C-746-U Contained Landfill Third Quarter Calendar Year 2013 (July-September) **Compliance Monitoring Report** Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

LATA Kentucky Classification Support

C-746-U Contained Landfill
Third Quarter Calendar Year 2013
(July–September)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—November 2013

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC
managing the
Environmental Remediation Activities at the
Paducah Gaseous Diffusion Plant
under contract DE-AC30-10CC40020

CONTENTS

FI	GURES		v
T	ABLES		v
A	CRONYMS		vii
1.	1.1 BACK 1.2 MONI 1.2.1 1.2.2 1.2.3	TION GROUND TORING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring	1 1 3
2.	DATA EVA	LUATION/STATISTICAL SYNOPSIS	7
3.	DATA VAL	IDATION	9
4.	PROFESSIO	NAL GEOLOGIST AUTHORIZATION	11
5.	REFERENC	ES	13
A]	PPENDIX A:	GROUNDWATER, SURFACE WATER, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
A]	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
A]	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
A]	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
A]	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
A]	PPENDIX F:	NOTIFICATIONS	F-1
A]	PPENDIX G:	CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES	G-1
A]	PPENDIX H:	METHANE MONITORING DATA	H-1
A)	PPENDIX I	SURFACE WATER MONITORING DATA	I-1

FIGURES

	C-746-U Landfill Groundwater Monitoring Well Network	
	TABLES	
2.	Summary of MCL Exceedances	5
3.	Monitoring Wells Included Historically in Statistical Analysis	/

ACRONYMS

CFR Code of Federal Regulations

EPA U.S. Environmental Protection Agency

KAR Kentucky Administrative Regulations

KDWM Kentucky Division of Waste Management

LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

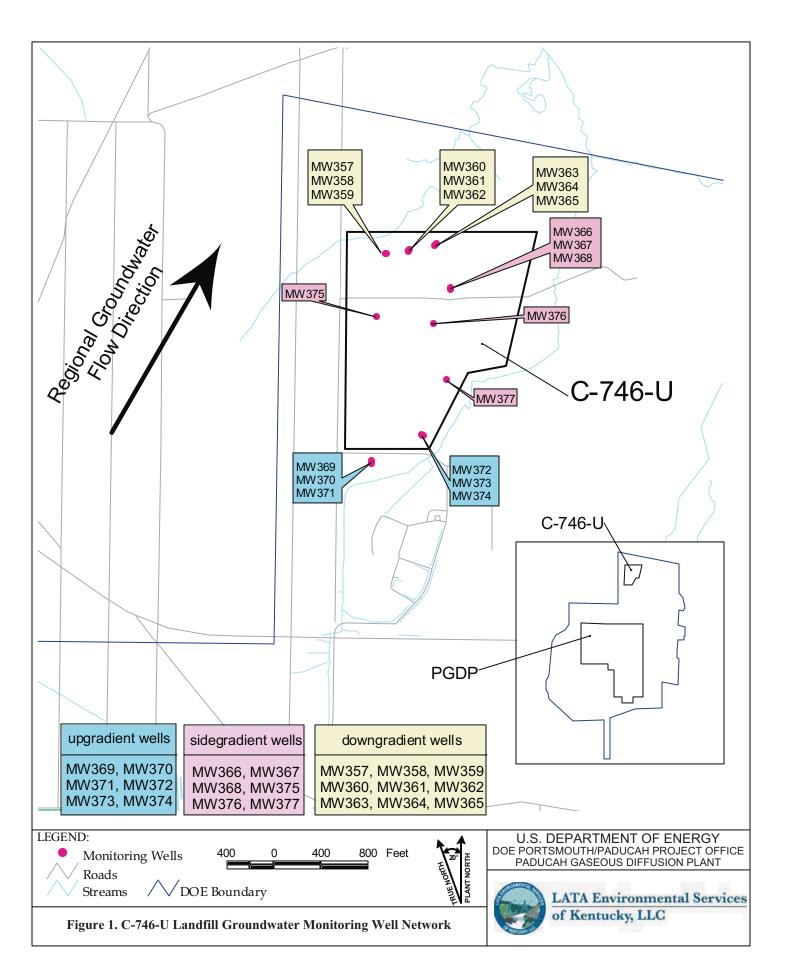
UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

1. INTRODUCTION

This report, C-746-U Contained Landfill Third Quarter Calendar Year 2013 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number 073-00045.

The groundwater, surface water, leachate, and methane monitoring sample data reporting form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The total metals results reported in Appendix C are measured in an unfiltered sample, as required by Permit Condition GSTR0001, Standard Requirement 4. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for parameters that exceed the maximum contaminant level (MCL) and for all parameters that had statistically significant increased concentrations relative to background concentrations, including those parameters listed in 40 *CFR* § 302.4, Appendix A. Appendix G provides a chart of MCL exceedances and statistically significant increases that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090, Section 4.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill was permitted in November 1996 under Solid Waste Landfill Permit Number 073-00045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Groundwater sampling was conducted within the third quarter 2013, during July, using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used U.S. Environmental Protection Agency (EPA)-approved methods, as applicable.

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill; 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for these locations.

The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on August 5 and 6, 2013, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 38 vicinity wells define the potentiometric surface for the Regional Gravel Aquifer (RGA). Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient in the vicinity of the C-746-U Landfill in August was 3.41 x 10⁻⁴ ft/ft, while the hydraulic gradient for the upper RGA at the C-746-U Landfill was 5.00 x 10⁻⁴ ft/ft and for the lower RGA was 4.92 x 10⁻⁴ ft/ft. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.85 to 1.45 ft/day for the URGA and 0.84 to 1.43 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Landfill operations staff monitored for the occurrence of methane on September 18, 2013, in four on-site building locations and four locations along the landfill boundary. See Appendix H for a map of the monitoring locations. No potential gas problem areas (i.e., suspect or problem areas) were identified. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was conducted on August 7, 2013, using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2203, *Surface Water Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used EPA-approved methods, as applicable. Samples were collected at the three permitted monitoring locations. The landfill has an upgradient location, L154; a downgradient location, L351; and a location near the working area of the landfill, L150. A map of the surface water monitoring locations is presented in Figure 2. Surface water was monitored as specified in 401 *KAR* 48:300, Section 2 and the approved surface water monitoring plan. The parameters identified in the Solid Waste Landfill Permit were analyzed for all three locations for reporting only, pursuant to Permit Condition GMNP0001, Standard Requirement 1.

The surface water sample collected at L150 in the previous report indicated a concentration of uranium above those levels generally observed. The third quarter surface water sample at L150 indicated a uranium level that was lower than the previous quarter and consistent with historical levels.

_

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

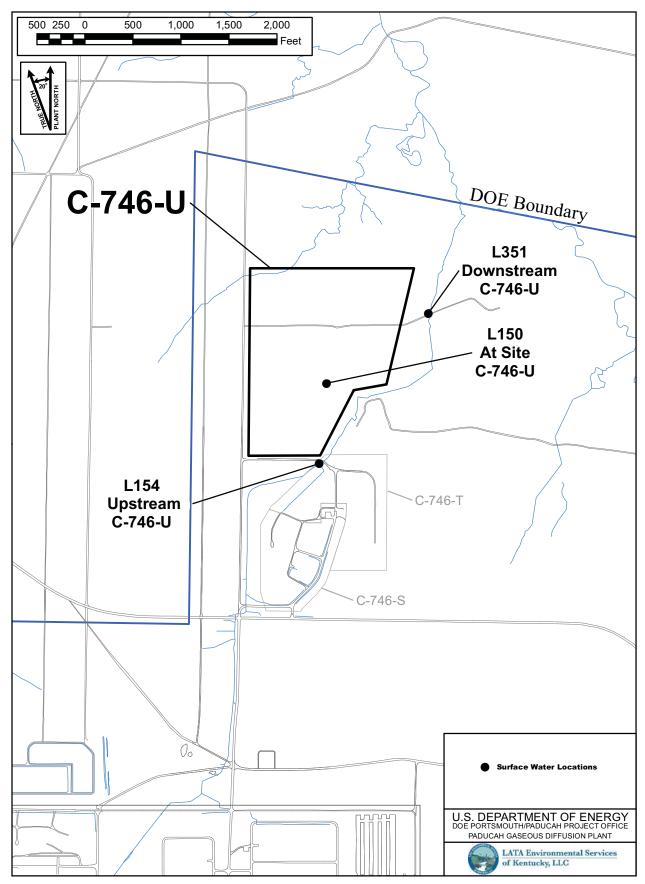


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

1.3 KEY RESULTS

The following parameters had concentrations that either exceeded the MCL (Table 1) or were shown to have statistically significant increases (Table 2) in concentrations² relative to background concentrations during the third quarter 2013.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
(none)	MW357: trichloroethene	MW373: beta activity,
	MW372: beta activity, trichloroethene	trichloroethene

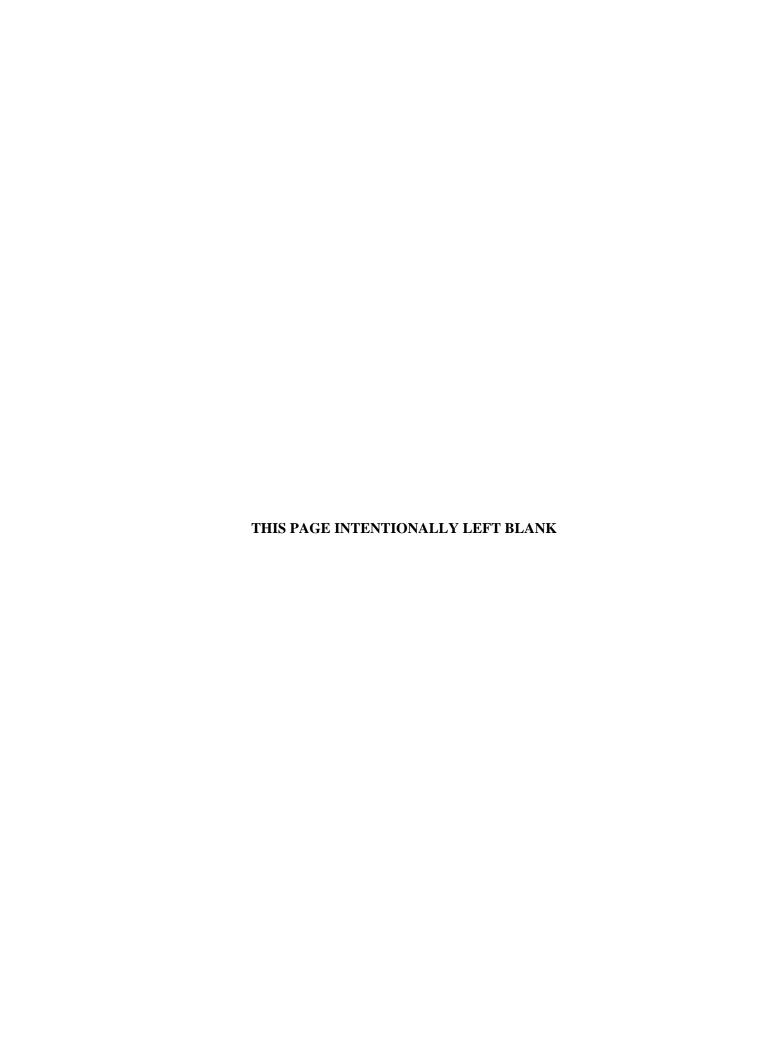
Table 2. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW359: dissolved oxygen, oxidation-	MW357: oxidation-reduction	MW358: oxidation-reduction
reduction potential, sulfate	potential	potential
MW362: oxidation-reduction	MW360: oxidation-reduction	MW361: oxidation-reduction
potential, sulfate	potential	potential, technetium-99
MW365: dissolved oxygen, oxidation-	MW363: oxidation-reduction	MW364: oxidation-reduction
reduction potential, sulfate	potential	potential, technetium-99
MW368: dissolved oxygen, oxidation-	MW366: oxidation-reduction	MW367: oxidation-reduction
reduction potential, sulfate	potential, technetium-	potential
MW371: (upgradient): dissolved	99	MW370: (upgradient): oxidation-
oxygen, oxidation-	MW369: (upgradient): oxidation-	reduction potential
reduction potential, sulfate	reduction potential	MW373: (upgradient): calcium,
MW374: (upgradient): dissolved	MW372: (upgradient): calcium,	oxidation-reduction
oxygen, oxidation-	conductivity, dissolved	potential, technetium-99
reduction potential	solids, oxidation	
MW375: oxidation-reduction	reduction-potential,	
potential, sulfate	magnesium, sulfate,	
	technetium-99	

Sidegradient wells: MW366, MW367, MW368, MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374


There were no new MCL exceedances for this quarter. The MCL exceedances—beta activity in MW372 and MW373 and trichloroethene in MW357, MW372, and MW373—are related to sources of contamination that are upgradient of the C-746-U Landfill. The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM in accordance with 401 *KAR* 48:300, Section 7, prior to the submittal of this report.

There were no new statistically significant increases in this quarter. All 36 statistically significant increases have occurred previously at least once since fourth quarter calendar year 2002.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to background concentrations, as required by Permit Number 073-00045, Condition GSTR0001, Requirement 8, and 401 *KAR* 48:300, Section 7.

⁻

² The term "concentration" may refer to a field measurement result such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls (PCBs).

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2013 groundwater data collected from the C-746-U Contained Landfill MWs were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the EPA guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the statistician. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (D19–D83).

For chemicals with an established MCL, no statistical analysis was performed. Parameters that have an MCL can be found in 401 KAR 47:030, Section 6. For parameters with no established MCL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistically significant increase in concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. A stepwise list of the one-side tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 3.

Table 3. Monitoring Wells Included Historically in Statistical Analysis*

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368 (partially dry)	MW366	MW367
MW371 (upgradient)	MW369 (upgradient)	MW370 (upgradient)
MW374 (upgradient)	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376 (dry) **		
MW377 (dry)		

^{*}A map showing the monitoring well locations is shown on Figure 1.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining statistically significant increases is provided in Appendix D under Statistical Analysis Process. Appendix G summarizes the occurrences (by well and by quarter) of statistically significant increases and MCL exceedances.

^{**}MW376 had sufficient water to permit a water level measurement but insufficient water to provide water samples for laboratory analysis.

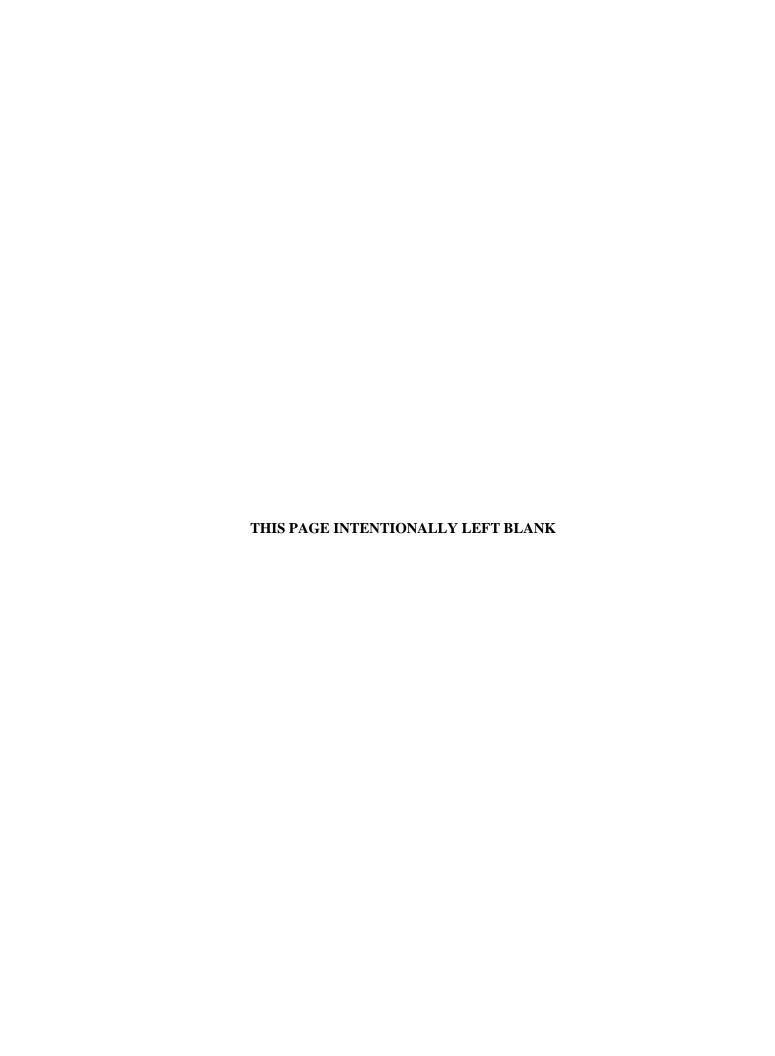
Upper Continental Recharge System

In this quarter, 22 parameters required statistical analysis in the UCRS. During the third quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed elevated concentrations that were determined to qualify as statistically significant increases and are listed in Table 2.

Upper Regional Gravel Aquifer

In this quarter, 21 parameters required statistical analysis in the URGA. During the third quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases and are listed in Table 2.

Lower Regional Gravel Aquifer


In this quarter, 17 parameters required statistical analysis in the LRGA. During the third quarter, calcium, oxidation reduction potential, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases and are listed in Table 2.

