C-746-U Contained Landfill Fourth Quarter Calendar Year 2013 (October-December) **Compliance Monitoring Report** Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

LATA Kentucky Classification Support

C-746-U Contained Landfill
Fourth Quarter Calendar Year 2013
(October-December)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—February 2014

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC
managing the
Environmental Remediation Activities at the
Paducah Gaseous Diffusion Plant
under contract DE-AC30-10CC40020

CONTENTS

FI	GURE		V
ΤA	ABLES		V
A(CRONYMS	vi	i
1.	1.1 BACK 1.2 MONI 1.2.1 1.2.2 1.2.3	TION	1 1 1 3
2.	DATA EVA	LUATION/STATISTICAL SYNOPSIS	5
3.	DATA VAL	IDATION	7
4.	PROFESSIO	NAL GEOLOGIST AUTHORIZATION)
5.	REFERENC	E1	1
Αŀ	PPENDIX A:	GROUNDWATER, SURFACE WATER, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	1
Αŀ	PPENDIX B:	FACILITY INFORMATION SHEET	1
Αŀ	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS C-:	1
Αŀ	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENTD-:	1
Αŀ	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION E-	1
Αŀ	PPENDIX F:	NOTIFICATIONSF-	1
Αŀ	PPENDIX G:	CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES	1
Αŀ	PPENDIX H	METHANE MONITORING DATA H-	1

FIGURE

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
	TABLES	
1.	Summary of MCL Exceedances	3
	Summary of Statistically Significant Increases	
3.	Monitoring Wells Included Historically in Statistical Analysis	5

ACRONYMS

CFR Code of Federal Regulations

EPA U.S. Environmental Protection Agency

KAR Kentucky Administrative Regulations

KDWM Kentucky Division of Waste Management

LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

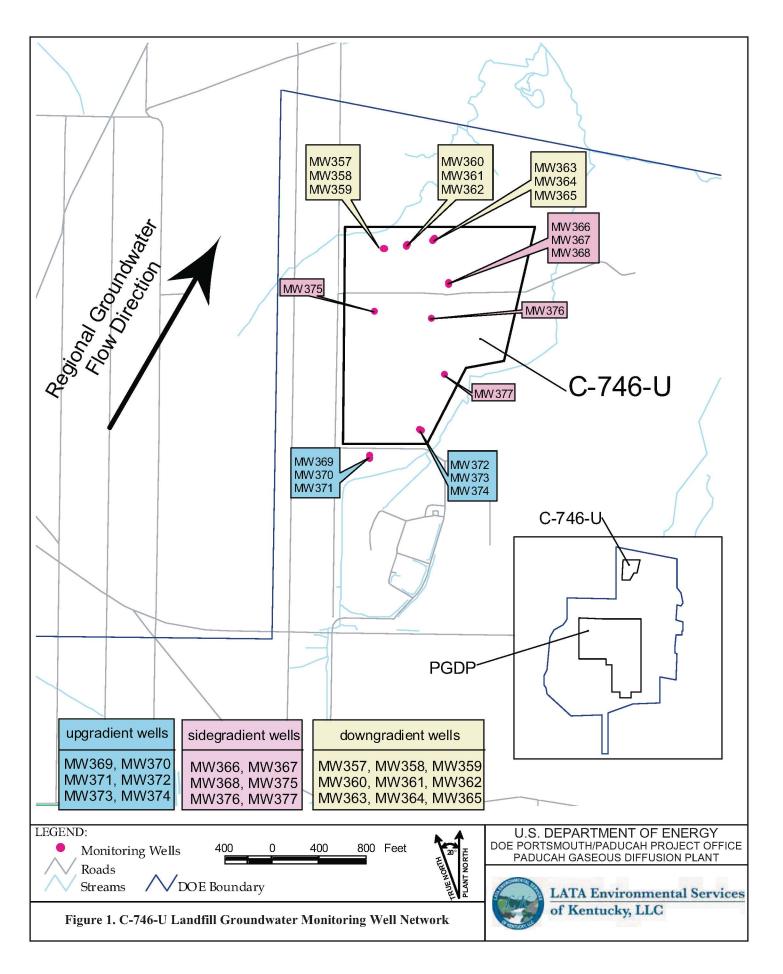
UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

1. INTRODUCTION

This report, C-746-U Contained Landfill Fourth Quarter Calendar Year 2013 (October-December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number 073-00045.

The groundwater, surface water, leachate, and methane monitoring sample data reporting form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The total metals results reported in Appendix C are measured in an unfiltered sample, as required by Permit Condition GSTR0001, Standard Requirement 4. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for parameters that exceed the maximum contaminant level (MCL) and for all parameters that had statistically significant increased concentrations relative to background concentrations, including those parameters listed in 40 *CFR* § 302.4, Appendix A. Appendix G provides a chart of MCL exceedances and statistically significant increases that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090, Section 4.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill was permitted in November 1996 under Solid Waste Landfill Permit Number 073-00045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Groundwater sampling was conducted within the fourth quarter 2013, during October, using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used U.S. Environmental Protection Agency (EPA)-approved methods, as applicable.

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill; 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW359, MW365, MW368, MW376, and MW377 (all screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for these locations.

The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 23, 2013, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 38 vicinity wells define the potentiometric surface for the Regional Gravel Aquifer (RGA). Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient in the vicinity of the C-746-U Landfill in August was 5.03×10^{-4} ft/ft, while the hydraulic gradient for both the URGA and LRGA at the C-746-U Landfill was 7.20×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.22 to 2.09 ft/day for the URGA and LRGA (see Table E.3).

1.2.2 Methane Monitoring

Landfill operations staff monitored for the occurrence of methane on December 18, 2013, in four on-site building locations and four locations along the landfill boundary. See Appendix H for a map of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

There was no surface water sampling conducted during the fourth quarter 2013 due to insufficient rainfall during normal landfill operating hours.

1.3 KEY RESULTS

The following parameters had concentrations that either exceeded the MCL (Table 1) or were shown to have statistically significant increases (Table 2) in concentrations² relative to background concentrations during the fourth quarter 2013.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
(none)	MW357: trichloroethene	MW358: trichloroethene
	MW372: beta activity, trichloroethene	MW373: trichloroethene

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

² The term "concentration" may refer to a field measurement result such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls (PCBs).

Table 2. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW362: oxidation-reduction	MW357: oxidation-reduction	MW358: oxidation-reduction
potential	potential	potential
MW371: (upgradient): oxidation-	MW360: oxidation-reduction	MW361: oxidation-reduction
reduction potential	potential	potential, technetium-99
MW374: (upgradient): dissolved	MW363: oxidation-reduction	MW364: oxidation-reduction
oxygen, oxidation-	potential	potential, technetium-99
reduction potential	MW366: oxidation-reduction	MW367: oxidation-reduction
MW375: oxidation-reduction	potential	potential
potential, sulfate	MW369: (upgradient): oxidation-	MW370: (upgradient):dissolved
	reduction potential	oxygen, oxidation-
	MW372: (upgradient): calcium,	reduction potential
	conductivity, dissolved	MW373: (upgradient): oxidation-
	solids, magnesium,	reduction potential,
	oxidation-reduction	technetium-99
	potential, sulfate,	
	technetium-99	

Sidegradient wells: MW366, MW367, MW368, MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

There were no new MCL exceedances for this quarter. The MCL exceedances—beta activity in MW372 and trichloroethene in MW357, MW358 MW372, and MW373—are related to sources of contamination that are upgradient of the C-746-U Landfill. The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM in accordance with 401 *KAR* 48:300, Section 7, prior to the submittal of this report.

There were no new statistically significant increases in this quarter. All 28 statistically significant increases have occurred previously at least once since fourth quarter calendar year 2002.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to background concentrations, as required by Permit Number 073-00045, Condition GSTR0001, Standard Requirement 8, and 401 KAR 48:300, Section 7.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2013 groundwater data collected from the C-746-U Contained Landfill MWs were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the EPA guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the statistician. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (D-22–D-78).

For chemicals with an established MCL, no statistical analysis was performed. Parameters that have an MCL can be found in 401 *KAR* 47:030, Section 6. For parameters with no established MCL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistically significant increase in concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. A stepwise list of the one-side tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 3.

Table 3. Monitoring Wells Included Historically in Statistical Analysis*

UCRS	URGA	LRGA
MW359 (dry)**	MW357	MW358
MW362	MW360	MW361
MW365 (dry)**	MW363	MW364
MW368 (dry)**	MW366	MW367
MW371 (upgradient)	MW369 (upgradient)	MW370 (upgradient)
MW374 (upgradient)	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376 (dry) **		
MW377 (dry)**		

^{*}A map showing the monitoring well locations is shown on Figure 1.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining statistically significant increases is provided in Appendix D under Statistical Analysis Process. Appendix G summarizes the occurrences (by well and by quarter) of statistically significant increases and MCL exceedances.

^{**}MW359, MW365, MW368, MW376, and MW377 had sufficient water to permit a water level measurement but insufficient water to provide water samples for laboratory analysis.

Upper Continental Recharge System

In this quarter, 17 parameters required statistical analysis in the UCRS. During the fourth quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed elevated concentrations that were determined to qualify as statistically significant increases and are listed in Table 2.

Upper Regional Gravel Aquifer

In this quarter, 20 parameters required statistical analysis in the URGA. During the fourth quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases and are listed in Table 2.

Lower Regional Gravel Aquifer

In this quarter, 18 parameters required statistical analysis in the LRGA. During the fourth quarter, dissolved oxygen, oxidation reduction potential, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases and are listed in Table 2.

3. DATA VALIDATION

Data validation was performed on the organic, inorganic, and radiochemical analytical data by an independent third-party validator. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected quarterly during each sampling event. Equipment blanks, field blanks, and trip blanks are obtained to ensure quality control and are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

The initial result for the Radium-226 sample at MW373 was rejected during validation due to low tracer recovery. No resample was collected as a result of the rejected data because there was excess sample volume in the laboratory for reanalysis. The result of the reanalysis was acceptable. No rejected data were used. Data validation results for this data set indicated that all other data were considered acceptable.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

Fourth Quarter Calendar Year 2013 (October-December)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0086/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

PG 1194 PG 119

Kenneth R. Davis

PG1194

9

5. REFERENCE

EPA (U.S. Environmental Protection Agency) 1989. *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Final Guidance, Office of Resource Conservation and Recovery, U.S. Environmental Protection Agency, Washington, DC.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:		-Paducah C		Diffusion Plant Permit Face)	Activity:	C-746-	U Contained Landfill
Permit No:	073-000	45	Fine	ds/Unit No:	Quarter	& Year	4 th Qtr. CY 2013
Please check the	following as	applicable:	•				
Charact	erization	X Quai	terly _	Semiannual	Ann	ual	Assessment
Please check app	licable subm	ittal(s):	X	Groundwater		_ Surfac	ce Water
		_		Leachate	X	_ Metha	nne Monitoring
45:160) or by statu jurisdiction of the lab report is the lab report is pages. I certify under peraccordance with a Based on my inquibest of my knowled.	te (Kentucky land) Division of Watche determinated of Considered analty of law the system designary of the personal ge and belief,	Revised Statiste Manager iton using state Inotification that the document the document or persons true, accurate	ues Chaptement. You tatistical a on. Instruction in that qualidirectly ree, and con-	er 224) to conduct ground must report any indicated analyses, direct companions for completing the state of t	prepared und y gather and e y information, there are signi	surface wa amination er similar ched. Do n er my din valuate the	ions-401 KAR 48:300 and atter monitoring under the n within forty-eight (48) techniques. Submitting not submit the instruction rection or supervision in the information submitted anation submitted is, to the alties for submitting false
Mark J. Duff, P LATA Environ		_		LLC	_		Date
Rachel H. Blum	nenfeld. Acti	ng Paduca	ıh Site L	ead	_		Date

U.S. Department of Energy

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: October 2013	County:	McCracken	Permit Nos. <u>073-00045</u>								
Facility Name:	U.S. DOE - Paducah Gaseous Di											
	•	n on DWM Permit Face)									
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053								
	Street	City/State		Zip								
Phone No: (27)	0) 441-6800 Latitude:	N 37° 07' 45"	Longitue	de: W 88° 47' 55"								
	OWNI	ER INFORMATION										
Facility Owner:	U.S. DOE – W. E. Murphie, M	[anager	Phone No:((859) 219-4001								
Contact Person:	Mark J. Duff		Phone No: _((270) 441-5030								
Contact Person Ti												
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053								
Ü	Street	City/State		Zip								
	(IF OTHER THAN A Environmental Services of Ken	LING PERSONNEL LANDFILL OR LABO tucky, LLC										
Contact Person:	Jeff Boulton		Phone No: _	(270) 441-5444								
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053								
	Street	City/State		Zip								
	LABOR	ATORY RECORD #1										
Laboratory: US	EC Analytical Laboratories – Padu	ıcah Lab l	D No: <u>KY009</u>	06 (EPA ID Number)								
Contact Person:	John Price		Phone No:	(270) 441-5867								
Mailing Address:	P.O. Box 1410	Paducah, Kentucky		42002-1410								
	Street	City/State		Zip								
	LABOR	ATORY RECORD #2										
Laboratory: Te	stAmerica Laboratories, Inc.	Lab ID	No: MO00054	4 (EPA ID Number)								
Contact Person:	Elaine Wild		Phone No:	(314) 298-8566								
Mailing Address:	13715 Rider Trail North	Earth City, MC	<u> </u>	63045								
_	Street	City/State		Zip								
	LABOR	ATORY RECORD #3										
Laboratory:		Lab ID	No:									
Contact Person:			Phone No:									
Mailing Address:			· <u>-</u>									
<i>y</i>	Street	City/State		Zip								

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-4798	3	8004-47	'99	8004-0981		8004-4800		
Facility's Loc	al Well or Spring Number (e.g., N	/W−1	L, MW-2, etc	:.)	357		358		359		360	
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and	Sample Date and Time (Month/Day/Year hour: minutes)					8:56	10/14/2013	13:00	NA		10/9/2013 12	2:32
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or "N") ³					N		N		N		N	
Facility Sample	Facility Sample ID Number (if applicable)					-14	MW358U0	G1-14	NA		MW360UG1	l - 14
Laboratory Sam	Laboratory Sample ID Number (if applicable)					001	C1328703	37001	NA		C1328204001	
Date of Analys	Date of Analysis (Month/Day/Year) For Volatile Organics Analysis				10/15/2013	3	10/15/2013		NA		10/11/2013	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOMN)	DOWN		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2			*	<2	
16887-00-6	Chloride(s)	т	mg/L	9056	31		34			*	11	
16984-48-8	Fluoride	т	mg/L	9214	0.15		0.17			*	0.24	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.2		<1			*	<1	
14808-79-8	Sulfate	т	mg/L	9056	57		85			*	55	J
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.27		30.27			*	30.13	
s0145	Specific Conductance	т	μ MHO/cm	Field	440		513			*	536	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798	8	8004-479	8004-4799		8004-0981)
Facility's Lo	ocal Well or Spring Number (e.g., MV	V-1,	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.26		322.3			*	322.55	
N238	Dissolved Oxygen	т	mg/L	Field	3.5		0.59			*	0.83	
s0266	Total Dissolved Solids	Т	mg/L	160.1	246		296			*	275	
s0296	рн	Т	Units	Field	6.09		6.1			*	6.2	
NS215	Eh	Т	mV	Field	815		488			*	392	
s0907	Temperature	Т	°C	Field	15.67		16.67			*	17.94	
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2			*	<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	<0.001		0.00109			*	0.00122	
7440-39-3	Barium	Т	mg/L	6020	0.0567		0.0509			*	0.14	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001	В	<0.001	В		*	<0.001	В
7440-42-8	Boron	Т	mg/L	6010	0.362		0.381			*	<0.2	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	Т	mg/L	6010	27.4		34.6			*	25.1	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001	*	0.00246	*		*	0.0219	*
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
7439-89-6	Iron	Т	mg/L	6010	<0.1		0.548			*	3.34	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013			*	<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	10.9		14.2			*	9.39	
7439-96-5	Manganese	Т	mg/L	6020	0.00597	*	0.173	*		*	0.212	*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	99	8004-0981		8004-4800	
Facility's	Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001	В	<0.001	В		*	<0.001	В
7440-02-0		Nickel	Т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	*
7440-09-7		Potassium	Т	mg/L	6010	1.66		2.27			*	0.742	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001	В	<0.001	В		*	<0.001	В
7440-23-5		Sodium	Т	mg/L	6010	40.7		40.9			*	67.9	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1		Uranium	T	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-62-2		Vanadium	T	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6		Zinc	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
108-05-4		Vinyl acetate	T	mg/L	8260	<0.01		<0.01			*	<0.01	
67-64-1		Acetone	T	mg/L	8260	<0.01		<0.01			*	<0.01	
107-02-8		Acrolein	Т	mg/L	8260	<0.01		<0.01			*	<0.01	J
107-13-1		Acrylonitrile	T	mg/L	8260	<0.005		<0.01			*	<0.01	
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015			*	<0.015	
100-42-5		Styrene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4798 8004-4799		8004-0981		8004-4800			
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002			*	<0.002	*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0056		0.0051			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	3	8004-479	9	8004-098	1	8004-480	0
Facility's Loc	al Well or Spring Number (e.g., N	IW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01			*	<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005	7	<0.005	J		*	<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.005			*	<0.005	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01			*	<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002			*	<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.17		<0.18			*	<0.18	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.16		<0.17			*	<0.17	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.17		<0.18			*	<0.18	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.14		<0.14			*	<0.14	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.1			*	<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12			*	<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799)	8004-098	1	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07			*	<0.07	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05			*	<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09			*	<0.09	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.66	*	1.35	*		*	-0.499	*
12587-47-2	Gross Beta	Т	pCi/L	9310	27.3	*	28.8	*		*	3.88	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	0.0485	*	0.26	*		*	0.0985	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.481	*B	0.612	*B		*	0.251	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	39.5	*	43	*		*	10.2	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	-0.00536	*	0.00206	*		*	0.0206	*
10028-17-8	Tritium	Т	pCi/L	704R6	95.8	*	587	*		*	178	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36			*	<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04	*	<0.04	*		*	<0.04	*
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2			*	<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1		<1			*	2.1	
s0586	Total Organic Halides	Т	mg/L	9020	0.015	В	0.02	В		*	0.03	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	796	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	., MW-2, etc	.)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/9/2013 11	1:35	10/14/2013	14:17	10/9/2013	09:02	10/8/2013 1	11:38
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG1	-14	MW362U0	G1-14	MW363U0	G1-14	MW364UG	1-14
Laboratory Sam	mple ID Number (if applicable)		C13282040	002	C1328703	37002	C1328204	10003	C13281067	7001		
Date of Analys	sis (Month/Day/Year) For Volatile	ysis	10/11/201	3	10/15/20	013	10/11/20	013	10/9/201	3		
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	N	DOWN	I
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	Т	mg/L	9056	31		11		32		31	
16984-48-8	Fluoride	т	mg/L	9214	0.16		0.27		0.19		0.15	
s0595	Nitrate & Nitrite	т	mg/L	9056	<1		<1		3.4		<1	
14808-79-8	Sulfate	т	mg/L	9056	73		9.8		20		61	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.13		30.27		30.13		30.17	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	463		578	_	393		449	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795	5	8004-0986	5	8004-4796		8004-4797	,
Facility's Loc	cal Well or Spring Number (e.g., MW	I-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.57		334.22		322.45		322.18	
N238	Dissolved Oxygen	Т	mg/L	Field	3.33		2.23		0.58		2.98	
s0266	Total Dissolved Solids	т	mg/L	160.1	270		378		231		263	
s0296	рн	т	Units	Field	6.06		6.68		6.57		6.47	
NS215	Eh	т	mV	Field	538		521		597		358	
s0907	Temperature	т	°C	Field	17.83		17.06		15.22		16.44	
7429-90-5	Aluminum	т	mg/L	6020	<0.2		1.71		<0.2		<0.2	
7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-38-2	Arsenic	т	mg/L	7060	<0.001		<0.001		<0.001		0.00101	
7440-39-3	Barium	т	mg/L	6020	0.055		0.101		0.169		0.0771	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-42-8	Boron	т	mg/L	6010	<0.2		<0.2		<0.2		<0.2	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6010	30.4		17.6		26.1		27.6	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001	*	<0.001	*	0.00113	*	<0.001	*
7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7439-89-6	Iron	т	mg/L	6010	<0.1		0.653		0.154		0.432	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	т	mg/L	6010	12.3		7.5		9.9		11.6	
7439-96-5	Manganese	т	mg/L	6020	0.00688	*	0.00772	*	0.15	*	0.0436	*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	16	8004-479	17
Facility's	Loc	cal Well or Spring Number (e.g.,	tc.)	361		362		363		364			
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0		Nickel	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-09-7		Potassium	Т	mg/L	6010	2.37		0.47		1.28		1.87	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	0.00527		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-23-5		Sodium	Т	mg/L	6010	42.6		114		34.9		40.5	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.001		0.00214		<0.001		<0.001	
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6		Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
67-64-1		Acetone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-02-8		Acrolein	Т	mg/L	8260	<0.01	J	<0.01		<0.01	J	<0.01	J
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.005		<0.01	
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5		Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0980	6	8004-479	96	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002	*	<0.002		<0.002	*	<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0037		<0.001		<0.001		0.0029	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	6	8004-479	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., N	IW -1	L, MW-2, et	:c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005	J	<0.005		<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.001		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.18		<0.18		<0.18		<0.18	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.17		<0.17		<0.17		<0.17	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.18		<0.18		<0.18		<0.18	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.14		<0.14		<0.14		<0.14	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.1		0.13		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12		<0.12		<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07		<0.07		<0.07	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05		<0.05		<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09		<0.09		<0.09	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.47	*	0.699	*	0.934	*	2.22	*
12587-47-2	Gross Beta	Т	pCi/L	9310	35.9	*	6.06	*	10.5	*	42	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	0.0761	*	0.185	*	0.145	*	0.136	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	-0.0403	*B	-0.241	*B	0.323	*B	0.827	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	53.4	*	12.5	*	17.9	*	49.1	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.0457	*	-0.0382	*	0.0261	*	0.0786	*
10028-17-8	Tritium	Т	pCi/L	704R6	-21.3	*	252	*	438	*	182	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36		<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04	*	<0.04	*	<0.04		<0.04	
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1		1.9		1	*	<1	
s0586	Total Organic Halides	Т	mg/L	9020	0.02		0.01	В	0.0096		0.012	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-098	34	8004-0982)	8004-4793		8004-098	3		
Facility's Loc	al Well or Spring Number (e.g., 1	ſW−1	L, MW-2, etc	:.)	365		366		367		368	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		NA		10/8/2013 12	:42	10/9/2013 10	:03	NA	
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				NA		MW366UG1	-14	MW367UG1-	·14	NA	
Laboratory Sam	ple ID Number (if applicable)		NA		C132810670	002	C132820400	04	NA			
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						10/9/2013		10/11/2013	3	NA	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*	<2		<2			*
16887-00-6	Chloride(s)	т	mg/L	9056		*	38		10			*
16984-48-8	Fluoride	т	mg/L	9214		*	0.17		0.11			*
s0595	Nitrate & Nitrite	т	mg/L	9056		*	<1		<1			*
14808-79-8	Sulfate	т	mg/L	9056		*	45		25	J		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*	30.17		30.13			*
s0145	Specific Conductance	т	μ MHO/cm	Field		*	447		297			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793	3	8004-0983	3
Facility's Lo	ocal Well or Spring Number (e.g., M	v-1,	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*	322.59		322.57			*
N238	Dissolved Oxygen	Т	mg/L	Field		*	2.47		0.86			*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*	258		155			*
s0296	Нд	Т	Units	Field		*	6.17		6.2			*
NS215	Eh	T	mV	Field		*	503		380			*
s0907	Temperature	Т	°C	Field		*	17.17		16.33			*
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.2		<0.2			*
7440-36-0	Antimony	Т	mg/L	6020		*	<0.005		<0.005			*
7440-38-2	Arsenic	Т	mg/L	7060		*	0.00124		0.00411			*
7440-39-3	Barium	Т	mg/L	6020		*	0.163		0.17			*
7440-41-7	Beryllium	Т	mg/L	6020		*	<0.001	В	<0.001	В		*
7440-42-8	Boron	Т	mg/L	6010		*	<0.2		<0.2			*
7440-43-9	Cadmium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	Т	mg/L	6010		*	27.1		15.1			*
7440-47-3	Chromium	Т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	Т	mg/L	6020		*	<0.001	*	0.00375	*		*
7440-50-8	Copper	Т	mg/L	6020		*	<0.02		<0.02			*
7439-89-6	Iron	т	mg/L	6010		*	<0.1		13.2			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.0013		<0.0013			*
7439-95-4	Magnesium	Т	mg/L	6010		*	11.2		7.29			*
7439-96-5	Manganese	Т	mg/L	6020		*	0.0156	*	1.71	*		*
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

