	005	34677	0001	34670	0002	346873	003
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>) Oz	ganics Anal	ysis	4/18/20	14	4/21/2	2014	4/21/2	2014	4/23/20)14
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		U	-O	UI	0	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.337		0.513		0.152	J	0.624	
16887-00-6	Chloride(s)	т	mg/L	9056	31		42.6		6.6		56.3	
16984-48-8	Fluoride	т	mg/L	9056	0.189		0.17		0.308		0.205	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.192		1.23		1.06		<0.1	
14808-79-8	Sulfate	т	mg/L	9056	8.09		18.9		16.4		176	
NS1894	Barometric Pressure Reading	T	Inches/Hg	Field	29.78		30.15		29.81		30.3	
S0145	Specific Conductance	т	μ M H0/cm	Field	380		432		672		837	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	}
Facility's Lo	cal Well or Spring Number (e.g., MW	-1 , 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.52		322.22		341.88		326.03	
N238	Dissolved Oxygen	т	mg/L	Field	1.33		4.15		3.87		3	
S0266	Total Dissolved Solids	т	mg/L	160.1	213		223		406		546	
s0296	рН	т	Units	Field	6.21		6.08		6.74		6.14	
NS215	Eh	т	mV	Field	514		535		476		236	
s0907	Temperature	т	°C	Field	15.67		13.17		14.39		13.11	
7429-90-5	Aluminum	т	mg/L	6020	0.62		<0.05		0.213		0.0492	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	T	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.37		0.197		0.141		0.0665	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0108	J	0.0309		<0.015		1.7	
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	16.4		28		28		70.5	
7440-47-3	Chromium	т	mg/L	6020	0.00416	J	<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.0119		0.00049	J	0.00012	J	0.00027	J
7440-50-8	Copper	т	mg/L	6020	0.002		0.00085	J	0.00127		0.00301	
7439-89-6	Iron	т	mg/L	6020	1.42		0.163		0.305		1.99	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	6.7		11.8		10.6		26.1	
7439-96-5	Manganese	т	mg/L	6020	0.138		0.00577		0.0086		0.0372	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R¹,	Facility Well/Spring Number				8004-482	0	8004-481	18	8004-481	9	8004-480	8
Facility's	Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	т	mg/L	6020	0.00056		0.00018	J	0.00023	J	0.0004	J
7440-02-0		Nickel	Т	mg/L	6020	0.00806		0.00172	J	0.00142	J	0.0009	J
7440-09-7		Potassium	т	mg/L	6020	0.601		2.38		0.383		2.66	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	T	mg/L	6020	58.7		39.6		121		65.5	
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00209		<0.0002	
7440-62-2		Vanadium	T	mg/L	6010	<0.005		<0.005		0.00278	J	<0.005	
7440-66-6		Zinc	т	mg/L	6020	0.00421	٦	<0.01		<0.01		<0.01	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260	0.00716		0.0122		0.00055	J	<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-486	08
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001		0.00031	J
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00076	J	0.0014		<0.001		0.00759	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-4818	8	8004-48	19	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	L, MW-2, et	:c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002		<0.0000202		<0.0000199		<0.0000201	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	0.0806	J	<0.102		<0.1		<0.0971	
12674-11-2	PCB-1016	т	ug/L	8082	<0.098		<0.102		<0.1		<0.0971	
11104-28-2	PCB-1221	т	ug/L	8082	<0.098		<0.102		<0.1		<0.0971	
11141-16-5	PCB-1232	т	ug/L	8082	<0.098		<0.102		<0.1		<0.0971	
53469-21-9	PCB-1242	т	ug/L	8082	0.0806	J	<0.102		<0.1		<0.0971	
12672-29-6	PCB-1248	т	ug/L	8082	<0.098		<0.102		<0.1		<0.0971	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480	08
Facility's Loc	al Well or Spring Number (e.g., N	/W−1	l, MW−2, et	.c.)	369		370		371		372	
CAS RN⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.098		<0.102		<0.1		<0.0971	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.098		<0.102		<0.1		<0.0971	
11100-14-4	PCB-1268	т	ug/L	8082	<0.098		<0.102		<0.1		<0.0971	
12587-46-1	Gross Alpha	т	pCi/L	9310	4.44	*	0.000434	*	4.05	*	-1.2	*
12587-47-2	Gross Beta	т	pCi/L	9310	15.7	*	27.2	*	9.51	*	7.56	*
10043-66-0	Iodine-131	T	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	903.1	2.67	*	1.86	*	2.07	*	0.375	*
10098-97-2	Strontium-90	T	pCi/L	905.0	-1.12	*	4.37	*	-0.313	*	-1.75	*
14133-76-7	Technetium-99	T	pCi/L	Tc-02-RC	35.4	*	27.9	*	-8.15	*	13.4	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	0.751	*	0.782	*	2.62	*	0.85	*
10028-17-8	Tritium	T	pCi/L	906.0	-61.7	*	23.8	*	-67	*	81.2	*
s0130	Chemical Oxygen Demand	T	mg/L	410.4	<20		7.49	J	<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.1		<0.1		<0.1		<0.1	
S0268	Total Organic Carbon	T	mg/L	9060	1.38	J	0.993	J	2.13		1.68	J
S0586	Total Organic Halides	T	mg/L	9020	0.0256		0.00612	J	0.00722	J	0.0139	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-09	990	8004-09	985	8004-098	8
Facility's Loca	al Well or Spring Number (e.g., N	/W−1	l, MW-2, etc	:.)	373		374		375		376	
Sample Sequence	e #				1		1		1		1	
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/16/2014 08	3:50	4/15/2014	09:20	4/15/2014	12:23	NA	
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or '	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				MW373UG3	3-14	MW374U	G3-14	MW375U0	G3-14	NA	
Laboratory Samp	ple ID Number (if applicable)				34687300)1	346770	002	346770	800	NA	
Date of Analysi	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	4/23/2014	1	4/21/20	14	4/22/20	14	NA	
Gradient with r	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.606		0.964		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	44		82.2		4.66			*
16984-48-8	Fluoride	Т	mg/L	9056	0.222		0.199		0.36			*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.895		0.418		<0.1			*
14808-79-8	Sulfate	т	mg/L	9056	209		5.63		37.6			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.32		30.17		30.2			*
S0145	Specific Conductance	т	μ M H0/cm	Field	914		714		432			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	3
Facility's Lo	cal Well or Spring Number (e.g., MW	-1 , 1	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.02		332.82		342.21			*
N238	Dissolved Oxygen	т	mg/L	Field	3.01		3.44		2.17			*
S0266	Total Dissolved Solids	т	mg/L	160.1	573		411		283			*
s0296	рН	т	Units	Field	6.08		6.59		6.48			*
NS215	Eh	т	mV	Field	398		499		329			*
s0907	Temperature	т	°C	Field	15.17		13.78		14.39			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0278	J	0.0182	J		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	T	mg/L	6020	<0.005		<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0237		0.16		0.176			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	2.18		0.0108	J	0.0122	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	78.4		22		15.4			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.00013	J	<0.001		0.0007	J		*
7440-50-8	Copper	т	mg/L	6020	0.00098	J	0.00067	J	0.0006	J		*
7439-89-6	Iron	т	mg/L	6020	0.116		0.0813	J	0.906			*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	27		5.8		5.85			*
7439-96-5	Manganese	т	mg/L	6020	0.00319	J	0.00201	J	0.022			*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	38
Facility's I	ocal Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	373		374		375		376	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		0.00022	٦	<0.0005			*
7440-02-0	Nickel	Т	mg/L	6020	0.00115	J	0.00133	J	0.00143	J		*
7440-09-7	Potassium	T	mg/L	6020	2.69		0.526		0.358			*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2	Selenium	T	mg/L	6020	<0.005		0.0122		<0.005			*
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5	Sodium	Т	mg/L	6020	68		124		82.4			*
7440-25-7	Tantalum	T	mg/L	6020	<0.005		<0.005	*	<0.005	*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1	Uranium	T	mg/L	6020	<0.0002		0.0006		0.00014	J		*
7440-62-2	Vanadium	T	mg/L	6010	<0.005		<0.005		<0.005			*
7440-66-6	Zinc	T	mg/L	6020	<0.01		<0.01		<0.01			*
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7	Chlorobenzene	T	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		0.0131			*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00432		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	¹,	Facility Well/Spring Number				8004-479	2	8004-0990)	8004-098	35	8004-09	88
Facility's L	oca	al Well or Spring Number (e.g., 1	- WM	1, MW-2, et	.c.)	373		374		375		376	
CAS RN⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4		Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6		2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4		Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1		Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5		Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2		Dichloromethane	т	mg/L	8260	<0.005		<0.005		0.00162	J		*
108-10-1		Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8		Propane, 1,2-Dibromo-3-chloro	T	mg/L	8011	<0.000198		<0.0000201		<0.0000203			*
78-87-5		Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6		trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5		cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5		trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4		Trichlorofluoromethane	T	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4		1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1		Benzene, 1,2-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7		Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3		PCB,Total	т	ug/L	8082	<0.0952		<0.098		<0.102			*
12674-11-2		PCB-1016	т	ug/L	8082	<0.0952		<0.098		<0.102			*
11104-28-2		PCB-1221	т	ug/L	8082	<0.0952		<0.098		<0.102			*
11141-16-5		PCB-1232	т	ug/L	8082	<0.0952		<0.098		<0.102			*
53469-21-9		PCB-1242	т	ug/L	8082	<0.0952		<0.098		<0.102			*
12672-29-6		PCB-1248	T	ug/L	8082	<0.0952		<0.098		<0.102			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Lo	cal Well or Spring Number (e.g., N	⁄W−1	l, MW−2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.098		<0.102			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0952		<0.098		<0.102			*
11100-14-4	PCB-1268	T	ug/L	8082	<0.0952		<0.098		<0.102			*
12587-46-1	Gross Alpha	T	pCi/L	9310	-2.35	*	-0.376	*	1.42	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	19.1	*	2.36	*	0.905	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	903.1	2.13	*	2.9	*	3.2	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.6	*	4.44	*	-2.49	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	43.6	*	12.1	*	-2.95	*		*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	3.23	*	0.427	*	0.457	*		*
10028-17-8	Tritium	т	pCi/L	906.0	1.59	*	62	*	7.2	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		9.93	J	<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.1		<0.1		<0.1			*
S0268	Total Organic Carbon	Т	mg/L	9060	1.29	7	2.1		2.69			*
S0586	Total Organic Halides	т	mg/L	9020	0.00904	J	0.017		0.04			*
		П										

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

									1			
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	39	0000-00	00	0000-000	00	0000-000	00
Facility's Loca	al Well or Spring Number (e.g., M	ſW−1	l, MW-2, etc	:.)	377		E. BLAN	١K	F. BLAN	K	T. BLANK	(1
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	ethod, or (E)	quipment	NA		Е		F		Т		
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		NA		4/21/2014	07:25	4/21/2014 0	8:50	4/14/2014 0	8:00
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or '	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)		NA		RI1UG3-	-14	FB1UG3-	14	TB1UG3-	14		
Laboratory Samp	ple ID Number (if applicable)			NA		3471960	05	3471960	03	34670000)6	
Date of Analys	is (Month/Day/Year) For Volatile	01	rganics Anal	ysis	NA		4/25/20	14	4/25/201	4	4/21/201	4
Gradient with	respect to Monitored Unit (UP, DO	NWO,	, SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	1	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	T	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	μ M H0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-0989	9	0000-0000)	0000-0000		0000-0000)
Facility's Lo	cal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	0.00219	J	0.00229	J		*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	0.00075	J	0.00104			*
7439-89-6	Iron	т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R¹,	Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	0
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	IK	F. BLAN	<	T. BLANK	(1
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0		Nickel	т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7		Potassium	т	mg/L	6020		*	6		<0.3			*
7440-16-6		Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5		Sodium	T	mg/L	6020		*	0.651		<0.25			*
7440-25-7		Tantalum	т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0		Thallium	т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2		Vanadium	т	mg/L	6010		*	<0.005		<0.005			*
7440-66-6		Zinc	Т	mg/L	6020		*	0.00753	J	<0.01			*
108-05-4		Vinyl acetate	T	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260		*	0.00648		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	т	mg/L	8260		*	<0.001		<0.001		0.00033	J
74-97-5		Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000	0	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	377		E. BLAN	(F. BLAN	IK	T. BLANI	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	0.00345	J	<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	T	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	ξ¹,	Facility Well/Spring Number				8004-098	9	0000-0000)	0000-000	00	0000-00	00
Facility's	oca	al Well or Spring Number (e.g., N	∕W-1	L, MW-2, et	.c.)	377		E. BLANK	(F. BLAN	IK	T. BLANI	< 1
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4		Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6		2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4		Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1		Methane, Dibromochloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5		Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2		Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1		Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8		Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.000199		<0.0000199		<0.0000198	
78-87-5		Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6		trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5		cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5		trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4		Trichlorofluoromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4		1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1		Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7		Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3		PCB,Total	т	ug/L	8082		*	<0.1		<0.098			*
12674-11-2		PCB-1016	т	ug/L	8082		*	<0.1		<0.098			*
11104-28-2		PCB-1221	т	ug/L	8082		*	<0.1		<0.098			*
11141-16-5		PCB-1232	т	ug/L	8082		*	<0.1		<0.098			*
53469-21-9		PCB-1242	т	ug/L	8082		*	<0.1		<0.098			*
12672-29-6		PCB-1248	т	ug/L	8082		*	<0.1		<0.098			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	377		E. BLANK		F. BLANI	K	T. BLANK	{ 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.1		<0.098			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.1		<0.098			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.1		<0.098			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	-2.8	*	-1.37	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	-3.63	*	-2.17	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	903.1		*	3.6	*	1.09	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	5.02	*	1.88	*		*
14133-76-7	Technetium-99	T	pCi/L	Tc-02-RC		*	0.567	*	7.43	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	2	*	0.519	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	63	*	18.9	*		*
s0130	Chemical Oxygen Demand	T	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.1		<0.1			*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	T	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000	00
Facility's Loca	al Well or Spring Number (e.g., N	w-1	1, MW-2, etc	:.)	T. BLANK	(2	T. BLAN	K 3	T. BLAN	(4	T. BLANK	5
Sample Sequence	e #			1		1		1		1		
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	Т		Т		Т		Т	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/14/2014 1	0:15	4/15/2014	06:45	4/15/2014 0	7:15	4/16/2014 0	6:40
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)			TB2UG3-	14	TB3UG3	-14	TB4UG3-	14	TB5UG3-	14	
Laboratory Sam	ple ID Number (if applicable)				34670000	07	3467700	09	3467700	10	34687300)6
Date of Analys	is (Month/Day/Year) For Volatile	01	rganics Anal	ysis	4/21/201	4	4/22/20	14	4/22/201	4	4/23/201	4
Gradient with	respect to Monitored Unit (UP, DO	NWO,	, SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
S0595	Nitrate & Nitrite	T	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	T	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	μ M H0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000)	0000-0000)	0000-0000		0000-0000)
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK 4	1	T. BLANK	5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	T	mg/L	6020		*		*		*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	т	mg/L	6020		*		*		*		*
7439-89-6	Iron	т	mg/L	6020		*		*		*		*
7439-92-1	Lead	т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R¹,	Facility Well/Spring Number				0000-000	0	0000-000	00	0000-000	0	0000-000)0
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	(3	T. BLANK	4	T. BLAN	(5
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	т	mg/L	6020		*		*		*		*
7440-02-0		Nickel	Т	mg/L	6020		*		*		*		*
7440-09-7		Potassium	т	mg/L	6020		*		*		*		*
7440-16-6		Rhodium	T	mg/L	6020		*		*		*		*
7782-49-2		Selenium	T	mg/L	6020		*		*		*		*
7440-22-4		Silver	Т	mg/L	6020		*		*		*		*
7440-23-5		Sodium	Т	mg/L	6020		*		*		*		*
7440-25-7		Tantalum	T	mg/L	6020		*		*		*		*
7440-28-0		Thallium	T	mg/L	6020		*		*		*		*
7440-61-1		Uranium	T	mg/L	6020		*		*		*		*
7440-62-2		Vanadium	T	mg/L	6010		*		*		*		*
7440-66-6		Zinc	Т	mg/L	6020		*		*		*		*
108-05-4		Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	0.00086	J	0.0143		0.00492		0.00061	J
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000)	0000-000	00	0000-000	00
Facility's Loca	al Well or Spring Number (e.g., N	(W−1	l, MW-2, et	:c.)	T. BLANK 2	2	T. BLANK	3	T. BLAN	< 4	T. BLAN	₹5
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Ŧ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Ŧ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-00	00	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	T. BLANK	2	T. BLANK	3	T. BLAN	K 4	T. BLAN	K 5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	FLAGS
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		0.00168	J	0.0017	J	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	T	mg/L	8011	<0.00002		<0.0000201		<0.00002		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	T	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-0000		0000-0000)	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	l, MW−2, et	tc.)	T. BLANK	2	T. BLANK 3		T. BLANK	4	T. BLANK	5
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	T	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	T	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	903.1		*		*		*		*
10098-97-2	Strontium-90	T	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*		*		*		*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			0000-000	00	0000-00	00	8004-48	19	\		
Facility's Loc	al Well or Spring Number (e.g., M	ſW−1	l, MW-2, etc	:.)	T. BLANK	6	T. BLANI	< 7	371			
Sample Sequenc	e #				1		1		2			
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	quipment	Т		Т		NA					
Sample Date an	d Time (Month/Day/Year hour: minu	4/16/2014 0	6:20	4/21/2014	07:07	4/14/2014	13:04		T			
Duplicate ("Y"	or "N") ²				N		N		Υ			7
Split ("Y" or	"N") ³		N		N		N					
Facility Sampl	e ID Number (if applicable)		TB6UG3-	14	TB7UG3-14		MW371DUG3-14					
Laboratory Sam	ple ID Number (if applicable)		34687300	07	347196004		346700001		\ /			
Date of Analys	is (Month/Day/Year) For Volatile	ysis	4/23/201	4	4/25/2014		4/21/2014		\/			
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	NA		NA		UP		У	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*	<0.2			L
16887-00-6	Chloride(s)	т	mg/L	9056		*		*	6.57			\sqcap
16984-48-8	6984-48-8 Fluoride T mg/L 9056					*		*	0.281			\Box
s0595	Nitrate & Nitrite	T	mg/L	9056		*		*	1.06			\prod
14808-79-8	Sulfate	т	mg/L	9056		*		*	16.3			
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*	29.81			
S0145	Specific Conductance	т	μ M H0/cm	Field		*		*	672		/	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	8004-4819			
Facility's Loca	al Well or Spring Number (e.g., MW-	·1, N	W-2, BLANK-	F, etc.)	T. BLANK	6	T. BLANK	7	371			\Box
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
s0906	Static Water Level Elevation	T	Ft. MSL	Field		*		*	341.88			ot
N238	Dissolved Oxygen	T	mg/L	Field		*		*	3.87		\ /	
s0266	Total Dissolved Solids	T	mg/L	160.1		*		*	620			
S0296	рН	T	Units	Field		*		*	6.74		\ /	
NS215	Eh	T	mV	Field		*		*	476		\ /	
S0907	Temperature	T	°C	Field		*		*	14.39		\ /	
7429-90-5	Aluminum	T	mg/L	6020		*		*	0.369		\ /	
7440-36-0	Antimony	T	mg/L	6020		*		*	<0.003		\/	
7440-38-2	Arsenic	T	mg/L	6020		*		*	<0.005		X	
7440-39-3	Barium	T	mg/L	6020		*		*	0.145		/\	
7440-41-7	Beryllium	T	mg/L	6020		*		*	<0.0005		/\	
7440-42-8	Boron	T	mg/L	6020		*		*	<0.015		/ \	
7440-43-9	Cadmium	T	mg/L	6020		*		*	<0.001		/ / V	
7440-70-2	Calcium	T	mg/L	6020		*		*	27.9		<i> </i>	
7440-47-3	Chromium	T	mg/L	6020		*		*	<0.01			
7440-48-4	Cobalt	T	mg/L	6020		*		*	0.00017	J		
7440-50-8	Copper	т	mg/L	6020		*		*	0.0013		7	\
7439-89-6	Iron	T	mg/L	6020		*		*	0.414			\int
7439-92-1	Lead	т	mg/L	6020		*		*	0.00059	J		\top
7439-95-4	Magnesium	т	mg/L	6020		*		*	10.1			\top
7439-96-5	Manganese	т	mg/L	6020		*		*	0.0161			\neg
7439-97-6	Mercury	т	mg/L	7470		*		*	<0.0002		/	\neg