3. DATA VALIDATION

Data validation was performed on the organic, inorganic, and radiochemical analytical data by an independent third-party validator. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected quarterly during each sampling event. Equipment blanks, field blanks, and trip blanks are obtained to ensure quality control and are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

Data validation results for this data set indicated that all data were considered acceptable.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

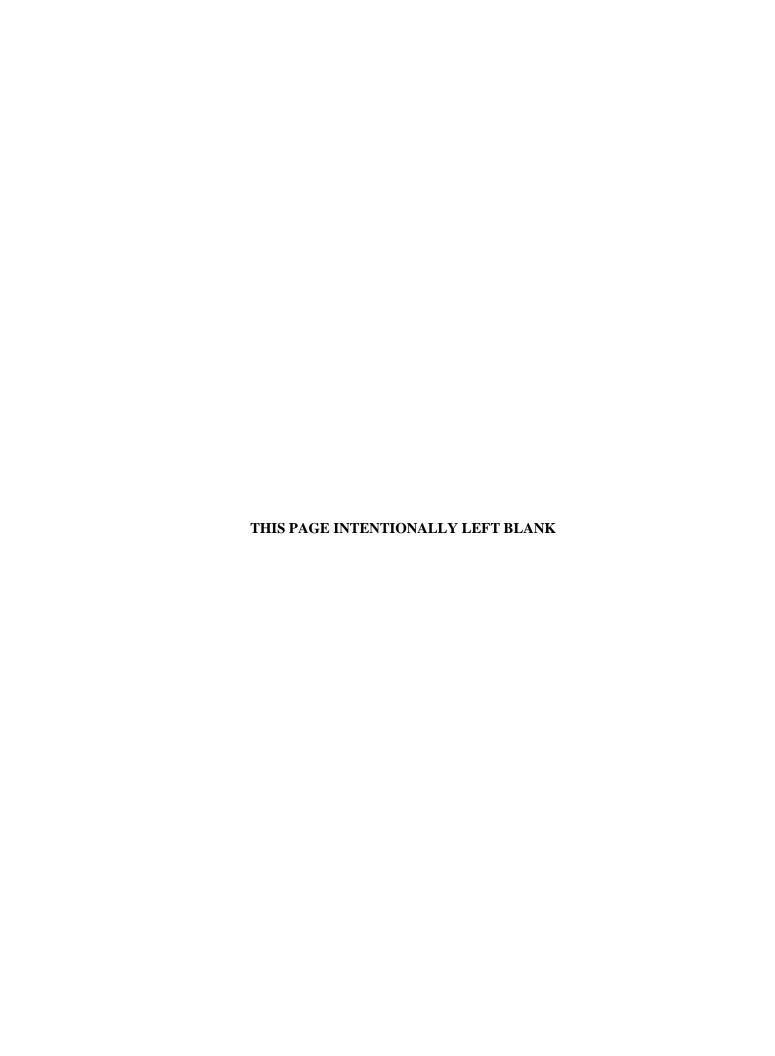
Third Quarter Calendar Year 2013 (July-September)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0086/V3)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Remark R. Davis


Mensuth R. Davis

Men

PG1194


<u>November 18, 20</u>13

11


5. REFERENCES

- EPA (U.S. Environmental Protection Agency) 1989. *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Final Guidance, office of Resource Conservation and recovery, U.S. Environmental Protection Agency, Washington, DC.
- PRS (Paducah Remediation Services, LLC) 2007. Groundwater Assessment Plan for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PRS-PROJ-0006, Paducah Remediation Services, LLC, Kevil, KY, February.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM



GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM


NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:		aducah Gaseous l		Activity:	C-746-I	U Contained Landfill
Permit No:	073-00045	Fin	ds/Unit No:	Quarter &	& Year _	3 rd Qtr. CY 2013
Please check the	following as app	olicable:				
Charact	erization X	Quarterly _	Semiannual	Ann	ıal	Assessment
Please check app	olicable submitta	<i>l</i> (s): X	Groundwater	X	Surfac	e Water
			Leachate	X	_ Metha	ne Monitoring
jurisdiction of the hours of making the lab report is pages. I certify under pe accordance with a Based on my inquibest of my knowled.	Division of Waste the determination NOT considered no nalty of law that system designed try of the person or dge and belief, true	Management. You using statistical otification. Instruction assure that quality persons directly response directly respon	a must report any indi- analyses, direct compa- tions for completing the d all attachments were lified personnel properly responsible for gathering	prepared under garden and eg information, there are signification.	amination r similar ched. Do r er my dir valuate th he inform	ter monitoring under the within forty-eight (48 techniques. Submitting not submit the instruction ection or supervision in the information submitted ation submitted is, to the alties for submitting false
Craig S. Jones, LATA Environ			LLC	_		Date
Rachel H. Blun	nenfeld. Acting	Paducah Site L	ead	_		Date

U.S. Department of Energy



APPENDIX B FACILITY INFORMATION SHEET


FACILITY INFORMATION SHEET

Groundwater: July 2013 Sampling Date: Surface Water: August 2013 County: McCracken Permit Nos. 073-00045 U.S. DOE - Paducah Gaseous Diffusion Plant Facility Name: (As officially shown on DWM Permit Face) Site Address: Kevil, Kentucky 42053 Street City/State Zip Phone No: (270) 441-6800 Latitude: N 37° 07' 38.87" Longitude: W 88° 48' 13.42" OWNER INFORMATION Facility Owner: U.S. DOE – W. E. Murphie, Manager Phone No: (859) 219-4001 Contact Person: Mark J. Duff Phone No: (270) 441-5030 Contact Person Title: Project Manager, LATA Environmental Services of Kentucky, LLC 42053 761 Veterans Avenue Kevil, Kentucky Mailing Address: City/State Street Zip SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY) Company: LATA Environmental Services of Kentucky, LLC Phone No: (270) 441-5444 Contact Person: Jeff Boulton Mailing Address: 42053 761 Veterans Avenue Kevil, Kentucky Zip Street City/State LABORATORY RECORD #1 Laboratory: USEC Analytical Laboratories – Paducah Lab ID No: KY00906 (EPA ID Number) Contact Person: John Price Phone No: (270) 441-5867 Mailing Address: P.O. Box 1410 Paducah, Kentucky 42002-1410 Street City/State Zip **LABORATORY RECORD #2** Laboratory: TestAmerica Laboratories, Inc. Lab ID No: MO00054 (EPA ID Number) Contact Person: Elaine Wild Phone No: (314) 298-8566 Earth City, MO Mailing Address: 13715 Rider Trail North 63045 Street City/State Zip LABORATORY RECORD #3 Laboratory: Lab ID No: Contact Person: Phone No: Mailing Address: City/State Zip Street

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ , Facility Well/Spring Number					8004-4798	3	8004-47	799	8004-09	8004-0981 8004-4800		00	
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)					357		358		359		360		
Sample Sequence	Sample Sequence #						1 1			1			
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA	NA N			
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/22/2013 13	3:42	7/22/2013	07:52	7/23/2013	13:34	7/22/2013 1	7/22/2013 12:37	
Duplicate ("Y"	or "N") ²				N		N N		N				
Split ("Y" or	"N") ³				N		N N N MW358UG4-13 MW359UG4-13		N				
Facility Sample ID Number (if applicable)					MW357UG4	-13	MW358U0	G4-13	MW359U0	N MW359UG4-13 C13205024001 7/25/2013 DOWN		4-13	
Laboratory Sam	Laboratory Sample ID Number (if applicable)			C13203033	001	C1320302	21001	C1320502	24001	C13203033	3002		
Date of Analys	Date of Analysis (Month/Day/Year) For Volatile Organics Analysis		7/23/2013	3	7/23/2013		7/25/2013		7/23/2013				
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOWI	DOWN			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	
24959-67-9	Bromide	Т	mg/L	9056	<2		<2		<2		<2		
16887-00-6	Chloride(s)	Т	mg/L	9056	34		33		<2		11		
16984-48-8	Fluoride	Т	mg/L	9214	0.15		0.17		<0.1		0.24		
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.1		<1		1.8		<1		
14808-79-8	Sulfate	Т	mg/L	9056	62		83		45		100		
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.86		29.86		29.92		29.86		
S0145	Specific Conductance	Т	μ MH0/cm	Field	461		529	_	337		628		

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798	3	8004-4799	9	8004-0981		8004-4800)
Facility's Lo	ocal Well or Spring Number (e.g., M	I-1,	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.12		325.13		330.27		325.11	
N238	Dissolved Oxygen	т	mg/L	Field	3.37		1.08		5.76		2.01	
s0266	Total Dissolved Solids	т	mg/L	160.1	259		303		183		355	
s0296	рн	Т	Units	Field	6.2		6.38		6.47		6.28	
NS215	Eh	Т	mV	Field	420		236		432		257	
s0907	Temperature	Т	°C	Field	20.5		18.5		19.94		21.56	
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2		<0.2		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*B	<0.005	*
7440-38-2	Arsenic	Т	mg/L	7060	0.00104		0.00146		<0.001	В	0.00108	
7440-39-3	Barium	T	mg/L	6020	0.0597		0.0451		0.0295		0.152	
7440-41-7	Beryllium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	0.33		0.364		<0.2	В	<0.2	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6010	29.5		36.6		8.21		30.5	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01	*	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001	*	0.00208	*	<0.001		0.0327	*
7440-50-8	Copper	Т	mg/L	6020	<0.02	*	<0.02	*	<0.02	*	<0.02	*
7439-89-6	Iron	Т	mg/L	6010	<0.1		0.363		<0.1		7.25	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	11.7		14.8		3.84		10.4	
7439-96-5	Manganese	Т	mg/L	6020	0.0073		0.108		<0.005		0.276	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	1	8004-480	00
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0		Nickel	T	mg/L	6020	<0.005	*	<0.005	*	<0.005		<0.005	*
7440-09-7		Potassium	T	mg/L	6010	1.73	*	2.36	*	<0.2		0.824	*
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		0.00507		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001	*	<0.001	*	<0.001		<0.001	*
7440-23-5		Sodium	Т	mg/L	6010	40.4		41.9		34.9		68.3	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6		Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01	J	<0.01	7	<0.01	J	<0.01	J
67-64-1		Acetone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-02-8		Acrolein	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5		Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-479	9	8004-098	31	8004-48	00
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-87-3	Methyl chloride	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0069		0.0049		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-479	8	8004-479	9	8004-09	81	8004-48	00	
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	l, MW-2, et	:c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005	J	<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	т	ug/L	8082	<0.18		<0.18		<0.18		<0.18	
12674-11-2	PCB-1016	т	ug/L	8082	<0.17		<0.17		<0.17		<0.17	
11104-28-2	PCB-1221	т	ug/L	8082	<0.18		<0.18		<0.18		<0.18	
11141-16-5	PCB-1232	т	ug/L	8082	<0.14		<0.14		<0.14		<0.14	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.1		<0.1		<0.1	
12672-29-6	PCB-1248	т	ug/L	8082	<0.12		<0.12		<0.12		<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	00
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07		<0.07		<0.07	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05		<0.05		<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09		<0.09		<0.09	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.95	*	0.218	*	1.68	*	2.25	*
12587-47-2	Gross Beta	Т	pCi/L	9310	27.7	*	32	*	0.792	*	3.82	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	0.164	*	0.0589	*	0.0356	*	-0.207	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.252	*B	0.279	*B	0.494	*B	0.581	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	48.8	*	45.4	*	15.4	*	9.42	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.0122	*	-0.0131	*	0.00788	*	0.021	*
10028-17-8	Tritium	Т	pCi/L	704R6	132	*	542	*	127	*	429	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36		<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04		<0.04		<0.04	
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1	В	<1	В	1.5		3	В
s0586	Total Organic Halides	Т	mg/L	9020	0.014		0.021		0.014		0.034	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	796	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., 1	/W−1	., MW-2, etc	.)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/18/2013 13	3:49	7/23/2013	12:27	7/17/2013	13:15	7/18/2013 0	8:39
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG4	I-13	MW362U	G4-13	MW363U0	G4-13	MW364UG	4-13
Laboratory San	mple ID Number (if applicable)				C13199038	001	C132040 ⁻	19001	C1319801	9001	C13199004	1001
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ysis	7/19/2013	3	7/23/20)13	7/19/20	13	7/19/201	3		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	т	mg/L	9056	33		10		36		31	
16984-48-8	Fluoride	Т	mg/L	9214	0.15		0.3		0.18		0.15	
s0595	Nitrate & Nitrite	т	mg/L	9056	<1	J	<1		4.5	*	<1	J
14808-79-8	Sulfate	т	mg/L	9056	79		71		21		61	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.17		29.92		30.29		30.17	
S0145	Specific Conductance	Т	μ MH0/cm	Field	482		540		423		465	_