Ī	AKGWA NUMBER	t ¹ , Facility Well/Spring Number				8004-098	34	8004-0982	2	8004-4793		8004-098	33
	Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
ı	7439-98-7	Molybdenum	т	mg/L	6020		*	<0.001	В	<0.001	В		*
	7440-02-0	Nickel	Т	mg/L	6020		*	<0.005	*	<0.005	*		*
	7440-09-7	Potassium	Т	mg/L	6010		*	1.75		2.43			*
	7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
	7782-49-2	Selenium	Т	mg/L	6020		*	0.00624		<0.005			*
	7440-22-4	Silver	т	mg/L	6020		*	<0.001	В	<0.001	В		*
	7440-23-5	Sodium	Т	mg/L	6010		*	40.9		17.5			*
7	7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
	7440-28-0	Thallium	т	mg/L	6020		*	<0.002		<0.002			*
	7440-61-1	Uranium	Т	mg/L	6020		*	<0.001		<0.001			*
	7440-62-2	Vanadium	т	mg/L	6020		*	<0.02		<0.02			*
	7440-66-6	Zinc	т	mg/L	6020		*	<0.02		<0.02			*
	108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.01		<0.01			*
	67-64-1	Acetone	Т	mg/L	8260		*	<0.01		<0.01			*
	107-02-8	Acrolein	т	mg/L	8260		*	<0.01	J	<0.01	J		*
	107-13-1	Acrylonitrile	т	mg/L	8260		*	<0.01		<0.01			*
	71-43-2	Benzene	т	mg/L	8260		*	<0.005		<0.005			*
	108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.005		<0.005			*
	1330-20-7	Xylenes	Т	mg/L	8260		*	<0.015		<0.015			*
	100-42-5	Styrene	Т	mg/L	8260		*	<0.005		<0.005			*
	108-88-3	Toluene	Т	mg/L	8260		*	<0.005		<0.005			*
	74-97-5	Chlorobromomethane	Т	mg/L	8260		*	<0.005		<0.005			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-0984	4	8004-0982	2	8004-479	3	8004-098	33
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, ∈	tc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	T mg/L	8260		*	<0.005		<0.005			*
75-25-2	Tribromomethane	T mg/L	8260		*	<0.005		<0.005			*
74-83-9	Methyl bromide	T mg/L	8260		*	<0.005		<0.005			*
78-93-3	Methyl ethyl ketone	T mg/L	8260		*	<0.01		<0.01			*
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260		*	<0.005		<0.005			*
75-15-0	Carbon disulfide	T mg/L	8260		*	<0.005		<0.005			*
75-00-3	Chloroethane	T mg/L	8260		*	<0.005		<0.005			*
67-66-3	Chloroform	T mg/L	8260		*	<0.001		<0.001			*
74-87-3	Methyl chloride	T mg/L	8260		*	<0.005		<0.005			*
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260		*	<0.001		<0.001			*
74-95-3	Methylene bromide	T mg/L	8260		*	<0.005		<0.005			*
75-34-3	1,1-Dichloroethane	T mg/L	8260		*	<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	T mg/L	8260		*	<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	T mg/L	8260		*	<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260		*	<0.005		<0.005			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260		*	<0.005		<0.005			*
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260		*	<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260		*	<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260		*	<0.005		<0.005			*
75-01-4	Vinyl chloride	T mg/L	8260		*	<0.002		<0.002	*		*
127-18-4	Ethene, Tetrachloro-	T mg/L	8260		*	<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	T mg/L	8260		*	0.0035		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-0982		8004-479	3	8004-098	33
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260		*	<0.005		<0.005			*
591-78-6	2-Hexanone	Т	mg/L	8260		*	<0.01		<0.01			*
74-88-4	Iodomethane	т	mg/L	8260		*	<0.01		<0.01			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.005		<0.005			*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260		*	<0.005		<0.005			*
75-09-2	Dichloromethane	Т	mg/L	8260		*	<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260		*	<0.01		<0.01			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011		*	<0.0002		<0.0002			*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.005		<0.005			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.005		<0.005			*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.005		<0.005			*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260		*	<0.005		<0.005			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005			*
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.18		<0.18			*
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.17		<0.17			*
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.18		<0.18			*
11141-16-5	PCB-1232	Т	ug/L	80 82		*	<0.14		<0.14			*
53469-21-9	PCB-1242	Т	ug/L	80 82		*	<0.1		<0.1			*
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.12		<0.12			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	4	8004-0982		8004-4793		8004-098	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.07		<0.07			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.05		<0.05			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.09		<0.09			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	1.17	*	0.636	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	42.1	*	4.41	*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*	0.00442	*	0.412	*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*	0.77	*B	0.529	*B		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*	65.6	*	-0.345	*		*
14269-63-7	Thorium-230	т	pCi/L	RL-7128		*	-0.00653	*	-0.00688	*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*	313	*	360	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*	<36		<36			*
57-12-5	Cyanide	т	mg/L	9010		*	<0.04		<0.04	*		*
20461-54-5	Iodide	Т	mg/L	345.1		*	<2		<2			*
s0268	Total Organic Carbon	т	mg/L	9060		*	<1		<1			*
s0586	Total Organic Halides	Т	mg/L	9020		*	0.014		0.018			*
		+										
		+										
		+										
	<u> </u>				<u> </u>							

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4820	0	8004-48	318	8004-48	319	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g., M	w−1	L, MW-2, etc	.)	369		370		371		372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/8/2013 08	3:32	10/8/2013	12:27	10/8/2013	09:36	10/9/2013 0)8:51
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW369UG1	-14	MW370U	G1-14	MW371U0	G1-14	MW372UG	1-14
Laboratory San	mple ID Number (if applicable)		C13281029	001	C1328106	59001	C1328102	29002	C13282016	3001		
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis					3	10/9/20	13	10/9/20	13	10/9/201	3
Gradient with	ce of Analysis (Month/Day/Year) For Volatile Organic				UP		UP		UP		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	т	mg/L	9056	36		42		8		47	
16984-48-8	Fluoride	т	mg/L	9214	0.19		0.16		0.3		0.17	
s0595	Nitrate & Nitrite	т	mg/L	9056	<1		1.2		<1		<1	
14808-79-8	Sulfate	т	mg/L	9056	13		19		13		150	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.17		30.17		30.17		30.13	
s0145	Specific Conductance	т	μ MHO/cm	Field	376		430		748		791	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number		8004-4820	0	8004-4818	3	8004-4819		8004-4808	}		
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.66		323.64		339.93		323.68	
N238	Dissolved Oxygen	Т	mg/L	Field	0.99		4.59		1.38		0.83	
s0266	Total Dissolved Solids	Т	mg/L	160.1	228		240		479		481	
s0296	Нд	Т	Units	Field	6.14		6.09		6.61		6.07	
NS215	Eh	T	mV	Field	750		811		544		519	
s0907	Temperature	Т	°C	Field	15.83		18.28		16.72		16	
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2		<0.2		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	<0.001		0.00138		<0.001		0.00309	
7440-39-3	Barium	Т	mg/L	6020	0.385		0.204		0.169		0.0649	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-42-8	Boron	Т	mg/L	6010	<0.2		<0.2		<0.2		1.14	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6010	16.2		27.6		30.2		60.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.0145	*	<0.001	*	<0.001	*	<0.001	*
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7439-89-6	Iron	Т	mg/L	6010	0.303		<0.1		<0.1		0.438	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	6.5		11.1		12		22.8	
7439-96-5	Manganese	Т	mg/L	6020	0.159	*	<0.005	*	<0.005	*	0.0161	*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	D OF MEASURE					8004-482	0	8004-481	18	8004-481	9	8004-480	18
Facility's	Loca	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	369		370		371		372	
CAS RN ⁴		CONSTITUENT	D	OF	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0		Nickel	Т	mg/L	6020	0.00871	*	<0.005	*	<0.005	*	<0.005	*
7440-09-7		Potassium	Т	mg/L	6010	0.519		2.41		0.331		2.19	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		0.00536		<0.005		0.00746	
7440-22-4		Silver	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-23-5		Sodium	Т	mg/L	6010	52.6		37.8		130		61.5	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.001		<0.001		0.00191		<0.001	
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6		Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
67-64-1		Acetone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-02-8		Acrolein	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01		<0.005		<0.01		<0.01	
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5		Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-4820		8004-481	8	8004-48	19	8004-48	08		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0018		0.0018		<0.001		0.0065	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	8	8004-48	19	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g., I	MW-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.001		<0.005		<0.005	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.18		<0.18		<0.18		<0.18	
12674-11-2	PCB-1016	т	ug/L	8082	<0.17		<0.17		<0.17		<0.17	
11104-28-2	PCB-1221	т	ug/L	8082	<0.18		<0.18		<0.18		<0.18	
11141-16-5	PCB-1232	т	ug/L	8082	<0.14		<0.14		<0.14		<0.14	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.1		<0.1		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12		<0.12		<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07		<0.07		<0.07	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05		<0.05		<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09		<0.09		<0.09	
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.55	*	1.57	*	-0.253	*	7.29	*
12587-47-2	Gross Beta	Т	pCi/L	9310	17.3	*	15.1	*	3.97	*D	131	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	0.0651	*	0.191	*	0.196	*	0.202	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.986	*B	0.174	*B	0.0346	*B	0.832	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	29.7	*	27.9	*	-1.44	*	176	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.0511	*	0.0218	*	0.0309	*	-0.02	*
10028-17-8	Tritium	Т	pCi/L	704R6	109	*	99.7	*	401	*	351	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36		<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04		<0.04		<0.04	
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	Т	mg/L	9060	1.3		<1		1.6		1.1	
s0586	Total Organic Halides	Т	mg/L	9020	0.04		0.013		0.01		0.02	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

> LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-09	990	8004-09	85	8004-098	8
Facility's Lo	cal Well or Spring Number (e.g., N	w-1	, MW-2, etc	:.)	373		374		375		376	
Sample Sequenc	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/9/2013 13	3:48	10/9/2013	12:35	10/8/2013	13:39	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG1	-14	MW374U	G1-14	MW375U0	G1-14	NA	
Laboratory San	mple ID Number (if applicable)				C132820410	001	C1328204	41002	C1328106	9002	NA	
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis					3	10/11/2	013	10/9/20	13	NA	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2			*
16887-00-6	Chloride(s)	Т	mg/L	9056	44		88		6.5			*
16984-48-8	Fluoride	Т	mg/L	9214	0.17		0.17		0.28			*
s0595	Nitrate & Nitrite	т	mg/L	9056	<1		<1		1.5			*
14808-79-8	Sulfate	т	mg/L	9056	210		6.6	J	26			*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.13		30.13		30.17			*
s0145	Specific Conductance	Т	μ MH 0/cm	Field	958		739		376			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	3
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	W-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	323.71		333.59		331.87			*
N238	Dissolved Oxygen	Т	mg/L	Field	1.15		2.74		1.22			*
s0266	Total Dissolved Solids	т	mg/L	160.1	590		397		236			*
s0296	На	т	Units	Field	6.08		6.52		6.44			*
NS215	Eh	Т	mV	Field	627		802		600			*
s0907	Temperature	т	°C	Field	18.78		18.89		18			*
7429-90-5	Aluminum	т	mg/L	6020	<0.2		<0.2		<0.2			*
7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-38-2	Arsenic	т	mg/L	7060	0.00132		0.00182		<0.001			*
7440-39-3	Barium	т	mg/L	6020	0.0286		0.162		0.169			*
7440-41-7	Beryllium	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В		*
7440-42-8	Boron	т	mg/L	6010	1.77		<0.2		<0.2			*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6010	76.4		25.5		14.1			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*		*
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02		<0.02			*
7439-89-6	Iron	Т	mg/L	6010	<0.1		<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013			*
7439-95-4	Magnesium	Т	mg/L	6010	28.1		7.14		5.74			*
7439-96-5	Manganese	Т	mg/L	6020	0.0619	*	<0.005	*	0.00541	*		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	D OF MEASURE					8004-479	2	8004-099	90	8004-098	35	8004-098	88
Facility's	Loc	eal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	D	OF	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В		*
7440-02-0		Nickel	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*		*
7440-09-7		Potassium	Т	mg/L	6010	2.84		0.452		0.265			*
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020	0.00663		0.025		<0.005			*
7440-22-4		Silver	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В		*
7440-23-5		Sodium	Т	mg/L	6010	66		145		56.8			*
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02			*
7440-66-6		Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02			*
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01		<0.01		<0.01			*
67-64-1		Acetone	Т	mg/L	8260	<0.01		<0.01		<0.01			*
107-02-8		Acrolein	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J		*
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01			*
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015			*
100-42-5		Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002	*	<0.002	*	<0.002			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0068		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	0	8004-09	85	8004-09	88
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002		<0.0002			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.18		<0.17		<0.17			*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.17		<0.16		<0.16			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.18		<0.17		<0.17			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.14		<0.14		<0.14			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.1		<0.1			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12		<0.12			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07		<0.07			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05		<0.05			*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09		<0.09			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.91	*	3.03	*	-0.0817	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	42.4	D	0.187	*	3.81	*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	-0.372	*	0.435	*	0.0947	*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.439	*B	0.0686	*B	0.355	*B		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	59.9	*	4.2	*	8.05	*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	-0.0478	*	-0.0126	*	-0.0261	*		*
10028-17-8	Tritium	Т	pCi/L	704R6	184	*	260	*	241	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36			*
57-12-5	Cyanide	Т	mg/L	9010	<0.04	*	<0.04	*	<0.04			*
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2		<2			*
s0268	Total Organic Carbon	Т	mg/L	9060	1.1		1.8		<1			*
s0586	Total Organic Halides	Т	mg/L	9020	0.018		0.025		0.016			*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	39	0000-00	00	0000-000	00	0000-000	0
Facility's Loca	al Well or Spring Number (e.g., N	1W−1	1, MW-2, etc	:.)	377		E. BLAN	ΙΚ	F. BLAN	K	T. BLANK	. 1
Sample Sequence	e #				1		1		1		1	
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		Е		F		Т	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		NA		10/14/2013	07:15	10/14/2013	08:53	10/8/2013 0	7:20
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or '	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				NA		RI1UG1	14	FB1UG1-	14	TB1UG1-	14
Laboratory Samp	boratory Sample ID Number (if applicable)						C1328702	2001	C13287022	2002	C13281068	001
Date of Analysi	te of Analysis (Month/Day/Year) For Volatile Organics Analysis						10/15/20	13	10/15/20	13	10/9/201	3
Gradient with n	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9214		*		*		*		*
s0595	S0595 Nitrate & Nitrite T mg/L			9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MHO /cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989	9	0000-0000)	0000-0000		0000-0000)
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рН	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.2		<0.2			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.005		<0.005			*
7440-38-2	Arsenic	т	mg/L	7060		*	<0.001		<0.001			*
7440-39-3	Barium	т	mg/L	6020		*	<0.005		<0.005			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.001	В	<0.001	В		*
7440-42-8	Boron	т	mg/L	6010		*	<0.2		<0.2			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6010		*	<1		<1			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001	*	<0.001	*		*
7440-50-8	Copper	Т	mg/L	6020		*	<0.02		<0.02			*
7439-89-6	Iron	Т	mg/L	6010		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.0013		<0.0013			*
7439-95-4	Magnesium	Т	mg/L	6010		*	<0.025		<0.025			*
7439-96-5	Manganese	Т	mg/L	6020		*	<0.005	*	<0.005	*		*
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-098	19	0000-000	00	0000-000	0	0000-000	00
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	377		E. BLAN	IK	F. BLAN	K	T. BLANK	(1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.001	В	<0.001	В		*
7440-02-0	Nickel	Т	mg/L	6020		*	<0.005	*	<0.005	*		*
7440-09-7	Potassium	Т	mg/L	6010		*	<0.2		<0.2			*
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	Т	mg/L	6020		*	<0.001	В	<0.001	В		*
7440-23-5	Sodium	Т	mg/L	6010		*	<1		<1			*
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.02		<0.02			*
7440-66-6	Zinc	Т	mg/L	6020		*	<0.02		<0.02			*
108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
67-64-1	Acetone	Т	mg/L	8260		*	<0.01		0.011		<0.01	
107-02-8	Acrolein	Т	mg/L	8260		*	<0.01		<0.01		<0.01	J
107-13-1	Acrylonitrile	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260		*	<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000)	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	377		E. BLAN	(F. BLAN	IK	T. BLAN	< 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	T	mg/L	8260		*	<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T	mg/L	8260		*	<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260		*	<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	0	0000-00	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	377		E. BLAN	<	F. BLAN	١K	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.005	J	<0.005	J	<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011		*	<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.18	*	<0.17			*
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.17	*	<0.16			*
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.18	*	<0.17			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.14	*	<0.14			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.1	*	<0.1			*
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.12	*	<0.12			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-000)0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	377		E. BLANK		F. BLAN	K	T. BLANK	ί1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.07	*	<0.07			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.05	*	<0.05			*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.09	*	<0.09			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	-0.824	*	-1.05	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	-0.0715	*	0.564	*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*	-0.0105	*	-0.0385	*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*	-0.222	*B	0.105	*B		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*	6.81	*	4.76	*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*	0.0256	*	0.0151	*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*	380	*	-220	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	Т	mg/L	345.1		*	<2		<2			*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000	0
Facility's Loca	al Well or Spring Number (e.g., N	ſW−1	L, MW-2, etc	:.)	T. BLANK	(2	T. BLANI	≺3	T. BLANK	(4	T. BLANK	. 5
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	Т		Т		Т		Т	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		10/8/2013 1	0:02	10/9/2013 (07:00	10/9/2013 0	7:30	10/14/2013 0	7:10
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				TB2UG1-	14	TB3UG1	-14	TB4UG1-	14	TB5UG1-	14
Laboratory Samp	poratory Sample ID Number (if applicable)						C1328203	9001	C13282042	2001	C13287038	001
Date of Analys:	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					3	10/11/20	13	10/11/20	13	10/15/201	3
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9214		*		*		*		*
s0595				9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MH 0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-0000		0000-0000)
Facility's Lo	cal Well or Spring Number (e.g., MV	I-1, I	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK 4	1	T. BLANK	5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	Нд	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	Т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	т	mg/L	7060		*		*		*		*
7440-39-3	Barium	Т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	Т	mg/L	6020		*		*		*		*
7440-42-8	Boron	Т	mg/L	6010		*		*		*		*
7440-43-9	Cadmium	Т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6010		*		*		*		*
7440-47-3	Chromium	Т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	Т	mg/L	6020		*		*		*		*
7440-50-8	Copper	т	mg/L	6020		*		*		*		*
7439-89-6	Iron	Т	mg/L	6010		*		*		*		*
7439-92-1	Lead	т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	т	mg/L	6010		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	0	0000-000	00	0000-000	0	0000-000)0
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	(3	T. BLANK	4	T. BLANK	(5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*		*
7440-02-0	Nickel	т	mg/L	6020		*		*		*		*
7440-09-7	Potassium	Т	mg/L	6010		*		*		*		*
7440-16-6	Rhodium	Т	mg/L	6020		*		*		*		*
7782-49-2	Selenium	Т	mg/L	6020		*		*		*		*
7440-22-4	Silver	Т	mg/L	6020		*		*		*		*
7440-23-5	Sodium	т	mg/L	6010		*		*		*		*
7440-25-7	Tantalum	т	mg/L	6020		*		*		*		*
7440-28-0	Thallium	Т	mg/L	6020		*		*		*		*
7440-61-1	Uranium	Т	mg/L	6020		*		*		*		*
7440-62-2	Vanadium	Т	mg/L	6020		*		*		*		*
7440-66-6	Zinc	Т	mg/L	6020		*		*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
67-64-1	Acetone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-02-8	Acrolein	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-000	0	0000-000	00	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	cc.)	T. BLANK 2	2	T. BLANK	3	T. BLAN	K 4	T. BLANI	K 5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002	*	<0.002	*	<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000		0000-0000		0000-0000		0000-0000			
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	T. BLANK	2	T. BLANK	3	T. BLANK 4		T. BLANK 5	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	J
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		0000-0000	0	0000-0000		0000-0000		0000-0000			
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	T. BLANK	2	T. BLANK 3		T. BLANK	4	T. BLANK	. 5
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*		*		*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	T	mg/L	345.1		*		*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number		8004-0982	2								
Facility's Lo	cal Well or Spring Number (e.g., M	₩-1	l, MW-2, etc	:.)	366							
Sample Sequen	ce #				2						/	
If sample is a	If sample is a Blank, specify Type: (F) ield, (T) rip, (M) ethod, or (E) quipment											
Sample Date as	nd Time (Month/Day/Year hour: minu	tes)		10/8/2013 12	2:42	`					
Duplicate ("Y	" or "N") ²				Υ							
Split ("Y" or	"N") ³				N							
Facility Samp	le ID Number (if applicable)				MW366DUG	1-14						
Laboratory San	mple ID Number (if applicable)				C132810670	003						
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	Or	ganics Anal	ysis	10/9/2013	3						
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	OWN)	SIDE				\setminus			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VAZUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<2							
16887-00-6	Chloride(s)	т	mg/L	9056	39							
16984-48-8	Fluoride	т	mg/L	9214	0.17							
S0595	Nitrate & Nitrite	т	mg/L	9056	<1							
14808-79-8	Sulfate	т	mg/L	9056	44							
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.17							
S0145	Specific Conductance	т	μ MH0/cm	Field	447							

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-0982	2								
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	W-2, BLANK-	F, etc.)	366							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.59							
N238	Dissolved Oxygen	т	mg/L	Field	2.47							
S0266	Total Dissolved Solids	т	mg/L	160.1	260							
S0296	рН	т	Units	Field	6.17			/				
NS215	Eh	т	mV	Field	503							
s0907	Temperature	т	°C	Field	17.17							
7429-90-5	Aluminum	т	mg/L	6020	<0.2							
7440-36-0	Antimony	т	mg/L	6020	<0.005							
7440-38-2	Arsenic	т	mg/L	7060	0.00132				X			
7440-39-3	Barium	т	mg/L	6020	0.165				/ \			
7440-41-7	Beryllium	т	mg/L	6020	<0.001	В						
7440-42-8	Boron	т	mg/L	6010	<0.2							
7440-43-9	Cadmium	т	mg/L	6020	<0.001							
7440-70-2	Calcium	т	mg/L	6010	27.5							
7440-47-3	Chromium	т	mg/L	6020	<0.01							
7440-48-4	Cobalt	т	mg/L	6020	<0.001	*		<u>/</u>				
7440-50-8	Copper	Т	mg/L	6020	<0.02							
7439-89-6	Iron	Т	mg/L	6010	<0.1							
7439-92-1	Lead	Т	mg/L	6020	<0.0013							
7439-95-4	Magnesium	Т	mg/L	6010	11.5							
7439-96-5	Manganese	Т	mg/L	6020	0.0312	*						
7439-97-6	Mercury	T	mg/L	7470	<0.0002		/					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ , Facility Well/Spring Number					8004-098	2							
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	366							
CAS RN⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001	В						
7440-02-0		Nickel	Т	mg/L	6020	<0.005	*						
7440-09-7		Potassium	Т	mg/L	6010	1.74							
7440-16-6		Rhodium	Т	mg/L	6020	<0.005							
7782-49-2		Selenium	T	mg/L	6020	0.00672							
7440-22-4		Silver	T	mg/L	6020	<0.001	В						
7440-23-5		Sodium	Т	mg/L	6010	41.7							
7440-25-7		Tantalum	Т	mg/L	6020	<0.005							
7440-28-0		Thallium	Т	mg/L	6020	<0.002				X			
7440-61-1		Uranium	Т	mg/L	6020	<0.001							
7440-62-2		Vanadium	Т	mg/L	6020	<0.02							
7440-66-6		Zinc	Т	mg/L	6020	<0.02							
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01							
67-64-1		Acetone	Т	mg/L	8260	<0.01							
107-02-8		Acrolein	Т	mg/L	8260	<0.01	J						
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01							
71-43-2		Benzene	Т	mg/L	8260	<0.005							
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005							
1330-20-7		Xylenes	Т	mg/L	8260	<0.015							
100-42-5		Styrene	Т	mg/L	8260	<0.005							
108-88-3		Toluene	Т	mg/L	8260	<0.005							
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0982							
Facility's Loca	al Well or Spring Number (e.g., 1	MW-1	L, MW -2, et	.c.)	366							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005							
75-25-2	Tribromomethane	T	mg/L	8260	<0.005							
74-83-9	Methyl bromide	T	mg/L	8260	<0.005							
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01							
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005					/	,	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005							
75-00-3	Chloroethane	Т	mg/L	8260	<0.005							
67-66-3	Chloroform	T	mg/L	8260	<0.001							
74-87-3	Methyl chloride	T	mg/L	8260	<0.005				X			
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001				/ \			
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005							
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001						\	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001							
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		,					
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001							
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005							
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002							
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0031		/					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-098	2								
Facility's Loc	al Well or Spring Number (e.g., M	W −1	L, MW-2, et	.c.)	366							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005							
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01							
74-88-4	Iodomethane	т	mg/L	8260	<0.01							
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005							
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005							
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01					/		
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002							
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005				X			
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005							
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005							
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005				/			
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005							
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005							
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005							
1336-36-3	PCB,Total	Т	ug/L	8082	<0.18							
12674-11-2	PCB-1016	Т	ug/L	8082	<0.17							
11104-28-2	PCB-1221	Т	ug/L	8082	<0.18							
11141-16-5	PCB-1232	т	ug/L	8082	<0.14							
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1							
12672-29-6	PCB-1248	т	ug/L	8082	<0.12		/					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-0982							$\overline{}$
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	366							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.07							
11096-82-5	PCB-1260	T	ug/L	8082	<0.05							
11100-14-4	PCB-1268	T	ug/L	8082	<0.09							
12587-46-1	Gross Alpha	T	pCi/L	9310	2.99	*				/		
12587-47-2	Gross Beta	т	pCi/L	9310	41.4	*						
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*						
13982-63-3	Radium-226	т	pCi/L	RL-7129	0.139	*						
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.828	*B						
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	57.7	*						
14269-63-7	Thorium-230	т	pCi/L	RL-7128	-0.0151	*						
10028-17-8	Tritium	т	pCi/L	704R6	259	*						
S0130	Chemical Oxygen Demand	т	mg/L	410.4	<36				/			
57-12-5	Cyanide	т	mg/L	9010	<0.04							
20461-54-5	Iodide	т	mg/L	345.1	<2							
S0268	Total Organic Carbon	Т	mg/L	9060	<1		/					
S0586	Total Organic Halides	Т	mg/L	9020	0.014							
											,	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4798 MW357	MW357UG1-14	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.771. Rad error is 0.69.
		Gross beta		TPU is 4.27. Rad error is 3.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.225. Rad error is 0.0969.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.163. Rad error is 0.0976.
		Technetium-99		TPU is 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.126. Rad error is 0.0584.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 606. Rad error is 606.
		Cyanide	*	Duplicate analysis not within control limits.
8004-4799 MW358	MW358UG1-14	Cobalt	Χ	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.639. Rad error is 0.575.
		Gross beta		TPU is 4.48. Rad error is 3.22.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.276. Rad error is 0.224.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.207. Rad error is 0.123.
		Technetium-99		TPU is 12.5. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.131. Rad error is 0.0679.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 624. Rad error is 620.
		Cyanide	*	Duplicate analysis not within control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	•	Bromide	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sampl was collected.
		рН		During sampling, the well went dry; therefore, no sampl was collected.
		Eh		During sampling, the well went dry; therefore, no sampl was collected.
		Temperature		During sampling, the well went dry; therefore, no sampl was collected.
		Aluminum		During sampling, the well went dry; therefore, no sampl was collected.
		Antimony		During sampling, the well went dry; therefore, no sampl was collected.
		Arsenic		During sampling, the well went dry; therefore, no sampl was collected.
		Barium		During sampling, the well went dry; therefore, no sampl was collected.
		Beryllium		During sampling, the well went dry; therefore, no sampl was collected.
		Boron		During sampling, the well went dry; therefore, no sampl was collected.
		Cadmium		During sampling, the well went dry; therefore, no sampl was collected.
		Calcium		During sampling, the well went dry; therefore, no sampl was collected.
		Chromium		During sampling, the well went dry; therefore, no sampl was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	·	Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sampl was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sampl was collected.
		Thallium		During sampling, the well went dry; therefore, no sampl was collected.
		Uranium		During sampling, the well went dry; therefore, no sampl was collected.
		Vanadium		During sampling, the well went dry; therefore, no sampl was collected.
		Zinc		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sampl was collected.
		Acetone		During sampling, the well went dry; therefore, no sampl was collected.
		Acrolein		During sampling, the well went dry; therefore, no sampl was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sampl was collected.
		Benzene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampling was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
	Styrene Toluene	Styrene		During sampling, the well went dry; therefore, no sampl was collected.
		Toluene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description		
004-0981 MW359		Tribromomethane	3	During sampling, the well went dry; therefore, no sample was collected.		
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.		
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.		
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.		
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.		
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.		
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.		
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.		
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.		
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.		
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.		
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.		
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sampl was collected.		
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.		
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.		
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.		
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.		
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampling was collected.		
		Vinyl chloride		During sampling, the well went dry; therefore, no sampl was collected.		
		Tetrachloroethene		During sampling, the well went dry; therefore, no sampl was collected.		
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.		
		Ethylbenzene		During sampling, the well went dry; therefore, no samplwas collected.		
				2-Hexanone		During sampling, the well went dry; therefore, no samplwas collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.		
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.		
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.		