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	00	8004-481	19	\	1
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	6	T. BLAN	۲ 7	371			
CAS RN⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	FIJ
7439-98-7		Molybdenum	т	mg/L	6020		*		*	0.00018	J		\prod
7440-02-0		Nickel	т	mg/L	6020		*		*	0.00141	J		
7440-09-7		Potassium	т	mg/L	6020		*		*	0.372			
7440-16-6		Rhodium	т	mg/L	6020		*		*	<0.005			
7782-49-2		Selenium	т	mg/L	6020		*		*	<0.005			
7440-22-4		Silver	Т	mg/L	6020		*		*	<0.001			
7440-23-5		Sodium	T	mg/L	6020		*		*	128		\ /	
7440-25-7		Tantalum	Т	mg/L	6020		*		*	<0.005	*	\/	
7440-28-0		Thallium	т	mg/L	6020		*		*	<0.002		lλ	
7440-61-1		Uranium	т	mg/L	6020		*		*	0.00206			
7440-62-2		Vanadium	T	mg/L	6010		*		*	0.00275	J		
7440-66-6		Zinc	т	mg/L	6020		*		*	0.00487	J	/ \	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			\
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7		Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5		Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		0.00035	J		
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000	0	8004-48	19	\	$\overline{}$
Facility's Loca	al Well or Spring Number (e.g., N	- w − 1	l, MW-2, et	c.)	T. BLANK 6	3	T. BLANK	7	371		1	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			\Box
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			
78-93-3	Methyl ethyl ketone	Ŧ	mg/L	8260	<0.005		<0.005		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005		<0.005			
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		\	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		\/\/	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		XX	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		Λ	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			
107-06-2	1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001			
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			$ \setminus $
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001			\Box
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	T	mg/L	8260	<0.001		<0.001		<0.001			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				0000-000	0	0000-000	0	8004-48	19	1	
Facility's Lo	cal Well or Spring Number (e.g., N	W-1	., MW-2, et	:c.)	T. BLANK	6	T. BLANK	7	371		\	- /
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			1/
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			/
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			/
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			
96-12-8	Propane, 1,2-Dibromo-3-chloro	T	mg/L	8011	<0.000198		<0.0000201		<0.0000201		\	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		l X	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		/\	
10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001			\
156-60-5	trans-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001			$\backslash $
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			\setminus
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001			\
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			\
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			\
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.106			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.106			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.106		1	
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.106			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.106			
12672-29-6	PCB-1248	т	ug/L	8082		*		*	<0.106		1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000	0	0000-0000		8004-4819	9	\	$\overline{}$
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	., MW-2, et	.c.)	T. BLANK	6	T. BLANK 7	,	371			
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F I G S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*	<0.106			\prod
11096-82-5	PCB-1260	T	ug/L	8082		*		*	<0.106			1/
11100-14-4	PCB-1268	T	ug/L	8082		*		*	<0.106			/
12587-46-1	Gross Alpha	T	pCi/L	9310		*		*	5.97	*		
12587-47-2	Gross Beta	T	pCi/L	9310		*		*	-0.887	*		
10043-66-0	Iodine-131	T	pCi/L			*		*		*	\ /	
13982-63-3	Radium-226	T	pCi/L	903.1		*		*	3.41	*	\/	
10098-97-2	Strontium-90	T	pCi/L	905.0		*		*	-2.86	*	l Y	
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*	0.913	*	\setminus	
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*	1.53	*	/\	
10028-17-8	Tritium	T	pCi/L	906.0		*		*	138	*		
s0130	Chemical Oxygen Demand	T	mg/L	410.4		*		*	7.49	J	/ \	
57-12-5	Cyanide	Т	mg/L	9012		*		*	<0.2			\
20461-54-5	Iodide	T	mg/L	300.0		*		*	<0.1			\
s0268	Total Organic Carbon	Т	mg/L	9060		*		*	2.27			\prod
s0586	Total Organic Halides	T	mg/L	9020		*		*	0.00696	J		\prod
												\Box
		П									/	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4798 MW357	MW357UG3-14	Gross alpha	*	TPU is 5.23. Rad error is 5.23.
		Gross beta		TPU is 6.45. Rad error is 6.12.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.55. Rad error is 1.48.
		Strontium-90	*	TPU is 3.63. Rad error is 3.59.
		Technetium-99		TPU is 13.6. Rad error is 13.3.
		Thorium-230	*	TPU is 5.05. Rad error is 4.96.
		Tritium	*	TPU is 92.2. Rad error is 92.1.
3004-4799 MW358	MW358UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 4.57. Rad error is 4.56.
		Gross beta		TPU is 13.1. Rad error is 11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 1.95. Rad error is 1.85.
		Strontium-90	*	TPU is 3.99. Rad error is 3.95.
		Technetium-99		TPU is 15.3. Rad error is 14.5.
		Thorium-230	*	TPU is 3.96. Rad error is 3.92.
		Tritium	*	TPU is 139. Rad error is 139.
3004-0981 MW359	MW359UG3-14	Gross alpha	*	TPU is 3.05. Rad error is 3.04.
		Gross beta	*	TPU is 4.84. Rad error is 4.75.
		lodine-131		During sampling, the well went dry; therefore, no sampl was collected.
		Radium-226	*	TPU is 1.14. Rad error is 1.13.
		Strontium-90	*	TPU is 2.63. Rad error is 2.63.
		Technetium-99	*	TPU is 12. Rad error is 12.
		Thorium-230	*	TPU is 3.66. Rad error is 3.63.
		Tritium	*	TPU is 88.7. Rad error is 88.7.
8004-4800 MW360	MW360UG3-14	Gross alpha	*	TPU is 2.82. Rad error is 2.81.
		Gross beta	*	TPU is 4.69. Rad error is 4.69.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 2.15. Rad error is 2.09.
		Strontium-90	*	TPU is 2.68. Rad error is 2.68.
		Technetium-99	*	TPU is 12.5. Rad error is 12.5.
		Thorium-230	*	TPU is 3.01. Rad error is 3.
		Tritium	*	TPU is 96.7. Rad error is 96.6.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4795 MW361	MW361UG3-14	Gross alpha	*	TPU is 6.09. Rad error is 6.04.
		Gross beta		TPU is 11.5. Rad error is 10.6.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.85. Rad error is 1.74.
		Strontium-90	*	TPU is 2.49. Rad error is 2.49.
		Technetium-99		TPU is 13.9. Rad error is 13.2.
		Thorium-230	*	TPU is 3.06. Rad error is 3.04.
		Tritium	*	TPU is 98.6. Rad error is 98.
3004-0986 MW362	MW362UG3-14	Gross alpha	*	TPU is 7.81. Rad error is 7.65.
		Gross beta	*	TPU is 6.28. Rad error is 6.21.
		lodine-131		During sampling, the well went dry; therefore, no sampl was collected.
		Radium-226	*	TPU is 1.38. Rad error is 1.38.
		Strontium-90	*	TPU is 2.65. Rad error is 2.65.
		Technetium-99	*	TPU is 12.3. Rad error is 12.3.
		Thorium-230	*	TPU is 3.91. Rad error is 3.9.
		Tritium	*	TPU is 87.1. Rad error is 87.
8004-4796 MW363	MW363UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 4.43. Rad error is 4.43.
		Gross beta	*	TPU is 8.42. Rad error is 8.23.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 1.51. Rad error is 1.48.
		Strontium-90	*	TPU is 3.65. Rad error is 3.65.
		Technetium-99	*	TPU is 13.6. Rad error is 13.4.
		Thorium-230	*	TPU is 2.6. Rad error is 2.59.
		Tritium	*	TPU is 145. Rad error is 144.
004-4797 MW364	MW364UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 5.01. Rad error is 5.
		Gross beta		TPU is 11.6. Rad error is 9.93.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 0.996. Rad error is 0.996.
		Strontium-90	*	TPU is 2.49. Rad error is 2.49.
		Technetium-99		TPU is 15.7. Rad error is 14.6.
		Thorium-230	*	TPU is 2.55. Rad error is 2.55.
		Tritium		TPU is 141. Rad error is 140.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0984 MW365	MW365UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 3.38. Rad error is 3.37.
		Gross beta	*	TPU is 5.24. Rad error is 5.22.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226	*	TPU is 1.33. Rad error is 1.33.
		Strontium-90	*	TPU is 3.24. Rad error is 3.24.
		Technetium-99	*	TPU is 12.4. Rad error is 12.4.
		Thorium-230	*	TPU is 3.29. Rad error is 3.28.
		Tritium	*	TPU is 139. Rad error is 139.
8004-0982 MW366	MW366UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 4.57. Rad error is 4.57.
		Gross beta		TPU is 12.8. Rad error is 10.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 1.51. Rad error is 1.48.
		Strontium-90	*	TPU is 4.18. Rad error is 4.15.
		Technetium-99		TPU is 15.9. Rad error is 14.8.
		Thorium-230	*	TPU is 3.81. Rad error is 3.78.
		Tritium	*	TPU is 133. Rad error is 133.
8004-4793 MW367	MW367UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 5.05. Rad error is 5.05.
		Gross beta		TPU is 13.8. Rad error is 11.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 2.21. Rad error is 2.11.
		Strontium-90	*	TPU is 2.01. Rad error is 2.01.
		Technetium-99		TPU is 14.7. Rad error is 14.
		Thorium-230	*	TPU is 2.09. Rad error is 2.08.
		Tritium	*	TPU is 146. Rad error is 144.
8004-0983 MW368	MW368UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 6.71. Rad error is 6.65.
		Gross beta	*	TPU is 8.25. Rad error is 8.24.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226	*	TPU is 1.5. Rad error is 1.46.
		Strontium-90	*	TPU is 2.82. Rad error is 2.82.
		Technetium-99	*	TPU is 13.9. Rad error is 13.9.
		Thorium-230	*	TPU is 3.66. Rad error is 3.65.
		Tritium	*	TPU is 138. Rad error is 137.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4820 MW369	MW369UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 6.95. Rad error is 6.91.
		Gross beta		TPU is 8.28. Rad error is 7.88.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.86. Rad error is 1.81.
		Strontium-90	*	TPU is 2.22. Rad error is 2.22.
		Technetium-99		TPU is 15.3. Rad error is 14.8.
		Thorium-230	*	TPU is 3.54. Rad error is 3.52.
		Tritium	*	TPU is 136. Rad error is 136.
8004-4818 MW370	MW370UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 4.08. Rad error is 4.08.
		Gross beta		TPU is 10.9. Rad error is 9.99.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.32. Rad error is 1.28.
		Strontium-90	*	TPU is 3.16. Rad error is 3.09.
		Technetium-99		TPU is 14.4. Rad error is 14.1.
		Thorium-230	*	TPU is 4.21. Rad error is 4.19.
		Tritium	*	TPU is 140. Rad error is 140.
8004-4819 MW371	MW371UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 6.73. Rad error is 6.69.
		Gross beta	*	TPU is 10.2. Rad error is 10.1.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 1.94. Rad error is 1.91.
		Strontium-90	*	TPU is 3.84. Rad error is 3.84.
		Technetium-99	*	TPU is 13.5. Rad error is 13.5.
		Thorium-230	*	TPU is 4.01. Rad error is 3.94.
		Tritium	*	TPU is 133. Rad error is 133.
8004-4808 MW372	MW372UG3-14	Gross alpha	*	TPU is 4.07. Rad error is 4.07.
		Gross beta	*	TPU is 5.88. Rad error is 5.75.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 1.56. Rad error is 1.56.
		Strontium-90	*	TPU is 2.01. Rad error is 2.01.
		Technetium-99	*	TPU is 12.5. Rad error is 12.4.
		Thorium-230	*	TPU is 3.03. Rad error is 3.
		Tritium	*	TPU is 107. Rad error is 106.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4792 MW373	MW373UG3-14	Gross alpha	*	TPU is 4.84. Rad error is 4.84.
		Gross beta		TPU is 8.11. Rad error is 7.49.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	•	TPU is 1.66. Rad error is 1.61.
		Strontium-90	*	TPU is 2.71. Rad error is 2.71.
		Technetium-99		TPU is 14.9. Rad error is 14.1.
		Thorium-230	*	TPU is 4.34. Rad error is 4.26.
		Tritium	*	TPU is 88.7. Rad error is 88.7.
3004-0990 MW374	MW374UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 3.5. Rad error is 3.49.
		Gross beta	*	TPU is 8.64. Rad error is 8.63.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.87. Rad error is 1.82.
		Strontium-90	*	TPU is 4.41. Rad error is 4.35.
		Technetium-99	*	TPU is 13.3. Rad error is 13.3.
		Thorium-230	*	TPU is 3.39. Rad error is 3.37.
		Tritium	*	TPU is 143. Rad error is 143.
3004-0985 MW375	MW375UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 4.71. Rad error is 4.7.
		Gross beta	*	TPU is 6.58. Rad error is 6.58.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 2.28. Rad error is 2.21.
		Strontium-90	*	TPU is 1.7. Rad error is 1.7.
		Technetium-99	*	TPU is 12.7. Rad error is 12.7.
		Thorium-230	*	TPU is 3.45. Rad error is 3.44.
		Tritium	*	TPU is 139. Rad error is 139.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description										
3004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.										
		Chloride		During sampling, the well went dry; therefore, no sample was collected.										
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.										
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.										
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.										
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.										
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.										
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.										
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.										
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.										
		рH		During sampling, the well went dry; therefore, no sampl was collected.										
		Eh		During sampling, the well went dry; therefore, no sampl was collected.										
		Temperature		During sampling, the well went dry; therefore, no sampl was collected.										
		Aluminum		During sampling, the well went dry; therefore, no sampl was collected.										
		Antimony		During sampling, the well went dry; therefore, no sampling was collected.										
		Arsenic		During sampling, the well went dry; therefore, no sampl was collected.										
		Barium		During sampling, the well went dry; therefore, no sampl was collected.										
		Beryllium		During sampling, the well went dry; therefore, no sampl was collected.										
												Boron		During sampling, the well went dry; therefore, no sampl was collected.
		Cadmium		During sampling, the well went dry; therefore, no sampl was collected.										
		Calcium		During sampling, the well went dry; therefore, no sampl was collected.										
		Chromium		During sampling, the well went dry; therefore, no sampl was collected.										
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.										
		Copper		During sampling, the well went dry; therefore, no sampl was collected.										
		Iron		During sampling, the well went dry; therefore, no sampling was collected.										
		Lead		During sampling, the well went dry; therefore, no sampl was collected.										

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Magnesium		During sampling, the well went dry; therefore, no sampl was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry, therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.
		Nickel		During sampling, the well went dry; therefore, no samp was collected.
		Potassium		During sampling, the well went dry; therefore, no samp was collected.
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.
		Selenium		During sampling, the well went dry; therefore, no samp was collected.
		Silver		During sampling, the well went dry; therefore, no samp was collected.
		Sodium		During sampling, the well went dry; therefore, no samp was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description			
8004-0988 MW376		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.			
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.			
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.			
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no samplwas collected.			
		Carbon disulfide		During sampling, the well went dry; therefore, no sampl was collected.			
		Chloroethane		During sampling, the well went dry; therefore, no sampl was collected.			
		Chloroform		During sampling, the well went dry; therefore, no sampl was collected.			
		Methyl chloride		During sampling, the well went dry; therefore, no sampl was collected.			
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.			
		Methylene bromide		During sampling, the well went dry; therefore, no sampl was collected.			
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.			
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.			
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no samp was collected.			
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no samp was collected.			
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.			
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.			
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.			
					1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
							Vinyl chloride
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.			
		Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.			
		Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.			
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.			
		lodomethane		During sampling, the well went dry; therefore, no samp was collected.			
		Dibromochloromethane		During sampling, the well went dry; therefore, no samp was collected.			
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.			

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description			
004-0988 MW376		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.			
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.			
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.			
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.			
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.			
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.			
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.			
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.			
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.			
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.			
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.			
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.			
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.			
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.			
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.			
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.			
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.			
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.			
					PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.			
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.			
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.			
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.			
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.			
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.			
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.			

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring	Facility			
Point	Sample ID	Constituent	Flag	Description
8004-0988 MW376		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		Iodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description									
8004-0989 MW377		Bromide		During sampling, the well went dry; therefore, no sample was collected.									
		Chloride		During sampling, the well went dry; therefore, no sample was collected.									
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.									
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.									
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.									
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.									
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.									
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.									
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.									
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.									
		pН		During sampling, the well went dry; therefore, no sample was collected.									
		Eh		During sampling, the well went dry; therefore, no sample was collected.									
		Temperature		During sampling, the well went dry; therefore, no sample was collected.									
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.									
		Antimony		During sampling, the well went dry; therefore, no sampl was collected.									
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.									
		Barium		During sampling, the well went dry; therefore, no sample was collected.									
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.									
											Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.									
		Calcium		During sampling, the well went dry; therefore, no sample was collected.									
		Chromium		During sampling, the well went dry; therefore, no sample was collected.									
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.									
		Copper		During sampling, the well went dry; therefore, no sample was collected.									
		Iron		During sampling, the well went dry; therefore, no sampling was collected.									
		Lead		During sampling, the well went dry; therefore, no sampl was collected.									
				25-13 THE REPORT OF THE PARTY O									

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: KY8-890-008-982 / 1
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description			
004-0989 MW377		Magnesium		During sampling, the well went dry; therefore, no sampl was collected.			
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.			
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.			
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.			
		Nickel		During sampling, the well went dry; therefore, no samp was collected.			
		Potassium		During sampling, the well went dry; therefore, no samp was collected.			
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.			
		Selenium		During sampling, the well went dry; therefore, no samp was collected.			
		Silver		During sampling, the well went dry; therefore, no samp was collected.			
		Sodium		During sampling, the well went dry; therefore, no samp was collected.			
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.			
		Thallium		During sampling, the well went dry; therefore, no samp was collected.			
		Uranium		During sampling, the well went dry; therefore, no samp was collected.			
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.			
		Zinc		During sampling, the well went dry; therefore, no samp was collected.			
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.			
		Acetone		During sampling, the well went dry; therefore, no samp was collected.			
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.			
						Acrylonitrile	
		Benzene		During sampling, the well went dry; therefore, no samp was collected.			
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.			
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.			
		Styrene		During sampling, the well went dry; therefore, no samp was collected.			
		Toluene		During sampling, the well went dry; therefore, no samp was collected.			
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.			
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.			

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description	
004-0989 MW377		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.	
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.	
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.	
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.	
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.	
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.	
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.	
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.	
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.	
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.	
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.	
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.	
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.	
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.	
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.	
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.	
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.	
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.	
			PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.	
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.	
		Gross beta		During sampling, the well went dry; therefore, no sampling was collected.	
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.	
		Radium-226		During sampling, the well went dry; therefore, no sampling was collected.	
		Strontium-90		During sampling, the well went dry; therefore, no sampl was collected.	
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377	·	Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
0000-0000 QC	RI1UG3-14	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	*	TPU is 3.49. Rad error is 3.49.
		Gross beta	*	TPU is 3.97. Rad error is 3.97.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 2.08. Rad error is 1.98.
		Strontium-90	*	TPU is 3.96. Rad error is 3.88.
		Technetium-99	*	TPU is 12. Rad error is 12.
		Thorium-230	*	TPU is 4.05. Rad error is 4.
		Tritium	*	TPU is 101. Rad error is 99.9.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: KY8-890-008-982 / 1
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG3-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Gross alpha	*	TPU is 3.58. Rad error is 3.58.
		Gross beta	*	TPU is 3.78. Rad error is 3.78.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 1.36. Rad error is 1.34.
		Strontium-90	*	TPU is 3.68. Rad error is 3.67.
		Technetium-99	*	TPU is 11.9. Rad error is 11.8.
		Thorium-230	*	TPU is 3.08. Rad error is 3.07.
		Tritium	*	TPU is 91.1. Rad error is 91.1.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG3-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		pН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG3-14	Zinc	1	Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG3-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рH		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG3-14	Zinc	1	Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
	PCB-1260		Analysis of constituent not required and not performed	
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG3-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG3-14	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG3-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG3-14	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB5UG3-14	Bromide	1	Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		pН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5UG3-14	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None
For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB6UG3-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		pН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB6UG3-14	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
	Cyanide			Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB7UG3-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID: <u>None</u>
For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB7UG3-14	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
8004-4819 MW371	MW371DUG3-14	Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha	*	TPU is 6.66. Rad error is 6.59.
		Gross beta	*	TPU is 6.26. Rad error is 6.26.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 2.08. Rad error is 2.01.
		Strontium-90	*	TPU is 3.59. Rad error is 3.59.
		Technetium-99	*	TPU is 14. Rad error is 14.
		Thorium-230	*	TPU is 3.85. Rad error is 3.82.
		Tritium	*	TPU is 149. Rad error is 146.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Facility: U.S. DOE – Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2014 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data included two background wells for comparison with at least three test wells or sidegradient wells (Exhibit 1). The second quarter 2014 data used to conduct the statistical analyses was collected in April 2014. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals with established maximum contaminant levels (MCLs), no statistical analysis was performed. Parameters that have MCLs can be found in 401 KAR 47:030, Section 6. For parameters with no established MCL, the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. Results of the one-sided tolerance interval statistical test conclude whether the data show a statistically significant increase of concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the data for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant increase in concentration compared to the background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:1

- 1. The tolerance limit (TL) was calculated for the background data.
 - For each parameter, the background data were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be potentially normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well has increased concentration with respect to background data.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit 2 presents the parameters from the available data set and the statistical test performed using the one-sided tolerance interval.

Excluding parameters that have an MCL, Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with boldface type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, second quarter 2014. The observations that are listed are not background data. Background data are presented on pages D-23 through D-104. The sampling dates associated with background data are listed next to the result on pages D-23 through D-104. When field duplicate data are available, the higher of the two readings is retained for further evaluation.

lower $TL = X - (K \times S)$

¹ For pH, two-sided TL (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

Exhibit 1. Station Identification for Monitoring Wells Analyzed

Station	Type	Aquifer
MW357	TW	URGA
MW358	TW	LRGA
MW359	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365	TW	UCRS
MW366	SG	URGA
MW367	SG	LRGA
MW368	SG	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374	BG	UCRS
MW375	SG	UCRS
MW376*	SG	UCRS
MW377*	SG	UCRS

BG: upgradient or background wells TW: downgradient or test wells SG: sidegradient wells *Well was dry this quarter, and a groundwater sample could not be collected.

Exhibit 2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test

Parameters

2-Butanone

Aluminum

Beryllium

Boron

Bromide Calcium

Chemical Oxygen Demand (COD)

Chloride

cis-1,2-Dichloroethene

Cobalt

Conductivity

Copper

Dissolved Oxygen

Dissolved Solids

Iron

Magnesium

Manganese

Molybdenum

Nickel

Oxidation-Reduction Potential

PCB, Total

PCB-1242

pH*

Sodium

Sulfate

Technetium-99

Toluene

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Uranium

Vanadium

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if statistically significant deviations exist in concentrations with respect to upgradient well data.

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	0	7	0	No
1,1,2,2-Tetrachloroethane	7	0	7	0	No
1,1,2-Trichloroethane	7	0	7	0	No
1,1-Dichloroethane	7	0	7	0	No
1,2,3-Trichloropropane	7	0	7	0	No
1,2-Dibromo-3-chloropropane	7	0	7	0	No
1,2-Dibromoethane	7	0	7	0	No
1,2-Dichlorobenzene	7	0	7	0	No
1,2-Dichloropropane	7	0	7	0	No
2-Butanone	7	0	7	0	No
2-Hexanone	7	0	7	0	No
4-Methyl-2-pentanone	7	0	7	0	No
Acetone	7	0	7	0	No
Acrolein	7	0	7	0	No
Acrylonitrile	7	0	7	0	No
Aluminum	7	0	0	7	YES
Antimony	7	0	7	0	No
Beryllium	7	0	6	1	YES
Boron	7	0	3	4	YES
Bromide	7	0	4	3	YES
Bromochloromethane	7	0	7	0	No
Bromodichloromethane	7	0	7	0	No
Bromoform	7	0	7	0	No
Bromomethane	7	0	7	0	No
Calcium	7	0	0	7	YES
Carbon disulfide	7	0	7	0	No
Chemical Oxygen Demand (COD)	7	0	4	3	YES
Chloride	7	0	0	7	YES
Chlorobenzene	7	0	7	0	No
Chloroethane	7	0	7	0	No
Chloroform	7	0	7	0	No
Chloromethane	7	0	7	0	No
cis-1,2-Dichloroethene	7	0	7	0	No
cis-1,3-Dichloropropene	7	0	7	0	No
Cobalt	7	0	1	6	YES
Conductivity	7	0	0	7	YES
Copper	7	0	6	1	YES
Cyanide	7	0	7	0	No
Dibromochloromethane	7	0	7	0	No
Dibromomethane	7	0	7	0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total	7	0	7	0	No
Dissolved Oxygen	7	0	0	7	YES
Dissolved Solids	7	0	0	7	YES
Ethylbenzene	7	0	7	0	No
Iodide	7	0	7	0	No
Iodomethane	7	0	7	0	No
Iron	7	0	0	7	YES
Magnesium	7	0	0	7	YES
Manganese	7	0	0	7	YES
Methylene chloride	7	0	7	0	No
Molybdenum	7	0	2	5	YES
Nickel	7	0	0	7	YES
Oxidation-Reduction Potential	7	0	0	7	YES
PCB, Total	7	0	5	2	YES
PCB-1016	7	0	7	0	No
PCB-1221	7	0	7	0	No
PCB-1232	7	0	7	0	No
PCB-1242	7	0	5	2	YES
PCB-1248	7	0	7	0	No
PCB-1254	7	0	7	0	No
PCB-1260	7	0	7	0	No
PCB-1268	7	0	7	0	No
рН	7	0	0	7	YES
Potassium	7	0	7	0	No
Radium-226	7	0	7	0	No
Rhodium	7	0	7	0	No
Sodium	7	0	0	7	YES
Styrene	7	0	7	0	No
Sulfate	7	0	0	7	YES
Tantalum	7	0	7	0	No
Technetium-99	7	0	7	0	No
Tetrachloroethene	7	0	7	0	No
Thallium	7	0	7	0	No
Thorium-230	7	0	7	0	No
Toluene	7	0	7	0	No
Total Organic Carbon (TOC)	7	0	0	7	YES
Total Organic Halides (TOX)	7	0	1	6	YES
trans-1,2-Dichloroethene	7	0	7	0	No
trans-1,3-Dichloropropene	7	0	7	0	No
Trans-1,4-Dichloro-2-butene	7	0	7	0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Trichlorofluoromethane	7	0	7	0	No
Uranium	7	0	0	7	YES
Vanadium	7	0	4	3	YES
Vinyl acetate	7	0	7	0	No
Zinc	7	0	7	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	No
1,1,2,2-Tetrachloroethane	6	0	6	0	No
1,1,2-Trichloroethane	6	0	6	0	No
1,1-Dichloroethane	6	0	6	0	No
1,2,3-Trichloropropane	6	0	6	0	No
1,2-Dibromo-3-chloropropane	6	0	6	0	No
1,2-Dibromoethane	6	0	6	0	No
1,2-Dichlorobenzene	6	0	6	0	No
1,2-Dichloropropane	6	0	6	0	No
2-Butanone	6	0	5	1	YES
2-Hexanone	6	0	6	0	No
4-Methyl-2-pentanone	6	0	6	0	No
Acetone	6	0	6	0	No
Acrolein	6	0	6	0	No
Acrylonitrile	6	0	6	0	No
Aluminum	6	0	3	3	YES
Antimony	6	0	6	0	No
Beryllium	6	0	6	0	No
Boron	6	0	0	6	YES
Bromide	6	0	0	6	YES
Bromochloromethane	6	0	6	0	No
Bromodichloromethane	6	0	6	0	No
Bromoform	6	0	6	0	No
Bromomethane	6	0	6	0	No
Calcium	6	0	0	6	YES
Carbon disulfide	6	0	6	0	No
Chemical Oxygen Demand (COD)	6	0	5	1	YES
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	No
Chloroethane	6	0	6	0	No
Chloroform	6	0	6	0	No
Chloromethane	6	0	6	0	No
cis-1,2-Dichloroethene	6	0	5	1	YES
cis-1,3-Dichloropropene	6	0	6	0	No
Cobalt	6	0	0	6	YES
Conductivity	6	0	0	6	YES
Copper	6	0	6	0	No
Cyanide	6	0	6	0	No
Dibromochloromethane	6	0	6	0	No
Dibromomethane	6	0	6	0	No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistica Analysis?
Dimethylbenzene, Total	6	0	6	0	No
Dissolved Oxygen	6	0	0	6	YES
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	No
Iodide	6	0	6	0	No
Iodomethane	6	0	6	0	No
Iron	6	0	0	6	YES
Magnesium	6	0	0	6	YES
Manganese	6	0	0	6	YES
Methylene chloride	6	0	6	0	No
Molybdenum	6	0	4	2	YES
Nickel	6	0	0	6	YES
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	4	2	YES
PCB-1016	6	0	6	0	No
PCB-1221	6	0	6	0	No
PCB-1232	6	0	6	0	No
PCB-1242	6	0	4	2	YES
PCB-1248	6	0	6	0	No
PCB-1254	6	0	6	0	No
PCB-1260	6	0	6	0	No
PCB-1268	6	0	6	0	No
pН	6	0	0	6	YES
Potassium	6	0	6	0	No
Radium-226	6	0	6	0	No
Rhodium	6	0	6	0	No
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	No
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	No
Technetium-99	6	0	3	3	YES
Tetrachloroethene	6	0	6	0	No
Thallium	6	0	6	0	No
Thorium-230	6	0	6	0	No
Toluene	6	0	5	1	YES
Total Organic Carbon (TOC)	6	0	0	6	YES
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	No
trans-1,3-Dichloropropene	6	0	6	0	No
Trans-1,4-Dichloro-2-butene	6	0	6	0	No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistica Analysis?
Trichlorofluoromethane	6	0	6	0	No
Uranium	6	0	5	1	YES
Vanadium	6	0	6	0	No
Vinyl acetate	6	0	6	0	No
Zinc	6	0	6	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	No
1,1,2,2-Tetrachloroethane	6	0	6	0	No
1,1,2-Trichloroethane	6	0	6	0	No
1,1-Dichloroethane	6	0	6	0	No
1,2,3-Trichloropropane	6	0	6	0	No
1,2-Dibromo-3-chloropropane	6	0	6	0	No
1,2-Dibromoethane	6	0	6	0	No
1,2-Dichlorobenzene	6	0	6	0	No
1,2-Dichloropropane	6	0	6	0	No
2-Butanone	6	0	6	0	No
2-Hexanone	6	0	6	0	No
4-Methyl-2-pentanone	6	0	6	0	No
Acetone	6	0	6	0	No
Acrolein	6	0	6	0	No
Acrylonitrile	6	0	6	0	No
Aluminum	6	0	5	1	YES
Antimony	6	0	6	0	No
Beryllium	6	0	6	0	No
Boron	6	0	1	5	YES
Bromide	6	0	0	6	YES
Bromochloromethane	6	0	6	0	No
Bromodichloromethane	6	0	6	0	No
Bromoform	6	0	6	0	No
Bromomethane	6	0	6	0	No
Calcium	6	0	0	6	YES
Carbon disulfide	6	0	6	0	No
Chemical Oxygen Demand (COD)	6	0	5	1	YES
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	No
Chloroethane	6	0	6	0	No
Chloroform	6	0	6	0	No
Chloromethane	6	0	6	0	No
cis-1,2-Dichloroethene	6	0	6	0	No
cis-1,3-Dichloropropene	6	0	6	0	No
Cobalt	6	0	0	6	YES
Conductivity	6	0	0	6	YES
Copper	6	0	6	0	No
Cyanide	6	0	6	0	No
Dibromochloromethane	6	0	6	0	No
Dibromomethane	6	0	6	0	No
Dimethylbenzene, Total	6	0	6	0	No

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dissolved Oxygen	6	0	0	6	YES
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	No
Iodide	6	0	6	0	No
Iodomethane	6	0	6	0	No
Iron	6	0	0	6	YES
Magnesium	6	0	0	6	YES
Manganese	6	0	0	6	YES
Methylene chloride	6	0	6	0	No
Molybdenum	6	0	5	1	YES
Nickel	6	0	0	6	YES
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	6	0	No
PCB-1016	6	0	6	0	No
PCB-1221	6	0	6	0	No
PCB-1232	6	0	6	0	No
PCB-1242	6	0	6	0	No
PCB-1248	6	0	6	0	No
PCB-1254	6	0	6	0	No
PCB-1260	6	0	6	0	No
PCB-1268	6	0	6	0	No
pH	6	0	0	6	YES
Potassium	6	0	6	0	No
Radium-226	6	0	6	0	No
Rhodium	6	0	6	0	No
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	No
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	No
Technetium-99	6	0	0	6	YES
Tetrachloroethene	6	0	6	0	No
Thallium	6	0	6	0	No
Thorium-230	6	0	6	0	No
Toluene	6	0	6	0	No
Total Organic Carbon (TOC)	6	0	0	6	YES
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	No
trans-1,3-Dichloropropene	6	0	6	0	No
Trans-1,4-Dichloro-2-butene	6	0	6	0	No
Trichlorofluoromethane	6	0	6	0	No
Uranium	6	0	6	0	No
Vanadium	6	0	6	0	No

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Vinyl acetate	6	0	6	0	No
Zinc	6	0	6	0	No

Bold denotes parameters with at least one uncensored observation.

