C-746-U Contained Landfill
First Quarter Calendar Year 2014
(January–March)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

This document is approved for public release per review by:

ATA Kentucky Classification Support

Dete

C-746-U Contained Landfill
First Quarter Calendar Year 2014
(January–March)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—May 2014

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC
managing the
Environmental Remediation Activities at the
Paducah Gaseous Diffusion Plant
under contract DE-AC30-10CC40020

CONTENTS

FI	GURE		v
ΤÆ	ABLES		v
ΑŒ	CRONYMS		vii
1.	1.1 BACI 1.2 MON 1.2.1 1.2.2 1.2.3	CTION KGROUND ITORING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring RESULTS	1 1 3
2.	DATA EVA	ALUATION/STATISTICAL SYNOPSIS	5
3.	DATA VAI	LIDATION	7
4.	PROFESSIO	ONAL GEOLOGIST AUTHORIZATION	9
5.	REFERENC	CE	11
Αŀ	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑI	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
ΑI	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑI	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑI	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑI	PPENDIX F:	NOTIFICATIONS	.F-1
ΑI	PPENDIX G:	CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES	G-1
ΑI	PPENDIX H	METHANE MONITORING DATA	H-1

FIGURE

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
	TABLES	
1.	Summary of MCL Exceedances	3
	Summary of Statistically Significant Increases	
	Monitoring Wells Included Historically in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations

EPA U.S. Environmental Protection Agency
KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

PCB polychlorinated byphenyl RGA Regional Gravel Aquifer

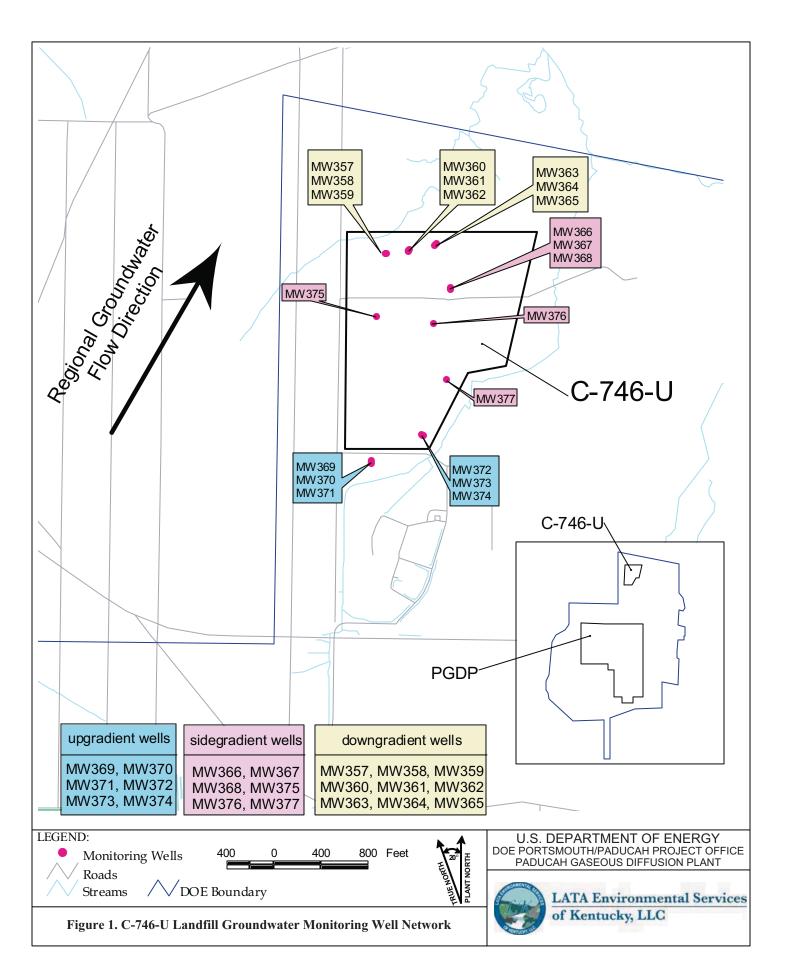
UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

1. INTRODUCTION

This report, C-746-U Contained Landfill First Quarter Calendar Year 2014 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number 073-00045.

The groundwater, surface water, leachate, and methane monitoring sample data reporting form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The total metals results reported in Appendix C are measured in an unfiltered sample, as required by Permit Condition GSTR0001, Standard Requirement 4. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for parameters that exceed the maximum contaminant level (MCL) and for all parameters that had statistically significant increased concentrations relative to background concentrations, including those parameters listed in 40 *CFR* § 302.4, Appendix A. Appendix G provides a chart of MCL exceedances and statistically significant increases that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090, Section 4.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill was permitted in November 1996 under Solid Waste Landfill Permit Number 073-00045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Groundwater sampling was conducted within the first quarter 2014, during January, using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used U.S. Environmental Protection Agency (EPA)-approved methods, as applicable.

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill; 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW359, MW362, MW365, MW368, MW376, and MW377 (all screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for these locations.

The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 30, 2014, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 38 vicinity wells define the potentiometric surface for the Regional Gravel Aquifer (RGA). Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient in the vicinity of the C-746-U Landfill in January was 1.90×10^{-4} ft/ft. The hydraulic gradient for the URGA at the C-746-U Landfill was 3.72×10^{-4} ft/ft, and the hydraulic gradient for the LRGA was 3.70×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.63 to 1.08 ft/day for the URGA and LRGA (see Table E.3).

1.2.2 Methane Monitoring

Landfill operations staff monitored for the occurrence of methane on March 20, 2014, in four on-site building locations and four locations along the landfill boundary. See Appendix H for a map of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

There was no surface water sampling conducted during the first quarter 2014 due to insufficient rainfall during normal landfill operating hours.

1.3 KEY RESULTS

The following parameters had concentrations that either exceeded the MCL (Table 1) or were shown to have statistically significant increases (Table 2) in concentrations² relative to background concentrations during the first quarter 2014.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
(none)	MW357: trichloroethene	MW358: trichloroethene
	MW372: beta activity, trichloroethene	MW373: trichloroethene

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

The term "concentration" may refer to a field measurement result such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls (PCBs).

Table 2. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW371: (upgradient): oxidation-	MW357: oxidation-reduction	MW358: oxidation-reduction
reduction potential	potential	potential
MW374: (upgradient): oxidation-	MW360: oxidation-reduction	MW361: oxidation-reduction
reduction potential	potential	potential, technetium-99
MW375: oxidation-reduction potential, sulfate	MW363: oxidation-reduction potential	MW364: oxidation-reduction potential, technetium-99
•	MW366: oxidation-reduction potential	MW367: oxidation-reduction potential, potassium
	MW369: (upgradient): oxidation- reduction potential	MW370: (upgradient): oxidation- reduction potential
	MW372: (upgradient):	MW373: (upgradient): oxidation-reduction potential
	sodium, sulfate,	
	technetium-99	

Sidegradient wells: MW366, MW367, MW368, MW375, MW376, MW377
Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365
Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

There were no new MCL exceedances for this quarter. The MCL exceedances—beta activity in MW372 and trichloroethene in MW357, MW358 MW372, and MW373—are related to sources of contamination that are upgradient of the C-746-U Landfill. The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM in accordance with 401 *KAR* 48:300, Section 7, prior to the submittal of this report.

There were two new statistically significant increases for potassium and sodium this quarter. All other 22 statistically significant increases have occurred previously at least once since fourth quarter calendar year 2002.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to background concentrations, as required by Permit Number 073-00045, Condition GSTR0001, Standard Requirement 8, and 401 KAR 48:300, Section 7.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2014 groundwater data collected from the C-746-U Contained Landfill MWs were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the EPA guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the statistician. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (D-22–D-80).

For chemicals with an established MCL, no statistical analysis was performed. Parameters that have an MCL can be found in 401 *KAR* 47:030, Section 6. For parameters with no established MCL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistically significant increase in concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. A stepwise list of the one-side tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 3.

Table 3. Monitoring Wells Included Historically in Statistical Analysis*

UCRS	URGA	LRGA
MW359 (dry)**	MW357	MW358
MW362 (dry)**	MW360	MW361
MW365 (dry)**	MW363	MW364
MW368 (dry)**	MW366	MW367
MW371 (upgradient)	MW369 (upgradient)	MW370 (upgradient)
MW374 (upgradient)	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376 (dry)***		
MW377 (dry)***		

^{*}A map showing the monitoring well locations is shown on Figure 1.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining statistically significant increases is provided in Appendix D under Statistical Analysis Process. Appendix G summarizes the occurrences (by well and by quarter) of statistically significant increases and MCL exceedances.

^{**}MW359, MW362, MW365, and MW368 had sufficient water to permit a water level measurement but insufficient water to provide water samples for laboratory analysis.

^{***} MW376 and MW377 had insufficient water to permit a water level measurement and insufficient water to provide water samples for laboratory analysis.

Upper Continental Recharge System

In this quarter, 17 parameters required statistical analysis in the UCRS. During the first quarter, oxidation-reduction potential and sulfate displayed elevated concentrations that were determined to qualify as statistically significant increases relative to background data and are listed in Table 2.

Upper Regional Gravel Aquifer

In this quarter, 22 parameters required statistical analysis in the URGA. During the first quarter, conductivity, dissolved solids, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases relative to background data and are listed in Table 2.

Lower Regional Gravel Aquifer

In this quarter, 18 parameters required statistical analysis in the LRGA. During the first quarter, oxidation reduction potential, potassium, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases relative to background data and are listed in Table 2.

3. DATA VALIDATION

Data validation was performed on the organic, inorganic, and radiochemical analytical data by an independent third-party validator. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected quarterly during each sampling event. Equipment blanks, field blanks, and trip blanks are obtained to ensure quality control and are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

Data validation results for this data set indicated that all data were considered acceptable.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

First Quarter Calendar Year 2014 (January-March)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0089/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Red in the Period Profession of Profession o

Kenneth R. Davis

PG1194

5. REFERENCE

EPA (U.S. Environmental Protection Agency) 1989. *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Final Guidance, Office of Resource Conservation and Recovery, U.S. Environmental Protection Agency, Washington, DC.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:		Paducah Gaseous ially shown on DWM		Activity: <u>C-7</u>	46-U Contained Landfill
Permit No:	073-0004	5 Fir	nds/Unit No:	Quarter & Yea	ur1 st Qtr. CY 2014
Please check the	following as ap	oplicable:			
Charact	erization X	Quarterly	Semiannual	Annual	Assessment
Please check app	olicable submitt	tal(s): X	Groundwater	Su	face Water
			Leachate	X Me	thane Monitoring
45:160) or by statu jurisdiction of the hours of making to the lab report is pages. I certify under pe accordance with a Based on my inquibest of my knowled.	nalty of law that system designed or the person degard and belief, tri	evised Statues Chap e Management. You on using statistical notification. Instru- to the document and to assure that qua- or persons directly ue, accurate, and co-	oter 224) to conduct group to must report any indicanalyses, direct compactions for completing the ad all attachments were diffied personnel properly responsible for gathering	rison, or other sime form are attached. If prepared under my gather and evaluate information, the inference are significant	elations-401 <i>KAR</i> 48:300 and water monitoring under the tion within forty-eight (48) and the tion within forty-eight (48) are techniques. Submitting to not submit the instruction direction or supervision in the the information submitted formation submitted to submitted to submitted the penalties for submitting false.
Mark J. Duff, P LATA Environ		•	LLC		Date
Rachel H. Blum	nenfeld Actin	σ Paducah Site I	ead		Date

U.S. Department of Energy

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: January 2014	County:	McCracken	Permit Nos.	073-00045							
Facility Name:	U.S. DOE - Paducah Gaseous Di	ffusion Plant n on DWM Permit Face)										
Site Address:	•		,	42053								
Site Address:	5600 Hobbs Road Street	Kevil, Kentucky City/State		Zip								
Phone No: (27	0) 441-6800 Latitude:	N 37° 07' 45"	Longi	tude: <u>W 88° 4</u>	7' 55"							
	OWN	ER INFORMATION										
Facility Owner:	U.S. DOE – W. E. Murphie, M	Ianager	Phone No:	(859) 219-400	1							
Contact Person:	Mark J. Duff		•	(270) 441-503								
Contact Person Title: Project Manager, LATA Environmental Services of Kentucky, LLC												
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053								
	Street	City/State		Zip								
Company: <u>LA</u> Contact Person: Mailing Address:	TA Environmental Services of Ke Jeff Boulton 761 Veterans Avenue Street	ntucky, LLC Kevil, Kentucky City/State		(270) 441-54 42053 Zip	44							
	LABOR	RATORY RECORD #1										
Laboratory												
: US	EC Analytical Laboratories – Padu	ıcah Lab II	No: <u>KY009</u>	906 (EPA ID N	umber)							
Contact Person:	John Price		Phone No:	(270) 441-586	7							
Mailing Address:	P.O. Box 1410	Paducah, Kentucky		42002-1410								
	Street	City/State		Zip								
	LABOR	RATORY RECORD #2										
Laboratory: Te	estAmerica Laboratories, Inc.	Lab ID	No: MO000	54 (EPA ID Nu	mber)							
Contact Person:	Elaine Wild		Phone No:	(314) 298-85	66							
Mailing Address:	13715 Rider Trail North	Earth City, MO	l	63045								
	Street	City/State		Zip								
	LABOR	RATORY RECORD #3										
Laboratory:		Lab ID	No:									
Contact Person:			Phone No:									
Mailing Address:												
<u> </u>	Street	City/State		Zip								

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-4798 8004-4799		'99	8004-0981		8004-4800				
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	., MW-2, etc	:.)	357 358		359		360			
Sample Sequence	ce #				1		1		1		1	
If sample is a D	f sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						NA		NA		NA	
Sample Date ar	Sample Date and Time (Month/Day/Year hour: minutes)					3:18	1/15/2014	10:02	NA		1/15/2014 13	3:25
Duplicate ("Y'	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	Facility Sample ID Number (if applicable)					-14	MW358U0	G2-14	NA		MW360UG2	2-14
Laboratory San	mple ID Number (if applicable)				C140150180	001	C1401501	8002	NA		C14015033001	
Date of Analys	sis (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	1/19/2014	ļ	1/19/2014		NA		1/19/2014	
Gradient with	respect to Monitored Unit (UP, Do	NWC	, SIDE, UNKN	OWN)	DOWN		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	<2		<2			*	<2	
16887-00-6	Chloride(s)	Т	mg/L	9056	31		35			*	11	
16984-48-8	Fluoride	Т	mg/L	9214	0.13		0.16			*	0.21	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.2		<1			*	<1	
14808-79-8	Sulfate	Т	mg/L	9056	62		87			*	41	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.12		30.12			*	30.13	
s0145	Specific Conductance	т	μ MH0/cm	Field	435		510			*	497	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER	, Facility Well/Spring Number				8004-4798	3	8004-4799	8004-4799		8004-0981)
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.89		322.87			*	323	
N238	Dissolved Oxygen	Т	mg/L	Field	3.37		0.53			*	1.37	
s0266	Total Dissolved Solids	Т	mg/L	160.1	249		292			*	273	
s0296	Нд	Т	Units	Field	6.46		6.39			*	6.32	
NS215	Eh	T	mV	Field	782		290			*	631	
s0907	Temperature	Т	°C	Field	13.33		14.11			*	10.61	
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2			*	<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	<0.001		0.00117			*	0.00123	
7440-39-3	Barium	Т	mg/L	6020	0.0573		0.0522			*	0.158	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-42-8	Boron	Т	mg/L	6010	0.336		0.37			*	<0.2	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	Т	mg/L	6010	28.8		36.5			*	24.3	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00209			*	0.0173	
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
7439-89-6	Iron	Т	mg/L	6010	<0.1		0.425			*	2.93	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013			*	0.00321	
7439-95-4	Magnesium	Т	mg/L	6010	11.3		14.8			*	9.04	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.18			*	0.173	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	99	8004-0981		8004-4800	
Facility's	Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-02-0		Nickel	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-09-7		Potassium	Т	mg/L	6010	1.81		2.49			*	0.866	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5		Sodium	Т	mg/L	6010	39.9		40.2			*	63.7	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6		Zinc	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
67-64-1		Acetone	Т	mg/L	8260	<0.01	UJ	<0.01	UJ		*	<0.01	UJ
107-02-8		Acrolein	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015			*	<0.015	
100-42-5		Styrene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4798 800		8004-479	8004-4799 8004-0		1	8004-4800	
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002			*	<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0056		0.0058			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	3	8004-479	9	8004-098	1	8004-480	0
Facility's Loc	al Well or Spring Number (e.g., N	IW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01			*	<0.01	
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01			*	<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01			*	<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002			*	<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
1336-36-3	PCB,Total	т	ug/L	8082	<0.17		<0.17			*	<0.17	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.16		<0.16			*	<0.16	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.17		<0.17			*	<0.17	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.13		<0.13			*	<0.13	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.09			*	<0.09	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.11		<0.11			*	<0.11	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799)	8004-098	1	8004-480	10
Facility's Loc	cal Well or Spring Number (e.g., I	MW-1	1, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.07		<0.07			*	<0.07	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05			*	<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.08			*	<0.08	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-3.09	*	-2.41	*		*	-1.6	*
12587-47-2	Gross Beta	Т	pCi/L	9310	28.8	*	40.6	*		*	7.94	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	T	pCi/L	RL-7129	-0.0337	*	0.133	*		*	0.201	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.289	*B	0.798	*B		*	0.0588	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	30.4	*	26.5	*		*	5.59	*
14269-63-7	Thorium-230	T	pCi/L	RL-7128	0.0282	*	0.0847	*		*	0.108	*
10028-17-8	Tritium	Т	pCi/L	704R6	-357	*	-102	*		*	-115	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36			*	<36	
57-12-5	Cyanide	T	mg/L	9010	<0.04		<0.04			*	<0.04	
20461-54-5	Iodide	т	mg/L	345.1	<2		<2			*	<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1		<1			*	1.9	
s0586	Total Organic Halides	Т	mg/L	9020	0.01		0.017			*	0.025	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795	5	8004-09	86	8004-479)6	8004-479	 7
Facility's Loca	l Well or Spring Number (e.g., N	w−1	., MW-2, etc	.)	361		362		363		364	
Sample Sequence	· #				1		1		1		1	
If sample is a Bl	ank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and	l Time (Month/Day/Year hour: minu	tes)		1/15/2014 08	3:21	NA		1/16/2014 0	8:22	1/16/2014 09):41
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or "	'N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				MW361UG2	-14	NA		MW363UG	2-14	MW364UG2	-14
Laboratory Samp	ole ID Number (if applicable)		C140150140	001	NA		C14016003	001	C140160070	001		
Date of Analysi	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						NA		1/20/201	4	1/19/2014	1
Gradient with r	respect to Monitored Unit (UP, DO	WN,	SIDE, UNKN	OWN)	DOWN		DOWN	1	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	<2			*	<2		<2	
16887-00-6	Chloride(s)	Т	mg/L	9056	32			*	31		32	
16984-48-8	Fluoride	т	mg/L	9214	0.15			*	0.17		0.14	
s0595	Nitrate & Nitrite	т	mg/L	9056	<1			*	2.7		<1	
14808-79-8	Sulfate	т	mg/L	9056	76			*	22		64	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.13			*	29.95		29.95	
S0145	Specific Conductance	т	μ M H0/cm	Field	481			*	375		461	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795	5	8004-0986	5	8004-4796		8004-4797	,
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.02			*	323.15		323.08	
N238	Dissolved Oxygen	т	mg/L	Field	2.89			*	2.93		2.39	
s0266	Total Dissolved Solids	т	mg/L	160.1	275			*	215		253	
s0296	рн	т	Units	Field	6.16			*	6.54		6.28	
NS215	Eh	т	mV	Field	787			*	428		287	
s0907	Temperature	т	°C	Field	10.17			*	10.17		13.06	
7429-90-5	Aluminum	т	mg/L	6020	<0.2			*	<0.2		<0.2	
7440-36-0	Antimony	т	mg/L	6020	<0.005			*	<0.005		<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	<0.001			*	<0.001		<0.001	
7440-39-3	Barium	т	mg/L	6020	0.0571			*	0.16		0.0782	
7440-41-7	Beryllium	т	mg/L	6020	<0.001			*	<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	<0.2			*	<0.2		<0.2	
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*	<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6010	31.2			*	25.4		28.9	
7440-47-3	Chromium	Т	mg/L	6020	<0.01			*	<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*	0.00117		<0.001	
7440-50-8	Copper	т	mg/L	6020	<0.02			*	<0.02		<0.02	
7439-89-6	Iron	т	mg/L	6010	<0.1			*	0.314		0.173	
7439-92-1	Lead	т	mg/L	6020	<0.0013			*	<0.0013		<0.0013	
7439-95-4	Magnesium	т	mg/L	6010	12.5			*	9.54		11.3	
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*	0.157		0.0258	
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*	<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBI	SR ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	6	8004-4796	;	8004-479)7
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001			*	<0.001		<0.001	
7440-02-0		Nickel	Т	mg/L	6020	<0.005			*	<0.005		<0.005	
7440-09-7		Potassium	Т	mg/L	6010	2.29			*	1.38		2.06	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005			*	<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005			*	<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001			*	<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6010	42			*	32.9		40.7	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005			*	<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002			*	<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.001			*	<0.001		<0.001	
7440-62-2		Vanadium	т	mg/L	6020	<0.02			*	<0.02		<0.02	
7440-66-6		Zinc	Т	mg/L	6020	<0.02			*	<0.02		<0.02	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01			*	<0.01	UJ	<0.01	
67-64-1		Acetone	Т	mg/L	8260	<0.01	UJ		*	<0.01		<0.01	UJ
107-02-8		Acrolein	Т	mg/L	8260	<0.01			*	<0.01	UJ	<0.01	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01			*	<0.01		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
1330-20-7		Xylenes	Т	mg/L	8260	<0.015			*	<0.015		<0.015	
100-42-5		Styrene	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
108-88-3		Toluene	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005			*	<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

FINDS/UNII: K18-890-000

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795	5	8004-0986		8004-4796	6	8004-479	7
Facility's Loca	al Well or Spring Number (e.g., N	IW-1	L, MW-2, et	c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01			*	<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001			*	<0.005		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002			*	<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001			*	<0.005		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0034			*	<0.001		0.003	

C-12

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986		8004-479	6	8004-479	7
Facility's Loc	al Well or Spring Number (e.g., N	IW-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005			*	<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01			*	<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01			*	<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005			*	<0.005		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01			*	<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002			*	<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005			*	<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005			*	<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005			*	<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001			*	<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005			*	<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005			*	<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005			*	<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005			*	<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.17			*	0.18		<0.17	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.16			*	<0.16		<0.16	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.17			*	<0.17		<0.17	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.13			*	<0.13		<0.13	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.09			*	0.18	*	<0.09	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.11			*	<0.11		<0.11	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795	;	8004-0986		8004-479	6	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07			*	<0.07		<0.07	
11096-82-5	PCB-1260	т	ug/L	8082	<0.05			*	<0.05		<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.08			*	<0.09		<0.08	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-3.87	*		*	-0.0611	*	-3	*
12587-47-2	Gross Beta	Т	pCi/L	9310	39.5	*		*	9.34	*	42.9	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	0.135	*		*	0.122	*	0.0807	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	-0.391	*B		*	0.0517	*B	-0.119	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	46.7	*		*	6.46	*	47.6	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.0294	*		*	-0.0146	*	0.000265	*
10028-17-8	Tritium	Т	pCi/L	704R6	-350	*		*	-369	*	117	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36			*	<36		<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04			*	<0.04		<0.04	
20461-54-5	Iodide	T	mg/L	345.1	<2			*	<2		<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1			*	<1		<1	
s0586	Total Organic Halides	т	mg/L	9020	0.015			*	0.01		0.015	
										1		1