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	·	Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359		Thorium-230		During sampling, the well went dry; therefore, no sampl was collected.
		Tritium		During sampling, the well went dry; therefore, no sampl was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sampl was collected.
		Cyanide		During sampling, the well went dry; therefore, no sampl was collected.
		lodide		During sampling, the well went dry; therefore, no sampl was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sampl was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sampl was collected.
004-4800 MW360 MW360	MW360UG1-14	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.318. Rad error is 0.301.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.813. Rad error is 0.697.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.241. Rad error is 0.181.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0863. Rad error is 0.0529.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.8. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.136. Rad error is 0.0764.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 606. Rad error is 606.
		Cyanide	*	Duplicate analysis not within control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4795 MW361	MW361UG1-14	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.797. Rad error is 0.736.
		Gross beta		TPU is 5.37. Rad error is 3.72.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.231. Rad error is 0.152.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0141. Rad error is 0.0089.
		Technetium-99		TPU is 13.3. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.163. Rad error is 0.117.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 560. Rad error is 560.
		Cyanide	*	Duplicate analysis not within control limits.
3004-0986 MW362	MW362UG1-14	Cobalt	Χ	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.401. Rad error is 0.374.
		Gross beta		TPU is 1.22. Rad error is 1.03.
		lodine-131		OB; æqî • ã ⁄n[, -Á&[} • œãč ^} oÁ; [oÁ^~ ˇ ã^^å Áæ) å Á; [oÁ,^¦-{; { ^å É
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.243. Rad error is 0.182.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0856. Rad error is 0.0552.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.124. Rad error is 0.00398.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 610. Rad error is 610.
		Cyanide	*	Duplicate analysis not within control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4796 MW363	MW363UG1-14	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.493. Rad error is 0.453.
		Gross beta		TPU is 1.94. Rad error is 1.57.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.234. Rad error is 0.17.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.111. Rad error is 0.0674.
		Technetium-99		TPU is 12.1. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.13. Rad error is 0.0661.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 619. Rad error is 617.
		Total Organic Carbon	Χ	Other specific flags and footnotes may be required to properly define the results.
3004-4797 MW364	MW364UG1-14	Cobalt	Χ	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.956. Rad error is 0.838.
		Gross beta		TPU is 6.08. Rad error is 4.06.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.201. Rad error is 0.123.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.278. Rad error is 0.164.
		Technetium-99		TPU is 13.1. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.224. Rad error is 0.192.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 604. Rad error is 604.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	•	Bromide	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sampl was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sampl was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sampl was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no samplwas collected.
		Lead		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	•	Magnesium	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sampl was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampli was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampling was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samplwas collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	·	Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring	Facility			
Point	Sample ID	Constituent	Flag	Description
8004-0984 MW365		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
8004-0982 MW366	MW366UG1-14	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.525. Rad error is 0.466.
		Gross beta		TPU is 6.1. Rad error is 4.07.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.273. Rad error is 0.00884.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.26. Rad error is 0.153.
		Technetium-99		TPU is 13.7. Rad error is 13.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0674.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 615. Rad error is 614.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
	MW367UG1-14	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.354. Rad error is 0.328.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.901. Rad error is 0.765.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.338. Rad error is 0.293.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.179. Rad error is 0.106.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.159. Rad error is 0.0667.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 613. Rad error is 612.
		Cyanide	*	Duplicate analysis not within control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description										
004-0983 MW368	•	Bromide	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.										
		Chloride		During sampling, the well went dry; therefore, no sample was collected.										
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.										
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.										
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.										
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.										
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.										
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.										
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.										
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.										
		рН		During sampling, the well went dry; therefore, no sample was collected.										
		Eh		During sampling, the well went dry; therefore, no sampl was collected.										
		Temperature		During sampling, the well went dry; therefore, no samplwas collected.										
		Aluminum		During sampling, the well went dry; therefore, no samplwas collected.										
		Antimony		During sampling, the well went dry; therefore, no sampl was collected.										
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.										
		Barium		During sampling, the well went dry; therefore, no sample was collected.										
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.										
												Boron		During sampling, the well went dry; therefore, no sample was collected.
							Cadmium		During sampling, the well went dry; therefore, no sample was collected.					
		Calcium		During sampling, the well went dry; therefore, no sample was collected.										
		Chromium		During sampling, the well went dry; therefore, no samplwas collected.										
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.										
		Copper		During sampling, the well went dry; therefore, no sample was collected.										
		Iron		During sampling, the well went dry; therefore, no sample was collected.										
		Lead		During sampling, the well went dry; therefore, no sampling was collected.										

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368		Magnesium	- 3	During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.
		Potassium		During sampling, the well went dry; therefore, no sampl was collected.
		Rhodium		During sampling, the well went dry; therefore, no sampl was collected.
		Selenium		During sampling, the well went dry; therefore, no samplwas collected.
		Silver		During sampling, the well went dry; therefore, no sampl was collected.
		Sodium		During sampling, the well went dry; therefore, no sampl was collected.
		Tantalum		During sampling, the well went dry; therefore, no sampl was collected.
		Thallium		During sampling, the well went dry; therefore, no sampl was collected.
		Uranium		During sampling, the well went dry; therefore, no sampl was collected.
		Vanadium		During sampling, the well went dry; therefore, no sampl was collected.
		Zinc		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sampl was collected.
		Acetone		During sampling, the well went dry; therefore, no sampl was collected.
		Acrolein		During sampling, the well went dry; therefore, no sampl was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sampl was collected.
		Benzene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampl was collected.
		Styrene		During sampling, the well went dry; therefore, no sampl was collected.
		Toluene		During sampling, the well went dry; therefore, no sampl was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368	·	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samplwas collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	•	Dichloromethane	<u> </u>	During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring	Facility	0.000	E1.	Providetto
Point	Sample ID	Constituent	Flag	Description
8004-0983 MW368		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
8004-4820 MW369	MW369UG1-14	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.19. Rad error is 1.06.
		Gross beta		TPU is 2.94. Rad error is 2.27.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	TU	Indicates analyte/nuclide was analyzed for, but not detected. Tracer recovery is < or equal to 30% or > or equal to 105%. TPU is 0.267. Rad error is 0.13.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.33. Rad error is 0.192.
		Technetium-99		TPU is 12.5. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.14. Rad error is 0.0823.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 605. Rad error is 605.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4818 MW370	MW370UG1-14	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	X	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.776. Rad error is 0.704.
		Gross beta		TPU is 2.62. Rad error is 2.05.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.334. Rad error is 0.293.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0603. Rad error is 0.0372.
		Technetium-99		TPU is 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.131. Rad error is 0.0678.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 606. Rad error is 606.
8004-4819 MW371	MW371UG1-14	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.184. Rad error is 0.169.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.687. Rad error is 0.635.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.251. Rad error is 0.193.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0121. Rad error is 0.00756.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.4. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.137. Rad error is 0.0774.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 614. Rad error is 612.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4808 MW372 MW372UG1-1	•	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.49. Rad error is 1.98.
		Gross beta		TPU is 16.3. Rad error is 8.18.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.232. Rad error is 0.168.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.278. Rad error is 0.162.
		Technetium-99		TPU is 17.2. Rad error is 16.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.123. Rad error is 0.0405.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 619. Rad error is 618.
3004-4792 MW373	MW373UG1-14	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.539. Rad error is 0.47.
		Gross beta		TPU is 5.09. Rad error is 4.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	TU	Indicates analyte/nuclide was analyzed for, but not detected. Tracer recovery is < or equal to 30% or > or equal to 105%. TPU is 0.515. Rad error is 0.49.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.149. Rad error is 0.0895.
		Technetium-99		TPU is 13.5. Rad error is 13.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.127. Rad error is 0.0152.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 607. Rad error is 606.
		Cyanide	*	Duplicate analysis not within control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0990 MW374	MW374UG1-14	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
	Manganese	Х	Other specific flags and footnotes may be required to properly define the results.	
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.6. Rad error is 1.47.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0432. Rad error is 0.0382.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.301. Rad error is 0.251.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0239. Rad error is 0.0149.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.6. Rad error is 11.6.
	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.148. Rad error is 0.0552.	
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 613. Rad error is 613.
		Cyanide	*	Duplicate analysis not within control limits.
3004-0985 MW375	MW375UG1-14	Cobalt	X	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0502. Rad error is 0.0472.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.795. Rad error is 0.681.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.224. Rad error is 0.158.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.121. Rad error is 0.0735.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.123. Rad error is 0.0282.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 610. Rad error is 610.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description						
004-0988 MW376	•	Bromide	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.						
		Chloride		During sampling, the well went dry; therefore, no sample was collected.						
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.						
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.						
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.						
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.						
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.						
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.						
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.						
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.						
		рН		During sampling, the well went dry; therefore, no sample was collected.						
		Eh		During sampling, the well went dry; therefore, no sampl was collected.						
		Temperature		During sampling, the well went dry; therefore, no samplwas collected.						
		Aluminum		During sampling, the well went dry; therefore, no sampling was collected.						
		Antimony		During sampling, the well went dry; therefore, no sampl was collected.						
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.						
		Barium		During sampling, the well went dry; therefore, no sample was collected.						
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.						
								Boron		During sampling, the well went dry; therefore, no samplwas collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.						
		Chromium		During sampling, the well went dry; therefore, no sampli was collected.						
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.						
		Copper		During sampling, the well went dry; therefore, no sample was collected.						
		Iron		During sampling, the well went dry; therefore, no sample was collected.						
		Lead		During sampling, the well went dry; therefore, no sampling was collected.						

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Magnesium	V	During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sampl was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sampli was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampling was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376	•	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samplwas collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	·	Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Thorium-230		During sampling, the well went dry; therefore, no sampling was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sampl was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no samp was collected.
		Sulfate		During sampling, the well went dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no samp was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no samp was collected.
		рН		During sampling, the well went dry; therefore, no samp was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no samp was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no samp was collected.
		Cobalt		During sampling, the well went dry; therefore, no samp was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Magnesium	- U	During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sampl was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sampling was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samplwas collected.
		Xylenes		During sampling, the well went dry; therefore, no sampling was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampling was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	·	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samplwas collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampling was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		Iodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1UG1-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Cobalt	Χ	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1016	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1221	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1232	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1242	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1248	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1254	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1260	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1268	Χ	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.646. Rad error is 0.623.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0166. Rad error is 0.0147.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.199. Rad error is 0.021.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0789. Rad error is 0.0507.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1UG1-14	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.135. Rad error is 0.0738.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 614. Rad error is 612.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide Total Organic Carbon		Analysis of constituent not required and not performed.
				Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

DOC-0000 QC FB1UG1-14 Bromide Analysis of constituent not required and not performe Fluoride Analysis of constituent not required and not performe Analysis of constituent not required and not performe Nitrate & Nitrite Analysis of constituent not required and not performe Sulfate Analysis of constituent not required and not performe Analysis of constituent not required	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
Fluoride Nitrate & Nitrite Nitrate & Nitrite Nitrate & Nitrite Nitrate & Nitrite Sulfate Barometric Pressure Reading Specific Conductance Static Water Level Elevation Dissolved Oxygen Total Dissolved Solids Analysis of constituent not required and not performe Ana	0000-0000 QC	FB1UG1-14	Bromide		Analysis of constituent not required and not performed
Nitrate & Nitrite Sulfate Analysis of constituent not required and not performe Surface Barometric Pressure Reading Specific Conductance Static Water Level Elevation Dissolved Oxygen Total Dissolved Solids PH Analysis of constituent not required and not performe A			Chloride		Analysis of constituent not required and not performed
Sulfate Analysis of constituent not required and not performe Analysis of constituent not required and			Fluoride		Analysis of constituent not required and not performed
Barometric Pressure Reading Specific Conductance Static Water Level Elevation Dissolved Oxygen Analysis of constituent not required and not performe Analysi			Nitrate & Nitrite		Analysis of constituent not required and not performed
Specific Conductance Static Water Level Elevation Dissolved Oxygen Analysis of constituent not required and not performe Bh Analysis of constituent not required and not performe Analysis of constituent not required and not performe Analysis of constituent not required and not performe Cobalt X Other specific flags and footnotes may be required to properly define the results. Manganese X Other specific flags and footnotes may be required to properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.186. Rad error is 0.859. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.128. Rad error is 0.113. Analysis of constituent not required and not performe to the constituent not required and not performe of the const			Sulfate		Analysis of constituent not required and not performed
Static Water Level Elevation Dissolved Oxygen Analysis of constituent not required and not performe Total Dissolved Solids Analysis of constituent not required and not performe Ph Analysis of constituent not required and not performe Cobalt X Other specific flags and footnotes may be required to properly define the results. Manganese X Other specific flags and footnotes may be required to properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.886. Rad error is 0.859. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.128. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.131. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.134. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.13. Rad error is 11.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.087. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.595. Rad error is 0.0687. Tritium Analysis of constituent not required and not performe			Barometric Pressure Reading		Analysis of constituent not required and not performed
Dissolved Oxygen Total Dissolved Solids Analysis of constituent not required and not performe pH Analysis of constituent not required and not performe Eh Analysis of constituent not required and not performe Cobalt X Other specific flags and footnotes may be required to properly define the results. Manganese X Other specific flags and footnotes may be required to properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.886. Rad error is 0.859. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0364. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.131. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.3344. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0256. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.595. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 0.0687. Tritium Analysis of constituent not required and not performe Analysis of constituent not required and not performe Cyanide Analysis of constituent not required and not performe			Specific Conductance		Analysis of constituent not required and not performed
Total Dissolved Solids pH Analysis of constituent not required and not performe Eh Analysis of constituent not required and not performe Temperature Analysis of constituent not required and not performe Cobalt X Other specific flags and footnotes may be required to properly define the results. Manganese X Other specific flags and footnotes may be required to properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.886. Rad error is 0.859. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.128. Rad error is 0.113. Analysis of constituent not required and not performe Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0364. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.13. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.13. Rad error is 0.0887. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0887. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 595. Chemical Oxygen Demand Cyanide Analysis of constituent not required and not performe Total Organic Carbon Analysis of constituent not required and not performe			Static Water Level Elevation		Analysis of constituent not required and not performed
PH Analysis of constituent not required and not performe Eh Analysis of constituent not required and not performe Temperature Analysis of constituent not required and not performe Cobalt X Other specific flags and footnotes may be required to properly define the results. Manganese X Other specific flags and footnotes may be required to properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Gross alpha Unicates analyte/nuclide was analyzed for, but not detected. TPU is 0.886. Rad error is 0.859. Gross beta Unicates analyte/nuclide was analyzed for, but not detected. TPU is 0.128. Rad error is 0.113. Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.181. Rad error is 0.0769. Strontium-90 Unicates analyte/nuclide was analyzed for, but not detected. TPU is 0.084. Rad error is 0.0226. Technetium-99 Unicates analyte/nuclide was analyzed for, but not detected. TPU is 0.084. Rad error is 0.0226. Technetium-99 Unicates analyte/nuclide was analyzed for, but not detected. TPU is 0.131. Rad error is 0.0226. Thorium-230 Unicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium Unicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium Unicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium Unicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Analysis of constituent not required and not performe			Dissolved Oxygen		Analysis of constituent not required and not performed
Eh Analysis of constituent not required and not performe Temperature Analysis of constituent not required and not performe Cobalt X Other specific flags and footnotes may be required to properly define the results. Manganese X Other specific flags and footnotes may be required to properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.886. Rad error is 0.859. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.128. Rad error is 0.113. Analysis of constituent not required and not performe Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.084. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0364. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 11.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0887. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.135. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.135. Rad error is 0.0687. Analysis of constituent not required and not performe			Total Dissolved Solids		Analysis of constituent not required and not performed
Temperature Cobalt X Other specific flags and footnotes may be required to properly define the results. Manganese X Other specific flags and footnotes may be required to properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.886. Rad error is 0.859. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.128. Rad error is 0.113. Analysis of constituent not required and not performe detected. TPU is 0.181. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 0.0887. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 50.58. Rad error is 50.56. Chemical Oxygen Demand Cyanide Analysis of constituent not required and not performe Analysis of constituent not required and not performe			рН		Analysis of constituent not required and not performed
Cobalt X Other specific flags and footnotes may be required to properly define the results. Manganese X Other specific flags and footnotes may be required to properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.886. Rad error is 0.859. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.128. Rad error is 0.113. Iodine-131 Analysis of constituent not required and not performe Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.181. Rad error is 0.0769. Istrontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0364. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 0.0226. Technetium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 10.087. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 595. Chemical Oxygen Demand Cyanide Analysis of constituent not required and not performe analysis of c			Eh		Analysis of constituent not required and not performed
properly define the results. Manganese X Other specific flags and footnotes may be required to properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.886. Rad error is 0.859. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.128. Rad error is 0.113. Iodine-131 Analysis of constituent not required and not performe Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.181. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0364. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.3. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 595. Chemical Oxygen Demand Cyanide Analysis of constituent not required and not performe Analysis of constituent not required and not performe			Temperature		Analysis of constituent not required and not performed
Properly define the results. Nickel X Other specific flags and footnotes may be required to properly define the results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.886. Rad error is 0.859. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.128. Rad error is 0.113. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.181. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0364. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.13. Rad error is 11.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 595. Chemical Oxygen Demand Cyanide Analysis of constituent not required and not performed Analysis of constituent not required and not performed Cyanide Analysis of constituent not required and not performed Cyanide Analysis of constituent not required and not performed Cyanide Analysis of constituent not required and not performed Cyanide			Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.886. Rad error is 0.859. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.128. Rad error is 0.113. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.181. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0364. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 10.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 595. Chemical Oxygen Demand Cyanide Analysis of constituent not required and not performe Total Organic Carbon Analysis of constituent not required and not performe			Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
detected. TPU is 0.886. Rad error is 0.859. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.128. Rad error is 0.113. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.181. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0364. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.95. Rad error is 595. Chemical Oxygen Demand Cyanide Analysis of constituent not required and not performe Total Organic Carbon Analysis of constituent not required and not performe			Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
detected. TPU is 0.128. Rad error is 0.113. Iodine-131 Analysis of constituent not required and not performe Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.181. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0364. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 595. Chemical Oxygen Demand Analysis of constituent not required and not performe Total Organic Carbon Analysis of constituent not required and not performe			Gross alpha	U	
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.181. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0364. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 595. Chemical Oxygen Demand Cyanide Analysis of constituent not required and not performe Analysis of constituent not required and not performe			Gross beta	U	
detected. TPU is 0.181. Rad error is 0.0769. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0364. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 595. Chemical Oxygen Demand Cyanide Analysis of constituent not required and not performed. Total Organic Carbon Analysis of constituent not required and not performed.			lodine-131		Analysis of constituent not required and not performed
detected. TPÚ is 0.0364. Rad error is 0.0226. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 595. Chemical Oxygen Demand Cyanide Analysis of constituent not required and not performe Analysis of constituent not required and not performe Analysis of constituent not required and not performe			Radium-226	U	
detected. TPÜ is 11.3. Rad error is 11.3. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 595. Chemical Oxygen Demand Cyanide Total Organic Carbon Analysis of constituent not required and not performed analysis of constituent not required a			Strontium-90	U	
detected. TPÚ is 0.132. Rad error is 0.0687. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 595. Chemical Oxygen Demand Cyanide Analysis of constituent not required and not performe Total Organic Carbon Analysis of constituent not required and not performe			Technetium-99	U	
detected. TPU is 595. Rad error is 595. Chemical Oxygen Demand Analysis of constituent not required and not performe Cyanide Analysis of constituent not required and not performe Total Organic Carbon Analysis of constituent not required and not performe			Thorium-230	U	
Cyanide Analysis of constituent not required and not performe Total Organic Carbon Analysis of constituent not required and not performe			Tritium	U	
Total Organic Carbon Analysis of constituent not required and not performe			Chemical Oxygen Demand		Analysis of constituent not required and not performed
			Cyanide		Analysis of constituent not required and not performed
Total Organic Halides Analysis of constituent not required and not performe			Total Organic Carbon		Analysis of constituent not required and not performed
			Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG1-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG1-14	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG1-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG1-14	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG1-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG1-14	Zinc		Analysis of constituent not required and not performed.
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
	Cyanide		Analysis of constituent not required and not performed.	
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG1-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рH		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
	Tantalum		Analysis of constituent not required and not performe	
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG1-14	Zinc		Analysis of constituent not required and not performed.
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
	Cyanide		Analysis of constituent not required and not performed.	
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

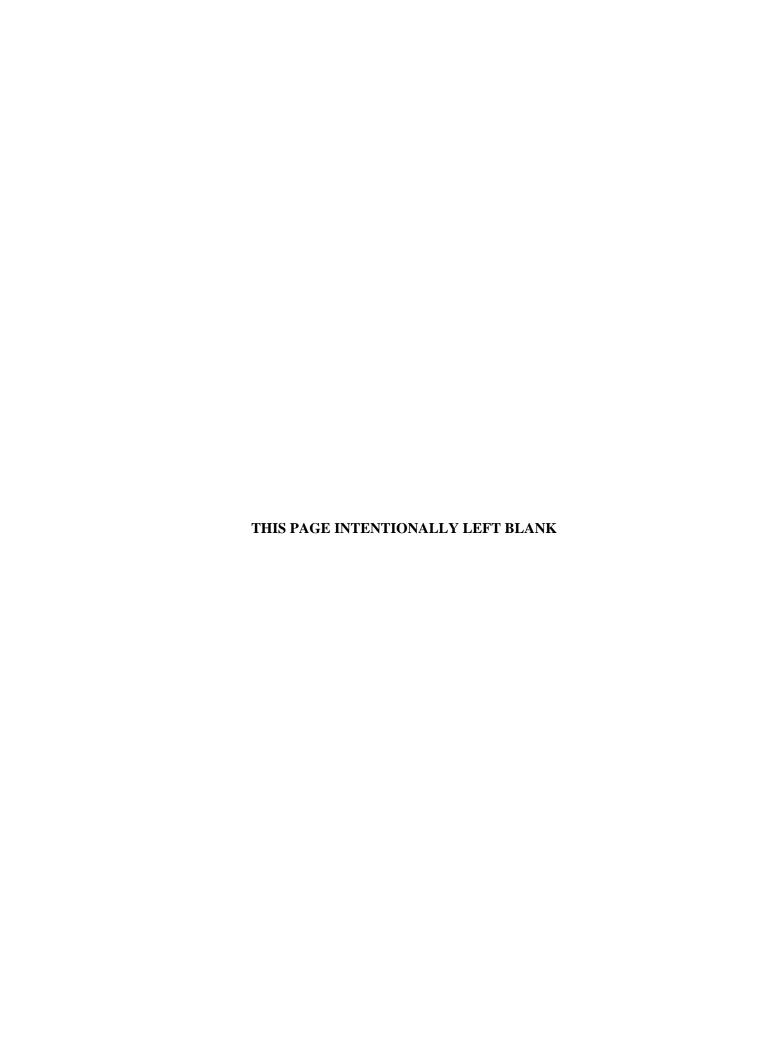
Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB5UG1-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed


Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5UG1-14	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed
8004-0982 MW366	MW366DUG1-14	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.26. Rad error is 1.09.
		Gross beta		TPU is 6.02. Rad error is 4.03.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.212. Rad error is 0.14.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.278. Rad error is 0.162.
		Technetium-99		TPU is 13.4. Rad error is 13.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.129. Rad error is 0.0503.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 612. Rad error is 612.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Permit Number: 073-00045

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2013 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the statistician.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data included two background wells for comparison with at least three test wells or sidegradient wells (Exhibit 1). The fourth quarter 2013 data used to conduct the statistical analyses was collected in October 2013. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals with established maximum contaminant levels (MCLs), no statistical analysis was performed. Parameters that have MCLs can be found in 401 KAR 47:030, Section 6. For parameters with no established MCL, the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. Results of the one-sided tolerance interval statistical test conclude whether the data show a statistically significant increase of concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the data for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant increase in concentration compared to the background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The tolerance limit (TL) was calculated for the background data.
 - For each parameter, the background data were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be potentially normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well has increased concentration with respect to background data.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit 2 presents the parameters from the available data set and the statistical test performed using the one-sided tolerance interval.