Discussion of Results

For the UCRS, URGA, and LRGA, the results of the one-sided upper tolerance interval test are presented on pages D-23 through D-104 and the statistician qualification statement is presented on page D-105. For the UCRS, URGA, and LRGA, the test was applied to 27, 28, and 22 parameters, respectively, listed in bold print in Exhibits 3, 4, and 5. A summary of statistically significant increases by well number is shown in Exhibit 6.

UCRS

In this quarter, statistical test results indicated there were statistically significant increases for dissolved oxygen, oxidation-reduction potential, and sulfate.

URGA

In this quarter, statistical test results indicated that there were statistically significant increases for calcium, chloride, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and toluene.

LRGA

In this quarter, statistical test results indicated that there were statistically significant increases for calcium, dissolved oxygen, oxidation-reduction potential, and technetium-99.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

Exhibit 6. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW359: Dissolved oxygen, oxidation-reduction potential, sulfate	MW357: Oxidation-reduction potential	MW358: Oxidation-reduction potential
MW362: Dissolved oxygen, oxidation-reduction potential	MW360: Oxidation-reduction potential	MW361: Oxidation-reduction potential
MW365: Dissolved oxygen, oxidation-reduction potential, sulfate	MW363: Oxidation-reduction potential	MW364: Dissolved oxygen, oxidation-reduction potential, technetium-99
MW368: Dissolved oxygen, oxidation-reduction potential, sulfate	MW366: Oxidation-reduction potential, toluene	MW367: Oxidation-reduction potential
MW371: Dissolved oxygen, Oxidation-reduction potential, sulfate	MW369: Oxidation-reduction potential, toluene	MW370: Oxidation-reduction potential
MW374: Dissolved oxygen, oxidation-reduction potential	MW372: Calcium, chloride, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate	MW373: Calcium, oxidation-reduction potential
MW375: Oxidation-reduction potential, sulfate		

Exhibit 7. Tests Summary for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No statistically significant increases relative to background data
Beryllium	Tolerance Interval	1.13	No statistically significant increases relative to background data
Boron	Tolerance Interval	1.24	No statistically significant increases relative to background data
Bromide	Tolerance Interval	0.34	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.95	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	1.31	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.45	No statistically significant increases relative to background data
Copper	Tolerance Interval	1.28	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.55	Statistically significant increases relative to background data in MW359, MW362, MW365, MW368, MW371, and MW374
Dissolved Solids	Tolerance Interval	0.42	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.98	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.27	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.89	No statistically significant increases relative to background data
Molybdenum	Tolerance Interval	1.65	No statistically significant increases relative to background data
Nickel	Tolerance Interval	0.98	No statistically significant increases relative to background data

Exhibit 7. Tests Summary for Qualified Parameters—UCRS (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	3.54	Statistically significant increases relative to background data in MW359, MW362, MW365, MW368, MW371, MW374, and MW375
PCB, Total	Tolerance Interval	0.92	No statistically significant increases relative to background data
PCB-1242	Tolerance Interval	1.41	No statistically significant increases relative to background data
рН	Tolerance Interval	0.05	No statistically significant deviations relative to background data
Sodium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	0.49	Statistically significant increases relative to background data in MW359, MW365, MW368, MW371, and MW375
Total Organic Carbon	Tolerance Interval	1.38	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	1.08	No statistically significant increases relative to background data
Uranium	Tolerance Interval	1.68	No statistically significant increases relative to background data
Vanadium	Tolerance Interval	1.32	No statistically significant increases relative to background data

CV: coefficient of variation

Exhibit 8. Tests Summary for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
2-Butanone	Tolerance Interval	0.89	No statistically significant increases relative to background data
Aluminum	Tolerance Interval	1.24	No statistically significant increases relative to background data
Boron	Tolerance Interval	0.84	No statistically significant increases relative to background data
Bromide	Tolerance Interval	0.00	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.29	Statistically significant increase relative to background data in MW372
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.10	Statistically significant increase relative to background data in MW372
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	0.85	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.12	Statistically significant increase relative to background data in MW372
Dissolved Oxygen	Tolerance Interval	0.76	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.16	Statistically significant increase relative to background data in MW372
Iron	Tolerance Interval	0.95	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.27	Statistically significant increase relative to background data in MW372
Manganese	Tolerance Interval	0.66	No statistically significant increases relative to background data
Molybdenum	Tolerance Interval	1.20	No statistically significant increases relative to background data
Nickel	Tolerance Interval	0.91	No statistically significant increases relative to background data

Exhibit 8. Tests Summary for Qualified Parameters—URGA (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.26	Statistically significant increases relative to background data in MW357, MW360, MW363, MW366, MW369, and MW372
PCB, Total	Tolerance Interval	0.90	No statistically significant increases relative to background data
PCB-1242	Tolerance Interval	1.36	No statistically significant increases relative to background data
рН	Tolerance Interval	0.03	No statistically significant deviations relative to background data
Sodium	Tolerance Interval	0.26	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	0.75	Statistically significant increase relative to background data in MW372
Technetium-99	Tolerance Interval	0.87	No statistically significant increases relative to background data
Toluene	Tolerance Interval	0.00	Statistically significant increase relative to background data in MW366 and MW369
Total Organic Carbon	Tolerance Interval	1.23	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.95	No statistically significant increases relative to background data
Uranium	Tolerance Interval	0.92	No statistically significant increases relative to background data

CV: coefficient of variation

Exhibit 9. Tests Summary for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No statistically significant increases relative to background data
Boron	Tolerance Interval	0.68	No statistically significant increases relative to background data
Bromide	Tolerance Interval	0.00	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.31	Statistically significant increases relative to background data in MW373
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.16	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	1.17	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.26	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.83	Statistically significant increases relative to background data in MW364
Dissolved Solids	Tolerance Interval	0.30	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.96	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.34	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.62	No statistically significant increases relative to background data
Molybdenum	Tolerance Interval	1.20	No statistically significant increases relative to background data
Nickel	Tolerance Interval	0.90	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	1.31	Statistically significant increases relative to background data in MW358, MW361, MW364, MW367, MW370, and MW373
рН	Tolerance Interval	0.03	No statistically significant deviations relative to background data

Exhibit 9. Tests Summary for Qualified Parameters—LRGA (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Sodium	Tolerance Interval	0.30	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	1.59	No statistically significant increases relative to background data
Technetium-99	Tolerance Interval	1.73	Statistically significant increases relative to background data in MW364
Total Organic Carbon	Tolerance Interval	1.96	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.98	No statistically significant increases relative to background data

CV: coefficient of variation

C-746-U Second Quarter 2014 Statistical Analysis Aluminum UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Statistics on Background D		Statistics on Background Data		Transformed Background Data from Upgradient Wells		
Well Number:	MW371	X = 3.300		Well Number:	MW371	
Date Collected	Result	S= 6.859 CV= 2.078		Date Collected	LN(Result)	
3/18/2002	2.240	K = 2.078 K factor** = 2.523		3/18/2002	0.806	
4/22/2002	0.200	TL= 20.604		4/22/2002	-1.609	
7/15/2002	0.200	12 20001		7/15/2002	-1.609	
10/8/2002	0.200	Because CV is greater to	*	10/8/2002	-1.609	
1/8/2003	0.200	logarithm of backgroun	d and test well results	1/8/2003	-1.609	
4/3/2003	0.200	were calculated.	_	4/3/2003	-1.609	
7/9/2003	0.200	Statistics on		7/9/2003	-1.609	
10/6/2003	0.200	Transformed		10/6/2003	-1.609	
Well Number:	MW374	Background Data		Well Number:	MW374	
Date Collected	Result	X = -0.371		Date Collected	LN(Result)	
10/8/2002	21.300	S= 1.678		10/8/2002	3.059	
1/7/2003	20.000	CV = -4.521		1/7/2003	2.996	
4/2/2003	4.110	K factor** = 2.523		4/2/2003	1.413	
7/9/2003	1.410			7/9/2003	0.344	
10/7/2003	1.090	TL= 3.863		10/7/2003	0.086	
1/6/2004	0.854			1/6/2004	-0.158	
4/7/2004	0.200			4/7/2004	-1.609	
7/14/2004	0.200			7/14/2004	-1.609	

Second Quarter 2014 Data Collected in April 2014		Second Quarter 2014 Dry/Partially Dry Wells		Transformed Second Quarter 2014 Data Collected in April 2014				
Well No. Result Gradient Result >TL?		Well No.	Gradient	Well Number	LN(Result)	Result >TL?		
MW359	0.135	Downgradient	N/A	MW376	Sidegradient	MW359	-2.002	NO
MW362	15.400	Downgradient	N/A	MW377	Sidegradient	MW362	2.734	NO
MW365	0.046	Downgradient	N/A			MW365	-3.081	NO
MW368	2.140	Sidegradient	N/A			MW368	0.761	NO
MW371	0.369	Upgradient	N/A			MW371	-0.997	NO
MW374	0.028	Upgradient	N/A			MW374	-3.583	NO
MW375	0.018	Sidegradient	N/A			MW375	-4.006	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Beryllium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Statistics on Background Data			Transformed Background Data from Upgradient Wells			
Well Number:	MW371	X = 0.002			Well Number:	MW371
Date Collected	Result	S= 0.003 CV= 1.125			Date Collected	LN(Result)
3/18/2002	0.005	K factor** = 2.	523		3/18/2002	-5.298
4/22/2002	0.005	TL= 0.009	323		4/22/2002	-5.298
7/15/2002	0.005	12 000			7/15/2002	-5.298
10/8/2002	0.001	Because CV is gre			10/8/2002	-6.908
1/8/2003	0.001		ground	d and test well results	1/8/2003	-6.908
4/3/2003	0.001	were calculated.			4/3/2003	-6.908
7/9/2003	0.001	Statistics on			7/9/2003	-6.908
10/6/2003	0.001	Transformed			10/6/2003	-6.908
Well Number:	MW374	Background Da	ata		Well Number:	MW374
Date Collected	Result	X = -6.462			Date Collected	LN(Result)
10/8/2002	0.010	S = 0.812			10/8/2002	-4.605
1/7/2003	0.001	CV= -0.126			1/7/2003	-6.908
4/2/2003	0.001	K factor** = 2.	522		4/2/2003	-6.908
7/9/2003	0.001		323		7/9/2003	-6.908
10/7/2003	0.001	TL = -4.413			10/7/2003	-6.908
1/6/2004	0.001				1/6/2004	-6.908
4/7/2004	0.001				4/7/2004	-6.908
7/14/2004	0.001				7/14/2004	-6.908

Second Quarter 2014 Data Collected in April 2014					Quarter 2014 tially Dry Wells	Transformed Second Quarter 2014 Data Collected in April 2014			
Well No.	Result	Gradient Resul	t>TL?	Well No.	Gradient	7	Well Number	LN(Result)	Result >TL?
MW359	0.001	Downgradient	N/A	MW376	Sidegradient		MW359	-7.601	NO
MW362	0.000	Downgradient	N/A	MW377	Sidegradient		MW362	-7.729	NO
MW365	0.001	Downgradient	N/A				MW365	-7.601	NO
MW368	0.001	Sidegradient	N/A				MW368	-7.601	NO
MW371	0.001	Upgradient	N/A				MW371	-7.601	NO
MW374	0.001	Upgradient	N/A				MW374	-7.601	NO
MW375	0.001	Sidegradient	N/A				MW375	-7.601	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Boron UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Ups	
Well Number: MW3/1		X = 0.650		Well Number:	MW371
Date Collected	Result	S = 0.805 CV = 1.238		Date Collected	LN(Result)
3/18/2002	2.000	K = 1.236 K factor** = 2.523		3/18/2002	0.693
4/22/2002	2.000	TL= 2.681		4/22/2002	0.693
7/15/2002	2.000	12 2.001	J	7/15/2002	0.693
10/8/2002	0.200	Because CV is greater to	· ·	10/8/2002	-1.609
1/8/2003	0.200	logarithm of backgroun	d and test well results	1/8/2003	-1.609
4/3/2003	0.200	were calculated.		4/3/2003	-1.609
7/9/2003	0.200	Statistics on		7/9/2003	-1.609
10/6/2003	0.200	Transformed		10/6/2003	-1.609
Well Number:	MW374	Background Data]	Well Number:	MW374
Date Collected	Result	X = -1.034		Date Collected	LN(Result)
10/8/2002	2.000	S= 1.030		10/8/2002	0.693
1/7/2003	0.200	CV= -0.996		1/7/2003	-1.609
4/2/2003	0.200	K factor** = 2.523		4/2/2003	-1.609
7/9/2003	0.200			7/9/2003	-1.609
10/7/2003	0.200	TL= 1.564]	10/7/2003	-1.609
1/6/2004	0.200			1/6/2004	-1.609
4/7/2004	0.200			4/7/2004	-1.609
7/14/2004	0.200			7/14/2004	-1.609

Second Quarter 2014 Data Collected in April 2014				Quarter 2014 tially Dry Wells	Transformed Second Quarter 2014 Data Collected in April 2014			
Well No.	Result	Gradient Resu	lt >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW359	0.015	Downgradient	N/A	MW376	Sidegradient	MW359	-4.200	NO
MW362	0.031	Downgradient	N/A	MW377	Sidegradient	MW362	-3.487	NO
MW365	0.015	Downgradient	N/A			MW365	-4.200	NO
MW368	0.027	Sidegradient	N/A			MW368	-3.612	NO
MW371	0.015	Upgradient	N/A			MW371	-4.200	NO
MW374	0.011	Upgradient	N/A			MW374	-4.528	NO
MW375	0.012	Sidegradient	N/A			MW375	-4.406	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Bromide UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	1.000
4/22/2002	1.000
7/15/2002	1.000
10/8/2002	1.000
1/8/2003	1.000
4/3/2003	1.000
7/9/2003	1.000
10/6/2003	1.000
Well Number:	MW374
Date Collected	Result
10/8/2002	2.100
1/7/2003	2.100
4/2/2003	1.900
7/9/2003	1.000

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data

X= 1.394 S= 0.474 CV= 0.340 K factor** = 2.523 TL= 2.590

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

1.900

1.900

1.800

1.600

Well No.	Result	Gradient 1	Result >TL?
MW359	0.200	Downgradier	nt NO
MW362	0.161	Downgradier	nt NO
MW365	0.200	Downgradier	nt NO
MW368	0.200	Sidegradient	NO
MW371	0.152	Upgradient	NO
MW374	0.964	Upgradient	NO
MW375	0.200	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Calcium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	17.200
4/22/2002	22.400
7/15/2002	25.500
10/8/2002	26.400
1/8/2003	27.200
4/3/2003	30.300
7/9/2003	25.900
10/6/2003	27.000
Well Number:	MW374
Date Collected	Result
10/8/2002	67.300
1/7/2003	60.600
4/2/2003	47.200
7/9/2003	34.700
10/7/2003	37.100
1/6/2004	37.700
4/7/2004	32.200

Statistics on Background Data

X= 34.100 S= 13.637 CV= 0.400 K factor** = 2.523 TL= 68.505

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

26.900

7/14/2004

Well No.	Result	Gradient	Result >TL?
MW359	7.320	Downgradie	nt NO
MW362	16.900	Downgradie	nt NO
MW365	22.400	Downgradie	nt NO
MW368	19.600	Sidegradient	NO
MW371	28.000	Upgradient	NO
MW374	22.000	Upgradient	NO
MW375	15.400	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	35.000
4/22/2002	35.000
7/15/2002	35.000
10/8/2002	35.000
1/8/2003	35.000
4/3/2003	35.000
7/9/2003	35.000
10/6/2003	35.000
Well Number:	MW374
Date Collected	Result
10/8/2002	260.000
1/7/2003	214.000
4/2/2003	147.000
7/9/2003	72.000
10/7/2003	56.000

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data

X= 72.938 S= 70.749 CV= 0.970 K factor** = 2.523 TL= 251.437

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

68.000

35.000

35.000

Well No.	Result	Gradient	Result >TL?
MW359	20.000	Downgradie	nt NO
MW362	20.000	Downgradie	nt NO
MW365	20.000	Downgradie	nt NO
MW368	7.490	Sidegradient	NO
MW371	7.490	Upgradient	NO
MW374	9.930	Upgradient	NO
MW375	20.000	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
7/15/2002	8.300
10/8/2002	7.600
1/8/2003	7.700
4/3/2003	8.800
7/9/2003	8.100
10/6/2003	8.600
1/7/2004	7.600
4/6/2004	7.600
Well Number:	MW374

Date Collected

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data

X= 91.300 S= 86.959 CV= 0.952 K factor** = 2.523 TL= 310.697

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Result

199.200

199.700

171.800

178.700

175.600

170.400

156.400

144.700

Well No.	Result	Gradient	Result >TL?
MW359	1.300	Downgradie	nt NO
MW362	9.810	Downgradie	nt NO
MW365	4.620	Downgradie	nt NO
MW368	2.330	Sidegradient	NO
MW371	6.600	Upgradient	NO
MW374	82.200	Upgradient	NO
MW375	4.660	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Cobalt UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data				
Well Number:	MW371	$\mathbf{X} = 0.007$		Well Number:	MW371	
Date Collected	Result	S= 0.009 CV= 1.314		Date Collected	LN(Result)	
3/18/2002	0.025	K factor** = 2.523		3/18/2002	-3.689	
4/22/2002	0.025	TL = 0.031		4/22/2002	-3.689	
7/15/2002	0.025	12 0.001		7/15/2002	-3.689	
10/8/2002	0.001	Because CV is greater the	*	10/8/2002	-6.908	
1/8/2003	0.001	logarithm of background	d and test well results	1/8/2003	-6.908	
4/3/2003	0.001	were calculated.		4/3/2003	-6.908	
7/9/2003	0.001	Statistics on		7/9/2003	-6.908	
10/6/2003	0.001	Transformed		10/6/2003	-6.908	
Well Number:	MW374	Background Data		Well Number:	MW374	
Date Collected	Result	X= -5.843		Date Collected	LN(Result)	
10/8/2002	0.010	S= 1.392		10/8/2002	-4.605	
1/7/2003	0.010	CV = -0.238		1/7/2003	-4.605	
4/2/2003	0.010	K factor** = 2.523		4/2/2003	-4.605	
7/9/2003	0.002			7/9/2003	-6.432	
10/7/2003	0.001	TL = -2.331		10/7/2003	-6.908	
1/6/2004	0.001			1/6/2004	-6.908	
4/7/2004	0.001			4/7/2004	-6.908	
7/14/2004	0.001			7/14/2004	-6.908	

Second Quarter 2014 Data Collected in April 2014		Second Quarter 2014 Dry/Partially Dry Wells		Transformed Second Quarter 2014 Data Collected in April 2014				
Well No.	Result	Gradient Resu	lt >TL?	Well No.	Gradient	 Well Number	LN(Result)	Result >TL?
MW359	0.000	Downgradient	N/A	MW376	Sidegradient	MW359	-8.294	NO
MW362	0.004	Downgradient	N/A	MW377	Sidegradient	MW362	-5.638	NO
MW365	0.002	Downgradient	N/A			MW365	-6.282	NO
MW368	0.001	Sidegradient	N/A			MW368	-6.623	NO
MW371	0.000	Upgradient	N/A			MW371	-8.680	NO
MW374	0.001	Upgradient	N/A			MW374	-6.908	NO
MW375	0.001	Sidegradient	N/A			MW375	-7.264	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	541.000
4/22/2002	643.000
7/15/2002	632.000
10/8/2002	631.000
1/8/2003	680.000
4/3/2003	749.000
7/9/2003	734.000
10/6/2003	753.000
Well Number:	MW374
Date Collected	Result
3/18/2002	1007.00
10/8/2002	1680.00
1/7/2003	1715.90
4/2/2003	172.000

7/9/2003

10/7/2003

1/6/2004

4/7/2004

Statistics on Background Data

X= 918.744 S= 417.257 CV= 0.454 K factor** = 2.523 TL= 1971.483

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

1231.00

1214.00

1172.00

1145.00

Well No.	Result	Gradient	Result >TL?
MW359	255.00	Downgradie	nt NO
MW362	597.00	Downgradie	nt NO
MW365	449.00	Downgradie	nt NO
MW368	798.00	Sidegradient	NO
MW371	672.00	Upgradient	NO
MW374	714.00	Upgradient	NO
MW375	432.00	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Copper UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			
Well Number:	MW371	X = 0.056		Well Number:	MW371
Date Collected	Result	S= 0.072 CV= 1.275		Date Collected	LN(Result)
3/18/2002	0.025	K factor** = 2.523		3/18/2002	-3.689
4/22/2002	0.025	TL = 0.237		4/22/2002	-3.689
7/15/2002	0.050	1E 0.207		7/15/2002	-2.996
10/8/2002	0.020	Because CV is greater the	*	10/8/2002	-3.912
1/8/2003	0.020	logarithm of background	d and test well results	1/8/2003	-3.912
4/3/2003	0.020	were calculated.		4/3/2003	-3.912
7/9/2003	0.020	Statistics on		7/9/2003	-3.912
10/6/2003	0.020	Transformed		10/6/2003	-3.912
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X = -3.395		Date Collected	LN(Result)
10/8/2002	0.200	S = 0.915		10/8/2002	-1.609
1/7/2003	0.200	CV = -0.270		1/7/2003	-1.609
4/2/2003	0.200	K factor** = 2.523		4/2/2003	-1.609
7/9/2003	0.020			7/9/2003	-3.912
10/7/2003	0.020	TL = -1.086		10/7/2003	-3.912
1/6/2004	0.020			1/6/2004	-3.912
4/7/2004	0.020			4/7/2004	-3.912
7/14/2004	0.020			7/14/2004	-3.912

Second Quarter 2014 Data Collected in April 2014		Second Quarter 2014 Dry/Partially Dry Wells		Transformed Second Quarter 2014 Data Collected in April 2014				
Well No.	Result	Gradient Resu	lt >TL?	Well No.	Gradient	 Well Number	LN(Result)	Result >TL?
MW359	0.004	Downgradient	N/A	MW376	Sidegradient	MW359	-5.630	NO
MW362	0.008	Downgradient	N/A	MW377	Sidegradient	MW362	-4.847	NO
MW365	0.002	Downgradient	N/A			MW365	-6.161	NO
MW368	0.002	Sidegradient	N/A			MW368	-6.230	NO
MW371	0.001	Upgradient	N/A			MW371	-6.645	NO
MW374	0.001	Upgradient	N/A			MW374	-7.308	NO
MW375	0.001	Sidegradient	N/A			MW375	-7.419	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Dissolved Oxygen UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

MW371
Result
2.260
1.150
0.940
0.740
2.620
1.500
1.660
1.280
MW374
Result
0.600
0.670
0.230
0.650
0.920
0.990

1/6/2004 4/7/2004

Statistics on Background Data

X= 1.138 S= 0.621 CV= 0.546 K factor** = 2.523 TL= 2.704

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

1.110

0.880

Well No.	Result	Gradient Resul	t>TL?
MW359	4.910	Downgradient	YES
MW362	8.000	Downgradient	YES
MW365	5.490	Downgradient	YES
MW368	5.470	Sidegradient	YES
MW371	3.870	Upgradient	YES
MW374	3.440	Upgradient	YES
MW375	2.170	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW359

MW362

MW365

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis	UCRS
Dissolved Oxygen (Continued)	UNITS: mg/L