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	34	8004-0982	2	8004-4793	3	8004-098	:3
Facility's Loc	al Well or Spring Number (e.g., N	1 W−1	L, MW-2, etc	:.)	365		366		367		368	
Sample Sequence	e #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		NA		1/13/2014 13	3:31	1/13/2014 12	2:22	NA	
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				NA		MW366UG2	-14	MW367UG2	-14	NA	
Laboratory Sam	uple ID Number (if applicable)				NA		C140130270	001	C140130270	002	NA	
Date of Analys	sis (Month/Day/Year) For Volatile	e 01	rganics Anal	ysis	NA		1/19/2014		1/19/2014	ļ	NA	
Gradient with	respect to Monitored Unit (UP, DO	NWO,	, SIDE, UNKN	IOMN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*	<2		<2			*
16887-00-6	Chloride(s)	т	mg/L	9056		*	40		32			*
16984-48-8	Fluoride	т	mg/L	9214		*	0.16		0.11			*
s0595	Nitrate & Nitrite	т	mg/L	9056		*	<1		<1			*
14808-79-8	Sulfate	т	mg/L	9056		*	43		37			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*	29.75		29.75			*
s0145	Specific Conductance	т	μ MHO /cm	Field		*	441		355			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793	}	8004-0983	3
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*	323.47		323.42			*
N238	Dissolved Oxygen	т	mg/L	Field		*	2.28		2.4			*
s0266	Total Dissolved Solids	т	mg/L	160.1		*	246		206			*
s0296	Нд	т	Units	Field		*	6.17		5.99			*
NS215	Eh	т	mV	Field		*	409		314			*
s0907	Temperature	Т	°C	Field		*	14.06		13.61			*
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.2		1.03			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.005		<0.005			*
7440-38-2	Arsenic	Т	mg/L	7060		*	0.00116		0.00112			*
7440-39-3	Barium	т	mg/L	6020		*	0.162		0.2			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.001		<0.001			*
7440-42-8	Boron	Т	mg/L	6010		*	<0.2		<0.2			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	T	mg/L	6010		*	28.5		<1			*
7440-47-3	Chromium	Т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		0.00339			*
7440-50-8	Copper	т	mg/L	6020		*	<0.02		<0.02			*
7439-89-6	Iron	т	mg/L	6010		*	<0.1		1.43			*
7439-92-1	Lead	т	mg/L	6020		*	<0.0013		<0.0013			*
7439-95-4	Magnesium	т	mg/L	6010		*	11.2		<0.025			*
7439-96-5	Manganese	т	mg/L	6020		*	0.0103		1.29			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	R ¹ , Facility Well/Spring Number				8004-098	34	8004-0982	2	8004-4793		8004-098	33
Facility's I	ocal Well or Spring Number (e.g	., MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	Т	mg/L	6020		*	<0.001		<0.001			*
7440-02-0	Nickel	Т	mg/L	6020		*	<0.005		<0.005			*
7440-09-7	Potassium	Т	mg/L	6010		*	1.92		19.2			*
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020		*	0.00607		<0.005			*
7440-22-4	Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	Т	mg/L	6010		*	40.7		12.9			*
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.02		<0.02			*
7440-66-6	Zinc	Т	mg/L	6020		*	<0.02		<0.02			*
108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.01		<0.01			*
67-64-1	Acetone	Т	mg/L	8260		*	<0.01	IJ	<0.01	UJ		*
107-02-8	Acrolein	Т	mg/L	8260		*	<0.01		<0.01			*
107-13-1	Acrylonitrile	Т	mg/L	8260		*	<0.01		<0.01			*
71-43-2	Benzene	Т	mg/L	8260		*	<0.005		<0.005			*
108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.005		<0.005			*
1330-20-7	Xylenes	Т	mg/L	8260		*	<0.015		<0.015			*
100-42-5	Styrene	Т	mg/L	8260		*	<0.005		<0.005			*
108-88-3	Toluene	Т	mg/L	8260		*	<0.005		<0.005			*
74-97-5	Chlorobromomethane	Т	mg/L	8260		*	<0.005		<0.005			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-0984	1	8004-0982	2	8004-479	3	8004-098	33
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	T mg/L	8260		*	<0.005		<0.005			*
75-25-2	Tribromomethane	T mg/L	8260		*	<0.005		<0.005			*
74-83-9	Methyl bromide	T mg/L	8260		*	<0.005		<0.005			*
78-93-3	Methyl ethyl ketone	T mg/L	8260		*	<0.01		<0.01			*
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260		*	<0.005		<0.005			*
75-15-0	Carbon disulfide	T mg/L	8260		*	<0.005		<0.005			*
75-00-3	Chloroethane	T mg/L	8260		*	<0.005		<0.005			*
67-66-3	Chloroform	T mg/L	8260		*	<0.001		<0.001			*
74-87-3	Methyl chloride	T mg/L	8260		*	<0.005		<0.005			*
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260		*	<0.001		<0.001			*
74-95-3	Methylene bromide	T mg/L	8260		*	<0.005		<0.005			*
75-34-3	1,1-Dichloroethane	T mg/L	8260		*	<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	T mg/L	8260		*	<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	T mg/L	8260		*	<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260		*	<0.005		<0.005			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260		*	<0.005		<0.005			*
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260		*	<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260		*	<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260		*	<0.005		<0.005			*
75-01-4	Vinyl chloride	T mg/L	8260		*	<0.002		<0.002			*
127-18-4	Ethene, Tetrachloro-	T mg/L	8260		*	<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	T mg/L	8260		*	0.0031		0.0022			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-098	4	8004-0982		8004-479	3	8004-098	33		
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260		*	<0.005		<0.005			*
591-78-6	2-Hexanone	Т	mg/L	8260		*	<0.01		<0.01			*
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.01		<0.01			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.005		<0.005			*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260		*	<0.005		<0.005			*
75-09-2	Dichloromethane	Т	mg/L	8260		*	<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260		*	<0.01		<0.01			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011		*	<0.0002		<0.0002			*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.005		<0.005			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.005		<0.005			*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.005		<0.005			*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260		*	<0.005		<0.005			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005			*
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.17		<0.17			*
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.16		<0.16			*
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.17		<0.17			*
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.14		<0.13			*
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.1		<0.1			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.12		<0.11			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	4	8004-0982		8004-4793		8004-098	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.07		<0.07			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.05		<0.05			*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.09		<0.09			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	-1.18	*	-1.32	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	45.5	*	32	*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*	0.0273	*	0.414	*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*	0.481	*B	0.113	*B		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*	46.1	*	33.1	*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*	0.0986	*	0.00109	*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*	-79	*	373	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*	<36		<36			*
57-12-5	Cyanide	Т	mg/L	9010		*	<0.04		<0.04			*
20461-54-5	Iodide	Т	mg/L	345.1		*	<2		<2			*
s0268	Total Organic Carbon	Т	mg/L	9060		*	<1		<1			*
s0586	Total Organic Halides	Т	mg/L	9020		*	0.014		0.015			*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820)	8004-48	318	8004-48	319	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	., MW-2, etc	.)	369		370		371		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		1/14/2014 08	3:37	1/14/2014	13:06	1/14/2014	09:43	1/14/2014 0	08:35
Duplicate ("Y'	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW369UG2	-14	MW370U0	G2-14	MW371U0	G2-14	MW372UG	2-14
Laboratory San	mple ID Number (if applicable)				C140140130	001	C1401401	19001	C1401401	3002	C14014014	4001
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis					ļ	1/19/20	14	1/19/20	14	1/19/201	4
Gradient with	dient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)				UP		UP		UP		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	Т	mg/L	9056	36		42		8		48	
16984-48-8	Fluoride	т	mg/L	9214	0.19		0.13		0.3		0.16	
s0595	Nitrate & Nitrite	т	mg/L	9056	<1		1.3		<1		<1	
14808-79-8	Sulfate	т	mg/L	9056	8.1		18		9.9		140	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.88		29.88		29.88		29.88	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	392		421		763		759	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	3
Facility's Lo	ocal Well or Spring Number (e.g., M	I-1,	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324		324.05		339.71		324.04	
N238	Dissolved Oxygen	т	mg/L	Field	0.94		3.74		1.97		0.75	
s0266	Total Dissolved Solids	т	mg/L	160.1	216		221		447		455	
s0296	рн	т	Units	Field	6.22		6.11		6.64		6.44	
NS215	Eh	Т	mV	Field	438		443		374		740	
s0907	Temperature	Т	°C	Field	12.17		15.06		14.11		14.61	
7429-90-5	Aluminum	T	mg/L	6020	<0.2		<0.2		0.436		0.289	
7440-36-0	Antimony	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	0.00124		0.00118		<0.001		0.00152	
7440-39-3	Barium	Т	mg/L	6020	0.418		0.209		0.189		0.0543	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	<0.2		<0.2		<0.2		1.04	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6010	21.8		75.8		18		31.3	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.0219		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7439-89-6	Iron	Т	mg/L	6010	1.91		<0.1		1.27		0.436	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		0.00371		<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	9.54		28.5		7.1		12.8	
7439-96-5	Manganese	Т	mg/L	6020	0.206		<0.005		0.00753		0.00697	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-482	0	8004-481	18	8004-481	9	8004-480)8
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-02-0	Nickel	Т	mg/L	6020	0.00677		<0.005		<0.005		<0.005	
7440-09-7	Potassium	Т	mg/L	6010	2.79		3.01		0.713		0.364	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		0.00646	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6010	30.6		62.9		52.2		123	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001		0.00203		<0.001	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
67-64-1	Acetone	Т	mg/L	8260	<0.01	UJ	<0.01	UJ	<0.01	UJ	<0.01	UJ
107-02-8	Acrolein	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-480	08
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.0015		<0.001		0.0069	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-4818	8	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.17		<0.17		<0.19		<0.17	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.16		<0.16		<0.18		<0.16	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.17		<0.17		<0.19		<0.17	
11141-16-5	PCB-1232	т	ug/L	8082	<0.14		<0.13		<0.15		<0.13	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.1		<0.1		<0.1	
12672-29-6	PCB-1248	т	ug/L	8082	<0.12		<0.11		<0.13		<0.11	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480	18
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07		<0.07		<0.07	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05		<0.05		<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09		<0.09		<0.09	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.87	*	1.17	*	3.24	*	1.04	*
12587-47-2	Gross Beta	Т	pCi/L	9310	26.8	*	11.4	*	2.51	*	102	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	0.191	*	0.314	*	0.198	*	0.075	*
10098-97-2	Strontium-90	T	pCi/L	RL-7140	0.685	*B	0.374	*B	0.346	*B	0.703	*B
14133-76-7	Technetium-99	T	pCi/L	RL-7100	25.3	*	10.6	*	-5.1	*	131	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	-0.0225	*	0.0283	*	0.0119	*	0.0131	*
10028-17-8	Tritium	Т	pCi/L	704R6	-152	*	-270	*	-217	*	156	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36		<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04		<0.04		<0.04	
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	T	mg/L	9060	1.9		<1		1.7		<1	
s0586	Total Organic Halides	Т	mg/L	9020	0.05		0.012		0.013		0.019	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-0	990	8004-09	85	8004-098	8
Facility's Lo	ocal Well or Spring Number (e.g., 1	/W−1	, MW-2, etc	.)	373		374		375		376	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/14/2014 10	0:07	1/14/2014	13:07	1/15/2014	13:35	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG2	2-14	MW374U	G2-14	MW375U0	32-14	NA	
Laboratory Sa	mple ID Number (if applicable)		C14014014	002	C140140	22001	C1401503	31001	NA			
Date of Analy	e of Analysis (Month/Day/Year) For Volatile Organics Analysis					1	1/19/20)14	1/19/20	14	NA	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	<2		<2		<2			*
16887-00-6	Chloride(s)	т	mg/L	9056	46		170		3.6			*
16984-48-8	Fluoride	Т	mg/L	9214	0.16		0.19		0.21			*
s0595	Nitrate & Nitrite	Т	mg/L	9056	<1		<1		<1			*
14808-79-8	Sulfate	Т	mg/L	9056	190		5.1		15			*
NS1894	Barometric Pressure Reading	T	Inches/Hg	Field	29.88		29.88		30.12			*
S0145	Specific Conductance	Т	μ MH 0/cm	Field	959		744		405			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985	1	8004-0988	}
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.03		333.65		335.49			*
N238	Dissolved Oxygen	Т	mg/L	Field	0.79		1.67		1.35			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	567		406		162			*
s0296	рн	Т	Units	Field	6.28		6.64		6.65			*
NS215	Eh	T	mV	Field	494		515		470			*
s0907	Temperature	Т	°C	Field	16.17		16.39		14.39			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2		0.659			*
7440-36-0	Antimony	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-38-2	Arsenic	Т	mg/L	7060	0.00117		0.00204		<0.001			*
7440-39-3	Barium	Т	mg/L	6020	0.0295		0.162		0.0636			*
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-42-8	Boron	Т	mg/L	6010	1.73		<0.2		<0.2			*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	T	mg/L	6010	61.1		28.1		38.9			*
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02		<0.02			*
7439-89-6	Iron	Т	mg/L	6010	0.114		<0.1		0.418			*
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013			*
7439-95-4	Magnesium	Т	mg/L	6010	22.5		11.1		5.59			*
7439-96-5	Manganese	Т	mg/L	6020	0.0494		0.00616		0.00505			*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	35	8004-098	38
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-02-0		Nickel	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-09-7		Potassium	Т	mg/L	6010	2.42		2.55		1.37			*
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020	0.00564		0.0232		<0.005			*
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5		Sodium	Т	mg/L	6010	59.5		36.7		17.1			*
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02			*
7440-66-6		Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02			*
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01		<0.01		<0.01			*
67-64-1		Acetone	Т	mg/L	8260	<0.01	UJ	<0.01	UJ	<0.01	UJ		*
107-02-8		Acrolein	Т	mg/L	8260	<0.01		<0.01		<0.01			*
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01			*
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015			*
100-42-5		Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0064		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-479	2	8004-099	0	8004-09	85	8004-09	88		
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	1, MW-2, et	:c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002		<0.0002			*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.17		<0.17		<0.17			*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.16		<0.16		<0.16			*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.17		<0.17		<0.17			*
11141-16-5	PCB-1232	Т	ug/L	8082	<0.14		<0.14		<0.13			*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.1		<0.1			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12		<0.11			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07		<0.07			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05		<0.05			*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09		<0.09			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.603	*	3.8	*	-0.893	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	38.6	*	2.38	*	2.46	*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	-0.0187	*	0.242	*	-0.135	*		*
10098-97-2	Strontium-90	T	pCi/L	RL-7140	0.495	*B	0.463	*B	0.0547	*B		*
14133-76-7	Technetium-99	T	pCi/L	RL-7100	37.8	*	8.41	*	7.38	*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.0381	*	-0.0208	*	0.0457	*		*
10028-17-8	Tritium	Т	pCi/L	704R6	153	*	-235	*	-77.1	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36			*
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04		<0.04			*
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2		<2			*
s0268	Total Organic Carbon	T	mg/L	9060	<1		1.7		2.7			*
s0586	Total Organic Halides	Т	mg/L	9020	0.019		0.027		0.016			*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-098	39	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, etc	:.)	377		E. BLAN	١K	F. BLAN	IK	T. BLANK	(1
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		Е		F		T	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		NA		1/16/2014	06:55	1/16/2014 (08:20	1/13/2014 1	1:45
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				NA		RI1UG2	-14	FB1UG2-	14	TB1UG2-	14
Laboratory San	mple ID Number (if applicable)		NA		C1401600	2001	C14016002	2002	C14013028	001		
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analys						1/20/20	14	1/20/201	4	1/19/201	4
Gradient with	respect to Monitored Unit (UP, DC	WN,	, SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9214		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MHO /cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-0989	9	0000-0000)	0000-0000		0000-0000)		
Facility's Loc	al Well or Spring Number (e.g., MW	F, etc.)	377		E. BLANK		F. BLANK		T. BLANK	1		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рН	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.2		<0.2			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.005		<0.005			*
7440-38-2	Arsenic	т	mg/L	7060		*	<0.001		<0.001			*
7440-39-3	Barium	т	mg/L	6020		*	<0.005		<0.005			*
7440-41-7	Beryllium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-42-8	Boron	т	mg/L	6010		*	<0.2		<0.2			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6010		*	<1		<1			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	Т	mg/L	6020		*	<0.02		<0.02			*
7439-89-6	Iron	Т	mg/L	6010		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.0013		<0.0013			*
7439-95-4	Magnesium	Т	mg/L	6010		*	<0.025		<0.025			*
7439-96-5	Manganese	Т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ , Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	00	0000-000	00
Facility's	Local Well or Spring Number (e.	g., MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	(1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.001		<0.001			*
7440-02-0	Nickel	т	mg/L	6020		*	<0.005		<0.005			*
7440-09-7	Potassium	Т	mg/L	6010		*	<0.2		<0.2			*
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	Т	mg/L	6010		*	<1		<1			*
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.02		<0.02			*
7440-66-6	Zinc	Т	mg/L	6020		*	<0.02		<0.02			*
108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.01	UJ	<0.01	UJ	<0.01	
67-64-1	Acetone	Т	mg/L	8260		*	<0.01		<0.01		<0.01	UJ
107-02-8	Acrolein	Т	mg/L	8260		*	<0.01	UJ	<0.01	UJ	<0.01	
107-13-1	Acrylonitrile	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260		*	<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-0989		0000-0000)	0000-000	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	377		E. BLAN	(F. BLAN	IK	T. BLANI	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.005		<0.005		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.005		<0.005		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-0000)	0000-00	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	377		E. BLANK	(F. BLAN	1K	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011		*	<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.17		<0.17	*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.16		<0.16	*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.17		<0.17	*		*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.14		<0.13	*		*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.1		<0.09	*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.12		<0.11	*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-000)0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	377		E. BLANK		F. BLAN	K	T. BLANK	(1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.07		<0.07	*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.05		<0.05	*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.09		<0.08	*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	-0.155	*	-0.545	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	-1.75	*	2.89	*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*	-0.047	*	-0.0573	*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*	0.108	*B	0.0536	*B		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*	-1.3	*	5.97	*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*	0.0287	*	0.0749	*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*	129	*	63.9	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	Т	mg/L	345.1		*	<2		<2			*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., I	MW-1	., MW-2, etc	:.)	T. BLANK	(2	T. BLAN	К 3	T. BLAN	(4	T. BLANK	(5
Sample Sequenc	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	Т		Т		Т		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/14/2014 0	6:50	1/14/2014 (07:15	1/15/2014 (7:00	1/15/2014 0	7:55
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				TB2UG2-	14	TB3UG2	-14	TB4UG2-	14	TB5UG2-	14
Laboratory Sar	mple ID Number (if applicable)		C14014018	3001	C1401402	1001	C14015032	2001	C14015034	001		
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis					4	1/19/20	14	1/19/201	4	1/20/201	4
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9214		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	Т	μ MH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-0000		0000-0000)
Facility's Lo	cal Well or Spring Number (e.g., MV	I-1 , 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK 4	1	T. BLANK	5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	Т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	Т	mg/L	7060		*		*		*		*
7440-39-3	Barium	Т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	Т	mg/L	6020		*		*		*		*
7440-42-8	Boron	Т	mg/L	6010		*		*		*		*
7440-43-9	Cadmium	Т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6010		*		*		*		*
7440-47-3	Chromium	Т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	Т	mg/L	6020		*		*		*		*
7440-50-8	Copper	Т	mg/L	6020		*		*		*		*
7439-89-6	Iron	Т	mg/L	6010		*		*		*		*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6010		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	0	0000-000	00	0000-000	00	0000-000)0
Facility's I	ocal Well or Spring Number (e.g.,	MW-	·1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	〈 3	T. BLANK	(4	T. BLAN	(5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*		*
7440-02-0	Nickel	т	mg/L	6020		*		*		*		*
7440-09-7	Potassium	Т	mg/L	6010		*		*		*		*
7440-16-6	Rhodium	т	mg/L	6020		*		*		*		*
7782-49-2	Selenium	Т	mg/L	6020		*		*		*		*
7440-22-4	Silver	Т	mg/L	6020		*		*		*		*
7440-23-5	Sodium	Т	mg/L	6010		*		*		*		*
7440-25-7	Tantalum	т	mg/L	6020		*		*		*		*
7440-28-0	Thallium	Т	mg/L	6020		*		*		*		*
7440-61-1	Uranium	Т	mg/L	6020		*		*		*		*
7440-62-2	Vanadium	Т	mg/L	6020		*		*		*		*
7440-66-6	Zinc	Т	mg/L	6020		*		*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	UJ
67-64-1	Acetone	т	mg/L	8260	<0.01	UJ	<0.01	UJ	<0.01	UJ	<0.01	
107-02-8	Acrolein	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	UJ
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-000	0	0000-000	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	c.)	T. BLANK 2	2	T. BLANK	3	T. BLAN	K 4	T. BLANI	₹5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.005	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.005	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	0000-00	00	0000-0000	
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	T. BLANK	2	T. BLANK	3	T. BLAN	< 4	T. BLANK 5	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	T	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000		0000-0000)	0000-0000	
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		T. BLANK	4	T. BLANK	5
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	T	pCi/L	RL-7129		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*		*		*		*
14269-63-7	Thorium-230	T	pCi/L	RL-7128		*		*		*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	T	mg/L	345.1		*		*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number		0000-000	00	8004-480	00	\			/		
Facility's Loc	cal Well or Spring Number (e.g., N	w−1	L, MW-2, etc	:.)	T. BLANK	6	360					
Sample Sequence	ce #				1		2					
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	Т		NA				,	/
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/16/2014 0	7:10	1/15/2014 1	3:25				
Duplicate ("Y'	Ouplicate ("Y" or "N") ²						Υ					
Split ("Y" or	plit ("Y" or "N") ³						N		1	\		
Facility Sampl	cility Sample ID Number (if applicable)						MW360DUG	62-14				
Laboratory San	mple ID Number (if applicable)				C14016015	5001	C14015033	3002				
Date of Analys	ate of Analysis (Month/Day/Year) For Volatile Organics Analysis					4	1/19/2014			/		
Gradient with	respect to Monitored Unit (UP, DC	WN,	, SIDE, UNKN	OWN)	NA		DOWN				X	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*	<2		/			
16887-00-6	Chloride(s)	Т	mg/L	9056		*	15		/			
16984-48-8	Fluoride	т	mg/L	9214		*	0.18					
s0595	Nitrate & Nitrite	Т	mg/L	9056		*	<1					
14808-79-8	Sulfate	Т	mg/L	9056		*	36					
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	_	*	30.13					
S0145	Specific Conductance	Т	μ MH 0/cm	Field		*	497					

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000)	8004-4800)	\			$\overline{}$		
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	6	360					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR POL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*	323				/	
N238	Dissolved Oxygen	Т	mg/L	Field		*	1.37					
s0266	Total Dissolved Solids	Т	mg/L	160.1		*	250					
s0296	На	T	Units	Field		*	6.32					
NS215	Eh	T	mV	Field		*	631			\		
s0907	Temperature	т	°C	Field		*	10.61					
7429-90-5	Aluminum	т	mg/L	6020		*	<0.2					
7440-36-0	Antimony	т	mg/L	6020		*	<0.005					
7440-38-2	Arsenic	Т	mg/L	7060		*	<0.001					
7440-39-3	Barium	т	mg/L	6020		*	0.141					
7440-41-7	Beryllium	т	mg/L	6020		*	<0.001					
7440-42-8	Boron	т	mg/L	6010		*	<0.2					
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		/	/		
7440-70-2	Calcium	T	mg/L	6010		*	25.2					
7440-47-3	Chromium	Т	mg/L	6020		*	<0.01					
7440-48-4	Cobalt	т	mg/L	6020		*	0.0113					
7440-50-8	Copper	Т	mg/L	6020		*	<0.02					
7439-89-6	Iron	Т	mg/L	6010		*	0.968					
7439-92-1	Lead	T	mg/L	6020		*	<0.0013					
7439-95-4	Magnesium	Т	mg/L	6010		*	9.55					
7439-96-5	Manganese	Т	mg/L	6020		*	0.0956					
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	AKGWA NUMBER ¹ , Facility Well/Spring Number						8004-48	00	\setminus		/
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	T. BLANK	6	360				/
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED F VALUE L OR A PQL ⁶ G S
7439-98-7	Molybdenum	Т	mg/L	6020		*	<0.001				/
7440-02-0	Nickel	Т	mg/L	6020		*	<0.005				/
7440-09-7	Potassium	Т	mg/L	6010		*	1.11				/
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005				
7782-49-2	Selenium	т	mg/L	6020		*	<0.005		\	\	
7440-22-4	Silver	т	mg/L	6020		*	<0.001				
7440-23-5	Sodium	Т	mg/L	6010		*	54.8				
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005				/
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002				
7440-61-1	Uranium	Т	mg/L	6020		*	<0.001				
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.02				
7440-66-6	Zinc	Т	mg/L	6020		*	<0.02			/	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	UJ	<0.01		/		
67-64-1	Acetone	Т	mg/L	8260	<0.01		<0.01	UJ			
107-02-8	Acrolein	Т	mg/L	8260	<0.01	UJ	<0.01				
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01				
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005				
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005				
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015				
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005				
108-88-3	Toluene	т	mg/L	8260	<0.005		<0.005				
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		/		