Excluding parameters that have an MCL, Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, fourth quarter 2013. The observations that are listed are not background data. Background data are presented on pages D-22 through D-78. The sampling dates associated with background data are listed next to the result on pages D-22 through D-78. When field duplicate data are available, the higher of the two readings is retained for further evaluation.

lower $TL = X - (K \times S)$

.

 $^{^1}$ For pH, two-sided TL (upper and lower) were calculated with an adjusted K factor using the following equations: upper TL = X + (K \times S)

Exhibit 1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Aquifer
MW357	TW	URGA
MW358	TW	LRGA
MW359*	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365*	TW	UCRS
MW366	SG	URGA
MW367	SG	LRGA
MW368*	SG	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374	BG	UCRS
MW375	SG	UCRS
MW376*	SG	UCRS
MW377*	SG	UCRS

BG: upgradient or background wells
TW: downgradient or test wells
SG: sidegradient wells
*Well was dry this quarter, and a groundwater sample could not be collected.

Exhibit 2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test

Parameters Aluminum Boron Calcium Chloride Cobalt Conductivity Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Nickel Oxidation-Reduction Potential PCB-1242 рН* Potassium Sodium Sulfate Technetium-99 Total Organic Carbon (TOC) Total Organic Halides (TOX) Uranium

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if statistically significant deviations exist in concentrations with respect to upgradient well data.

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	0	4	0	no
1,1,2,2-Tetrachloroethane	4	0	4	0	no
1,1,2-Trichloroethane	4	0	4	0	no
1,1-Dichloroethane	4	0	4	0	no
1,2,3-Trichloropropane	4	0	4	0	no
1,2-Dibromo-3-chloropropane	4	0	4	0	no
1,2-Dibromoethane	4	0	4	0	no
1,2-Dichlorobenzene	4	0	4	0	no
1,2-Dichloropropane	4	0	4	0	no
2-Butanone	4	0	4	0	no
2-Hexanone	4	0	4	0	no
4-Methyl-2-pentanone	4	0	4	0	no
Acetone	4	0	4	0	no
Acrolein	4	0	4	0	no
Acrylonitrile	4	0	4	0	no
Aluminum	4	0	3	1	YES
Antimony	4	0	4	0	no
Beryllium	4	0	4	0	no
Boron	4	0	4	0	no
Bromide	4	0	4	0	no
Bromochloromethane	4	0	4	0	no
Bromodichloromethane	4	0	4	0	no
Bromoform	4	0	4	0	no
Bromomethane	4	0	4	0	no
Calcium	4	0	0	4	YES
Carbon disulfide	4	0	4	0	no
Chemical Oxygen Demand (COD)	4	0	4	0	no
Chloride	4	0	0	4	YES
Chlorobenzene	4	0	4	0	no
Chloroethane	4	0	4	0	no
Chloroform	4	0	4	0	no
Chloromethane	4	0	4	0	no
cis-1,2-Dichloroethene	4	0	4	0	no
cis-1,3-Dichloropropene	4	0	4	0	no
Cobalt	4	0	4	0	no
Conductivity	4	0	0	4	YES
Copper	4	0	4	0	no
Cyanide	4	0	4	0	no
Dibromochloromethane	4	0	4	0	no
Dibromomethane	4	0	4	0	no

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total	4	0	4	0	no
Dissolved Oxygen	4	0	0	4	YES
Dissolved Solids	4	0	0	4	YES
Ethylbenzene	4	0	4	0	no
Iodide	4	0	4	0	no
Iodomethane	4	0	4	0	no
Iron	4	0	3	1	YES
Magnesium	4	0	0	4	YES
Manganese	4	0	2	2	YES
Methylene chloride	4	0	4	0	no
Molybdenum	4	0	4	0	no
Nickel	4	0	4	0	no
Oxidation-Reduction Potential	4	0	0	4	YES
PCB, Total	4	0	4	0	no
PCB-1016	4	0	4	0	no
PCB-1221	4	0	4	0	no
PCB-1232	4	0	4	0	no
PCB-1242	4	0	4	0	no
PCB-1248	4	0	4	0	no
PCB-1254	4	0	4	0	no
PCB-1260	4	0	4	0	no
PCB-1268	4	0	4	0	no
pН	4	0	0	4	YES
Potassium	4	0	0	4	YES
Radium-226	4	0	4	0	no
Rhodium	4	0	4	0	no
Sodium	4	0	0	4	YES
Styrene	4	0	4	0	no
Sulfate	4	0	0	4	YES
Tantalum	4	0	4	0	no
Technetium-99	4	0	4	0	no
Tetrachloroethene	4	0	4	0	no
Thallium	4	0	4	0	no
Thorium-230	4	0	4	0	no
Toluene	4	0	4	0	no
Total Organic Carbon (TOC)	4	0	1	3	YES
Total Organic Halides (TOX)	4	0	0	4	YES
trans-1,2-Dichloroethene	4	0	4	0	no
trans-1,3-Dichloropropene	4	0	4	0	no
trans-1,4-Dichloro-2-butene	4	0	4	0	no

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Trichlorofluoromethane	4	0	4	0	no
Uranium	4	0	2	2	YES
Vanadium	4	0	4	0	no
Vinyl acetate	4	0	4	0	no
Zinc	4	0	4	0	no

Bold denotes parameters with at least one uncensored observation.

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	no
1,1,2,2-Tetrachloroethane	6	0	6	0	no
1,1,2-Trichloroethane	6	0	6	0	no
1,1-Dichloroethane	6	0	6	0	no
1,2,3-Trichloropropane	6	0	6	0	no
1,2-Dibromo-3-chloropropane	6	0	6	0	no
1,2-Dibromoethane	6	0	6	0	no
1,2-Dichlorobenzene	6	0	6	0	no
1,2-Dichloropropane	6	0	6	0	no
2-Butanone	6	0	6	0	no
2-Hexanone	6	0	6	0	no
4-Methyl-2-pentanone	6	0	6	0	no
Acetone	6	0	6	0	no
Acrolein	6	0	6	0	no
Acrylonitrile	6	0	6	0	no
Aluminum	6	0	6	0	no
Antimony	6	0	6	0	no
Beryllium	6	0	6	0	no
Boron	6	0	4	2	YES
Bromide	6	0	6	0	no
Bromochloromethane	6	0	6	0	no
Bromodichloromethane	6	0	6	0	no
Bromoform	6	0	6	0	no
Bromomethane	6	0	6	0	no
Calcium	6	0	0	6	YES
Carbon disulfide	6	0	6	0	no
Chemical Oxygen Demand (COD)	6	0	6	0	no
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	no
Chloroethane	6	0	6	0	no
Chloroform	6	0	6	0	no
Chloromethane	6	0	6	0	no
cis-1,2-Dichloroethene	6	0	6	0	no
cis-1,3-Dichloropropene	6	0	6	0	no
Cobalt	6	0	3	3	YES
Conductivity	6	0	0	6	YES
Copper	6	0	6	0	no
Cyanide	6	0	6	0	no
Dibromochloromethane	6	0	6	0	no
Dibromomethane	6	0	6	0	no

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total	6	0	6	0	no
Dissolved Oxygen	6	0	0	6	YES
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	no
Iodide	6	0	6	0	no
Iodomethane	6	0	6	0	no
Iron	6	0	2	4	YES
Magnesium	6	0	0	6	YES
Manganese	6	0	0	6	YES
Methylene chloride	6	0	6	0	no
Molybdenum	6	0	6	0	no
Nickel	6	0	5	1	YES
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	6	0	no
PCB-1016	6	0	6	0	no
PCB-1221	6	0	6	0	no
PCB-1232	6	0	6	0	no
PCB-1242	6	0	5	1	YES
PCB-1248	6	0	6	0	no
PCB-1254	6	0	6	0	no
PCB-1260	6	0	6	0	no
PCB-1268	6	0	6	0	no
рН	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	6	0	no
Rhodium	6	0	6	0	no
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	no
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	no
Technetium-99	6	0	1	5	YES
Tetrachloroethene	6	0	6	0	no
Thallium	6	0	6	0	no
Thorium-230	6	0	6	0	no
Toluene	6	0	6	0	no
Total Organic Carbon (TOC)	6	0	2	4	YES
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	no
trans-1,3-Dichloropropene	6	0	6	0	no
trans-1,4-Dichloro-2-butene	6	0	6	0	no
Trichlorofluoromethane	6	0	6	0	no
Uranium	6	0	6	0	no

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation		Statistical Analysis?
Vanadium	6	0	6	0	no
Vinyl acetate	6	0	6	0	no
Zinc	6	0	6	0	no

Bold denotes parameters with at least one uncensored observation.

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	no
1,1,2,2-Tetrachloroethane	6	0	6	0	no
1,1,2-Trichloroethane	6	0	6	0	no
1,1-Dichloroethane	6	0	6	0	no
1,2,3-Trichloropropane	6	0	6	0	no
1,2-Dibromo-3-chloropropane	6	0	6	0	no
1,2-Dibromoethane	6	0	6	0	no
1,2-Dichlorobenzene	6	0	6	0	no
1,2-Dichloropropane	6	0	6	0	no
2-Butanone	6	0	6	0	no
2-Hexanone	6	0	6	0	no
4-Methyl-2-pentanone	6	0	6	0	no
Acetone	6	0	6	0	no
Acrolein	6	0	6	0	no
Acrylonitrile	6	0	6	0	no
Aluminum	6	0	6	0	no
Antimony	6	0	6	0	no
Beryllium	6	0	6	0	no
Boron	6	0	4	2	YES
Bromide	6	0	6	0	no
Bromochloromethane	6	0	6	0	no
Bromodichloromethane	6	0	6	0	no
Bromoform	6	0	6	0	no
Bromomethane	6	0	6	0	no
Calcium	6	0	0	6	YES
Carbon disulfide	6	0	6	0	no
Chemical Oxygen Demand (COD)	6	0	6	0	no
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	no
Chloroethane	6	0	6	0	no
Chloroform	6	0	6	0	no
Chloromethane	6	0	6	0	no
cis-1,2-Dichloroethene	6	0	6	0	no
cis-1,3-Dichloropropene	6	0	6	0	no
Cobalt	6	0	4	2	YES
Conductivity	6	0	0	6	YES
Copper	6	0	6	0	no
Cyanide	6	0	6	0	no
Dibromochloromethane	6	0	6	0	no
Dibromomethane	6	0	6	0	no
Dimethylbenzene, Total	6	0	6	0	no
Dissolved Oxygen	6	0	0	6	YES

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	no
Iodide	6	0	6	0	no
Iodomethane	6	0	6	0	no
Iron	6	0	3	3	YES
Magnesium	6	0	0	6	YES
Manganese	6	0	1	5	YES
Methylene chloride	6	0	6	0	no
Molybdenum	6	0	6	0	no
Nickel	6	0	6	0	no
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	6	0	no
PCB-1016	6	0	6	0	no
PCB-1221	6	0	6	0	no
PCB-1232	6	0	6	0	no
PCB-1242	6	0	6	0	no
PCB-1248	6	0	6	0	no
PCB-1254	6	0	6	0	no
PCB-1260	6	0	6	0	no
PCB-1268	6	0	6	0	no
pН	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	-1	7	0	no
Rhodium	6	0	6	0	no
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	no
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	no
Technetium-99	6	0	1	5	YES
Tetrachloroethene	6	0	6	0	no
Thallium	6	0	6	0	no
Thorium-230	6	0	6	0	no
Toluene	6	0	6	0	no
Total Organic Carbon (TOC)	6	0	5	1	YES
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	no
trans-1,3-Dichloropropene	6	0	6	0	no
trans-1,4-Dichloro-2-butene	6	0	6	0	no
Trichlorofluoromethane	6	0	6	0	no
Uranium	6	0	6	0	no
Vanadium	6	0	6	0	no

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation		Statistical Analysis?
Vinyl acetate	6	0	6	0	no
Zinc	6	0	6	0	no

Bold denotes parameters with at least one uncensored observation.

Discussion of Results

For the UCRS, URGA, and LRGA, the results of the one-sided upper tolerance interval test are presented on pages D-22 through D-78 and the statistician qualification statement is presented on page D-79. For the UCRS, URGA, and LRGA, the test was applied to 17, 20, and 18 parameters, respectively, listed in bold print in Exhibits 3, 4, and 5. A summary of statistically significant increases by well number is shown in Exhibit 6.

UCRS

In this quarter, statistical test results indicated there were statistically significant increases dissolved oxygen, oxidation-reduction potential, and sulfate.

URGA

In this quarter, statistical test results indicated that there were statistically significant increases for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

LRGA

In this quarter, statistical test results indicated that there were statistically significant increases for dissolved oxygen, oxidation-reduction potential, and technetium-99.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

Exhibit 6. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW362: oxidation-reduction potential	MW357: oxidation-reduction potential	MW358: oxidation-reduction potential
MW371: oxidation-reduction potential	MW360: oxidation-reduction potential	MW361: oxidation-reduction, potential, technetium-99
MW374: dissolved oxygen, oxidation-reduction	MW363: oxidation-reduction potential	MW364: oxidation-reduction potential, technetium-99
potential MW375: oxidation-reduction	MW366: oxidation-reduction potential	MW367: oxidation-reduction potential
potential, sulfate	MW369: oxidation-reduction potential MW372: calcium, conductivity,	MW370: dissolved oxygen, oxidation-reduction potential
	dissolved solids, magnesium, oxidation- reduction potential, sulfate, technetium-99	MW373: oxidation-reduction potential, technetium-99

Exhibit 7. Tests Summary for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.95	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.45	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.55	Statistically significant increases relative to background data in MW374
Dissolved Solids	Tolerance Interval	0.42	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.98	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.27	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.89	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	3.54	Statistically significant increases relative to background data in MW362, MW371, MW374, and MW375
pH	Tolerance Interval	0.05	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.72	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	0.49	Statistically significant increases relative to background data in MW375
Total Organic Carbon	Tolerance Interval	1.38	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	1.08	No statistically significant increases relative to background data
Uranium	Tolerance Interval	1.68	No statistically significant increases relative to background data

CV: coefficient of variation

Exhibit 8. Tests Summary for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Boron	Tolerance Interval	0.84	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.29	Statistically significant increase relative to background data in MW372
Chloride	Tolerance Interval	0.10	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	0.85	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.12	Statistically significant increase relative to background data in MW372
Dissolved Oxygen	Tolerance Interval	0.76	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.16	Statistically significant increase relative to background data in MW372
Iron	Tolerance Interval	0.95	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.27	Statistically significant increase relative to background data in MW372
Manganese	Tolerance Interval	0.66	No statistically significant increases relative to background data
Nickel	Tolerance Interval	0.91	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	1.26	Statistically significant increases relative to background data in MW357, MW360, MW363, MW366, MW369, and MW372
PCB-1242	Tolerance Interval	1.36	No statistically significant increases relative to background data
рН	Tolerance Interval	0.03	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.29	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.26	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	0.75	Statistically significant increase relative to background data in MW372

Exhibit 8. Tests Summary for Qualified Parameters—URGA (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Technetium-99	Tolerance Interval	0.87	Statistically significant increases relative to background data in MW372
Total Organic Carbon	Tolerance Interval	1.23	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.95	No statistically significant increases relative to background data

CV: coefficient of variation

Exhibit 9. Tests Summary for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Boron	Tolerance Interval	0.68	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.31	No statistically significant increase relative to background data
Chloride	Tolerance Interval	0.16	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	1.17	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.26	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.83	Statistically significant increase relative to background data in MW370
Dissolved Solids	Tolerance Interval	0.30	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.96	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.34	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.62	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	1.31	Statistically significant increases relative to background data in MW358, MW361, MW364, MW367, MW370, and MW373
pH	Tolerance Interval	0.03	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.19	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.30	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	1.59	No statistically significant increases relative to background data
Technetium-99	Tolerance Interval	1.73	Statistically significant increases relative to background data in MW361, MW364, and MW373
Total Organic Carbon	Tolerance Interval	1.96	No statistically significant increases relative to background data

Exhibit 9. Tests Summary for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Total Organic Halides	Tolerance Interval	0.98	No statistically significant increases relative to background data

CV: coefficient of variation

C-746-U Fourth Quarter 2013 Statistical Analysis Aluminum UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Jpgradient W		Statistics on Background Data		Transformed Data from Up	
Well Number:	MW371	X = 3.300		Well Number:	MW371
Date Collected	Result	S= 6.859		Date Collected	LN(Result)
3/18/2002	2.240	CV= 2.078		3/18/2002	0.806
4/22/2002	0.200	K factor** = 2.523 TL= 20.604		4/22/2002	-1.609
7/15/2002	0.200	1L= 20.004		7/15/2002	-1.609
10/8/2002	0.200	Because CV is greater to	han 1, the natural	10/8/2002	-1.609
1/8/2003	0.200	logarithm of background	d and test well results	1/8/2003	-1.609
4/3/2003	0.200	were calculated.		4/3/2003	-1.609
7/9/2003	0.200	Statistics on		7/9/2003	-1.609
10/6/2003	0.200	Transformed		10/6/2003	-1.609
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= -0.371		Date Collected	LN(Result)
10/8/2002	21.300	S= 1.678		10/8/2002	3.059
1/7/2003	20.000	CV= -4.521		1/7/2003	2.996
4/2/2003	4.110			4/2/2003	1.413
7/9/2003	1.410	K factor** = 2.523		7/9/2003	0.344
10/7/2003	1.090	TL= 3.863		10/7/2003	0.086
1/6/2004	0.854			1/6/2004	-0.158
4/7/2004	0.200			4/7/2004	-1.609
7/14/2004	0.200			7/14/2004	-1.609

Fourth Q October	-	013 Data Collec	cted in		Quarter 2013 tially Dry Wells	Transformed Data Collecte	•	
Well No.	Result	Gradient I	Result >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW362	1.710	Downgradier	nt N/A	MW359	Downgradient	MW362	0.536	NO
MW371	0.200	Upgradient	N/A	MW365	Downgradient	MW371	-1.609	NO
MW374	0.200	Upgradient	N/A	MW368	Sidegradient	MW374	-1.609	NO
MW375	0.200	Sidegradient	N/A	MW376	Sidegradient	MW375	-1.609	NO
				MW377	Sidegradient			

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis **UCRS UNITS:** mg/L **Calcium**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW371 Date Collected Result 3/18/2002 17.200 4/22/2002 22.400 7/15/2002 25.500 10/8/2002 26.400

27.200

Statistics on **Background Data** X = 34.100S = 13.637CV = 0.400K factor** = 2.523TL = 68.505

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

4/3/2003	30.300
7/9/2003	25.900
10/6/2003	27.000
Well Number:	MW374
Date Collected	Result
10/8/2002	67.300
1/7/2003	60.600
4/2/2003	47.200
7/9/2003	34.700
10/7/2003	37.100
1/6/2004	37.700
4/7/2004	32.200
7/14/2004	26.900

1/8/2003

Fourth Quarter 2013 Data Collected in October 2013

Well No.	Result	Gradient	Result >TL?
MW362	17.600	Downgradie	nt NO
MW371	30.200	Upgradient	NO
MW374	25.500	Upgradient	NO
MW375	14.100	Sidegradient	NO

Fourth Quarter 2013 **Dry/Partially Dry Wells**

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW371 Date Collected Result 7/15/2002 8.300 10/8/2002 7.600 1/8/2003 7.700

8.800

8.100

8.600

7.600

4/3/2003

7/9/2003

10/6/2003

1/7/2004

Statistics on Background Data X= 91.300 S= 86.959 CV= 0.952 K factor** = 2.523 TL= 310.697

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

4/6/2004	7.600
Well Number:	MW374
Date Collected	Result
10/8/2002	199.200
1/7/2003	199.700
4/2/2003	171.800
7/9/2003	178.700
10/7/2003	175.600
1/6/2004	170.400
4/7/2004	156.400
7/14/2004	144.700

Fourth Quarter 2013 Data Collected in October 2013

Well No.	Result	Gradient	Result >TL?
MW362	11.000	Downgradie	nt NO
MW371	8.000	Upgradient	NO
MW374	88.000	Upgradient	NO
MW375	6.500	Sidegradient	NO

Fourth Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	541.000
4/22/2002	643.000
7/15/2002	632.000
10/8/2002	631.000
1/8/2003	680.000
4/3/2003	749.000
7/9/2003	734.000
10/6/2003	753.000
Well Number:	MW374
Well Number: Date Collected	MW374 Result
Date Collected	Result
Date Collected 3/18/2002	Result 1007.00
Date Collected 3/18/2002 10/8/2002	Result 1007.00 1680.00
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007.00 1680.00 1715.90
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007.00 1680.00 1715.90 172.000
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007.00 1680.00 1715.90 172.000 1231.00

Statistics on Background Data

X= 918.744 S= 417.257 CV= 0.454 K factor** = 2.523 TL= 1971.483

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

Well No.	Result	Gradient	Result >TL?
MW362	578.00	Downgradie	nt NO
MW371	748.00	Upgradient	NO
MW374	739.00	Upgradient	NO
MW375	376.00	Sidegradient	NO NO

Fourth Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Dissolved Oxygen UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

opgradient	
Well Number:	MW371
Date Collected	Result
3/18/2002	2.260
4/22/2002	1.150
7/15/2002	0.940
10/8/2002	0.740
1/8/2003	2.620
4/3/2003	1.500
7/9/2003	1.660
10/6/2003	1.280
Well Number:	MW374
Date Collected	Result
3/18/2002	0.600
10/8/2002	0.670
1/7/2003	0.230
4/2/2003	0.650
7/9/2003	0.920
10/7/2003	0.990
1/6/2004	1.110
4/7/2004	0.880

Statistics on Background Data

X= 1.138 S= 0.621 CV= 0.546 K factor** = 2.523 TL= 2.704

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

Well No.	Result	Gradient	Result >TL?
MW362	2.230	Downgradie	nt NO
MW371	1.380	Upgradient	NO
MW374	2.740	Upgradient	YES
MW375	1.220	Sidegradient	NO

Fourth Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Dissolved Solids UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	274.000
4/22/2002	409.000
7/15/2002	418.000
10/8/2002	424.000
1/8/2003	431.000
4/3/2003	444.000
7/9/2003	445.000
10/6/2003	438.000
Well Number:	MW374
Date Collected	Result
10/8/2002	1136.00
1/7/2003	1101.00
4/2/2003	863.000
7/9/2003	682.000
10/7/2003	589.000
1/6/2004	603.000

4/7/2004

7/14/2004

Statistics on Background Data X= 590.000 S= 248.068 CV= 0.420

K factor** = 2.523 TL= 1215.876

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

601.000

582.000

Well No.	Result	Gradient	Result >TL?
MW362	378.00	Downgradie	nt NO
MW371	479.00	Upgradient	NO
MW374	397.00	Upgradient	NO
MW375	236.00	Sidegradient	NO

Fourth Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Iron UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

opgradient w	CHS
Well Number:	MW371
Date Collected	Result
3/18/2002	1.310
4/22/2002	0.913
7/15/2002	0.881
10/8/2002	3.860
1/8/2003	1.880
4/3/2003	3.180
7/9/2003	0.484
10/6/2003	2.720
Well Number:	MW374
Date Collected	Result
10/8/2002	23.000
1/7/2003	13.900
4/2/2003	14.000
7/9/2003	14.200
10/7/2003	7.920
1/6/2004	7.860
4/7/2004	4.820
7/14/2004	4.870

Statistics on Background Data

X= 6.612 S= 6.487 CV= 0.981 K factor** = 2.523 TL= 22.979

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

Well No.	Result	Gradient	Result >TL?
MW362	0.653	Downgradie	nt NO
MW371	0.100	Upgradient	NO
MW374	0.100	Upgradient	NO
MW375	0.100	Sidegradient	NO

Fourth Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Magnesium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

18	
Well Number:	MW371
Date Collected	Result
3/18/2002	7.100
4/22/2002	9.770
7/15/2002	10.400
10/8/2002	10.200
1/8/2003	10.700
4/3/2003	11.900
7/9/2003	10.800
10/6/2003	10.900
Well Number:	MW374
Well Number: Date Collected	MW374 Result
Date Collected	Result
Date Collected 10/8/2002	Result 20.000
Date Collected 10/8/2002 1/7/2003	Result 20.000 16.100
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20.000 16.100 13.100
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20.000 16.100 13.100 10.300
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20.000 16.100 13.100 10.300 11.100
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 20.000 16.100 13.100 10.300 11.100 11.000

Statistics on Background Data

X= 11.347 S= 3.019 CV= 0.266 K factor** = 2.523 TL= 18.963

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

Well No.	Result	Gradient	Result >TL?
MW362	7.500	Downgradie	nt NO
MW371	12.000	Upgradient	NO
MW374	7.140	Upgradient	NO
MW375	5.740	Sidegradient	t NO

Fourth Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Manganese UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Well Number: MW371 Date Collected Result 3/18/2002 0.063

 Well Number:
 MW371

 Date Collected
 Result

 3/18/2002
 0.063

 4/22/2002
 0.067

 7/15/2002
 0.074

 10/8/2002
 0.052

 1/8/2003
 0.039

 4/3/2003
 0.055

 7/9/2003
 0.055

 10/6/2003
 0.054

Well Number:

Date Collected

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data X= 0.248

S= 0.222 CV= 0.894 K factor** = 2.523 TL= 0.809

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

MW374

Result

0.596

0.565

0.675

0.397

0.312

0.299

0.329

0.342

Well No.	Result	Gradient	Result >TL?
MW362	0.008	Downgradie	nt NO
MW371	0.005	Upgradient	NO
MW374	0.005	Upgradient	NO
MW375	0.005	Sidegradient	NO

Fourth Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient	
MW359	Downgradient	
MW365	Downgradient	
MW368	Sidegradient	
MW376	Sidegradient	
MW377	Sidegradient	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Oxidation-Reduction Potential

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mV

Background D Upgradient W		Statistics on Background Data	Transformed Background Data from Upgradient Wel
Well Number:	MW371	X= 22.281	Well Number: MW371
Date Collected	Result	S= 78.889	Date Collected LN(Result)
3/18/2002	75.000	CV= 3.541	3/18/2002 4.317
4/22/2002	165.000	K factor** = 2.523	4/22/2002 5.106
7/15/2002	65.000	TL= 221.319	7/15/2002 4.174
4/3/2003	-19.000	Because CV is greater than 1, the na	
7/9/2003	114.000	logarithm of background and test we	
10/6/2003	-22.000	were calculated.	10/6/2003 #Func!
1/7/2004	20.500	Statistics on	1/7/2004 3.020
4/6/2004	113.000	Transformed	4/6/2004 4.727
Well Number:	MW374	Background Data	Well Number: MW374
Date Collected	Result	X = error	Date Collected LN(Result)
3/18/2002	135.000	S = error	3/18/2002 4.905
4/2/2003	-56.000		4/2/2003 #Func!
7/9/2003	-68.000	CV = error	7/9/2003 #Func!
10/7/2003	-50.000	K factor** = 2.523	10/7/2003 #Func!
1/6/2004	-85.000	TL# = 5.106	1/6/2004 #Func!
4/7/2004	6.000	# Because the natural log was not po	ossible for 4/7/2004 1.792
7/14/2004	-38.000	all background values, the TL was co	onsidered 7/14/2004 #Func!
10/7/2004	1.000	equal to the maximum background v	value. 10/7/2004 0.000

Fourth Quarter 2013 Data Collected in October 2013			Fourth Quarter 2013 Dry/Partially Dry Wells			ned Fourth Qu ected in Octob		
Well No.	Result	Gradient Resu	lt >TL?	Well No.	Gradient	Well Number	er LN(Result) R	Result >TL?
MW362	521.000	Downgradient	N/A	MW359	Downgradient			
MW371	544.000	Upgradient	N/A	MW365	Downgradient	MW362	6.256	YES
MW374	802.000	Upgradient	N/A	MW368	Sidegradient	MW371	6.299	YES
MW375	600.000	Sidegradient	N/A	MW376	Sidegradient	MW374	6.687	YES
				MW377	Sidegradient	MW375	6.397	YES

Conclusion of Statistical Analysis on Transformed Data
The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.
MW362
MW371
MW374
MW375

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis pH UCRS UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	6.300
4/22/2002	6.500
7/15/2002	6.500
10/8/2002	6.600
1/8/2003	6.600
4/3/2003	6.900
7/9/2003	6.700
10/6/2003	7.000
Well Number:	MW374
Well Number: Date Collected	
Date Collected	Result
Date Collected 3/18/2002	Result 5.750
Date Collected 3/18/2002 10/8/2002	Result 5.750 6.600
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.750 6.600 6.820
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.750 6.600 6.820 6.860
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.750 6.600 6.820 6.860 6.700
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5.750 6.600 6.820 6.860 6.700 6.600

Statistics on Background Data
X= 6.619 S= 0.295 CV= 0.045 K factor** = 2.904 TL= 7.475 LL= 5.764

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

Well No.	Result	Gradient	Result <ll?< th=""></ll?<>
MW362	6.680	Downgradient	NO
MW371	6.610	Upgradient	NO
MW374	6.520	Upgradient	NO
MW375	6.440	Sidegradient	NO

Fourth Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Fourth Quarter 2013 Statistical Analysis Potassium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW371

• 0	
Well Number:	MW371
Date Collected	Result
3/18/2002	2.000
4/22/2002	2.000
7/15/2002	2.000
10/8/2002	0.408
1/8/2003	0.384
4/3/2003	0.368
7/9/2003	0.587
10/6/2003	0.382
Well Number:	MW374
Date Collected	Result
10/8/2002	3.040
1/7/2003	2.830
4/2/2003	2.000
7/9/2003	1.090
10/7/2003	0.802
1/6/2004	0.897
4/7/2004	0.689

7/14/2004

Statistics on Background Data

X= 1.262 S= 0.907 CV= 0.718 K factor** = 2.523 TL= 3.549

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

0.716

Well No.	Result	Gradient	Result >TL?
MW362	0.470	Downgradie	nt NO
MW371	0.331	Upgradient	NO
MW374	0.452	Upgradient	NO
MW375	0.265	Sidegradient	NO

Fourth Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Sodium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

10	
Well Number:	MW371
Date Collected	Result
3/18/2002	129.000
4/22/2002	131.000
7/15/2002	127.000
10/8/2002	123.000
1/8/2003	128.000
4/3/2003	144.000
7/9/2003	126.000
10/6/2003	120.000
Well Number:	MW374
Date Collected	Result
10/8/2002	336.000
1/7/2003	329.000
4/2/2003	287.000
7/9/2003	181.000
10/7/2003	182.000
1/6/2004	206.000

4/7/2004

7/14/2004

Statistics on Background Data

X= 183.063 S= 73.222 CV= 0.400 K factor** = 2.523 TL= 367.800

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

182.000

198.000

Well No.	Result	Gradient	Result >TL?
MW362	114.00	Downgradie	nt NO
MW371	130.00	Upgradient	NO
MW374	145.00	Upgradient	NO
MW375	56.800	Sidegradient	NO

Fourth Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Sulfate UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Well Number: MW371 Date Collected Result

3/18/2002 16.300 4/22/2002 8.600 7/15/2002 6.700 10/8/2002 5.000 1/8/2003 5.000 4/3/2003 5.000 7/9/2003 5.000 10/6/2003 5.000 Well Number: MW374

Date Collected

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data X= 6.469

S= 3.153 CV= 0.487 K factor** = 2.523 TL= 14.423

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

5.000

Result

5.000

5.000

5.000

5.600

5.000

5.000

11.300

Well No.	Result	Gradient	Result >TL?
MW362	9.800	Downgradie	nt NO
MW371	13.000	Upgradient	NO
MW374	6.600	Upgradient	NO
MW375	26.000	Sidegradient	YES

Fourth Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW365	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Total Organic Carbon (TOC) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	_
Well Number:	MW371	X= 17.631		Well Number:	MW371
Date Collected	Result	S= 24.314		Date Collected	LN(Result)
3/18/2002	11.100	CV= 1.379		3/18/2002	2.407
4/22/2002	7.000	K factor** = 2.523		4/22/2002	1.946
7/15/2002	4.100	TL= 78.977		7/15/2002	1.411
10/8/2002	6.000	Because CV is greater to	han 1, the natural	10/8/2002	1.792
1/8/2003	5.300	logarithm of background	d and test well results	1/8/2003	1.668
4/3/2003	5.300	were calculated.		4/3/2003	1.668
7/9/2003	2.900	Statistics on		7/9/2003	1.065
10/6/2003	3.200	Transformed		10/6/2003	1.163
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= 2.318		Date Collected	LN(Result)
10/8/2002	90.000	S= 0.979		10/8/2002	4.500
1/7/2003	64.000	CV = 0.422		1/7/2003	4.159
4/2/2003	25.000			4/2/2003	3.219
7/9/2003	16.000	K factor** = 2.523		7/9/2003	2.773
10/7/2003	13.000	TL= 4.788		10/7/2003	2.565
1/6/2004	10.000			1/6/2004	2.303
4/7/2004	7.200			4/7/2004	1.974
7/14/2004	12.000			7/14/2004	2.485

Fourth Q October	-	013 Data Collecte	d in		Quarter 2013 tially Dry Wells	Transformed Data Collecte	•	
Well No.	Result	Gradient Res	sult >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW362	1.900	Downgradient	N/A	MW359	Downgradient	MW362	0.642	NO
MW371	1.600	Upgradient	N/A	MW365	Downgradient	MW371	0.470	NO
MW374	1.800	Upgradient	N/A	MW368	Sidegradient	MW374	0.588	NO
MW375	1.000	Sidegradient	N/A	MW376	Sidegradient	MW375	0.000	NO
				MW377	Sidegradient			

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Total Organic Halides (TOX)

UCRS UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Background Data from Upgradient W	
Well Number:	MW371	X= 214.094		Well Number:	MW371
Date Collected	Result	S=231.089		Date Collected	LN(Result)
3/18/2002	50.000	CV= 1.079		3/18/2002	3.912
4/22/2002	105.000	K factor** = 2.523 TL= 797.131		4/22/2002	4.654
7/15/2002	70.000	1L≡ /9/.131		7/15/2002	4.248
10/8/2002	52.000	Because CV is greater the	han 1, the natural	10/8/2002	3.951
1/8/2003	20.200	logarithm of background	d and test well results	1/8/2003	3.006
4/3/2003	104.000	were calculated.		4/3/2003	4.644
7/9/2003	34.200	Statistics on		7/9/2003	3.532
10/6/2003	46.100	Transformed		10/6/2003	3.831
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= 4.867		Date Collected	LN(Result)
10/8/2002	903.000	S= 1.065		10/8/2002	6.806
1/7/2003	539.000	CV= 0.219		1/7/2003	6.290
4/2/2003	295.000			4/2/2003	5.687
7/9/2003	272.000	K factor** = 2.523		7/9/2003	5.606
10/7/2003	197.000	TL= 7.554		10/7/2003	5.283
1/6/2004	330.000			1/6/2004	5.799
4/7/2004	183.000			4/7/2004	5.209
7/14/2004	225.000			7/14/2004	5.416

Fourth C October	-	13 Data Collec	ted in		Quarter 2013 tially Dry Wells	Transformed Fourth Quarter 2013 Data Collected in October 2013		
Well No.	Result	Gradient R	esult >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW362	10.000	Downgradient	N/A	MW359	Downgradient	MW362	2.303	NO
MW371	10.000	Upgradient	N/A	MW365	Downgradient	MW371	2.303	NO
MW374	25.000	Upgradient	N/A	MW368	Sidegradient	MW374	3.219	NO
MW375	16.000	Sidegradient	N/A	MW376	Sidegradient	MW375	2.773	NO
				MW377	Sidegradient			

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Uranium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Background Data from Upgradient We	
Well Number:	MW371	X= 0.007		Well Number:	MW371
Date Collected	Result	S=~0.012		Date Collected	LN(Result)
3/18/2002	0.001	CV= 1.678		3/18/2002	-6.908
4/22/2002	0.001	K factor** = 2.523		4/22/2002	-6.908
7/15/2002	0.001	TL= 0.037	_	7/15/2002	-6.908
10/8/2002	0.027	Because CV is greater t	han 1, the natural	10/8/2002	-3.612
1/8/2003	0.001	logarithm of backgroun	d and test well results	1/8/2003	-6.908
4/3/2003	0.001	were calculated.		4/3/2003	-6.908
7/9/2003	0.001	Statistics on		7/9/2003	-6.822
10/6/2003	0.001	Transformed		10/6/2003	-6.908
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= -5.884		Date Collected	LN(Result)
10/8/2002	0.044	S= 1.299		10/8/2002	-3.128
1/7/2003	0.011	CV= -0.221		1/7/2003	-4.510
4/2/2003	0.009			4/2/2003	-4.705
7/9/2003	0.007	K factor** = 2.523		7/9/2003	-4.970
10/7/2003	0.001	TL = -2.607		10/7/2003	-6.908
1/6/2004	0.003			1/6/2004	-5.760
4/7/2004	0.003			4/7/2004	-5.960
7/14/2004	0.002			7/14/2004	-6.320

Fourth Quarter 2013 Data Collected in October 2013		Fourth Quarter 2013 Dry/Partially Dry Wells		Transformed Fourth Quarter 2013 Data Collected in October 2013				
Well No.	Result	Gradient Resu	ılt >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW362	0.002	Downgradient	N/A	MW359	Downgradient	MW362	-6.147	NO
MW371	0.002	Upgradient	N/A	MW365	Downgradient	MW371	-6.261	NO
MW374	0.001	Upgradient	N/A	MW368	Sidegradient	MW374	-6.908	NO
MW375	0.001	Sidegradient	N/A	MW376	Sidegradient	MW375	-6.908	NO
				MW377	Sidegradient			

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	2.000		
4/22/2002	2.000		
7/15/2002	2.000		
10/8/2002	0.200		
1/8/2003	0.200		
4/3/2003	0.200		
7/8/2003	0.200		

10/6/2003

Well Number:

Date Collected

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data	
X= 0.985 S= 0.825 CV= 0.838 K factor** = 2.523 TL= 3.067	

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

0.200

MW372

Result

2.000

2.000

2.000

0.492

0.492

0.600

0.570

0.604

Well No.	Result	Gradient Re	esult >TL?
MW357	0.362	Downgradient	NO
MW360	0.200	Downgradient	NO
MW363	0.200	Downgradient	NO
MW366	0.200	Sidegradient	NO
MW369	0.200	Upgradient	NO
MW372	1.140	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Calcium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	29.500
4/22/2002	29.800
7/15/2002	25.300
10/8/2002	21.900
1/8/2003	20.900
4/3/2003	22.200
7/8/2003	22.900
10/6/2003	21.700
Well Number:	MW372
Date Collected	Result
3/19/2002	41.500
4/23/2002	43.600
7/16/2002	40.400

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data X= 32.763 S= 9.391 CV= 0.287

K factor** = 2.523 TL= 56.456

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

38.800 41.100

42.900

35.100

46.600

Well No.	Result	Gradient R	esult >TL?
MW357	27.400	Downgradient	NO
MW360	25.100	Downgradient	NO
MW363	26.100	Downgradient	NO
MW366	27.500	Sidegradient	NO
MW369	16.200	Upgradient	NO
MW372	60.200	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
7/15/2002	48.300		
10/8/2002	47.700		
1/8/2003	45.700		
4/3/2003	47.400		
7/8/2003	55.900		
10/6/2003	47.400		
1/7/2004	45.500		
4/7/2004	43.400		

Well Number:

Date Collected

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/5/2004

4/5/2004

Rackground Data from

Statistics on Background Data	
X= 44.119 S= 4.554	
S= 4.554 CV= 0.103	
K factor** = 2.523 TL= 55.607	

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

MW372

Result

39.800

41.000

39.400

39.200

39.800

40.000

43.400

42.000

Well No.	Result	Gradient R	esult >TL?
MW357	31.000	Downgradient	. NO
MW360	11.000	Downgradient	NO
MW363	32.000	Downgradient	NO
MW366	39.000	Sidegradient	NO
MW369	36.000	Upgradient	NO
MW372	47.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW369	
Date Collected	Result	_
3/18/2002	0.025	

Well Number:	MW369
Date Collected	Result
3/18/2002	0.025
4/22/2002	0.025
7/15/2002	0.025
10/8/2002	0.009
1/8/2003	0.005
4/3/2003	0.006

7/8/2003

Statistics on Background Data	
X= 0.025 S= 0.021 CV= 0.845 K factor** = 2.523 TL= 0.077	

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

10/6/2003	0.069
Well Number:	MW372
Date Collected	Result
3/19/2002	0.025
4/23/2002	0.025
7/16/2002	0.025
10/8/2002	0.002
1/7/2003	0.015
4/2/2003	0.012
7/9/2003	0.065
10/7/2003	0.008

Fourth Quarter 2013 Data Collected in October 2013

0.054

Well No.	Result	Gradient I	Result >TL?
MW357	0.001	Downgradien	t NO
MW360	0.022	Downgradien	t NO
MW363	0.001	Downgradien	t NO
MW366	0.001	Sidegradient	NO
MW369	0.015	Upgradient	NO
MW372	0.001	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	388.000
4/22/2002	404.000
7/15/2002	394.000
10/8/2002	403.000
1/8/2003	520.000
4/3/2003	487.000
7/8/2003	478.000
10/6/2003	476.000
Well Number:	MW372
Date Collected	Result
3/19/2002	508.000
4/23/2002	501.000
7/16/2002	507.000
10/8/2002	495.000

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data X= 482.856

S= 57.603 CV= 0.119 K factor** = 2.523 TL= 628.189

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

508.700

515.000

576.000

565.000

Well No.	Result	Gradient Resu	ılt >TL?
MW357	440.00	Downgradient	NO
MW360	536.00	Downgradient	NO
MW363	393.00	Downgradient	NO
MW366	447.00	Sidegradient	NO
MW369	376.00	Upgradient	NO
MW372	791.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW369	
Date Collected	Result	
3/18/2002	5.410	
4/22/2002	1.570	
7/15/2002	0.800	
10/8/2002	1.090	
1/8/2003	2.690	
4/3/2003	2.040	
7/8/2003	1.190	
10/6/2003	1.780	
Well Number:	MW372	
Date Collected	Result	
3/19/2002	3.890	
4/23/2002	0.050	
7/16/2002	1.330	
10/8/2002	2.660	
1/7/2003	0.400	

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 1.781
S= 1.351
CV = 0.759
K factor** = 2.523
TL= 5.190

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

0.910

1.420

1.260

Well No.	Result	Gradient Res	ult >TL?
MW357	3.500	Downgradient	NO
MW360	0.830	Downgradient	NO
MW363	0.580	Downgradient	NO
MW366	2.470	Sidegradient	NO
MW369	0.990	Upgradient	NO
MW372	0.830	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Dissolved Solids URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	173.000
4/22/2002	246.000
7/15/2002	232.000
10/8/2002	275.000
1/8/2003	269.000
4/3/2003	250.000
7/8/2003	295.000
10/6/2003	276.000
Well Number:	MW372
Date Collected	Result
3/19/2002	295.000
4/23/2002	322.000
7/16/2002	329.000

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 285.188 S= 44.908 CV= 0.157 K factor** = 2.523 TL= 398.489

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

290.000

316.000

311.000

347.000

337.000

Well No.	Result	Gradient Resu	lt >TL?
MW357	246.00	Downgradient	NO
MW360	275.00	Downgradient	NO
MW363	231.00	Downgradient	NO
MW366	260.00	Sidegradient	NO
MW369	228.00	Upgradient	NO
MW372	481.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from
Background Data from Upgradient Wells

10	
Well Number:	MW369
Date Collected	Result
3/18/2002	0.656
4/22/2002	0.695
7/15/2002	7.100
10/8/2002	21.500
1/8/2003	18.500
4/3/2003	14.900
7/8/2003	11.300
10/6/2003	14.900
Well Number:	MW372
Date Collected	Result
3/19/2002	5.950
4/23/2002	0.792
7/16/2002	1.780
10/8/2002	0.776
1/7/2003	3.550
4/2/2003	5.020
7/9/2003	10.000
10/7/2003	0.733

Statistics on Background Data X- 7 385

X= 7.385 S= 6.991 CV= 0.947 K factor** = 2.523 TL= 25.024

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

Well No.	Result	Gradient F	Result >TL?
MW357	0.100	Downgradien	t NO
MW360	3.340	Downgradien	t NO
MW363	0.154	Downgradien	t NO
MW366	0.100	Sidegradient	NO
MW369	0.303	Upgradient	NO
MW372	0.438	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW369	
Date Collected	Result	
3/18/2002	11.400	
4/22/2002	12.000	
7/15/2002	10.000	
10/8/2002	8.620	
1/8/2003	7.890	
4/3/2003	7.970	
7/8/2003	10.300	
10/6/2003	9.140	
Well Number:	MW372	
Date Collected	Result	
3/19/2002	15.700	
4/23/2002	16.600	
7/16/2002	15.400	
10/8/2002	15.800	
1/7/2003	15.800	

4/2/2003

7/9/2003

10/7/2003

	Statistics on Background Da	ta
X= 12.864 S= 3.505 CV= 0.272 K factor** = 2.523 TL= 21.707	S= 3.505 CV= 0.272 K factor** = 2.5	523

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

16.400

15.200

17.600

Well No.	Result	Gradient Res	sult >TL?
MW357	10.900	Downgradient	NO
MW360	9.390	Downgradient	NO
MW363	9.900	Downgradient	NO
MW366	11.500	Sidegradient	NO
MW369	6.500	Upgradient	NO
MW372	22.800	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Manganese URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW369	
Date Collected	Result	
3/18/2002	0.034	
4/22/2002	0.062	
7/15/2002	0.436	
10/8/2002	0.867	
1/8/2003	0.828	
4/3/2003	0.672	
7/8/2003	0.321	
10/6/2003	0.714	
Well Number:	MW372	
Date Collected	Result	
3/19/2002	0.205	
4/23/2002	0.345	
7/16/2002	0.210	

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data		
X= 0.413 S= 0.274 CV= 0.664 K factor** = 2.523 TL= 1.105		
12- 11100		

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

0.054

0.537

0.415

0.654

0.254

Well No.	Result	Gradient Re	sult >TL?
MW357	0.006	Downgradient	NO
MW360	0.212	Downgradient	NO
MW363	0.150	Downgradient	NO
MW366	0.031	Sidegradient	NO
MW369	0.159	Upgradient	NO
MW372	0.016	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW369 Date Collected Result 3/18/2002 0.050 4/22/2002 0.050 7/15/2002 0.050 10/8/2002 0.005 1/8/2003 0.005 4/3/2003 0.005 7/8/2003 0.013 10/6/2003 0.010 Well Number: MW372 Date Collected Result 3/19/2002 0.050 4/23/2002 0.050 7/16/2002 0.050

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data	
X= 0.024 S= 0.021 CV= 0.910 K factor** = 2.523 TL= 0.078	

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

0.005

0.005

0.005

0.019

0.005

Well No.	Result	Gradient Re	esult >TL?
MW357	0.005	Downgradient	NO
MW360	0.005	Downgradient	NO
MW363	0.005	Downgradient	NO
MW366	0.005	Sidegradient	NO
MW369	0.009	Upgradient	NO
MW372	0.005	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Background Data from Upgradient Wells		
Well Number:	MW369	X= 74.563	'	Well Number:	MW369	
Date Collected	Result	S= 94.243	•	Date Collected	LN(Result)	
3/18/2002	215.000	CV= 1.264		3/18/2002	5.371	
4/22/2002	110.000	K factor** = 2.523 TL= 312.337		4/22/2002	4.700	
7/15/2002	20.000	TL= 312.337		7/15/2002	2.996	
1/8/2003	-5.000	Because CV is greater than 1, the natur	al	1/8/2003	#Func!	
4/3/2003	-18.000	logarithm of background and test well	results	4/3/2003	#Func!	
7/8/2003	-67.000	were calculated.		7/8/2003	#Func!	
10/6/2003	-1.000	Statistics on		10/6/2003	#Func!	
1/7/2004	55.000	Transformed		1/7/2004	4.007	
Well Number:	MW372	Background Data		Well Number:	MW372	
Date Collected	Result	X = error	•	Date Collected	LN(Result)	
3/19/2002	210.000	S = error		3/19/2002	5.347	
4/23/2002	65.000	CV = error		4/23/2002	4.174	
7/16/2002	215.000			7/16/2002	5.371	
10/8/2002	185.000	K factor** = 2.523		10/8/2002	5.220	
1/7/2003	45.000	TL# = 5.371		1/7/2003	3.807	
4/2/2003	65.000	# Because the natural log was not poss	ible for	4/2/2003	4.174	
7/9/2003	-39.000	all background values, the TL was con-	sidered	7/9/2003	#Func!	
10/7/2003	138.000	equal to the maximum background value.		10/7/2003	4.927	

Fourth Quarter 2013 Data Collected in
October 2013

Well No.	Result	Gradient	Result >	·TL?
MW357	815.000	Downgradie	nt l	N/A
MW360	392.000	Downgradie	nt 1	N/A
MW363	597.000	Downgradie	nt 1	N/A
MW366	503.000	Sidegradient	: 1	N/A
MW369	750.000	Upgradient	1	N/A
MW372	519.000	Upgradient	1	N/A

Transformed Fourth Quarter 2013 Data Collected in October 2013

Well Number LN(Result) Result >TL?