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795	5	8004-0986	5	8004-4796		8004-4797	r
Facility's Lo	ocal Well or Spring Number (e.g., M	I-1,	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.89		334.52		324.62		324.76	
N238	Dissolved Oxygen	т	mg/L	Field	3.07		1.96		0.64		0.97	
s0266	Total Dissolved Solids	т	mg/L	160.1	294		459		243		250	
s0296	рн	Т	Units	Field	6.03		6.95		6.16		6.06	
NS215	Eh	Т	mV	Field	520		549		455		350	
s0907	Temperature	Т	°C	Field	20.89		21.22		19.33		18.72	
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		7.86		<0.2		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005	*	<0.005	*B	<0.005	*B	<0.005	*B
7440-38-2	Arsenic	Т	mg/L	7060	0.00106		<0.01	В	<0.001		0.00114	
7440-39-3	Barium	T	mg/L	6020	0.0539		0.137		0.174		0.0744	
7440-41-7	Beryllium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	0.222		<0.2	В	<0.2		<0.2	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6010	33.5		15.8		28.2		28.7	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.1	*	<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001	*	<0.01		0.00139	*	<0.001	*
7440-50-8	Copper	Т	mg/L	6020	<0.02	*	<0.2	*	<0.02	*	<0.02	*
7439-89-6	Iron	Т	mg/L	6010	<0.1		6.12		<0.1		0.189	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		0.00886		<0.0013		<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	13.4		6.84		10.5		11.3	
7439-96-5	Manganese	Т	mg/L	6020	0.00586		<0.05		0.247		0.0228	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479)6	8004-479)7
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001	В	0.00302	В	<0.001	В	<0.001	В
7440-02-0		Nickel	Т	mg/L	6020	<0.005	*	<0.05		<0.005	*	<0.005	*
7440-09-7		Potassium	Т	mg/L	6010	1.92	*	0.815		1.28		1.96	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		0.00504	
7440-22-4		Silver	Т	mg/L	6020	<0.001	*	<0.001		<0.001	*	<0.001	*
7440-23-5		Sodium	Т	mg/L	6010	42.8		96.5		37		41.6	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	T	mg/L	6020	<0.001		0.00561		<0.001		<0.001	
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.2		<0.02		<0.02	
7440-66-6		Zinc	т	mg/L	6020	<0.02		<0.2		<0.02		<0.02	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01	*J	<0.01	7	<0.01	*J	<0.01	*J
67-64-1		Acetone	Т	mg/L	8260	<0.01	J	<0.01		<0.01	J	<0.01	J
107-02-8		Acrolein	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5		Styrene	Т	mg/L	8260	<0.005	*	<0.005		<0.005	*	<0.005	*
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0980	6	8004-479	96	8004-47	97
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005	J	<0.005		<0.005	٦	<0.005	J
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.005		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.005		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005	J	<0.005	7	<0.005	٦	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.005		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0042		<0.001		<0.001		0.0027	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-479	5	8004-0980	6	8004-47	96	8004-47	97	
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005	*	<0.005		<0.005	*	<0.005	*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005	*	<0.005		<0.005	*	<0.005	*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	т	ug/L	8082	<0.18		<0.18		0.19		<0.17	
12674-11-2	PCB-1016	т	ug/L	8082	<0.17		<0.17		<0.17		<0.16	
11104-28-2	PCB-1221	т	ug/L	8082	<0.18		<0.18		<0.18		<0.17	
11141-16-5	PCB-1232	т	ug/L	8082	<0.14		<0.14		<0.14		<0.14	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.1		0.19		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12		<0.12		<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479)7
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07		<0.07		<0.07	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05		<0.05		<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09		<0.09		<0.09	
12587-46-1	Gross Alpha	т	pCi/L	9310	3.67	*	5.74	*	1.41	*	2.79	*
12587-47-2	Gross Beta	т	pCi/L	9310	38.3	*	6.09	*	10.9	*	35.3	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	-0.0000000107	*	0.117	*	0.14	*	0.0836	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.334	*B	-0.0864	*B	0.516	*B	0.895	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	51.3	*	7.82	*	13.4	*	46.4	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	-0.0787	*	0.0126	*	-0.0166	*	-0.0066	*
10028-17-8	Tritium	Т	pCi/L	704R6	324	*	35	*	-409	*	-531	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36	J	<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04		<0.04		<0.04	
20461-54-5	Iodide	т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1		5.4		<1		<1	
s0586	Total Organic Halides	Т	mg/L	9020	0.021		0.014		0.012		0.014	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-09	84	8004-	0982	8004-	4793	8004-0	983
Facility's Lo	cal Well or Spring Number (e.g., N	1W−1	, MW-2, etc	.)	365		36	66	36	57	368	,
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/18/2013	07:37	7/17/201	3 14:13	7/17/201	3 09:30	7/18/2013	12:44
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW365U0	34-13	MW366	JG4-13	MW3671	JG4-13	MW368U	G4-13
Laboratory San	mple ID Number (if applicable)				C1319900	4002	C13198	019002	C13198	017001	C131990	38002
Date of Analy	sis (Month/Day/Year) For Volatile	ysis	7/19/20	13	7/19/2	2013	7/19/2	2013	7/19/20)13		
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	DOWI	N	SII	DE	SIE	DE	SIDE	Ε
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	т	mg/L	9056	6.5		38		35		7.8	
16984-48-8	Fluoride	Т	mg/L	9214	0.26		0.16		0.14		0.2	
s0595	Nitrate & Nitrite	Т	mg/L	9056	<1	J	<1	*	<1	*	<1	J
14808-79-8	Sulfate	Т	mg/L	9056	59		53		39		110	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.17		30.29		30.29		30.17	
S0145	Specific Conductance	Т	μMH0/cm	Field	401		475		420		842	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number		8004-0984	4	8004-0982	2	8004-4793		8004-0983	3		
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	329.62		324.74		324.66		327.83	
N238	Dissolved Oxygen	Т	mg/L	Field	4.6		0.98		0.74		6.9	
S0266	Total Dissolved Solids	Т	mg/L	160.1	263		266		242		519	
s0296	Нд	Т	Units	Field	6.6		6.11		6.13		6.59	
NS215	Eh	T	mV	Field	741		407		330		450	
s0907	Temperature	Т	°C	Field	19.72		18.78		18.28		21.44	
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2		<0.2		2.41	
7440-36-0	Antimony	Т	mg/L	6020	<0.005	*B	<0.005	*B	<0.005	*B	<0.005	*
7440-38-2	Arsenic	Т	mg/L	7060	<0.001		0.00139		0.00119		0.00848	
7440-39-3	Barium	Т	mg/L	6020	0.107		0.174		0.19		0.0204	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	<0.2		<0.2		<0.2		<0.2	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6010	22.5		31.2		29.1		25	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00176	*	<0.001	*	0.0021	*	0.00263	*
7440-50-8	Copper	Т	mg/L	6020	<0.02	*	<0.02	*	<0.02	*	<0.02	*
7439-89-6	Iron	Т	mg/L	6010	<0.1		<0.1		2.06		1.09	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		0.00156	
7439-95-4	Magnesium	Т	mg/L	6010	9.67		12.2		11		8.43	
7439-96-5	Manganese	т	mg/L	6020	0.0407		0.0265		0.564		0.0222	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ , Fa	acility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	33
Facility's	Local	Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Mo	olybdenum	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	0.00582	
7440-02-0	Ni	ickel	Т	mg/L	6020	0.00643	*	<0.005	*	<0.005	*	0.0103	*
7440-09-7	Po	otassium	Т	mg/L	6010	0.254		1.98		2.9		0.689	*
7440-16-6	Rì	hodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Se	elenium	Т	mg/L	6020	<0.005		0.00581		<0.005		<0.005	
7440-22-4	Si	ilver	Т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*	<0.001	*
7440-23-5	Sc	odium	Т	mg/L	6010	49.2		43.5		36.2		154	
7440-25-7	Tá	antalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Tì	hallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Ur	ranium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Va	anadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zi	inc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vi	inyl acetate	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	*J
67-64-1	Ac	cetone	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
107-02-8	Ac	crolein	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-13-1	Ac	crylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.005	
71-43-2	Ве	enzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Cl	hlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	ΧΣ	ylenes	т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	St	tyrene	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
108-88-3	То	oluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Cl	hlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982	2	8004-479	93	8004-09	83
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.0039		0.0024		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-0982	2	8004-479	93	8004-09	83
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	l, MW-2, et	:c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082	0.31		<0.18		<0.18		0.22	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.17		<0.17		<0.17		<0.17	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.18		<0.18		<0.18		<0.18	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.14		<0.14		<0.14		<0.14	
53469-21-9	PCB-1242	Т	ug/L	8082	0.31		<0.1		<0.1		0.22	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12		<0.12		<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	3
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07		<0.07		<0.07	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05		<0.05		<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09		<0.09		<0.09	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.44	*	2.74	*	5.94	*	5.04	*
12587-47-2	Gross Beta	Т	pCi/L	9310	0.18	*	41.5	*	29.3	*	6.38	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	-0.029	*	0.0972	*	0.456	*		*
10098-97-2	Strontium-90	T	pCi/L	RL-7140	0.766	*B	-0.0165	*B	0.363	*B		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	7.45	*	69.9	*	42.8	*	4.26	*
14269-63-7	Thorium-230	т	pCi/L	RL-7128	-0.0427	*	-0.00141	*	-0.000505	*		*
10028-17-8	Tritium	т	pCi/L	704R6	-165	*	279	*	-23.4	*	278	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<36		<36	J	<36	J	<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04		<0.04		<0.04	
20461-54-5	Iodide	T	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	т	mg/L	9060	1.4		<1		<1		2.3	
s0586	Total Organic Halides	т	mg/L	9020	0.026		0.014		0.02		0.029	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4820)	8004-48	318	8004-48	319	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	.)	369		370		371		372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/16/2013 08	3:34	7/16/2013	14:21	7/16/2013	13:17	7/16/2013 1	2:18
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)		MW369UG4	-13	MW370U	G4-13	MW371U0	G4-13	MW372UG	4-13		
Laboratory San	mple ID Number (if applicable)		C131970070	001	C1319702	20001	C1319702	20002	C13197019	9001		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						7/19/20	13	7/19/20	13	7/16/201	3
Gradient with	respect to Monitored Unit (UP, DC) NW	SIDE, UNKN	OWN)	UP		UP		UP		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	т	mg/L	9056	40		43		8.1		49	
16984-48-8	Fluoride	т	mg/L	9214	0.54		0.16		0.27		0.17	
s0595	Nitrate & Nitrite	т	mg/L	9056	<1		1.2		1.1		<1	
14808-79-8	Sulfate	т	mg/L	9056	8.7		18		19		150	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.28		29.44		29.44		29.44	
s0145	Specific Conductance	т	μ MH 0/cm	Field	427		469		704		822	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.26		325.26		340.54		325.28	
N238	Dissolved Oxygen	Т	mg/L	Field	0.79		3.39		2.76		0.61	
S0266	Total Dissolved Solids	Т	mg/L	160.1	232		230		423		503	
s0296	Нд	Т	Units	Field	6.27		6.27		6.68		6.14	
NS215	Eh	T	mV	Field	284		387		390		273	
s0907	Temperature	Т	°C	Field	19.22		21.67		21.28		19.72	
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2		0.563		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005	*B	<0.005	*B	<0.005	*B	<0.005	*B
7440-38-2	Arsenic	Т	mg/L	7060	0.00249		0.00144		<0.001		0.0024	
7440-39-3	Barium	Т	mg/L	6020	0.402		0.182		0.138		0.0675	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	<0.2		<0.2		<0.2		1.19	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6010	19.9		29.2		26.9		63.5	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.0274	*	<0.001	*	<0.001	*	<0.001	*
7440-50-8	Copper	Т	mg/L	6020	<0.02	*	<0.02	*	<0.02	*	<0.02	*
7439-89-6	Iron	Т	mg/L	6010	2.38		<0.1		0.333		0.81	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	7.62		11.5		11.2		23.8	
7439-96-5	Manganese	т	mg/L	6020	0.271		<0.005		<0.005		0.0209	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-482	0	8004-48	18	8004-481	9	8004-480)8
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0	Nickel	Т	mg/L	6020	0.00929	*	<0.005	*	<0.005	*	<0.005	*
7440-09-7	Potassium	Т	mg/L	6010	0.734		2.51		0.361		2.44	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00556		<0.005		0.00722	
7440-22-4	Silver	Т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*	<0.001	*
7440-23-5	Sodium	Т	mg/L	6010	54.7		38.4		122		61.6	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001		0.00145		<0.001	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01	J	<0.01	*J	<0.01	*J	<0.01	J
67-64-1	Acetone	Т	mg/L	8260	<0.01		<0.01	J	<0.01	J	<0.01	
107-02-8	Acrolein	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818	8	8004-48	19	8004-480	08
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	1, MW-2, et	c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005	٦	<0.005	J	<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.005		<0.001		<0.001		<0.005	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.005		<0.001		<0.001		<0.005	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005	7	<0.005	٦	<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.005		<0.001		<0.001		<0.005	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.0017		<0.001		0.0073	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-482)	8004-481	8	8004-48	19	8004-48	08
Facility's Lo	cal Well or Spring Number (e.g., 1	/IW-1	L, MW-2, et	:c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.17		<0.18		<0.18		<0.18	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.16		<0.17		<0.17		<0.17	
11104-28-2	PCB-1221	т	ug/L	8082	<0.17		<0.18		<0.18		<0.18	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.14		<0.14		<0.14		<0.14	
53469-21-9	PCB-1242	т	ug/L	8082	0.11		<0.1		<0.1		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12		<0.12		<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480	18
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07		<0.07		<0.07	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05		<0.05		<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09		<0.09		<0.09	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.47	*	-1.08	*	0.855	*	11.5	*
12587-47-2	Gross Beta	Т	pCi/L	9310	16.7	*	19	*	4.75	*	115	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	0.104	*	0.177	*	0.236	*	0.135	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.411	*B	0.394	*B	0.289	*B	1.39	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	23	*	33.2	*	9.29	*	176	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	-0.0191	*	-0.0424	*	0.0134	*	-0.0278	*
10028-17-8	Tritium	Т	pCi/L	704R6	-99.4	*	-377	*	-404	*	-212	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36	J	<36	J	<36	J	<36	J
57-12-5	Cyanide	Т	mg/L	9010	<0.04	J	<0.04		<0.04		<0.04	J
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	Т	mg/L	9060	1.7		<1		1.6		<1	
s0586	Total Organic Halides	Т	mg/L	9020	0.059		0.016		0.015		0.022	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-0	990	8004-09	985	8004-098	8
Facility's Lo	ocal Well or Spring Number (e.g., A	/W−1	., MW-2, etc	.)	373		374		375		376	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/16/2013 08	3:29	7/16/2013	09:25	7/17/2013	08:06	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG4	-13	MW374U	G4-13	MW375U0	G4-13	NA	
Laboratory Sa	mple ID Number (if applicable)		C13197019	002	C131970	19003	C1319801	17002	NA			
Date of Analy	rsis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	7/17/2013	3	7/16/20)13	7/19/20	13	NA		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2			*
16887-00-6	Chloride(s)	Т	mg/L	9056	46		84		6			*
16984-48-8	Fluoride	т	mg/L	9214	0.16		0.17		0.3			*
s0595	Nitrate & Nitrite	т	mg/L	9056	<1		<1		<1	*		*
14808-79-8	Sulfate	т	mg/L	9056	220		5.6		32			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.44		29.44		30.29			*
s0145	Specific Conductance	т	μ M H0/cm	Field	918		804		424			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985	1	8004-0988	}
Facility's Lo	ocal Well or Spring Number (e.g., MV	i-1,	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.25		333.56		333.46			*
N238	Dissolved Oxygen	Т	mg/L	Field	1.38		3.41		0.51			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	618		597		255			*
s0296	рн	Т	Units	Field	6.13		6.62		6.51			*
NS215	Eh	Т	mV	Field	500		344		641			*
s0907	Temperature	Т	°C	Field	19.94		20.28		17.89			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2		<0.2			*
7440-36-0	Antimony	Т	mg/L	6020	<0.005	*B	<0.005	*B	<0.005	*B		*
7440-38-2	Arsenic	Т	mg/L	7060	0.00157		0.00242		<0.001			*
7440-39-3	Barium	Т	mg/L	6020	0.0294		0.151		0.145			*
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-42-8	Boron	Т	mg/L	6010	1.75		<0.2		<0.2			*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6010	79		22.8		14.8			*
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*		*
7440-50-8	Copper	Т	mg/L	6020	<0.02	*	<0.02	*	<0.02	*		*
7439-89-6	Iron	Т	mg/L	6010	<0.1		0.113		<0.1			*
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013			*
7439-95-4	Magnesium	т	mg/L	6010	29.2		6.09		5.9			*
7439-96-5	Manganese	Т	mg/L	6020	0.00911		<0.005		<0.005			*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	35	8004-098	38
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В		*
7440-02-0		Nickel	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*		*
7440-09-7		Potassium	Т	mg/L	6010	3.09		0.507		0.3			*
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020	0.00672		0.0241		<0.005			*
7440-22-4		Silver	Т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*		*
7440-23-5		Sodium	т	mg/L	6010	66.5		128		66.2			*
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02			*
7440-66-6		Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02			*
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	*J		*
67-64-1		Acetone	Т	mg/L	8260	<0.01		<0.01		<0.01	J		*
107-02-8		Acrolein	Т	mg/L	8260	<0.01		<0.01		<0.01			*
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01			*
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015			*
100-42-5		Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005	*		*
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005	J		*
67-66-3	Chloroform	Т	mg/L	8260	<0.005		<0.005		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.005		<0.005		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005	J		*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.005		<0.005		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0076		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	0	8004-09	85	8004-09	88
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	l, MW-2, et	:c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005	*		*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002		<0.0002			*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005	*		*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.18		<0.17		<0.18			*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.17		<0.16		<0.17			*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.18		<0.17		<0.18			*
11141-16-5	PCB-1232	Т	ug/L	8082	<0.14		<0.14		<0.14			*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.1		<0.1			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12		<0.12			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	8
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07		<0.07			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05		<0.05			*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09		<0.09			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	4.6	*	3.52	*	2.39	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	52.2	*	3.35	*	1.89	*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	0.249	*	0.353	*	0.26	*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.139	*B	0.242	*B	0.202	*B		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	63.7	*	11.5	*	12	*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.00578	*	0.0191	*	0.0111	*		*
10028-17-8	Tritium	Т	pCi/L	704R6	-163	*	-510	*	-77.5	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36	J	<36	J	<36	J		*
57-12-5	Cyanide	Т	mg/L	9010	<0.04	J	<0.04	J	<0.04			*
20461-54-5	Iodide	T	mg/L	345.1	<2		<2		<2			*
s0268	Total Organic Carbon	Т	mg/L	9060	<1		1.6		1.1			*
s0586	Total Organic Halides	Т	mg/L	9020	0.022		0.033		0.027			*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-098	39	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, etc	:.)	377		E. BLAN	١K	F. BLAN	IK	T. BLANK	(1
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)∈	ethod, or (E)	quipment	NA		Е		F		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		NA		7/18/2013	11:35	7/18/2013 1	2:55	7/16/2013 0	7:23
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				NA		RI1UG4	-13	FB1UG4-	·13	TB1UG4-	13
Laboratory San	boratory Sample ID Number (if applicable)						C1319902	8001	C13199039	9001	C13197018	3001
Date of Analy	te of Analysis (Month/Day/Year) For Volatile Organics Analysis						7/19/20	13	7/19/201	3	7/16/201	3
Gradient with	respect to Monitored Unit (UP, DC	NWN ,	, SIDE, UNKN	IOMN)	SIDE		NA		NA		NA	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9214		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MHO /cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989	9	0000-0000)	0000-0000		0000-0000)
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рН	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.2		<0.2			*
7440-36-0	Antimony	Т	mg/L	6020		*	<0.005	*	<0.005	*		*
7440-38-2	Arsenic	Т	mg/L	7060		*	<0.001		<0.001			*
7440-39-3	Barium	т	mg/L	6020		*	<0.005		<0.005			*
7440-41-7	Beryllium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-42-8	Boron	Т	mg/L	6010		*	<0.2		<0.2			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	Т	mg/L	6010		*	<1		<1			*
7440-47-3	Chromium	Т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001	*	<0.001	*		*
7440-50-8	Copper	Т	mg/L	6020		*	<0.02	*	<0.02	*		*
7439-89-6	Iron	Т	mg/L	6010		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.0013		<0.0013			*
7439-95-4	Magnesium	Т	mg/L	6010		*	<0.025		<0.025			*
7439-96-5	Manganese	Т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000)0
Facility's I	ocal Well or Spring Number (e.g.,	, MW-	·1, MW-2, e	tc.)	377		E. BLAN	IK	F. BLAN	K	T. BLAN	(1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020		*	<0.001	В	<0.001	В		*
7440-02-0	Nickel	Т	mg/L	6020		*	<0.005	*	<0.005	*		*
7440-09-7	Potassium	Т	mg/L	6010		*	<0.2		<0.2	*		*
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	Т	mg/L	6020		*	<0.001	*	<0.001	*		*
7440-23-5	Sodium	Т	mg/L	6010		*	<1		<1			*
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.02		<0.02			*
7440-66-6	Zinc	Т	mg/L	6020		*	<0.02		<0.02			*
108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.01	*J	<0.01	*J	<0.01	J
67-64-1	Acetone	Т	mg/L	8260		*	0.01	J	0.01	J	<0.01	
107-02-8	Acrolein	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
107-13-1	Acrylonitrile	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260		*	<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260		*	<0.005	*	<0.005	*	<0.005	
108-88-3	Toluene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-0989		0000-000	0	0000-00	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	377		E. BLAN	<	F. BLAN	IK	T. BLANI	{ 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.005	J	<0.005	J	<0.005	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.005	
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	T	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.005	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.005	J	<0.005	J	<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.005	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	0	0000-00	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	l, MW-2, et	tc.)	377		E. BLAN	<	F. BLAN	١K	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005	*	<0.005	*	<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0002	*	<0.0002	*	<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.005	*	<0.005	*	<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.18		<0.17			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.17		<0.16			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.18		<0.17			*
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.14		<0.14			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.1		<0.1			*
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.12		<0.12			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-000)0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	377		E. BLANK		F. BLANI	K	T. BLANK	(1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.07		<0.07			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.05		<0.05			*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.09		<0.09			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	0.0417	*	1.19	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	-0.55	*	-1.14	*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*	0.0278	*	-0.178	*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*	0.635	*B	0.402	*B		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*	4.26	*	5.64	*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*	-0.0317	*	-0.0761	*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*	97.6	*	-93.9	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	Т	mg/L	345.1		*	<2		<2			*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	al Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	:.)	T. BLANK	(2	T. BLAN	К 3	T. BLANK	۲4	T. BLANK	(5
Sample Sequenc	e #				1		1		1		1	
If sample is a B	clank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	Т		Т		Т		Т	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		7/16/2013 0	7:45	7/17/2013	06:50	7/17/2013 1	2:30	7/18/2013 0	7:00
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				TB2UG4-	13	TB3UG4	-13	TB4UG4-	13	TB5UG4-	13
Laboratory Sam	ple ID Number (if applicable)			C13198001	001	C1319801	6001	C13198020	0001	C13199040	001	
Date of Analys	is (Month/Day/Year) For Volatile	ganics Anal	ysis	7/17/201	3	7/19/20	13	7/19/201	3	7/19/201	3	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9214		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MH0/cm	Field		*		*		*		*