MW371 MW374

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Dissolved Solids UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	274.000
4/22/2002	409.000
7/15/2002	418.000
10/8/2002	424.000
1/8/2003	431.000
4/3/2003	444.000
7/9/2003	445.000
10/6/2003	438.000
Well Number:	MW374
Date Collected	Result

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003 1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data X= 590.000

S= 248.068 CV= 0.420 K factor** = 2.523 TL= 1215.876

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

1136.00

1101.00

863.000

682.000 589.000

603.000

601.000

582.000

Well No.	Result	Gradient	Result >TL?
MW359	154.00	Downgradie	nt NO
MW362	671.00	Downgradie	nt NO
MW365	279.00	Downgradie	nt NO
MW368	639.00	Sidegradient	NO
MW371	620.00	Upgradient	NO
MW374	411.00	Upgradient	NO
MW375	283.00	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Iron UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	1.310
4/22/2002	0.913
7/15/2002	0.881
10/8/2002	3.860
1/8/2003	1.880
4/3/2003	3.180
7/9/2003	0.484
10/6/2003	2.720
Well Number:	MW374
Date Collected	Result
10/8/2002	23.000
1/7/2003	13.900
4/2/2003	14.000
7/9/2003	14.200
10/7/2003	7.920

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data

X= 6.612 S= 6.487 CV= 0.981 K factor** = 2.523 TL= 22.979

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

7.860

4.820

4.870

Well No.	Result	Gradient 1	Result >TL?
MW359	0.245	Downgradier	nt NO
MW362	9.910	Downgradier	nt NO
MW365	0.096	Downgradier	nt NO
MW368	1.160	Sidegradient	NO
MW371	0.414	Upgradient	NO
MW374	0.081	Upgradient	NO
MW375	0.906	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Magnesium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	7.100
4/22/2002	9.770
7/15/2002	10.400
10/8/2002	10.200
1/8/2003	10.700
4/3/2003	11.900
7/9/2003	10.800
10/6/2003	10.900
10/0/2003	10.700
Well Number:	
Well Number:	MW374
Well Number: Date Collected	MW374 Result
Well Number: Date Collected 10/8/2002	MW374 Result 20.000
Well Number: Date Collected 10/8/2002 1/7/2003	MW374 Result 20.000 16.100
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 20.000 16.100 13.100
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 20.000 16.100 13.100 10.300
Well Number: Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 20.000 16.100 13.100 10.300 11.100

Statistics on Background Data

X= 11.347 S= 3.019 CV= 0.266 K factor** = 2.523 TL= 18.963

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

8.490

7/14/2004

Well No.	Result	Gradient	Result >TL?
MW359	4.200	Downgradie	nt NO
MW362	7.400	Downgradie	nt NO
MW365	10.000	Downgradie	nt NO
MW368	5.960	Sidegradient	NO
MW371	10.600	Upgradient	NO
MW374	5.800	Upgradient	NO
MW375	5.850	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Wel	l No.	Gradient
MW	/376	Sidegradient
MW	/377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Manganese UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	0.063
4/22/2002	0.067
7/15/2002	0.074
10/8/2002	0.052
1/8/2003	0.039
4/3/2003	0.055
7/9/2003	0.055
10/6/2003	0.054
Well Number:	MW374
Date Collected	Result
10/8/2002	0.596
1/7/2003	0.565
4/2/2003	0.675

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data

X= 0.248 S= 0.222 CV= 0.894 K factor** = 2.523 TL= 0.809

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

0.397

0.312

0.299

0.329

0.342

Well No.	Result	Gradient	Result >TL?
MW359	0.003	Downgradie	nt NO
MW362	0.042	Downgradie	nt NO
MW365	0.056	Downgradie	nt NO
MW368	0.009	Sidegradient	NO
MW371	0.016	Upgradient	NO
MW374	0.002	Upgradient	NO
MW375	0.022	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells	
Well Number:	MW371	X = 0.006		Well Number:	MW371	
Date Collected	Result	S= 0.010 CV= 1.650		Date Collected	LN(Result)	
3/18/2002	0.025	K factor** = 2.523		3/18/2002	-3.689	
4/22/2002	0.025	TL = 0.030		4/22/2002	-3.689	
7/15/2002	0.025	112 0.000		7/15/2002	-3.689	
10/8/2002	0.001	Because CV is greater to		10/8/2002	-6.908	
1/8/2003	0.001	logarithm of background	d and test well results	1/8/2003	-6.717	
4/3/2003	0.001	were calculated.		4/3/2003	-6.908	
7/9/2003	0.001	Statistics on		7/9/2003	-6.803	
10/6/2003	0.001	Transformed		10/6/2003	-6.908	
Vell Number:	MW374	Background Data		Well Number:	MW374	
Date Collected	Result	X = -6.108		Date Collected	LN(Result)	
10/8/2002	0.002	S= 1.239		10/8/2002	-6.110	
1/7/2003	0.002	CV = -0.203		1/7/2003	-6.210	
4/2/2003	0.002	K factor** = 2.523		4/2/2003	-6.444	
7/9/2003	0.002			7/9/2003	-6.024	
10/7/2003	0.001	TL = -2.983		10/7/2003	-6.908	
1/6/2004	0.001			1/6/2004	-6.908	
4/7/2004	0.001			4/7/2004	-6.908	
7/14/2004	0.001			7/14/2004	-6.908	

Second Quarter 2014 Data Collected in April 2014				Quarter 2014 tially Dry Wells	Transformed Second Quarter 2014 Data Collected in April 2014				
Well No	o. Result	Gradient R	Result >TL?	Well No.	Gradient	We	ell Number	LN(Result)	Result >TL?
MW35	9 0.001	Downgradien	t N/A	MW376	Sidegradient	M	W359	-7.601	NO
MW36	2 0.002	Downgradien	t N/A	MW377	Sidegradient	M	W362	-6.413	NO
MW36	5 0.001	Downgradien	t N/A			M	W365	-7.543	NO
MW36	8 0.006	Sidegradient	N/A			M	W368	-5.192	NO
MW37	1 0.000	Upgradient	N/A			M	W371	-8.377	NO
MW37	4 0.000	Upgradient	N/A			M	W374	-8.422	NO
MW37	5 0.001	Sidegradient	N/A			M	W375	-7.601	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Nickel UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	0.050
4/22/2002	0.050
7/15/2002	0.050
10/8/2002	0.012
1/8/2003	0.005
4/3/2003	0.005
7/9/2003	0.005
10/6/2003	0.005
Well Number:	MW374
Date Collected	Result
10/8/2002	0.050
1/7/2003	0.050
4/2/2003	0.050
7/9/2003	0.008
10/7/2003	0.005
1/6/2004	0.005
4/7/2004	0.005
	0.005

Statistics on Background Data

X= 0.023 S= 0.022 CV= 0.980 K factor** = 2.523 TL= 0.078

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient R	Result >TL?
MW359	0.001	Downgradien	t NO
MW362	0.008	Downgradien	t NO
MW365	0.007	Downgradien	t NO
MW368	0.006	Sidegradient	NO
MW371	0.001	Upgradient	NO
MW374	0.001	Upgradient	NO
MW375	0.001	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W		Statistics on Background Data	Transformed I Data from Up	
Well Number:	MW371	X= 22.281	Well Number:	MW371
Date Collected	Result	S= 78.889	Date Collected	LN(Result)
3/18/2002	75.000	CV= 3.541 K factor** = 2.523	3/18/2002	4.317
4/22/2002	165.000	TL= 221.319	4/22/2002	5.106
7/15/2002	65.000	11 221.317	7/15/2002	4.174
4/3/2003	-19.000	Because CV is greater than 1, the natural	4/3/2003	#Func!
7/9/2003	114.000	logarithm of background and test well results	7/9/2003	4.736
10/6/2003	-22.000	were calculated.	10/6/2003	#Func!
1/7/2004	20.500	Statistics on	1/7/2004	3.020
4/6/2004	113.000	Transformed	4/6/2004	4.727
Vell Number:	MW374	Background Data	Well Number:	MW374
Date Collected	Result	X = error	Date Collected	LN(Result)
3/18/2002	135.000	S = error	3/18/2002	4.905
4/2/2003	-56.000	CV = error	4/2/2003	#Func!
7/9/2003	-68.000	K factor** = 2.523	7/9/2003	#Func!
10/7/2003	-50.000		10/7/2003	#Func!
1/6/2004	-85.000	TL# = 5.106	1/6/2004	#Func!
4/7/2004	6.000	# Because the natural log was not possible for	4/7/2004	1.792
7/14/2004	-38.000	all background values, the TL was considered	7/14/2004	#Func!
10/7/2004	1.000	equal to the maximum background value.	10/7/2004	0.000

Second Quarter 2014 Data Collected in April 2014			Second Quarter 2014 Dry/Partially Dry Wells		Transformed Second Quarter 2014 Data Collected in April 2014			
Well No.	Result	Gradient	Result >TI	? Well No.	Well No. Gradient Well Number LN(Result) Result) Result >TL?
MW359	442.000	Downgrad	ient N/A	MW376	Sidegradient			
MW362	382.000	Downgrad	ient N/A	A MW377	Sidegradient	MW35	9 6.091	YES
MW365	410.000	Downgrad	ient N/A	Λ	C	MW36	5.945	YES
MW368	417.000	Sidegradie	ent N/A	1		MW36	6.016	YES
MW371	476.000	Upgradien	t N/A	Λ		MW36	6.033	YES
MW374	499.000	Upgradien	t N/A	Λ		MW37	1 6.165	YES
MW375	329.000	Sidegradie	ent N/A	Λ		MW37	4 6.213	YES
		C				MW37	5 5.796	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW359

MW362

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis	UCRS
Oxidation-Reduction Potential (Continued)	UNITS: mV

MW368	
MW371	
MW374	
MW375	

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis PCB, Total UCRS UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	1.000
4/22/2002	0.170
7/15/2002	0.170
7/9/2003	0.170
10/6/2003	0.170
7/13/2004	0.180
7/25/2005	0.170
4/5/2006	0.180
Well Number:	MW374
Date Collected	Result
7/9/2003	0.170
10/7/2003	0.170
7/14/2004	0.180
7/26/2005	0.170
4/6/2006	0.180
7/10/2006	0.170

10/12/2006

1/8/2007

Statistics on Background Data

X= 0.224 S= 0.207 CV= 0.922 K factor** = 2.523 TL= 0.746

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

0.170

0.170

Well No.	Result	Gradient F	Result >TL?
MW359	0.102	Downgradien	t NO
MW362	0.098	Downgradien	t NO
MW365	0.180	Downgradien	t NO
MW368	0.168	Sidegradient	NO
MW371	0.106	Upgradient	NO
MW374	0.098	Upgradient	NO
MW375	0.102	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis PCB-1242 UCRS UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	
Well Number:	MW371	X = 0.159		Well Number:	MW371
Date Collected	Result	S= 0.224 CV= 1.409		Date Collected	LN(Result)
3/18/2002	1.000	K factor** = 2.523		3/18/2002	0.000
4/22/2002	0.110	TL= 0.726		4/22/2002	-2.207
7/15/2002	0.110	12 020		7/15/2002	-2.207
7/9/2003	0.130	Because CV is greater t	*	7/9/2003	-2.040
10/6/2003	0.090	logarithm of backgroun	d and test well results	10/6/2003	-2.408
7/13/2004	0.100	were calculated.	_	7/13/2004	-2.303
7/25/2005	0.090	Statistics on		7/25/2005	-2.408
4/5/2006	0.100	Transformed		4/5/2006	-2.303
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= -2.134		Date Collected	LN(Result)
7/9/2003	0.130	S = 0.579		7/9/2003	-2.040
10/7/2003	0.090	CV = -0.272		10/7/2003	-2.408
7/14/2004	0.100	K factor** = 2.523		7/14/2004	-2.303
7/26/2005	0.100			7/26/2005	-2.303
4/6/2006	0.100	TL = -0.672		4/6/2006	-2.303
7/10/2006	0.100			7/10/2006	-2.303
7/10/2006	0.100			7/10/2006	-2.303
10/12/2006	0.100			10/12/2006	-2.303

Second Quarter 2014 Data Collected in April 2014				Quarter 2014 tially Dry Wells	Transformed Second Quarter 200 Data Collected in April 2014				
Well No.	Result	Gradient Resul	t>TL?	Well No.	Gradient		Well Number	LN(Result)	Result >TL?
MW359	0.102	Downgradient	N/A	MW376	Sidegradient		MW359	-2.283	NO
MW362	0.098	Downgradient	N/A	MW377	Sidegradient		MW362	-2.323	NO
MW365	0.180	Downgradient	N/A				MW365	-1.715	NO
MW368	0.168	Sidegradient	N/A				MW368	-1.784	NO
MW371	0.106	Upgradient	N/A				MW371	-2.244	NO
MW374	0.098	Upgradient	N/A				MW374	-2.323	NO
MW375	0.102	Sidegradient	N/A				MW375	-2.283	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis pH UCRS UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	6.300
4/22/2002	6.500
7/15/2002	6.500
10/8/2002	6.600
1/8/2003	6.600
4/3/2003	6.900
7/9/2003	6.700
10/6/2003	7.000
Well Number:	MW374
Well Number: Date Collected	MW374 Result
Date Collected	Result
Date Collected 3/18/2002	Result 5.750
Date Collected 3/18/2002 10/8/2002	Result 5.750 6.600
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.750 6.600 6.820
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.750 6.600 6.820 6.860
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.750 6.600 6.820 6.860 6.700

Statistics on Background Data
X= 6.619
S = 0.295
CV = 0.045
K factor** = 2.904
TL = 7.475
LL= 5.764

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient R	lesult >TL?	Result <ll?< th=""></ll?<>
MW359	5.890	Downgradie	ent NO	NO
MW362	6.850	Downgradie	ent NO	NO
MW365	6.320	Downgradie	ent NO	NO
MW368	6.630	Sidegradie	nt NO	NO
MW371	6.740	Upgradien	t NO	NO
MW374	6.590	Upgradien	t NO	NO
MW375	6.480	Sidegradie	nt NO	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Second Quarter 2014 Statistical Analysis Sodium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	129.000
4/22/2002	131.000
7/15/2002	127.000
10/8/2002	123.000
1/8/2003	128.000
4/3/2003	144.000
7/9/2003	126.000
10/6/2003	120.000
Well Number:	MW374
Date Collected	Result
10/8/2002	336.000

1/7/2003 4/2/2003

7/9/2003

10/7/2003 1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data

X= 183.063 S= 73.222 CV= 0.400 K factor** = 2.523 TL= 367.800

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

329.000

287.000

181.000 182.000

206.000

182.000

198.000

Well No.	Result	Gradient	Result >TL?
MW359	42.700	Downgradie	nt NO
MW362	121.00	Downgradie	nt NO
MW365	58.800	Downgradie	nt NO
MW368	191.00	Sidegradient	NO
MW371	128.00	Upgradient	NO
MW374	124.00	Upgradient	NO
MW375	82.400	Sidegradient	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Sulfate UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	16.300
4/22/2002	8.600
7/15/2002	6.700
10/8/2002	5.000
1/8/2003	5.000
4/3/2003	5.000
7/9/2003	5.000
10/6/2003	5.000
Well Number:	MW374
Date Collected	Result
10/8/2002	5.000
1/7/2003	5.000
4/2/2003	5.000
7/9/2003	5.600
10/7/2003	5.000
1/6/2004	5.000
4/7/2004	11.300

Statistics on Background Data

X= 6.469 S= 3.153 CV= 0.487 K factor** = 2.523 TL= 14.423

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

5.000

7/14/2004

Well No.	Result	Gradient Resul	lt >TL?
MW359	58.900	Downgradient	YES
MW362	14.400	Downgradient	NO
MW365	69.500	Downgradient	YES
MW368	67.700	Sidegradient	YES
MW371	16.400	Upgradient	YES
MW374	5.630	Upgradient	NO
MW375	37.600	Sidegradient	YES

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW359

MW365

MW368

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis	UCRS
Sulfate (Continued)	UNITS: mg/L

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Total Organic Carbon (TOC) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Background Data from Upgradient Wells			
Well Number:	MW371	X= 17.631		Well Number:	MW371		
Date Collected	Result	S= 24.314 CV= 1.379		Date Collected	LN(Result)		
3/18/2002	11.100	K = 1.579 K factor** = 2.523		3/18/2002	2.407		
4/22/2002	7.000	TL= 78.977		4/22/2002	1.946		
7/15/2002	4.100	12 70077		7/15/2002	1.411		
10/8/2002	6.000	Because CV is greater t	*	10/8/2002	1.792		
1/8/2003	5.300	logarithm of backgroun	d and test well results	1/8/2003	1.668		
4/3/2003	5.300	were calculated.	_	4/3/2003	1.668		
7/9/2003	2.900	Statistics on		7/9/2003	1.065		
10/6/2003	3.200	Transformed		10/6/2003	1.163		
Well Number:	MW374	Background Data		Well Number:	MW374		
Date Collected	Result	X = 2.318		Date Collected	LN(Result)		
10/8/2002	90.000	S= 0.979		10/8/2002	4.500		
1/7/2003	64.000	CV = 0.422		1/7/2003	4.159		
4/2/2003	25.000	K factor** = 2.523		4/2/2003	3.219		
7/9/2003	16.000			7/9/2003	2.773		
10/7/2003	13.000	TL= 4.788		10/7/2003	2.565		
1/6/2004	10.000			1/6/2004	2.303		
4/7/2004	7.200			4/7/2004	1.974		
7/14/2004	12.000			7/14/2004	2.485		

Second Quarter 2014 Data Collected in April 2014					Quarter 2014 tially Dry Wells	Transformed Second Quarter 2014 Data Collected in April 2014		
Well No.	Result	Gradient Res	ult >TL?	Well No.	Gradient	Well Num	ber LN(Result)	Result >TL?
MW359	0.877	Downgradient	N/A	MW376	Sidegradient	MW359	-0.131	NO
MW362	2.570	Downgradient	N/A	MW377	Sidegradient	MW362	0.944	NO
MW365	1.890	Downgradient	N/A			MW365	0.637	NO
MW368	2.380	Sidegradient	N/A			MW368	0.867	NO
MW371	2.270	Upgradient	N/A			MW371	0.820	NO
MW374	2.100	Upgradient	N/A			MW374	0.742	NO
MW375	2.690	Sidegradient	N/A			MW375	0.990	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Total Organic Halides (TOX)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: ug/L

Background Data from Upgradient Wells			Statistics on Background Data		Transformed Background Data from Upgradient Wells		
Well Number:	MW371	X= 214.094			Well Number:	MW371	
Date Collected	Result	S= 231.089 CV= 1.079			Date Collected	LN(Result)	
3/18/2002	50.000	K factor**	= 2 523		3/18/2002	3.912	
4/22/2002	105.000	TL= 797.13			4/22/2002	4.654	
7/15/2002	70.000	12 ////	-		7/15/2002	4.248	
10/8/2002	52.000		C	han 1, the natural	10/8/2002	3.951	
1/8/2003	20.200	_	-	d and test well results	1/8/2003	3.006	
4/3/2003	104.000	were calculate	ea.		4/3/2003	4.644	
7/9/2003	34.200	Statistics or	1		7/9/2003	3.532	
10/6/2003	46.100	Transforme	ed		10/6/2003	3.831	
Well Number:	MW374	Background	d Data		Well Number:	MW374	
Date Collected	Result	X= 4.867			Date Collected	LN(Result)	
10/8/2002	903.000	S= 1.065			10/8/2002	6.806	
1/7/2003	539.000	CV = 0.219			1/7/2003	6.290	
4/2/2003	295.000	K factor**	_ 2 522		4/2/2003	5.687	
7/9/2003	272.000				7/9/2003	5.606	
10/7/2003	197.000	TL= 7.554			10/7/2003	5.283	
1/6/2004	330.000				1/6/2004	5.799	
4/7/2004	183.000				4/7/2004	5.209	
7/14/2004	225.000				7/14/2004	5.416	

Second Quarter 2014 Data Collected in April 2014				Second Quarter 2014 Transformed Second Quarter 20 Dry/Partially Dry Wells Data Collected in April 2014				
Well No.	Result	Gradient Result	>TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW359	10.000	Downgradient	N/A	MW376	Sidegradient	MW359	2.303	NO
MW362	13.000	Downgradient	N/A	MW377	Sidegradient	MW362	2.565	NO
MW365	17.000	Downgradient	N/A			MW365	2.833	NO
MW368	15.200	Sidegradient	N/A			MW368	2.721	NO
MW371	7.220	Upgradient	N/A			MW371	1.977	NO
MW374	17.000	Upgradient	N/A			MW374	2.833	NO
MW375	40.000	Sidegradient	N/A			MW375	3.689	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Uranium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Background Data from Upgradient Wells			
Well Number:	MW371	X = 0.007		Well Number:	MW371		
Date Collected	Result	S = 0.012 CV = 1.678		Date Collected	LN(Result)		
3/18/2002	0.001	K factor** = 2.523		3/18/2002	-6.908		
4/22/2002	0.001	TL = 0.037		4/22/2002	-6.908		
7/15/2002	0.001	TE VIVE		7/15/2002	-6.908		
10/8/2002	0.027	Because CV is greater t		10/8/2002	-3.612		
1/8/2003	0.001	logarithm of backgroun	d and test well results	1/8/2003	-6.908		
4/3/2003	0.001	were calculated.		4/3/2003	-6.908		
7/9/2003	0.001	Statistics on		7/9/2003	-6.822		
10/6/2003	0.001	Transformed		10/6/2003	-6.908		
Well Number:	MW374	Background Data		Well Number:	MW374		
Date Collected	Result	X= -5.884		Date Collected	LN(Result)		
10/8/2002	0.044	S= 1.299		10/8/2002	-3.128		
1/7/2003	0.011	CV= -0.221		1/7/2003	-4.510		
4/2/2003	0.009	K factor** = 2.523		4/2/2003	-4.705		
7/9/2003	0.007			7/9/2003	-4.970		
10/7/2003	0.001	TL = -2.607		10/7/2003	-6.908		
1/6/2004	0.003			1/6/2004	-5.760		
4/7/2004	0.003			4/7/2004	-5.960		
7/14/2004	0.002			7/14/2004	-6.320		

Second Quarter 2014 Data Collected in April 2014				Second Quarter 2014 Dry/Partially Dry Wells			Transformed Second Quarter 2014 Data Collected in April 2014		
Well No.	Result	Gradient Result	t>TL?	Well No.	Gradient	W	ell Number	LN(Result)	Result >TL?
MW359	0.000	Downgradient	N/A	MW376	Sidegradient	N	1W359	-8.805	NO
MW362	0.007	Downgradient	N/A	MW377	Sidegradient	N	IW362	-5.018	NO
MW365	0.000	Downgradient	N/A			M	IW365	-9.421	NO
MW368	0.002	Sidegradient	N/A			M	IW368	-6.463	NO
MW371	0.002	Upgradient	N/A			M	IW371	-6.171	NO
MW374	0.001	Upgradient	N/A			M	IW374	-7.419	NO
MW375	0.000	Sidegradient	N/A			M	IW375	-8.874	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Vanadium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells] [Statistics on Background Data		Transformed Data from Up	Background gradient Wells
Well Number:	MW371	1	X = 0.055		Well Number:	MW371
Date Collected	Result		S= 0.072 CV= 1.319		Date Collected	LN(Result)
3/18/2002	0.025		K factor** = 2.523		3/18/2002	-3.689
4/22/2002	0.025		TL = 0.237		4/22/2002	-3.689
7/15/2002	0.025	L	12 0.207		7/15/2002	-3.689
10/8/2002	0.020		Because CV is greater to	*	10/8/2002	-3.912
1/8/2003	0.020		ogarithm of backgroun	d and test well results	1/8/2003	-3.912
4/3/2003	0.020	V	were calculated.		4/3/2003	-3.912
7/9/2003	0.020		Statistics on		7/9/2003	-3.912
10/6/2003	0.020		Transformed		10/6/2003	-3.912
Well Number:	MW374		Background Data		Well Number:	MW374
Date Collected	Result		X = -3.438		Date Collected	LN(Result)
10/8/2002	0.200		S = 0.912		10/8/2002	-1.609
1/7/2003	0.200		CV= -0.265		1/7/2003	-1.609
4/2/2003	0.200		K factor** = 2.523		4/2/2003	-1.609
7/9/2003	0.020				7/9/2003	-3.912
10/7/2003	0.020		TL = -1.138		10/7/2003	-3.912
1/6/2004	0.020				1/6/2004	-3.912
4/7/2004	0.020				4/7/2004	-3.912
7/14/2004	0.020				7/14/2004	-3.912

Second Quarter 2014 Data Collected in April 2014			Second Quarter 2014 Dry/Partially Dry Wells Transformed Second Quarter 2 Data Collected in April 2014					
Well No.	Result	Gradient Result >TL?		Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW359	0.005	Downgradient	N/A	MW376	Sidegradient	MW359	-5.298	NO
MW362	0.004	Downgradient	N/A	MW377	Sidegradient	MW362	-5.426	NO
MW365	0.005	Downgradient	N/A			MW365	-5.298	NO
MW368	0.008	Sidegradient	N/A			MW368	-4.828	NO
MW371	0.003	Upgradient	N/A			MW371	-5.885	NO
MW374	0.005	Upgradient	N/A			MW374	-5.298	NO
MW375	0.005	Sidegradient	N/A			MW375	-5.298	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis 2-Butanone URGA UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	50.000
4/22/2002	50.000
7/15/2002	10.000
10/8/2002	10.000
1/8/2003	10.000
4/3/2003	10.000
7/8/2003	10.000
10/6/2003	10.000
Well Number:	MW372
Date Collected	Result
3/19/2002	50.000
4/23/2002	50.000

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 20.000 S= 17.889 CV= 0.894 K factor** = 2.523 TL= 65.133