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		8004-480	0	1			/
Facility's Loc	al Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	T. BLANK 6	6	360					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR RQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005					
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005					
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005					
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01					
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			\setminus		
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005					
75-00-3	Chloroethane	т	mg/L	8260	<0.005		<0.005					
67-66-3	Chloroform	т	mg/L	8260	<0.005		<0.001				/	
74-87-3	Methyl chloride	т	mg/L	8260	<0.005		<0.005				X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001					
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005					
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			/		
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			/		
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001					
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005					
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005					
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001					
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001					
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005					
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002					
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.005		<0.001					
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	8004-480	0	\		
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	T. BLANK	6	360				/
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED F L C A A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005				
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01		<0.01				/
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01				
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005				
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005				
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005				
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01				
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002				
78-87-5	Propane, 1,2-Dichloro-	T	mg/L	8260	<0.005		<0.005				X .
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005				
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005				
156-60-5	trans-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001				
75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.005		<0.005				
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		/		
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005				
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005				
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.17				
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.16				\ \
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.17				
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.13				
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.1				
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.11		/		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	8004-4800)				
Facility's Loc	cal Well or Spring Number (e.g., 1	1W-1	, MW-2, et	.c.)	T. BLANK	6	360					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.07					
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.05					
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.09					
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	-1.22	*				
12587-47-2	Gross Beta	Т	pCi/L	9310		*	11.5	*				
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*				
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*	0.101	*				
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*	-0.488	*B				
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*	9.82	*	,			
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*	0.0566	*				
10028-17-8	Tritium	Т	pCi/L	704R6		*	-262	*				
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*	<36					
57-12-5	Cyanide	Т	mg/L	9010		*	<0.04					
20461-54-5	Iodide	т	mg/L	345.1		*	<2					
s0268	Total Organic Carbon	Т	mg/L	9060		*	1.2					
s0586	Total Organic Halides	Т	mg/L	9020		*	0.016		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4798 MW357	MW357UG2-14	Gross alpha	*	TPU is 4.41. Rad error is 4.37.
		Gross beta		TPU is 4.36. Rad error is 3.62.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.229. Rad error is 0.0674.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.105. Rad error is 0.0599.
		Technetium-99		TPU is 12.3. Rad error is 12.2.
		Thorium-230	*	TPU is 0.139. Rad error is 0.0552.
		Tritium	*	TPU is 630. Rad error is 629.
8004-4799 MW358	MW358UG2-14	Gross alpha	*	TPU is 2.21. Rad error is 2.15.
		Gross beta		TPU is 5.66. Rad error is 4.5.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.219. Rad error is 0.156.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.284. Rad error is 0.155.
		Technetium-99		TPU is 12.1. Rad error is 12.1.
		Thorium-230	*	TPU is 0.141. Rad error is 0.058.
		Tritium	*	TPU is 638. Rad error is 638.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description						
004-0981 MW359	•	Bromide	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.						
		Chloride		During sampling, the well went dry; therefore, no sample was collected.						
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.						
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.						
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.						
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.						
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.						
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.						
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.						
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sampl was collected.						
		рН		During sampling, the well went dry; therefore, no sampl was collected.						
		Eh Temperature		During sampling, the well went dry; therefore, no sampl was collected.						
		Temperature		During sampling, the well went dry; therefore, no sampl was collected.						
		Aluminum		During sampling, the well went dry; therefore, no sampl was collected.						
		Antimony		During sampling, the well went dry; therefore, no sampl was collected.						
		Arsenic		During sampling, the well went dry; therefore, no sampl was collected.						
		Barium		During sampling, the well went dry; therefore, no sampl was collected.						
		Beryllium		During sampling, the well went dry; therefore, no sampl was collected.						
		Boron		During sampling, the well went dry; therefore, no sampl was collected.						
		Cadmium		During sampling, the well went dry; therefore, no sampl was collected.						
		Calcium		During sampling, the well went dry; therefore, no sampl was collected.						
								Chromium		During sampling, the well went dry; therefore, no sampl was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.						
		Copper		During sampling, the well went dry; therefore, no sample was collected.						
		Iron		During sampling, the well went dry; therefore, no samp was collected.						
		Lead		During sampling, the well went dry; therefore, no samp was collected.						

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

 $Finds/Unit: \underline{KY8-890-008-982 \ / \ 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description			
004-0981 MW359	•	Magnesium	J	During sampling, the well went dry; therefore, no sampl was collected.			
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.			
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.			
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.			
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.			
		Potassium		During sampling, the well went dry; therefore, no samp was collected.			
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.			
		Selenium		During sampling, the well went dry; therefore, no samp was collected.			
		Silver		During sampling, the well went dry; therefore, no samp was collected.			
		Sodium		During sampling, the well went dry; therefore, no samp was collected.			
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.			
		Thallium		During sampling, the well went dry; therefore, no samp was collected.			
		Uranium		During sampling, the well went dry; therefore, no samp was collected.			
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.			
		Zinc		During sampling, the well went dry; therefore, no samp was collected.			
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.			
		Acetone		During sampling, the well went dry; therefore, no samp was collected.			
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.			
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.			
		Benzene		During sampling, the well went dry; therefore, no samp was collected.			
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.			
					Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.			
		Toluene		During sampling, the well went dry; therefore, no samp was collected.			
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.			
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.			

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description								
004-0981 MW359		Tribromomethane		During sampling, the well went dry; therefore, no sampl was collected.								
		Methyl bromide		During sampling, the well went dry; therefore, no sampl was collected.								
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.								
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampl was collected.								
		Carbon disulfide		During sampling, the well went dry; therefore, no samp was collected.								
		Chloroethane		During sampling, the well went dry; therefore, no samp was collected.								
		Chloroform		During sampling, the well went dry; therefore, no samp was collected.								
		Methyl chloride		During sampling, the well went dry; therefore, no samp was collected.								
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.								
		Methylene bromide		During sampling, the well went dry; therefore, no samp was collected.								
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.								
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.								
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no samp was collected.								
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no samp was collected.								
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.								
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.								
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.								
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.								
		Vinyl chloride		During sampling, the well went dry; therefore, no samp was collected.								
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.								
		Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.								
										Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.								
		Iodomethane		During sampling, the well went dry; therefore, no samp was collected.								
		Dibromochloromethane	During sampling, the well went dry; therefo was collected.									
		Carbon tetrachloride	During sampling, the well went dry; therefore, no was collected.									

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	·	Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0981 MW359		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
3004-4800 MW360	MW360UG2-14	Gross alpha	*	TPU is 1.88. Rad error is 1.85.
		Gross beta		TPU is 1.62. Rad error is 1.47.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.239. Rad error is 0.182.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0215. Rad error is 0.0126.
		Technetium-99	*	TPU is 11.4. Rad error is 11.4.
		Thorium-230	*	TPU is 0.144. Rad error is 0.0641.
		Tritium	*	TPU is 637. Rad error is 637.
3004-4795 MW361	MW361UG2-14	Gross alpha	*	TPU is 5.53. Rad error is 5.47.
		Gross beta		TPU is 5.55. Rad error is 4.43.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.221. Rad error is 0.158.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.147. Rad error is 0.0897.
		Technetium-99		TPU is 12.8. Rad error is 12.7.
		Thorium-230	*	TPU is 0.146. Rad error is 0.0718.
		Tritium	*	TPU is 633. Rad error is 632.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description		
004-0986 MW362	•	Bromide	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.		
		Chloride		During sampling, the well went dry; therefore, no sample was collected.		
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.		
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.		
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.		
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.		
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.		
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.		
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.		
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.		
		рН		During sampling, the well went dry; therefore, no sample was collected.		
		Eh		During sampling, the well went dry; therefore, no sample was collected.		
		Temperature		During sampling, the well went dry; therefore, no sample was collected.		
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.		
		Antimony		During sampling, the well went dry; therefore, no sampl was collected.		
		Arsenic		During sampling, the well went dry; therefore, no sampling was collected.		
		Barium		During sampling, the well went dry; therefore, no sampl was collected.		
		Beryllium		During sampling, the well went dry; therefore, no sampl was collected.		
		Boron		During sampling, the well went dry; therefore, no sampl was collected.		
				Cadmium		During sampling, the well went dry; therefore, no sampl was collected.
		Calcium		During sampling, the well went dry; therefore, no sampl was collected.		
		Chromium		During sampling, the well went dry; therefore, no sampl was collected.		
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.		
		Copper		During sampling, the well went dry; therefore, no sampl was collected.		
		Iron		During sampling, the well went dry; therefore, no sampl was collected.		
		Lead		During sampling, the well went dry; therefore, no sampl was collected.		

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description								
004-0986 MW362	•	Magnesium	U	During sampling, the well went dry; therefore, no sample was collected.								
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.								
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.								
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.								
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.								
		Potassium		During sampling, the well went dry; therefore, no samp was collected.								
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.								
		Selenium		During sampling, the well went dry; therefore, no samp was collected.								
		Silver		During sampling, the well went dry; therefore, no samp was collected.								
		Sodium		During sampling, the well went dry; therefore, no samp was collected.								
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.								
		Thallium		During sampling, the well went dry; therefore, no samp was collected.								
		Uranium		During sampling, the well went dry; therefore, no samp was collected.								
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.								
								Zinc		During sampling, the well went dry; therefore, no samp was collected.		
			Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.							
		Acetone		During sampling, the well went dry; therefore, no samp was collected.								
										Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.								
		Benzene		During sampling, the well went dry; therefore, no samp was collected.								
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.								
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.								
		Styrene		During sampling, the well went dry; therefore, no samp was collected.								
		Toluene		During sampling, the well went dry; therefore, no samp was collected.								
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.								
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.								

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description							
004-0986 MW362		Tribromomethane		During sampling, the well went dry; therefore, no sampl was collected.							
		Methyl bromide		During sampling, the well went dry; therefore, no sampl was collected.							
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.							
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no samp was collected.							
		Carbon disulfide		During sampling, the well went dry; therefore, no samp was collected.							
		Chloroethane		During sampling, the well went dry; therefore, no samp was collected.							
		Chloroform		During sampling, the well went dry; therefore, no samp was collected.							
		Methyl chloride		During sampling, the well went dry; therefore, no samp was collected.							
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.							
		Methylene bromide		During sampling, the well went dry; therefore, no samp was collected.							
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.							
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.							
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no samp was collected.							
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no samp was collected.							
									1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
			1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.						
				1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.					
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.							
							Vinyl chloride		During sampling, the well went dry; therefore, no samp was collected.		
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.							
						Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.			
		Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.							
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.							
		Iodomethane		During sampling, the well went dry; therefore, no samp was collected.							
		Dibromochloromethane		During sampling, the well went dry; therefore, no samp was collected.							
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.							

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0986 MW362	•	Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0986 MW362	26	Thorium-230	<u>g</u>	During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
3004-4796 MW363	MW363UG2-14	PCB-1242	Х	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	*	TPU is 0.0514. Rad error is 0.0499.
		Gross beta		TPU is 1.82. Rad error is 1.64.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.218. Rad error is 0.155.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0189. Rad error is 0.0111.
		Technetium-99	*	TPU is 11.4. Rad error is 11.4.
		Thorium-230	*	TPU is 0.139. Rad error is 0.00564.
		Tritium	*	TPU is 628. Rad error is 627.
3004-4797 MW364	MW364UG2-14	Gross alpha	*	TPU is 3.06. Rad error is 3.
		Gross beta		TPU is 5.89. Rad error is 4.64.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.204. Rad error is 0.135.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.044. Rad error is 0.0262.
		Technetium-99		TPU is 12.8. Rad error is 12.8.
		Thorium-230	*	TPU is 0.142. Rad error is 0.0241.
		Tritium	*	TPU is 647. Rad error is 647.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	•	Bromide	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sampl was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sampl was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sampl was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no samplwas collected.
		Lead		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	•	Magnesium	<u> </u>	During sampling, the well went dry; therefore, no sampl was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no samp was collected.
		Nickel		During sampling, the well went dry; therefore, no samp was collected.
		Potassium		During sampling, the well went dry; therefore, no samp was collected.
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.
		Selenium		During sampling, the well went dry; therefore, no samp was collected.
		Silver		During sampling, the well went dry; therefore, no samp was collected.
		Sodium		During sampling, the well went dry; therefore, no samp was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365		Tribromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no samp was collected.
		Chloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Chloroform		During sampling, the well went dry; therefore, no samp was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.
		Iodomethane		During sampling, the well went dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365		Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0984 MW365	•	Thorium-230	· ·	During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
8004-0982 MW366	MW366UG2-14	Gross alpha	*	TPU is 0.866. Rad error is 0.832.
		Gross beta		TPU is 6.16. Rad error is 4.81.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.256. Rad error is 0.0547.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.174. Rad error is 0.0982.
		Technetium-99		TPU is 12.8. Rad error is 12.7.
		Thorium-230	*	TPU is 0.158. Rad error is 0.0922.
		Tritium	*	TPU is 635. Rad error is 635.
8004-4793 MW367	MW367UG2-14	Gross alpha	*	TPU is 1.11. Rad error is 1.08.
		Gross beta		TPU is 4.71. Rad error is 3.85.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.27. Rad error is 0.216.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0414. Rad error is 0.0241.
		Technetium-99		TPU is 12.3. Rad error is 12.3.
		Thorium-230	*	TPU is 0.146. Rad error is 0.0258.
		Tritium	*	TPU is 655. Rad error is 653.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	•	Bromide	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sampl was collected.
		Temperature		During sampling, the well went dry; therefore, no samplwas collected.
		Aluminum		During sampling, the well went dry; therefore, no samplwas collected.
		Antimony		During sampling, the well went dry; therefore, no sampl was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no samplwas collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sampling was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368		Magnesium	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sampl was collected.
		Acetone		During sampling, the well went dry; therefore, no sampl was collected.
		Acrolein		During sampling, the well went dry; therefore, no sampl was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sampl was collected.
		Benzene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampl was collected.
		Styrene		During sampling, the well went dry; therefore, no sampling was collected.
		Toluene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description						
004-0983 MW368		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.						
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.						
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.						
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.						
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.						
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.						
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.						
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.						
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.						
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.						
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.						
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.						
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sampl was collected.						
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.						
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.						
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.						
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.						
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.						
								Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.						
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.						
		Ethylbenzene		During sampling, the well went dry; therefore, no sample was collected.						
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.						
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.						
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.						
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampling was collected.						

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	•	Dichloromethane	<u> </u>	During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
8004-4820 MW369	MW369UG2-14	Gross alpha	*	TPU is 0.578. Rad error is 0.55.
		Gross beta		TPU is 4.14. Rad error is 3.46.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.252. Rad error is 0.199.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.245. Rad error is 0.136.
		Technetium-99		TPU is 12.1. Rad error is 12.1.
		Thorium-230	*	TPU is 0.141. Rad error is 0.0214.
		Tritium	*	TPU is 646. Rad error is 646.
8004-4818 MW370	MW370UG2-14	Gross alpha	*	TPU is 0.817. Rad error is 0.781.
		Gross beta		TPU is 2.14. Rad error is 1.91.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.268. Rad error is 0.217.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.136. Rad error is 0.0772.
		Technetium-99	*	TPU is 11.6. Rad error is 11.6.
		Thorium-230	*	TPU is 0.14. Rad error is 0.0567.
		Tritium	*	TPU is 635. Rad error is 634.
8004-4819 MW371	MW371UG2-14	Gross alpha	*	TPU is 1.53. Rad error is 1.22.
		Gross beta	*	TPU is 0.428. Rad error is 0.296.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.258. Rad error is 0.206.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.125. Rad error is 0.0713.
		Technetium-99	*	TPU is 11. Rad error is 11.
		Thorium-230	*	TPU is 0.141. Rad error is 0.0474.
		Tritium	*	TPU is 637. Rad error is 637.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4808 MW372	MW372UG2-14	Gross alpha	*	TPU is 0.535. Rad error is 0.49.
		Gross beta		TPU is 11.7. Rad error is 7.85.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 0.217. Rad error is 0.15.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.251. Rad error is 0.138.
		Technetium-99		TPU is 15.4. Rad error is 15.1.
		Thorium-230	*	TPU is 0.135. Rad error is 0.044.
		Tritium	*	TPU is 647. Rad error is 647.
8004-4792 MW373	MW373UG2-14	Gross alpha	*	TPU is 0.296. Rad error is 0.241.
		Gross beta		TPU is 5.48. Rad error is 2.72.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 0.204. Rad error is 0.0375.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.178. Rad error is 0.0999.
		Technetium-99		TPU is 12.5. Rad error is 12.5.
		Thorium-230	*	TPU is 0.144. Rad error is 0.0659.
		Tritium	*	TPU is 646. Rad error is 646.
8004-0990 MW374	MW374UG2-14	Gross alpha	*	TPU is 2.42. Rad error is 2.29.
		Gross beta	*	TPU is 0.563. Rad error is 0.526.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 0.255. Rad error is 0.202.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.167. Rad error is 0.0941.
		Technetium-99	*	TPU is 11.5. Rad error is 11.5.
		Thorium-230	*	TPU is 0.143. Rad error is 0.018.
		Tritium	*	TPU is 637. Rad error is 637.
3004-0985 MW375	MW375UG2-14	Gross alpha	*	TPU is 1.05. Rad error is 1.03.
		Gross beta	*	TPU is 0.573. Rad error is 0.533.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 0.3. Rad error is 0.258.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0201. Rad error is 0.0117.
		Technetium-99	*	TPU is 11.5. Rad error is 11.5.
		Thorium-230	*	TPU is 0.147. Rad error is 0.0723.
		Tritium	*	TPU is 656. Rad error is 656.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well went dry; therefore, no sampl was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no samp was collected.
		Sulfate		During sampling, the well went dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no samp was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no samp was collected.
		рН		During sampling, the well went dry; therefore, no samp was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no samp was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no samp was collected.
		Cobalt		During sampling, the well went dry; therefore, no samp was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Magnesium	, ,	During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Tribromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no samp was collected.
		Chloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Chloroform		During sampling, the well went dry; therefore, no samp was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.
		Iodomethane		During sampling, the well went dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	·	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sampl was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sampl was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sampl was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sampl was collected.
		рН		During sampling, the well went dry; therefore, no sampl was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no samp was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no sampl was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Magnesium	· ·	During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sampl was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sampling was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samplwas collected.
		Xylenes		During sampling, the well went dry; therefore, no sampling was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampling was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	·	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samplwas collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampling was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Dichloromethane	<u> </u>	During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377	·	Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
0000-0000 QC	RI1UG2-14	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	*	TPU is 0.159. Rad error is 0.155.
		Gross beta	*	TPU is 0.508. Rad error is 0.486.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.167. Rad error is 0.0664.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0395. Rad error is 0.023.
		Technetium-99	*	TPU is 11.3. Rad error is 11.3.
		Thorium-230	*	TPU is 0.134. Rad error is 0.0422.
		Tritium	*	TPU is 646. Rad error is 645.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1UG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		PCB, Total	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1016	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1221	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1232	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1242	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1248	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1254	X Other spe	Other specific flags and footnotes may be required to properly define the results.
		PCB-1260	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1268	X Othe	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	*	TPU is 0.639. Rad error is 0.629.
		Gross beta	*	TPU is 0.643. Rad error is 0.595.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 0.167. Rad error is 0.0662.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0197. Rad error is 0.0115.
		Technetium-99	*	TPU is 11.4. Rad error is 11.4.
		Thorium-230	*	TPU is 0.143. Rad error is 0.0636.
		Tritium	*	TPU is 649. Rad error is 649.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG2-14	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed
		C-86		,

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG2-14	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG2-14	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG2-14	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB5UG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5UG2-14	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB6UG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6UG2-14	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
8004-4800 MW360	MW360DUG2-14	Gross alpha	*	TPU is 1.24. Rad error is 1.22.
		Gross beta		TPU is 2.17. Rad error is 1.94.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.219. Rad error is 0.156.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.185. Rad error is 0.114.
		Technetium-99	*	TPU is 11.6. Rad error is 11.6.
		Thorium-230	*	TPU is 0.154. Rad error is 0.0849.
		Tritium	*	TPU is 638. Rad error is 637.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Permit Number: 073-00045

Finds/Unit:

Lab ID: None
For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2014 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of analysis of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data included two background wells for comparison with at least three test wells or sidegradient wells (Exhibit 1). The first quarter 2014 data used to conduct the statistical analyses was collected in January 2014. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals with established maximum contaminant levels (MCLs), no statistical analysis was performed. Parameters that have MCLs can be found in 401 KAR 47:030, Section 6. For parameters with no established MCL, the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. Results of the one-sided tolerance interval statistical test conclude whether the data show a statistically significant increase of concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the data for the current quarter are compared to that value. If the value is exceeded, the well has a statistically significant increase in concentration compared to the background concentration.

The following is a summarized stepwise list of the one-sided tolerance interval statistical procedure applied to the data.¹

- 1. The tolerance limit (TL) was calculated for the background data.
 - For each parameter, the background data were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be potentially normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well has increased concentration with respect to background data.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit 2 presents the parameters from the available data set and the statistical test performed using the one-sided tolerance interval.

Excluding parameters that have an MCL, Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate that the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, first quarter 2014. The observations that are listed are not background data. Background data are presented on pages D-22 through D-80. The sampling dates associated with background data are listed next to the result on pages D-22 through D-80. When field duplicate data are available, the higher of the two readings is retained for further evaluation.

D-4

-

¹ For pH, two-sided TL (upper and lower) were calculated with an adjusted K factor using the following equations: upper TL = X + (K x S) lower TL = X - (K x S)

Exhibit 1. Station Identification for Monitoring Wells Analyzed

Station	Type	Aquifer
MW357	TW	URGA
MW358	TW	LRGA
MW359*	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362*	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365*	TW	UCRS
MW366	SG	URGA
MW367	SG	LRGA
MW368*	SG	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374	BG	UCRS
MW375	SG	UCRS
MW376*	SG	UCRS
MW377*	SG	UCRS

BG: upgradient or background wells
TW: downgradient or test wells
SG: sidegradient wells
*Well was dry this quarter, and a groundwater sample could not be collected.

Exhibit 2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test

Parameters Aluminum Boron Calcium Chloride Cobalt Conductivity Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Nickel Oxidation-Reduction Potential PCB, Total PCB-1242 pH* Potassium Sodium Sulfate Technetium-99 Total Organic Carbon (TOC) Total Organic Halides (TOX) Uranium

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if statistically significant deviations exist in concentrations with respect to upgradient well data.