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-0000		0000-0000)
Facility's Lo	cal Well or Spring Number (e.g., MV	I-1 , 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK 4	1	T. BLANK	5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	Т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	Т	mg/L	7060		*		*		*		*
7440-39-3	Barium	Т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	Т	mg/L	6020		*		*		*		*
7440-42-8	Boron	Т	mg/L	6010		*		*		*		*
7440-43-9	Cadmium	Т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6010		*		*		*		*
7440-47-3	Chromium	Т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	Т	mg/L	6020		*		*		*		*
7440-50-8	Copper	Т	mg/L	6020		*		*		*		*
7439-89-6	Iron	Т	mg/L	6010		*		*		*		*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6010		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	GWA NUMBER ¹ , Facility Well/Spring Number					0000-000	0	0000-000	00	0000-000	00	0000-000	00
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	(3	T. BLANK	(4	T. BLAN	(5
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7		Molybdenum	Т	mg/L	6020		*		*		*		*
7440-02-0		Nickel	Т	mg/L	6020		*		*		*		*
7440-09-7		Potassium	Т	mg/L	6010		*		*		*		*
7440-16-6		Rhodium	Т	mg/L	6020		*		*		*		*
7782-49-2		Selenium	Т	mg/L	6020		*		*		*		*
7440-22-4		Silver	Т	mg/L	6020		*		*		*		*
7440-23-5		Sodium	Т	mg/L	6010		*		*		*		*
7440-25-7		Tantalum	Т	mg/L	6020		*		*		*		*
7440-28-0		Thallium	Т	mg/L	6020		*		*		*		*
7440-61-1		Uranium	Т	mg/L	6020		*		*		*		*
7440-62-2		Vanadium	Т	mg/L	6020		*		*		*		*
7440-66-6		Zinc	Т	mg/L	6020		*		*		*		*
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	*J
67-64-1		Acetone	Т	mg/L	8260	0.011	J	0.011	J	0.011	J	0.011	J
107-02-8		Acrolein	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5		Styrene	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		0000-0000)	0000-000	0	0000-000	00	0000-00	00		
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	:c.)	T. BLANK	2	T. BLANK	3	T. BLAN	< 4	T. BLANK 5	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	WA NUMBER ¹ , Facility Well/Spring Number						0000-000	0	0000-00	00	0000-0000	
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK	3	T. BLAN	K 4	T. BLAN	K 5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		0000-0000	0	0000-0000		0000-0000)	0000-000)0		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	T. BLANK	2	T. BLANK 3		T. BLANK	4	T. BLANK	. 5
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*		*		*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	T	mg/L	345.1		*		*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-000	00	0000-00	00	0000-0000		8004-4799	9		
Facility's Loca	al Well or Spring Number (e.g., M	/W−1	., MW-2, etc	:.)	T. BLANK	6	T. BLAN	〈 7	T. BLANK	8	358	
Sample Sequence	e #				1		1		1		2	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)∈	thod, or (E)	quipment	Т		Т		Т		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		7/22/2013 06:55		7/23/2013	11:30	7/23/2013 11:30		7/22/2013 07	7:52
Duplicate ("Y"	or "N") ²				N N		N		Y			
Split ("Y" or	"N") ³				N	N N		N		N		
Facility Sample	e ID Number (if applicable)				TB6UG4-	13	TB7UG4-13		TB8UG4-	13	MW358DUG	4-13
Laboratory Sam	ple ID Number (if applicable)		C13203034001 C13204020001		C13205045001		C132030210	002				
Date of Analys:	ate of Analysis (Month/Day/Year) For Volatile Organics Analysis						7/23/2013 7/23/2013		7/25/2013		7/23/2013	3
Gradient with	respect to Monitored Unit (UP, DO	NWO	SIDE, UNKN	IOWN)	NA		NA		NA		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*	<2	
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*	34	
16984-48-8	Fluoride	Т	mg/L	9214		*		*		*	0.16	
s0595	595 Nitrate & Nitrite T mg/L 9056			9056		*		*		*	<1	
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*	87	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*	29.86	
s0145	145 Specific Conductance T μMH0/cm Field					*		*		*	529	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		0000-0000)	0000-0000)	0000-0000		8004-4799)		
Facility's Lo	ocal Well or Spring Number (e.g., MV	-1,	MW-2, BLANK-	F, etc.)	T. BLANK	6	T. BLANK	7	T. BLANK 8	3	358	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*	325.13	
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*	1.08	
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*	297	
s0296	рн	Т	Units	Field		*		*		*	6.38	
NS215	Eh	Т	mV	Field		*		*		*	236	
s0907	Temperature	Т	°C	Field		*		*		*	18.5	
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*	<0.2	
7440-36-0	Antimony	T	mg/L	6020		*		*		*	<0.005	*
7440-38-2	Arsenic	Т	mg/L	7060		*		*		*	0.00133	
7440-39-3	Barium	Т	mg/L	6020		*		*		*	0.0449	
7440-41-7	Beryllium	T	mg/L	6020		*		*		*	<0.001	
7440-42-8	Boron	Т	mg/L	6010		*		*		*	0.362	
7440-43-9	Cadmium	Т	mg/L	6020		*		*		*	<0.001	
7440-70-2	Calcium	Т	mg/L	6010		*		*		*	36.3	
7440-47-3	Chromium	т	mg/L	6020		*		*		*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020		*		*		*	0.00183	*
7440-50-8	Copper	Т	mg/L	6020		*		*		*	<0.02	*
7439-89-6	Iron	Т	mg/L	6010		*		*		*	0.262	
7439-92-1	Lead	Т	mg/L	6020		*		*		*	<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010		*		*		*	14.7	
7439-96-5	Manganese	Т	mg/L	6020		*		*		*	0.0892	
7439-97-6	Mercury	Т	mg/L	7470		*		*		*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER	GWA NUMBER ¹ , Facility Well/Spring Number						0000-000	00	0000-000	0	8004-4799	
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	6	T. BLAN	۲7	T. BLANK	8	358	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*	<0.001	В
7440-02-0	Nickel	Т	mg/L	6020		*		*		*	<0.005	*
7440-09-7	Potassium	Т	mg/L	6010		*		*		*	2.3	*
7440-16-6	Rhodium	Т	mg/L	6020		*		*		*	<0.005	
7782-49-2	Selenium	т	mg/L	6020		*		*		*	<0.005	
7440-22-4	Silver	т	mg/L	6020		*		*		*	<0.001	*
7440-23-5	Sodium	т	mg/L	6010		*		*		*	41.7	
7440-25-7	Tantalum	т	mg/L	6020		*		*		*	<0.005	
7440-28-0	Thallium	т	mg/L	6020		*		*		*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020		*		*		*	<0.001	
7440-62-2	Vanadium	Т	mg/L	6020		*		*		*	<0.02	
7440-66-6	Zinc	т	mg/L	6020		*		*		*	<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
67-64-1	Acetone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-02-8	Acrolein	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	WA NUMBER ¹ , Facility Well/Spring Number						0000-000	0	0000-00	00	8004-47	99
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	cc.)	T. BLANK (6	T. BLANK	7	T. BLANI	K 8	358	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		0.0043	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	WA NUMBER ¹ , Facility Well/Spring Number ility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						0000-0000	0	0000-00	00	8004-4799	
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	T. BLANK	6	T. BLANK	7	T. BLANI	K 8	358	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	J
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005	J	<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*	<0.18	
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*	<0.17	
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*	<0.18	
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*	<0.14	
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*	<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*	<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	GWA NUMBER ¹ , Facility Well/Spring Number cility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						0000-0000		0000-0000)	8004-479	9
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK	6	T. BLANK 7	•	T. BLANK	8	358	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*	<0.07	
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*	<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*	<0.09	
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*	-2.97	*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*	33.6	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*		*		*	0.134	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*		*		*	0.0508	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*		*		*	40.8	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*		*		*	-0.0926	*
10028-17-8	Tritium	Т	pCi/L	704R6		*		*		*	-85.6	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*	<36	
57-12-5	Cyanide	Т	mg/L	9010		*		*		*	<0.04	
20461-54-5	Iodide	Т	mg/L	345.1		*		*		*	<2	
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*	<1	В
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*	0.022	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description			
8004-4798 MW357	MW357UG4-13	Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.			
		Cobalt	N	Sample spike recovery not within control limits.			
		Copper	N	Sample spike recovery not within control limits.			
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.			
		Potassium	Χ	Other specific flags and footnotes may be required to properly define the results.			
		Silver	N	Sample spike recovery not within control limits.			
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.961. Rad error is 0.893.			
		Gross beta		TPU is 4.37. Rad error is 3.23.			
		lodine-131		Analysis of constituent not required and not performed			
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.269. Rad error is 0.224.			
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0841. Rad error is 0.0529.			
		Technetium-99		TPU is 12.2. Rad error is 12.2.			
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.115. Rad error is 0.0579.			
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 555. Rad error is 555.			
8004-4799 MW358	MW358UG4-13	Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.			
		Cobalt	N	Sample spike recovery not within control limits.			
		Copper	N	Sample spike recovery not within control limits.			
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.			
		Potassium	Х	Other specific flags and footnotes may be required to properly define the results.			
		Silver	N	Sample spike recovery not within control limits.			
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.116. Rad error is 0.109.			
		Gross beta		TPU is 4.94. Rad error is 3.57.			
		lodine-131		Analysis of constituent not required and not performed			
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.201. Rad error is 0.118.			
					Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0929. Rad error is 0.0582.
		Technetium-99		TPU is 12.1. Rad error is 12.			
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.11. Rad error is 0.0473.			
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 573. Rad error is 570.			

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0981 MW359	MW359UG4-13	Antimony	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.704. Rad error is 0.634.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.139. Rad error is 0.111.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.237. Rad error is 0.0712.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.162. Rad error is 0.0999.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.112. Rad error is 0.0498.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 555. Rad error is 555.
8004-4800 MW360	MW360UG4-13	Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Potassium	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.932. Rad error is 0.837.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.636. Rad error is 0.488.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.324. Rad error is 0.287.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.19. Rad error is 0.116.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.124. Rad error is 0.0728.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 568. Rad error is 566.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4795 MW361	MW361UG4-13	Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Potassium	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.64. Rad error is 1.5.
		Gross beta		TPU is 5.72. Rad error is 4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.21. Rad error is 0.0000000213.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.111. Rad error is 0.0692.
		Technetium-99		TPU is 12.3. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.105. Rad error is 0.032.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 563. Rad error is 562.
8004-0986 MW362	MW362UG4-13	Antimony	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.08. Rad error is 1.79.
		Gross beta		TPU is 0.98. Rad error is 0.735.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.224. Rad error is 0.169.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0295. Rad error is 0.0192.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.11. Rad error is 0.0457.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 557. Rad error is 557.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4796 MW363	MW363UG4-13	Nitrate & Nitrite	*	Duplicate analysis not within control limits.
		Antimony	Х	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.774. Rad error is 0.73.
		Gross beta		TPU is 2.01. Rad error is 1.64.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.208. Rad error is 0.146.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.169. Rad error is 0.104.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.115. Rad error is 0.057.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 567. Rad error is 566.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4797 MW364	MW364UG4-13	Antimony	Х	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.3. Rad error is 1.19.
		Gross beta		TPU is 5.33. Rad error is 3.78.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.222. Rad error is 0.166.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.288. Rad error is 0.171.
		Technetium-99		TPU is 12.1. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.118. Rad error is 0.0639.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 567. Rad error is 564.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0984 MW365	MW365UG4-13	Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.12. Rad error is 1.09.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0411. Rad error is 0.0363.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.219. Rad error is 0.058.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.247. Rad error is 0.148.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.113. Rad error is 0.00978.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 568. Rad error is 568.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0982 MW366	MW366UG4-13	Nitrate & Nitrite	*	Duplicate analysis not within control limits.
		Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.25. Rad error is 1.14.
		Gross beta		TPU is 6.09. Rad error is 4.19.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.199. Rad error is 0.133.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.00561. Rad error is 0.00363.
		Technetium-99		TPU is 13.1. Rad error is 13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.11. Rad error is 0.0474.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 592. Rad error is 591.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

 $Finds/Unit: \underline{KY8-890-008-982 \ / \ 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4793 MW367	MW367UG4-13	Nitrate & Nitrite	*	Duplicate analysis not within control limits.
		Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.49. Rad error is 2.24.
		Gross beta		TPU is 4.58. Rad error is 3.35.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.3. Rad error is 0.255.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.12. Rad error is 0.0749.
		Technetium-99		TPU is 12.2. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.116. Rad error is 0.0601.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 615. Rad error is 615.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
	MW368UG4-13	Antimony	X	Other specific flags and footnotes may be required to
		Cobalt	N	properly define the results. Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	X	Other specific flags and footnotes may be required to properly define the results.
		Potassium	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
	Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria	
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.03. Rad error is 1.81.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.07. Rad error is 0.827.
		lodine-131		CE;æqî•ãrÁ;-Á&[}•αãc`^}αÁ;[αÁ^``ã^^åÁæ)åÁ;[αÁ,^¦-{¦{ ^åÈ
		Radium-226		During sampling the well became partially dry, this analy was not collected.
		Strontium-90		During sampling the well became partially dry, this analy was not collected.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.6. Rad error is 10.6.
		Thorium-230		During sampling the well became partially dry, this analywas not collected.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 562. Rad error is 562.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4820 MW369	MW369UG4-13	Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	X	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.78. Rad error is 0.733.
		Gross beta		TPU is 2.89. Rad error is 2.28.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.254. Rad error is 0.206.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.136. Rad error is 0.0852.
		Technetium-99		TPU is 11.4. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.133. Rad error is 0.057.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 558. Rad error is 558.
3004-4818 MW370	MW370UG4-13	Antimony	Х	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.682. Rad error is 0.653.
		Gross beta		TPU is 3.2. Rad error is 2.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.262. Rad error is 0.215.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.131. Rad error is 0.0817.
		Technetium-99		TPU is 11.9. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.121. Rad error is 0.0103.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 572. Rad error is 571.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4819 MW371	MW371UG4-13	Antimony	Х	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.517. Rad error is 0.494.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.98. Rad error is 0.839.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.337. Rad error is 0.301.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0962. Rad error is 0.0605.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.115. Rad error is 0.0571.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 572. Rad error is 571.
8004-4808 MW372	MW372UG4-13	Antimony	Х	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 3.94. Rad error is 3.35.
		Gross beta		TPU is 14.5. Rad error is 7.83.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.229. Rad error is 0.175.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.444. Rad error is 0.259.
		Technetium-99		TPU is 16.5. Rad error is 16.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.152. Rad error is 0.0396.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 575. Rad error is 575.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4792 MW373	MW373UG4-13	Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	Ν	Sample spike recovery not within control limits.
		Nickel	X	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.66. Rad error is 1.44.
		Gross beta		TPU is 7.09. Rad error is 4.4.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.218. Rad error is 0.157.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0468. Rad error is 0.0298.
		Technetium-99		TPU is 13. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.113. Rad error is 0.0538.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 574. Rad error is 573.
8004-0990 MW374	MW374UG4-13	Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.87. Rad error is 1.76.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.711. Rad error is 0.614.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.257. Rad error is 0.206.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0811. Rad error is 0.0514.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.121. Rad error is 0.0682.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 570. Rad error is 567.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

004-0985 MW375	MW375UG4-13	Nituata O Nituita	Flag	Description
		Nitrate & Nitrite	*	Duplicate analysis not within control limits.
		Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	X	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.31. Rad error is 1.23.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.412. Rad error is 0.36.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.271. Rad error is 0.225.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0676. Rad error is 0.0428.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.117. Rad error is 0.0615.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 565. Rad error is 565.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Bromide	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description					
3004-0988 MW376		Magnesium	- 3	During sampling, the well went dry; therefore, no sample was collected.					
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.					
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.					
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.					
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.					
		Potassium		During sampling, the well went dry; therefore, no sampl was collected.					
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.					
		Selenium		During sampling, the well went dry; therefore, no sampl was collected.					
		Silver		During sampling, the well went dry; therefore, no sample was collected.					
		Sodium		During sampling, the well went dry; therefore, no samp was collected.					
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.					
		Thallium		During sampling, the well went dry; therefore, no samp was collected.					
		Uranium		During sampling, the well went dry; therefore, no samp was collected.					
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.					
		Zinc		During sampling, the well went dry; therefore, no samp was collected.					
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.					
		Acetone		During sampling, the well went dry; therefore, no samp was collected.					
							Acrolein		During sampling, the well went dry; therefore, no samp was collected.
				Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.			
		Benzene		During sampling, the well went dry; therefore, no samp was collected.					
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.					
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.					
		Styrene		During sampling, the well went dry; therefore, no samp was collected.					
		Toluene		During sampling, the well went dry; therefore, no samp was collected.					
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.					
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.					

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376	•	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samplwas collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	·	Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Bromide	- 3	During sampling, the well went dry; therefore, no sampl was collected.
		Chloride		During sampling, the well went dry; therefore, no samp was collected.
		Fluoride		During sampling, the well went dry; therefore, no samp was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no samp was collected.
		Sulfate		During sampling, the well went dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no samp was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no samp was collected.
		рН		During sampling, the well went dry; therefore, no samp was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no samp was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no samp was collected.
		Cobalt		During sampling, the well went dry; therefore, no samp was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description				
004-0989 MW377	•	Magnesium	V	During sampling, the well went dry; therefore, no sample was collected.				
		Manganese		During sampling, the well went dry; therefore, no sample was collected.				
		Mercury		During sampling, the well went dry; therefore, no sample was collected.				
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.				
		Nickel		During sampling, the well went dry; therefore, no sample was collected.				
		Potassium		During sampling, the well went dry; therefore, no sample was collected.				
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.				
		Selenium		During sampling, the well went dry; therefore, no sample was collected.				
		Silver		During sampling, the well went dry; therefore, no sample was collected.				
		Sodium		During sampling, the well went dry; therefore, no sample was collected.				
		Tantalum		During sampling, the well went dry; therefore, no sampl was collected.				
		Thallium		During sampling, the well went dry; therefore, no sampl was collected.				
		Uranium		During sampling, the well went dry; therefore, no sample was collected.				
		Vanadium		During sampling, the well went dry; therefore, no sampl was collected.				
		Zinc		During sampling, the well went dry; therefore, no sampl was collected.				
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.				
		Acetone		During sampling, the well went dry; therefore, no sample was collected.				
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.				
		Acrylonitrile		During sampling, the well went dry; therefore, no sampl was collected.				
						Benzene		During sampling, the well went dry; therefore, no sampli was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sampling was collected.				
		Xylenes		During sampling, the well went dry; therefore, no sampling was collected.				
		Styrene		During sampling, the well went dry; therefore, no sample was collected.				
		Toluene		During sampling, the well went dry; therefore, no sample was collected.				
		Chlorobromomethane		During sampling, the well went dry; therefore, no sampling was collected.				
		Bromodichloromethane		During sampling, the well went dry; therefore, no sampling was collected.				

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	·	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samplwas collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampling was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description					
004-0989 MW377	·	Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.					
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.					
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.					
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.					
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.					
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.					
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.					
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.					
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.					
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.					
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.					
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.					
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.					
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.					
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.					
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.					
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.					
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.					
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.					
							PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.					
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.					
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.					
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.					
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.					
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.					

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	Ν	Sample spike recovery not within control limits.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		1,2-Dibromo-3-chloropropane	Χ	Other specific flags and footnotes may be required to properly define the results.
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0274. Rad error is 0.0264.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.129. Rad error is 0.115.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.176. Rad error is 0.0556.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.207. Rad error is 0.125.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.7. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.106. Rad error is 0.0317.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 554. Rad error is 554.
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring	Facility			
Point	Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1UG4-13	Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1UG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Antimony	Χ	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Potassium	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		1,2-Dibromo-3-chloropropane	Χ	Other specific flags and footnotes may be required to properly define the results.
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.653. Rad error is 0.615.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.274. Rad error is 0.245.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.254. Rad error is 0.206.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.082.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.7. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.12. Rad error is 0.0572.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 564. Rad error is 564.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1UG4-13	Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG4-13	Zinc	<u> </u>	Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performe
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG4-13	Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

 $Finds/Unit: \underline{KY8-890-008-982 \ / \ 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG4-13	Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG4-13	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe
		Vanadium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG4-13	Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB5UG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5UG4-13	Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6UG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6UG4-13	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB7UG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB7UG4-13	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB8UG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB8UG4-13	Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$


LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4799 MW358	MW358DUG4-13	Antimony	X	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	X	Other specific flags and footnotes may be required to properly define the results.
		Potassium	X	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.95. Rad error is 1.88.
		Gross beta		TPU is 5.14. Rad error is 3.68.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.228. Rad error is 0.173.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0172. Rad error is 0.011.
		Technetium-99		TPU is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.133. Rad error is 0.0884.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 540. Rad error is 540.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Permit Number: 073-00045

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the third quarter 2013 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data included two background wells for comparison with at least three test wells or sidegradient wells (Exhibit 1). The third quarter 2013 data used to conduct the statistical analyses was collected in July 2013. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals with established maximum contaminant levels (MCLs), no statistical analysis was performed. Parameters that have MCLs can be found in 401 KAR 47:030, Section 6. For parameters with no established MCL, the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. Results of the one-sided tolerance interval statistical test conclude whether the data show a statistically significant increase of concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the data for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant increase in concentration compared to the background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The tolerance limit (TL) was calculated for the background data.
 - For each parameter, the background data were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be potentially normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well has increased concentration with respect to background data.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit 2 presents the parameters from the available data set and the statistical test performed using the one-sided tolerance interval.