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

10.000

10.000 10.000

10.000

10.000

10.000

Well No.	Result	Gradient I	Result >TL?
MW357	5.000	Downgradier	nt NO
MW360	5.000	Downgradier	nt NO
MW363	5.000	Downgradier	nt NO
MW366	2.870	Sidegradient	NO
MW369	5.000	Upgradient	NO
MW372	5.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Aluminum URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background L Upgradient W		Statistics on Background Data	Transformed Backgrou Data from Upgradient		
Well Number:	Well Number: MW 369		= 0.625		MW369
Date Collected	Result	S= 0.774 CV= 1.239		Date Collected	LN(Result)
3/18/2002	0.255	K factor** = 2.523		3/18/2002	-1.366
4/22/2002	0.200	TL= 2.578		4/22/2002	-1.609
7/15/2002	0.322	12 2.070		7/15/2002	-1.133
10/8/2002	0.200	Because CV is greater the	,	10/8/2002	-1.609
1/8/2003	0.200		logarithm of background and test well results		-1.609
4/3/2003	0.200	were calculated.		4/3/2003	-1.609
7/8/2003	0.200	Statistics on		7/8/2003	-1.609
10/6/2003	0.689	Transformed		10/6/2003	-0.373
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X = -0.973		Date Collected	LN(Result)
3/19/2002	2.610	S = 0.935		3/19/2002	0.959
4/23/2002	0.200	CV= -0.961		4/23/2002	-1.609
7/16/2002	1.140	K factor** = 2.523		7/16/2002	0.131
10/8/2002	0.862			10/8/2002	-0.149
1/7/2003	2.320	TL= 1.386		1/7/2003	0.842
4/2/2003	0.200			4/2/2003	-1.609
7/9/2003	0.200			7/9/2003	-1.609
10/7/2003	0.200			10/7/2003	-1.609

Second Quarter 2014 Data Collected in
Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient R	esult >TL?
MW357	0.050	Downgradien	t N/A
MW360	0.131	Downgradien	t N/A
MW363	0.050	Downgradien	t N/A
MW366	0.050	Sidegradient	N/A
MW369	0.620	Upgradient	N/A
MW372	0.049	Upgradient	N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result >TL?
MW357	-2.996	NO
MW360	-2.033	NO
MW363	-2.996	NO
MW366	-2.996	NO
MW369	-0.478	NO
MW372	-3.012	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	2.000
4/22/2002	2.000
7/15/2002	2.000
10/8/2002	0.200
1/8/2003	0.200
4/3/2003	0.200
7/8/2003	0.200
10/6/2003	0.200
Well Number:	MW372
Date Collected	Result
3/19/2002	2.000
4/23/2002	2.000
7/16/2002	2.000

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on
Background Data
X= 0.985
S = 0.825
CV = 0.838
K factor** = 2.523

TL = 3.067

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

0.492 0.492

0.600

0.570

0.604

Well No.	Result	Gradient Re	sult >TL?
MW357	0.332	Downgradient	NO
MW360	0.060	Downgradient	NO
MW363	0.017	Downgradient	NO
MW366	0.077	Sidegradient	NO
MW369	0.011	Upgradient	NO
MW372	1.700	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Bromide UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	1.000
4/22/2002	1.000
7/15/2002	1.000
10/8/2002	1.000
1/8/2003	1.000
4/3/2003	1.000
7/8/2003	1.000
10/6/2003	1.000
Well Number:	MW372
Date Collected	Result
3/19/2002	1.000
4/23/2002	1.000
7/16/2002	1.000
10/8/2002	1.000

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 1.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 1.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

1.000

1.000

1.000

1.000

Well No.	Result	Gradient Re	sult >TL?
MW357	0.351	Downgradient	NO
MW360	0.147	Downgradient	NO
MW363	0.135	Downgradient	NO
MW366	0.497	Sidegradient	NO
MW369	0.337	Upgradient	NO
MW372	0.624	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Calcium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	29.500
4/22/2002	29.800
7/15/2002	25.300
10/8/2002	21.900
1/8/2003	20.900
4/3/2003	22.200
7/8/2003	22.900
10/6/2003	21.700
Well Number:	MW372
Date Collected	Result
3/19/2002	41.500

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on
Background Data
X= 32.763
S= 9.391
CV = 0.287
K factor** = 2.523

TL = 56.456

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

43.600

40.400

38.800

41.100

42.900

35.100 46.600

Well No.	Result	Gradient Resu	ılt >TL?
MW357	27.100	Downgradient	NO
MW360	24.800	Downgradient	NO
MW363	25.300	Downgradient	NO
MW366	28.500	Sidegradient	NO
MW369	16.400	Upgradient	NO
MW372	70.500	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Chemical Oxygen Demand (COD)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Background Data from Upgradient Wells

MW369
Result
35.000
35.000
35.000
50.000
35.000
35.000
35.000
35.000
MW372
Result
35.000
35.000
35.000
35.000
35.000
35.000

7/9/2003

10/7/2003

Statistics on Background Data

X= 35.938 S= 3.750 CV= 0.104 K factor** = 2.523 TL= 45.399

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

35.000

35.000

Well No.	Result	Gradient I	Result >TL?	
MW357	20.000	Downgradier	nt NO	
MW360	20.000	Downgradier	nt NO	
MW363	20.000	Downgradier	nt NO	
MW366	7.490	Sidegradient	NO	
MW369	20.000	Upgradient	NO	
MW372	20.000	Upgradient	NO	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
7/15/2002	48.300
10/8/2002	47.700
1/8/2003	45.700
4/3/2003	47.400
7/8/2003	55.900
10/6/2003	47.400
1/7/2004	45.500
4/7/2004	43.400
Well Number:	MW372

Date Collected

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

April 2014

Statistics on Background Data
X= 44.119
S= 4.554
CV = 0.103
K factor** = 2.523
TL= 55.607

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

10/7/2003 40.000 1/5/2004 43.400 4/5/2004 42.000 Second Quarter 2014 Data Collected in

Result

39.800

41.000

39.400

39.200

39.800

Well No.	Result	Gradient 1	Result >TL?
MW357	31.500	Downgradier	nt NO
MW360	9.870	Downgradier	nt NO
MW363	29.700	Downgradier	nt NO
MW366	40.100	Sidegradient	NO
MW369	31.000	Upgradient	NO
MW372	56.300	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis cis-1,2-Dichloroethene UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	5.000
4/22/2002	5.000
7/15/2002	5.000
10/8/2002	5.000
1/8/2003	5.000
4/3/2003	5.000
7/8/2003	5.000
10/6/2003	5.000
Well Number:	MW372
Date Collected	Result
2/10/2002	
3/19/2002	5.000
3/19/2002 4/23/2002	5.000 5.000
4/23/2002	5.000
4/23/2002 7/16/2002	5.000 5.000

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 5.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 5.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

5.000

5.000

5.000

Well No.	Result	Gradient R	esult >TL?
MW357	1.000	Downgradient	NO
MW360	1.000	Downgradient	NO
MW363	1.000	Downgradient	NO
MW366	1.000	Sidegradient	NO
MW369	1.000	Upgradient	NO
MW372	0.310	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.025
4/22/2002	0.025
7/15/2002	0.025
10/8/2002	0.009
1/8/2003	0.005
4/3/2003	0.006
7/8/2003	0.054
10/6/2003	0.069
Well Number:	MW372
Date Collected	Result
3/19/2002	0.025
4/23/2002	0.025
7/16/2002	0.025
10/8/2002	0.002
1/7/2003	0.015
4/2/2003	0.012

7/9/2003

10/7/2003

Statistics on Background Data

X= 0.025 S= 0.021 CV= 0.845 K factor** = 2.523 TL= 0.077

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

0.065

0.008

Well No.	Result	Gradient Re	esult >TL?
MW357	0.005	Downgradient	NO
MW360	0.019	Downgradient	NO
MW363	0.001	Downgradient	NO
MW366	0.000	Sidegradient	NO
MW369	0.012	Upgradient	NO
MW372	0.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	388.000
4/22/2002	404.000
7/15/2002	394.000
10/8/2002	403.000
1/8/2003	520.000
4/3/2003	487.000
7/8/2003	478.000
10/6/2003	476.000
Well Number:	MW372
Date Collected	Result
3/19/2002	508.000
4/23/2002	501.000

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

XX7 11 X7

10/7/2003

Statistics on Background Data

X= 482.856 S= 57.603 CV= 0.119 K factor** = 2.523 TL= 628.189

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

507.000

495.000

508.700

515.000

576.000

565.000

Well No.	Result	Gradient Re	esult >TL?
MW357	431.00	Downgradient	NO
MW360	505.00	Downgradient	NO
MW363	402.00	Downgradient	NO
MW366	456.00	Sidegradient	NO
MW369	380.00	Upgradient	NO
MW372	837.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369	
Date Collected	Result	
3/18/2002	5.410	
4/22/2002	1.570	
7/15/2002	0.800	
10/8/2002	1.090	
1/8/2003	2.690	
4/3/2003	2.040	
7/8/2003	1.190	
10/6/2003	1.780	
Well Number:	MW372	
Date Collected	Result	

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 1.781
S= 1.351
CV = 0.759

K factor** = 2.523 TL= 5.190

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

3.890

0.050

1.330

2.660

0.400

0.910

1.420

1.260

Well No.	Result	Gradient Ro	esult >TL?
MW357	4.550	Downgradient	NO
MW360	2.490	Downgradient	NO
MW363	1.600	Downgradient	NO
MW366	3.480	Sidegradient	NO
MW369	1.330	Upgradient	NO
MW372	3.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	173.000
4/22/2002	246.000
7/15/2002	232.000
10/8/2002	275.000
1/8/2003	269.000
4/3/2003	250.000
7/8/2003	295.000
10/6/2003	276.000
Well Number:	MW372
Date Collected	Result
3/19/2002	295.000
4/23/2002	322.000
7/16/2002	329.000
10/8/2002	290.000
1/7/2003	316.000

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 285.188 S= 44.908 CV= 0.157 K factor** = 2.523 TL= 398.489

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

311.000

347.000

337.000

Well No.	Result	Gradient Resu	lt >TL?
MW357	213.00	Downgradient	NO
MW360	294.00	Downgradient	NO
MW363	241.00	Downgradient	NO
MW366	241.00	Sidegradient	NO
MW369	213.00	Upgradient	NO
MW372	546.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Iron URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.656
4/22/2002	0.695
7/15/2002	7.100
10/8/2002	21.500
1/8/2003	18.500
4/3/2003	14.900
7/8/2003	11.300
10/6/2003	14.900
Well Number:	MW372
Date Collected	Result
3/19/2002	5.950
4/23/2002	0.792
7/16/2002	1.780
10/8/2002	0.776
1/7/2003	3.550

4/2/2003

7/9/2003 10/7/2003

Statistics on Background Data

X= 7.385 S= 6.991 CV= 0.947 K factor** = 2.523 TL= 25.024

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

5.020 10.000

0.733

Well No.	Result	Gradient F	Result >TL?
MW357	0.089	Downgradien	t NO
MW360	4.270	Downgradien	t NO
MW363	0.144	Downgradien	t NO
MW366	0.100	Sidegradient	NO
MW369	1.420	Upgradient	NO
MW372	1.990	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Magnesium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	11.400
4/22/2002	12.000
7/15/2002	10.000
10/8/2002	8.620
1/8/2003	7.890
4/3/2003	7.970
7/8/2003	10.300
10/6/2003	9.140
Well Number:	MW372
Date Collected	Result

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 12.864
S = 3.505
CV = 0.272
K factor** = 2.523

TL= 21.707

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

15.700

16.600

15.400

15.800

15.800

16.400

15.200

17.600

Well No.	Result	Gradient Resu	lt >TL?
MW357	11.200	Downgradient	NO
MW360	8.760	Downgradient	NO
MW363	9.660	Downgradient	NO
MW366	11.100	Sidegradient	NO
MW369	6.700	Upgradient	NO
MW372	26.100	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Manganese URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.034
4/22/2002	0.062
7/15/2002	0.436
10/8/2002	0.867
1/8/2003	0.828
4/3/2003	0.672
7/8/2003	0.321
10/6/2003	0.714
Well Number:	MW372
Date Collected	Result
3/19/2002	0.205

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 0.413
S = 0.274
CV = 0.664
K factor** = 2.523

TL = 1.105

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

0.345

0.210

0.054

0.537

0.415

0.654

0.254

Well No.	Result	Gradient Re	esult >TL?
MW357	0.167	Downgradient	NO
MW360	0.220	Downgradient	NO
MW363	0.310	Downgradient	NO
MW366	0.035	Sidegradient	NO
MW369	0.138	Upgradient	NO
MW372	0.037	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed I Data from Up	
Well Number:	MW369	X = 0.010		Well Number:	MW369
Date Collected	Result	S= 0.012 CV= 1.199		Date Collected	LN(Result)
3/18/2002	0.025	K = 1.199 $K = 2.523$		3/18/2002	-3.689
4/22/2002	0.025	TL= 0.040		4/22/2002	-3.689
7/15/2002	0.025	12 000		7/15/2002	-3.689
10/8/2002	0.001		Because CV is greater than 1, the natural logarithm of background and test well results		-6.908
1/8/2003	0.001	2			-6.908
4/3/2003	0.001	were calculated.		4/3/2003	-6.908
7/8/2003	0.001	Statistics on		7/8/2003	-6.908
10/6/2003	0.001	Transformed		10/6/2003	-6.908
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X = -5.698		Date Collected	LN(Result)
3/19/2002	0.025	S= 1.607		3/19/2002	-3.689
4/23/2002	0.025	CV = -0.282		4/23/2002	-3.689
7/16/2002	0.025	K factor** = 2.523		7/16/2002	-3.689
10/8/2002	0.001			10/8/2002	-6.908
1/7/2003	0.001	TL = -1.643		1/7/2003	-6.908
4/2/2003	0.001			4/2/2003	-6.908
7/9/2003	0.001			7/9/2003	-6.859
10/7/2003	0.001			10/7/2003	-6.908

Second Quarter 2014 Data Collected in	n
April 2014	

Well No.	Result	Gradient	Result >TL?
MW357	0.001	Downgradie	nt N/A
MW360	0.000	Downgradie	nt N/A
MW363	0.000	Downgradie	nt N/A
MW366	0.001	Sidegradient	N/A
MW369	0.001	Upgradient	N/A
MW372	0.000	Upgradient	N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result >TL?
MW357	-7.601	NO
MW360	-8.047	NO
MW363	-8.680	NO
MW366	-7.601	NO
MW369	-7.488	NO
MW372	-7.824	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.050
4/22/2002	0.050
7/15/2002	0.050
10/8/2002	0.005
1/8/2003	0.005
4/3/2003	0.005
7/8/2003	0.013
10/6/2003	0.010
Well Number:	MW372
Date Collected	Result
3/19/2002	0.050
4/23/2002	0.050
7/16/2002	0.050
10/8/2002	0.005

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 0.024 S= 0.021 CV= 0.910 K factor** = 2.523 TL= 0.078

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

0.005

0.005

0.019

0.005

Well No.	Result	Gradient F	Result >TL?
MW357	0.001	Downgradien	t NO
MW360	0.003	Downgradien	t NO
MW363	0.002	Downgradien	t NO
MW366	0.001	Sidegradient	NO
MW369	0.008	Upgradient	NO
MW372	0.001	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

ckground E gradient W		Statistics on Background Data			
ell Number:	MW369	X= 74.563		Well Number:	MW369
te Collected	Result	S= 94.243 CV= 1.264		Date Collected	LN(Resul
3/18/2002	215.000	K factor** = 2.523		3/18/2002	5.371
4/22/2002	110.000	TL= 312.337		4/22/2002	4.700
7/15/2002	20.000	12 012.00		7/15/2002	2.996
1/8/2003	-5.000	Because CV is greater than 1	,	1/8/2003	#Func!
4/3/2003	-18.000	logarithm of background and	test well results	4/3/2003	#Func!
7/8/2003	-67.000	were calculated.		7/8/2003	#Func!
10/6/2003	-1.000	Statistics on		10/6/2003	#Func!
1/7/2004	55.000	Transformed		1/7/2004	4.007
ell Number:	MW372	Background Data		Well Number:	MW372
ate Collected	Result	X = error		Date Collected	LN(Result
3/19/2002	210.000	S = error		3/19/2002	5.347
4/23/2002	65.000	CV = error		4/23/2002	4.174
7/16/2002	215.000	K factor** = 2.523		7/16/2002	5.371
10/8/2002	185.000			10/8/2002	5.220
1/7/2003	45.000	TL# = 5.371		1/7/2003	3.807
4/2/2003	65.000	# Because the natural log wa		4/2/2003	4.174
7/9/2003	-39.000		all background values, the TL was considered equal to the maximum background value.		#Func!

Second Quarter 2014 Data Collected in
April 2014

Well No.	Result	Gradient	Result >TL?
MW357	438.000	Downgradie	nt N/A
MW360	277.000	Downgradie	nt N/A
MW363	399.000	Downgradie	nt N/A
MW366	463.000	Sidegradient	N/A
MW369	514.000	Upgradient	N/A
MW372	236.000	Upgradient	N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number LN(Result) Result >TL?

MW357	6.082	YES
MW360	5.624	YES
MW363	5.989	YES
MW366	6.138	YES
MW369	6.242	YES
MW372	5.464	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW357

MW360

MW363

MW366

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis	URGA
Oxidation-Reduction Potential (Continued)	UNITS: mV

MW369 MW372

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis **URGA** UNITS: ug/L PCB, total

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	1.000
4/22/2002	0.170
7/15/2002	0.170
7/8/2003	1.150
10/6/2003	0.605
7/13/2004	0.420
7/20/2005	0.280
4/4/2006	0.230
Well Number:	MW372
Date Collected	Result

3/19/2002

4/23/2002

7/16/2002

7/9/2003

10/7/2003

7/14/2004

7/21/2005

4/5/2006

Statistics on **Background Data**

X = 0.390S = 0.350CV = 0.897K factor** = 2.523TL = 1.272

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

0.180 Second Quarter 2014 Data Collected in April 2014

1.000

0.170

0.170

0.170

0.170

0.180

0.170

Well No.	Result	Gradient Re	sult >TL?
MW357	0.098	Downgradient	NO
MW360	0.095	Downgradient	NO
MW363	0.127	Downgradient	NO
MW366	0.100	Sidegradient	NO
MW369	0.081	Upgradient	NO
MW372	0.097	Upgradient	NO

Conclusion of Statistical Analysis on Data

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis PCB-1242

URGA UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells	
Well Number:	MW369	X = 0.281			MW369	
Date Collected	Result	S= 0.383 CV= 1.361		Date Collected	LN(Result)	
3/18/2002	1.000	K factor** = 2.523		3/18/2002	0.000	
4/22/2002	0.110	TL= 1.247		4/22/2002	-2.207	
7/15/2002	0.110	11.247		7/15/2002	-2.207	
7/8/2003	1.150	Because CV is greater	*	7/8/2003	0.140	
10/6/2003	0.090	logarithm of backgroun	d and test well results	10/6/2003	-2.408	
7/13/2004	0.100	were calculated.	were calculated.		-2.303	
7/20/2005	0.100	Statistics on	Statistics on		-2.303	
4/4/2006	0.100	Transformed	Transformed	4/4/2006	-2.303	
Well Number:	MW372	Background Data	Background Data		MW372	
Date Collected	Result	X = -1.835		Date Collected	LN(Result)	
3/19/2002	1.000	S= 0.938		3/19/2002	0.000	
4/23/2002	0.110	CV= -0.511		4/23/2002	-2.207	
7/16/2002	0.110	K factor** = 2.523		7/16/2002	-2.207	
7/9/2003	0.130			7/9/2003	-2.040	
10/7/2003	0.090	TL=0.532		10/7/2003	-2.408	
7/14/2004	0.100			7/14/2004	-2.303	
7/21/2005	0.100			7/21/2005	-2.303	
4/5/2006	0.100			4/5/2006	-2.303	

Second Quarter 2014 Data Collected in
Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result >TL?
MW357	0.098	Downgradie	nt N/A
MW360	0.095	Downgradie	nt N/A
MW363	0.127	Downgradie	nt N/A
MW366	0.100	Sidegradient	N/A
MW369	0.081	Upgradient	N/A
MW372	0.097	Upgradient	N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result >TL?
MW357	-2.323	NO
MW360	-2.352	NO
MW363	-2.064	NO
MW366	-2.303	NO
MW369	-2.518	NO
MW372	-2.332	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis pH URGA UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	6.100
4/22/2002	6.100
7/15/2002	6.100
10/8/2002	6.500
1/8/2003	6.500
4/3/2003	6.600
7/8/2003	6.500
10/6/2003	6.500
Well Number:	MW372
Well Number: Date Collected	MW372 Result
-	
Date Collected	Result
Date Collected 3/19/2002	Result 6.100
Date Collected 3/19/2002 4/23/2002	Result 6.100 6.120
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 6.100 6.120 6.100
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.100 6.120 6.100 6.060
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.100 6.120 6.100 6.060 6.260

Statistics on Background Data
X= 6.274
S = 0.194
CV = 0.031
K factor** = 2.904
TL = 6.837

LL= 5.711

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient R	esult >TL?	Result <ll?< th=""></ll?<>
MW357	6.110	Downgradie	nt NO	NO
MW360	6.300	Downgradie	nt NO	NO
MW363	6.290	Downgradie	nt NO	NO
MW366	6.490	Sidegradien	t NO	NO
MW369	6.210	Upgradient	NO	NO
MW372	6.140	Upgradient	NO	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Second Quarter 2014 Statistical Analysis Sodium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	35.700
4/22/2002	37.600
7/15/2002	42.400
10/8/2002	66.900
1/8/2003	67.900
4/3/2003	61.800
7/8/2003	45.600
10/6/2003	59.100
Well Number:	MW372
Date Collected	Result
3/19/2002	37.200

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data		
X= 45.100		
S= 11.875		
CV = 0.263		
K factor** = 2.523		

TL=75.061

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

38.600

35.600

37.500 34.100

34.400

44.100

43.100

Well No.	Result	Gradient I	Result >TL?	
MW357	42.100	Downgradier	nt NO	
MW360	74.100	Downgradier	nt NO	
MW363	36.600	Downgradier	nt NO	
MW366	43.700	Sidegradient	NO	
MW369	58.700	Upgradient	NO	
MW372	65.500	Upgradient	NO	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	15.500
4/22/2002	15.800
7/15/2002	13.800
10/8/2002	6.900
1/8/2003	10.500
4/3/2003	10.500
7/8/2003	10.900
10/6/2003	16.300
Well Number:	MW372
Date Collected	Result
3/19/2002	71.700

4/23/2002 7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data		
X= 45.031		
S= 33.919		
CV = 0.753		
K factor** = 2.523		

TL= 130.609

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

74.700

74.100

70.500

75.800

81.800

83.600

88.100

Well No.	Result	Gradient Resu	ılt >TL?
MW357	56.900	Downgradient	NO
MW360	38.100	Downgradient	NO
MW363	27.800	Downgradient	NO
MW366	43.800	Sidegradient	NO
MW369	8.090	Upgradient	NO
MW372	176.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	41.700
4/22/2002	53.100
7/15/2002	18.100
10/8/2002	16.400
1/8/2003	3.490
4/3/2003	9.340
7/8/2003	17.500
10/6/2003	17.000
Well Number:	MW372
Date Collected	Result
3/19/2002	44.800
4/23/2002	0.802
7/16/2002	19.800
10/8/2002	46.100

1/7/2003

4/2/2003

7/9/2003 10/7/2003

Statistics on Background Data

X= 20.821 S= 18.044 CV= 0.867 K factor** = 2.523 TL= 66.344

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

-0.973

9.070 0.000

36.900

Well No.	Result	Gradient F	Result >TL?
MW357	27.800	Downgradien	t NO
MW360	9.000	Downgradien	t NO
MW363	18.300	Downgradien	t NO
MW366	53.500	Sidegradient	NO
MW369	35.400	Upgradient	NO
MW372	13.400	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Toluene UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	5.000
4/22/2002	5.000
7/15/2002	5.000
10/8/2002	5.000
1/8/2003	5.000
4/3/2003	5.000
7/8/2003	5.000
10/6/2003	5.000
Well Number:	MW372
Date Collected	Result
3/19/2002	5.000
4/23/2002	5.000
7/16/2002	5.000
10/8/2002	5.000

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 5.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 5.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

5.000

5.000

5.000

5.000

Well No.	Result	Gradient Resu	lt >TL?
MW357	1.000	Downgradient	NO
MW360	1.000	Downgradient	NO
MW363	1.320	Downgradient	NO
MW366	12.800	Sidegradient	YES
MW369	7.160	Upgradient	YES
MW372	1.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW366

MW369

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Total Organic Carbon (TOC)

URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Background Data from Upgradient Wells	
Well Number:	MW369	X= 3.513		Well Number:	MW369
Date Collected	Result	S= 4.307 CV= 1.226		Date Collected	LN(Result)
3/18/2002	1.700	K factor** = 2.523		3/18/2002	0.531
4/22/2002	1.600	TL= 14.378		4/22/2002	0.470
7/15/2002	3.100			7/15/2002	1.131
10/8/2002	17.700	Because CV is greater that		10/8/2002	2.874
1/8/2003	9.000	0	ogarithm of background and test well results were calculated.		2.197
4/3/2003	4.000	were calculated.			1.386
7/8/2003	4.900	Statistics on		7/8/2003	1.589
10/6/2003	2.400	Transformed		10/6/2003	0.875
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X = 0.851		Date Collected	LN(Result)
3/19/2002	1.000	S=~0.828		3/19/2002	0.000
4/23/2002	1.200	CV = 0.973		4/23/2002	0.182
7/16/2002	1.000	K factor** = 2.523		7/16/2002	0.000
10/8/2002	1.000			10/8/2002	0.000
1/7/2003	1.600	TL= 2.940		1/7/2003	0.470
4/2/2003	1.500			4/2/2003	0.405
7/9/2003	3.000			7/9/2003	1.099
10/7/2003	1.500			10/7/2003	0.405