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	3	0	3	0	No
1,1,2,2-Tetrachloroethane	3	0	3	0	No
1,1,2-Trichloroethane	3	0	3	0	No
1,1-Dichloroethane	3	0	3	0	No
1,2,3-Trichloropropane	3	0	3	0	No
1,2-Dibromo-3-chloropropane	3	0	3	0	No
1,2-Dibromoethane	3	0	3	0	No
1,2-Dichlorobenzene	3	0	3	0	No
1,2-Dichloropropane	3	0	3	0	No
2-Butanone	3	0	3	0	No
2-Hexanone	3	0	3	0	No
4-Methyl-2-pentanone	3	0	3	0	No
Acetone	3	0	3	0	No
Acrolein	3	0	3	0	No
Acrylonitrile	3	0	3	0	No
Aluminum	3	0	1	2	YES
Antimony	3	0	3	0	No
Beryllium	3	0	3	0	No
Boron	3	0	3	0	No
Bromide	3	0	3	0	No
Bromochloromethane	3	0	3	0	No
Bromodichloromethane	3	0	3	0	No
Bromoform	3	0	3	0	No
Bromomethane	3	0	3	0	No
Calcium	3	0	0	3	YES
Carbon disulfide	3	0	3	0	No
Chemical Oxygen Demand (COD)	3	0	3	0	No
Chloride	3	0	0	3	YES
Chlorobenzene	3	0	3	0	No
Chloroethane	3	0	3	0	No
Chloroform	3	0	3	0	No
Chloromethane	3	0	3	0	No
cis-1,2-Dichloroethene	3	0	3	0	No
cis-1,3-Dichloropropene	3	0	3	0	No
Cobalt	3	0	3	0	No
Conductivity	3	0	0	3	YES
Copper	3	0	3	0	No
Cyanide	3	0	3	0	No
Dibromochloromethane	3	0	3	0	No
Dibromomethane	3	0	3	0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total	3	0	3	0	No
Dissolved Oxygen	3	0	0	3	YES
Dissolved Solids	3	0	0	3	YES
Ethylbenzene	3	0	3	0	No
Iodide	3	0	3	0	No
Iodomethane	3	0	3	0	No
Iron	3	0	1	2	YES
Magnesium	3	0	0	3	YES
Manganese	3	0	0	3	YES
Methylene chloride	3	0	3	0	No
Molybdenum	3	0	3	0	No
Nickel	3	0	3	0	No
Oxidation-Reduction Potential	3	0	0	3	YES
PCB, Total	3	0	3	0	No
PCB-1016	3	0	3	0	No
PCB-1221	3	0	3	0	No
PCB-1232	3	0	3	0	No
PCB-1242	3	0	3	0	No
PCB-1248	3	0	3	0	No
PCB-1254	3	0	3	0	No
PCB-1260	3	0	3	0	No
PCB-1268	3	0	3	0	No
pH	3	0	0	3	YES
Potassium	3	0	0	3	YES
Radium-226	3	0	3	0	No
Rhodium	3	0	3	0	No
Sodium	3	0	0	3	YES
Styrene	3	0	3	0	No
Sulfate	3	0	0	3	YES
Tantalum	3	0	3	0	No
Technetium-99	3	0	3	0	No
Tetrachloroethene	3	0	3	0	No
Thallium	3	0	3	0	No
Thorium-230	3	0	3	0	No
Toluene	3	0	3	0	No
Total Organic Carbon (TOC)	3	0	0	3	YES
Total Organic Halides (TOX)	3	0	0	3	YES
trans-1,2-Dichloroethene	3	0	3	0	No
trans-1,3-Dichloropropene	3	0	3	0	No
Trans-1,4-Dichloro-2-butene	3	0	3	0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Trichlorofluoromethane	3	0	3	0	No
Uranium	3	0	2	1	YES
Vanadium	3	0	3	0	No
Vinyl acetate	3	0	3	0	No
Zinc	3	0	3	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	No
1,1,2,2-Tetrachloroethane	6	0	6	0	No
1,1,2-Trichloroethane	6	0	6	0	No
1,1-Dichloroethane	6	0	6	0	No
1,2,3-Trichloropropane	6	0	6	0	No
1,2-Dibromo-3-chloropropane	6	0	6	0	No
1,2-Dibromoethane	6	0	6	0	No
1,2-Dichlorobenzene	6	0	6	0	No
1,2-Dichloropropane	6	0	6	0	No
2-Butanone	6	0	6	0	No
2-Hexanone	6	0	6	0	No
4-Methyl-2-pentanone	6	0	6	0	No
Acetone	6	0	6	0	No
Acrolein	6	0	6	0	No
Acrylonitrile	6	0	6	0	No
Aluminum	6	0	5	1	YES
Antimony	6	0	6	0	No
Beryllium	6	0	6	0	No
Boron	6	0	4	2	YES
Bromide	6	0	6	0	No
Bromochloromethane	6	0	6	0	No
Bromodichloromethane	6	0	6	0	No
Bromoform	6	0	6	0	No
Bromomethane	6	0	6	0	No
Calcium	6	0	0	6	YES
Carbon disulfide	6	0	6	0	No
Chemical Oxygen Demand (COD)	6	0	6	0	No
Chloride Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	No
Chloroethane	6	0	6	0	No
Chloroform	6	0	6	0	No
Chloromethane	6	0	6	0	No
cis-1,2-Dichloroethene	6	0	6	0	No
cis-1,3-Dichloropropene	6	0	6	0	No
Cobalt	6	0	3	3	YES
	6	0	0	6	YES
Conner	6	0	6	0	No No
Cyanida	6	0	6	0	
Cyanide	6	0	6	0	No
Dibromochloromethane Dibromomethane	6	0	6	0	No No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total	6	0	6	0	No
Dissolved Oxygen	6	0	0	6	YES
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	No
Iodide	6	0	6	0	No
Iodomethane	6	0	6	0	No
Iron	6	0	2	4	YES
Magnesium	6	0	0	6	YES
Manganese	6	0	1	5	YES
Methylene chloride	6	0	6	0	No
Molybdenum	6	0	6	0	No
Nickel	6	0	5	1	YES
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	5	1	YES
PCB-1016	6	0	6	0	No
PCB-1221	6	0	6	0	No
PCB-1232	6	0	6	0	No
PCB-1242	6	0	5	1	YES
PCB-1248	6	0	6	0	No
PCB-1254	6	0	6	0	No
PCB-1260	6	0	6	0	No
PCB-1268	6	0	6	0	No
рН	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	6	0	No
Rhodium	6	0	6	0	No
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	No
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	No
Technetium-99	6	0	2	4	YES
Tetrachloroethene	6	0	6	0	No
Thallium	6	0	6	0	No
Thorium-230	6	0	6	0	No
Toluene	6	0	6	0	No
Total Organic Carbon (TOC)	6	0	4	2	YES
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	No
trans-1,3-Dichloropropene	6	0	6	0	No
Trans-1,4-Dichloro-2-butene	6	0	6	0	No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Trichlorofluoromethane	6	0	6	0	No
Uranium	6	0	6	0	No
Vanadium	6	0	6	0	No
Vinyl acetate	6	0	6	0	No
Zinc	6	0	6	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	No
1,1,2,2-Tetrachloroethane	6	0	6	0	No
1,1,2-Trichloroethane	6	0	6	0	No
1,1-Dichloroethane	6	0	6	0	No
1,2,3-Trichloropropane	6	0	6	0	No
1,2-Dibromo-3-chloropropane	6	0	6	0	No
1,2-Dibromoethane	6	0	6	0	No
1,2-Dichlorobenzene	6	0	6	0	No
1,2-Dichloropropane	6	0	6	0	No
2-Butanone	6	0	6	0	No
2-Hexanone	6	0	6	0	No
4-Methyl-2-pentanone	6	0	6	0	No
Acetone	6	0	6	0	No
Acrolein	6	0	6	0	No
Acrylonitrile	6	0	6	0	No
Aluminum	6	0	5	1	YES
Antimony	6	0	6	0	No
Beryllium	6	0	6	0	No
Boron	6	0	4	2	YES
Bromide	6	0	6	0	No
Bromochloromethane	6	0	6	0	No
Bromodichloromethane	6	0	6	0	No
Bromoform	6	0	6	0	No
Bromomethane	6	0	6	0	No
Calcium	6	0	1	5	YES
Carbon disulfide	6	0	6	0	No
Chemical Oxygen Demand (COD)	6	0	6	0	No
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	No
Chloroethane	6	0	6	0	No
Chloroform	6	0	6	0	No
Chloromethane	6	0	6	0	No
cis-1,2-Dichloroethene	6	0	6	0	No
cis-1,3-Dichloropropene	6	0	6	0	No
Cobalt	6	0	4	2	YES
Conductivity	6	0	0	6	YES
Copper	6	0	6	0	No
Cyanide	6	0	6	0	No
Dibromochloromethane	6	0	6	0	No
Dibromomethane	6	0	6	0	No
Dimethylbenzene, Total	6	0	6	0	No

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dissolved Oxygen	6	0	0	6	YES
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	No
Iodide	6	0	6	0	No
Iodomethane	6	0	6	0	No
Iron	6	0	2	4	YES
Magnesium	6	0	1	5	YES
Manganese	6	0	2	4	YES
Methylene chloride	6	0	6	0	No
Molybdenum	6	0	6	0	No
Nickel	6	0	6	0	No
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	6	0	No
PCB-1016	6	0	6	0	No
PCB-1221	6	0	6	0	No
PCB-1232	6	0	6	0	No
PCB-1242	6	0	6	0	No
PCB-1248	6	0	6	0	No
PCB-1254	6	0	6	0	No
PCB-1260	6	0	6	0	No
PCB-1268	6	0	6	0	No
рН	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	6	0	No
Rhodium	6	0	6	0	No
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	No
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	No
Technetium-99	6	0	1	5	YES
Tetrachloroethene	6	0	6	0	No
Thallium	6	0	6	0	No
Thorium-230	6	0	6	0	No
Toluene	6	0	6	0	No
Total Organic Carbon (TOC)	6	0	6	0	No
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	No
trans-1,3-Dichloropropene	6	0	6	0	No
Trans-1,4-Dichloro-2-butene	6	0	6	0	No
Trichlorofluoromethane	6	0	6	0	No
Uranium	6	0	6	0	No

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Vanadium	6	0	6	0	No
Vinyl acetate	6	0	6	0	No
Zinc	6	0	6	0	No

Bold denotes parameters with at least one uncensored observation.

Discussion of Results

For the UCRS, URGA, and LRGA, the results of the one-sided upper tolerance interval test are presented on pages D-22 through D-80 and the statistician qualification statement is presented on page D-81. For the UCRS, URGA, and LRGA, the test was applied to 17, 22, and 18 parameters, respectively, listed in bold print in Exhibits 3, 4, and 5. A summary of statistically significant increases by well number is shown in Exhibit 6.

UCRS

In this quarter, statistical test results indicated there were statistically significant increases relative to background data for oxidation-reduction potential and sulfate.

URGA

In this quarter, statistical test results indicated that there were statistically significant increases relative to background data for conductivity, dissolved solids, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

In this quarter, statistical test results indicated that there were statistically significant increases relative to background data for oxidation-reduction potential, potassium, and technetium-99.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

Exhibit 6. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW371: oxidation-reduction potential	MW357: oxidation-reduction potential	MW358: oxidation-reduction potential
MW374: oxidation-reduction potential	MW360: oxidation-reduction potential	MW361: oxidation-reduction potential, technetium-99
MW375: oxidation-reduction potential, sulfate	MW363: oxidation-reduction potential	MW364: oxidation-reduction potential, technetium-99
•	MW366: oxidation-reduction potential	MW367: oxidation-reduction potential, potassium
	MW369: oxidation-reduction potential	MW370: oxidation-reduction potential
	MW372: conductivity, dissolved solids, oxidation-reduction potential, sodium, sulfate, technetium-99	MW373: oxidation-reduction potential

Exhibit 7. Tests Summary for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.95	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.45	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.55	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.42	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.98	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.27	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.89	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	3.54	Statistically significant increases relative to background data in MW371, MW374, and MW375
pH	Tolerance Interval	0.05	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.72	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	0.49	Statistically significant increases relative to background data in MW375
Total Organic Carbon	Tolerance Interval	1.38	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	1.08	No statistically significant increases relative to background data
Uranium	Tolerance Interval	1.68	No statistically significant increases relative to background data

CV: coefficient of variation

Exhibit 8. Tests Summary for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No statistically significant increases relative to background data
Boron	Tolerance Interval	0.84	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.29	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.10	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	0.85	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.12	Statistically significant increase relative to background data in MW372
Dissolved Oxygen	Tolerance Interval	0.76	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.16	Statistically significant increase relative to background data in MW372
Iron	Tolerance Interval	0.95	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.27	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.66	No statistically significant increases relative to background data
Nickel	Tolerance Interval	0.91	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	1.26	Statistically significant increases relative to background data in MW357, MW360, MW363, MW366, MW369, and MW372
PCB, Total	Tolerance Interval	0.90	No statistically significant increases relative to background data
PCB-1242	Tolerance Interval	1.36	No statistically significant increases relative to background data
pH	Tolerance Interval	0.03	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.29	No statistically significant increases relative to background data

Exhibit 8. Tests Summary for Qualified Parameters—URGA (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Sodium	Tolerance Interval	0.26	Statistically significant increase relative to background data in MW372
Sulfate	Tolerance Interval	0.75	Statistically significant increase relative to background data in MW372
Technetium-99	Tolerance Interval	0.87	Statistically significant increases relative to background data in MW372
Total Organic Carbon	Tolerance Interval	1.23	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.95	No statistically significant increases relative to background data

CV: coefficient of variation

Exhibit 9. Tests Summary for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No statistically significant increases relative to background data
Boron	Tolerance Interval	0.68	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.31	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.16	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	1.17	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.26	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.83	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.30	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.96	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.34	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.62	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	1.31	Statistically significant increases relative to background data in MW358, MW361, MW364, MW367, MW370, and MW373
pH	Tolerance Interval	0.03	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.19	Statistically significant increases relative to background data in MW367
Sodium	Tolerance Interval	0.30	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	1.59	No statistically significant increases relative to background data
Technetium-99	Tolerance Interval	1.73	Statistically significant increases relative to background data in MW361 and MW364

Exhibit 8. Tests Summary for Qualified Parameters—URGA (Continued) Exhibit 9. Tests Summary for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Total Organic Halides	Tolerance Interval	0.98	No statistically significant increases relative to background data

CV: coefficient of variation

C-746-U First Quarter 2014 Statistical Analysis Aluminum

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

Background D Upgradient W		Statistics on Background Data		Transformed l Data from Upg	
Well Number:	MW371	X= 3.300		Well Number:	MW371
Date Collected	Result	S= 6.859		Date Collected	LN(Result)
3/18/2002	2.240	CV= 2.078		3/18/2002	0.806
4/22/2002	0.200	K factor** = 2.523		4/22/2002	-1.609
7/15/2002	0.200	TL= 20.604		7/15/2002	-1.609
10/8/2002	0.200	Because CV is greater than	1, the natural	10/8/2002	-1.609
1/8/2003	0.200	logarithm of background an	nd test well results	1/8/2003	-1.609
4/3/2003	0.200	were calculated.		4/3/2003	-1.609
7/9/2003	0.200	Statistics on		7/9/2003	-1.609
10/6/2003	0.200	Transformed		10/6/2003	-1.609
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= -0.371		Date Collected	LN(Result)
10/8/2002	21.300	S= 1.678		10/8/2002	3.059
1/7/2003	20.000	CV= -4.521		1/7/2003	2.996
4/2/2003	4.110			4/2/2003	1.413
7/9/2003	1.410	K factor** = 2.523		7/9/2003	0.344
10/7/2003	1.090	TL= 3.863		10/7/2003	0.086
1/6/2004	0.854			1/6/2004	-0.158
4/7/2004	0.200			4/7/2004	-1.609
7/14/2004	0.200			7/14/2004	-1.609

First Quarter 2014 Data Collected in January 2014		First Quarter 2014 Transformed First Quarted Collected in January 2014							
Well No.	Result	Gradient	Result >TL?	Well No.	Gradient		Well Number	LN(Result)	Result >TL?
MW371	0.436	Upgradient	N/A	MW359	Downgradient	•	MW371	-0.830	NO
MW374	0.200	Upgradient	N/A	MW365	Downgradient		MW374	-1.609	NO
MW375	0.659	Sidegradien	t N/A	MW368	Sidegradient		MW375	-0.417	NO
				MW376	Sidegradient				
				MW377	Sidegradient				
				MW362	Sidegradient				

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Calcium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW371

Well Number:	MW371
Date Collected	Result
3/18/2002	17.200
4/22/2002	22.400
7/15/2002	25.500
10/8/2002	26.400
1/8/2003	27.200
4/3/2003	30.300
7/9/2003	25.900
10/6/2003	27.000
Well Number:	MW374
Date Collected	Result
10/8/2002	67.300

1/7/2003

4/2/2003

7/9/2003

1/6/2004

4/7/2004

7/14/2004

10/7/2003

Statistics on Background Data

X= 34.100 S= 13.637 CV= 0.400 K factor** = 2.523 TL= 68.505

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

60.600

47.200

34.700

37.100

37.700

32.200

26.900

Well No.	Result	Gradient	Result >TL?
MW371	18.000	Upgradient	NO
MW374	28.100	Upgradient	NO
MW375	38.900	Sidegradien	t NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
MW362	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW371	
Date Collected	Result	
7/15/2002	8.300	
10/8/2002	7.600	
1/8/2003	7.700	
4/3/2003	8.800	
7/9/2003	8.100	
10/6/2003	8.600	
1/7/2004	7.600	

Statistics on Background Data
X= 91.300 S= 86.959
CV= 0.952
K factor** = 2.523 TL= 310.697
TL= 310.697

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Well Number:	MW374
Date Collected	Result
10/8/2002	199.200
1/7/2003	199.700
4/2/2003	171.800
7/9/2003	178.700
10/7/2003	175.600
1/6/2004	170.400
4/7/2004	156.400
7/14/2004	144.700

4/6/2004

First Quarter 2014 Data Collected in January 2014

7.600

Well No.	Result	Gradient	Result >TL?
MW371	8.000	Upgradient	NO
MW374	170.00	Upgradient	NO
MW375	3.600	Sidegradien	t NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
MW362	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Conductivity

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: umho/cm

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	541.000
4/22/2002	643.000
7/15/2002	632.000
10/8/2002	631.000
1/8/2003	680.000
4/3/2003	749.000
7/9/2003	734.000
10/6/2003	753.000
Well Number:	MW374
Date Collected	Result
3/18/2002	1007.00
10/8/2002	1680.00
1/7/2003	1715.90

4/2/2003 7/9/2003

10/7/2003

1/6/2004

4/7/2004

Statistics on Background Data

X= 918.744 S= 417.257 CV= 0.454 K factor** = 2.523 TL= 1971.483

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

172.000

1231.00

1214.00

1172.00

1145.00

Well No.	Result	Gradient	Result >TL?
MW371	763.00	Upgradient	NO
MW374	744.00	Upgradient	NO
MW375	405.00	Sidegradien	t NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
MW362	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Dissolved Oxygen

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	2.260
4/22/2002	1.150
7/15/2002	0.940
10/8/2002	0.740
1/8/2003	2.620
4/3/2003	1.500
7/9/2003	1.660
10/6/2003	1.280
Well Number:	MW374
Date Collected	Result
3/18/2002	0.600
10/8/2002	0.670
1/7/2003	0.230
4/2/2003	0.650
7/9/2003	0.920
10/7/2003	0.990
1/6/2004	1.110
4/7/2004	0.880

Statistics on Background Data

X= 1.138 S= 0.621 CV= 0.546 K factor** = 2.523 TL= 2.704

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result >TL?
MW371	1.970	Upgradient	NO
MW374	1.670	Upgradient	NO
MW375	1.350	Sidegradien	t NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
MW362	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Dissolved Solids

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

Background Data from Upgradient Wells

epgradient (CHS
Well Number:	MW371
Date Collected	Result
3/18/2002	274.000
4/22/2002	409.000
7/15/2002	418.000
10/8/2002	424.000
1/8/2003	431.000
4/3/2003	444.000
7/9/2003	445.000
10/6/2003	438.000
Well Number:	MW374
Date Collected	Result
10/8/2002	1136.00
1/7/2003	1101.00
4/2/2003	863.000
7/9/2003	682.000

10/7/2003 1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data X= 590.000

S= 248.068 CV= 0.420 K factor** = 2.523 TL= 1215.876

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

589.000

603.000

601.000

582.000

Well No.	Result	Gradient	Result >TL?
MW371	447.00	Upgradient	NO
MW374	406.00	Upgradient	NO
MW375	162.00	Sidegradien	t NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
MW362	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Iron UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW371

Well Number:	MW371
Date Collected	Result
3/18/2002	1.310
4/22/2002	0.913
7/15/2002	0.881
10/8/2002	3.860
1/8/2003	1.880
4/3/2003	3.180
7/9/2003	0.484
10/6/2003	2.720
Well Number:	MW374
Date Collected	Result

10/8/2002

1/7/2003

4/2/2003

7/9/2003

1/6/2004

4/7/2004

7/14/2004

10/7/2003

Statistics on Background Data
X= 6.612
S= 6.487
CV = 0.981
K factor** = 2.523
TL = 22.979

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

23.000

13.900

14.000

14.200

7.920

7.860

4.820

4.870

Well No.	Result	Gradient	Result >TL?
MW371	1.270	Upgradient	NO
MW374	0.100	Upgradient	NO
MW375	0.418	Sidegradien	t NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
MW362	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Magnesium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

opgradient w	CHS
Well Number:	MW371
Date Collected	Result
3/18/2002	7.100
4/22/2002	9.770
7/15/2002	10.400
10/8/2002	10.200
1/8/2003	10.700
4/3/2003	11.900
7/9/2003	10.800
10/6/2003	10.900
Well Number:	MW374
Date Collected	Result
10/8/2002	20.000
1/7/2003	16.100
4/2/2003	13.100
7/9/2003	10.300
10/7/2003	11.100
1/6/2004	11.000
4/7/2004	9.690
7/14/2004	8.490

Statistics on Background Data

X= 11.347 S= 3.019 CV= 0.266 K factor** = 2.523 TL= 18.963

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result >TL?
MW371	7.100	Upgradient	NO
MW374	11.100	Upgradient	NO
MW375	5.590	Sidegradien	t NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
MW362	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Manganese UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

opgradient w	CHS
Well Number:	MW371
Date Collected	Result
3/18/2002	0.063
4/22/2002	0.067
7/15/2002	0.074
10/8/2002	0.052
1/8/2003	0.039
4/3/2003	0.055
7/9/2003	0.055
10/6/2003	0.054
Well Number:	MW374
Date Collected	Result
10/8/2002	0.596
1/7/2003	0.565
4/2/2003	0.675
7/9/2003	0.397
10/7/2003	0.312
1/6/2004	0.299
4/7/2004	0.329
7/14/2004	0.342

Statistics on Background Data

X= 0.248 S= 0.222 CV= 0.894 K factor** = 2.523 TL= 0.809

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result >TL?
MW371	0.008	Upgradient	NO
MW374	0.006	Upgradient	NO
MW375	0.005	Sidegradien	t NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
MW362	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis **Oxidation-Reduction Potential**

UNITS: mV

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data					Transformed l Data from Upg			
Well Number:	MW371		X= 22.281					Well Number:	MW371	
Date Collected	Result			S= 78.889				Date Collected	LN(Result)	
3/18/2002	75.000		CV=3.						3/18/2002	4.317
4/22/2002	165.000			$r^{**} = 2.52$	23				4/22/2002	5.106
7/15/2002	65.000		TL= 22	21.319					7/15/2002	4.174
4/3/2003	-19.000		Because (CV is grea	ter th	nan 1, the natu	ral		4/3/2003	#Func!
7/9/2003	114.000]	logarithm of background and test well result				4.736			
10/6/2003	-22.000	,	were calc	ulated.					10/6/2003	#Func!
1/7/2004	20.500		Statistic	on on					1/7/2004	3.020
4/6/2004	113.000		Transfo						4/6/2004	4.727
Well Number:	MW374			ound Data					Well Number:	MW374
Date Collected	Result		X = er						Date Collected	LN(Result)
3/18/2002	135.000								3/18/2002	4.905
4/2/2003	-56.000		S = err						3/18/2002 4/2/2003	#Func!
7/9/2003	-68.000		$CV = \epsilon$					7/9/2003 10/7/2003	#Func!	
10/7/2003	-50.000		K facto	$r^{**}=2.52$	23				#Func!	
1/6/2004	-85.000		TL# = 5.106			1/6/2004	#Func!			
4/7/2004	6.000		# Recause	o the natur	-al lo	a was not noss	ihla	for	4/7/2004	1.792
7/14/2004	-38.000		# Because the natural log all background values, the				7/14/2004	#Func!		
10/7/2004	1.000		_	equal to the maximum background value.		0100	10/7/2004	0.000		
									10/ // 200-	0.000
January 2014					tially	Dry Wells			Formed First Qua Collected in Janu	
Well No. Resu	ult Gradient	Resi	ult >TL? Well No. Gradient Wel			Well Nu	mber LN(Result)	Result >TL?		
MW371 374	1.000 Upgradie	nt	N/A	MW359	Do	wngradient	_			
	5.000 Upgradie		N/A	MW365	Do	wngradient	N	MW371	5.924	YES
MW375 470	0.000 Sidegradi	ent	N/A	MW368	Sid	egradient	N	MW374	6.244	YES
				MW376	Sid	egradient	N	MW375	6.153	YES
				MW377	Sid	egradient				
				MW362	Sid	egradient				
Conclusion of S	Statistical Anal	ysis on	Transfor	rmed Data	1					
			^ ^			nit, which is s	tati	stically	significant evide	ence of
MW371	ntration with re	especii	O Dacker	ound data	1.					
MW374										
MW375										