MW357	6.703	YES
MW360	5.971	YES
MW363	6.392	YES
MW366	6.221	YES
MW369	6.620	YES
MW372	6.252	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW357

MW360

MW363

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Sta'tistical Analysis	URGA
Oxidation-Reduction Potential'*Eqpvlpwgf +	UNITS: mV

MW369 MW372

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis PCB-1242 UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Upg	_
Well Number:	MW369	X= 0.281		Well Number:	MW369
Date Collected	Result	S= 0.383		Date Collected	LN(Result)
3/18/2002	1.000	CV= 1.361		3/18/2002	0.000
4/22/2002	0.110	K factor** = 2.523		4/22/2002	-2.207
7/15/2002	0.110	TL= 1.247		7/15/2002	-2.207
7/8/2003	1.150	Because CV is greater th	nan 1, the natural	7/8/2003	0.140
10/6/2003	0.090	logarithm of background	d and test well results	10/6/2003	-2.408
7/13/2004	0.100	were calculated.		7/13/2004	-2.303
7/20/2005	0.100	Statistics on		7/20/2005	-2.303
4/4/2006	0.100	Transformed	4/4/2006	-2.303	
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X= -1.835		Date Collected	LN(Result)
3/19/2002	1.000	S= 0.938		3/19/2002	0.000
4/23/2002	0.110	CV= -0.511		4/23/2002	-2.207
7/16/2002	0.110			7/16/2002	-2.207
7/9/2003	0.130	K factor** = 2.523		7/9/2003	-2.040
10/7/2003	0.090	TL= 0.532		10/7/2003	-2.408
7/14/2004	0.100			7/14/2004	-2.303
7/21/2005	0.100			7/21/2005	-2.303
4/5/2006	0.100			4/5/2006	-2.303

Fourth Quarter 2013 Data Collected in
October 2013

Well No.	Result	Gradient F	Result >TL?
MW357	0.100	Downgradien	t N/A
MW360	0.100	Downgradien	t N/A
MW363	0.130	Downgradien	t N/A
MW366	0.100	Sidegradient	N/A
MW369	0.100	Upgradient	N/A
MW372	0.100	Upgradient	N/A

Transformed Fourth Quarter 2013 Data Collected in October 2013

Well Number	LN(Result)	Result >TL?
MW357	-2.303	NO
MW360	-2.303	NO
MW363	-2.040	NO
MW366	-2.303	NO
MW369	-2.303	NO
MW372	-2.303	NO

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis pH URGA UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	6.100
4/22/2002	6.100
7/15/2002	6.100
10/8/2002	6.500
1/8/2003	6.500
4/3/2003	6.600
7/8/2003	6.500
10/6/2003	6.500
Well Number:	MW372
Date Collected	Result
3/19/2002	6.100
4/23/2002	6.120
7/16/2002	6.100
10/8/2002	6.060
1/7/2003	6.260
4/2/2003	6.150
7/9/2003	6.300
10/7/2003	6.400

Statistics on Background Data			
X= 6.274			
S = 0.194			
CV = 0.031			
K factor** = 2.904			
TL = 6.837			
LL = 5.711			

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

Well No.	Result	Gradient	Result <ll?< th=""></ll?<>
MW357	6.090	Downgradient	NO
MW360	6.200	Downgradient	NO
MW363	6.570	Downgradient	NO
MW366	6.170	Sidegradient	NO
MW369	6.140	Upgradient	NO
MW372	6.070	Upgradient	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Fourth Quarter 2013 Statistical Analysis Potassium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells					
Well Number: MW369					
Date Collected	Result				
3/18/2002	2.000				
4/22/2002	2.210				
7/15/2002	2.000				
10/8/2002	0.966				
1/8/2003	0.727				
4/3/2003	0.800				

7/8/2003

10/6/2003

Well Number:

Date Collected

3/19/2002

4/23/2002

7/16/2002

Statistics on Background Data
X= 1.663
S= 0.488
CV = 0.293
K factor** = 2.523
TL= 2.895

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

10/8/2002 1.540 1/7/2003 1.880 4/2/2003 2.090 7/9/2003 1.780 10/7/2003 1.790

Fourth Quarter 2013 Data Collected in October 2013

1.620

1.140

MW372

Result

2.040

2.030

2.000

Well No.	Result	Gradient Res	ult >TL?
MW357	1.660	Downgradient	NO
MW360	0.742	Downgradient	NO
MW363	1.280	Downgradient	NO
MW366	1.750	Sidegradient	NO
MW369	0.519	Upgradient	NO
MW372	2.190	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Sodium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	35.700		
4/22/2002	37.600		
7/15/2002	42.400		
10/8/2002	66.900		
1/8/2003	67.900		
4/3/2003	61.800		
7/8/2003	45.600		
10/6/2003	59.100		
Well Number:	MW372		
Date Collected	Result		
3/19/2002	37.200		
4/23/2002	38.600		
7/16/2002	35.600		
10/8/2002	37.500		
4 /5 /2 0 0 0	21100		

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 45.100 S= 11.875 CV= 0.263
K factor** = 2.523 TL= 75.061

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

34.100

34.400

44.100

43.100

Well No.	Result	Gradient F	Result >TL?
MW357	40.700	Downgradien	t NO
MW360	67.900	Downgradien	t NO
MW363	34.900	Downgradien	t NO
MW366	41.700	Sidegradient	NO
MW369	52.600	Upgradient	NO
MW372	61.500	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	15.500		
4/22/2002	15.800		
7/15/2002	13.800		
10/8/2002	6.900		
1/8/2003	10.500		
4/3/2003	10.500		
7/8/2003	10.900		
10/6/2003	16.300		
Well Number:	MW372		
Date Collected	Result		
3/19/2002	71.700		
4/23/2002	74.700		
7/16/2002	74.100		

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 45.031
S= 33.919
CV = 0.753
K factor** = 2.523
TL= 130.609

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

70.500

75.800

81.800

83.600

88.100

Well No.	Result	Gradient Resi	ılt >TL?
MW357	57.000	Downgradient	NO
MW360	55.000	Downgradient	NO
MW363	20.000	Downgradient	NO
MW366	45.000	Sidegradient	NO
MW369	13.000	Upgradient	NO
MW372	150.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	41.700		
4/22/2002	53.100		
7/15/2002	18.100		
10/8/2002	16.400		
1/8/2003	3.490		
4/3/2003	9.340		
7/8/2003	17.500		
10/6/2003	17.000		
Well Number:	MW372		
Date Collected	Result		
3/19/2002	44.800		
4/23/2002	0.802		
7/16/2002	19.800		
10/8/2002	46.100		
1/7/2003	-0.973		
4/2/2003	9.070		

Statistics on Background Data
X= 20.821 S= 18.044 CV= 0.867 K factor** = 2.523 TL= 66.344

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

0.000

36.900

Well No.	Result	Gradient Resu	ılt >TL?
MW357	39.500	Downgradient	NO
MW360	10.200	Downgradient	NO
MW363	17.900	Downgradient	NO
MW366	65.600	Sidegradient	NO
MW369	29.700	Upgradient	NO
MW372	176.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

7/9/2003

10/7/2003

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Total Organic Carbon (TOC)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	_
Well Number:	MW369	X= 3.513		Well Number:	MW369
Date Collected	Result	S=4.307		Date Collected	LN(Result)
3/18/2002	1.700	CV= 1.226		3/18/2002	0.531
4/22/2002	1.600	K factor** = 2.523 TL= 14.378		4/22/2002	0.470
7/15/2002	3.100	TL= 14.378		7/15/2002	1.131
10/8/2002	17.700	Because CV is greater t	han 1, the natural	10/8/2002	2.874
1/8/2003	9.000	logarithm of backgroun	d and test well results	1/8/2003	2.197
4/3/2003	4.000	were calculated.		4/3/2003	1.386
7/8/2003	4.900	Statistics on		7/8/2003	1.589
10/6/2003	2.400	Transformed		10/6/2003	0.875
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X = 0.851		Date Collected	LN(Result)
3/19/2002	1.000	S = 0.828		3/19/2002	0.000
4/23/2002	1.200	CV= 0.973		4/23/2002	0.182
7/16/2002	1.000			7/16/2002	0.000
10/8/2002	1.000	K factor** = 2.523		10/8/2002	0.000
1/7/2003	1.600	TL= 2.940		1/7/2003	0.470
4/2/2003	1.500			4/2/2003	0.405
7/9/2003	3.000			7/9/2003	1.099
10/7/2003	1.500			10/7/2003	0.405

Fourth Quarter 2013 Data Collected in October 2013	
October 2012	

Well No.	Result	Gradient	Result >TL?
MW357	1.000	Downgradie	nt N/A
MW360	2.100	Downgradie	nt N/A
MW363	1.000	Downgradie	nt N/A
MW366	1.000	Sidegradient	N/A
MW369	1.300	Upgradient	N/A
MW372	1.100	Upgradient	N/A

Transformed Fourth Quarter 2013 Data Collected in October 2013

URGA

UNITS: mg/L

Well Number	LN(Result)	Result >TL?
MW357	0.000	NO
MW360	0.742	NO
MW363	0.000	NO
MW366	0.000	NO
MW369	0.262	NO
MW372	0.095	NO

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Total Organic Halides (TOX) UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	50.000		
4/22/2002	50.000		
7/15/2002	81.000		
10/8/2002	202.000		
1/8/2003	177.000		
4/3/2003	93.100		
7/8/2003	17.500		
10/6/2003	37.500		
Well Number:	MW372		
Date Collected	Result		
3/19/2002	184.000		
4/23/2002	50.000		
7/16/2002	50.000		

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data	
X= 67.963 S= 64.316 CV= 0.946 K factor** = 2.523	
TL= 230.231	

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

50.000

10.000

12,700

10.000

12.600

Well No.	Result	Gradient F	Result >TL?
MW357	15.000	Downgradien	t NO
MW360	30.000	Downgradien	t NO
MW363	9.600	Downgradien	t NO
MW366	14.000	Sidegradient	NO
MW369	40.000	Upgradient	NO
MW372	20.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Boron LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW370	
Date Collected	Result	
3/17/2002	2.000	
4/23/2002	2.000	
7/15/2002	2.000	
10/8/2002	0.200	
1/8/2003	0.200	

0.200

0.200

Statistics on Background Data	
X= 1.140 S= 0.780 CV= 0.684 K factor** = 2.523 TL= 3.108	

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

1/9/2003	0.200
10/6/2003	0.200
Well Number:	MW373
Date Collected	Result
3/18/2002	2.000
4/23/2002	2.000
7/16/2002	2.000
10/8/2002	0.790
1/7/2003	0.807
4/2/2003	1.130
7/9/2003	1.280
10/7/2003	1.240

4/3/2003

7/0/2002

Fourth Quarter 2013 Data Collected in October 2013

Well No.	Result	Gradient F	Result >TL?
MW358	0.381	Downgradien	t NO
MW361	0.200	Downgradien	t NO
MW364	0.200	Downgradien	t NO
MW367	0.200	Sidegradient	NO
MW370	0.200	Upgradient	NO
MW373	1.770	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Calcium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW370		
Date Collected	Result		
3/17/2002	34.800		
4/23/2002	43.400		
7/15/2002	33.200		
10/8/2002	29.200		
1/8/2003	31.300		
4/3/2003	32.400		
7/9/2003	22.900		
10/6/2003	28.000		
Well Number:	MW373		
Date Collected	Result		
3/18/2002	61.900		
4/23/2002	59.200		
7/16/2002	47.600		
10/8/2002	46.100		
1/7/2003	49.200		

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data		
X= 43.413		
S= 13.444		
CV = 0.310		
K factor** = 2.523		
TL= 77.331		

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

57.800

52.700

64.900

Well No.	Result	Gradient R	esult >TL?
MW358	34.600	Downgradient	NO
MW361	30.400	Downgradient	NO
MW364	27.600	Downgradient	NO
MW367	15.100	Sidegradient	NO
MW370	27.600	Upgradient	NO
MW373	76.400	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Chloride LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW370		
Date Collected	Result		
7/15/2002	55.500		
10/8/2002	53.600		
1/8/2003	52.900		
4/3/2003	53.600		
7/9/2003	51.900		
10/6/2003	53.000		
1/7/2004	53.000		
4/7/2004	51.600		
Well Number:	MW373		
Date Collected	Result		
7/16/2002	40.600		
10/8/2002	38.800		
1/7/2003	39.000		
4/2/2003	38.400		

7/9/2003

10/7/2003

1/6/2004

4/7/2004

Statistics on Background Data	
X= 45.919	
S= 7.524 CV= 0.164	
K factor** = 2.523	
TL= 64.901	

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

38.100

38.000

37.900

38.800

Well No.	Result	Gradient Re	esult >TL?
MW358	34.000	Downgradient	NO
MW361	31.000	Downgradient	NO
MW364	31.000	Downgradient	NO
MW367	10.000	Sidegradient	NO
MW370	42.000	Upgradient	NO
MW373	44.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Cobalt LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

	Statistics on Background Data Statistics on Background Data		Transformed Background Data from Upgradient Wells		
Well Number:	MW370	X=0.027	X= 0.027		MW370
Date Collected	Result	S=0.032	S= 0.032		LN(Result)
3/17/2002	0.025	CV= 1.165		3/17/2002	-3.689
4/23/2002	0.025	K factor** = 2.523 TL= 0.108		4/23/2002	-3.689
7/15/2002	0.025	1L= 0.108		7/15/2002	-3.689
10/8/2002	0.017	Because CV is greater t	han 1, the natural	10/8/2002	-4.051
1/8/2003	0.011		logarithm of background and test well results were calculated.		-4.556
4/3/2003	0.009	were calculated.			-4.677
7/9/2003	0.137	Statistics on	Statistics on Transformed Background Data		-1.988
10/6/2003	0.046				-3.073
Well Number:	MW373	Background Data			MW373
Date Collected	Result	X= -4.058	X= -4.058	Date Collected	LN(Result)
3/18/2002	0.025	S= 1.011		3/18/2002	-3.689
4/23/2002	0.034	CV= -0.249	-		-3.381
7/16/2002	0.025			7/16/2002	-3.689
10/8/2002	0.004		K factor** = 2.523		-5.494
1/7/2003	0.003	TL= -1.507		1/7/2003	-5.672
4/2/2003	0.004			4/2/2003	-5.605
7/9/2003	0.041			7/9/2003	-3.206
10/7/2003	0.008			10/7/2003	-4.776

Fourth Quarter 2013 Data Collected in
October 2013

Well No.	Result	Gradient	Result >TL?
MW358	0.002	Downgradie	nt N/A
MW361	0.001	Downgradie	nt N/A
MW364	0.001	Downgradie	nt N/A
MW367	0.004	Sidegradient	N/A
MW370	0.001	Upgradient	N/A
MW373	0.001	Upgradient	N/A

Transformed Fourth Quarter 2013 Data Collected in October 2013

Well Number	LN(Result)	Result >TL?
MW358	-6.008	NO
MW361	-6.908	NO
MW364	-6.908	NO
MW367	-5.586	NO
MW370	-6.908	NO
MW373	-6.908	NO

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Conductivity LRGA UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W	
Wall Number	MW270

Well Number:	MW370
Date Collected	Result
3/17/2002	406.000
4/23/2002	543.000
7/15/2002	476.000
10/8/2002	441.000
1/8/2003	486.000
4/3/2003	466.000
7/9/2003	479.000
10/6/2003	435.000
Well Number:	MW373
Date Collected	Result

3/18/2002 4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 608.719
S= 156.157
CV = 0.257
K factor** = 2.523
TL = 1002.702

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

661.000

801.000

774.000

680.000

686.500

763.000

828.000

814.000

Well No.	Result	Gradient R	esult >TL?
MW358	513.00	Downgradient	NO
MW361	463.00	Downgradient	NO
MW364	449.00	Downgradient	NO
MW367	297.00	Sidegradient	NO
MW370	430.00	Upgradient	NO
MW373	958.00	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Dissolved Oxygen LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				
Well Number: MW370				
Date Collected	Result			
3/17/2002	4.320			
4/23/2002	1.240			
7/15/2002	0.750			
10/8/2002	0.940			
1/8/2003	3.080			
4/3/2003	1.450			
7/9/2003	1.220			
10/6/2003	1.070			
Well Number:	MW373			
Date Collected	Result			
3/18/2002	3.040			
4/23/2002	0.030			
7/16/2002	0.230			
10/8/2002	0.860			
1/7/2003	0.210			
4/2/2003	1.190			

Statistics on Background Data
X= 1.387
S= 1.153
CV = 0.831
K factor** = 2.523
TL= 4.295

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

1.100

1.460

Well No.	Result	Gradient Resu	lt >TL?
MW358	0.590	Downgradient	NO
MW361	3.330	Downgradient	NO
MW364	2.980	Downgradient	NO
MW367	0.860	Sidegradient	NO
MW370	4.590	Upgradient	YES
MW373	1.150	Upgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW370

7/9/2003

10/7/2003

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Dissolved Solids LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from
Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	236.000
4/23/2002	337.000
7/15/2002	266.000
10/8/2002	240.000
1/8/2003	282.000
4/3/2003	238.000
7/9/2003	248.000
10/6/2003	224.000
Well Number:	MW373
Date Collected	Result
3/18/2002	427.000

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003 7/9/2003

10/7/2003

Statistics on Background Data
X= 356.188
S= 106.752
CV = 0.300
K factor** = 2.523
TL = 625.523

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

507.000

464.000

408.000 404.000

450.000

487.000

481.000

Well No.	Result	Gradient R	esult >TL?
MW358	296.00	Downgradient	NO
MW361	270.00	Downgradient	NO
MW364	263.00	Downgradient	NO
MW367	155.00	Sidegradient	NO
MW370	240.00	Upgradient	NO
MW373	590.00	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Iron LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW370		
Date Collected	Result		
3/17/2002	9.340		
4/23/2002	4.330		
7/15/2002	3.520		
10/8/2002	7.450		
1/8/2003	7.040		
4/3/2003	4.640		
7/9/2003	15.800		
10/6/2003	6.490		
Well Number:	MW373		

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 9.230 S= 8.841 CV= 0.958 K factor** = 2.523
TL = 31.535

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

Result

37.600

19.000

10.700

3.750

3.870

3.500

7.720

2.930

Well No.	Result	Gradient Re	esult >TL?
MW358	0.548	Downgradient	NO
MW361	0.100	Downgradient	NO
MW364	0.432	Downgradient	NO
MW367	13.200	Sidegradient	NO
MW370	0.100	Upgradient	NO
MW373	0.100	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Magnesium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Upgradient Wells		
Well Number:	MW370	
Date Collected	Result	
3/17/2002	12.100	
4/23/2002	15.100	
7/15/2002	12.400	

12 200

Statistics on Background Data
X= 17.544 S= 5.911 CV= 0.337 K factor** = 2.523 TL= 32.458

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

10/8/2002	12.200
1/8/2003	11.500
4/3/2003	12.300
7/9/2003	10.000
10/6/2003	12.100
Well Number:	MW373
Date Collected	Result
3/18/2002	24.800
4/23/2002	22.700
7/16/2002	18.800
10/8/2002	21.100
1/7/2003	19.900
4/2/2003	25.500
7/9/2003	23.300

10/8/2002

10/7/2003

Fourth Quarter 2013 Data Collected in October 2013

26.900

Well No.	Result	Gradient Ro	esult >TL?
MW358	14.200	Downgradient	NO
MW361	12.300	Downgradient	NO
MW364	11.600	Downgradient	NO
MW367	7.290	Sidegradient	NO
MW370	11.100	Upgradient	NO
MW373	28.100	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Manganese LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW370	
Date Collected	Result	
3/17/2002	0.244	
4/23/2002	1.820	
7/15/2002	1.220	
10/8/2002	0.988	
1/8/2003	0.729	
4/3/2003	0.637	
7/9/2003	2.510	
10/6/2003	1.050	
Well Number:	MW373	
Date Collected	Result	
3/18/2002	0.355	

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data	
X= 1.080 S= 0.674 CV= 0.624 K factor** = 2.523 TL= 2.780	

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

2.160

1.390

0.717

0.587

0.545

1.760

0.570

Well No.	Result	Gradient Re	sult >TL?
MW358	0.173	Downgradient	NO
MW361	0.007	Downgradient	NO
MW364	0.044	Downgradient	NO
MW367	1.710	Sidegradient	NO
MW370	0.005	Upgradient	NO
MW373	0.062	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Oxidation-Reduction Potential LRGA UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

kground D gradient W		Statistics on Background Data	Transformed Data from Up	
ell Number:	MW370	X= 46.688	Well Number:	MW370
ate Collected	Result	S= 60.986	Date Collected	LN(Result)
3/17/2002	140.000	CV= 1.306	3/17/2002	4.942
4/23/2002	-15.000	K factor** = 2.523	4/23/2002	#Func!
7/15/2002	5.000	TL= 200.555	7/15/2002	1.609
4/3/2003	49.000	Because CV is greater than 1, the natural	4/3/2003	3.892
7/9/2003	-35.000	logarithm of background and test well resu		#Func!
10/6/2003	40.000	were calculated.	10/6/2003	3.689
1/7/2004	101.000	Statistics on	1/7/2004	4.615
4/7/2004	105.000	Transformed	4/7/2004	4.654
Vell Number:	MW373	Background Data	Well Number:	MW373
ate Collected	Result	X = error	Date Collected	LN(Result)
3/18/2002	140.000	S = error	3/18/2002	4.942
4/23/2002	-20.000		4/23/2002	#Func!
10/8/2002	10.000	CV = error	10/8/2002	2.303
1/7/2003	10.000	K factor** = 2.523	1/7/2003	2.303
4/2/2003	67.000	TL# = 4.942	4/2/2003	4.205
7/9/2003	-29.000	# Because the natural log was not possible	for 7/9/2003	#Func!
10/7/2003	127.000	all background values, the TL was consider		4.844
1/6/2004	52.000	equal to the maximum background value.	1/6/2004	3.951

Fourth Quarter 2013 Data Collected in
October 2013

Well No.	Result	Gradient	Result	>TL?
MW358	488.000	Downgradie	nt	N/A
MW361	538.000	Downgradie	nt	N/A
MW364	358.000	Downgradie	nt	N/A
MW367	380.000	Sidegradien	t	N/A
MW370	811.000	Upgradient		N/A
MW373	627.000	Upgradient		N/A

Transformed Fourth Quarter 2013 Data Collected in October 2013

Well Number LN(Result) Result >TL?

MW358	6.190	YES
MW361	6.288	YES
MW364	5.881	YES
MW367	5.940	YES
MW370	6.698	YES
MW373	6.441	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW358

MW361

MW364

MW367

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis	LRGA
Oxidation-Reduction Potential'*Eqpvlpwgf +	UNITS: mV

MW370 MW373

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis pH LRGA UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	6.300
4/23/2002	6.400
7/15/2002	6.300
10/8/2002	6.300
1/8/2003	6.400
4/3/2003	6.500
7/9/2003	6.300
10/6/2003	6.500
Well Number:	MW373
Well Number: Date Collected	
Date Collected	Result
Date Collected 3/18/2002	Result 6.000
Date Collected 3/18/2002 4/23/2002	Result 6.000 6.300
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 6.000 6.300 6.450
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.000 6.300 6.450 6.180
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.000 6.300 6.450 6.180 6.350
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 6.000 6.300 6.450 6.180 6.350 6.140

Statistics on Background Data		
X= 6.283		
S = 0.159		
CV = 0.025		
K factor** = 2.904		
TL= 6.745		

LL = 5.820

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

Well No.	Result	Gradient	Result <ll?< th=""></ll?<>
MW358	6.100	Downgradient	NO
MW361	6.060	Downgradient	NO
MW364	6.470	Downgradient	NO
MW367	6.200	Sidegradient	NO
MW370	6.090	Upgradient	NO
MW373	6.080	Upgradient	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Fourth Quarter 2013 Statistical Analysis Potassium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW370	
Date Collected	Result	
3/17/2002	3.220	
4/23/2002	3.430	
7/15/2002	2.980	
10/8/2002	2.460	
1/8/2003	2.410	
4/3/2003	2.430	
7/9/2003	2.440	
10/6/2003	2.480	
Well Number:	MW373	
Date Collected	Result	
3/18/2002	4.340	
4/23/2002	3.040	
7/16/2002	2.930	

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 2.823 S= 0.522 CV= 0.185 K factor** = 2.523
TL= 4.139

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

2.300

2.450

2.700

2.680

2.880

Well No.	Result	Gradient R	esult >TL?
MW358	2.270	Downgradien	t NO
MW361	2.370	Downgradien	t NO
MW364	1.870	Downgradien	t NO
MW367	2.430	Sidegradient	NO
MW370	2.410	Upgradient	NO
MW373	2.840	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Sodium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				
Well Number: MW370				
Date Collected	Result			
3/17/2002	31.800			
4/23/2002	50.000			
7/15/2002	44.700			
10/8/2002	40.000			
1/8/2003	44.600			
4/3/2003	41.900			
7/9/2003	40.000			
10/6/2003	38.100			
Well Number:	MW373			
Date Collected	Result			
3/18/2002	43.400			
4/23/2002	79.800			

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 51.544
S= 15.227
CV = 0.295
K factor** = 2.523
TL= 89.962

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2013 Data Collected in October 2013

87.700

61.600 59.300

62.100

50.100

49.600

Well No.	Result	Gradient Re	esult >TL?
MW358	40.900	Downgradient	NO
MW361	42.600	Downgradient	NO
MW364	40.500	Downgradient	NO
MW367	17.500	Sidegradient	NO
MW370	37.800	Upgradient	NO
MW373	66.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Sulfate LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Jpgradient Wells Background Data	Data from Up	Background gradient We
/ell Number: MW370 X= 122.381	Well Number:	MW370
rate Collected Result S= 195.095	Date Collected	LN(Result)
3/17/2002 17.400 CV= 1.594	3/17/2002	2.856
4/23/2002 37.900 K factor ** = 2.523	4/23/2002	3.635
7/15/2002 15.700 TL= 614.606	7/15/2002	2.754
10/8/2002 13.400 Because CV is greater than 1, the natural	10/8/2002	2.595
1/8/2003 14.400 logarithm of background and test well results		2.667
4/3/2003 18.100 were calculated.	4/3/2003	2.896
7/9/2003 9.600 Statistics on	7/9/2003	2.262
10/6/2003 16.500 Transformed	10/6/2003	2.803
Vell Number: MW373 Background Data	Well Number:	MW373
rate Collected Result X= 3.985	Date Collected	LN(Result)
3/18/2002 163.300 S= 1.323	3/18/2002	5.096
4/23/2002 809.600 CV= 0.332	4/23/2002	6.697
7/16/2002 109.400	7/16/2002	4.695
10/8/2002 110.600 K factor** = 2.523	10/8/2002	4.706
1/7/2003 113.700 TL= 7.322	1/7/2003	4.734
4/2/2003 133.000	4/2/2003	4.890
7/9/2003 182.100	7/9/2003	5.205
10/7/2003 193.400	10/7/2003	5.265

Fourth Quarter 2013 Data Collected in
October 2013

Well No.	Result	Gradient	Result >TL?
MW358	85.000	Downgradie	nt N/A
MW361	73.000	Downgradie	nt N/A
MW364	61.000	Downgradie	nt N/A
MW367	25.000	Sidegradient	N/A
MW370	19.000	Upgradient	N/A
MW373	210.000	Upgradient	N/A

Transformed Fourth Quarter 2013 Data Collected in October 2013

Well Number	LN(Result)	Result >TL?
MW358	4.443	NO
MW361	4.290	NO
MW364	4.111	NO
MW367	3.219	NO
MW370	2.944	NO
MW373	5.347	NO

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Technetium-99

LRGA UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	
Well Number:	MW370	X= 7.655		Well Number:	MW370
Date Collected	Result	S= 13.274		Date Collected	LN(Result)
3/17/2002	10.800	CV= 1.734		3/17/2002	2.380
4/23/2002	8.530	K factor** = 2.523 TL= 41.146		4/23/2002	2.144
7/15/2002	5.090	1L= 41.146]	7/15/2002	1.627
10/8/2002	4.780	Because CV is greater to	than 1, the natural	10/8/2002	1.564
1/8/2003	-5.120	logarithm of backgroun	nd and test well results	1/8/2003	#Func!
4/3/2003	5.110	were calculated.		4/3/2003	1.631
7/9/2003	4.250	Statistics on	Statistics on	7/9/2003	1.447
10/6/2003	6.540	Transformed		10/6/2003	1.878
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X = error		Date Collected	LN(Result)
3/18/2002	16.500	S = error		3/18/2002	2.803
4/23/2002	3.490			4/23/2002	1.250
7/16/2002	1.420	CV = error		7/16/2002	0.351
10/8/2002	-6.060	K factor** = 2.523		10/8/2002	#Func!
1/7/2003	-8.410	TL# = 3.833		1/7/2003	#Func!
4/2/2003	26.300	# Because the natural lo	og was not possible for	4/2/2003	3.270
7/9/2003	3.060	all background values,	the TL was considered	7/9/2003	1.118
10/7/2003	46.200	equal to the maximum	equal to the maximum background value.		3.833

Fourth Quarter 2013 Data Collected in	
October 2013	

Well No.	Result	Gradient	Result >TL?
MW358	43.000	Downgradie	nt N/A
MW361	53.400	Downgradie	nt N/A
MW364	49.100	Downgradie	nt N/A
MW367	-0.345	Sidegradient	N/A
MW370	27.900	Upgradient	N/A
MW373	59.900	Upgradient	N/A

Transformed Fourth Quarter 2013 Data Collected in October 2013

Well Number LN(Result) Result >TL?