Second Quarter 2014 Data Collected in
Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result >TL?
MW357	0.882	Downgradie	nt N/A
MW360	2.490	Downgradie	nt N/A
MW363	1.080	Downgradie	nt N/A
MW366	1.140	Sidegradient	N/A
MW369	1.380	Upgradient	N/A
MW372	1.680	Upgradient	N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result >TL?
MW357	-0.126	NO
MW360	0.912	NO
MW363	0.077	NO
MW366	0.131	NO
MW369	0.322	NO
MW372	0.519	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Total Organic Halides (TOX) UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	50.000
4/22/2002	50.000
7/15/2002	81.000
10/8/2002	202.000
1/8/2003	177.000
4/3/2003	93.100
7/8/2003	17.500
10/6/2003	37.500
Well Number:	MW372
Date Collected	Result
3/19/2002	184.000
4/23/2002	50.000
7/16/2002	50.000
10/8/2002	50.000
1/7/2003	10.000

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data X= 67.963 S= 64.316

CV= 0.946 K factor** = 2.523 TL= 230.231

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

12.700

10.000

12.600

Well No.	Result	Gradient 1	Result >TL?	
MW357	8.420	Downgradier	nt NO	_
MW360	17.300	Downgradier	nt NO	
MW363	8.840	Downgradier	nt NO	
MW366	7.400	Sidegradient	NO	
MW369	25.600	Upgradient	NO	
MW372	13.900	Upgradient	NO	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Uranium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.001
4/22/2002	0.001
7/15/2002	0.001
10/8/2002	0.004
1/8/2003	0.001
4/3/2003	0.001
7/8/2003	0.001
10/6/2003	0.001
Well Number:	MW372
Date Collected	Result
3/19/2002	0.001
4/23/2002	0.001
7/16/2002	0.001
10/8/2002	0.006
1/7/2003	0.001
4/2/2003	0.001

7/9/2003 10/7/2003

Statistics on Background Data

X= 0.001 S= 0.001 CV= 0.917 K factor** = 2.523 TL= 0.005

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

0.001

0.001

Well No.	Result	Gradient Ro	esult >TL?
MW357	0.000	Downgradient	NO
MW360	0.000	Downgradient	NO
MW363	0.000	Downgradient	NO
MW366	0.000	Sidegradient	NO
MW369	0.000	Upgradient	NO
MW372	0.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Aluminum LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data			Transformed Background Data from Upgradient Wel	
Well Number:	MW370	X=2.026		Well Number:	MW370	
Date Collected	Result	S= 5.626 CV= 2.777		Date Collected	LN(Result)	
3/17/2002	4.660	K = 2.777 K factor** = 2.523		3/17/2002	1.539	
4/23/2002	0.200	TL= 16.219		4/23/2002	-1.609	
7/15/2002	0.200	12 10.215		7/15/2002	-1.609	
10/8/2002	0.200	Because CV is greater to		10/8/2002	-1.609	
1/8/2003	0.200	logarithm of backgroun	d and test well results	1/8/2003	-1.609	
4/3/2003	0.200	were calculated.		4/3/2003	-1.609	
7/9/2003	0.200	Statistics on		7/9/2003	-1.609	
10/6/2003	0.200	Transformed		10/6/2003	-1.609	
Well Number:	MW373	Background Data		Well Number:	MW373	
Date Collected	Result	X = -0.803		Date Collected	LN(Result)	
3/18/2002	22.700	S= 1.380		3/18/2002	3.122	
4/23/2002	1.460	CV= -1.718		4/23/2002	0.378	
7/16/2002	0.253	K factor** = 2.523		7/16/2002	-1.374	
10/8/2002	0.482			10/8/2002	-0.730	
1/7/2003	0.608	TL= 2.678		1/7/2003	-0.498	
4/2/2003	0.446			4/2/2003	-0.807	
7/9/2003	0.200			7/9/2003	-1.609	
10/7/2003	0.200			10/7/2003	-1.609	

Second Quarter 2014 Data Collected in
April 2014

Well No.	Result	Gradient R	Result >TL?
MW358	0.050	Downgradien	t N/A
MW361	0.050	Downgradien	t N/A
MW364	0.023	Downgradien	t N/A
MW367	0.050	Sidegradient	N/A
MW370	0.050	Upgradient	N/A
MW373	0.050	Upgradient	N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result >TL?
MW358	-2.996	NO
MW361	-2.996	NO
MW364	-3.790	NO
MW367	-2.996	NO
MW370	-2.996	NO
MW373	-2.996	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Boron LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

10	
Well Number:	MW370
Date Collected	Result
3/17/2002	2.000
4/23/2002	2.000
7/15/2002	2.000
10/8/2002	0.200
1/8/2003	0.200
4/3/2003	0.200
7/9/2003	0.200
10/6/2003	0.200
Well Number:	MW373
Date Collected	Result
3/18/2002	2.000
4/23/2002	2.000
7/16/2002	2.000
10/8/2002	0.790
1/7/2003	0.807
4/2/2003	1.130

7/9/2003

10/7/2003

Statistics on Background Data

X= 1.140 S= 0.780 CV= 0.684 K factor** = 2.523 TL= 3.108

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

1.280

1.240

Well No.	Result	Gradient I	Result >TL?
MW358	0.369	Downgradier	nt NO
MW361	0.347	Downgradier	nt NO
MW364	0.012	Downgradier	nt NO
MW367	0.017	Sidegradient	NO
MW370	0.031	Upgradient	NO
MW373	2.180	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Bromide LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	1.000
4/23/2002	1.000
7/15/2002	1.000
10/8/2002	1.000
1/8/2003	1.000
4/3/2003	1.000
7/9/2003	1.000
10/6/2003	1.000
Well Number:	MW373
Date Collected	Result
3/18/2002	1.000
4/23/2002	1.000
7/16/2002	1.000
10/8/2002	1.000

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 1.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 1.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

1.000

1.000

1.000

1.000

Well No.	Result	Gradient Re	esult >TL?
MW358	0.486	Downgradient	NO
MW361	0.431	Downgradient	NO
MW364	0.374	Downgradient	NO
MW367	0.435	Sidegradient	NO
MW370	0.513	Upgradient	NO
MW373	0.606	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Calcium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	34.800
4/23/2002	43.400
7/15/2002	33.200
10/8/2002	29.200
1/8/2003	31.300
4/3/2003	32.400
7/9/2003	22.900
10/6/2003	28.000
Well Number:	MW373
Date Collected	Result
3/18/2002	61.900
4/23/2002	59.200
7/16/2002	47.600
10/8/2002	46.100
1/7/2003	49.200

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data X= 43.413

X= 43.413 S= 13.444 CV= 0.310 K factor** = 2.523 TL= 77.331

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

57.800

52.700

64.900

Well No.	Result	Gradient Re	sult >TL?
MW358	36.100	Downgradient	NO
MW361	32.700	Downgradient	NO
MW364	28.700	Downgradient	NO
MW367	27.200	Sidegradient	NO
MW370	28.000	Upgradient	NO
MW373	78.400	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW373

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Chemical Oxygen Demand (COD) LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	35.000
4/23/2002	134.000
7/15/2002	35.000
10/8/2002	35.000
1/8/2003	35.000
4/3/2003	35.000
7/9/2003	35.000
10/6/2003	35.000
10/6/2003 Well Number:	
- 0, 0, - 0 0 0	
Well Number:	MW373
Well Number: Date Collected	MW373 Result
Well Number: Date Collected 3/18/2002	MW373 Result 35.000
Well Number: Date Collected 3/18/2002 4/23/2002	MW373 Result 35.000 47.000
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002	MW373 Result 35.000 47.000 35.000
Well Number: Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	MW373 Result 35.000 47.000 35.000 35.000

10/7/2003

Statistics on Background Data

X= 41.938 S= 24.732 CV= 0.590 K factor** = 2.523 TL= 104.336

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

35.000

Well No.	Result	Gradient 1	Result >TL	?
MW358	20.000	Downgradier	nt NO	
MW361	20.000	Downgradier	nt NO	
MW364	20.000	Downgradier	nt NO	
MW367	20.000	Sidegradient	NO	
MW370	7.490	Upgradient	NO	
MW373	20.000	Upgradient	NO	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Chloride LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
7/15/2002	55.500
10/8/2002	53.600
1/8/2003	52.900
4/3/2003	53.600
7/9/2003	51.900
10/6/2003	53.000
1/7/2004	53.000
4/7/2004	51.600
Well Number:	MW373
Date Collected	Result
7/16/2002	40.600
10/8/2002	38.800
1/7/2003	39.000
4/2/2003	38.400

7/9/2003

10/7/2003

1/6/2004

4/7/2004

Statistics on Background Data X= 45.919 S= 7.524 CV= 0.164

K factor** = 2.523 TL= 64.901

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

38.100

38.000

37.900

38.800

Well No.	Result	Gradient 1	Result >TL?	?
MW358	36.400	Downgradier	nt NO	
MW361	33.700	Downgradier	nt NO	
MW364	31.100	Downgradier	nt NO	
MW367	34.200	Sidegradient	NO	
MW370	42.600	Upgradient	NO	
MW373	44.000	Upgradient	NO	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Cobalt LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			Statistics on Background Data		Transformed Background Data from Upgradient Wells	
Well Number:	MW370	X = 0.02			Well Number:	MW370
Date Collected	Result	S= 0.03 CV= 1.1			Date Collected	LN(Result)
3/17/2002	0.025		r** = 2.523		3/17/2002	-3.689
4/23/2002	0.025	TL= 0.1			4/23/2002	-3.689
7/15/2002	0.025				7/15/2002	-3.689
10/8/2002	0.017			han 1, the natural	10/8/2002	-4.051
1/8/2003	0.011		_	d and test well results	1/8/2003	-4.556
4/3/2003	0.009	were calcu	mated.		4/3/2003	-4.677
7/9/2003	0.137	Statistic	es on		7/9/2003	-1.988
10/6/2003	0.046		Transformed Background Data	10/6/2003	-3.073	
Well Number:	MW373	Backgro			Well Number:	MW373
Date Collected	Result	X= -4.05	58		Date Collected	LN(Result)
3/18/2002	0.025	S= 1.01	1		3/18/2002	-3.689
4/23/2002	0.034	CV= -0.	249		4/23/2002	-3.381
7/16/2002	0.025	K factor	r** = 2.523		7/16/2002	-3.689
10/8/2002	0.004				10/8/2002	-5.494
1/7/2003	0.003	TL=-1	.507		1/7/2003	-5.672
4/2/2003	0.004				4/2/2003	-5.605
7/9/2003	0.041				7/9/2003	-3.206
10/7/2003	0.008				10/7/2003	-4.776

Second Quarter 2014 Data Collecte April 2014	d in

Well No.	Result	Gradient	Result >TL?
MW358	0.003	Downgradie	ent N/A
MW361	0.000	Downgradie	ent N/A
MW364	0.001	Downgradie	ent N/A
MW367	0.002	Sidegradien	t N/A
MW370	0.000	Upgradient	N/A
MW373	0.000	Upgradient	N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result >TL?
MW358	-5.875	NO
MW361	-9.210	NO
MW364	-7.118	NO
MW367	-6.450	NO
MW370	-7.621	NO
MW373	-8.948	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Conductivity LRGA UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	406.000
4/23/2002	543.000
7/15/2002	476.000
10/8/2002	441.000
1/8/2003	486.000
4/3/2003	466.000
7/9/2003	479.000
10/6/2003	435.000
Well Number:	MW373
Date Collected	Result
3/18/2002	661.000
4/23/2002	801.000
7/16/2002	774.000
10/8/2002	680.000
1/7/2003	686.500
4/2/2003	763.000

7/9/2003

10/7/2003

Statistics on Background Data		
X= 608.719		
S= 156.157		
CV = 0.257		

K factor** = 2.523 TL= 1002.702

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

828.000

814.000

Well No.	Result	Gradient	Result >T	Ľ?
MW358	522.00	Downgradie	nt N	О
MW361	489.00	Downgradie	nt N	O
MW364	457.00	Downgradie	nt N	O
MW367	421.00	Sidegradient	N	O
MW370	432.00	Upgradient	N	O
MW373	914.00	Upgradient	N	O

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Dissolved Oxygen LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	4.320
4/23/2002	1.240
7/15/2002	0.750
10/8/2002	0.940
1/8/2003	3.080
4/3/2003	1.450
7/9/2003	1.220
10/6/2003	1.070
Well Number:	MW373

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

Statistics on Background Data

X= 1.387 S= 1.153 CV= 0.831 K factor** = 2.523 TL= 4.295

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

1/7/2003 0.210 4/2/2003 1.190 7/9/2003 1.100 10/7/2003 1.460

Second Quarter 2014 Data Collected in April 2014

Result

3.040

0.030

0.230

0.860

Well No.	Result	Gradient Res	ult >TL?
MW358	2.710	Downgradient	NO
MW361	3.680	Downgradient	NO
MW364	5.550	Downgradient	YES
MW367	2.270	Sidegradient	NO
MW370	4.150	Upgradient	NO
MW373	3.010	Upgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW364

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Dissolved Solids LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370	
Date Collected	Result	
3/17/2002	236.000	
4/23/2002	337.000	
7/15/2002	266.000	
10/8/2002	240.000	
1/8/2003	282.000	
4/3/2003	238.000	
7/9/2003	248.000	
10/6/2003	224.000	
Well Number:	MW373	
Date Collected	Result	
3/18/2002	427.000	
4/23/2002	507.000	
7/16/2002	464.000	

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 356.188 S= 106.752 CV= 0.300 K factor** = 2.523 TL= 625.523

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

408.000 404.000

450.000

487.000

481.000

Well No.	Result	Gradient F	Result >TL?
MW358	299.00	Downgradien	t NO
MW361	273.00	Downgradien	t NO
MW364	254.00	Downgradien	t NO
MW367	229.00	Sidegradient	NO
MW370	223.00	Upgradient	NO
MW373	573.00	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Iron LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	9.340
4/23/2002	4.330
7/15/2002	3.520
10/8/2002	7.450
1/8/2003	7.040
4/3/2003	4.640
7/9/2003	15.800
10/6/2003	6.490
Well Number:	MW373
Date Collected	Result
3/18/2002	37.600
4/23/2002	19.000
7/16/2002	10.700
10/8/2002	3.750

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 9.230
S= 8.841
CV = 0.958
K factor** = 2.523

TL= 31.535

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

3.870

3.500

7.720

2.930

Well No.	Result	Gradient Res	sult >TL?
MW358	1.740	Downgradient	NO
MW361	0.087	Downgradient	NO
MW364	0.564	Downgradient	NO
MW367	0.827	Sidegradient	NO
MW370	0.163	Upgradient	NO
MW373	0.116	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Magnesium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	12.100
4/23/2002	15.100
7/15/2002	12.400
10/8/2002	12.200
1/8/2003	11.500
4/3/2003	12.300
7/9/2003	10.000
10/6/2003	12.100
Well Number:	MW373
Date Collected	Result
3/18/2002	24.800
4/23/2002	22.700
7/16/2002	18.800
10/8/2002	21.100
1/7/2003	19.900
4/2/2003	25.500

7/9/2003

10/7/2003

Statistics on Background Data

X= 17.544 S= 5.911 CV= 0.337 K factor** = 2.523 TL= 32.458

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

23.300

26.900

Well No.	Result	Gradient I	Result >TL?
MW358	15.500	Downgradier	nt NO
MW361	12.900	Downgradier	nt NO
MW364	11.300	Downgradier	nt NO
MW367	11.100	Sidegradient	NO
MW370	11.800	Upgradient	NO
MW373	27.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Manganese LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	0.244
4/23/2002	1.820
7/15/2002	1.220
10/8/2002	0.988
1/8/2003	0.729
4/3/2003	0.637
7/9/2003	2.510
10/6/2003	1.050
Well Number:	MW373
Date Collected	Result
3/18/2002	0.355
4/23/2002	2.160
7/16/2002	1.390
10/8/2002	0.717
1/7/2003	0.587

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data		
X= 1.080		
S = 0.674		
CV = 0.624		

K factor** = 2.523 TL= 2.780

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

0.545

1.760

0.570

Well No.	Result	Gradient Re	esult >TL?
MW358	0.314	Downgradient	NO
MW361	0.002	Downgradient	NO
MW364	0.140	Downgradient	NO
MW367	0.455	Sidegradient	NO
MW370	0.006	Upgradient	NO
MW373	0.003	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Molybdenum LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W		Statistics on Background Data		Transformed Data from Up	
Well Number:	MW370	X = 0.010		Well Number:	MW370
Date Collected	Result	S= 0.012 CV= 1.198		Date Collected	LN(Result)
3/17/2002	0.025	K factor** = 2.523		3/17/2002	-3.689
4/23/2002	0.025	TL= 0.040		4/23/2002	-3.689
7/15/2002	0.025	12 000		7/15/2002	-3.689
10/8/2002	0.001	Because CV is greater than		10/8/2002	-6.786
1/8/2003	0.001	logarithm of background a	nd test well results	1/8/2003	-6.908
4/3/2003	0.001	were calculated.		4/3/2003	-6.908
7/9/2003	0.001	Statistics on		7/9/2003	-6.908
10/6/2003	0.001	Transformed		10/6/2003	-6.908
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X= -5.693		Date Collected	LN(Result)
3/18/2002	0.025	S= 1.604		3/18/2002	-3.689
4/23/2002	0.025	CV = -0.282		4/23/2002	-3.689
7/16/2002	0.025	K factor** = 2.523		7/16/2002	-3.689
10/8/2002	0.001			10/8/2002	-6.908
1/7/2003	0.001	TL= -1.647		1/7/2003	-6.908
4/2/2003	0.001			4/2/2003	-6.908
7/9/2003	0.001			7/9/2003	-6.908
10/7/2003	0.001			10/7/2003	-6.908

Second Quarter 2014 Data Collected in	n
April 2014	

Well No.	Result	Gradient	Result >TL?
MW358	0.001	Downgradie	nt N/A
MW361	0.001	Downgradie	nt N/A
MW364	0.001	Downgradie	nt N/A
MW367	0.001	Sidegradient	N/A
MW370	0.000	Upgradient	N/A
MW373	0.001	Upgradient	N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result >TL?
MW358	-7.601	NO
MW361	-7.601	NO
MW364	-7.601	NO
MW367	-7.601	NO
MW370	-8.623	NO
MW373	-7.601	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Nickel LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	0.050
4/23/2002	0.050
7/15/2002	0.050
10/8/2002	0.005
1/8/2003	0.005
4/3/2003	0.005
7/9/2003	0.026
10/6/2003	0.010
Well Number:	MW373
Date Collected	Result
3/18/2002	0.050
4/23/2002	0.050
7/16/2002	0.050
10/8/2002	0.005
1/7/2003	0.005
	0.005
4/2/2003	0.005

7/9/2003

10/7/2003

Statistics on Background Data

X= 0.024 S= 0.022 CV= 0.901 K factor** = 2.523 TL= 0.078

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

0.011

0.005

Well No.	Result	Gradient I	Result >TL?
MW358	0.004	Downgradier	nt NO
MW361	0.001	Downgradier	nt NO
MW364	0.001	Downgradier	nt NO
MW367	0.002	Sidegradient	NO
MW370	0.002	Upgradient	NO
MW373	0.001	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Oxidation-Reduction Potential LRGA UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Background Data from Upgradient Wells	
Well Number: MW370 X= 46.688			Well Number:	MW370	
Date Collected	Result	S= 60.986 CV= 1.306		Date Collected	LN(Result)
3/17/2002	140.000	K factor** = 2.523		3/17/2002	4.942
4/23/2002	-15.000	TL= 200.555	323	4/23/2002	#Func!
7/15/2002	5.000	12 200000	J	7/15/2002	1.609
4/3/2003	49.000	Because CV is greater		4/3/2003	3.892
7/9/2003	-35.000	logarithm of backgrour	nd and test well results	7/9/2003	#Func!
10/6/2003	40.000	were calculated.	_	10/6/2003	3.689
1/7/2004	101.000	Statistics on		1/7/2004	4.615
4/7/2004	105.000	Transformed		4/7/2004	4.654
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X = error		Date Collected	LN(Result)
3/18/2002	140.000	S = error		3/18/2002	4.942
4/23/2002	-20.000	CV = error		4/23/2002	#Func!
10/8/2002	10.000	K factor** = 2.523		10/8/2002	2.303
1/7/2003	10.000			1/7/2003	2.303
4/2/2003	67.000	TL# = 4.942		4/2/2003	4.205
7/9/2003	-29.000	# Because the natural le	og was not possible for	7/9/2003	#Func!
10/7/2003	127.000		all background values, the TL was considered		4.844
1/6/2004	52.000	equal to the maximum	background value.	1/6/2004	3.951

Second Quarter 2014 Data Collected in
April 2014

Well No.	Result	Gradient	Result	>TL?
MW358	234.000	Downgradie	ent	N/A
MW361	445.000	Downgradie	ent	N/A
MW364	358.000	Downgradie	ent	N/A
MW367	446.000	Sidegradien	ıt	N/A
MW370	535.000	Upgradient		N/A
MW373	398.000	Upgradient		N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number LN(Result) Result >TL?

MW358	5.455	YES
MW361	6.098	YES
MW364	5.881	YES
MW367	6.100	YES
MW370	6.282	YES
MW373	5.986	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW358

MW361

MW364

MW367

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis	LRGA
Oxidation-Reduction Potential (Continued)	UNITS: mV

MW370 MW373

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis pH LRGA UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370	
Date Collected	Result	
3/17/2002	6.300	
4/23/2002	6.400	
7/15/2002	6.300	
10/8/2002	6.300	
1/8/2003	6.400	
4/3/2003	6.500	
7/9/2003	6.300	
10/6/2003	6.500	
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	
Date Collected	Result	
Date Collected 3/18/2002	Result 6.000	
Date Collected 3/18/2002 4/23/2002	Result 6.000 6.300	
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 6.000 6.300 6.450	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.000 6.300 6.450 6.180	
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.000 6.300 6.450 6.180 6.350	

Statistics on Background Data		
X= 6.283		
S = 0.159		
CV = 0.025		
K factor** = 2.904		

TL= 6.745LL= 5.820

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient R	esult >TL?	Result <ll?< th=""></ll?<>
MW358	6.220	Downgradie	nt NO	NO
MW361	6.140	Downgradie	nt NO	NO
MW364	6.380	Downgradie	nt NO	NO
MW367	6.010	Sidegradien	t NO	NO
MW370	6.080	Upgradient	NO	NO
MW373	6.080	Upgradient	NO	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Second Quarter 2014 Statistical Analysis Sodium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370	
Date Collected	Result	
3/17/2002	31.800	
4/23/2002	50.000	
7/15/2002	44.700	
10/8/2002	40.000	
1/8/2003	44.600	
4/3/2003	41.900	
7/9/2003	40.000	
10/6/2003	38.100	
Well Number:	MW373	
Date Collected	Result	
3/18/2002	43.400	
4/23/2002	79.800	
7/16/2002	87.700	
10/8/2002	61.600	
1/7/2003	59.300	
4/2/2003	62.100	

7/9/2003

10/7/2003

Statistics on Background Data

X= 51.544 S= 15.227 CV= 0.295 K factor** = 2.523 TL= 89.962

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

50.100

49.600

Well No.	Result	Gradient I	Result >TL?
MW358	41.900	Downgradier	nt NO
MW361	44.200	Downgradier	nt NO
MW364	43.300	Downgradier	nt NO
MW367	36.300	Sidegradient	NO
MW370	39.600	Upgradient	NO
MW373	68.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Sulfate LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells	
Well Number: MW370		X= 122.381			MW370	
Date Collected	Result	S= 195.095 CV= 1.594		Date Collected	LN(Result)	
3/17/2002	17.400	K = 1.594 K factor** = 2.523		3/17/2002	2.856	
4/23/2002	37.900	TL= 614.606		4/23/2002	3.635	
7/15/2002	15.700	12 0111000		7/15/2002	2.754	
10/8/2002	13.400	Because CV is greater t		10/8/2002	2.595	
1/8/2003	14.400	logarithm of backgroun	d and test well results	1/8/2003	2.667	
4/3/2003	18.100	were calculated.	_	4/3/2003	2.896	
7/9/2003	9.600	Statistics on		7/9/2003	2.262	
10/6/2003	16.500	Transformed		10/6/2003	2.803	
Well Number:	MW373	Background Data		Well Number:	MW373	
Date Collected	Result	X = 3.985		Date Collected	LN(Result)	
3/18/2002	163.300	S= 1.323		3/18/2002	5.096	
4/23/2002	809.600	CV = 0.332		4/23/2002	6.697	
7/16/2002	109.400	K factor** = 2.523		7/16/2002	4.695	
10/8/2002	110.600			10/8/2002	4.706	
1/7/2003	113.700	TL= 7.322]	1/7/2003	4.734	
4/2/2003	133.000			4/2/2003	4.890	
7/9/2003	182.100			7/9/2003	5.205	
10/7/2003	193.400			10/7/2003	5.265	