Excluding parameters that have an MCL, Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, third quarter 2013. The observations that are listed are not background data. Background data are presented on pages D-19 through D-83. The sampling dates associated with background data are listed next to the result on pages D-19 through D-83. When field duplicate data are available, the higher of the two readings is retained for further evaluation.

D-4

¹ For pH, two-sided TL (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Exhibit 1. Station Identification for Monitoring Wells Analyzed

Station	Type	Aquifer
MW357	TW	URGA
MW358	TW	LRGA
MW359	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365	TW	UCRS
MW366	SG	URGA
MW367	SG	LRGA
MW368	SG	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374	BG	UCRS
MW375	SG	UCRS
MW376*	SG	UCRS
MW377*	SG	UCRS

BG: upgradient or background wells
TW: downgradient or test wells
SG: sidegradient wells
*Well was dry this quarter, and a groundwater sample could not be collected.

Exhibit 2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test

Parameters
Aluminum
Boron
Calcium
Chloride
Cobalt
Conductivity
Dissolved Oxygen
Dissolved Solids
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
PCB, Total
PCB-1242
pH*
Potassium
Sodium
Sulfate
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX) Uranium

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if statistically significant deviations exist in concentrations with respect to upgradient well data.

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	0	7	0	no
1,1,2,2-Tetrachloroethane	7	0	7	0	no
1,1,2-Trichloroethane	7	0	7	0	no
1,1-Dichloroethane	7	0	7	0	no
1,2,3-Trichloropropane	7	0	7	0	no
1,2-Dibromo-3-chloropropane	7	0	7	0	no
1,2-Dibromoethane	7	0	7	0	no
1,2-Dichlorobenzene	7	0	7	0	no
1,2-Dichloropropane	7	0	7	0	no
2-Butanone	7	0	7	0	no
2-Hexanone	7	0	7	0	no
4-Methyl-2-pentanone	7	0	7	0	no
Acetone	7	0	7	0	no
Acrolein	7	0	7	0	no
Acrylonitrile	7	0	7	0	no
Aluminum	7	0	4	3	YES
Antimony	7	0	7	0	no
Beryllium	7	0	7	0	no
Boron	7	0	7	0	no
Bromide	7	0	7	0	no
Bromochloromethane	7	0	7	0	no
Bromodichloromethane	7	0	7	0	no
Bromoform	7	0	7	0	no
Bromomethane	7	0	7	0	no
Calcium	7	0	0	7	YES
Carbon disulfide	7	0	7	0	no
Chemical Oxygen Demand (COD)	7	0	7	0	no
Chloride	7	0	1	6	YES
Chlorobenzene	7	0	7	0	no
Chloroethane	7	0	7	0	no
Chloroform	7	0	7	0	no
Chloromethane	7	0	7	0	no
cis-1,2-Dichloroethene	7	0	7	0	no
cis-1,3-Dichloropropene	7	0	7	0	no
Cobalt	7	0	5	2	YES
Conductivity	7	0	0	7	YES
Copper	7	0	7	0	no
Cyanide	7	0	7	0	no
Dibromochloromethane	7	0	7	0	no
Dibromomethane	7	0	7	0	no
Dimethylbenzene, Total	7	0	7	0	no
Dissolved Oxygen	7	0	0	7	YES
Dissolved Solids	7	0	0	7	YES
Ethylbenzene	7	0	7	0	no
Iodide	7	0	7	0	no
Iodomethane	7	0	7	0	no
Iron	7	0	3	4	YES
Magnesium	7	0	0	7	YES
Manganese	7	0	5	2	YES
	7	0	7	0	120

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Molybdenum	7	0	5	2	YES
Nickel	7	0	5	2	YES
Oxidation-Reduction Potential	7	0	0	7	YES
PCB, Total	7	0	5	2	YES
PCB-1016	7	0	7	0	no
PCB-1221	7	0	7	0	no
PCB-1232	7	0	7	0	no
PCB-1242	7	0	5	2	YES
PCB-1248	7	0	7	0	no
PCB-1254	7	0	7	0	no
PCB-1260	7	0	7	0	no
PCB-1268	7	0	7	0	no
pH	7	0	0	7	YES
Potassium	7	0	1	6	YES
Radium-226	7	1	6	0	no
Rhodium	7	0	7	0	no
Sodium	7	0	0	7	YES
Styrene	7	0	7	0	no
Sulfate	7	0	0	7	YES
Tantalum	7	0	7	0	no
Technetium-99	7	0	7	0	no
Tetrachloroethene	7	0	7	0	no
Thallium	7	0	7	0	no
Thorium-230	7	1	6	0	no
Toluene	7	0	7	0	no
Total Organic Carbon (TOC)	7	0	0	7	YES
Total Organic Halides (TOX)	7	0	0	7	YES
trans-1,2-Dichloroethene	7	0	7	0	no
trans-1,3-Dichloropropene	7	0	7	0	no
Trans-1,4-Dichloro-2-butene	7	0	7	0	no
Trichlorofluoromethane	7	0	7	0	no
Uranium	7	0	5	2	YES
Vanadium	7	0	7	0	no
Vinyl acetate	7	0	7	0	no
Zinc	7	0	7	0	no

Bold denotes parameters with at least one uncensored observation.

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	no
1,1,2,2-Tetrachloroethane	6	0	6	0	no
1,1,2-Trichloroethane	6	0	6	0	no
1,1-Dichloroethane	6	0	6	0	no
1,2,3-Trichloropropane	6	0	6	0	no
1,2-Dibromo-3-chloropropane	6	0	6	0	no
1,2-Dibromoethane	6	0	6	0	no
1,2-Dichlorobenzene	6	0	6	0	no
1,2-Dichloropropane	6	0	6	0	no
2-Butanone	6	0	6	0	no
2-Hexanone	6	0	6	0	no
4-Methyl-2-pentanone	6	0	6	0	no
Acetone	6	0	6	0	no
Acrolein	6	0	6	0	no
Acrylonitrile	6	0	6	0	no
Aluminum	6	0	6	0	no
Antimony	6	0	6	0	no
Beryllium	6	0	6	0	no
Boron	6	0	4	2	YES
Bromide	6	0	6	0	no
Bromochloromethane	6	0	6	0	no
Bromodichloromethane	6	0	6	0	no
Bromoform	6	0	6	0	no
Bromomethane	6	0	6	0	no
Calcium	6	0	0	6	YES
Carbon disulfide	6	0	6	0	no
Chemical Oxygen Demand (COD)	6	0	6	0	no
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	no
Chloroethane	6	0	6	0	no
Chloroform	6	0	6	0	no
Chloromethane	6	0	6	0	no
cis-1,2-Dichloroethene	6	0	6	0	no
cis-1,3-Dichloropropene	6	0	6	0	no
Cobalt	6	0	3	3	YES
Conductivity	6	0	0	6	YES
Copper	6	0	6	0	no
Cyanide	6	0	6	0	no
Dibromochloromethane	6	0	6	0	no
Dibromomethane	6	0	6	0	no
Dimethylbenzene, Total	6	0	6	0	no
Dissolved Oxygen	6	0	0	6	YES
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	no
Iodide	6	0	6	0	no
Iodomethane	6	0	6	0	no
Iron	6	0	3	3	YES
Magnesium	6	0	0	6	YES
Manganese	6	0	0	6	YES
Methylene chloride	6	0	6	0	no

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Molybdenum	6	0	6	0	no
Nickel	6	0	5	1	YES
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	5	1	YES
PCB-1016	6	0	6	0	no
PCB-1221	6	0	6	0	no
PCB-1232	6	0	6	0	no
PCB-1242	6	0	4	2	YES
PCB-1248	6	0	6	0	no
PCB-1254	6	0	6	0	no
PCB-1260	6	0	6	0	no
PCB-1268	6	0	6	0	no
pН	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	6	0	no
Rhodium	6	0	6	0	no
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	no
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	no
Technetium-99	6	0	2	4	YES
Tetrachloroethene	6	0	6	0	no
Thallium	6	0	6	0	no
Thorium-230	6	0	6	0	no
Toluene	6	0	6	0	no
Total Organic Carbon (TOC)	6	0	4	2	YES
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	no
trans-1,3-Dichloropropene	6	0	6	0	no
Trans-1,4-Dichloro-2-butene	6	0	6	0	no
Trichlorofluoromethane	6	0	6	0	no
Uranium	6	0	6	0	no
Vanadium	6	0	6	0	no
Vinyl acetate	6	0	6	0	no
Zinc	6	0	6	0	no

Bold denotes parameters with at least one uncensored observation.

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	no
1,1,2,2-Tetrachloroethane	6	0	6	0	no
1,1,2-Trichloroethane	6	0	6	0	no
1,1-Dichloroethane	6	0	6	0	no
1,2,3-Trichloropropane	6	0	6	0	no
1,2-Dibromo-3-chloropropane	6	0	6	0	no
1,2-Dibromoethane	6	0	6	0	no
1,2-Dichlorobenzene	6	0	6	0	no
1,2-Dichloropropane	6	0	6	0	no
2-Butanone	6	0	6	0	no
2-Hexanone	6	0	6	0	no
4-Methyl-2-pentanone	6	0	6	0	no
Acetone	6	0	6	0	no
Acrolein	6	0	6	0	no
Acrylonitrile	6	0	6	0	no
Aluminum	6	0	6	0	no
Antimony	6	0	6	0	no
Beryllium	6	0	6	0	no
Boron	6	0	3	3	YES
Bromide	6	0	6	0	no
Bromochloromethane	6	0	6	0	no
Bromodichloromethane	6	0	6	0	no
Bromoform	6	0	6	0	no
Bromomethane	6	0	6	0	no
Calcium	6	0	0	6	YES
Carbon disulfide	6	0	6	0	no
Chemical Oxygen Demand (COD)	6	0	6	0	no
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	no
Chloroethane	6	0	6	0	no
Chloroform	6	0	6	0	no
Chloromethane	6	0	6	0	no
cis-1,2-Dichloroethene	6	0	6	0	no
cis-1,3-Dichloropropene	6	0	6	0	no
Cobalt	6	0	4	2	YES
Conductivity	6	0	0	6	YES
Copper	6	0	6	0	no
Cyanide	6	0	6	0	no
Dibromochloromethane	6	0	6	0	no
Dibromomethane	6	0	6	0	no
Dimethylbenzene, Total	6	0	6	0	no
Dissolved Oxygen	6	0	0	6	YES
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	no
Iodide	6	0	6	0	no
Iodomethane	6	0	6	0	no
Iron	6	0	3	3	YES
Magnesium	6	0	0	6	YES
Manganese	6	0	1	5	YES
Methylene chloride	6	0	6	0	no
Molybdenum	6	0	6	0	no
Nickel	6	0	6	0	no
Oxidation-Reduction Potential	6	0	0	6	YES
Oxidation-Reduction Potential	0	U	U	0	I LS

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

PCB, Total	6	0	6	0	no
PCB-1016	6	0	6	0	no
PCB-1221	6	0	6	0	no
PCB-1232	6	0	6	0	no
PCB-1242	6	0	6	0	no
PCB-1248	6	0	6	0	no
PCB-1254	6	0	6	0	no
PCB-1260	6	0	6	0	no
PCB-1268	6	0	6	0	no
pH	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	6	0	no
Rhodium	6	0	6	0	no
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	no
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	no
Technetium-99	6	0	0	6	YES
Tetrachloroethene	6	0	6	0	no
Thallium	6	0	6	0	no
Thorium-230	6	0	6	0	no
Toluene	6	0	6	0	no
Total Organic Carbon (TOC)	6	0	6	0	no
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	no
trans-1,3-Dichloropropene	6	0	6	0	no
Trans-1,4-Dichloro-2-butene	6	0	6	0	no
Trichlorofluoromethane	6	0	6	0	no
Uranium	6	0	6	0	no
Vanadium	6	0	6	0	no
Vinyl acetate	6	0	6	0	no
Zinc	6	0	6	0	no

Bold denotes parameters with at least one uncensored observation.

Discussion of Results

For the UCRS, URGA, and LRGA, the results of the one-sided upper tolerance interval test are presented on pages D-19 through D-83 and the statistician qualification statement is presented on page D-84. For the UCRS, URGA, and LRGA, the test was applied to 22, 21, and 17 parameters, respectively, listed in bold print in Exhibits 3, 4, and 5. A summary of statistically significant increases by well number is shown in Exhibit 6.

UCRS

In this quarter, statistical test results indicated there were statistically significant increases for dissolved oxygen, oxidation-reduction potential, and sulfate.

URGA

In this quarter, statistical test results indicated that there were statistically significant increases for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

LRGA

In this quarter, statistical test results indicated that there were statistically significant increases for calcium, oxidation reduction potential, and technetium-99.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

Exhibit 6. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW359: dissolved oxygen, oxidation-	MW357: oxidation-reduction	MW358: oxidation-reduction
reduction potential, sulfate	potential	potential
MW362: oxidation-reduction potential,	MW360: oxidation-reduction	MW361: oxidation-reduction
sulfate	potential	potential, technetium-99
MW365: dissolved oxygen, oxidation-	MW363: oxidation-reduction	MW364: oxidation-reduction
reduction potential, sulfate	potential	potential, technetium-99
MW368: dissolved oxygen, oxidation-	MW366: oxidation-reduction	MW367: oxidation-reduction
reduction potential, sulfate	potential, technetium-99	potential
MW371: (upgradient): dissolved	MW369: (upgradient): oxidation-	MW370: (upgradient): oxidation-
oxygen, oxidation- reduction	reduction potential	reduction potential
potential, sulfate	MW372: (upgradient): calcium,	MW373: (upgradient): calcium,
MW374: (upgradient): dissolved	conductivity, dissolved	oxidation-reduction
oxygen, oxidation- reduction	solids, oxidation	potential, technetium-99
potential	reduction-potential	
MW375: oxidation-reduction potential,	magnesium, sulfate,	
sulfate	technetium-99	

Exhibit 7. Tests Summary for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.95	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	1.31	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.45	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.55	Statistically significant increases relative to background data in MW359, MW365, MW368, MW371, and MW374
Dissolved Solids	Tolerance Interval	0.42	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.98	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.27	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.89	No statistically significant increases relative to background data
Molybdenum	Tolerance Interval	1.65	No statistically significant increases relative to background data
Nickel	Tolerance Interval	0.98	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	3.54	Statistically significant increases relative to background data in MW359, MW362, MW365, MW368, MW371, MW374, and MW375
PCB, Total	Tolerance Interval	0.92	No statistically significant deviations relative to background data
PCB-1242	Tolerance Interval	1.41	No statistically significant deviations relative to background data
pH	Tolerance Interval	0.05	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.72	No statistically significant increases relative to background data

Exhibit 7. Tests Summary for Qualified Parameters—UCRS (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Sodium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	0.49	Statistically significant increases relative to background data in MW359, MW362, MW365, MW368, MW371, and MW375
Total Organic Carbon	Tolerance Interval	1.38	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	1.08	No statistically significant increases relative to background data
Uranium	Tolerance Interval	1.68	No statistically significant increases relative to background data

CV: coefficient of variation

Exhibit 8. Tests Summary for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Boron	Tolerance Interval	0.84	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.29	Statistically significant increase relative to background data in MW372
Chloride	Tolerance Interval	0.10	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	0.85	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.12	Statistically significant increase relative to background data in MW372
Dissolved Oxygen	Tolerance Interval	0.76	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.16	Statistically significant increase relative to background data in MW372
Iron	Tolerance Interval	0.95	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.27	Statistically significant increase relative to background data in MW372
Manganese	Tolerance Interval	0.66	No statistically significant increases relative to background data
Nickel	Tolerance Interval	0.91	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	1.26	Statistically significant increases relative to background data in MW357, MW360, MW363, MW366, MW369, and MW372
PCB, Total	Tolerance Interval	0.90	No statistically significant increases relative to background data
PCB-1242	Tolerance Interval	1.36	No statistically significant increases relative to background data
рН	Tolerance Interval	0.03	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.72	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.26	No statistically significant increases relative to background data

Exhibit 8. Tests Summary for Qualified Parameters—URGA (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Sulfate	Tolerance Interval	0.75	Statistically significant increase relative to background data in MW372
Technetium-99	Tolerance Interval	0.87	Statistically significant increases relative to background data in MW366 and MW372
Total Organic Carbon	Tolerance Interval	1.23	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.95	No statistically significant increases relative to background data

CV: coefficient of variation

Exhibit 9. Tests Summary for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Boron	Tolerance Interval	0.68	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.31	Statistically significant increase relative to background data in MW373
Chloride	Tolerance Interval	0.16	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	1.17	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.26	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.83	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.30	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.96	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.34	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.62	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	1.31	Statistically significant increases relative to background data in MW358, MW361, MW364, MW367, MW370, and MW373
pH	Tolerance Interval	0.03	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.19	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.30	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	1.59	No statistically significant increases relative to background data
Technetium-99	Tolerance Interval	1.73	Statistically significant increases relative to background data in MW361, MW364,
Total Organic Halides	Tolerance Interval	0.98	and MW373 No statistically significant increases relative to background data

CV: coefficient of variation

C-746-U Third Quarter 2013 Statistical Analysis Aluminum UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells		
Well Number:	MW371	X= 3.300		Well Number:	MW371		
Date Collected	Result	S= 6.859		Date Collected	LN(Result)		
3/18/2002	2.240	CV= 2.078		3/18/2002	0.806		
4/22/2002	0.200	K factor** = 2.523		4/22/2002	-1.609		
7/15/2002	0.200	TL= 20.604		7/15/2002	-1.609		
10/8/2002	0.200	Because CV is greater than	n 1, the natural	10/8/2002	-1.609		
1/8/2003	0.200	logarithm of background ar		1/8/2003	-1.609		
4/3/2003	0.200	were calculated.		4/3/2003	-1.609		
7/9/2003	0.200	Statistics on		7/9/2003	-1.609		
10/6/2003	0.200	Transformed		10/6/2003	-1.609		
Well Number:	MW374	Background Data		Well Number:	MW374		
Date Collected	Result	X= -0.371		Date Collected	LN(Result)		
10/8/2002	21.300	S= 1.678		10/8/2002	3.059		
1/7/2003	20.000	CV= -4.521		1/7/2003	2.996		
4/2/2003	4.110			4/2/2003	1.413		
7/9/2003	1.410	K factor** = 2.523		7/9/2003	0.344		
10/7/2003	1.090	TL=3.863		10/7/2003	0.086		
1/6/2004	0.854			1/6/2004	-0.158		
4/7/2004	0.200			4/7/2004	-1.609		
7/14/2004	0.200			7/14/2004	-1.609		