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis pH

UCRS
UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

MW371
Result
6.300
6.500
6.500
6.600
6.600
6.900
6.700
7.000
MW374
MW374 Result
Result
Result 5.750
Result 5.750 6.600
Result 5.750 6.600 6.820
Result 5.750 6.600 6.820 6.860
Result 5.750 6.600 6.820 6.860 6.700

Statistics on Background Data
X= 6.619 S= 0.295 CV= 0.045 K factor** = 2.904
TL= 7.475 LL= 5.764

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result >TL?	Result <ll'< th=""></ll'<>
MW371	6.640	Upgradie	ent NO	NO
MW374	6.640	Upgradie	ent NO	NO
MW375	6.650	Sidegradi	ent NO	NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
MW362	Sidegradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U First Quarter 2014 Statistical Analysis Potassium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

Background Data from Upgradient Wells

opgradient w	CHS	
Well Number:	MW371	
Date Collected	Result	
3/18/2002	2.000	
4/22/2002	2.000	
7/15/2002	2.000	
10/8/2002	0.408	
1/8/2003	0.384	
4/3/2003	0.368	
7/9/2003	0.587	
10/6/2003	0.382	
Well Number:	MW374	
Date Collected	Result	
10/8/2002	3.040	
1/7/2003	2.830	
4/2/2003	2.000	
7/9/2003	1.090	
10/7/2003	0.802	
1/6/2004	0.897	
4/7/2004	0.689	
7/14/2004	0.716	

Statistics on Background Data

X= 1.262 S= 0.907 CV= 0.718 K factor** = 2.523 TL= 3.549

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result >TL?
MW371	0.713	Upgradient	NO
MW374	2.550	Upgradient	NO
MW375	1.370	Sidegradien	t NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
MW362	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Sodium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	129.000
4/22/2002	131.000
7/15/2002	127.000
10/8/2002	123.000
1/8/2003	128.000
4/3/2003	144.000
7/9/2003	126.000
10/6/2003	120.000
Well Number:	MW374
Date Collected	Result
10/8/2002	336.000
1/7/2003	329.000
4/2/2003	287.000

7/9/2003

4/7/2004

7/14/2004

10/7/2003 1/6/2004

Statistics on Background Data

X= 183.063 S= 73.222 CV= 0.400 K factor** = 2.523 TL= 367.800

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

181.000

182.000

206.000

182.000

198.000

Well No.	Result	Gradient	Result >TL?
MW371	52.200	Upgradient	NO
MW374	36.700	Upgradient	NO
MW375	17.100	Sidegradien	t NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
MW362	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	16.300
4/22/2002	8.600
7/15/2002	6.700
10/8/2002	5.000
1/8/2003	5.000
4/3/2003	5.000
7/9/2003	5.000
10/6/2003	5.000
Well Number:	MW374
Date Collected	Result
10/8/2002	5.000
1/7/2003	5.000
4/2/2003	5.000
7/9/2003	5.600
10/7/2003	5.000
1/6/2004	5.000
4/7/2004	11.300

Statistics on Background Data

X= 6.469 S= 3.153 CV= 0.487 K factor** = 2.523 TL= 14.423

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

5.000

7/14/2004

Well No.	Result	Gradient	Result >TL?
MW371	9.900	Upgradient	NO
MW374	5.100	Upgradient	NO
MW375	15.000	Sidegradien	t YES

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient
MW362	Sidegradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW375

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Total Organic Carbon (TOC)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells			
Well Number:	MW371	X= 17.631		Well Number:	MW371			
Date Collected	Result	S= 24.314		Date Collected	LN(Result)			
3/18/2002	11.100	CV= 1.379		3/18/2002	2.407			
4/22/2002	7.000	K factor** = 2.523		4/22/2002	1.946			
7/15/2002	4.100	TL= 78.977		7/15/2002	1.411			
10/8/2002	6.000	Because CV is greater to	han 1, the natural	10/8/2002	1.792			
1/8/2003	5.300	logarithm of background		1/8/2003	1.668			
4/3/2003	5.300	were calculated.		4/3/2003	1.668			
7/9/2003	2.900	Statistics on		7/9/2003	1.065			
10/6/2003	3.200	Transformed		10/6/2003	1.163			
Well Number:	MW374	Background Data		Well Number:	MW374			
Date Collected	Result	X= 2.318		Date Collected	LN(Result)			
10/8/2002	90.000	S= 0.979		10/8/2002	4.500			
1/7/2003	64.000	CV = 0.422		1/7/2003	4.159			
4/2/2003	25.000			4/2/2003	3.219			
7/9/2003	16.000	K factor** = 2.523		7/9/2003	2.773			
10/7/2003	13.000	TL= 4.788		10/7/2003	2.565			
1/6/2004	10.000		•	1/6/2004	2.303			
4/7/2004	7.200			4/7/2004	1.974			
7/14/2004	12.000			7/14/2004	2.485			

First Quarter 2014 Data Collected in January 2014		First Quarter 2014 Dry/Partially Dry Wells		Transformed First Quarter 2014 Dat Collected in January 2014					
Well No. Result Gradient Result >TL?		Well No.	Gradient		Well Number	LN(Result)	Result >TL?		
MW371	1.700	Upgradient	N/A	MW359	Downgradient		MW371	0.531	NO
MW374	1.700	Upgradient	N/A	MW365	Downgradient		MW374	0.531	NO
MW375	2.700	Sidegradien	t N/A	MW368	Sidegradient		MW375	0.993	NO
			MW376	Sidegradient					
		MW377	Sidegradient						
				MW362	Sidegradient				

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Total Organic Halides (TOX)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: ug/L

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	
Well Number:	MW371	X= 214.094		Well Number:	MW371
Date Collected	Result	S= 231.089		Date Collected	LN(Result)
3/18/2002	50.000	CV= 1.079		3/18/2002	3.912
4/22/2002	105.000	K factor** = 2.523 TL= 797.131		4/22/2002	4.654
7/15/2002	70.000	TL= /9/.131		7/15/2002	4.248
10/8/2002	52.000	Because CV is greater to	han 1, the natural	10/8/2002	3.951
1/8/2003	20.200	logarithm of background	d and test well results	1/8/2003	3.006
4/3/2003	104.000	were calculated.		4/3/2003	4.644
7/9/2003	34.200	Statistics on		7/9/2003	3.532
10/6/2003	46.100	Transformed		10/6/2003	3.831
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= 4.867		Date Collected	LN(Result)
10/8/2002	903.000	S= 1.065		10/8/2002	6.806
1/7/2003	539.000	CV = 0.219		1/7/2003	6.290
4/2/2003	295.000			4/2/2003	5.687
7/9/2003	272.000	K factor** = 2.523		7/9/2003	5.606
10/7/2003	197.000	TL= 7.554		10/7/2003	5.283
1/6/2004	330.000			1/6/2004	5.799
4/7/2004	183.000			4/7/2004	5.209
7/14/2004	225.000			7/14/2004	5.416

First Quarter 2014 Data Collected in January 2014			First Quarter 2014 Dry/Partially Dry Wells			Transformed First Quarter 2014 Data Collected in January 2014			
Well No.	Result	Gradient	Result >TL?	Well No.	Gradient	7	Well Number	LN(Result)	Result >TL?
MW371	13.000	Upgradient	N/A	MW359	Downgradient		MW371	2.565	NO
MW374	27.000	Upgradient	N/A	MW365	Downgradient		MW374	3.296	NO
MW375	16.000	Sidegradien	t N/A	MW368	Sidegradient		MW375	2.773	NO
				MW376	Sidegradient				
				MW377	Sidegradient				
				MW362	Sidegradient				

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Uranium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Data from Up	Background gradient Wells
Well Number:	MW371	X = 0.007		Well Number:	MW371
Date Collected	Result	S= 0.012		Date Collected	LN(Result)
3/18/2002	0.001	CV= 1.678		3/18/2002	-6.908
4/22/2002	0.001	K factor** = 2.523		4/22/2002	-6.908
7/15/2002	0.001	TL= 0.037		7/15/2002	-6.908
10/8/2002	0.027	Because CV is greater t	han 1, the natural	10/8/2002	-3.612
1/8/2003	0.001	logarithm of backgroun	l and test well results	1/8/2003	-6.908
4/3/2003	0.001	were calculated.		4/3/2003	-6.908
7/9/2003	0.001	Statistics on		7/9/2003	-6.822
10/6/2003	0.001	Transformed		10/6/2003	-6.908
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= -5.884		Date Collected	LN(Result)
10/8/2002	0.044	S= 1.299		10/8/2002	-3.128
1/7/2003	0.011	CV= -0.221		1/7/2003	-4.510
4/2/2003	0.009			4/2/2003	-4.705
7/9/2003	0.007	K factor** = 2.523		7/9/2003	-4.970
10/7/2003	0.001	TL = -2.607		10/7/2003	-6.908
1/6/2004	0.003			1/6/2004	-5.760
4/7/2004	0.003			4/7/2004	-5.960
7/14/2004	0.002			7/14/2004	-6.320

First Quarter 2014 Data Collected in January 2014			First Quarter 2014 Dry/Partially Dry Wells			Transformed First Quarter 2014 Date Collected in January 2014			
Well No.	Result	Gradient	Result >TL?	Well No.	Gradient	V	Vell Number	LN(Result)	Result >TL?
MW371	0.002	Upgradient	N/A	MW359	Downgradient	1	MW371	-6.200	NO
MW374	0.001	Upgradient	N/A	MW365	Downgradient	1	MW374	-6.908	NO
MW375	0.001	Sidegradien	t N/A	MW368	Sidegradient	1	MW375	-6.908	NO
				MW376	Sidegradient				
				MW377	Sidegradient				
				MW362	Sidegradient				

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Aluminum

UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Well		
ell Number:	MW369	X= 0.625		Well Number:	MW369		
ate Collected	Result	S=0.774		Date Collected	LN(Result)		
3/18/2002	0.255	CV= 1.239		3/18/2002	-1.366		
1/22/2002	0.200	K factor** = 2.523		4/22/2002	-1.609		
7/15/2002	0.322	TL= 2.578	_	7/15/2002	-1.133		
0/8/2002	0.200	Because CV is greater t	han 1, the natural	10/8/2002	-1.609		
1/8/2003	0.200	logarithm of backgroun	d and test well results	1/8/2003	-1.609		
4/3/2003	0.200	were calculated.		4/3/2003	-1.609		
7/8/2003	0.200	Statistics on		7/8/2003	-1.609		
10/6/2003	0.689	Transformed		10/6/2003	-0.373		
ell Number:	MW372	Background Data		Well Number:	MW372		
te Collected	Result	X= -0.973		Date Collected	LN(Result)		
3/19/2002	2.610	S= 0.935		3/19/2002	0.959		
1/23/2002	0.200	CV= -0.961		4/23/2002	-1.609		
/16/2002	1.140			7/16/2002	0.131		
0/8/2002	0.862	K factor** = 2.523		10/8/2002	-0.149		
/7/2003	2.320	TL= 1.386		1/7/2003	0.842		
/2/2003	0.200		-	4/2/2003	-1.609		
/9/2003	0.200			7/9/2003	-1.609		
10/7/2003	0.200			10/7/2003	-1.609		

First Quarter 2014 Data Collected in	
January 2014	

Well No.	Result	Gradient R	Result >TL?
MW357	0.200	Downgradien	t N/A
MW360	0.200	Downgradien	t N/A
MW363	0.200	Downgradien	t N/A
MW366	0.200	Sidegradient	N/A
MW369	0.200	Upgradient	N/A
MW372	0.289	Upgradient	N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number	LN(Result)	Result >TL?
MW357	-1.609	NO
MW360	-1.609	NO
MW363	-1.609	NO
MW366	-1.609	NO
MW369	-1.609	NO
MW372	-1.241	NO

Conclusion of Statistical Analysis on Transformed Date

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Background Data from Upgradient Wells					
Well Number: MW369					

Well Number:	MW369
Date Collected	Result
3/18/2002	2.000
4/22/2002	2.000
7/15/2002	2.000
10/8/2002	0.200
1/8/2003	0.200
4/3/2003	0.200
7/8/2003	0.200
10/6/2003	0.200
Well Number:	MW372
Date Collected	Result
3/19/2002	2.000

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data			
X= 0.985			
S = 0.825			
CV = 0.838			

K factor** = 2.523 TL= 3.067

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

2.000

2.000

0.492

0.492

0.600

0.570

0.604

Well No.	Result	Gradient F	Result >TL?
MW357	0.336	Downgradien	t NO
MW360	0.200	Downgradien	t NO
MW363	0.200	Downgradien	t NO
MW366	0.200	Sidegradient	NO
MW369	0.200	Upgradient	NO
MW372	1.040	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Calcium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	29.500
4/22/2002	29.800
7/15/2002	25.300
10/8/2002	21.900
1/8/2003	20.900
4/3/2003	22.200
7/8/2003	22.900
10/6/2003	21.700
Well Number:	MW372
Date Collected	Result
3/19/2002	41.500
4/23/2002	43.600
7/16/2002	40.400

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 32.763 S= 9.391 CV= 0.287 K factor** = 2.523 TL= 56.456

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

38.800

41.100

42.900

35.100

46.600

Well No.	Result	Gradient F	Result >TL?
MW357	28.800	Downgradien	t NO
MW360	25.200	Downgradien	t NO
MW363	25.400	Downgradien	t NO
MW366	28.500	Sidegradient	NO
MW369	21.800	Upgradient	NO
MW372	31.300	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Chloride

UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells
--

Well Number:	MW369
Date Collected	Result
7/15/2002	48.300
10/8/2002	47.700
1/8/2003	45.700
4/3/2003	47.400
7/8/2003	55.900
10/6/2003	47.400
1/7/2004	45.500
4/7/2004	43.400
Well Number:	MW372
Date Collected	Result
7/16/2002	39.800
10/8/2002	41.000

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/5/2004

4/5/2004

Statistics on Background Data
X= 44.119
S= 4.554
CV = 0.103
K factor** = 2.523

TL = 55.607

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

39.400

39.200

39.800

40.000

43.400

42.000

Well No.	Result	Gradient R	esult >TL?
MW357	31.000	Downgradient	t NO
MW360	15.000	Downgradien	t NO
MW363	31.000	Downgradien	t NO
MW366	40.000	Sidegradient	NO
MW369	36.000	Upgradient	NO
MW372	48.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Cobalt

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Background I	Oata from
Upgradient W	Vells
W-11 N	MW260

Opgradient wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	0.025		
4/22/2002	0.025		
7/15/2002	0.025		
10/8/2002	0.009		
1/8/2003	0.005		
4/3/2003	0.006		
7/8/2003	0.054		
10/6/2003	0.069		
Well Number:	MW372		
Date Collected	Result		
3/19/2002	0.025		
4/23/2002	0.025		
7/16/2002	0.025		
10/8/2002	0.002		
1/7/2003	0.015		
4/2/2003	0.012		

7/9/2003

10/7/2003

Statistics on Background Data
X= 0.025
S = 0.021
CV = 0.845
K factor** = 2.523
TL= 0.077

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

0.065

0.008

Well No.	Result	Gradient Re	sult >TL?
MW357	0.001	Downgradient	NO
MW360	0.017	Downgradient	NO
MW363	0.001	Downgradient	NO
MW366	0.001	Sidegradient	NO
MW369	0.022	Upgradient	NO
MW372	0.001	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Conductivity

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: umho/cm

Background Data from Upgradient Wells

MW369
Result
388.000
404.000
394.000
403.000
520.000
487.000
478.000
476.000
MW372
Result
508.000
501.000
507.000
495.000
508.700

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 482.856 S= 57.603 CV= 0.119 K factor** = 2.523 TL= 628.189

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

515.000

576.000

565.000

Well No.	Result	Gradient Resu	lt >TL?
MW357	435.00	Downgradient	NO
MW360	497.00	Downgradient	NO
MW363	375.00	Downgradient	NO
MW366	441.00	Sidegradient	NO
MW369	392.00	Upgradient	NO
MW372	759.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Dissolved Oxygen

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Background Data from Upgradient Wells		
Well Number:	MW369	
Date Collected	Result	
3/18/2002	5.410	
4/22/2002	1.570	
7/15/2002	0.800	
10/8/2002	1.090	
1/8/2003	2.690	
4/3/2003	2.040	
7/8/2003	1.190	
10/6/2003	1.780	
Well Number:	MW372	
Date Collected	Result	

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 1.781
S= 1.351
CV= 0.759
K factor** = 2.523
TL= 5.190

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

3.890

0.050

1.330

2.660

0.400

0.910

1.420

1.260

Well No.	Result	Gradient Re	sult >TL?
MW357	3.370	Downgradient	NO
MW360	1.370	Downgradient	NO
MW363	2.930	Downgradient	NO
MW366	2.280	Sidegradient	NO
MW369	0.940	Upgradient	NO
MW372	0.750	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis **Dissolved Solids**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results

URGA

UNITS: mg/L

are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from
Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	173.000
4/22/2002	246.000
7/15/2002	232.000
10/8/2002	275.000
1/8/2003	269.000
4/3/2003	250.000
7/8/2003	295.000
10/6/2003	276.000
Well Number:	MW372
Date Collected	Result
3/19/2002	295.000

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 285.188
S= 44.908
CV = 0.157
K factor** = 2.523
TL= 398.489

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

322.000

329.000

290.000 316.000

311.000

347.000

337.000

Well No.	Result	Gradient Res	ult >TL?
MW357	249.00	Downgradient	NO
MW360	273.00	Downgradient	NO
MW363	215.00	Downgradient	NO
MW366	246.00	Sidegradient	NO
MW369	216.00	Upgradient	NO
MW372	455.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

kground Data from radient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.656
4/22/2002	0.695
7/15/2002	7.100
10/8/2002	21.500
1/8/2003	18.500
4/3/2003	14.900
7/8/2003	11.300
10/6/2003	14.900
Well Number:	MW372
Date Collected	Result
3/19/2002	5.950
4/23/2002	0.792
7/16/2002	1.780
10/8/2002	0.776
1/7/2003	3.550
4/2/2003	5.020
7/9/2003	10.000

Statistics on		
Background Data		
	_	

X= 7.385 S= 6.991 CV= 0.947 K factor** = 2.523 TL= 25.024

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

0.733

10/7/2003

Well No.	Result	Gradient R	esult >TL?
MW357	0.100	Downgradient	NO
MW360	2.930	Downgradient	NO
MW363	0.314	Downgradient	NO
MW366	0.100	Sidegradient	NO
MW369	1.910	Upgradient	NO
MW372	0.436	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Magnesium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	11.400
4/22/2002	12.000
7/15/2002	10.000
10/8/2002	8.620
1/8/2003	7.890
4/3/2003	7.970
7/8/2003	10.300
10/6/2003	9.140
Well Number:	MW372
Date Collected	Result
3/19/2002	15.700
4/23/2002	16.600
7/16/2002	15.400
10/8/2002	15.800
1/7/2003	15.800
4/2/2003	16.400

7/9/2003

10/7/2003

Statistics on Background Data

X= 12.864 S= 3.505 CV= 0.272 K factor** = 2.523 TL= 21.707

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

15.200

17.600

Well No.	Result	Gradient I	Result >TL?	
MW357	11.300	Downgradier	nt NO	_
MW360	9.550	Downgradier	nt NO	
MW363	9.540	Downgradier	nt NO	
MW366	11.200	Sidegradient	NO	
MW369	9.540	Upgradient	NO	
MW372	12.800	Upgradient	NO	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Manganese

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Background Data from	
Upgradient Wells	

Well Number:	MW369
Date Collected	Result
3/18/2002	0.034
4/22/2002	0.062
7/15/2002	0.436
10/8/2002	0.867
1/8/2003	0.828
4/3/2003	0.672
7/8/2003	0.321
10/6/2003	0.714
Well Number:	MW372
Date Collected	Result
3/19/2002	0.205
4/23/2002	0.345
7/16/2002	0.210
10/8/2002	0.054
1/7/2003	0.537
4/2/2003	0.415

7/9/2003

10/7/2003

Statistics on Background Data

X= 0.413 S= 0.274 CV= 0.664 K factor** = 2.523 TL= 1.105

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

0.654

0.254

Well No.	Result	Gradient I	Result >TL?
MW357	0.005	Downgradien	it NO
MW360	0.173	Downgradien	t NO
MW363	0.157	Downgradien	t NO
MW366	0.010	Sidegradient	NO
MW369	0.206	Upgradient	NO
MW372	0.007	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				
W 11 N 1 MW260				

Well Number:	MW369
Date Collected	Result
3/18/2002	0.050
4/22/2002	0.050
7/15/2002	0.050
10/8/2002	0.005
1/8/2003	0.005
4/3/2003	0.005
7/8/2003	0.013
10/6/2003	0.010
Well Number:	MW372
Date Collected	Result
3/19/2002	0.050
4/23/2002	0.050
7/16/2002	0.050
10/8/2002	0.005
1/7/2003	0.005

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 0.024
S = 0.021
CV = 0.910
K factor** = 2.523
TL = 0.078

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

0.005

0.019

0.005

Well No.	Result	Gradient R	esult >TL?
MW357	0.005	Downgradient	NO
MW360	0.005	Downgradient	NO
MW363	0.005	Downgradient	NO
MW366	0.005	Sidegradient	NO
MW369	0.007	Upgradient	NO
MW372	0.005	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Oxidation-Reduction Potential

URGA UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data			Transformed Background Data from Upgradient Wells		
Well Number:	MW369	X= 74.563		Well Number:	MW369		
Date Collected	Result	S= 94.243		Date Collected	LN(Result)		
3/18/2002	215.000	CV= 1.264		3/18/2002	5.371		
4/22/2002	110.000	K factor** = 2.523 TL= 312.337		4/22/2002	4.700		
7/15/2002	20.000	TL= 312.337		7/15/2002	2.996		
1/8/2003	-5.000	Because CV is greater the	an 1, the natural	1/8/2003	#Func!		
4/3/2003	-18.000	logarithm of background	d and test well results	4/3/2003	#Func!		
7/8/2003	-67.000	were calculated.		7/8/2003	#Func!		
10/6/2003	-1.000	Statistics on		10/6/2003	#Func!		
1/7/2004	55.000	Transformed		1/7/2004	4.007		
Well Number:	MW372	Background Data		Well Number:	MW372		
Date Collected	Result	X = error		Date Collected	LN(Result)		
3/19/2002	210.000	S = error		3/19/2002	5.347		
4/23/2002	65.000			4/23/2002	4.174		
7/16/2002	215.000	CV = error		7/16/2002	5.371		
10/8/2002	185.000	K factor** = 2.523		10/8/2002	5.220		
1/7/2003	45.000	TL# = 5.371		1/7/2003	3.807		
4/2/2003	65.000	# Because the natural lo	g was not possible for	4/2/2003	4.174		
7/9/2003	-39.000	all background values, t		7/9/2003	#Func!		
10/7/2003	138.000	equal to the maximum b	background value.	10/7/2003	4.927		

First Quarter 2014 Data Collected in
January 2014

Well No.	Result	Gradient	Result >TL?
MW357	782.000	Downgradie	nt N/A
MW360	631.000	Downgradie	nt N/A
MW363	428.000	Downgradie	nt N/A
MW366	409.000	Sidegradient	N/A
MW369	438.000	Upgradient	N/A
MW372	740.000	Upgradient	N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number LN(Result) Result >TL?