Second Quarter 2014 Data Collected in
April 2014

Well No.	Result	Gradient	Result >TL?
MW358	88.500	Downgradie	nt N/A
MW361	82.300	Downgradie	nt N/A
MW364	67.100	Downgradie	nt N/A
MW367	41.500	Sidegradient	N/A
MW370	18.900	Upgradient	N/A
MW373	209.000	Upgradient	N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result >TL?
MW358	4.483	NO
MW361	4.410	NO
MW364	4.206	NO
MW367	3.726	NO
MW370	2.939	NO
MW373	5.342	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Technetium-99 LRGA UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data fr Upgradient Wells	Statistics on Background Data			
Well Number: MW3	X= 7.655		Well Number:	MW370
Date Collected Res	S= 13.274 CV= 1.734		Date Collected	LN(Result)
3/17/2002 10.5			3/17/2002	2.380
4/23/2002 8.5	TL= 41.146		4/23/2002	2.144
7/15/2002 5.09	12		7/15/2002	1.627
10/8/2002 4.7	Because CV is greater	•	10/8/2002	1.564
1/8/2003 -5.1		nd and test well results	1/8/2003	#Func!
4/3/2003 5.1	were calculated.	_	4/3/2003	1.631
7/9/2003 4.2.	Statistics on		7/9/2003	1.447
10/6/2003 6.5	Transformed		10/6/2003	1.878
Well Number: MW3	Background Data	ackground Data	Well Number:	MW373
Date Collected Res	X = error		Date Collected	LN(Result)
3/18/2002 16	S = error		3/18/2002	2.803
4/23/2002 3.4	CV = error		4/23/2002	1.250
7/16/2002 1.4	K factor** = 2.523		7/16/2002	0.351
10/8/2002 -6.0			10/8/2002	#Func!
1/7/2003 -8.4	TL# = 3.833		1/7/2003	#Func!
4/2/2003 26.3		log was not possible for	4/2/2003	3.270
	all background values	, the TL was considered	7/9/2003	1.118
7/9/2003 3.0	equal to the maximum		11712003	1.110

Second Quarter 2014 Data Collected in
April 2014

Well No.	Result	Gradient I	Result >TL?
MW358	44.400	Downgradien	nt N/A
MW361	40.600	Downgradien	t N/A
MW364	52.500	Downgradien	t N/A
MW367	38.100	Sidegradient	N/A
MW370	27.900	Upgradient	N/A
MW373	43.600	Upgradient	N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number LN(Result) Result >TL?			
MW358	3.793	NO	
MW361	3.704	NO	
MW364	3.961	YES	
MW367	3.640	NO	
MW370	3.329	NO	
MW373	3.775	NO	

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW364

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Total Organic Carbon (TOC)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				Transformed Background Data from Upgradient Well	
Well Number:	MW370	X= 6.169		Well Number:	MW370
Date Collected	Result	S= 12.072 CV= 1.957		Date Collected	LN(Result)
3/17/2002	1.200	K = 1.957 K factor** = 2.523		3/17/2002	0.182
4/23/2002	4.300	TL= 36.626		4/23/2002	1.459
7/15/2002	2.600	12 00020	J	7/15/2002	0.956
10/8/2002	2.300	Because CV is greater to	•	10/8/2002	0.833
1/8/2003	3.000	logarithm of backgroun	d and test well results	1/8/2003	1.099
4/3/2003	1.200	were calculated.	_	4/3/2003	0.182
7/9/2003	2.600	Statistics on		7/9/2003	0.956
10/6/2003	1.700	Transformed		10/6/2003	0.531
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X = 1.069		Date Collected	LN(Result)
3/18/2002	1.100	S= 1.014		3/18/2002	0.095
4/23/2002	17.500	CV= 0.948		4/23/2002	2.862
7/16/2002	49.000	K factor** = 2.523		7/16/2002	3.892
10/8/2002	2.900			10/8/2002	1.065
1/7/2003	3.900	TL= 3.626	j	1/7/2003	1.361
4/2/2003	2.500			4/2/2003	0.916
7/9/2003	1.700			7/9/2003	0.531
10/7/2003	1.200			10/7/2003	0.182

Second Quarter 2014 Data Collected in	n
April 2014	

7	Well No.	Result	Gradient	Result >TI	ر?
	MW358	1.120	Downgradie	ent N/A	1
	MW361	0.670	Downgradie	ent N/A	A
	MW364	0.728	Downgradie	ent N/A	4
	MW367	0.980	Sidegradien	t N/A	4
	MW370	0.993	Upgradient	N/A	4
	MW373	1.290	Upgradient	N/A	4

Transformed Second Quarter 2014 Data Collected in April 2014

LRGA

UNITS: mg/L

Well Number	LN(Result)	Result >TL?
MW358	0.113	NO
MW361	-0.400	NO
MW364	-0.317	NO
MW367	-0.020	NO
MW370	-0.007	NO
MW373	0.255	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2014 Statistical Analysis Total Organic Halides (TOX) LRGA UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	50.000
4/23/2002	228.000
7/15/2002	88.000
10/8/2002	58.000
1/8/2003	72.400
4/3/2003	26.600
7/9/2003	16.400
10/6/2003	31.100
Well Number:	MW373
Date Collected	Result
3/18/2002	50.000
4/23/2002	276.000
7/16/2002	177.000
10/8/2002	76.000
1/7/2003	45.900
4/2/2003	57.800

7/9/2003

10/7/2003

Statistics on Background Data

X= 79.819 S= 78.470 CV= 0.983 K factor** = 2.523 TL= 277.798

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

10.000

13.900

Well No.	Result	Gradient I	Result >TL?
MW358	9.320	Downgradien	it NO
MW361	9.380	Downgradien	t NO
MW364	8.200	Downgradien	t NO
MW367	6.620	Sidegradient	NO
MW370	6.120	Upgradient	NO
MW373	9.040	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

August 12th, 2014

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in mathematics, I have over two years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist with LATA.

For this project, the statistical analyses conducted on the second quarter 2014 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely,

Cory Tackett

LATA Project Chemist

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED - QUARTERLY, $2^{\rm nd}$ CY 2014

Facility: U.S. DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

GROUNDWATER FLOW RATE AND DIRECTION

Finds/Unit: KY8-890-008-982/1

LAB ID: None

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2014 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on April 29, 2014. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. Two UCRS wells, MW376 and MW377, had insufficient water to permit sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradient for both the URGA and LRGA at the C-746-U Landfill were similar (3.35×10^{-4} ft/ft and 3.41×10^{-4} ft/ft, respectively). Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 2.86×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. During April 2014, groundwater flow in the vicinity of the landfills was directed eastward, in response to changes in the Ohio River stage. As demonstrated on the potentiometric map for April 2014, the groundwater flow direction in the immediate area of the landfill commonly varies slightly from regional trends; however, as groundwater flows away from the landfill, it eventually conforms to the regional flow direction.

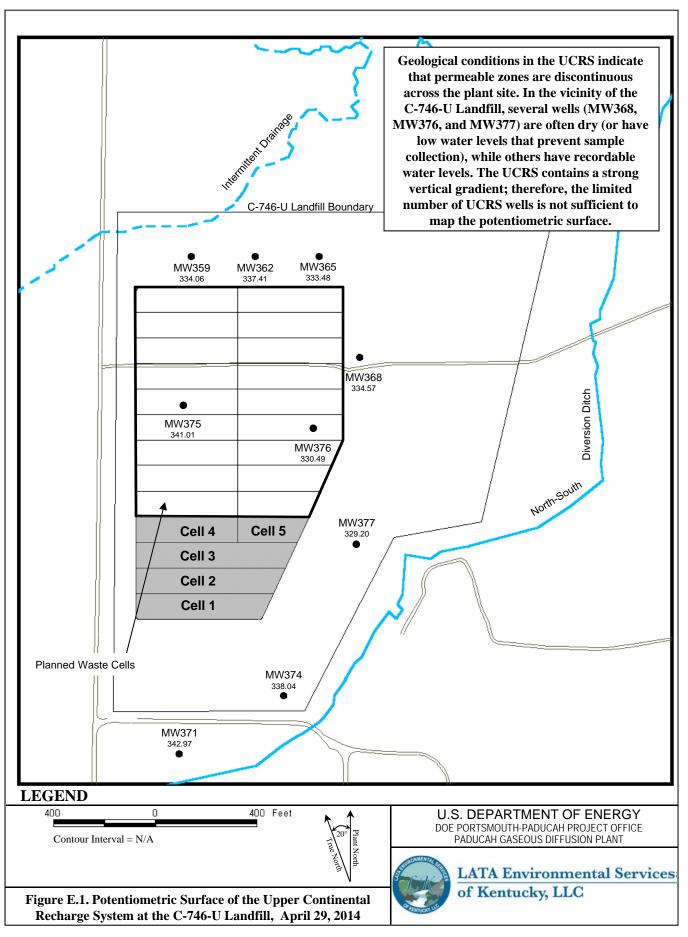


Table E.1. C-746-U Landfill Second Quarter 2014 (April) Water Levels

			C-7	46-U Landfill (A	April 2014) Water Lev	els			
							Ra	w Data	*Corre	ected Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/29/2014	9:02	MW357	URGA	368.99	29.63	0.00	41.82	327.17	41.82	327.17
4/29/2014	9:00	MW358	LRGA	369.13	29.63	0.00	42.00	327.13	42.00	327.13
4/29/2014	9:01	MW359	UCRS	369.11	29.63	0.00	35.05	334.06	35.05	334.06
4/29/2014	9:05	MW360	URGA	362.30	29.63	0.00	35.19	327.11	35.19	327.11
4/29/2014	9:07	MW361	LRGA	361.54	29.63	0.00	34.45	327.09	34.45	327.09
4/29/2014	9:06	MW362	UCRS	362.04	29.63	0.00	24.63	337.41	24.63	337.41
4/29/2014	8:56	MW363	URGA	368.83	29.63	0.00	41.80	327.03	41.80	327.03
4/29/2014	8:54	MW364	LRGA	367.75	29.63	0.00	40.80	326.95	40.80	326.95
4/29/2014	8:55	MW365	UCRS	368.37	29.63	0.00	34.89	333.48	34.89	333.48
4/29/2014	8:52	MW366	URGA	369.27	29.63	0.00	42.15	327.12	42.15	327.12
4/29/2014	8:50	MW367	LRGA	369.66	29.63	0.00	42.55	327.11	42.55	327.11
4/29/2014	8:51	MW368	UCRS	369.27	29.63	0.00	34.70	334.57	34.70	334.57
4/29/2014	7:57	MW369	URGA	364.48	29.63	0.00	36.81	327.67	36.81	327.67
4/29/2014	8:00	MW370	LRGA	365.35	29.63	0.00	37.70	327.65	37.70	327.65
4/29/2014	7:58	MW371	UCRS	364.88	29.63	0.00	21.91	342.97	21.91	342.97
4/29/2014	7:52	MW372	URGA	359.66	29.61	0.02	32.05	327.61	32.07	327.59
4/29/2014	7:56	MW373	LRGA	359.95	29.63	0.00	32.38	327.57	32.38	327.57
4/29/2014	7:54	MW374	UCRS	359.71	29.63	0.00	21.67	338.04	21.67	338.04
4/29/2014	7:43	MW375	UCRS	370.53	29.61	0.02	29.50	341.03	29.52	341.01
4/29/2014	7:47	MW376	UCRS	370.61	29.61	0.02	40.10	330.51	40.12	330.49
4/29/2014	7:49	MW377	UCRS	365.92	29.61	0.02	36.70	329.22	36.72	329.20

Initial Barometric Pressure

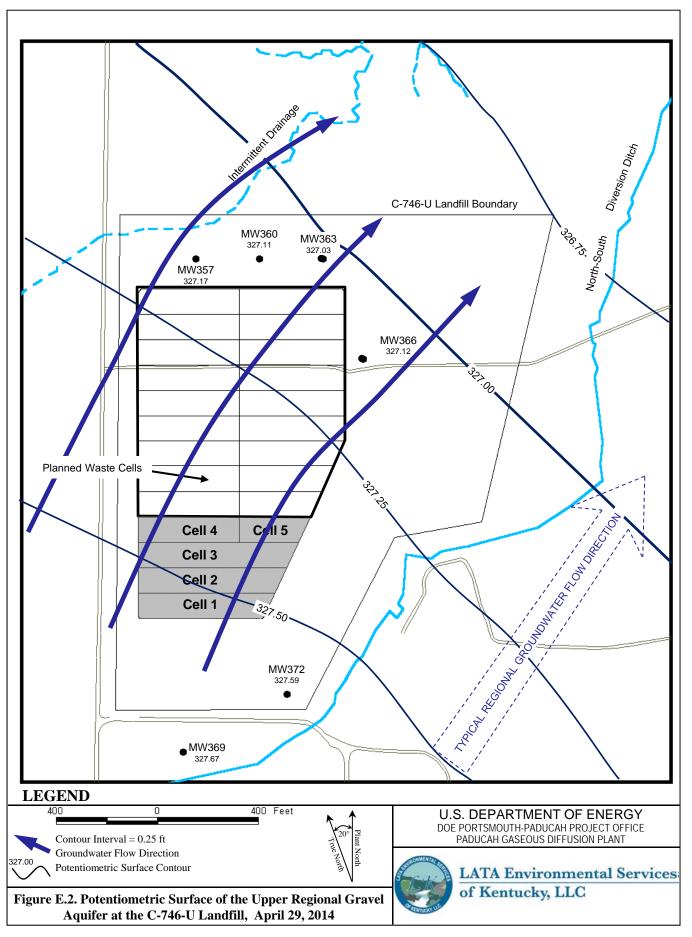
29.63

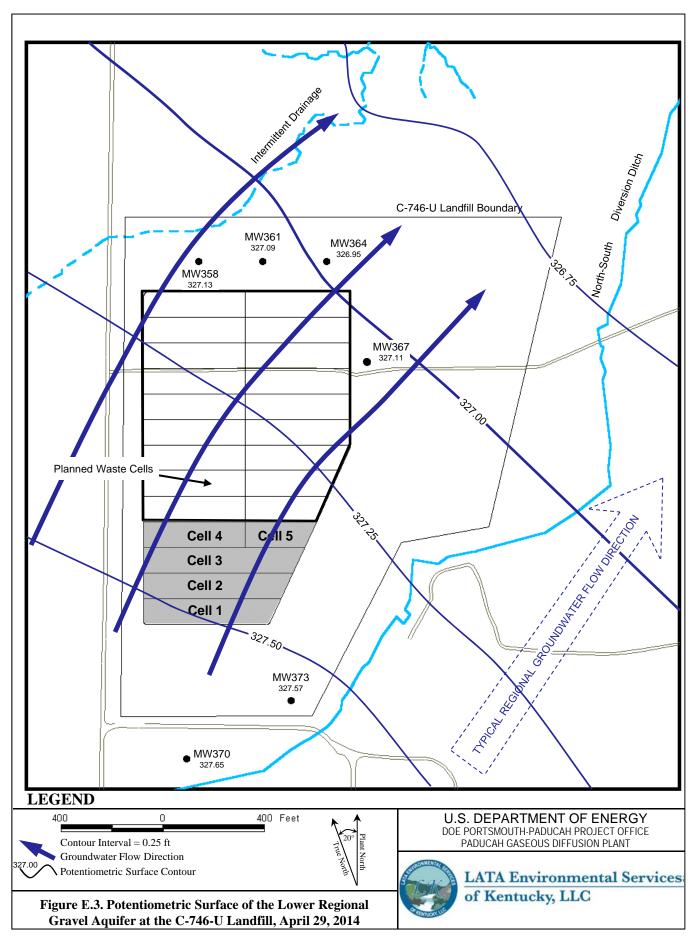
Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer


LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

ND = No Data acquired

*Assumes a barometric efficiency of 1.0

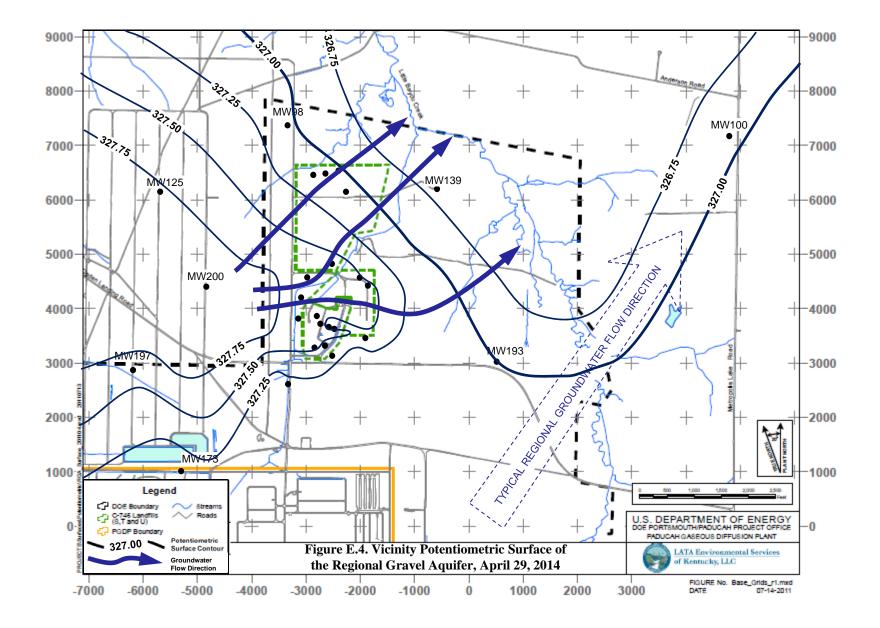
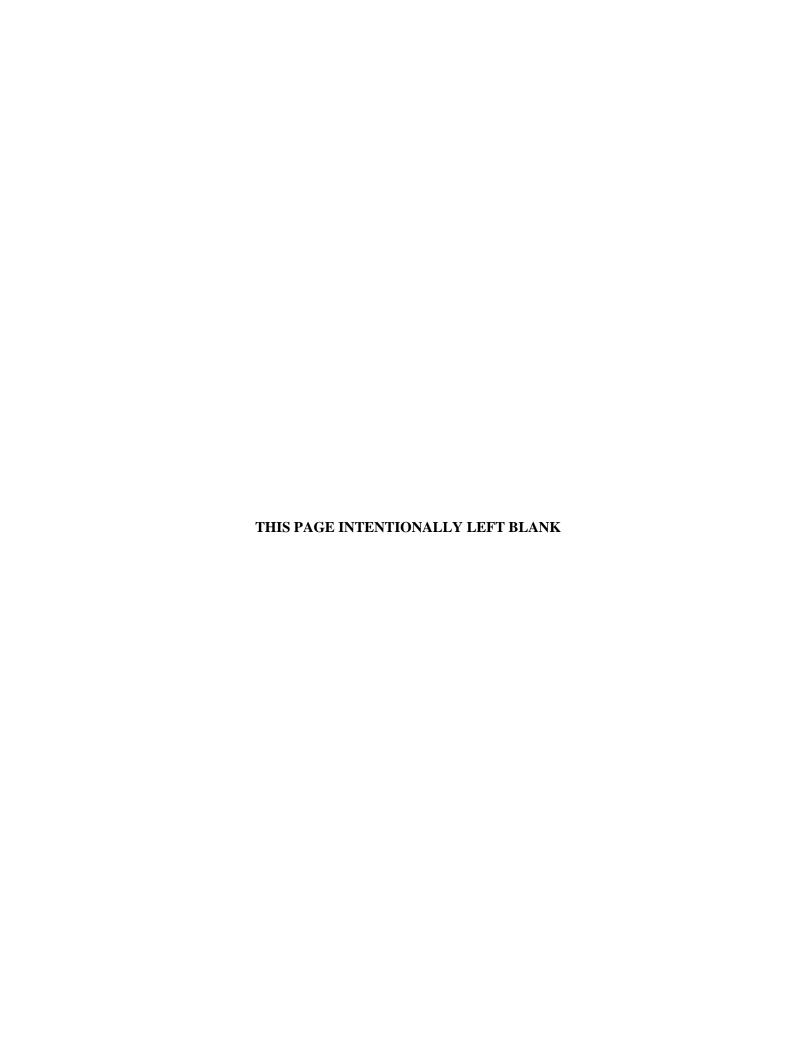



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	3.35×10^{-4}
Beneath Landfill—Lower RGA	3.41×10^{-4}
Vicinity	2.86×10^{-4}

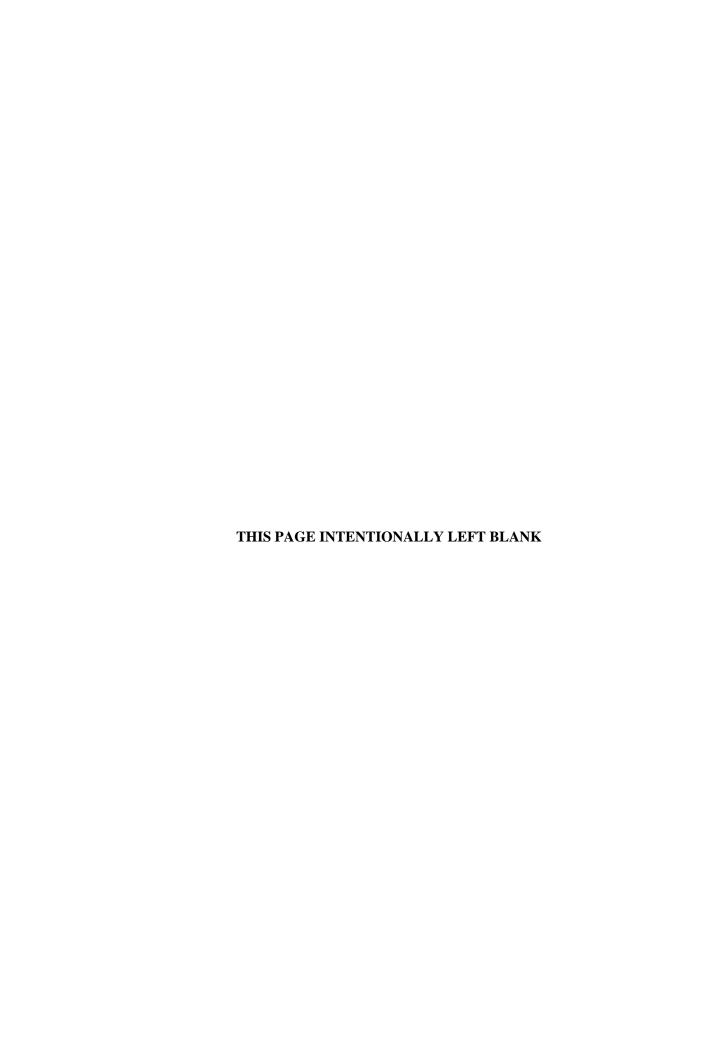
Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	c Discharge (q)	Average	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.24	8.57×10^{-5}	0.97	3.43×10^{-4}
425	0.150	0.14	5.02×10^{-5}	0.57	2.01×10^{-4}
Lower RGA					
725	0.256	0.25	8.73×10^{-5}	0.99	3.49×10^{-4}
425	0.150	0.14	5.11×10^{-5}	0.58	$2.05 \times H 10^{-4}$

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300, Section 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on Page F-4. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.


Statistical Analysis of Parameters Notification

The statistical analyses conducted on the second quarter 2014 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The following are the parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to background concentrations.