Third Quarter 2013 Data Collected in July 2013				Third Quarter 2013 Dry/Partially Dry Wells Transformed Third Quarter 20 Data Collected in July 2013				
Well No.	Result	Gradient Res	sult >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW359	0.200	Downgradient	N/A			MW359	-1.609	NO
MW362	7.860	Downgradient	N/A	MW368	Sidegradient	MW362	2.062	NO
MW365	0.200	Downgradient	N/A	MW376	Sidegradient	MW365	-1.609	NO
MW368	2.410	Sidegradient	N/A	MW377	Sidegradient	MW368	0.880	NO
MW371	0.563	Upgradient	N/A			MW371	-0.574	NO
MW374	0.200	Upgradient	N/A			MW374	-1.609	NO
MW375	0.200	Sidegradient	N/A			MW375	-1.609	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Calcium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

opgradient (CIIS
Well Number:	MW371
Date Collected	Result
3/18/2002	17.200
4/22/2002	22.400
7/15/2002	25.500
10/8/2002	26.400
1/8/2003	27.200
4/3/2003	30.300
7/9/2003	25.900
10/6/2003	27.000
Well Number:	MW374
Date Collected	Result
10/8/2002	67.300
1/7/2003	60.600
4/2/2003	47.200
7/9/2003	34.700
10/7/2003	37.100
1/6/2004	37.700

4/7/2004

7/14/2004

Statistics on Background Data

X= 34.100 S= 13.637 CV= 0.400 K factor** = 2.523 TL= 68.505

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

32.200

26.900

Well No.	Result	Gradient	Result >TL?
MW359	8.210	Downgradie	nt NO
MW362	15.800	Downgradie	nt NO
MW365	22.500	Downgradie	nt NO
MW368	25.000	Sidegradient	NO
MW371	26.900	Upgradient	NO
MW374	22.800	Upgradient	NO
MW375	14.800	Sidegradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Chloride UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells					
Well Number:	MW371				
Date Collected	Result				
7/15/2002	8.300				
10/8/2002	7.600				
1/8/2003	7.700				
4/3/2003	8.800				
7/9/2003	8.100				
10/6/2003	8.600				
1/7/2004	7.600				

4/6/2004

Well Number:

Date Collected

10/8/2002 1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 91.300 S= 86.959
CV = 0.952
K factor** = 2.523
TL= 310.697

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

1/6/2004 170.400 4/7/2004 156.400 7/14/2004 144.700

Third Quarter 2013 Data Collected in July 2013

7.600 MW374

Result 199.200

199.700

171.800

178.700

175.600

Well No.	Result	Gradient	Result >TL?
MW359	2.000	Downgradie	nt NO
MW362	10.000	Downgradie	nt NO
MW365	6.500	Downgradie	nt NO
MW368	7.800	Sidegradient	NO
MW371	8.100	Upgradient	NO
MW374	84.000	Upgradient	NO
MW375	6.000	Sidegradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Cobalt UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Data from Upg	_
Well Number:	MW371	X= 0.007		Well Number:	MW371
Date Collected	Result	S= 0.009		Date Collected	LN(Result)
3/18/2002	0.025	CV= 1.314		3/18/2002	-3.689
4/22/2002	0.025	K factor** = 2.523		4/22/2002	-3.689
7/15/2002	0.025	TL= 0.031		7/15/2002	-3.689
10/8/2002	0.001	Because CV is greater t	han 1, the natural	10/8/2002	-6.908
1/8/2003	0.001	logarithm of backgroun	l and test well results	1/8/2003	-6.908
4/3/2003	0.001	were calculated.		4/3/2003	-6.908
7/9/2003	0.001	Statistics on		7/9/2003	-6.908
10/6/2003	0.001	Transformed		10/6/2003	-6.908
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= -5.843		Date Collected	LN(Result)
10/8/2002	0.010	S= 1.392		10/8/2002	-4.605
1/7/2003	0.010	CV = -0.238		1/7/2003	-4.605
4/2/2003	0.010			4/2/2003	-4.605
7/9/2003	0.002	K factor** = 2.523		7/9/2003	-6.432
10/7/2003	0.001	TL = -2.331		10/7/2003	-6.908
1/6/2004	0.001		•	1/6/2004	-6.908
4/7/2004	0.001			4/7/2004	-6.908
7/14/2004	0.001			7/14/2004	-6.908

Third Quarter 2013 Data Collected in July 2013				Third Quarter 2013 Dry/Partially Dry Wells Transformed Third Quarter 20 Data Collected in July 2013				
Well No.	Result	Gradient Re	sult >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW359	0.001	Downgradient	N/A			MW359	-6.908	NO
MW362	0.010	Downgradient	N/A	MW368	Sidegradient	MW362	-4.605	NO
MW365	0.002	Downgradient	N/A	MW376	Sidegradient	MW365	-6.342	NO
MW368	0.003	Sidegradient	N/A	MW377	Sidegradient	MW368	-5.941	NO
MW371	0.001	Upgradient	N/A			MW371	-6.908	NO
MW374	0.001	Upgradient	N/A			MW374	-6.908	NO
MW375	0.001	Sidegradient	N/A			MW375	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Conductivity

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: umho/cm

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	541.000
4/22/2002	643.000
7/15/2002	632.000
10/8/2002	631.000
1/8/2003	680.000
4/3/2003	749.000
7/9/2003	734.000
10/6/2003	753.000
Well Number:	MW374
Date Collected	Result
3/18/2002	1007.00

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

Statistics on Background Data

X= 918.744 S= 417.257 CV= 0.454 K factor** = 2.523 TL= 1971.483

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

1680.00

1715.90

172.000

1231.00

1214.00

1172.00

1145.00

Well No.	Result	Gradient	Result >TL?
MW359	337.00	Downgradie	nt NO
MW362	540.00	Downgradie	nt NO
MW365	401.00	Downgradie	nt NO
MW368	842.00	Sidegradient	NO
MW371	704.00	Upgradient	NO
MW374	804.00	Upgradient	NO
MW375	424.00	Sidegradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Dissolved Oxygen UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW371

Date Collected Result 3/18/2002 2.260 4/22/2002 1.150 7/15/2002 0.940 10/8/2002 0.740 1/8/2003 2.620 4/3/2003 1.500 7/9/2003 1.660 10/6/2003 1.280 Well Number: MW374

Date Collected

3/18/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

Statistics on Background Data

X= 1.138 S= 0.621 CV= 0.546 K factor** = 2.523 TL= 2.704

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Result

0.600

0.670

0.230

0.650

0.920

0.990

1.110

0.880

Well No.	Result	Gradient Resul	t>TL?
MW359	5.760	Downgradient	YES
MW362	1.960	Downgradient	NO
MW365	4.600	Downgradient	YES
MW368	6.900	Sidegradient	YES
MW371	2.760	Upgradient	YES
MW374	3.410	Upgradient	YES
MW375	0.510	Sidegradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW359

MW365

MW368

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis
Dissolved Oxygen (Continued)

UCRS
UNITS: mg/L

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Dissolved Solids UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	274.000
4/22/2002	409.000
7/15/2002	418.000
10/8/2002	424.000
1/8/2003	431.000
4/3/2003	444.000
7/9/2003	445.000
10/6/2003	438.000
Well Number:	MW374
Date Collected	Result
10/8/2002	1136.00

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data

X= 590.000 S= 248.068 CV= 0.420 K factor** = 2.523 TL= 1215.876

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

1101.00

863.000

682.000

589.000

603.000

601.000

582.000

Well No.	Result	Gradient	Result >TL?
MW359	183.00	Downgradie	nt NO
MW362	459.00	Downgradie	nt NO
MW365	263.00	Downgradie	nt NO
MW368	519.00	Sidegradient	NO
MW371	423.00	Upgradient	NO
MW374	597.00	Upgradient	NO
MW375	255.00	Sidegradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Iron UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW371

Well Number:	MW371
Date Collected	Result
3/18/2002	1.310
4/22/2002	0.913
7/15/2002	0.881
10/8/2002	3.860
1/8/2003	1.880
4/3/2003	3.180
7/9/2003	0.484
10/6/2003	2.720
Well Number:	MW374

Date Collected

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data

X= 6.612 S= 6.487 CV= 0.981 K factor** = 2.523 TL= 22.979

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Result

23.000

13.900

14.000

14.200

7.920

7.860

4.820

4.870

Well No.	Result	Gradient	Result >TL?
MW359	0.100	Downgradie	nt NO
MW362	6.120	Downgradie	nt NO
MW365	0.100	Downgradie	nt NO
MW368	1.090	Sidegradient	NO
MW371	0.333	Upgradient	NO
MW374	0.113	Upgradient	NO
MW375	0.100	Sidegradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Magnesium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

opgradient w	CHS
Well Number:	MW371
Date Collected	Result
3/18/2002	7.100
4/22/2002	9.770
7/15/2002	10.400
10/8/2002	10.200
1/8/2003	10.700
4/3/2003	11.900
7/9/2003	10.800
10/6/2003	10.900
Well Number:	MW374
Date Collected	Result
10/8/2002	20.000
1/7/2003	16.100
4/2/2003	13.100
7/9/2003	10.300
10/7/2003	11.100
1/6/2004	11.000
4/7/2004	9.690

7/14/2004

Statistics on Background Data

X= 11.347 S= 3.019 CV= 0.266 K factor** = 2.523 TL= 18.963

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

8.490

Well No.	Result	Gradient	Result >TL?
MW359	3.840	Downgradie	nt NO
MW362	6.840	Downgradie	nt NO
MW365	9.670	Downgradie	nt NO
MW368	8.430	Sidegradient	NO
MW371	11.200	Upgradient	NO
MW374	6.090	Upgradient	NO
MW375	5.900	Sidegradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Manganese UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

opgradient w	CHS
Well Number:	MW371
Date Collected	Result
3/18/2002	0.063
4/22/2002	0.067
7/15/2002	0.074
10/8/2002	0.052
1/8/2003	0.039
4/3/2003	0.055
7/9/2003	0.055
10/6/2003	0.054
Well Number:	MW374
Date Collected	Result
10/8/2002	0.596
1/7/2003	0.565
4/2/2003	0.675
7/9/2003	0.397
10/7/2003	0.312
1/6/2004	0.299
4/7/2004	0.329

7/14/2004

Statistics on Background Data

X= 0.248 S= 0.222 CV= 0.894 K factor** = 2.523 TL= 0.809

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

0.342

Well No.	Result	Gradient	Result >TL?
MW359	0.005	Downgradie	nt NO
MW362	0.050	Downgradie	nt NO
MW365	0.041	Downgradie	nt NO
MW368	0.022	Sidegradient	NO
MW371	0.005	Upgradient	NO
MW374	0.005	Upgradient	NO
MW375	0.005	Sidegradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Molybdenum

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

Background D Upgradient W		Statistics on Background Data		Transformed l Data from Upg	
Well Number:	MW371	X= 0.006		Well Number:	MW371
Date Collected	Result	S=0.010		Date Collected	LN(Result)
3/18/2002	0.025	CV= 1.650		3/18/2002	-3.689
4/22/2002	0.025	K factor** = 2.523		4/22/2002	-3.689
7/15/2002	0.025	TL = 0.030		7/15/2002	-3.689
10/8/2002	0.001	Because CV is greater than 1	, the natural	10/8/2002	-6.908
1/8/2003	0.001	logarithm of background and		1/8/2003	-6.717
4/3/2003	0.001	were calculated.		4/3/2003	-6.908
7/9/2003	0.001	Statistics on		7/9/2003	-6.803
10/6/2003	0.001	Transformed		10/6/2003	-6.908
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= -6.108		Date Collected	LN(Result)
10/8/2002	0.002	S= 1.239		10/8/2002	-6.110
1/7/2003	0.002	CV= -0.203		1/7/2003	-6.210
4/2/2003	0.002			4/2/2003	-6.444
7/9/2003	0.002	K factor** = 2.523		7/9/2003	-6.024
10/7/2003	0.001	TL = -2.983		10/7/2003	-6.908
1/6/2004	0.001			1/6/2004	-6.908
4/7/2004	0.001			4/7/2004	-6.908
7/14/2004	0.001			7/14/2004	-6.908

Third Quarter 2013 Data Collected in July 2013			_	uarter 2013 tially Dry Wells	Transformed Data Collecte	•		
Well No.	Result	Gradient Re	sult >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW359	0.001	Downgradient	N/A			MW359	-6.908	NO
MW362	0.003	Downgradient	N/A	MW368	Sidegradient	MW362	-5.802	NO
MW365	0.001	Downgradient	N/A	MW376	Sidegradient	MW365	-6.908	NO
MW368	0.006	Sidegradient	N/A	MW377	Sidegradient	MW368	-5.146	NO
MW371	0.001	Upgradient	N/A			MW371	-6.908	NO
MW374	0.001	Upgradient	N/A			MW374	-6.908	NO
MW375	0.001	Sidegradient	N/A			MW375	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Nickel UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

opgradient w	CIIS
Well Number:	MW371
Date Collected	Result
3/18/2002	0.050
4/22/2002	0.050
7/15/2002	0.050
10/8/2002	0.012
1/8/2003	0.005
4/3/2003	0.005
7/9/2003	0.005
10/6/2003	0.005
Well Number:	MW374
Date Collected	Result
10/8/2002	0.050
1/7/2003	0.050
4/2/2003	0.050
7/9/2003	0.008
10/7/2003	0.005
1/6/2004	0.005
4/7/2004	0.005
7/14/2004	0.005

Statistics on Background Data

X= 0.023 S= 0.022 CV= 0.980 K factor** = 2.523 TL= 0.078

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result >TL?
MW359	0.005	Downgradie	nt NO
MW362	0.050	Downgradie	nt NO
MW365	0.006	Downgradie	nt NO
MW368	0.010	Sidegradient	NO
MW371	0.005	Upgradient	NO
MW374	0.005	Upgradient	NO
MW375	0.005	Sidegradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Oxidation-Reduction Potential

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mV

Background D Upgradient W		Statistics on Background Data		Transformed I Data from Upg	
Well Number:	MW371	X= 22.281	•	Well Number:	MW371
Date Collected	Result	S= 78.889	•	Date Collected	LN(Result)
3/18/2002	75.000	CV= 3.541		3/18/2002	4.317
4/22/2002	165.000	K factor** = 2.523		4/22/2002	5.106
7/15/2002	65.000	TL= 221.319		7/15/2002	4.174
4/3/2003	-19.000	Because CV is greater than 1, the n	atural	4/3/2003	#Func!
7/9/2003	114.000	logarithm of background and test w		7/9/2003	4.736
10/6/2003	-22.000	were calculated.		10/6/2003	#Func!
1/7/2004	20.500	Statistics on		1/7/2004	3.020
4/6/2004	113.000	Transformed		4/6/2004	4.727
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X = error	•	Date Collected	LN(Result)
3/18/2002	135.000	S = error		3/18/2002	4.905
4/2/2003	-56.000			4/2/2003	#Func!
7/9/2003	-68.000	CV = error		7/9/2003	#Func!
10/7/2003	-50.000	K factor** = 2.523		10/7/2003	#Func!
1/6/2004	-85.000	TL# = 5.106		1/6/2004	#Func!
4/7/2004	6.000	# Because the natural log was not p	ossible for	4/7/2004	1.792
7/14/2004	-38.000	all background values, the TL was		7/14/2004	#Func!
10/7/2004	1.000	equal to the maximum background		10/7/2004	0.000

Third Quarter 2013 Data Collected in July 2013			_	uarter 2013 tially Dry Wells		ned Third Qua		
Well No.	Result	Gradient Re	esult >TL?	Well No.	Gradient	Well Numbe	er LN(Result) I	Result >TL 9
MW359	432.000	Downgradient	N/A			- Well Ivallion	er Erv(resuit) i	Court > 1L:
MW362	549.000	Downgradient	N/A	MW368	Sidegradient	MW359	6.068	YES
MW365	741.000	Downgradient	N/A	MW376	Sidegradient	MW362	6.308	YES
MW368	450.000	Sidegradient	N/A	MW377	Sidegradient	MW365	6.608	YES
MW371	390.000	Upgradient	N/A		-	MW368	6.109	YES
MW374	344.000	Upgradient	N/A			MW371	5.966	YES
MW375	641.000	Sidegradient	N/A			MW374	5.841	YES
						MW375	6.463	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW359

MW362

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

	CRS
Oxidation-Reduction Potential (Continued) UI	NITS: mV

AW368	
MW371	
AW374	
AW375	

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis PCB, Total UCRS UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Opgradient W	CIIS
Well Number:	MW371
Date Collected	Result
3/18/2002	1.000
4/22/2002	0.170
7/15/2002	0.170
7/9/2003	0.170
10/6/2003	0.170
7/13/2004	0.180
7/25/2005	0.170
4/5/2006	0.180
Well Number:	MW374
Date Collected	Result
7/9/2003	0.170
10/7/2003	0.170
7/14/2004	0.180
7/26/2005	0.170
4/6/2006	0.180
7/10/2006	0.170
10/12/2006	0.170
1/8/2007	0.170

Statistics on Background Data

X= 0.224 S= 0.207 CV= 0.922 K factor** = 2.523 TL= 0.746

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient I	Result >TL?
MW359	0.180	Downgradier	nt NO
MW362	0.180	Downgradier	nt NO
MW365	0.310	Downgradier	nt NO
MW368	0.220	Sidegradient	NO
MW371	0.180	Upgradient	NO
MW374	0.170	Upgradient	NO
MW375	0.180	Sidegradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis PCB-1242

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: ug/L

Background D Upgradient W		Statistics on Background Data		Transformed Data from Upg	_
Well Number:	MW371	X = 0.159		Well Number:	MW371
Date Collected	Result	S=0.224		Date Collected	LN(Result)
3/18/2002	1.000	CV= 1.409		3/18/2002	0.000
4/22/2002	0.110	K factor** = 2.523 TL= 0.726		4/22/2002	-2.207
7/15/2002	0.110	1L- 0.720		7/15/2002	-2.207
7/9/2003	0.130	Because CV is greater t	han 1, the natural	7/9/2003	-2.040
10/6/2003	0.090	logarithm of backgroun	d and test well results	10/6/2003	-2.408
7/13/2004	0.100	were calculated.	were calculated.		-2.303
7/25/2005	0.090	Statistics on		7/25/2005	-2.408
4/5/2006	0.100	Transformed		4/5/2006	-2.303
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= -2.134		Date Collected	LN(Result)
7/9/2003	0.130	S= 0.579		7/9/2003	-2.040
10/7/2003	0.090	CV = -0.272		10/7/2003	-2.408
7/14/2004	0.100			7/14/2004	-2.303
7/26/2005	0.100	K factor** = 2.523		7/26/2005	-2.303
4/6/2006	0.100	TL = -0.672		4/6/2006	-2.303
7/10/2006	0.100			7/10/2006	-2.303
7/10/2006	0.100			7/10/2006	-2.303
10/12/2006	0.100			10/12/2006	-2.303