MW358	3.761	NO
MW361	3.978	YES
MW364	3.894	YES
MW367	Error#	NO
MW370	3.329	NO
MW373	4.093	YES

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW361

MW364

MW373

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Total Organic Carbon (TOC)

LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Upg	
Well Number:	MW370	X= 6.169		Well Number:	MW370
Date Collected	Result	S= 12.072		Date Collected	LN(Result)
3/17/2002	1.200	CV= 1.957		3/17/2002	0.182
4/23/2002	4.300	K factor** = 2.523		4/23/2002	1.459
7/15/2002	2.600	TL= 36.626		7/15/2002	0.956
10/8/2002	2.300	Because CV is greater t	han 1, the natural	10/8/2002	0.833
1/8/2003	3.000	logarithm of backgroun	d and test well results	1/8/2003	1.099
4/3/2003	1.200	were calculated.		4/3/2003	0.182
7/9/2003	2.600	Statistics on		7/9/2003	0.956
10/6/2003	1.700	Transformed		10/6/2003	0.531
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X= 1.069		Date Collected	LN(Result)
3/18/2002	1.100	S= 1.014		3/18/2002	0.095
4/23/2002	17.500	CV= 0.948		4/23/2002	2.862
7/16/2002	49.000	1 - 7 - 7 - 7		7/16/2002	3.892
10/8/2002	2.900	K factor** = 2.523		10/8/2002	1.065
1/7/2003	3.900	TL= 3.626		1/7/2003	1.361
4/2/2003	2.500		-	4/2/2003	0.916
7/9/2003	1.700			7/9/2003	0.531
10/7/2003	1.200			10/7/2003	0.182

Fourth Quarter 2013 Data Collected in
October 2013

Well No.	Result	Gradient	Result >TL?
MW358	1.000	Downgradie	nt N/A
MW361	1.000	Downgradie	nt N/A
MW364	1.000	Downgradie	nt N/A
MW367	1.000	Sidegradient	N/A
MW370	1.000	Upgradient	N/A
MW373	1.100	Upgradient	N/A

Transformed Fourth Quarter 2013 Data Collected in October 2013

Well Number	LN(Result)	Result >TL?
MW358	0.000	NO
MW361	0.000	NO
MW364	0.000	NO
MW367	0.000	NO
MW370	0.000	NO
MW373	0.095	NO

Conclusion of Statistical Analysis on Transformed Datc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Fourth Quarter 2013 Statistical Analysis Total Organic Halides (TOX) LRGA UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells					
Well Number: MW370					
Date Collected	Result				

Date Collected Result

3/17/2002 50.000

4/23/2002 228.000

7/15/2002 88.000

10/8/2002 58.000

1/8/2003 72.400

4/3/2003 26.600

7/9/2003 16.400

10/6/2003

Statistics on Background Data		
X= 79.819		
S= 78.470		
CV = 0.983		
K factor** = 2.523		
TL= 277.798		

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Well Number: MW373 Date Collected Result 3/18/2002 50.000 4/23/2002 276.000 7/16/2002 177.000 10/8/2002 76.000 1/7/2003 45.900 4/2/2003 57.800 7/9/2003 10.000 10/7/2003 13.900

Fourth Quarter 2013 Data Collected in October 2013

31.100

We	ell No.	Result	Gradient 1	Result >	TL?
ΜV	W358	20.000	Downgradier	nt l	ON
ΜV	W361	20.000	Downgradier	nt 1	ON
ΜV	W364	12.000	Downgradier	nt 1	ON
ΜV	W367	18.000	Sidegradient	1	ON
ΜV	W370	13.000	Upgradient	1	ON
ΜV	W373	18.000	Upgradient	1	ON

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

January 29, 2014

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in mathematics, I have over two years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by both a senior chemist with LATA as well as C. Travis Debnam, the project geologist responsible for the previous generation of these statistics.

For this project, the statistical analyses conducted on the fourth quarter 2013 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely

Cory Tackett

LATA Project Chemist

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

Facility: U.S. DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

GROUNDWATER FLOW RATE AND DIRECTION

Finds/Unit: KY8-890-008-982/1

LAB ID: None

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2013 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on October 23, 2013. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. Many UCRS wells (MW359, MW365, MW368, MW376, and MW377) had insufficient water to permit sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradient for both the URGA and LRGA at the C-746-U Landfill was 7.20×10^{-4} ft/ft. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 5.03×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the Solid Waste Landfill Permit No. 073-00045 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. In October, groundwater flow was northeastward with the regional flow.

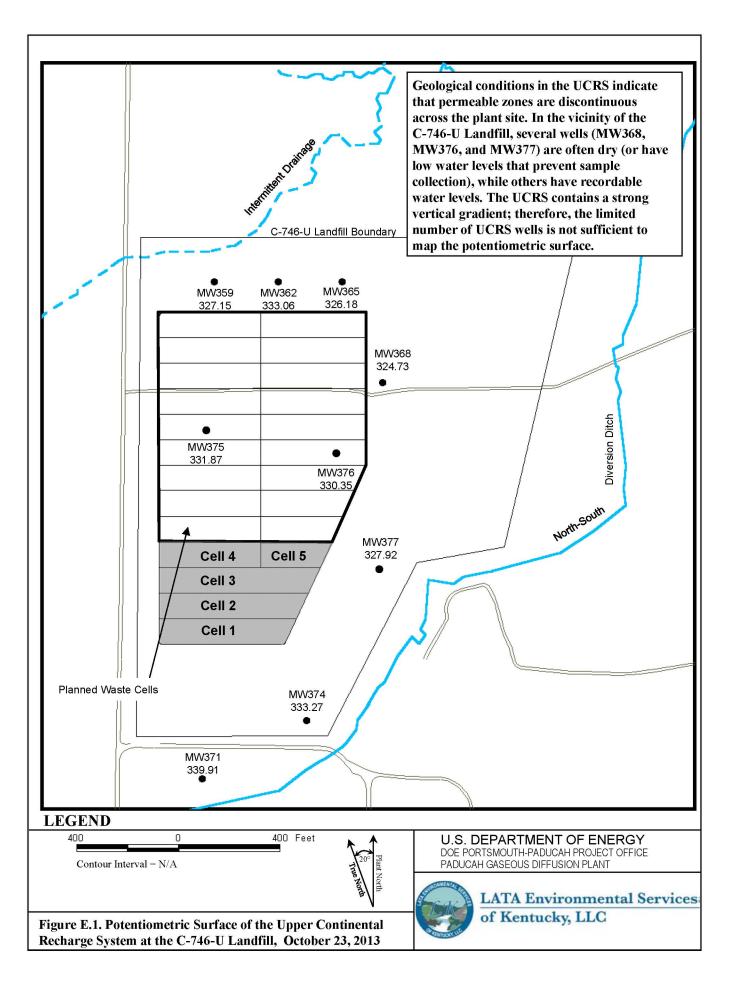


Table E.1. C-746-U Landfill Fourth Quarter 2013 (October) Water Levels

	C-746-U Landfill (October 2013) Water Levels									
							Raw	Raw Data *Cor		ted Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/23/2013	7:46	MW357	URGA	368.90	30.05	0.05	46.71	322.19	46.76	322.14
10/23/2013	7:48	MW358	LRGA	369.05	30.05	0.05	46.88	322.17	46.93	322.12
10/23/2013	7:47	MW359	UCRS	369.07	30.05	0.05	41.87	327.20	41.92	327.15
10/23/2013	7:44	MW360	URGA	362.20	30.05	0.05	40.03	322.17	40.08	322.12
10/23/2013	7:42	MW361	LRGA	361.47	30.05	0.05	39.30	322.17	39.35	322.12
10/23/2013	7:43	MW362	UCRS	361.95	30.05	0.05	28.84	333.11	28.89	333.06
10/23/2013	7:51	MW363	URGA	368.68	30.05	0.05	46.62	322.06	46.67	322.01
10/23/2013	7:53	MW364	LRGA	367.63	30.05	0.05	45.59	322.04	45.64	321.99
10/23/2013	7:52	MW365	UCRS	368.27	30.05	0.05	42.04	326.23	42.09	326.18
10/23/2013	7:58	MW366	URGA	369.06	30.09	0.00	46.83	322.23	46.83	322.23
10/23/2013	7:56	MW367	LRGA	369.45	30.09	0.00	47.27	322.18	47.27	322.18
10/23/2013	7:57	MW368	UCRS	369.14	30.09	0.00	44.41	324.73	44.41	324.73
10/23/2013	8:32	MW369	URGA	364.28	30.09	0.00	40.88	323.40	40.88	323.40
10/23/2013	8:34	MW370	LRGA	365.15	30.09	0.00	41.75	323.40	41.75	323.40
10/23/2013	8:33	MW371	UCRS	364.71	30.09	0.00	24.80	339.91	24.80	339.91
10/23/2013	8:28	MW372	URGA	359.49	30.09	0.00	36.07	323.42	36.07	323.42
10/23/2013	8:30	MW373	LRGA	359.79	30.09	0.00	36.40	323.39	36.40	323.39
10/23/2013	8:29	MW374	UCRS	359.50	30.09	0.00	26.23	333.27	26.23	333.27
10/23/2013	8:23	MW375	UCRS	370.24	30.09	0.00	38.37	331.87	38.37	331.87
10/23/2013	8:21	MW376	UCRS	370.44	30.09	0.00	40.09	330.35	40.09	330.35
10/23/2013	8:17	MW377	UCRS	365.76	30.09	0.00	37.84	327.92	37.84	327.92

Initial Barometric Pressure

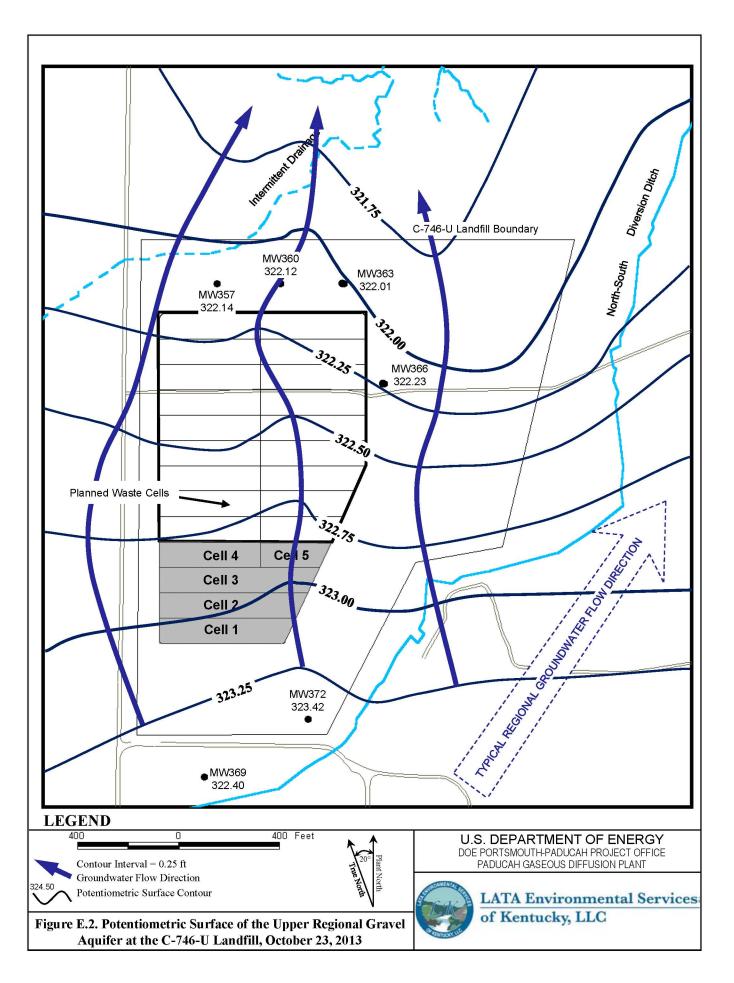
30.09

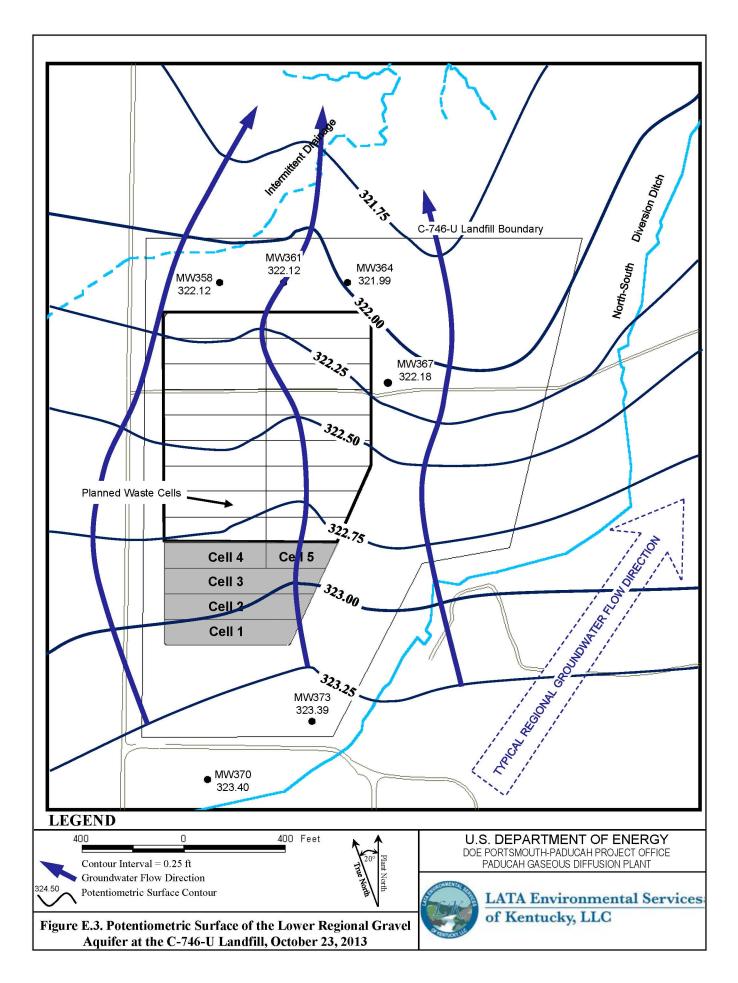
Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer


LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

ND = No Data acquired

*Assumes a barometric efficiency of 1.0

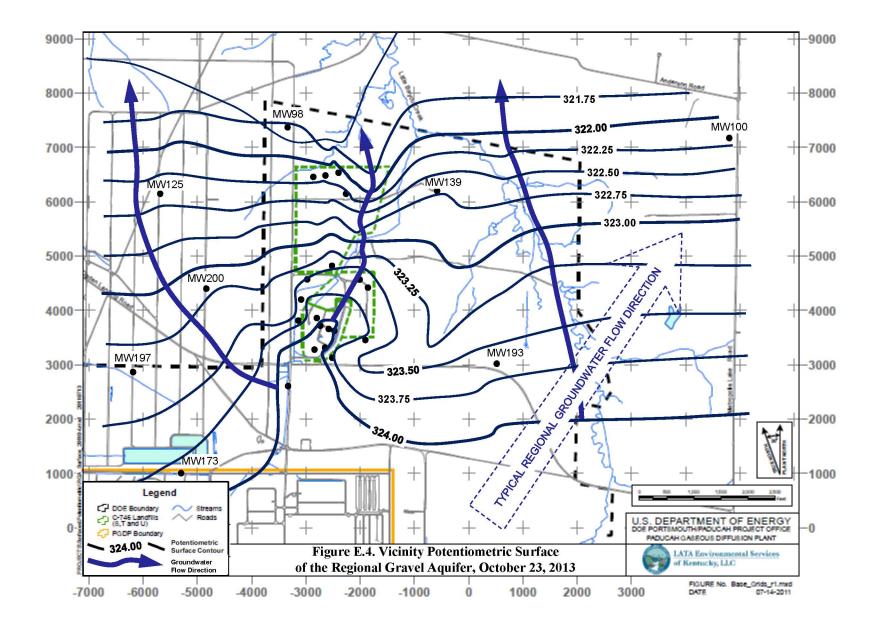
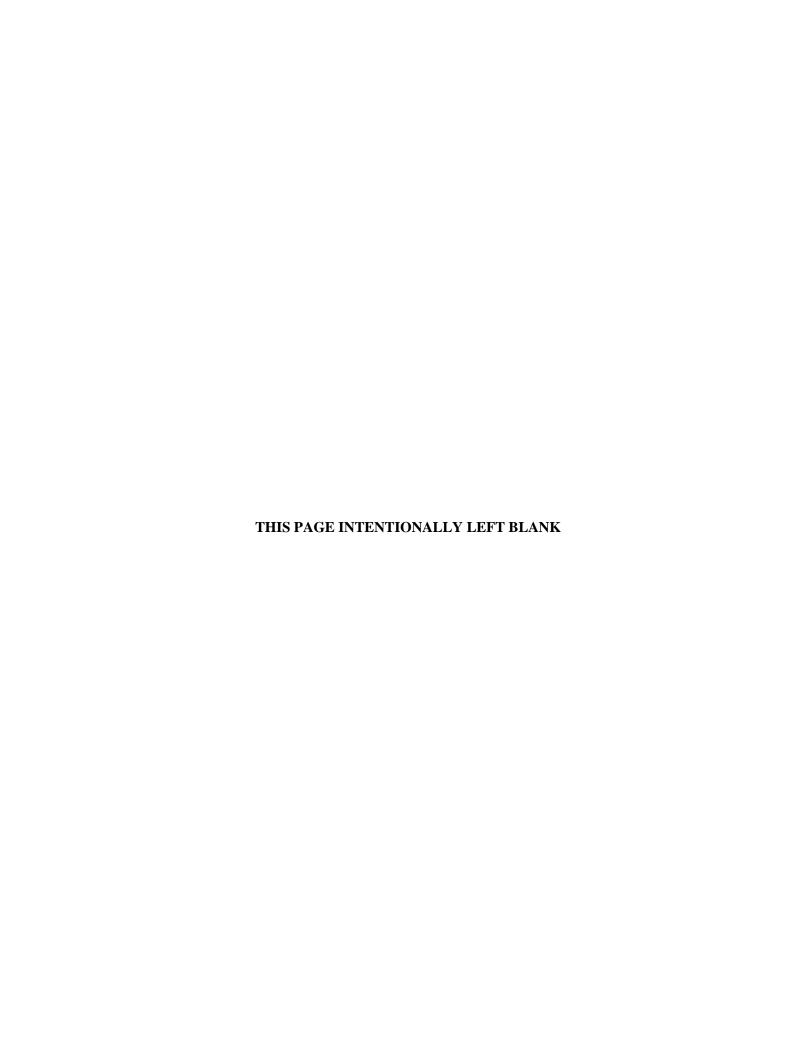



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	7.20×10^{-4}
Beneath Landfill—Lower RGA	7.20×10^{-4}
Vicinity	5.03×10^{-4}

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific	c Discharge (q)	Average Linear Velocity (v	
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.52	1.84×10^{-4}	2.09	7.37×10^{-4}
425	0.150	0.31	1.08×10^{-4}	1.22	4.32×10^{-4}
Lower RGA					
725	0.256	0.52	1.84×10^{-4}	2.09	7.37×10^{-4}
425	0.150	0.31	1.08×10^{-4}	1.22	4.32×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300, Section 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the fourth quarter 2013 groundwater data collected from the C-746-U Landfill monitoring wells (MW) were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The following are the parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to background concentrations.

Parameter	Monitoring Well
Upper Continental Recharge System	
None	
Upper Regional Gravel Aquifer	
Technetium-99	MW372
Lower Regional Gravel Aquifer	
Technetium-99	MW361, MW364, MW373

NOTE: Although technetium-99 is not cited in 40 CFR § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

MCL Notification

A notification was submitted for parameters that exceeded the MCL. The parameters submitted are listed on the following page.