<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	
None	
Upper Regional Gravel Aquifer	
Toluene	MW366, MW369
Lower Regional Gravel Aquifer	
Technetium-99	MW364

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

APPENDIX G

CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	T			J	JCR:	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
ACETONE	200	0,0	0,0	0,,	00)	002	000	0,1	υ,.	000	000	000	00,	00)	0,2	00,	001			0,0	0,0
Quarter 3, 2002										*	*	*									\sqcap
Quarter 4, 2002	1									*	*	*									\vdash
Quarter 1, 2003										T	*	*									
											*	*									
Quarter 2, 2003	*						*			*	*	*			*			*			
Quarter 3, 2003	不					*	*			不	*	不		*	不			不			-
Quarter 4, 2003						*	不				不			不		*					
Quarter 3, 2004						*										不					-
Quarter 3, 2005																					\vdash
Quarter 4, 2005						*															
ALPHA ACTIVITY			1 1										1		1			1	1		
Quarter 1, 2004	1					_															
Quarter 2, 2004						_															
Quarter 3, 2009																					
ALUMINUM									1				1		1			ı	1		
Quarter 3, 2003											*										
BETA ACTIVITY							1	1			ı		ı	ı			1	ı	1		
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010															_						\Box
Quarter 3, 2010										F											\Box
Quarter 4, 2010										T											\vdash
Quarter 2, 2011																					\vdash
Quarter 4, 2011										<u> </u>											$\vdash \vdash$
Quarter 1, 2012	1																				\vdash
	1									_											$\vdash \vdash$
Quarter 2, 2012	1																				Ш
Quarter 3, 2012																					
Quarter 4, 2012																					

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR:	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368				359	362	365	371	374		360	363	357	369			361	364	358	370	373
Quarter 1, 2013																					
Quarter 3, 2013																					
Quarter 4, 2013																					
Quarter 1, 2014																					
BROMIDE		J													•						
Quarter 2, 2004													*								
CALCIUM													ı								
Quarter 3, 2003										*											
Quarter 2, 2005																					*
Quarter 3, 2006															*						
Quarter 2, 2008															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011																					*
Quarter 4, 2011															*						*
Quarter 1, 2012															*						*
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						*
Quarter 2, 2013															*						
Quarter 3, 2013															*						*
Quarter 4, 2013															*						
Quarter 2, 2014															*						*
CARBON DISULFIDE			ı									ı									
Quarter 3, 2003										*											
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006						*															
Quarter 3, 2010		*									*										
Quarter 4, 2010														*							
Quarter 1, 2011															*						
CHEMICAL OXYGEN DEMA	ND	<u> </u>		ı	ı													1			
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003						*				*	*										
Quarter 3, 2004										*											

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	Т			J	JCR:	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	_												357					1		370	
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*				4					71.	717		*	*		
Quarter 1, 2006																		7,7	*		
CHLORIDE		l			<u> </u>								l					l	T	<u> </u>	
Quarter 1, 2006																				*	
Quarter 2, 2014															*						
COBALT					<u> </u>										***						
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	
Quarter 1, 2004	1									*1*	***			*	***	***	***	1			
CONDUCTIVITY		l			l								l	*1*				l			
Quarter 4, 2002										*											
Quarter 1, 2003										*										1	
Quarter 2, 2003										*	*										
Quarter 4, 2003										*	т.										
Quarter 1, 2004										*											
Quarter 2, 2004										*										-	
Quarter 3, 2004										*										-	
Quarter 1, 2005										-					*					-	
Quarter 2, 2005															*					-	
Quarter 3, 2005						*									Α				*	-	
Quarter 4, 2005						т									*			*	т	-	
Quarter 1, 2006															*			不			
Quarter 1, 2006 Quarter 2, 2006															*						
															*					-	
Quarter 3, 2006	-														*					├─	
Quarter 1, 2007															*					₩	
Quarter 2, 2007																				₩	
Quarter 3, 2007															*						
Quarter 4, 2007															*						
Quarter 1, 2008															*						
Quarter 2, 2008															*					₩	
Quarter 3, 2008															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009																					
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010	1														*						
Quarter 2, 2010	1																				
Quarter 3, 2010	1-														*					₩	\vdash
Quarter 4, 2010	1														*					<u> </u>	$\vdash \vdash$
Quarter 1, 2011	1									_					*	-	-			 	\vdash
Quarter 2, 2011	1-														*					₩	\vdash
Quarter 3, 2011	1-									_					*					<u> </u>	\sqcup
Quarter 4, 2011	1-														*			-		<u> </u>	\sqcup
Quarter 1, 2012														*	*					Щ	
Quarter 2, 2012	1														*					<u> </u>	Ш
Quarter 3, 2012															*					$oxed{oxed}$	Ш
Quarter 4, 2012															*	L					

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				J	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	-		_										357							_	
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
,																					
Quarter 1, 2014															*						
Quarter 2, 2014															*					<u> </u>	
DISSOLVED OXYGEN						1	1	1				ı	1				ı	1	1		
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*					*											
Quarter 4, 2003					*																
Quarter 1, 2004					*															<u> </u>	
Quarter 2, 2004								*								*					
Quarter 1, 2005	_				*			ملد								<u> </u>				<u> </u>	igwdap
Quarter 2, 2005					sle.			*												<u> </u>	
Quarter 1, 2006					*			4													
Quarter 2, 2006					*			*													
Quarter 4, 2006					*			木	*												
Quarter 4, 2006					*			*	不											\vdash	
Quarter 2, 2007 Quarter 3, 2007					*			*	*												
Quarter 1, 2008					*			T	ጥ										*		
Quarter 1, 2008 Quarter 2, 2008					T			*	*										T		
Quarter 3, 2008								*	т												
Quarter 1, 2009							*	т .													
Quarter 2, 2009					*		•••	*	*												
Quarter 3, 2009						*		*	*												
Quarter 1, 2010					*	-	*														
Quarter 2, 2010					*	*	-	*	*											*	*
Quarter 3, 2010					*	*															
Quarter 4, 2010							*					*								*	
Quarter 1, 2011						*															
Quarter 2, 2011					*	*	*	*	*					*							
Quarter 3, 2011						*			*												
Quarter 1, 2012							*		*												
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012						*															
Quarter 4, 2012									*												
Quarter 1, 2013	_					*			*												
Quarter 2, 2013							*		*												
Quarter 3, 2013	*				*		*	*	*											<u> </u>	
Quarter 4, 2013								_	*									_		*	
Quarter 2, 2014	*				*	*	*	*	*									*			
DISSOLVED SOLIDS						1	1						1	1	1				1		
Quarter 4, 2002										*										<u> </u>	
Quarter 1, 2003	1									*						<u> </u>				<u> </u>	
Quarter 2, 2003	_						Al.			*	Al.					<u> </u>				<u> </u>	—
Quarter 3, 2003							*			*	*										

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	T			Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	_												357								
Quarter 4, 2003	-									*											- 10
Quarter 3, 2005						*				**											
Quarter 4, 2006						~									*						-
Quarter 1, 2007															*						
Quarter 2, 2007	+														*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
															*						\vdash
Quarter 4, 2009	-														*						<u> </u>
Quarter 1, 2010																					
Quarter 2, 2010															*						
Quarter 3, 2010															*						<u> </u>
Quarter 4, 2010															*						
Quarter 1, 2011															*						<u> </u>
Quarter 2, 2011															*						<u> </u>
Quarter 3, 2011															*						
Quarter 4, 2011															*						<u> </u>
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
IODIDE													ı								
Quarter 2, 2003																*					
Quarter 3, 2003	*									*											
Quarter 4, 2003							*														
Quarter 3, 2010						*		*					*				*				
IODINE-131						l	1	1					I		1			1			
Quarter 3, 2010	I																				
IODOMETHANE						l						l	l				ı				
Quarter 4, 2003	I					*															
IRON				1	1		1	1				l	l		1			1	1		
Quarter 4, 2002	I					*															
Quarter 3, 2003	1					٠٣										*					
Quarter 4, 2003	-									*						*					\vdash
Quarter 1, 2004	-									*						*					\vdash
Quarter 1, 2004 Quarter 2, 2004	-									*						_					\vdash
	+									*											\vdash
Quarter 3, 2004	+									不						*					
Quarter 3, 2005						<u> </u>						<u> </u>				不					
MAGNESIUM													l		JL.						<u> </u>
Quarter 2, 2005	-					414									*						*
Quarter 3, 2005	+					*									ماد		-				*
Quarter 2, 2006															*						*

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				J	JCR:	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	_												357						358		
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2008															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						<u> </u>
Quarter 3, 2012															*						
Quarter 4, 2012																					
Quarter 1, 2013	1														*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 2, 2014															*						
MANGANESE					ı		ı			Ala.		ماد		1					ı		
Quarter 3, 2002		Ala.				Ala.	110			*		*		Ala.							
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2003										*		*									
Quarter 3, 2003										*		*	*			*	*	*	*		
Quarter 4, 2003										*	*	*	*				*	*			
Quarter 1, 2004										*	*	*				*	*	*			
Quarter 2, 2004							*			*	*	*						*			
Quarter 3, 2004							*			*	*	*				*					
Quarter 4, 2004										*		*				*					
Quarter 1, 2005										*		*									
Quarter 2, 2005										*		*				_					
Quarter 3, 2005										*		*				*					
Quarter 4, 2005										*						*					
Quarter 1, 2006										*											<u> </u>
Quarter 2, 2006							*			*		*									<u> </u>
Quarter 3, 2006										*						*					<u> </u>
Quarter 4, 2006										*											<u> </u>
Quarter 1, 2007										*											<u> </u>
Quarter 2, 2007							*			*											<u> </u>
Quarter 3, 2007							*														<u> </u>
Quarter 3, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 3, 2011							*														
NICKEL																					
Quarter 3, 2003										*											

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	_		_		359	362	365	371	374			363	357	369	372			364	358	370	373
Womtoring Wen	500	373	570	377	557	302	303	571	57.	500	500	505	33,	507	312	507	501	501	550	570	373
OXIDATION-REDUCTION	DOTE	NTT	A T																	i	
Quarter 4, 2002	T	1111	AL														*	1	*		T
Quarter 1, 2003																	*		*		-
Quarter 2, 2003																	Т		*		-
Quarter 3, 2003	*																		т		-
Quarter 4, 2003	*				*																-
Quarter 2, 2004					T								*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004					71.			717				*	71.	**	7		***			-	*
Quarter 1, 2005												*					*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005	+	*			4,	T*		*			T	4,	*				*		4,	*	T*
Quarter 4, 2005 Quarter 1, 2006	+	T			*			*	*				T				*			T	*
Quarter 2, 2006	-				*		*	*	т				*				*			*	<u> </u>
Quarter 3, 2006					*		т.	*					*				*			*	1
`					*		*	~		*		*	*				*			*	*
Quarter 4, 2006	-	*			*		不	*		不		不	*				*			*	*
Quarter 1, 2007		不			*			不					*				*			*	*
Quarter 2, 2007	+				*			*					不				*			*	不
Quarter 3, 2007	+				不			不									*			*	*
Quarter 4, 2007	-				4			4				*	*				不		*		不
Quarter 1, 2008					*			*		46		木	*	4				3	*	*	- J
Quarter 2, 2008	-				*		44	*	4	*		4		*			44	*	4	*	*
Quarter 3, 2008	-				*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008	-						NI4	*		*		*	*				*	*		*	*
Quarter 1, 2009					414		*	*		*		*	*				414	*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	L
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011						*		*		*	*	*	*	*		*	*	*	*	*	<u> </u>
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*			_	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
PCB, TOTAL																					
Quarter 4, 2003																	*				
Quarter 3, 2004												*									
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004												*									
Quarter 2, 2006							*					*									
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242																					
Quarter 3, 2006							*					*									
Quarter 4, 2006										*											
Quarter 1, 2008							*														
Quarter 2, 2012							*														
PCB-1248																					
Quarter 2, 2008							*														
PCB-1260																					
Quarter 2, 2006							*														
pН																					
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005						*												*	*		
Quarter 4, 2005						*													*		

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				τ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	_												357						358		
Quarter 3, 2006	500	313	370	311	337	302	303	3/1	314	300	300	303	337	307	312	*	301	504	330	310	313
Quarter 2, 2011														*		~					-
	+													-							
Quarter 3, 2011														*							<u> </u>
Quarter 4, 2011	-													*		Ala.	NI4				
Quarter 1, 2012																*	*				
Quarter 2, 2012												*									
Quarter 1, 2013										*		*				*					
POTASSIUM			1 1				1			1	1	Γ	1	1							
Quarter 1, 2014																*					
RADIUM-228			1 1	1			1				ı	ı	ı						1		
Quarter 2, 2005																					<u> </u>
Quarter 4, 2005																					
SELENIUM		1				1						ı								1	
Quarter 4, 2003																					
SODIUM		1									_		_								
Quarter 3, 2002										*	*		*								
Quarter 4, 2002										*	*			*							
Quarter 1, 2003										*											
Quarter 2, 2003										*	*										
Quarter 3, 2003											*										
Quarter 1, 2007											*										
Quarter 1, 2012														*							
Quarter 1, 2014															*						
STRONTIUM-90																					
Quarter 3, 2003																					
SULFATE																					
Quarter 1, 2003							*														
Quarter 2, 2003						*	*														
Quarter 3, 2003	*					*															
Quarter 4, 2003					*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005															*						
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006							*														Н
Quarter 1, 2007							*														
Quarter 2, 2007							*														Н
Quarter 3, 2007							*														
Quarter 4, 2007		*																			
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*		-4*												H
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008		*			**	*	*														
Quarter 7, 2000		т	ш			Т	_ 	<u> </u>			Щ	Ļ	L	Щ_					<u> </u>		

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	UCRS						UR	GA					LR	GA							
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368		_		359								357	369	372		361	364	358	370	373
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*									*						
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010		*			*	*	*								*						
Quarter 3, 2010		*			*	*	*								*						
Quarter 4, 2010		*				*	*								*						
Quarter 1, 2011		*																			
Quarter 2, 2011		*			*	*	*								*						
Quarter 3, 2011		*				*	*	*							*						
Quarter 4, 2011		*				*									*						
Quarter 1, 2012		*					*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012	1	*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*													*						
Quarter 3, 2013	*	*		*	*	*	*								*						
Quarter 4, 2013		*													*						
Quarter 1, 2014		*													*						
Quarter 2, 2014	*	*			*		*	*							*						
TECHNETIUM-99					l	l		l						l .							l
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003																	*				
Quarter 4, 2003																	*				*
Quarter 1, 2004															*		*				*
Quarter 2, 2004															*						*
Quarter 3, 2004															*						*
Quarter 4, 2004															*		*				*
Quarter 3, 2005																	*				
Quarter 1, 2006															*						*
Quarter 2, 2006		*							*												*
Quarter 3, 2006																					*
Quarter 4, 2006															*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007															*		*	*			
Quarter 4, 2007										*					*				*		*
Quarter 1, 2008															*					*	*
Quarter 2, 2008							*	*						*		*			*		
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375		377	359	362	365	371	374		360	363	357	369	372	367	361	364	358	370	373
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010										-								*			
Quarter 1, 2011		*								*							*	**			
Quarter 2, 2011	l															*	*	*	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012								*										*			
Quarter 3, 2012																	*	*			
Quarter 4, 2012															*			*			*
Quarter 1, 2013																		*			*
Quarter 2, 2013	1																				*
Quarter 3, 2013	t									*											*
Quarter 4, 2013	1														*		*	*			*
Quarter 1, 2014															*		*	*			
Quarter 2, 2014																		*			
TOLUENE			l				l										l	-			
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON		l	l				l		Į				l	l			l	I		l	
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003											*										
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										
Quarter 1, 2004											*										
Quarter 3, 2005						*				*					*	*		_	*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006	<u> </u>																		*		
TOTAL ORGANIC HALIDES	•	1	ı	ı	ı		ı		ı				1	1	1		ı	1		1	
Quarter 4, 2002										*											
Quarter 1, 2003	1									*											
Quarter 2, 2003	 									*						ماد					-
Quarter 1, 2004]								*					<u> </u>
TRICHLOROETHENE	I																				
Quarter 3, 2002 Quarter 4, 2002	1																				
Quarter 4, 2002 Quarter 1, 2003	1																				
Quarter 1, 2003 Quarter 2, 2003	1																				
Quarter 3, 2003	1														_						
Quarter 4, 2003	l																				
Quarter 1, 2004	Ī																				
Quarter 2, 2004	1																				
Quarter 3, 2004	Ĺ																				
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System Gradient S S S S Monitoring Well 368 375 376 377 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009	D D 359 362			J S 74 366	D 360	D 363	D 357	U 369	U 372	S 367	D 361	D 364	D 358	U 370	U 373
Monitoring Well 368 375 376 377 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009	+				1				372			364	358	370	373
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009															
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009															
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009															
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009															
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009															
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009															
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009															▋
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009															=
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009															
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009															
Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009															
Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009												1			
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009															
Quarter 1, 2009 Quarter 2, 2009				1											
Quarter 2, 2009			1	-	1										
					1										
0															
Quarter 3, 2009															
Quarter 4, 2009															
Quarter 1, 2010															
Quarter 2, 2010															
Quarter 3, 2010															
Quarter 4, 2010															
Quarter 1, 2011															
Quarter 2, 2011															
Quarter 3, 2011															
Quarter 4, 2011															
Quarter 1, 2012															
Quarter 2, 2012															
Quarter 3, 2012															
Quarter 4, 2012															
Quarter 1, 2013															
Quarter 2, 2013															
Quarter 3, 2013															
Quarter 4, 2013															
Quarter 1, 2014															
Quarter 2, 2014															
TURBIDITY	1 1	·			1		l-								
Quarter 1, 2003				*											
URANIUM	1 1	II			1					-					
Quarter 4, 2002 *	* *	*		*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006															*
ZINC	1 1 1	1		-	1	1		1							_
Quarter 3, 2005													*		
* Statistical test results indicate an ele	levated co	oncen	tration	ı (i.e.,	a stat	istic	al exc	ceeda	ance`)					
■ MCL Exceedance															
UCRS Upper Continental Recharge System	em_														¯
URGA Upper Regional Gravel Aquifer															
LRGA Lower Regional Gravel Aquifer															1

APPENDIX H METHANE MONITORING DATA

C-746-U LANDFILL METHANE LOG

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

Date: June 06, 2014

Time	Location	% LEL of Methane Reading	Remarks	Weather Conditions
14:00	C-746-U1	0	Checked at floor level	Inside office
14:10	C-746-U2	0	Checked at floor level	Inside office
14:18	C-746-U-T-14	0	Checked at floor level	Inside trailer
14:25	C-746-U15	0	Checked at floor level	Inside building
14:35	MG1	0	Dry casing	./
14:45	MG2	0	Dry casing	89.8 NE
14:55	MG3	0	Dry casing	why of col
15:00	MG4	0	Dry casing	Superior
N/A	Suspect or Problem Areas	N/A	No problems noted	N/A

Janny Smuth
Signature

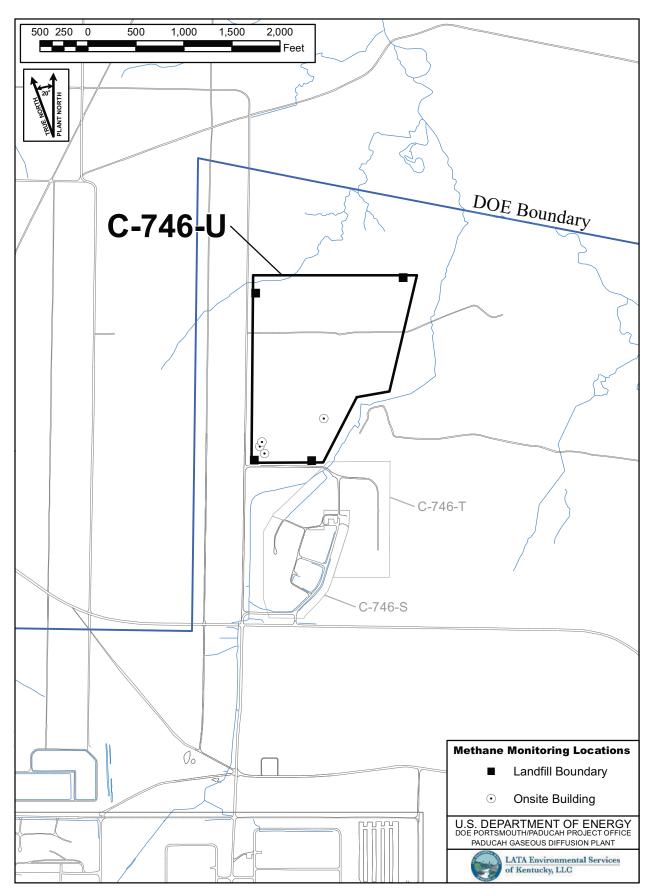
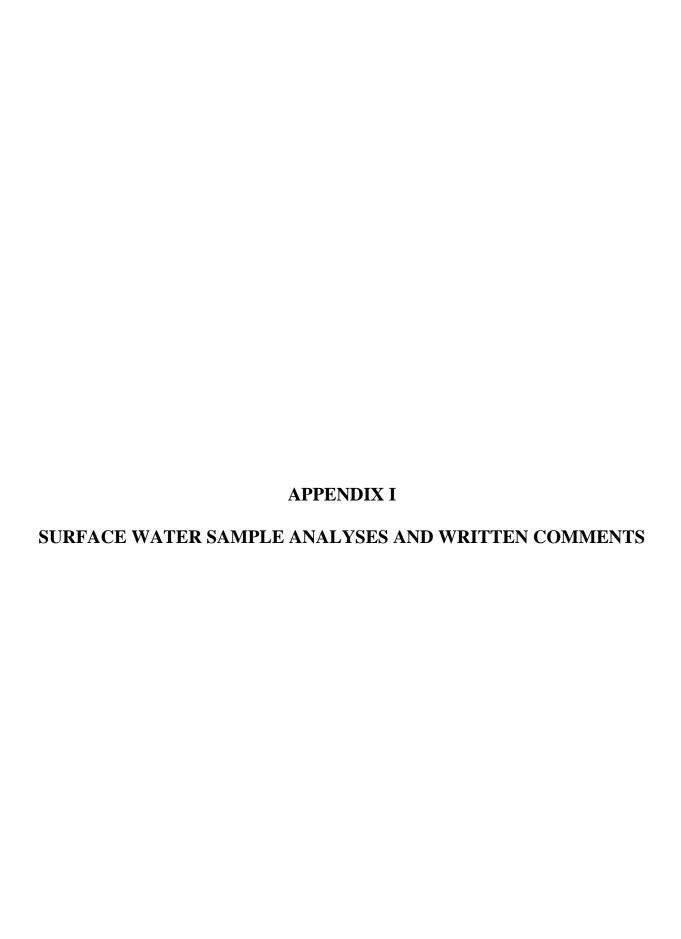



Figure H.1. C-746-U Methane Monitoring Locations

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant

L154 UPSTREAM

14 Reilly Road Permit Number: 073-00045

Monitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u>

F. BLANK

Frankfort, KY 40601 (502) 564-6716 LAB ID: None

L150 AT SITE

For Official Use Only

L351 DOWNSTREAM

SURFACE WATER SAMPLE ANALYSIS (S)

			,	2.00711 011		2101010111		2001 20111101					
Sample Sequer	ıce	#				1		1		1		1	
If sample is	a Bl	lank, specify Type: (F)ield, (T) ri	ip, (M) ethod	, or (E) quipment	NA		NA		NA		F	
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		4/28/2014 08:	:00	4/28/2014 08	:13	4/28/2014 07	7:36	4/28/2014 (08:05
Duplicate (")	<i>t</i> " (or "N") 1				N		N		N		N	
Split ('Y' or	: "I	N") ²				N		N		N		N	
Facility Samp	ole	ID Number (if applicable)				L150US3-14	4	L154US3-1	4	L351US3-	14	FB1US3-	-14
Laboratory Sa	amp]	le ID Number (if applicable)				347655001		347655003	3	34765500	4	3476550	05
Date of Analy	zsis	s (Month/Day/Year)				5/7/2014		5/7/2014		5/7/2014		5/20/201	14
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
A200-00-0	0	Flow	т	MGD	Field	0.12		12.86		38.27			*
16887-00-6	2	Chloride(s)	т	MG/L	300.0	0.945		1.13		1.11		1.38	
14808-79-8	0	Sulfate	т	MG/L	300.0	6.75		3.35		3.87		0.156	J
7439-89-6	0	Iron	Т	MG/L	200.8	0.779		1.46		1.74		<0.1	
7440-23-5	0	Sodium	Т	MG/L	200.8	1.17		2.51		2.13		0.677	
S0268	0	Organic Carbon ⁶	т	MG/L	9060	18.6		14.6		14.2			*
s0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*		*
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	54.7		47.2		72.2			*

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

I-3

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	: (KPDES Discharge Number, o	r "(JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPST	REAM	L351 DOWNST	REAM	F. BLANK	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S	DETECTED VALUE OR PQL ⁵	F L A G
S0145	1	Specific Conductance	т	µмно/см	Field	145		80		78			*
s0270	0	Total Suspended Solids	т	MG/L	160.2	12.4		20		176			*
S0266	0	Total Dissolved Solids	Т	MG/L	160.1	130		98.6		92.9			*
s0269	0	Total Solids	т	MG/L	2540B	138		117		126			*
s0296	0	рН	т	Units	Field	7.64		7.32		7.41			*
7440-61-1		Uranium	т	MG/L	200.8	0.00639		0.00197		0.00433		<0.0002	
12587-46-1		Gross Alpha (α)	T	pCi/L	900.0	6.2	*	2.26	*	4.18	*	0.26	*
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	4.65	*	8.47	*	9.64	*	4.18	*
													$oxed{oxed}$
													<u> </u>
													<u> </u>
													<u> </u>
													_

4

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

Frankfort, KY 40601 (502) 564-6716

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monito	toring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")				OWNSTREAM")	L154 UPSTRE	AM	\setminus					Δ	
Sample	Sequen	ce	#				1							
If samp	ple is a	в	lank, specify Type: (F)ield, (T) r:	ip, (M) ethod	, or (E) quipment	NA							
Sample	Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		4/28/2014 08:	13						
Duplica	ate ("Y	" c	or "N") ¹				Υ							
Split	('Y' or	"N	T") ²				N							
Facili	ty Samp	le	ID Number (if applicable)				L154DUS3-1	4						
Labora	tory Sa	mpl	le ID Number (if applicable)				347655002					$\overline{}$		
Date o	f Analy	sis	s (Month/Day/Year)				5/7/2014							
CAS	RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G 7	DETECTED VALUE OR PQL ⁵	F L A G ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
A200-0	0-0	0	Flow	т	MGD	Field	12.86					\setminus		
16887-	00-6	2	Chloride(s)	т	MG/L	300.0	1.13					`		
14808-	79-8	0	Sulfate	т	MG/L	300.0	3.35							
7439-8	9-6	0	Iron	т	MG/L	200.8	1.44							
7440-2	3-5	0	Sodium	т	MG/L	200.8	2.23							
S0268-	-	0	Organic Carbon ⁶	т	MG/L	9060	14							
S0097-	-	0	BOD ⁶	т	MG/L	not applicable		*						
s0130-	-	0	Chemical Oxygen Demand	т	MG/L	410.4	24.7							

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

<u>I-5</u>

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

					,							
Monitoring Po	int	: (KPDES Discharge Number, or	r "(JPSTREAM" or	"DOWNSTREAM")	L154 UPSTRE	EAM					/
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED F L OR A G G S ⁷
S0145	1	Specific Conductance	т	µмно/см	Field	80						
S0270	0	Total Suspended Solids	т	MG/L	160.2	19.9		\				
S0266	0	Total Dissolved Solids	Т	MG/L	160.1	78.6						
S0269	0	Total Solids	T	MG/L	2540B	113						
S0296	0	Нд	T	Units	Field	7.32						
7440-61-1		Uranium	т	MG/L	200.8	0.00192						
12587-46-1		Gross Alpha (α)	т	pCi/L	900.0	1.84	*					Î
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	3.41	*					
											\	
									\angle			
								/				
								/				\

1-6

RESIDENTIAL/CONTAINED - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitor Point	ing Facility Sample ID	Constituent	Flag	Description
L150	L150US3-14	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 4.1. Rad error is 3.97.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.41. Rad error is 3.31.
L154	L154US3-14	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 1.15. Rad error is 1.07.
		Beta activity		TPU is 2.56. Rad error is 2.15.
L351	L351US3-14	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 1.76. Rad error is 1.61.
		Beta activity		TPU is 2.22. Rad error is 1.56.
QC	FB1US3-14	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		pH		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.88. Rad error is 0.879.
		Beta activity		TPU is 1.5. Rad error is 1.34.
L154	L154DUS3-14	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.43. Rad error is 1.35.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.31. Rad error is 2.24.