Third Qu 2013	ıarter 20	13 Data Collecte	ed in July	_	uarter 2013 tially Dry Wells	Transformed Data Collecte	_	
Well No.	Result	Gradient R	esult >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW359	0.100	Downgradient	N/A			MW359	-2.303	NO
MW362	0.100	Downgradient	N/A	MW368	Sidegradient	MW362	-2.303	NO
MW365	0.310	Downgradient	N/A	MW376	Sidegradient	MW365	-1.171	NO
MW368	0.220	Sidegradient	N/A	MW377	Sidegradient	MW368	-1.514	NO
MW371	0.100	Upgradient	N/A			MW371	-2.303	NO
MW374	0.100	Upgradient	N/A			MW374	-2.303	NO
MW375	0.100	Sidegradient	N/A			MW375	-2.303	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis pH

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	6.300
4/22/2002	6.500
7/15/2002	6.500
10/8/2002	6.600
1/8/2003	6.600
4/3/2003	6.900
7/9/2003	6.700
10/6/2003	7.000
Well Number:	MW374
Date Collected	Result
3/18/2002	5.750
10/8/2002	((00
10/0/2002	6.600
1/7/2003	6.600
1/7/2003	6.820
1/7/2003 4/2/2003	6.820 6.860
1/7/2003 4/2/2003 7/9/2003	6.820 6.860 6.700

Statistics on Background Data
X= 6.619
S = 0.295
CV = 0.045
K factor** = 2.904
TL= 7.475

LL = 5.764

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

UCRS

UNITS: Std Unit

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient F	Result >TL?	Result <ll?< th=""></ll?<>
MW359	6.470	Downgradie	ent NO	NO
MW362	6.950	Downgradie	ent NO	NO
MW365	6.600	Downgradie	ent NO	NO
MW368	6.590	Sidegradie	nt NO	NO
MW371	6.680	Upgradien	t NO	NO
MW374	6.620	Upgradien	t NO	NO
MW375	6.510	Sidegradie	nt NO	NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Third Quarter 2013 Statistical Analysis Potassium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				
Well Number:	MW371			
Date Collected	Result			
3/18/2002	2.000			
4/22/2002	2.000			

2.000

0.408

7/15/2002

10/8/2002

Statistics on Background Data X= 1.262 S= 0.907 CV= 0.718 K factor** = 2.523 TL= 3.549

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

0.384
0.368
0.587
0.382
MW374
Result
3.040
2.830
2.000
1.090
0.802
0.897
0.689
0.716

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result >TL?
MW359	0.200	Downgradie	nt NO
MW362	0.815	Downgradie	nt NO
MW365	0.254	Downgradie	nt NO
MW368	0.689	Sidegradient	NO
MW371	0.361	Upgradient	NO
MW374	0.507	Upgradient	NO
MW375	0.300	Sidegradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

MW368 Sidegradient MW376 Sidegradient	76 Sidegradient
Č	76 Sidegradient
MW376 Sidegradient	7 - 2 - 11 - 12 - 13 - 13 - 13 - 13 - 13
	77 Sidegradient
MW377 Sidegradient	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Sodium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	129.000
4/22/2002	131.000
7/15/2002	127.000
10/8/2002	123.000
1/8/2003	128.000
4/3/2003	144.000
7/9/2003	126.000
10/6/2003	120.000
Well Number:	MW374
Date Collected	Result
10/8/2002	336.000
1/7/2003	329.000

4/2/2003

7/9/2003

4/7/2004

7/14/2004

10/7/2003 1/6/2004

Statistics on Background Data

X= 183.063 S= 73.222 CV= 0.400 K factor** = 2.523 TL= 367.800

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

287.000

181.000 182.000

206.000

182.000

198.000

Well No.	Result	Gradient	Result >TL?
MW359	34.900	Downgradie	nt NO
MW362	96.500	Downgradie	nt NO
MW365	49.200	Downgradie	nt NO
MW368	154.00	Sidegradient	NO
MW371	122.00	Upgradient	NO
MW374	128.00	Upgradient	NO
MW375	66.200	Sidegradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Sulfate UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW371 Date Collected Result 3/18/2002 16.300 4/22/2002 8.600 7/15/2002 6.700 10/8/2002 5.000 1/8/2003 5.000 4/3/2003 5.000 7/9/2003 5.000 10/6/2003 5.000 Well Number: MW374 Date Collected Result 10/8/2002 5.000 1/7/2003 5.000 4/2/2003 5.000 7/9/2003 5.600

10/7/2003

1/6/2004

4/7/2004

7/14/2004

X= 6.469 S= 3.153 CV= 0.487 K factor** = 2.523	Statistics on Background Data	
TL= 14.423	S= 3.153 CV= 0.487 K factor** = 2.523	

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

5.000

5.000

11.300

5.000

Well No.	Result	Gradient Resu	lt>TL?
MW359	45.000	Downgradient	YES
MW362	71.000	Downgradient	YES
MW365	59.000	Downgradient	YES
MW368	110.00	Sidegradient	YES
MW371	19.000	Upgradient	YES
MW374	5.600	Upgradient	NO
MW375	32.000	Sidegradient	YES

Third Quarter 2013 Dry/Partially Dry Wells

well No.	Gradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW359

MW362

MW365

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis	UCRS
Sulfate (Continued)	UNITS: mg/L

MW371	
MW375	

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Total Organic Carbon (TOC)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

ackground I pgradient W		Statistics on Background Data		Transformed Data from Up	
/ell Number:	MW371	X= 17.631		Well Number:	MW371
ate Collected	Result	S= 24.314		Date Collected	LN(Result)
3/18/2002	11.100	CV= 1.379		3/18/2002	2.407
4/22/2002	7.000	K factor** = 2.523		4/22/2002	1.946
7/15/2002	4.100	TL= 78.977		7/15/2002	1.411
10/8/2002	6.000	Because CV is greater t	han 1, the natural	10/8/2002	1.792
1/8/2003	5.300	logarithm of backgroun		1/8/2003	1.668
4/3/2003	5.300	were calculated.	vere calculated.		
7/9/2003	2.900	Statistics on		4/3/2003 7/9/2003	1.668 1.065
10/6/2003	3.200	Transformed		10/6/2003	1.163
ell Number:	MW374	Background Data		Well Number:	MW374
ate Collected	Result	X= 2.318		Date Collected	LN(Result)
10/8/2002	90.000	S= 0.979		10/8/2002	4.500
1/7/2003	64.000	CV = 0.422		1/7/2003	4.159
4/2/2003	25.000			4/2/2003	3.219
7/9/2003	16.000	K factor** = 2.523		7/9/2003	2.773
10/7/2003	13.000	TL=4.788		10/7/2003	2.565
1/6/2004	10.000		-	1/6/2004	2.303
4/7/2004	7.200			4/7/2004	1.974
7/14/2004	12.000			7/14/2004	2.485

Third Quarter 2013 Data Collected in July 2013		Third Quarter 2013 Dry/Partially Dry Wells		Transformed Third Quarter 2013 Data Collected in July 2013				
Well No.	Result	Gradient Result >TL?		Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW359	1.500	Downgradient	N/A			MW359	0.405	NO
MW362	5.400	Downgradient	N/A	MW368	Sidegradient	MW362	1.686	NO
MW365	1.400	Downgradient	N/A	MW376	Sidegradient	MW365	0.336	NO
MW368	2.300	Sidegradient	N/A	MW377	Sidegradient	MW368	0.833	NO
MW371	1.600	Upgradient N/A				MW371	0.470	NO
MW374	1.600	Upgradient N/A				MW374	0.470	NO
MW375	1.100	Sidegradient N/A				MW375	0.095	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Total Organic Halides (TOX)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: ug/L

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Backgroun Data from Upgradient W	
Well Number:	MW371	X= 214.094		Well Number:	MW371
Date Collected	Result	S= 231.089		Date Collected	LN(Result)
3/18/2002	50.000	CV= 1.079		3/18/2002	3.912
4/22/2002	105.000	K factor** = 2.523		4/22/2002	4.654
7/15/2002	70.000	TL= 797.131		7/15/2002	4.248
10/8/2002	52.000	Because CV is greater t	han 1, the natural	10/8/2002	3.951
1/8/2003	20.200	logarithm of backgroun	d and test well results	1/8/2003	3.006
4/3/2003	104.000	were calculated.		4/3/2003	4.644
7/9/2003	34.200	Statistics on		7/9/2003	3.532
10/6/2003	46.100	Transformed		10/6/2003	3.831
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= 4.867		Date Collected	LN(Result)
10/8/2002	903.000	S= 1.065		10/8/2002	6.806
1/7/2003	539.000	CV = 0.219		1/7/2003	6.290
4/2/2003	295.000			4/2/2003	5.687
7/9/2003	272.000	K factor** = 2.523		7/9/2003	5.606
10/7/2003	197.000	TL= 7.554		10/7/2003	5.283
1/6/2004	330.000			1/6/2004	5.799
4/7/2004	183.000			4/7/2004	5.209
7/14/2004	225.000			7/14/2004	5.416

Third Quarter 2013 Data Collected in July 2013			_	uarter 2013 tially Dry Wells	Transformed Third Quarter 2013 Data Collected in July 2013			
Well No.	Result	Gradient Res	ult >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW359	14.000	Downgradient	N/A			MW359	2.639	NO
MW362	14.000	Downgradient	N/A	MW368	Sidegradient	MW362	2.639	NO
MW365	26.000	Downgradient	N/A	MW376	Sidegradient	MW365	3.258	NO
MW368	29.000	Sidegradient	N/A	MW377	Sidegradient	MW368	3.367	NO
MW371	15.000	Upgradient	N/A			MW371	2.708	NO
MW374	33.000	Upgradient	N/A			MW374	3.497	NO
MW375	27.000	Sidegradient	N/A			MW375	3.296	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Uranium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells	
Well Number:	MW371	X= 0.007		Well Number:	MW371	
Date Collected	Result	S= 0.012		Date Collected	LN(Result)	
3/18/2002	0.001	CV= 1.678		3/18/2002	-6.908	
4/22/2002	0.001	K factor** = 2.523		4/22/2002	-6.908	
7/15/2002	0.001	TL= 0.037		7/15/2002	-6.908	
10/8/2002	0.027	Because CV is greater that	an 1, the natural	10/8/2002	-3.612	
1/8/2003	0.001	logarithm of background		1/8/2003	-6.908	
4/3/2003	0.001	were calculated.		4/3/2003	-6.908	
7/9/2003	0.001	Statistics on		7/9/2003	-6.822	
10/6/2003	0.001	Transformed		10/6/2003	-6.908	
Well Number:	MW374	Background Data		Well Number:	MW374	
Date Collected	Result	X= -5.884		Date Collected	LN(Result)	
10/8/2002	0.044	S= 1.299		10/8/2002	-3.128	
1/7/2003	0.011	CV= -0.221		1/7/2003	-4.510	
4/2/2003	0.009			4/2/2003	-4.705	
7/9/2003	0.007	K factor** = 2.523		7/9/2003	-4.970	
10/7/2003	0.001	TL = -2.607		10/7/2003	-6.908	
1/6/2004	0.003			1/6/2004	-5.760	
4/7/2004	0.003			4/7/2004	-5.960	
7/14/2004	0.002			7/14/2004	-6.320	

Third Quarter 2013 Data Collected in July 2013				uarter 2013 tially Dry Wells	Transformed Third Quarter 2013 Data Collected in July 2013			
Well No.	Result	Gradient R	esult >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW359	0.001	Downgradient	t N/A			MW359	-6.908	NO
MW362	0.006	Downgradient	t N/A	MW368	Sidegradient	MW362	-5.183	NO
MW365	0.001	Downgradient	t N/A	MW376	Sidegradient	MW365	-6.908	NO
MW368	0.001	Sidegradient	N/A	MW377	Sidegradient	MW368	-6.908	NO
MW371	0.001	Upgradient	N/A			MW371	-6.536	NO
MW374	0.001	Upgradient	N/A			MW374	-6.908	NO
MW375	0.001	Sidegradient	N/A			MW375	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Boron URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW369 Date Collected Result 3/18/2002 2.000 4/22/2002 2.000 7/15/2002 2.000 10/8/2002 0.200 0.200 1/8/2003 4/3/2003 0.200 7/8/2003 0.200 10/6/2003 0.200 Well Number: MW372 Date Collected Result 3/19/2002 2.000 4/23/2002 2.000

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 0.985 S= 0.825 CV= 0.838 K factor** = 2.523 TL= 3.067

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

2.000

0.492

0.492

0.600

0.570

0.604

Well No.	Result	Gradient Re	esult >TL?
MW357	0.330	Downgradient	NO
MW360	0.200	Downgradient	NO
MW363	0.200	Downgradient	NO
MW366	0.200	Sidegradient	NO
MW369	0.200	Upgradient	NO
MW372	1.190	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Calcium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from
Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	29.500
4/22/2002	29.800
7/15/2002	25.300
10/8/2002	21.900
1/8/2003	20.900
4/3/2003	22.200
7/8/2003	22.900
10/6/2003	21.700
Well Number:	MW372
Date Collected	Result

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

July 2013

Statistics on Background Data
X= 32.763
S= 9.391
CV = 0.287
K factor** = 2.523
TL= 56.456

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

7/9/2003 35.100 10/7/2003 46.600 Third Quarter 2013 Data Collected in

41.500

43.600

40.400

38.800

41.100

42.900

Well No.	Result	Gradient Res	ult >TL?
MW357	29.500	Downgradient	NO
MW360	30.500	Downgradient	NO
MW363	28.200	Downgradient	NO
MW366	31.200	Sidegradient	NO
MW369	19.900	Upgradient	NO
MW372	63.500	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Chloride URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Upgradient Wells	Background Data : Upgradient Wells	from
------------------	---------------------------------------	------

Well Number:	MW369
Date Collected	Result
7/15/2002	48.300
10/8/2002	47.700
1/8/2003	45.700
4/3/2003	47.400
7/8/2003	55.900
10/6/2003	47.400
1/7/2004	45.500
4/7/2004	43.400
Well Number:	MW372
Date Collected	Result
7/16/2002	39.800

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/5/2004

4/5/2004

Statistics on Background Data
X= 44.119
S= 4.554
CV = 0.103
K factor** = 2.523

TL = 55.607

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

41.000

39.400

39.200

39.800

40.000

43.400

42.000

Well No.	Result	Gradient R	Result >TL?
MW357	34.000	Downgradien	t NO
MW360	11.000	Downgradien	t NO
MW363	36.000	Downgradien	t NO
MW366	38.000	Sidegradient	NO
MW369	40.000	Upgradient	NO
MW372	49.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Cobalt URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	0.025		
4/22/2002	0.025		
7/15/2002	0.025		
10/8/2002	0.009		
1/8/2003	0.005		
4/3/2003	0.006		
7/8/2003	0.054		
10/6/2003	0.069		
Well Number:	MW372		
Date Collected	Result		
3/19/2002	0.025		
4/23/2002	0.025		

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X = 0.025
S = 0.021
CV = 0.845
K factor** = 2.523
TL= 0.077

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

0.025

0.002

0.015

0.012

0.065

0.008

Well No.	Result	Gradient R	esult >TL?
MW357	0.001	Downgradient	NO
MW360	0.033	Downgradient	NO
MW363	0.001	Downgradient	NO
MW366	0.001	Sidegradient	NO
MW369	0.027	Upgradient	NO
MW372	0.001	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Conductivity

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: umho/cm

Background Data from
Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	388.000
4/22/2002	404.000
7/15/2002	394.000
10/8/2002	403.000
1/8/2003	520.000
4/3/2003	487.000
7/8/2003	478.000
10/6/2003	476.000
Well Number:	MW372
Date Collected	Result
3/19/2002	508.000

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 482.856
S= 57.603
CV = 0.119
K factor** = 2.523
TL= 628.189

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

501.000

507.000

495.000 508.700

515.000

576.000

565.000

Well No.	Result	Gradient Re	sult >TL?
MW357	461.00	Downgradient	NO
MW360	628.00	Downgradient	NO
MW363	423.00	Downgradient	NO
MW366	475.00	Sidegradient	NO
MW369	427.00	Upgradient	NO
MW372	822.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Dissolved Oxygen

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	5.410		
4/22/2002	1.570		
7/15/2002	0.800		
10/8/2002	1.090		
1/8/2003	2.690		
4/3/2003	2.040		
7/8/2003	1.190		
10/6/2003	1.780		
Well Number:	MW372		
Date Collected	Result		
3/19/2002	3.890		
4/23/2002	0.050		
7/16/2002	1.330		
10/8/2002	2.660		
1/7/2003	0.400		
4/2/2003	0.910		

7/9/2003

10/7/2003

Statistics on Background Data
X= 1.781 S= 1.351 CV= 0.759 K factor** = 2.523 TL= 5.190

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

1.420

1.260

Well No.	Result	Gradient Re	sult >TL?
MW357	3.370	Downgradient	NO
MW360	2.010	Downgradient	NO
MW363	0.640	Downgradient	NO
MW366	0.980	Sidegradient	NO
MW369	0.790	Upgradient	NO
MW372	0.610	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis **Dissolved Solids**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Background Data from
Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	173.000
4/22/2002	246.000
7/15/2002	232.000
10/8/2002	275.000
1/8/2003	269.000
4/3/2003	250.000
7/8/2003	295.000
10/6/2003	276.000
Well Number:	MW372
Date Collected	Result
3/19/2002	295.000

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 285.188
S= 44.908
CV = 0.157
K factor** = 2.523
TL= 398.489

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in **July 2013**

322.000

329.000

290.000

316.000

311.000

347.000

337.000

Well No.	Result	Gradient Resu	lt >TL?
MW357	259.00	Downgradient	NO
MW360	355.00	Downgradient	NO
MW363	243.00	Downgradient	NO
MW366	266.00	Sidegradient	NO
MW369	232.00	Upgradient	NO
MW372	503.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Iron URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from
Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.656
4/22/2002	0.695
7/15/2002	7.100
10/8/2002	21.500
1/8/2003	18.500
4/3/2003	14.900
7/8/2003	11.300
10/6/2003	14.900
Well Number:	MW372

Date Collected

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 7.385
S= 6.991 CV= 0.947
K factor** = 2.523 TL= 25.024