11/18/2013

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

PERMIT NUMBER 073-00045 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4798	MW357	Trichloroethene	8260B/OA7302E	5.6	ug/L	5
8004-4799	MW358	Trichloroethene	8260B/OA7302E	5.1	ug/L	5
8004-4808	MW372	Beta activity Trichloroethene	9310/RL7111 8260B/OA7302E	131 6.5	pCi/L ug/L	50 5
8004-4792	MW373	Trichloroethene	8260B/OA7302E	6.8	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	T			Ţ	JCR:	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
ACETONE	500	373	370	511	337	302	303	571	37.	300	500	303	307	30)	312	501	301	501	330	370	373
Quarter 3, 2002										*	*	*									Γ
Quarter 4, 2002										*	*	*									
Quarter 1, 2003										T	*	*									-
Quarter 1, 2003 Quarter 2, 2003											*	*									<u> </u>
Quarter 3, 2003	*						*			*	*	*			*			*		\vdash	_
	不					*	*			不	*	不		*	不			不		\vdash	_
Quarter 4, 2003						*	不				不			不		*				\vdash	_
Quarter 3, 2004						*										不					
Quarter 3, 2005	-																			_	-
Quarter 4, 2005						*														<u> </u>	
ALPHA ACTIVITY	1		ı	ı	ı		1				ı	1					ı		ı		_
Quarter 1, 2004	-					_															
Quarter 2, 2004						-															
Quarter 3, 2009																					<u> </u>
ALUMINUM		1	ı	ı	ı		1		1			1	ı				ı		ı		
Quarter 3, 2003											*									<u> </u>	
BETA ACTIVITY						1								1	1			1			
Quarter 1, 2004																				<u> </u>	<u> </u>
Quarter 2, 2004																					
Quarter 3, 2004																					<u> </u>
Quarter 4, 2004																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010	1														_						
Quarter 3, 2010	f															-					
Quarter 4, 2010	1																				
Quarter 2, 2011	1																				
Quarter 4, 2011	1																				
Quarter 1, 2012	1														_						
	1																				
Quarter 2, 2012	1-														_					<u> </u>	
Quarter 3, 2012	1																			<u> </u>	<u> </u>
Quarter 4, 2012	1																				

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Į	JCR:	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
Quarter 1, 2013																					
Quarter 3, 2013																					
Quarter 4, 2013																					
BROMIDE				I	I		l	l					l				I		I		<u> </u>
Quarter 2, 2004													*								
CALCIUM												1								1	
Quarter 3, 2003										*											
Quarter 2, 2005																					*
Quarter 3, 2006															*						
Quarter 2, 2008															*						
Quarter 3, 2009															*						_
Quarter 4, 2009															*						
Quarter 1, 2010															*						-
Quarter 1, 2010 Quarter 2, 2010															*						-
															*						_
Quarter 3, 2010															*						-
Quarter 1, 2011																					₩
Quarter 2, 2011															*						
Quarter 3, 2011																					*
Quarter 4, 2011															*						*
Quarter 1, 2012															*						*
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						*
Quarter 2, 2013															*						
Quarter 3, 2013															*						*
Quarter 4, 2013															*						
CARBON DISULFIDE													ı								
Quarter 3, 2003										*											
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006						*															1
Quarter 3, 2010		*				**					*										
Quarter 4, 2010		т .									т			*							-
														不	*						_
Quarter 1, 2011 CHEMICAL OXYGEN DEMA	NID														不						<u> </u>
	AND				l		l	l		4	.	*	*	*	*		l	1			т—
Quarter 3, 2002										*	*	不	不	不	不						₩
Quarter 4, 2002	_									*	*							-			₩
Quarter 1, 2003				ļ						*	*	41.							ļ		<u> </u>
Quarter 2, 2003										*	*	*									<u> </u>
Quarter 3, 2003	*			ļ						*	*					*			ļ		ऻ_
Quarter 4, 2003						*				*	*										<u> </u>
Quarter 3, 2004										*											<u> </u>
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*												*	*		
																			*		1

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CHLORIDE		l .	l									1						1			
Quarter 1, 2006																				*	
COBALT								<u> </u>				1								VIV	
Quarter 3, 2003	*	1	<u> </u>				*	1		*	*		*	*	*	*	*	*		*	1
Quarter 1, 2004	<u> </u>						<u> </u>			~	Т.		Т.	*	Т.	~	~	<u> </u>		T	
CONDUCTIVITY														不							
Quarter 4, 2002	I							1		*		1					1	1			1
Quarter 1, 2003										*											
										*	*										
Quarter 4, 2003										*	不										
Quarter 4, 2003										*											
Quarter 1, 2004										*											
Quarter 2, 2004	1									*											
Quarter 1, 2004	1									不					*						
Quarter 1, 2005	1														*						
Quarter 2, 2005 Quarter 3, 2005	1					*									不				*		
Quarter 4, 2005	1					不									*			*	不		
Quarter 1, 2006															*			不			
Quarter 2, 2006															*						
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 3, 2007															*						
Quarter 4, 2007															*						
Quarter 1, 2008															*						
Quarter 2, 2008															*						
Quarter 3, 2008															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012	1													<u> </u>	*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
															*						
Quarter 3, 2013																					
Quarter 4, 2013]	<u> </u>	<u> </u>						<u> </u>	<u> </u>		<u> </u>	*						

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Gradient	Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Monitoring Well 368 375 376 377 359 362 365 371 374 366 360 363 357 369 372 367 361 364 358 370 372	-	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
DISSOLVED OXYGEN	Monitoring Well	368	375				362	365	371	374		360		357	369	372	367	361	364	358	370	373
Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2012 Quarter 7, 2012 Quarter 7, 2013 Quarter 7, 2013 Quarter 7, 2013 Quarter 7, 2003 Quarter 7, 2003 Quarter 7, 2003 Quarter 7, 2005 Quarter 7, 2007 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000																						
Quarter 3, 2003						*	*				*											
Quarter 4, 2003							1															
Quarter I, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 1, 2009 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2001 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2003 Quarter 4, 2006 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2000 Quarter 2, 2000 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2003 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2009											*1*											
Quarter 2, 2004																						
Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2012 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2009	,					***			*								*					
Quarter 2, 2005						*			7,1								71					
Quarter 1, 2006	` '					***			*													
Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2003 Quarter 4, 2000 Quarter 4, 200						*			717													
Quarter 3, 2006									*													
Quarter 4, 2006 * * * Quarter 2, 2007 * * * Quarter 2, 2007 * * * * Quarter 2, 2007 * * * * Quarter 3, 2008 * * * * Quarter 1, 2008 * * * * Quarter 2, 2008 * * * * * * Quarter 2, 2008 * * * * * Quarter 2, 2008 * * * * * * Quarter 2, 2009 *<																						
Quarter 2, 2007 * * * * * Quarter 3, 2007 * * * * Quarter 1, 2008 * * * Quarter 2, 2008 * * * Quarter 3, 2008 * * Quarter 1, 2009 * * * Quarter 1, 2009 * * * * Quarter 2, 2009 * * * * Quarter 3, 2009 * * * * * Quarter 3, 2009 * * * * * * Quarter 1, 2010 *									Т	*												
Quarter 3, 2007 * * * * * * Quarter 1, 2008 * * * Quarter 2, 2008 * * * * Quarter 3, 2008 * * * * Quarter 3, 2009 * * * * Quarter 3, 2009 * * * * * * Quarter 3, 2009 * * * * * * * * * * Quarter 3, 2009 *									*	<u>~</u>												
Quarter 1, 2008 * * * * Quarter 2, 2008 * * * * Quarter 3, 2008 * * * * Quarter 1, 2009 * * * * * * Quarter 1, 2010 *										*												
Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2000 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2001 Quarter 5, 2003 Quarter 6, 2003 Quarter 7, 2003 Quarter 7, 2003 Quarter 7, 2003 Quarter 8, 2005 Quarter 9, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009									不	不										*		
Quarter 3, 2008						不			3 Ł	¥ Ł										不		
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 ** ** ** ** ** ** ** ** ** ** ** ** *										不												
Quarter 2, 2009								4 Ł	不													
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2001 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 W* Washington Washi						4		不	4	4												
Quarter 1, 2010						木	.															
Quarter 2, 2010						4	木	Ale	木	木												
Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2010 Quarter 4, 2003 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2009 Quarter 2, 2009 ** Quarter 2, 2009 ** Quarter 3, 2005 ** Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2009 Quarter 1, 2009 ** Quarter 2, 2009 ** Quarter 1, 2009 ** Quarter 2, 2009							1	*	46	44											4	46
Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 PDISSOLVED SOLIDS Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 1, 2009 ** ** ** ** ** ** ** ** **									*	*											*	*
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2007 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2006 Quarter 4, 2009 Quarter 4, 2006 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009						*	*	Ala.					Ala.								Ala.	
Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 DISSOLVED SOLIDS Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2007 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2007 Quarter 4, 2009 Quarter 2, 2007 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009								*					*								*	
Quarter 3, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Possolved Solubs Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2007 Quarter 2, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 ** ** ** ** ** ** ** ** **																						
Quarter 1, 2012						*		*	*						*							
Quarter 2, 2012 * * * * * * * * Quarter 3, 2012							*															
Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * * Quarter 2, 2013 * * * Quarter 3, 2013 * * * </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td>								*														
Quarter 4, 2012 * * * Quarter 1, 2013 * * * * Quarter 2, 2013 * * * * Quarter 3, 2013 * * * * Quarter 4, 2013 * * * DISSOLVED SOLIDS Quarter 4, 2002 * * * Quarter 1, 2003 * * * Quarter 2, 2003 * * * Quarter 3, 2003 * * * Quarter 4, 2003 * * * Quarter 4, 2006 * * * Quarter 1, 2007 * * * Quarter 2, 2007 * * * Quarter 4, 2008 * * * Quarter 2, 2009 * * *		*			*	*			*	*												
Quarter 1, 2013 * * * * Quarter 2, 2013 * * * * * Quarter 3, 2013 * * * * * * Quarter 4, 2013 * * * * * * DISSOLVED SOLIDS Quarter 4, 2002 * * * * * * Quarter 1, 2003 * * * * * * Quarter 2, 2003 * * * * * * Quarter 3, 2003 * * * * * * Quarter 4, 2003 * * * * * * Quarter 4, 2006 * * * * * Quarter 1, 2007 * * * * * Quarter 4, 2008 * * * * * * Quarter 2, 2009 * * * * * *							*															
Quarter 2, 2013 * * * * * * * Quarter 3, 2013 * * * * * * * Quarter 4, 2013 * * * * * * * DISSOLVED SOLIDS Quarter 4, 2002 * * * * * * Quarter 1, 2003 * * * * * * Quarter 2, 2003 * * * * * * Quarter 3, 2003 * * * * * * Quarter 4, 2003 * * * * * Quarter 3, 2005 * * * Quarter 4, 2006 * * * Quarter 1, 2007 * * * Quarter 2, 2007 * * * Quarter 4, 2008 * * * Quarter 2, 2009 * * *										-												
Quarter 3, 2013 * * * * * Quarter 4, 2013 * * * * DISSOLVED SOLIDS Quarter 4, 2002 * * * Quarter 1, 2003 * * * * Quarter 2, 2003 * * * * Quarter 3, 2003 * * * * Quarter 4, 2003 * * * * Quarter 4, 2006 * * * * Quarter 1, 2007 * * * * Quarter 4, 2008 * * * * Quarter 1, 2009 * * * * Quarter 2, 2009 * * * *							*															
Quarter 4, 2013 * * DISSOLVED SOLIDS Quarter 4, 2002 * * Quarter 1, 2003 * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2005 * * Quarter 4, 2006 * * Quarter 2, 2007 * * Quarter 4, 2008 * * Quarter 1, 2009 * * Quarter 2, 2009 * *	Quarter 2, 2013																					
DISSOLVED SOLIDS Quarter 4, 2002 * * <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td>		*				*		*	*													
Quarter 4, 2002 * Quarter 1, 2003 * Quarter 2, 2003 * Quarter 3, 2003 * Quarter 4, 2003 * Quarter 3, 2005 * Quarter 4, 2006 * Quarter 1, 2007 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 *	Quarter 4, 2013									*											*	
Quarter 1, 2003 * Quarter 2, 2003 * Quarter 3, 2003 * Quarter 4, 2003 * Quarter 3, 2005 * Quarter 4, 2006 * Quarter 1, 2007 * Quarter 2, 2007 * Quarter 4, 2008 * Quarter 2, 2009 *														•								
Quarter 2, 2003 * * * Quarter 3, 2003 * * * Quarter 4, 2003 * * * Quarter 3, 2005 * * * Quarter 4, 2006 * * * Quarter 1, 2007 * * * Quarter 2, 2007 * * * Quarter 4, 2008 * * * Quarter 1, 2009 * * * Quarter 2, 2009 * * *																						
Quarter 3, 2003 * * * * Quarter 4, 2003 * * * * Quarter 3, 2005 * * * * Quarter 4, 2006 * * * * Quarter 1, 2007 * * * * Quarter 2, 2007 * * * * Quarter 4, 2008 * * * * Quarter 1, 2009 * * * * Quarter 2, 2009 * * * *																						
Quarter 4, 2003 * Quarter 3, 2005 * Quarter 4, 2006 * Quarter 1, 2007 * Quarter 2, 2007 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 *																						
Quarter 3, 2005 * Quarter 4, 2006 * Quarter 1, 2007 * Quarter 2, 2007 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 *	Quarter 3, 2003							*				*										
Quarter 4, 2006 * Quarter 1, 2007 * Quarter 2, 2007 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 *	Quarter 4, 2003										*											
Quarter 1, 2007 * Quarter 2, 2007 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 *	Quarter 3, 2005						*															
Quarter 2, 2007 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 *	Quarter 4, 2006																					
Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 *	Quarter 1, 2007																					
Quarter 1, 2009 * Quarter 2, 2009 *	Quarter 2, 2007															*						
Quarter 2, 2009 * *	Quarter 4, 2008															*						
	Quarter 1, 2009															*						
	Quarter 2, 2009															*						
Quarter 3, 2009	Quarter 3, 2009															*						

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Į	JCR:	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
Quarter 4, 2009	2 30	2,3	270	211		2 32	2 32	- / 1	211	2 3 3	2 30	2 33	20,	237	*	23,	201	201	220	270	2,3
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
															*						
Quarter 2, 2011															*						
Quarter 4, 2011															*						
Quarter 4, 2011														4	*						
Quarter 1, 2012														*	*						4
Quarter 2, 2012																					*
Quarter 4, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
IODIDE		1	1		1	1		1	1				ı	1				1			
Quarter 2, 2003																*					
Quarter 3, 2003	*									*											
Quarter 4, 2003							*														
Quarter 3, 2010						*		*					*				*				
IODINE-131																					
Quarter 3, 2010																					
Quarter 3, 2010 IODOMETHANE																					
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003						*															
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON						*															
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003						*															
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003						ı										*					
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003						ı				*						*					
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003						ı				*											
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003						ı				*						*					
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004						ı				*						*					
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004						ı				*						*					
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM						ı				*						*					
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 2, 2005						*				*					*	*					*
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM						ı				*						*					*
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 2, 2005						*				*					*	*					
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005						*				*					*	*					*
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2006						*				*					* *	*					*
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2006						*				*					* * *	*					*
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 1, 2007						*				*					* *	*					*
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2008						*				*					* * *	*					*
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2009						*				*					* * * *	*					*
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009						*				*					* * * * *	*					*
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009						*				*					* * * * * *	*					*
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010						*				*					* * * * * * *	*					*
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010						*				*					* * * * * * * *	*					*
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 MAGNESIUM Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010						*				*					* * * * * * * * *	*					*

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
MANGANESE			l		l		l		l				l	l					l	l	
Quarter 3, 2002										*		*									
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2003										*		*									
Quarter 3, 2003										*		*	*			*	*	*	*		
Quarter 4, 2003										*	*	*	*				*	*			
Quarter 1, 2004										*	*	*				*	*	*			
Quarter 2, 2004							*			*	*	*						*			
Quarter 3, 2004							*			*	*	*				*					
Quarter 4, 2004										*		*				*					
Quarter 1, 2005										*		*									
Quarter 2, 2005										*		*									
Quarter 3, 2005										*		*				*					
Quarter 4, 2005										*						*					
Quarter 1, 2006										*											
Quarter 2, 2006							*			*		*									
Quarter 3, 2006										*						*					
Quarter 4, 2006										*											
Quarter 1, 2007										*											
Quarter 2, 2007							*			*											
Quarter 3, 2007							*														
Quarter 3, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 3, 2011							*														
NICKEL	_					•		•				•	•				•	•			
Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTE	NTI	AL	•		•		•			•	•	•				•				•
Quarter 4, 2002																	*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004													*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well			376		_				-				357							370	<u> </u>
Quarter 4, 2005	500	*	370	311	337	302	303	*	371	500	500	505	*	30)	312	307	*	501	330	*	373
Quarter 1, 2006		т			*			*	*				<u>~</u>				*			T	*
Quarter 2, 2006					*		*	*	т				*				*			*	<u>~</u>
Quarter 3, 2006					*		Т.	*					*				*			*	_
Quarter 4, 2006					*		*	*		*		*	*				*			*	*
Quarter 1, 2007		*			*		~	*		*		т	*				*			*	*
Quarter 2, 2007		ጥ			*			*					*				*			*	*
Quarter 3, 2007					*			*					<u>~</u>				*			*	<u>~</u>
Quarter 4, 2007					т.			<u>~</u>									*			*	*
Quarter 1, 2008					*			*				*	*				ጥ		*	*	<u>~</u>
Quarter 2, 2008					*			*		*		т	*	*				*	т	*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008					т.		T	*	т.	*		*	*	Т.			*	*	- Т	*	*
Quarter 1, 2009							*	*		*		*	*				不	*		*	不
Quarter 1, 2009 Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
	1	*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 3, 2009 Quarter 4, 2009	1	*			不	*	*	*	*	*		*	*	不			*	*	*	*	*
		*			*	不	*	*	不	*		不	*			*	*	*	不	*	不
Quarter 1, 2010		不				4	不				4	J.							4		4
Quarter 2, 2010		4			*	*	4	*	4	*	*	*	*	J.	4	*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*	114	*	*	*	Ale.	*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011					414	*		*	414	*	*	*	*	*		*	*	*	*	*	-11
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	<u> </u>
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	_		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
PCB, TOTAL								ı						1							
Quarter 4, 2003																	*				<u> </u>
Quarter 3, 2004												*									<u> </u>
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	1			Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
PCB-1016	500	313	370	311	337	302	303	371	371	500	500	303	337	507	312	307	301	501	330	370	373
Quarter 3, 2004												*	1								1
Quarter 2, 2006							*					*									
Quarter 1, 2007							*					T									
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010 PCB-1242							不					<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>			
Quarter 3, 2006							*					*	1								
							不			*		不									
Quarter 1, 2008							*			不											
Quarter 1, 2008							*														
Quarter 2, 2012							不														
PCB-1248			1		l		*		1		l		1	l	1			1	l	l	1
Quarter 2, 2008							不														
PCB-1260							*														
Quarter 2, 2006 pH							不														
Quarter 3, 2002										*					1			1			1
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 1, 2003 Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
	不						*			不						*					
Quarter 1, 2004							*									*					
Quarter 1, 2004 Quarter 3, 2005						*	不									不		*	*		
Quarter 4, 2005						*												~	*		
Quarter 3, 2006						不										*			不		
Quarter 2, 2011														*		<u>~</u>					
Quarter 3, 2011														*							
Quarter 4, 2011														*							
														不		*	*				
Quarter 1, 2012 Quarter 2, 2012												*				<u>~</u>	ጥ				
Quarter 2, 2012 Quarter 1, 2013										*		*				*					
RADIUM-228					<u> </u>			<u> </u>		~	<u> </u>	ጥ	<u> </u>	<u> </u>	<u> </u>	~	<u> </u>				
Quarter 2, 2005																					
Quarter 4, 2005																					
SELENIUM			l		<u> </u>				l		<u> </u>		<u> </u>	<u> </u>	l				<u> </u>	<u> </u>	l
Quarter 4, 2003																					
SODIUM			l		l						l		<u> </u>	<u> </u>	l			l	<u> </u>	l	l
Quarter 3, 2002										*	*		*								
										*	*		不	*							
Quarter 4, 2002										*	不			不							
Quarter 1, 2003										*	*										
Quarter 2, 2003										木	*										
Quarter 3, 2003											不		[<u> </u>							

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
													357								
Quarter 1, 2007	000	0.0	0,0	0,,	00)	002	-	0,1	<i>.</i>		*	000		00)	0,2		001			0,0	0,0
Quarter 1, 2012											т			*							
STRONTIUM-90		l .	l .				<u> </u>							*					l .		
Quarter 3, 2003																					
SULFATE		l	l	l							l				l				l		
Quarter 1, 2003							*														
Quarter 2, 2003						*	*														
Quarter 3, 2003	*					*															<u> </u>
Quarter 4, 2003	•••				*	***	*														<u> </u>
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														-
Quarter 1, 2005					*	*	-1,		*												
Quarter 2, 2005					*	7,1	*		*						*						
Quarter 3, 2005					*	*	*		т-						4,						
Quarter 4, 2005					Т	~	*								*						
Quarter 1, 2006					*				*						4,						
Quarter 2, 2006					T*	*	*		*						*						
Quarter 3, 2006 Quarter 3, 2006						<u> </u>	*		т						*						-
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														-
Quarter 4, 2007		*					т														-
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*		т												-
Quarter 3, 2008		*			*	*	*														-
Quarter 4, 2008		*			т	*	*														-
Quarter 1, 2009		*				т	*														-
Quarter 2, 2009		*			*	*	*														-
Quarter 3, 2009		*			*	*	*								*						-
Quarter 4, 2009		*			*	*	~								*						
		*			*	*	*								*						-
Quarter 1, 2010 Quarter 2, 2010		*			*	*	*								*						-
Quarter 2, 2010 Quarter 3, 2010		*			*	*	*								*						-
Quarter 4, 2010		*			*	*	*								*						-
Quarter 1, 2011		*				<u> </u>	*								*						\vdash
Quarter 1, 2011 Quarter 2, 2011		*			*	*	*								*						
Quarter 2, 2011 Quarter 3, 2011		*			*	*	*	*							*						\vdash
Quarter 4, 2011		*				*	*	*							*						
Quarter 4, 2011 Quarter 1, 2012		*				<u> </u>	*	*							*						<u> </u>
Quarter 1, 2012 Quarter 2, 2012	*	*		*	*	*	*	*	*						*						<u> </u>
Quarter 2, 2012 Quarter 3, 2012	Т	*		*	*	*	*	*	т						*						<u> </u>
Quarter 4, 2012		*				<u> </u>									*						
Quarter 4, 2012 Quarter 1, 2013		*				*									*						
Quarter 1, 2013 Quarter 2, 2013		*				T									*						-
Quarter 2, 2013 Quarter 3, 2013	*	*		*	*	*	*								*						
Quarter 4, 2013	不	*		不	不	不	不								*						
TECHNETIUM-99		不	<u> </u>	<u> </u>		<u> </u>	<u> </u>				<u> </u>				不				<u> </u>		
Quarter 4, 2002																	*	*	*		
Quarter 4, 2002		<u> </u>	L	<u> </u>	<u> </u>	1	L				<u> </u>	<u> </u>		<u> </u>	<u> </u>		T*	_ T	不		Щ_

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
Quarter 2, 2003	300	313	370	311	337	302	*	371	317	500	300	303	*	307	312	*	*	*	*	370	*
Quarter 3, 2003							T						т			~	*	T	T		<u> </u>
Quarter 4, 2003																	*				*
Quarter 1, 2004															*		*				*
Quarter 2, 2004															*		т				*
Quarter 3, 2004															*						*
Quarter 4, 2004															*		*				*
Quarter 3, 2005															71		*				***
Quarter 1, 2006															*						*
Quarter 2, 2006		*							*												*
Quarter 3, 2006																					*
Quarter 4, 2006															*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	Ħ
Quarter 3, 2007															*		*	*			
Quarter 4, 2007										*					*		-		*		*
Quarter 1, 2008										_					*				_	*	*
Quarter 2, 2008							*	*						*	-	*			*		
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009										_								*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010																		*			
Quarter 1, 2011		*								*							*				
Quarter 2, 2011																*	*	*	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012								*										*			
Quarter 3, 2012																	*	*			
Quarter 4, 2012															*			*			*
Quarter 1, 2013																		*			*
Quarter 2, 2013																					*
										*											*
Quarter 3, 2013	.									不					All:		41.	.1.			
Quarter 4, 2013															*		*	*			*
TOTAL ORGANIC CARBON	I	l				l	l	l	l	44	44	44		- Tr			l				444
Quarter 3, 2002	.									*	*	*		*							*
Quarter 1, 2002										*	*			*							-
Quarter 1, 2003	*									*	*					*					
Quarter 4, 2003	木									*	*					木					
Quarter 1, 2004										不	*										
Quarter 1, 2004						*				*	不				*	*			*		-
Quarter 4, 2005						*				不					不	不		*	*		
Quarter 4, 2005						不												不	*		
Quarter 1, 2006	<u> </u>	<u> </u>			<u> </u>								<u> </u>	1	不		<u> </u>				

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	UCRS						URGA						LRGA								
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368														372						373
TOTAL ORGANIC HALIDES																					
Quarter 4, 2002										*		1									Ī
Quarter 1, 2003										*											-
Quarter 2, 2003										*											1
Quarter 1, 2004										~						*					-
			<u> </u>									<u> </u>				ጥ					<u> </u>
TRICHLOROETHENE Quarter 3, 2002			1									1						I			
														_							
Quarter 4, 2002																					
Quarter 1, 2003																					╀╸
Quarter 2, 2003							_														-
Quarter 3, 2003															_						
Quarter 4, 2003																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 1, 2011																					
Quarter 2, 2011																					
Quarter 3, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 1, 2012 Quarter 2, 2012																	-				
Quarter 4, 2012														-							
Quarter 4, 2012																					
Quarter 1, 2013			<u> </u>									<u> </u>						<u> </u>			

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Fl	low System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient		S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Wei	11	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2, 2013																						
Quarter 3, 2013																						
Quarter 4, 2013																						
TURBIDITY																						
Quarter 1, 2003											*											
URANIUM																						
Quarter 4, 2002	•		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006	i																					*
ZINC																						
Quarter 3, 2005																				*		
*	Statistical test re	sults	indi	cate	an e	levat	ed co	ncer	ntrati	ion (i	i.e., a	a stat	istic	al ex	ceed	ance)					
	MCL Exceedance																					
UCRS	Upper Continental Recharge System																					
URGA	Upper Regional Gravel Aquifer																					
LRGA	Lower Regional Gravel Aquifer																					
S	Sidegradient;			D		Do	wngı	adie	nt;			U		Upg	radio	ent						

APPENDIX H METHANE MONITORING DATA

C-746-U LANDFILL METHANE LOG

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

	<u>073-00045</u> en County, Kentuck	у	Date: [December 18, 2013
Time	Location	% LEL of Methane Reading	Remarks	Weather Conditions
13:10	C-746-U1	0	checked at floor level	inside office
13:15	C-746-U2	0	checked at floor level	inside office
13:20	C-746-U-T-14	0	checked at floor level	change out trailer
12:35	C-746-U15	0	checked at floor level	treatment building
12:41	MG1	0	dry casing	wind out of SW @ 48*
12:53	MG2	0	water in casing	wind out of SW @ 51*
13:00	MG3	0	dry casing	wind out of SW @ 50*
12:48	MG4	0	dry casing	wind out of SW @ 51*
N/A	Suspect or Problem Areas	N/A	No problems noted	N/A
			January Smeet 12-18-13	
			1 miles the state of the state	
			James J	

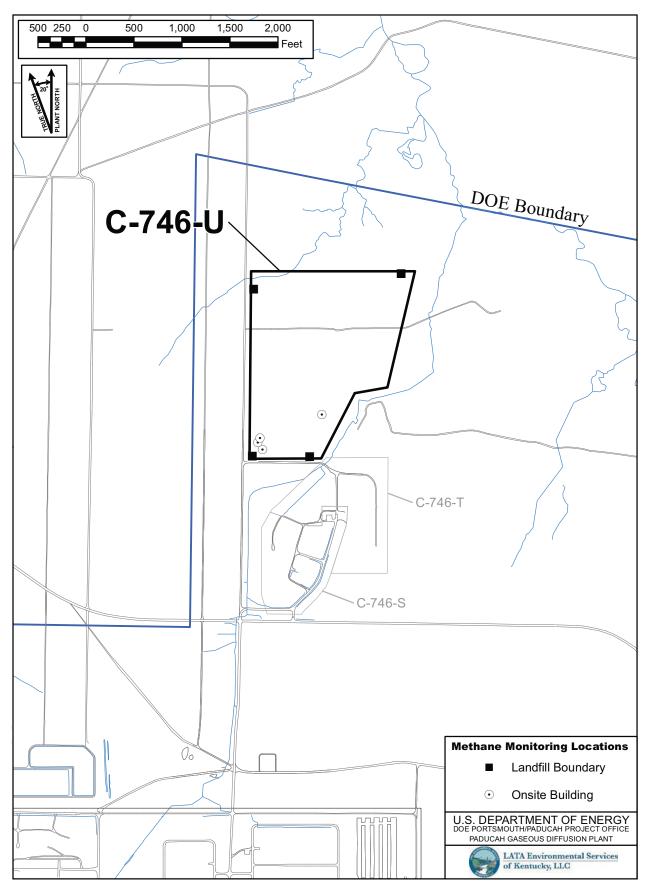


Figure H.1. C-746-U Methane Monitoring Locations