MW357	6.662	YES
MW360	6.447	YES
MW363	6.059	YES
MW366	6.014	YES
MW369	6.082	YES
MW372	6.607	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW357

MW360

MW363

MW366

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis	URGA
Oxidation-Reduction Potential (Continued)	UNITS: mV

MW369 MW372

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis PCB, total

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: ug/L

Background Data from Upgradient Wells		
Well Number:	MW369	
Date Collected	Result	
3/18/2002	1.000	
4/22/2002	0.170	
7/15/2002	0.170	
7/8/2003	1.150	

0.605

0.420

Statistics on Background Data
X= 0.390
S = 0.350
CV= 0.897
K factor** = 2.523
TL= 1.272

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

7/20/2005	0.280
4/4/2006	0.230
Well Number:	MW372
Date Collected	Result
3/19/2002	1.000
4/23/2002	0.170
7/16/2002	0.170
7/9/2003	0.170
10/7/2003	0.170
7/14/2004	0.180
7/21/2005	0.170
4/5/2006	0.180

10/6/2003

7/13/2004

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient R	esult >TL?
MW357	0.170	Downgradient	NO
MW360	0.170	Downgradient	NO
MW363	0.180	Downgradient	NO
MW366	0.170	Sidegradient	NO
MW369	0.170	Upgradient	NO
MW372	0.170	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis PCB-1242

UNITS: ug/L

If so, the current test well res

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data			Background gradient Wells
Well Number:	MW369	X=0.281		Well Number:	MW369
Date Collected	Result	S = 0.383		Date Collected	LN(Result)
3/18/2002	1.000	CV= 1.361		3/18/2002	0.000
4/22/2002	0.110	K factor** = 2.523		4/22/2002	-2.207
7/15/2002	0.110	TL= 1.247		7/15/2002	-2.207
7/8/2003	1.150	Because CV is greater t	han 1, the natural	7/8/2003	0.140
10/6/2003	0.090	logarithm of backgroun	d and test well results	10/6/2003	-2.408
7/13/2004	0.100	were calculated.		7/13/2004	-2.303
7/20/2005	0.100	Statistics on		7/20/2005	-2.303
4/4/2006	0.100	Transformed Background Data		4/4/2006	-2.303
Well Number:	MW372			Well Number:	MW372
Date Collected	Result	X= -1.835		Date Collected	LN(Result)
3/19/2002	1.000	S= 0.938		3/19/2002	0.000
4/23/2002	0.110	CV= -0.511		4/23/2002	-2.207
7/16/2002	0.110			7/16/2002	-2.207
7/9/2003	0.130	K factor** = 2.523		7/9/2003	-2.040
10/7/2003	0.090	TL= 0.532		10/7/2003	-2.408
7/14/2004	0.100			7/14/2004	-2.303
7/21/2005	0.100			7/21/2005	-2.303
4/5/2006	0.100			4/5/2006	-2.303

First Quarter 2014 Data Collected in	
January 2014	

Well No.	Result	Gradient	Result >TL?
MW357	0.100	Downgradie	nt N/A
MW360	0.100	Downgradie	nt N/A
MW363	0.180	Downgradie	nt N/A
MW366	0.100	Sidegradient	N/A
MW369	0.100	Upgradient	N/A
MW372	0.100	Upgradient	N/A

Transformed First Quarter 2014 Data	
Collected in January 2014	

Well Number	LN(Result)	Result >TL?
MW357	-2.303	NO
MW360	-2.303	NO
MW363	-1.715	NO
MW366	-2.303	NO
MW369	-2.303	NO
MW372	-2.303	NO

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis pH

URGA
UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	6.100
4/22/2002	6.100
7/15/2002	6.100
10/8/2002	6.500
1/8/2003	6.500
4/3/2003	6.600
7/8/2003	6.500
10/6/2003	6.500
Well Number:	MW372
Well Number: Date Collected	MW372 Result
-	
Date Collected	Result
Date Collected 3/19/2002	Result 6.100
Date Collected 3/19/2002 4/23/2002	Result 6.100 6.120
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 6.100 6.120 6.100
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.100 6.120 6.100 6.060
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.100 6.120 6.100 6.060 6.260

Statistics on Background Data
X= 6.274
S = 0.194
CV = 0.031
K factor** = 2.904

TL= 6.837 LL= 5.711

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient F	Result >TL?	Result <ll?< th=""></ll?<>
MW357	6.460	Downgradie	ent NO	NO
MW360	6.320	Downgradio	ent NO	NO
MW363	6.540	Downgradie	ent NO	NO
MW366	6.170	Sidegradie	nt NO	NO
MW369	6.220	Upgradier	nt NO	NO
MW372	6.440	Upgradier	nt NO	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U First Quarter 2014 Statistical Analysis Potassium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	2.000		
4/22/2002	2.210		
7/15/2002	2.000		
10/8/2002	0.966		
1/8/2003	0.727		
4/3/2003	0.800		
7/8/2003	1.620		
10/6/2003	1.140		

Well Number:

Date Collected

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 1.663 S= 0.488 CV= 0.293 K factor** = 2.523 TL= 2.895

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

MW372

Result

2.040

2.030

2.000

1.540

1.880

2.090

1.780

1.790

Well No.	Result	Gradient Re	sult >TL?
MW357	1.810	Downgradient	NO
MW360	1.110	Downgradient	NO
MW363	1.380	Downgradient	NO
MW366	1.920	Sidegradient	NO
MW369	2.790	Upgradient	NO
MW372	0.364	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Sodium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	35.700
4/22/2002	37.600
7/15/2002	42.400
10/8/2002	66.900
1/8/2003	67.900
4/3/2003	61.800
7/8/2003	45.600
10/6/2003	59.100
Well Number:	MW372
Date Collected	Result
3/19/2002	37.200
4/23/2002	38.600
7/16/2002	35.600

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 45.100
S= 11.875
CV = 0.263
K factor** = 2.523

TL = 75.061

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

37.500

34.100

34.400

44.100

43.100

Well No.	Result	Gradient Res	ult >TL?
MW357	39.900	Downgradient	NO
MW360	63.700	Downgradient	NO
MW363	32.900	Downgradient	NO
MW366	40.700	Sidegradient	NO
MW369	30.600	Upgradient	NO
MW372	123.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis **Sulfate**

UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW369	
Date Collected	Result	
3/18/2002	15.500	
4/22/2002	22/2002 15.800	
7/15/2002	5/2002 13.800	
10/8/2002	6.900	
1/8/2003	10.500	
4/3/2003	10.500	
7/8/2003	10.900	
10/6/2003	16.300	
Well Number:	MW372	
Date Collected	Result	
3/19/2002	71.700	

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

X= 45.031 S= 33.919 CV= 0.753 K factor** = 2.523	Statistics on Background Data
	S= 33.919 CV= 0.753

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

74.700

74.100

70.500

75.800

81.800

83.600

88.100

Well No.	Result	Gradient Resu	lt >TL?
MW357	62.000	Downgradient	NO
MW360	41.000	Downgradient	NO
MW363	22.000	Downgradient	NO
MW366	43.000	Sidegradient	NO
MW369	8.100	Upgradient	NO
MW372	140.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Technetium-99

URGA UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from
Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	41.700
4/22/2002	53.100
7/15/2002	18.100
10/8/2002	16.400
1/8/2003	3.490
4/3/2003	9.340
7/8/2003	17.500
10/6/2003	17.000
Well Number:	MW372
Date Collected	Result
3/19/2002	44.800
4/23/2002	0.802

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data		
X= 20.821		
S= 18.044		
CV= 0.867		
K factor** = 2.523		

TL= 66.344

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

19.800

46.100 -0.973

9.070

0.000

36.900

Well No.	Result	Gradient Resu	lt >TL?
MW357	30.400	Downgradient	NO
MW360	9.820	Downgradient	NO
MW363	6.460	Downgradient	NO
MW366	46.100	Sidegradient	NO
MW369	25.300	Upgradient	NO
MW372	131.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Total Organic Carbon (TOC)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data			Transformed Background Data from Upgradient Wells		
Well Number:	MW369	X= 3.513		Well Number:	MW369		
Date Collected	Result	S= 4.307		Date Collected	LN(Result)		
3/18/2002	1.700	CV= 1.226		3/18/2002	0.531		
4/22/2002	1.600	K factor** = 2.523		4/22/2002	0.470		
7/15/2002	3.100	TL= 14.378		7/15/2002	1.131		
10/8/2002	17.700	Because CV is greater t	han 1, the natural	10/8/2002	2.874		
1/8/2003	9.000	logarithm of backgroun	d and test well results	1/8/2003	2.197		
4/3/2003	4.000	were calculated.		4/3/2003	1.386		
7/8/2003	4.900	Statistics on		7/8/2003	1.589		
10/6/2003	2.400	Transformed		10/6/2003	0.875		
Well Number:	MW372	Background Data		Well Number:	MW372		
Date Collected	Result	X = 0.851		Date Collected	LN(Result)		
3/19/2002	1.000	S= 0.828		3/19/2002	0.000		
4/23/2002	1.200	CV= 0.973		4/23/2002	0.182		
7/16/2002	1.000			7/16/2002	0.000		
10/8/2002	1.000	K factor** = 2.523		10/8/2002	0.000		
1/7/2003	1.600	TL= 2.940		1/7/2003	0.470		
4/2/2003	1.500			4/2/2003	0.405		
7/9/2003	3.000			7/9/2003	1.099		
10/7/2003	1.500			10/7/2003	0.405		

First Quarter 2014 Data Collected in
January 2014

Well No.	Result	Gradient F	Result >TL?
MW357	1.000	Downgradien	t N/A
MW360	1.900	Downgradien	t N/A
MW363	1.000	Downgradien	t N/A
MW366	1.000	Sidegradient	N/A
MW369	1.900	Upgradient	N/A
MW372	1.000	Upgradient	N/A

Transformed First Quarter 2014 Data Collected in January 2014

URGA

UNITS: mg/L

Well Number	LN(Result)	Result >TL?
MW357	0.000	NO
MW360	0.642	NO
MW363	0.000	NO
MW366	0.000	NO
MW369	0.642	NO
MW372	0.000	NO

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis **Total Organic Halides (TOX)**

UNITS: ug/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

В	Background Data from
U	Jpgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	50.000
4/22/2002	50.000
7/15/2002	81.000
10/8/2002	202.000
1/8/2003	177.000
4/3/2003	93.100
7/8/2003	17.500
10/6/2003	37.500
Well Number:	MW372
Date Collected	Result
3/19/2002	184.000

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on **Background Data** X = 67.963S = 64.316CV = 0.946K factor** = 2.523

TL = 230.231

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

50.000

50.000

50.000

10.000

12.700

10.000

12.600

Well No.	Result	Gradient R	esult >TL?
MW357	10.000	Downgradient	NO
MW360	25.000	Downgradient	NO
MW363	10.000	Downgradient	NO
MW366	14.000	Sidegradient	NO
MW369	50.000	Upgradient	NO
MW372	19.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Aluminum

UNITS: mg/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Background Data from Upgradient We	
Well Number:	MW370	X= 2.026		Well Number:	MW370
Date Collected	Result	S= 5.626		Date Collected	LN(Result)
3/17/2002	4.660	CV= 2.777		3/17/2002	1.539
4/23/2002	0.200	K factor** = 2.523 TL= 16.219		4/23/2002	-1.609
7/15/2002	0.200	1L= 10.219		7/15/2002	-1.609
10/8/2002	0.200	Because CV is greater t	han 1, the natural	10/8/2002	-1.609
1/8/2003	0.200	logarithm of backgroun	d and test well results	1/8/2003	-1.609
4/3/2003	0.200	were calculated.		4/3/2003	-1.609
7/9/2003	0.200	Statistics on		7/9/2003	-1.609
10/6/2003	0.200	Transformed		10/6/2003	-1.609
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X= -0.803		Date Collected	LN(Result)
3/18/2002	22.700	S= 1.380		3/18/2002	3.122
4/23/2002	1.460	CV= -1.718		4/23/2002	0.378
7/16/2002	0.253			7/16/2002	-1.374
10/8/2002	0.482	K factor** = 2.523		10/8/2002	-0.730
1/7/2003	0.608	TL= 2.678		1/7/2003	-0.498
4/2/2003	0.446			4/2/2003	-0.807
7/9/2003	0.200			7/9/2003	-1.609
10/7/2003	0.200			10/7/2003	-1.609

First Quarter 2014 Data Collected in
January 2014

Well No.	Result	Gradient	Result >TL?
MW358	0.200	Downgradie	nt N/A
MW361	0.200	Downgradie	nt N/A
MW364	0.200	Downgradie	nt N/A
MW367	1.030	Sidegradient	N/A
MW370	0.200	Upgradient	N/A
MW373	0.200	Upgradient	N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number	LN(Result)	Result >TL?
MW358	-1.609	NO
MW361	-1.609	NO
MW364	-1.609	NO
MW367	0.030	NO
MW370	-1.609	NO
MW373	-1.609	NO

Conclusion of Statistical Analysis on Transformed Date

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: mg/L

Background Data from Upgradient Wells

MW370
Result
2.000
2.000
2.000
0.200
0.200
0.200
0.200
0.200
MW373
Result
2.000
2.000
2.000
0.790
0.807
1.130
1.280

Statistics on Background Data

X= 1.140 S= 0.780 CV= 0.684 K factor** = 2.523 TL= 3.108

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

1.240

10/7/2003

Well No.	Result	Gradient Re	sult >TL?
MW358	0.370	Downgradient	NO
MW361	0.200	Downgradient	NO
MW364	0.200	Downgradient	NO
MW367	0.200	Sidegradient	NO
MW370	0.200	Upgradient	NO
MW373	1.730	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Calcium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW370	
Date Collected	Result	
3/17/2002	34.800	
4/22/2002	12 100	

Statistics on Background Data
X= 43.413 S= 13.444 CV= 0.310 K factor** = 2.523 TL= 77.331

 3/17/2002
 34.800

 4/23/2002
 43.400

 7/15/2002
 33.200

 10/8/2002
 29.200

 1/8/2003
 31.300

 4/3/2003
 32.400

 7/9/2003
 22.900

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

10/6/2003 28.000 Well Number: MW373 Date Collected Result 3/18/2002 61.900 4/23/2002 59.200 7/16/2002 47.600 10/8/2002 46.100 1/7/2003 49.200 4/2/2003 57.800 7/9/2003 52.700 10/7/2003 64.900

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient R	Result >TL?
MW358	36.500	Downgradien	t NO
MW361	31.200	Downgradien	t NO
MW364	28.900	Downgradien	t NO
MW367	1.000	Sidegradient	NO
MW370	75.800	Upgradient	NO
MW373	61.100	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Chloride

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: mg/L

Background Data from Upgradient Wells				
Well Number:	MW370			
Date Collected	Result			
7/15/2002	55.500			
10/8/2002	53.600			
1/8/2003	52.900			
4/3/2003	53.600			
7/9/2003	51.900			
10/6/2003	53.000			
1/7/2004	53.000			
4/7/2004	51.600			
Well Number:	MW373			
Date Collected	Result			
7/16/2002	40.600			
10/8/2002	38.800			
1/7/2003	39.000			

4/2/2003 7/9/2003

10/7/2003

1/6/2004

4/7/2004

Statistics on Background Data
X= 45.919 S= 7.524 CV= 0.164 K factor** = 2.523 TL= 64.901

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

38.400

38.100

38.000

37.900

38.800

Well No.	Result	Gradient 1	Result >TL?	
MW358	35.000	Downgradier	nt NO	
MW361	32.000	Downgradier	nt NO	
MW364	32.000	Downgradier	nt NO	
MW367	32.000	Sidegradient	NO	
MW370	42.000	Upgradient	NO	
MW373	46.000	Upgradient	NO	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Cobalt

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Data from Upg	Background gradient Wells
Well Number:	MW370	$\mathbf{X} = 0.027$		Well Number:	MW370
Date Collected	Result	S=0.032		Date Collected	LN(Result)
3/17/2002	0.025	CV= 1.165		3/17/2002	-3.689
4/23/2002	0.025	K factor** = 2.523 TL= 0.108		4/23/2002	-3.689
7/15/2002	0.025	1L= 0.108		7/15/2002	-3.689
10/8/2002	0.017	Because CV is greater to	han 1, the natural	10/8/2002	-4.051
1/8/2003	0.011	logarithm of backgroun	d and test well results	1/8/2003	-4.556
4/3/2003	0.009	were calculated.		4/3/2003	-4.677
7/9/2003	0.137	Statistics on		7/9/2003	-1.988
10/6/2003	0.046	Transformed		10/6/2003	-3.073
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X= -4.058		Date Collected	LN(Result)
3/18/2002	0.025	S= 1.011		3/18/2002	-3.689
4/23/2002	0.034	CV= -0.249		4/23/2002	-3.381
7/16/2002	0.025			7/16/2002	-3.689
10/8/2002	0.004	K factor** = 2.523		10/8/2002	-5.494
1/7/2003	0.003	TL= -1.507		1/7/2003	-5.672
4/2/2003	0.004			4/2/2003	-5.605
7/9/2003	0.041			7/9/2003	-3.206
10/7/2003	0.008			10/7/2003	-4.776

First Quarter 2014 Data Collected in
January 2014

Well No.	Result	Gradient	Result >TL?
MW358	0.002	Downgradie	nt N/A
MW361	0.001	Downgradie	nt N/A
MW364	0.001	Downgradie	nt N/A
MW367	0.003	Sidegradient	N/A
MW370	0.001	Upgradient	N/A
MW373	0.001	Upgradient	N/A

Transformed First Quarter 2014 Data Collected in January 2014

LRGA

UNITS: mg/L

Well Number	LN(Result)	Result >TL?
MW358	-6.171	NO
MW361	-6.908	NO
MW364	-6.908	NO
MW367	-5.687	NO
MW370	-6.908	NO
MW373	-6.908	NO

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Conductivity

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: umho/cm

Background I	Oata from	
Upgradient W	Vells	
Well Number: MW370		

Well Number:	MW370
Date Collected	Result
3/17/2002	406.000
4/23/2002	543.000
7/15/2002	476.000
10/8/2002	441.000
1/8/2003	486.000
4/3/2003	466.000
7/9/2003	479.000
10/6/2003	435.000
Well Number:	MW373
Date Collected	Result

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 608.719
S= 156.157
CV = 0.257
K factor** = 2.523
TL = 1002.702

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

661.000

801.000

774.000

680.000

686.500

763.000

828.000

814.000

Well No.	Result	Gradient F	Result >TL?
MW358	510.00	Downgradien	t NO
MW361	481.00	Downgradien	t NO
MW364	461.00	Downgradien	t NO
MW367	355.00	Sidegradient	NO
MW370	421.00	Upgradient	NO
MW373	959.00	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Dissolved Oxygen

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: mg/L

Background Data from Upgradient Wells

10	
Well Number:	MW370
Date Collected	Result
3/17/2002	4.320
4/23/2002	1.240
7/15/2002	0.750
10/8/2002	0.940
1/8/2003	3.080
4/3/2003	1.450
7/9/2003	1.220
10/6/2003	1.070
Well Number:	MW373
Date Collected	Result
3/18/2002	3.040

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 1.387
S= 1.153
CV = 0.831
K factor** = 2.523

TL = 4.295

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

0.030

0.230

0.860

0.210

1.190

1.100

1.460

Well No.	Result	Gradient Res	sult >TL?
MW358	0.530	Downgradient	NO
MW361	2.890	Downgradient	NO
MW364	2.390	Downgradient	NO
MW367	2.400	Sidegradient	NO
MW370	3.740	Upgradient	NO
MW373	0.790	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Dissolved Solids

UNITS: mg/L

I. If so, the current test well result.

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from
Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	236.000
4/23/2002	337.000
7/15/2002	266.000
10/8/2002	240.000
1/8/2003	282.000
4/3/2003	238.000
7/9/2003	248.000
10/6/2003	224.000
Well Number:	MW373
Date Collected	Result

3/18/2002 4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data X= 356.188 S= 106.752 CV= 0.300 K factor** = 2.523

TL = 625.523

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

427.000

507.000

464.000

408.000

404.000

450.000

487.000

481.000

Well No.	Result	Gradient	Result >TI	ے?
MW358	292.00	Downgradie	nt NC)
MW361	275.00	Downgradie	nt NC)
MW364	253.00	Downgradie	nt NC)
MW367	206.00	Sidegradient	NC)
MW370	221.00	Upgradient	NC)
MW373	567.00	Upgradient	NC)

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Iron LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW370		
Date Collected	Result		
3/17/2002	9.340		
4/23/2002	4.330		
7/15/2002	3.520		
10/8/2002	7.450		
1/8/2003	7.040		
4/3/2003	4.640		
7/9/2003	15.800		
10/6/2003	6.490		
Well Number:	MW373		
Date Collected	Result		
3/18/2002	37.600		
4/23/2002	19.000		
7/16/2002	10.700		

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 9.230 S= 8.841 CV= 0.958 K factor** = 2.523 TL= 31.535

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

3.750

3.870

3.500

7.720

2.930

Well No.	Result	Gradient Re	sult >TL?
MW358	0.425	Downgradient	NO
MW361	0.100	Downgradient	NO
MW364	0.173	Downgradient	NO
MW367	1.430	Sidegradient	NO
MW370	0.100	Upgradient	NO
MW373	0.114	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Magnesium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: mg/L

Background I	Oata from
Upgradient W	Vells
XX7 11 X7 1	1433/270

Well Number:	MW370
Date Collected	Result
3/17/2002	12.100
4/23/2002	15.100
7/15/2002	12.400
10/8/2002	12.200
1/8/2003	11.500
4/3/2003	12.300
7/9/2003	10.000
10/6/2003	12.100
Well Number:	MW373
Date Collected	Result

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 17.544
S= 5.911
CV = 0.337
K factor** = 2.523
TL= 32.458

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

24.800

22.700

18.800

21.100

19.900

25.500

23.300

26.900

Well No.	Result	Gradient R	esult >TL?
MW358	14.800	Downgradient	t NO
MW361	12.500	Downgradient	t NO
MW364	11.300	Downgradien	t NO
MW367	0.025	Sidegradient	NO
MW370	28.500	Upgradient	NO
MW373	22.500	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Manganese

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: mg/L

Background Data from Upgradient Wells
opgradient wens

-18	
Well Number:	MW370
Date Collected	Result
3/17/2002	0.244
4/23/2002	1.820
7/15/2002	1.220
10/8/2002	0.988
1/8/2003	0.729
4/3/2003	0.637
7/9/2003	2.510
10/6/2003	1.050
Well Number:	MW373
Date Collected	Result
3/18/2002	0.355
4/23/2002	2.160
7/16/2002	1.390
10/8/2002	0.717
1/7/2003	0.587
4/2/2003	0.545
7/9/2003	1.760
10/7/2003	0.570

Statistics on Background Data

X= 1.080 S= 0.674 CV= 0.624 K factor** = 2.523 TL= 2.780

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient F	Result >TL?
MW358	0.180	Downgradien	t NO
MW361	0.005	Downgradien	t NO
MW364	0.026	Downgradien	t NO
MW367	1.290	Sidegradient	NO
MW370	0.005	Upgradient	NO
MW373	0.049	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis **Oxidation-Reduction Potential**

UNITS: mV

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	Background gradient Wells
Well Number:	MW370	X= 46.688		Well Number:	MW370
Date Collected	Result	S= 60.986		Date Collected	LN(Result)
3/17/2002	140.000	CV= 1.306		3/17/2002	4.942
4/23/2002	-15.000	K factor** = 2.523 TL= 200.555		4/23/2002	#Func!
7/15/2002	5.000	1L= 200.555		7/15/2002	1.609
4/3/2003	49.000	Because CV is greater t	han 1, the natural	4/3/2003	3.892
7/9/2003	-35.000	logarithm of backgroun	d and test well results	7/9/2003	#Func!
10/6/2003	40.000	were calculated.		10/6/2003	3.689
1/7/2004	101.000	Statistics on		1/7/2004	4.615
4/7/2004	105.000	Transformed		4/7/2004	4.654
Well Number:	MW373	Background Data	und Data	Well Number:	MW373
Date Collected	Result	X = error		Date Collected	LN(Result)
3/18/2002	140.000	S = error		3/18/2002	4.942
4/23/2002	-20.000			4/23/2002	#Func!
10/8/2002	10.000	CV = error		10/8/2002	2.303
1/7/2003	10.000	K factor** = 2.523		1/7/2003	2.303
4/2/2003	67.000	TL# = 4.942		4/2/2003	4.205
7/9/2003	-29.000	# Because the natural lo	g was not possible for	7/9/2003	#Func!
10/7/2003	127.000	all background values, t		10/7/2003	4.844
1/6/2004	52.000	equal to the maximum b	background value.	1/6/2004	3.951

First Quarter 2014 Data Collected in
January 2014

Well No.	Result	Gradient	Result	>TL?
MW358	290.000	Downgradie	nt	N/A
MW361	787.000	Downgradie	nt	N/A
MW364	287.000	Downgradie	nt	N/A
MW367	314.000	Sidegradien	t	N/A
MW370	443.000	Upgradient		N/A
MW373	494.000	Upgradient		N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number LN(Result) Result >TL?

MW358	5.670	YES
MW361	6.668	YES
MW364	5.659	YES
MW367	5.749	YES
MW370	6.094	YES
MW373	6.203	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW358

MW361

MW364

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S)
- Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis	LRGA
Oxidation-Reduction Potential (Continued)	UNITS: mV

MW370 MW373

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis pH

LRGA
UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	6.300
4/23/2002	6.400
7/15/2002	6.300
10/8/2002	6.300
1/8/2003	6.400
4/3/2003	6.500
7/9/2003	6.300
10/6/2003	6.500
Well Number:	MW373
Well Number: Date Collected	MW373 Result
Date Collected	Result
Date Collected 3/18/2002	Result 6.000
Date Collected 3/18/2002 4/23/2002	Result 6.000 6.300
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 6.000 6.300 6.450
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.000 6.300 6.450 6.180
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.000 6.300 6.450 6.180 6.350

Statistics on Background Data	
X= 6.283	
S = 0.159	
CV = 0.025	
K factor** = 2.904	
TL = 6.745	

LL = 5.820

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result >TL?	Result <ll?< th=""></ll?<>
MW358	6.390	Downgradi	ent NO	NO
MW361	6.160	Downgradi	ent NO	NO
MW364	6.280	Downgradi	ent NO	NO
MW367	5.990	Sidegradie	ent NO	NO
MW370	6.110	Upgradie	nt NO	NO
MW373	6.280	Upgradie	nt NO	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U First Quarter 2014 Statistical Analysis Potassium LRGA UNITS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UNITS: mg/L

Background Data from Upgradient Wells			
Well Number:	MW370		
Date Collected	Result		
3/17/2002	3.220		
4/23/2002	3.430		
7/15/2002	2.980		
10/8/2002	2.460		
1/8/2003	2.410		
4/3/2003	2.430		
7/9/2003	2.440		
10/6/2003	2.480		
Well Number:	MW373		
Date Collected	Result		

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data	
X= 2.823 S= 0.522 CV= 0.185 K factor** = 2.523 TL= 4.139	

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

4.340

3.040

2.930

2.300

2.450

2.700

2.680

2.880

Well No.	Result	Gradient F	Result >TL?
MW358	2.490	Downgradien	t NO
MW361	2.290	Downgradien	t NO
MW364	2.060	Downgradien	t NO
MW367	19.200	Sidegradient	YES
MW370	3.010	Upgradient	NO
MW373	2.420	Upgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Sodium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: mg/L

Background Data from Upgradient Wells		
Well Number:	MW370	
Date Collected	Result	
3/17/2002	31.800	
4/23/2002	50.000	
7/15/2002	44.700	
10/8/2002	40.000	
1/8/2003	44.600	
4/3/2003	41.900	
7/9/2003	40.000	
10/6/2003	38.100	
Well Number:	MW373	
Date Collected	Result	

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data		
X= 51.544		
S= 15.227		
CV = 0.295		
K factor** = 2.523		
TL= 89.962		

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

43.400

79.800

87.700

61.600

59.300

62.100

50.100

49.600

Well No.	Result	Gradient R	esult >TL?
MW358	40.200	Downgradient	. NO
MW361	42.000	Downgradient	NO
MW364	40.700	Downgradient	NO
MW367	12.900	Sidegradient	NO
MW370	62.900	Upgradient	NO
MW373	59.500	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Sulfate

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W			Statistics on Background Data		Transformed Data from Up	
Well Number:	MW370		X= 122.381		Well Number:	MW370
Date Collected	Result		S= 195.095		Date Collected	LN(Result
3/17/2002	17.400		CV= 1.594		3/17/2002	2.856
4/23/2002	37.900	_	K factor** = 2.523 TL= 614.606		4/23/2002	3.635
7/15/2002	15.700	L	1L= 014.000		7/15/2002	2.754
10/8/2002	13.400	Ве	ecause CV is greater th	han 1, the natural	10/8/2002	2.595
1/8/2003	14.400		garithm of background	d and test well results	1/8/2003	2.667
4/3/2003	18.100	W	ere calculated.		4/3/2003	2.896
7/9/2003	9.600	Ţ,	Statistics on		7/9/2003	2.262
10/6/2003	16.500	-	Transformed		10/6/2003	2.803
Well Number:	MW373]	Background Data		Well Number:	MW373
Date Collected	Result		X= 3.985		Date Collected	LN(Result)
3/18/2002	163.300		S= 1.323		3/18/2002	5.096
4/23/2002	809.600		CV = 0.332		4/23/2002	6.697
7/16/2002	109.400				7/16/2002	4.695
10/8/2002	110.600		K factor** = 2.523		10/8/2002	4.706
1/7/2003	113.700		TL= 7.322		1/7/2003	4.734
4/2/2003	133.000				4/2/2003	4.890
7/9/2003	182.100				7/9/2003	5.205
10/7/2003	193.400				10/7/2003	5.265

First Quarter 2014 Data Collected in
January 2014

Well No.	Result	Gradient	Result >TL?
MW358	87.000	Downgradie	nt N/A
MW361	76.000	Downgradie	nt N/A
MW364	64.000	Downgradie	nt N/A
MW367	37.000	Sidegradient	N/A
MW370	18.000	Upgradient	N/A
MW373	190.000	Upgradient	N/A

Transformed First Quarter 2014 Data Collected in January 2014

LRGA

UNITS: mg/L

Well Number	LN(Result)	Result >TL?
MW358	4.466	NO
MW361	4.331	NO
MW364	4.159	NO
MW367	3.611	NO
MW370	2.890	NO
MW373	5.247	NO

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Technetium-99

LRGA UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Upg	
Well Number:	MW370	X= 7.655		Well Number:	MW370
Date Collected	Result	S= 13.274		Date Collected	LN(Result)
3/17/2002	10.800	CV= 1.734		3/17/2002	2.380
4/23/2002	8.530	K factor** = 2.523		4/23/2002	2.144
7/15/2002	5.090	TL= 41.146		7/15/2002	1.627
10/8/2002	4.780	Because CV is greater th	an 1, the natural	10/8/2002	1.564
1/8/2003	-5.120	logarithm of background	l and test well results	1/8/2003	#Func!
4/3/2003	5.110	were calculated.	were calculated.		1.631
7/9/2003	4.250	Statistics on		7/9/2003	1.447
10/6/2003	6.540	Transformed		10/6/2003	1.878
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X = error		Date Collected	LN(Result)
3/18/2002	16.500	S = error		3/18/2002	2.803
4/23/2002	3.490			4/23/2002	1.250
7/16/2002	1.420	CV = error		7/16/2002	0.351
10/8/2002	-6.060	K factor** = 2.523		10/8/2002	#Func!
1/7/2003	-8.410	TL# = 3.833		1/7/2003	#Func!
4/2/2003	26.300	# Because the natural log	g was not possible for	4/2/2003	3.270
7/9/2003	3.060	all background values, th	all background values, the TL was considered		1.118
10/7/2003	46.200	equal to the maximum ba	ackground value.	10/7/2003	3.833

First Quarter 2014 Data Collected in	
January 2014	

Well No.	Result	Gradient	Result >TL?
MW358	26.500	Downgradie	nt N/A
MW361	46.700	Downgradie	nt N/A
MW364	47.600	Downgradie	nt N/A
MW367	33.100	Sidegradient	N/A
MW370	10.600	Upgradient	N/A
MW373	37.800	Upgradient	N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number LN(Result) Result >TL?

MW358	3.277	NO
MW361	3.844	YES
MW364	3.863	YES
MW367	3.500	NO
MW370	2.361	NO
MW373	3.632	NO

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW361

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2014 Statistical Analysis Total Organic Halides (TOX)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: ug/L

Background Data from
Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	50.000
4/23/2002	228.000
7/15/2002	88.000
10/8/2002	58.000
1/8/2003	72.400
4/3/2003	26.600
7/9/2003	16.400
10/6/2003	31.100
Well Number:	MW373
Date Collected	Result
3/18/2002	50.000
4/23/2002	276.000
7/16/2002	177.000
10/8/2002	76.000

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on				
Background Data				
X= 79.819				
S= 78.470				
CV = 0.983				
K factor** = 2.523				

TL= 277.798

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

45.900

57.800

10.000

13.900

Well No.	Result	Gradient F	Result >TL?
MW358	17.000	Downgradien	t NO
MW361	15.000	Downgradien	t NO
MW364	15.000	Downgradien	t NO
MW367	15.000	Sidegradient	NO
MW370	12.000	Upgradient	NO
MW373	19.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

April 17th, 2014

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in mathematics, I have over two years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist with LATA.

For this project, the statistical analyses conducted on the first quarter 2014 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely,

Cory Tackett

LATA Project Chemist

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/CONTAINED - QUARTERLY, 1st CY 2014

Facility: U.S. DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

GROUNDWATER FLOW RATE AND DIRECTION

Finds/Unit: KY8-890-008-982/1

LAB ID: None

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2014 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on January 30, 2014. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells but MW376 and MW377 had sufficient water to permit water level measurement during this reporting period. Many UCRS wells (MW359, MW362, MW365, MW368, MW376, and MW377) had insufficient water to permit sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps at the C-746-U Landfill (Figures E.2 and E.3), the hydraulic gradient for the URGA was 3.72×10^{-4} ft/ft, and the hydraulic gradient for the LRGA was 3.70×10^{-4} ft/ft. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 1.90×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the Solid Waste Landfill Permit No. 073-00045 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. In January, groundwater flow was northeastward with the regional flow.

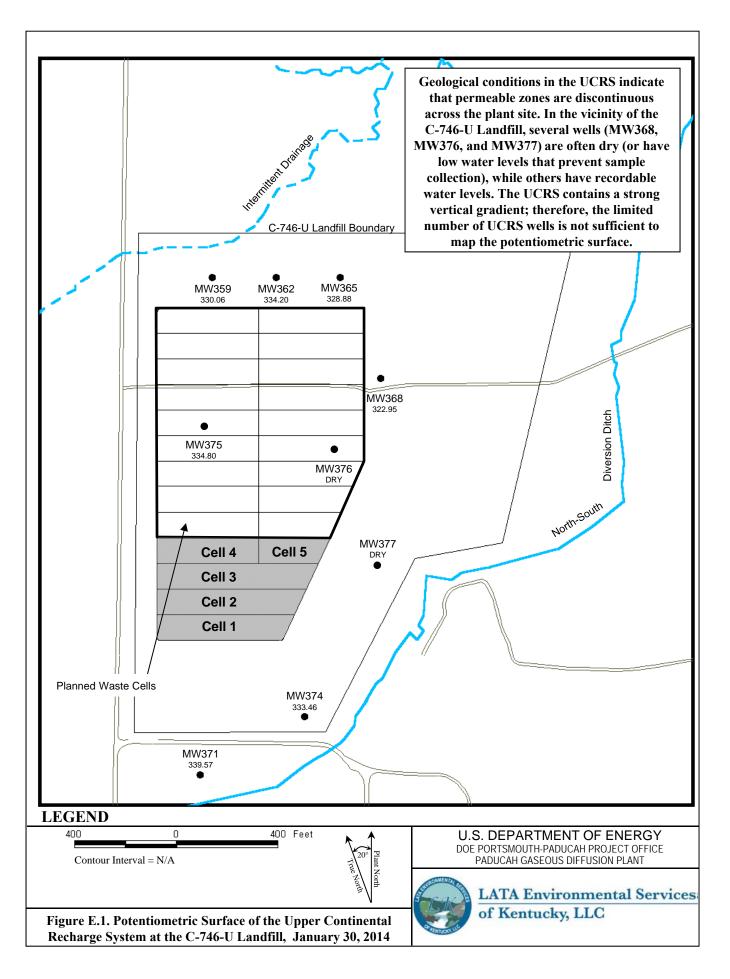


Table E.1. C-746-U Landfill First Quarter 2014 (January) Water Levels

C-746-U Landfill (January 2014) Water Levels										
							Raw Data		*Corrected Data	
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/30/2014	9:41	MW357	URGA	368.90	30.18	0.00	45.56	323.34	45.56	323.34
1/30/2014	9:43	MW358	LRGA	369.05	30.18	0.00	45.71	323.34	45.71	323.34
1/30/2014	9:42	MW359	UCRS	369.07	30.18	0.00	39.01	330.06	39.01	330.06
1/30/2014	9:38	MW360	URGA	362.20	30.18	0.00	38.91	323.29	38.91	323.29
1/30/2014	9:36	MW361	LRGA	361.47	30.18	0.00	38.16	323.31	38.16	323.31
1/30/2014	9:37	MW362	UCRS	361.95	30.18	0.00	27.75	334.20	27.75	334.20
1/30/2014	9:23	MW363	URGA	368.68	30.18	0.00	45.46	323.22	45.46	323.22
1/30/2014	9:25	MW364	LRGA	367.63	30.18	0.00	44.45	323.18	44.45	323.18
1/30/2014	9:24	MW365	UCRS	368.27	30.18	0.00	39.39	328.88	39.39	328.88
1/30/2014	9:32	MW366	URGA	369.06	30.18	0.00	45.79	323.27	45.79	323.27
1/30/2014	9:30	MW367	LRGA	369.45	30.18	0.00	43.21	326.24	43.21	326.24
1/30/2014	9:31	MW368	UCRS	369.14	30.18	0.00	46.19	322.95	46.19	322.95
1/30/2014	8:55	MW369	URGA	364.28	30.18	0.00	40.31	323.97	40.31	323.97
1/30/2014	8:59	MW370	LRGA	365.15	30.18	0.00	41.2	323.95	41.20	323.95
1/30/2014	8:57	MW371	UCRS	364.71	30.18	0.00	25.14	339.57	25.14	339.57
1/30/2014	9:00	MW372	URGA	359.49	30.18	0.00	35.51	323.98	35.51	323.98
1/30/2014	9:02	MW373	LRGA	359.79	30.18	0.00	35.82	323.97	35.82	323.97
1/30/2014	9:01	MW374	UCRS	359.50	30.18	0.00	26.04	333.46	26.04	333.46
1/30/2014	9:13	MW375	UCRS	370.24	30.18	0.00	35.44	334.80	35.44	334.80
1/30/2014	9:11	MW376	UCRS	370.44	30.18	0.00	DRY	ND	DRY	ND
1/30/2014	9:04	MW377	UCRS	365.76	30.18	0.00	DRY	ND	DRY	ND

Initial Barometric Pressure

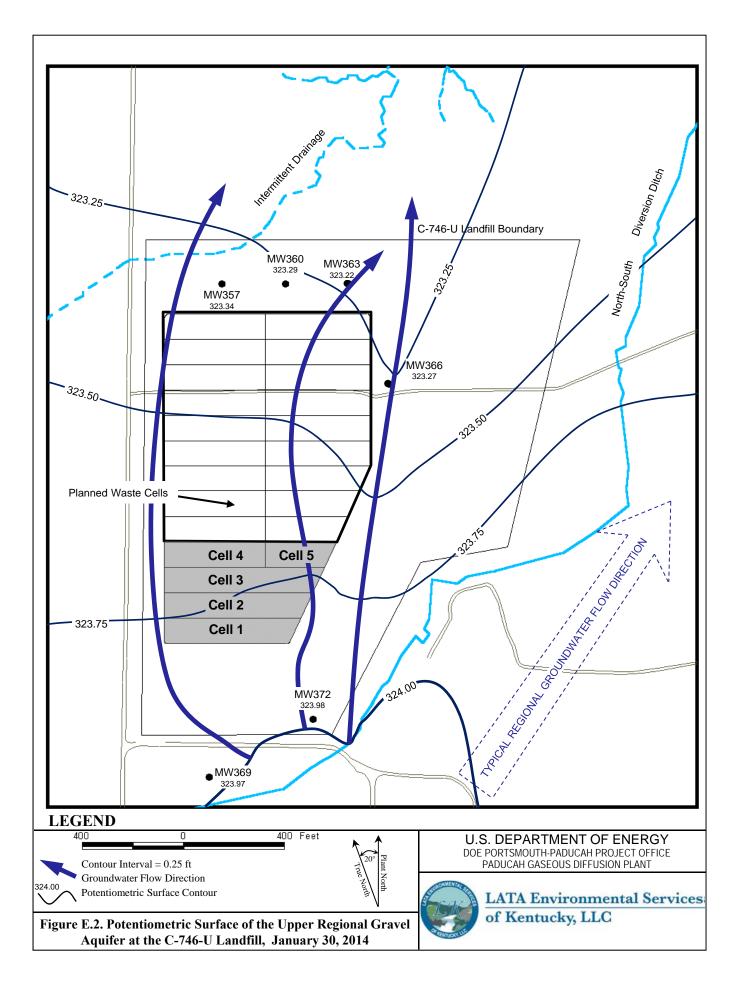
30.18

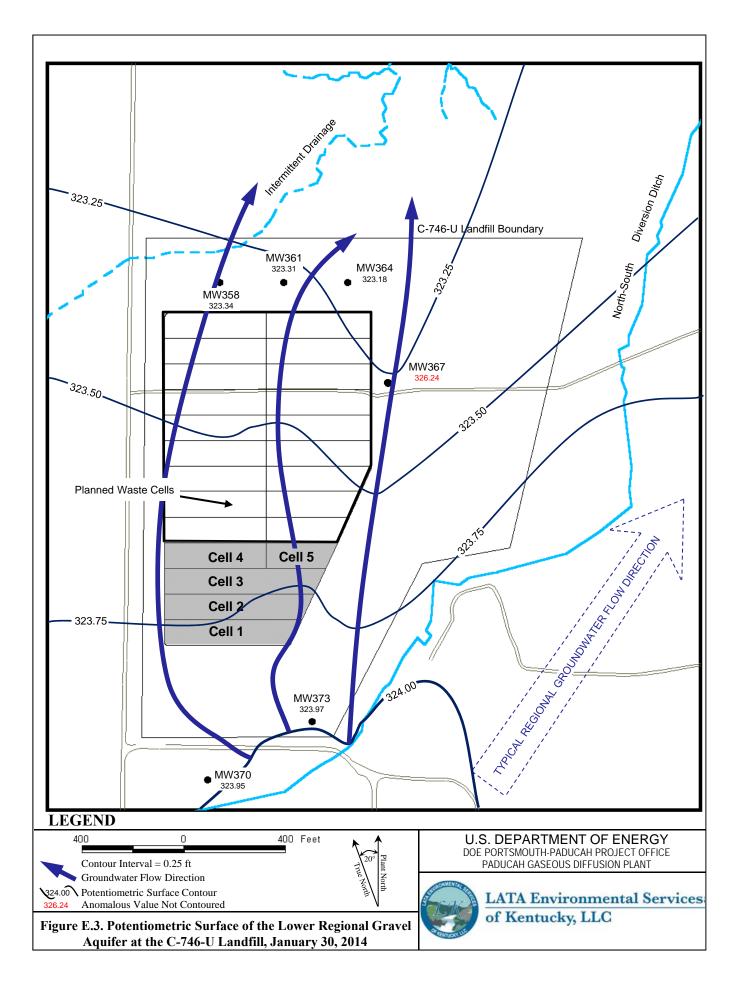
Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer


LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

ND = No Data acquired

*Assumes a barometric efficiency of 1.0

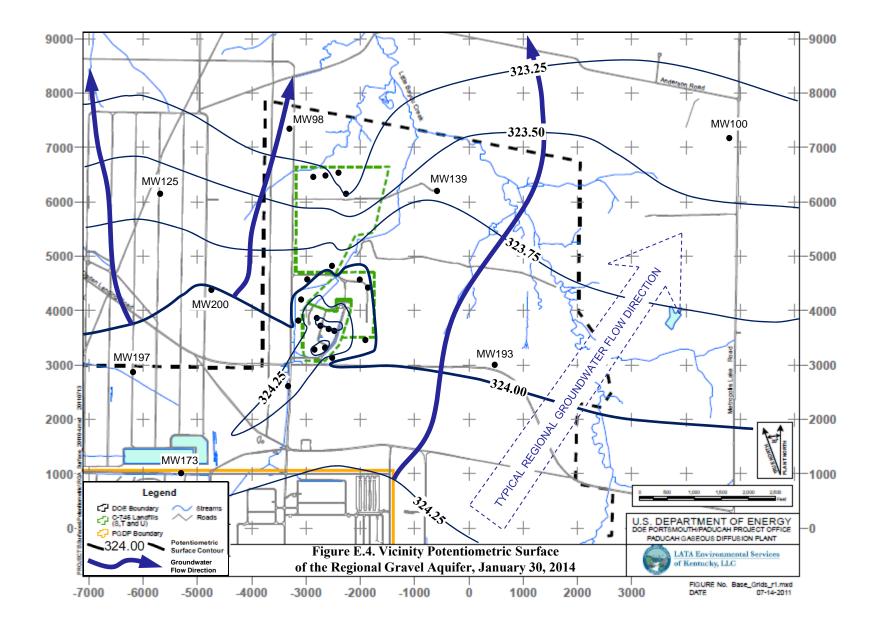
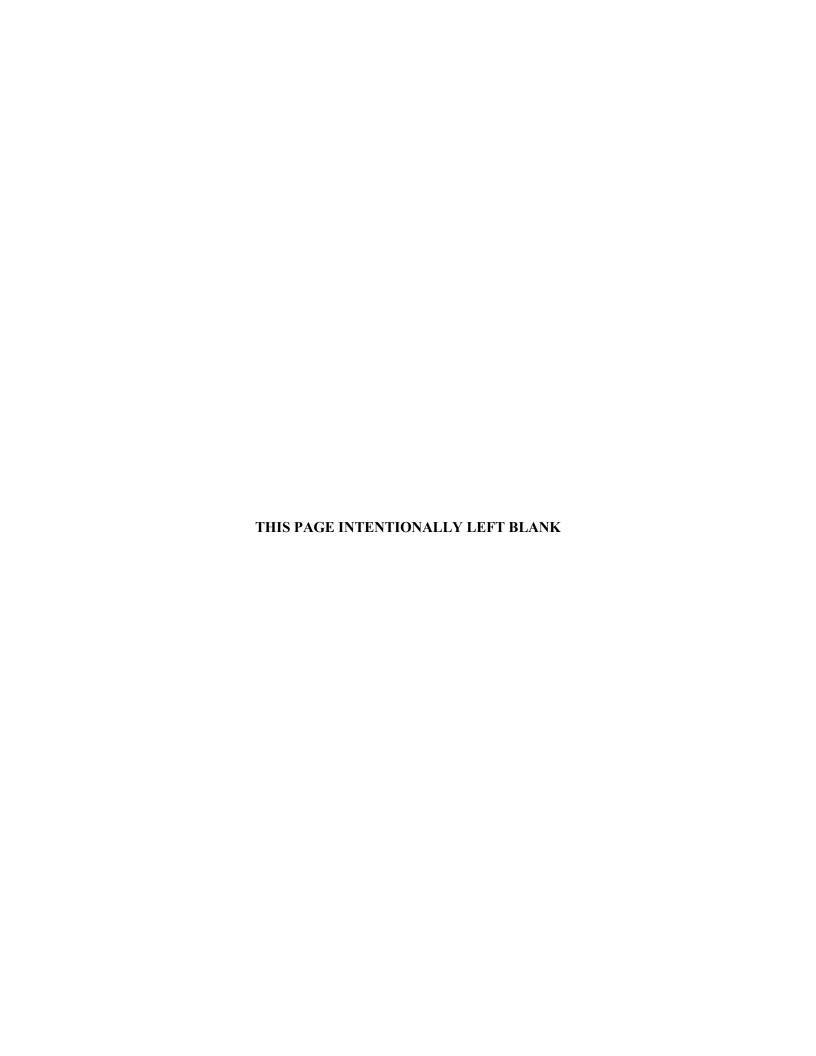



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	3.72×10^{-4}
Beneath Landfill—Lower RGA	3.70×10^{-4}
Vicinity	1.90×10^{-4}

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	c Discharge (q)	Average	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.27	9.52×10^{-5}	1.08	3.81×10^{-4}
425	0.150	0.16	5.58×10^{-5}	0.63	2.23×10^{-4}
Lower RGA					
725	0.256	0.27	9.48×10^{-5}	1.07	3.79×10^{-4}
425	0.150	0.16	5.56×10^{-5}	0.63	2.22×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300, Section 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the first quarter 2014 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The following are the parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to background concentrations.

<u>Parameter</u>	Monitoring Well	
Upper Continental Recharge System		
None		
Upper Regional Gravel Aquifer		
Sodium	MW372	
Technetium-99	MW372	
Lower Regional Gravel Aquifer		
Technetium-99	MW361, MW364	

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

MCL Notification

A notification was submitted for parameters that exceeded the MCL. The parameters submitted are listed on the following page.

3/10/2014

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

PERMIT NUMBER 073-00045 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4798	MW357	Trichloroethene	8260B/OA7302E	5.6	ug/L	5
8004-4799	MW358	Trichloroethene	8260B/OA7302E	5.8	ug/L	5
8004-4808	MW372	Beta activity Trichloroethene	9310/RL7111 8260B/OA7302E	102 6.9	pCi/L ug/L	50 5
8004-4792	MW373	Trichloroethene	8260B/OA7302E	6.4	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*								1	1
Quarter 1, 2003										711	*	*									1
Quarter 2, 2003											*	*									<u> </u>
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003	─					*	*			т.	*	т		*	Т.			T		-	
Quarter 3, 2004						*	<u>~</u>				т.			т.		*				-	
Quarter 3, 2004 Quarter 3, 2005						*										<u> </u>				-	
Quarter 4, 2005						*														-	-
ALPHA ACTIVITY		l	l			不					l										<u>. </u>
	1			1			1										I		1		
Quarter 1, 2004	-																				
Quarter 2, 2004	+															-				 	
Quarter 3, 2009				<u> </u>			<u> </u>						<u> </u>				1		<u> </u>		Щ
ALUMINUM			1	1			1				<u> </u>		1			I	1		1		$\overline{}$
Quarter 3, 2003											*		<u> </u>								<u> </u>
BETA ACTIVITY		ı	ı	1			1	I			ı	l	1		_		ı		1		_
Quarter 1, 2004																				-	├
Quarter 2, 2004															<u> </u>						
Quarter 3, 2004																					<u> </u>
Quarter 4, 2004															▝						<u> </u>
Quarter 4, 2005																				<u> </u>	ــــ
Quarter 1, 2006																					▙█
Quarter 2, 2006																					▙█
Quarter 3, 2006																					▙█
Quarter 4, 2006																					▙█
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																				<u> </u>	<u> </u>
Quarter 4, 2007																				<u> </u>	
Quarter 1, 2008																				<u> </u>	<u> </u>
Quarter 2, 2008																					<u> </u>
Quarter 3, 2008																					<u> </u>
Quarter 4, 2008																					<u> </u>
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																					
Quarter 3, 2012	1															Ī					
Quarter 4, 2012																					
, ,		l	<u> </u>	<u> </u>	L		L	<u> </u>			L	<u> </u>	L	L						Щ	二

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR:	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357					364	358	370	
Quarter 1, 2013																					
Quarter 3, 2013																					
Quarter 4, 2013																					
Quarter 1, 2014																					
BROMIDE		l	l	l	l		l	1				l					1		1		\vdash
Quarter 2, 2004													*							1	
CALCIUM		l	l	l	l		l					l	VIV					l			-
Quarter 3, 2003										*										1	
Quarter 2, 2005																					*
Quarter 3, 2006															*						-
Quarter 2, 2008															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011	ł														*						
															*						\vdash
Quarter 2, 2011															不					-	*
Quarter 3, 2011															*					<u> </u>	*
Quarter 4, 2011															*					-	*
Quarter 1, 2012																				<u> </u>	*
Quarter 2, 2012															*					<u> </u>	
Quarter 3, 2012															*					<u> </u>	*
Quarter 4, 2012																				<u> </u>	3
Quarter 1, 2013	ł														*					<u> </u>	*
Quarter 2, 2013															*					<u> </u>	3
Quarter 3, 2013															*					<u> </u>	*
Quarter 4, 2013															*						<u> </u>
CARBON DISULFIDE	ı	1	1	1	1		1			4				1				1			-
Quarter 3, 2003	ł						Ala.			*										<u> </u>	$\vdash \vdash$
Quarter 2, 2005						Ala.	*													<u> </u>	\vdash
Quarter 3, 2005	1					*														<u> </u>	
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006						*														<u> </u>	igsquare
Quarter 3, 2010		*									*										
Quarter 4, 2010														*							
Quarter 1, 2011															*						<u> </u>
CHEMICAL OXYGEN DEMA	<u>AND</u>												_						1		
Quarter 3, 2002										*	*	*	*	*	*						Ш
Quarter 4, 2002	1									*	*										
Quarter 1, 2003	1									*	*									<u> </u>	Ш
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					Ш
Quarter 4, 2003						*				*	*										
Quarter 3, 2004	1									*											
Quarter 3, 2005	1					*				*					*	*			*		

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwigter Flow System	Ī			ī	JCR	C						ΙID	GA					ΙD	GA		
Groundwater Flow System	S	S	S	S			D	ΙT	ŢT	S	D			ŢΤ	ŢŢ	S	Ъ			ΤT	ŢТ
Gradient					D	D	D	U 271	U 274		D	D	D 357	U	U		D	D	D	U 270	U
Monitoring Well	308	3/3	3/0	311	339		303	3/1	3/4	300	300	303	337	309	312	307	301			370	3/3
Quarter 4, 2005	1					*												*	*		
Quarter 1, 2006																			*	<u> </u>	<u> </u>
CHLORIDE	I		1	1										1						- J	$\overline{}$
Quarter 1, 2006																				*	
COBALT			1	1			1					1						1			
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	<u> </u>
Quarter 1, 2004														*						<u> </u>	<u> </u>
CONDUCTIVITY	1		1	1			ı		1			1		1				1			
Quarter 4, 2002										*											
Quarter 1, 2003										*	414									<u> </u>	
Quarter 2, 2003										*	*										
Quarter 4, 2003										*											
Quarter 1, 2004										*											-
Quarter 2, 2004										*										<u> </u>	<u> </u>
Quarter 3, 2004										*										<u> </u>	<u> </u>
Quarter 1, 2005															*					<u> </u>	<u> </u>
Quarter 2, 2005															*					<u> </u>	<u> </u>
Quarter 3, 2005						*													*	<u> </u>	<u> </u>
Quarter 4, 2005															*			*		<u> </u>	<u> </u>
Quarter 1, 2006															*						
Quarter 2, 2006															*						
Quarter 3, 2006															*						<u> </u>
Quarter 1, 2007															*						
Quarter 2, 2007															*					<u> </u>	<u> </u>
Quarter 3, 2007															*					<u> </u>	<u> </u>
Quarter 4, 2007															*						
Quarter 1, 2008															*						<u> </u>
Quarter 2, 2008															*					<u> </u>	
Quarter 3, 2008															*					<u> </u>	
Quarter 4, 2008															*					<u> </u>	
Quarter 1, 2009															*					<u> </u>	
Quarter 2, 2009															*					<u> </u>	
Quarter 3, 2009															*					<u> </u>	
Quarter 4, 2009															*					<u> </u>	
Quarter 1, 2010															*					<u> </u>	
Quarter 2, 2010															*					<u> </u>	
Quarter 3, 2010															*					<u> </u>	
Quarter 4, 2010															*					<u> </u>	
Quarter 1, 2011															*					<u> </u>	
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				J	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well			376																358		_
Quarter 3, 2013															*						
Quarter 4, 2013															*						
															*						
Quarter 1, 2014															不	<u> </u>					
DISSOLVED OXYGEN			1		*	*				<u>*</u>			1			_					1
Quarter 1, 2003					*	不				*											1
Quarter 4, 2003					*					不											1
Quarter 4, 2003					*																
Quarter 1, 2004 Quarter 2, 2004					不			*								*					
Quarter 1, 2005					*			Т.								Α					
Quarter 1, 2005 Quarter 2, 2005					T			*													
Quarter 1, 2006					*			т													
Quarter 2, 2006					*			*													
Quarter 3, 2006					*			*													
Quarter 4, 2006					*			711	*												
Quarter 2, 2007					*			*	71												
Quarter 3, 2007					*			*	*												
Quarter 1, 2008					*			***	*1*										*		
Quarter 2, 2008								*	*										4,		
Quarter 3, 2008								*													
Quarter 1, 2009							*	***													
Quarter 2, 2009					*			*	*												
Quarter 3, 2009						*		*	*												
Quarter 1, 2010					*		*														
Quarter 2, 2010					*	*		*	*											*	*
Quarter 3, 2010					*	*															
Quarter 4, 2010							*					*								*	
Quarter 1, 2011						*															
Quarter 2, 2011					*	*	*	*	*					*							
Quarter 3, 2011						*			*												
Quarter 1, 2012							*		*												
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012						*															
Quarter 4, 2012									*												
Quarter 1, 2013						*			*												
Quarter 2, 2013							*		*												
Quarter 3, 2013	*				*		*	*	*												
Quarter 4, 2013									*											*	
DISSOLVED SOLIDS																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003							*			*	*										
Quarter 4, 2003										*											
Quarter 3, 2005						*															
Quarter 4, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System Gradient				J	JCRS	S						UR	GA					LR	GA		
	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
													357								
Quarter 4, 2008															*	-					
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012														ጥ	*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						-
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 1, 2014															*						
IODIDE															T				l .		
Quarter 2, 2003																*					
Quarter 3, 2003	*									*											
Quarter 4, 2003	•••						*														
Quarter 3, 2010						*		*					*				*				
IODINE-131								-							l				<u> </u>		
Quarter 3, 2010																					
IODOMETHANE																			I		l
Quarter 4, 2003						*															
IRON																			l		
Quarter 4, 2002						*															
Quarter 3, 2003																*					
Quarter 4, 2003										*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																_					
Quarter 2, 2005															*						*
Quarter 3, 2005						*															*
Quarter 2, 2006															*						*
Quarter 3, 2006															*						
Quarter 1, 2007															*						
															*						
Quarter 2, 2008																		_			1
Quarter 2, 2008 Quarter 2, 2009															*						
															*						

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	Ī			Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	_												357							370	
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2012															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
MANGANESE		l			l	l		l .					<u>l</u>		*1*					1	
Quarter 3, 2002										*		*									
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2003		47				47	***			*		*		**							
Quarter 3, 2003										*		*	*			*	*	*	*		
Quarter 4, 2003	1									*	*	*	*				*	*	т-		
Quarter 1, 2004	1									*	*	*	T			*	*	*			
Quarter 2, 2004							*			*	*	*				~	<u>~</u>	*			
Quarter 3, 2004							*			*	*	*				*		т			
Quarter 4, 2004							Т.			*	т	*				*					
Quarter 1, 2005										*		*				~					
Quarter 2, 2005										*		*									
Quarter 3, 2005										*		*				*					
Quarter 4, 2005										*		T				*				 	
Quarter 1, 2006										*						~					
Quarter 2, 2006							*			*		*									
Quarter 3, 2006	1						т			*		т				*					
Quarter 4, 2006										*						*					
Quarter 1, 2007										*										 	
Quarter 2, 2007							*			*										 	
Quarter 3, 2007							*			*										 	
Quarter 3, 2007 Quarter 3, 2008							*													 	
							*													 	
Quarter 4, 2008 Quarter 3, 2009	1						*									 				 	
Quarter 3, 2009 Quarter 3, 2011	1						*														\vdash
		<u> </u>			<u> </u>	<u> </u>	不					<u> </u>	l		<u> </u>	<u> </u>					\dashv
NICKEL Quarter 3, 2003	1									*						1					
		 TITIT	A T]]				不]		<u> </u>	<u> </u>]]		$\vdash \vdash$
OXIDATION-REDUCTION P	T TE	1111	AL													1	*		*		
Quarter 4, 2002	1																*		*		\vdash
Quarter 1, 2003	1-															-	不		*	<u> </u>	$\vdash \vdash$
Quarter 2, 2003	4															-			木		\vdash
Quarter 3, 2003	*				JU.															 	$\vdash \vdash$
Quarter 4, 2003	 				*								44			<u> </u>	46			<u> </u>	- Ju
Quarter 2, 2004													*				*			L	*

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006					*			*	*								*				*
Quarter 2, 2006					*		*	*					*				*			*	
Quarter 3, 2006					*			*					*				*			*	
Quarter 4, 2006					*		*	-		*		*	*				*			*	*
Quarter 1, 2007		*			*			*					*				*			*	*
Quarter 2, 2007					*								*				*			*	*
Quarter 3, 2007					*			*									*			*	
Quarter 4, 2007					*			*									*			*	*
Quarter 1, 2008					*			*				*	*				т		*	*	<u> </u>
Quarter 2, 2008					*			*		*		~	*	*				*	Т.	*	*
					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 3, 2008					不		不	*	不	*		*	*	不			*	*	不	*	*
Quarter 4, 2008							4			*			*				不	*		*	不
Quarter 1, 2009					46		*	*				*					- JL	 			4
Quarter 2, 2009		Ala.			*	Ala.	*	*	Ale.	*		*	*	31 4			*	*	Ale.	*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*	_	*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011						*		*		*	*	*	*	*		*	*	*	*	*	
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
PCB, TOTAL	•	•			•		•	•					•	•		_	•	•		•	•
Quarter 4, 2003																	*				
Quarter 3, 2004												*									
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
	-		-			 	*		\vdash	-	 	 	<u> </u>		 			1			
Quarter 3, 2007							-														

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				ī	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
													357		_						
Monitoring Well	308	373	370	311	337	302	*	3/1	374	300	300	303	331	309	312	307	301	304	336	370	373
Quarter 2, 2008																					
Quarter 4, 2008							*														ļ
Quarter 3, 2009							*														<u> </u>
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016		ı	ı			ı							ı				ı	1	ı		
Quarter 3, 2004												*									
Quarter 2, 2006							*					*									
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242																					
Quarter 3, 2006							*					*									
Quarter 4, 2006										*											
Quarter 1, 2008							*														
Quarter 2, 2012							*														
PCB-1248				U							U							•		L	
Quarter 2, 2008							*														
PCB-1260			•								u .						•				
Quarter 2, 2006							*														
pН																					
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005						*												*	*		
Quarter 4, 2005						*													*		
Quarter 3, 2006																*					
Quarter 2, 2011														*							
Quarter 3, 2011														*							
Quarter 4, 2011														*							
Quarter 1, 2012														-4*		*	*				
Quarter 2, 2012												*				<u> </u>					
Quarter 1, 2013										*		*				*					
POTASSIUM		<u> </u>	<u> </u>			<u> </u>				ጥ		ጥ	l			т.	<u> </u>	l	<u> </u>	<u> </u>	
Quarter 1, 2014																*					
RADIUM-228		<u> </u>	<u> </u>			<u> </u>							l			_ T	<u> </u>	<u> </u>	<u> </u>	<u></u>	Щ_
Quarter 2, 2005																				\vdash	
Quarter 4, 2005		<u> </u>	<u> </u>										<u> </u>				<u> </u>			Щ_	

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System		UCRS URGA									LRGA										
Gradient Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S D D D U U					
	_												357								
Monitoring Well	308	313	370	311	339	302	303	3/1	3/4	300	300	303	331	309	312	307	301	304	338	370	3/3
SELENIUM	1				1			1				1				1	1				
Quarter 4, 2003																					
SODIUM	1	1			1	1		1		4	44	1	4	1		I	1	1	1		
Quarter 3, 2002	1									*	*		*	46							
Quarter 4, 2002	1									*	*			*							
Quarter 1, 2003	1									*	44										
Quarter 2, 2003	1									*	*										
Quarter 3, 2003	1										*										
Quarter 1, 2007	-										*			Ale.							ļ
Quarter 1, 2012	-													*	sla.						ļ
Quarter 1, 2014															*						<u> </u>
STRONTIUM-90	1	1			1	1		1			1	1		1		I	1	1	1		
Quarter 3, 2003	1																				Щ.
SULFATE	1	1			l	1	JU.	l							1	I		l		1	
Quarter 1, 2003	1					JU.	*				-			-							<u> </u>
Quarter 2, 2003	.					*	*				-			-							<u> </u>
Quarter 3, 2003	*				J.	*	*														<u> </u>
Quarter 4, 2003	-				*	4															<u> </u>
Quarter 1, 2004	-				*	*	*														
Quarter 2, 2004	-				*	*	*														<u> </u>
Quarter 3, 2004	-				*	*	*		Ale.												
Quarter 1, 2005	-				*	*	44		*						44						<u> </u>
Quarter 2, 2005	-				*	46	*		*						*						
Quarter 3, 2005	-				*	*	*								4						
Quarter 4, 2005	-				Ala.				Ala.						*						
Quarter 1, 2006	-				*	Ala	Ala.		*						sla.						
Quarter 2, 2006	-					*	*		*						*						
Quarter 3, 2006	-						*														
Quarter 1, 2007	-						*														
Quarter 2, 2007	-						*														
Quarter 3, 2007	-	Ala					*														
Quarter 4, 2007	-	*			110		Ala.		Ala.												
Quarter 1, 2008	-	*			*	414	*		*												
Quarter 2, 2008	-	*			*	*	*					ļ									
Quarter 3, 2008	-	*			*	*	*					ļ									
Quarter 4, 2008		*				*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009	1	*			*	*	*								*	_					igsquare
Quarter 4, 2009	1	*			*	*	45.								*	_					
Quarter 1, 2010	1	*			*	*	*								*	_					
Quarter 2, 2010	1	*			*	*	*								*	_					
Quarter 3, 2010	1	*			*	*	*								*						igspace
Quarter 4, 2010	1	*				*	*								*						
Quarter 1, 2011	1	*													L_						
Quarter 2, 2011	1	*			*	*	*								*						
Quarter 3, 2011	1	*				*	*	*							*						
Quarter 4, 2011	_	*				*									*						
Quarter 1, 2012		*					*	*							*						

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Į	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*													*						
Quarter 3, 2013	*	*		*	*	*	*								*						
Quarter 4, 2013		*													*						
Quarter 1, 2014		*													*						
TECHNETIUM-99							•										•		•	•	
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003																	*				
Quarter 4, 2003																	*				*
Quarter 1, 2004															*		*				*
Quarter 2, 2004															*						*
Quarter 3, 2004															*						*
Quarter 4, 2004															*		*				*
Quarter 3, 2005																	*				
Quarter 1, 2006															*						*
Quarter 2, 2006		*							*												*
Quarter 3, 2006																					*
Quarter 4, 2006															*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007															*		*	*			
Quarter 4, 2007										*					*				*		*
Quarter 1, 2008															*					*	*
Quarter 2, 2008							*	*						*		*			*		
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010																		*			
Quarter 1, 2011		*								*							*				
Quarter 2, 2011																*	*	*	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012								*										*			
Quarter 3, 2012																	*	*			
Quarter 4, 2012	1														*			*			*
Quarter 1, 2013	+														-1*			*			*
	-																	4,			*
Quarter 2, 2013	_									414											
Quarter 3, 2013										*							_	_			*
Quarter 4, 2013				<u> </u>	<u> </u>	<u> </u>									*		*	*			*

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	GA			LRGA					
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
Quarter 1, 2014	200	5,5	270	511	227	202	232	5/1	J / T	200	230	233	551	237	*	557	*	*	220	570	515
TOTAL ORGANIC CARBON															T		T	T		<u> </u>	<u> </u>
Quarter 3, 2002				l	l					*	*	*		*					l		*
Quarter 3, 2002 Quarter 4, 2002										*	*	不		*							不
Quarter 4, 2002 Quarter 1, 2003										不	*			不							_
Quarter 1, 2003 Quarter 3, 2003	*									*	*					*					
	不									*	*					不					
Quarter 4, 2003 Quarter 1, 2004										不	*										
						*				*	不				*	*			*		
Quarter 4, 2005						*				不					不	不		*	*		
Quarter 4, 2005						不												不	*		
Quarter 1, 2006																			不	<u> </u>	
TOTAL ORGANIC HALIDES	•			1	1		1			4	1		l						1	1	Γ_
Quarter 4, 2002										*											\vdash
Quarter 1, 2003										*											
Quarter 2, 2003										木						<u>л</u>					
Quarter 1, 2004							<u> </u>						<u> </u>			*				<u> </u>	Щ
TRICHLOROETHENE				l	l		1				1		1	-					l		
Quarter 3, 2002															_						
Quarter 4, 2002																					_
Quarter 1, 2003															_						
Quarter 2, 2003							_														<u> </u>
Quarter 3, 2003															_						▝
Quarter 4, 2003																					
Quarter 1, 2004																					
Quarter 2, 2004																				-	
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					
Quarter 4, 2005																					
Quarter 1, 2006	-																				
Quarter 2, 2006	-																				
Quarter 3, 2006												-									
Quarter 4, 2006	-																			_	
Quarter 1, 2007	_																				
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																			_	igspace	
Quarter 2, 2008																				igspace	
Quarter 3, 2008																				igspace	
Quarter 4, 2008																				igspace	
Quarter 1, 2009																				igspace	
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	UCRS URGA LRG.							GA	GA												
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 1, 2011																					
Quarter 2, 2011																					
Quarter 3, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013																					
Quarter 2, 2013																					
Quarter 3, 2013																					
Quarter 4, 2013																					
Quarter 1, 2014																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test re	sults	indi	cate	an el	levat	ed co	ncer	ntrati	on (i	i.e., a	a stat	istic	al ex	ceeda	ance)					
■ MCL Exceedance	ce											-					-				
UCRS Upper Continent	er Continental Recharge System																				
URGA Upper Regional	Grav	el A	quife	er								-					-				
LRGA Lower Regional	Grav	vel A	quif	er																	
S Sidegradient;			D		Do	wngı	adie	nt;			U		Upg	radie	ent						

APPENDIX H METHANE MONITORING DATA

C-746-U LANDFILL METHANE LOG

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCrack	en County, Kentuck	ky .	Date: <u>M</u>	larch 20, 2014
Time	Location	% LEL of Methane Reading	Remarks	Weather Conditions
15:55	C-746-U1	0	checked at floor level	inside office
16:10	C-746-U2	0	checked at floor level	inside office
16:15	C-746-U-T-14	00	checked at floor level	inside trailer
16:20	C-746-U15	0	checked at floor level	inside building ,
14:09	MG1	0	dry casing	June 1
14:14	MG2	0	water in casing	y 61 5iv
14:20	MG3	0	dry casing	May Dent 84
14:46	MG4	0	dry casing	Sure water
N/A	Suspect or Problem Areas	N/A	No problems noted	N/A
			3-20-14	·.
			1 3-20-14 1 Smuth 3-20-14	·
		Januar		
				,

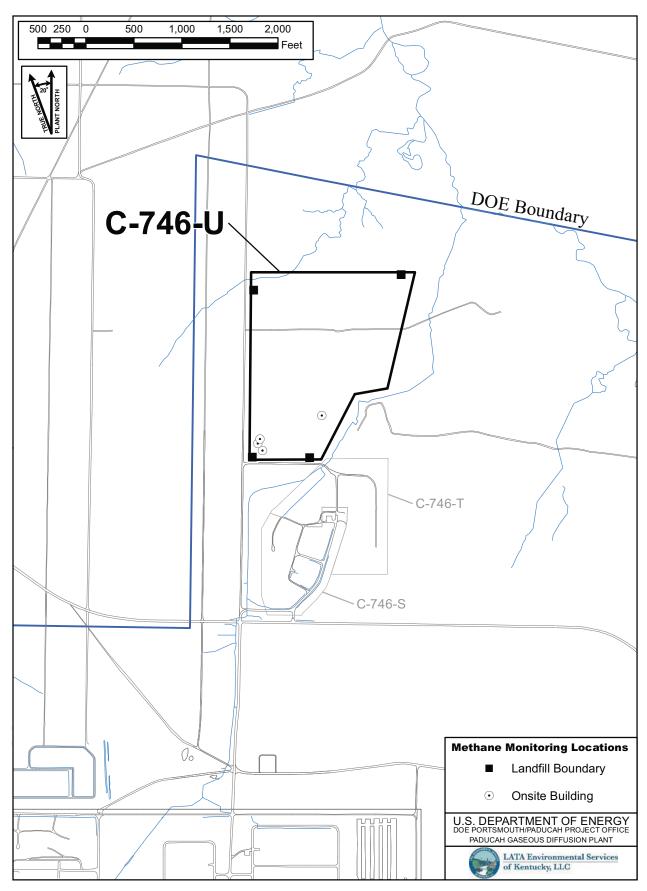


Figure H.1. C-746-U Methane Monitoring Locations