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Result

5.950

0.792

1.780

0.776

3.550

5.020

0.733

10.000

Well No.	Result	Gradient F	Result >TL?
MW357	0.100	Downgradien	t NO
MW360	7.250	Downgradien	t NO
MW363	0.100	Downgradien	t NO
MW366	0.100	Sidegradient	NO
MW369	2.380	Upgradient	NO
MW372	0.810	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Magnesium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	11.400		
4/22/2002	12.000		
7/15/2002	10.000		
10/8/2002	8.620		
1/8/2003	7.890		
4/3/2003	7.970		
7/8/2003	10.300		
10/6/2003	9.140		
Well Number:	MW372		
Date Collected	Result		
3/19/2002	15.700		
4/23/2002	16.600		
7/16/2002	15.400		

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 12.864
S = 3.505
CV = 0.272
K factor** = 2.523
TL= 21.707

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

15.800

15.800

16.400

15.200

17.600

Well No.	Result	Gradient Resi	ılt >TL?
MW357	11.700	Downgradient	NO
MW360	10.400	Downgradient	NO
MW363	10.500	Downgradient	NO
MW366	12.200	Sidegradient	NO
MW369	7.620	Upgradient	NO
MW372	23.800	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	0.034
4/22/2002	0.062
7/15/2002	0.436
10/8/2002	0.867
1/8/2003	0.828
4/3/2003	0.672
7/8/2003	0.321
10/6/2003	0.714
Well Number:	MW372
Date Collected	Result
3/19/2002	0.205
4/23/2002	0.345
7/16/2002	0.210

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data X= 0.413 S= 0.274 CV= 0.664 K factor** = 2.523

TL = 1.105

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

0.054 0.537

0.415

0.654

0.254

Well No.	Result	Gradient I	Result >TL?
MW357	0.007	Downgradier	nt NO
MW360	0.276	Downgradier	nt NO
MW363	0.247	Downgradier	nt NO
MW366	0.027	Sidegradient	NO
MW369	0.271	Upgradient	NO
MW372	0.021	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				
Well Number:	MW369			

Well Number:	MW369	
Date Collected	Result	
3/18/2002	0.050	
4/22/2002	0.050	
7/15/2002	0.050	
10/8/2002	0.005	
1/8/2003	0.005	
4/3/2003	0.005	
7/8/2003	0.013	
10/6/2003	0.010	
Well Number:	MW372	
Date Collected	Result	
3/19/2002	0.050	

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data				
X= 0.024 S= 0.021				
CV = 0.910				
K factor** = 2.523				
TL = 0.078				

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

0.050

0.050

0.005

0.005

0.005

0.019

0.005

Well No.	Result	Gradient Re	esult >TL?
MW357	0.005	Downgradient	NO
MW360	0.005	Downgradient	NO
MW363	0.005	Downgradient	NO
MW366	0.005	Sidegradient	NO
MW369	0.009	Upgradient	NO
MW372	0.005	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Oxidation-Reduction Potential

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells	
Well Number:	MW369	X= 74.563		Well Number:	MW369	
Date Collected	Result	S= 94.243		Date Collected	LN(Result)	
3/18/2002	215.000	CV= 1.264		3/18/2002	5.371	
4/22/2002	110.000	K factor** = 2.523 TL= 312.337		4/22/2002	4.700	
7/15/2002	20.000	TL- 312.337		7/15/2002	2.996	
1/8/2003	-5.000	Because CV is greater th	nan 1, the natural	1/8/2003	#Func!	
4/3/2003	-18.000	logarithm of background and test well results were calculated.		4/3/2003	#Func!	
7/8/2003	-67.000			7/8/2003	#Func!	
10/6/2003	-1.000	Statistics on		10/6/2003	#Func!	
1/7/2004	55.000	Transformed		1/7/2004	4.007	
Well Number:	MW372	Background Data		Well Number:	MW372	
Date Collected	Result	X = error		Date Collected	LN(Result)	
3/19/2002	210.000	S = error		3/19/2002	5.347	
4/23/2002	65.000			4/23/2002	4.174	
7/16/2002	215.000	CV = error		7/16/2002	5.371	
10/8/2002	185.000	K factor** = 2.523		10/8/2002	5.220	
1/7/2003	45.000	TL# = 5.371		1/7/2003	3.807	
4/2/2003	65.000	# Because the natural lo	g was not possible for	4/2/2003	4.174	
7/9/2003	-39.000	all background values, the		7/9/2003	#Func!	
10/7/2003	138.000	equal to the maximum b	equal to the maximum background value.		4.927	

Third Quarter 2013 Data Collected in July	
2013	

Well No.	Result	Gradient	Result >TL?
MW357	420.000	Downgradie	nt N/A
MW360	257.000	Downgradie	nt N/A
MW363	455.000	Downgradie	nt N/A
MW366	407.000	Sidegradient	N/A
MW369	284.000	Upgradient	N/A
MW372	273.000	Upgradient	N/A

Transformed Third Quarter 2013 Data Collected in July 2013

URGA

UNITS: mV

Well Number LN(Result) Result >TL?

MW357	6.040	YES
MW360	5.549	YES
MW363	6.120	YES
MW366	6.009	YES
MW369	5.649	YES
MW372	5.609	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW357

MW360

MW363

MW366

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis	URGA
Oxidation-Reduction Potential (Continued)	UNITS: mV

MW369 MW372

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis PCB, total UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells					
Well Number: MW369					
Date Collected	Result				
3/18/2002	1.000				
4/22/2002	0.170				
7/15/2002	0.170				
7/8/2003	1.150				
10/6/2003	0.605				
7/13/2004	0.420				
7/20/2005	0.280				
4/4/2006 0.230					
Well Number: MW372					
Date Collected Result					
3/19/2002	1.000				
4/23/2002	0.170				
7/16/2002	0.170				

7/9/2003 10/7/2003

7/14/2004

7/21/2005

4/5/2006

Statistics on Background Data
X= 0.390
S = 0.350
CV = 0.897
K factor** = 2.523
TL= 1.272

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

0.170

0.170

0.180

0.170

0.180

Well No.	Result	Gradient Re	esult >TL?
MW357	0.180	Downgradient	NO
MW360	0.180	Downgradient	NO
MW363	0.190	Downgradient	NO
MW366	0.180	Sidegradient	NO
MW369	0.170	Upgradient	NO
MW372	0.180	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis PCB-1242

URGA UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells	
Well Number:	MW369	X= 0.281		Well Number:	MW369	
Date Collected	Result	S=0.383		Date Collected	LN(Result)	
3/18/2002	1.000	CV= 1.361		3/18/2002	0.000	
4/22/2002	0.110	K factor** = 2.523		4/22/2002	-2.207	
7/15/2002	0.110	TL= 1.247		7/15/2002	-2.207	
7/8/2003	1.150	Because CV is greater than 1	l, the natural	7/8/2003	0.140	
10/6/2003	0.090	logarithm of background and	l test well results	10/6/2003	-2.408	
7/13/2004	0.100	were calculated.		7/13/2004	-2.303	
7/20/2005	0.100	Statistics on		7/20/2005	-2.303	
4/4/2006	0.100	Transformed		4/4/2006	-2.303	
Well Number:	MW372	Background Data	Background Data		MW372	
Date Collected	Result	X= -1.835		Date Collected	LN(Result)	
3/19/2002	1.000	S= 0.938		3/19/2002	0.000	
4/23/2002	0.110	CV= -0.511		4/23/2002	-2.207	
7/16/2002	0.110			7/16/2002	-2.207	
7/9/2003	0.130	K factor** = 2.523		7/9/2003	-2.040	
10/7/2003	0.090	TL= 0.532		10/7/2003	-2.408	
7/14/2004	0.100			7/14/2004	-2.303	
7/21/2005	0.100			7/21/2005	-2.303	
4/5/2006	0.100			4/5/2006	-2.303	

Third Quarter	2013 Data	Collected in July
2013		

Well No.	Result	Gradient	Result >TL?
MW357	0.100	Downgradie	nt N/A
MW360	0.100	Downgradie	nt N/A
MW363	0.190	Downgradie	nt N/A
MW366	0.100	Sidegradient	N/A
MW369	0.110	Upgradient	N/A
MW372	0.100	Upgradient	N/A

Transformed Third Quarter 2013
Data Collected in July 2013

Well Number	LN(Result)	Result >TL?
MW357	-2.303	NO
MW360	-2.303	NO
MW363	-1.661	NO
MW366	-2.303	NO
MW369	-2.207	NO
MW372	-2.303	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis pH

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

W/-11 M1	MW260
Well Number:	
Date Collected	Result
3/18/2002	6.100
4/22/2002	6.100
7/15/2002	6.100
10/8/2002	6.500
1/8/2003	6.500
4/3/2003	6.600
7/8/2003	6.500
10/6/2003	6.500
Well Number:	MW372
Date Collected	Result
	resurt
3/19/2002	6.100
3/19/2002 4/23/2002	
	6.100
4/23/2002	6.100 6.120
4/23/2002 7/16/2002	6.100 6.120 6.100
4/23/2002 7/16/2002 10/8/2002	6.100 6.120 6.100 6.060
4/23/2002 7/16/2002 10/8/2002 1/7/2003	6.100 6.120 6.100 6.060 6.260

Statistics on Background Data
X= 6.274
S = 0.194
CV = 0.031
K factor** = 2.904
TI = 6.837

LL= 5.711

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

URGA

UNITS: Std Unit

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient Re	sult >TL?	Result <ll?< th=""></ll?<>
MW357	6.200	Downgradien	t NO	NO
MW360	6.280	Downgradien	t NO	NO
MW363	6.160	Downgradien	t NO	NO
MW366	6.110	Sidegradient	NO	NO
MW369	6.270	Upgradient	NO	NO
MW372	6.140	Upgradient	NO	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Third Quarter 2013 Statistical Analysis Potassium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	2.000		
4/22/2002	2.210		
7/15/2002	2.000		
10/8/2002	0.966		
1/8/2003	0.727		
4/3/2003	0.800		
7/8/2003	1.620		
10/6/2003	1.140		
Well Number:	MW372		
Date Collected	Result		
3/19/2002	2.040		
4/23/2002	2.030		
7/16/2002	2.000		
10/8/2002	1.540		

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 1.663 S= 0.488 CV= 0.293 K factor** = 2.523 TL= 2.895

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

1.880

2.090

1.780

1.790

Well No.	Result	Gradient Re	esult >TL?
MW357	1.730	Downgradient	NO
MW360	0.824	Downgradient	NO
MW363	1.280	Downgradient	NO
MW366	1.980	Sidegradient	NO
MW369	0.734	Upgradient	NO
MW372	2.440	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Sodium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number: MW369		
Date Collected	Result	
3/18/2002	35.700	
4/22/2002	37.600	
7/15/2002	42.400	
10/8/2002	66.900	
1/8/2003	67.900	
4/3/2003	61.800	
7/8/2003	45.600	
10/6/2003	59.100	
Well Number:	MW372	
Date Collected	Result	

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 45.100 S= 11.875 CV= 0.263 K factor** = 2.523
TL= 75.061

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

37.200

38.600

35.600

37.500

34.100

34.400

44.100

43.100

Well No.	Result	Gradient R	esult >TL?
MW357	40.400	Downgradient	t NO
MW360	68.300	Downgradien	t NO
MW363	37.000	Downgradien	t NO
MW366	43.500	Sidegradient	NO
MW369	54.700	Upgradient	NO
MW372	61.600	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW369	
Date Collected	Result	
3/18/2002	15.500	
4/22/2002	15.800	
7/15/2002	13.800	
10/8/2002	6.900	
1/8/2003	10.500	
4/3/2003	10.500	
7/8/2003	10.900	
10/6/2003 16.300		
Well Number:	MW372	
Date Collected	Result	
3/19/2002	71.700	
4/23/2002	74.700	
7/16/2002	74.100	
10/8/2002	70.500	
1/7/2003	75.800	

Statistics on Background Data
X= 45.031
S= 33.919
CV = 0.753
K factor** = 2.523
TL= 130.609

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

81.800

83.600

88.100

Well No.	Result	Gradient Resu	lt >TL?
MW357	62.000	Downgradient	NO
MW360	100.00	Downgradient	NO
MW363	21.000	Downgradient	NO
MW366	53.000	Sidegradient	NO
MW369	8.700	Upgradient	NO
MW372	150.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

4/2/2003

7/9/2003

10/7/2003

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Technetium-99

URGA UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				
Well Number: MW369				
Date Collected	Result			
3/18/2002	41.700			
4/22/2002	53.100			
7/15/2002	18.100			
10/8/2002	16.400			
1/8/2003	3.490			
4/3/2003	9.340			
7/8/2003	17.500			
10/6/2003	17.000			
Well Number:	MW372			
Date Collected	Result			
3/19/2002	44.800			
4/23/2002	0.802			
7/16/2002	19.800			
10/8/2002	46.100			

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 20.821 S= 18.044 CV= 0.867 K factor** = 2.523 TL= 66.344

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

-0.973

9.070

0.000

36.900

Well No.	Result	Gradient Resu	lt >TL?
MW357	48.800	Downgradient	NO
MW360	9.420	Downgradient	NO
MW363	13.400	Downgradient	NO
MW366	69.900	Sidegradient	YES
MW369	23.000	Upgradient	NO
MW372	176.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW366

MW372

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Total Organic Carbon (TOC)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Upg	
Well Number:	MW369	X= 3.513		Well Number:	MW369
Date Collected	Result	S= 4.307		Date Collected	LN(Result)
3/18/2002	1.700	CV= 1.226		3/18/2002	0.531
4/22/2002	1.600	K factor** = 2.523		4/22/2002	0.470
7/15/2002	3.100	TL= 14.378		7/15/2002	1.131
10/8/2002	17.700	Because CV is greater to	han 1, the natural	10/8/2002	2.874
1/8/2003	9.000	logarithm of background		1/8/2003	2.197
4/3/2003	4.000	were calculated.		4/3/2003	1.386
7/8/2003	4.900	Statistics on		7/8/2003	1.589
10/6/2003	2.400	Transformed			0.875
Well Number:	MW372	Background Data		Well Number:	MW372
Date Collected	Result	X= 0.851		Date Collected	LN(Result)
3/19/2002	1.000	S = 0.828		3/19/2002	0.000
4/23/2002	1.200	CV= 0.973		4/23/2002	0.182
7/16/2002	1.000			7/16/2002	0.000
10/8/2002	1.000	K factor** = 2.523		10/8/2002	0.000
1/7/2003	1.600	TL= 2.940		1/7/2003	0.470
4/2/2003	1.500			4/2/2003	0.405
7/9/2003	3.000			7/9/2003	1.099
10/7/2003	1.500			10/7/2003	0.405

Third Quarter 2013 Data Collected in July	
2013	

Well No.	Result	Gradient	Result >TL?
MW357	1.000	Downgradie	nt N/A
MW360	3.000	Downgradie	nt N/A
MW363	1.000	Downgradie	nt N/A
MW366	1.000	Sidegradient	N/A
MW369	1.700	Upgradient	N/A
MW372	1.000	Upgradient	N/A

Transformed Third Quarter 2013
Data Collected in July 2013

URGA

UNITS: mg/L

Well Number	LN(Result)	Result >TL?
MW357	0.000	NO
MW360	1.099	NO
MW363	0.000	NO
MW366	0.000	NO
MW369	0.531	NO
MW372	0.000	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Total Organic Halides (TOX)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: ug/L

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	50.000		
4/22/2002	50.000		
7/15/2002	81.000		
10/8/2002	202.000		
1/8/2003	177.000		
4/3/2003	93.100		
7/8/2003	17.500		
10/6/2003	37.500		
Well Number:	MW372		
Date Collected	Result		
3/19/2002	184.000		
4/23/2002	50.000		
7/16/2002	50.000		
10/8/2002	50.000		

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 67.963 S= 64.316
S= 64.316 CV= 0.946
K factor** = 2.523 TL= 230.231

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

10.000

12.700

10.000

12.600

Well No.	Result	Gradient R	esult >TL?
MW357	14.000	Downgradient	NO
MW360	34.000	Downgradient	NO
MW363	12.000	Downgradient	NO
MW366	14.000	Sidegradient	NO
MW369	59.000	Upgradient	NO
MW372	22.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Boron LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW370 Date Collected Result 3/17/2002 2.000 4/23/2002 2.000 7/15/2002 2.000 10/8/2002 0.200 0.200 1/8/2003 4/3/2003 0.200 7/9/2003 0.200 10/6/2003 0.200 Well Number: MW373 Date Collected Result 3/18/2002 2.000 4/23/2002 2.000

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 1.140
S = 0.780
CV = 0.684
K factor** = 2.523
TL= 3.108

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

2.000

0.790

0.807

1.130

1.280

1.240

Well No.	Result	Gradient Re	esult >TL?
MW358	0.364	Downgradient	NO
MW361	0.222	Downgradient	NO
MW364	0.200	Downgradient	NO
MW367	0.200	Sidegradient	NO
MW370	0.200	Upgradient	NO
MW373	1.750	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Calcium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW370	_
Date Collected	Result	

Well Number:	MW370
Date Collected	Result
3/17/2002	34.800
4/23/2002	43.400
7/15/2002	33.200
10/8/2002	29.200
1/8/2003	31.300
4/3/2003	32.400
7/9/2003	22.900
10/6/2003	28.000
Well Number:	MW373

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 43.413
S= 13.444
CV = 0.310
K factor** = 2.523
TL = 77.331

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Result

61.900

59.200

47.600

46.100

49.200

57.800

52.700

64.900

Well No.	Result	Gradient Resu	ılt >TL?
MW358	36.600	Downgradient	NO
MW361	33.500	Downgradient	NO
MW364	28.700	Downgradient	NO
MW367	29.100	Sidegradient	NO
MW370	29.200	Upgradient	NO
MW373	79.000	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW373

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Chloride LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells					
Well Number: MW370					
Date Collected	Result				
7/15/2002	55.500				
10/8/2002	53.600				
1/8/2003	52.900				
4/3/2003	53.600				
7/9/2003	51.900				
10/6/2003	53.000				
1/7/2004	53.000				
4/7/2004	51.600				
Well Number:	MW373				
Date Collected	Result				
7/16/2002	40.600				
10/8/2002	38.800				
1/7/2003	39.000				
4/2/2003	38.400				
7/9/2003	38.100				
10/7/2003	38.000				

1/6/2004

4/7/2004

Statistics on Background Data
X= 45.919 S= 7.524 CV= 0.164 K factor** = 2.523 TL= 64.901

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

37.900

38.800

Well No.	Result	Gradient R	esult >TL?
MW358	34.000	Downgradient	. NO
MW361	33.000	Downgradient	NO
MW364	31.000	Downgradient	NO
MW367	35.000	Sidegradient	NO
MW370	43.000	Upgradient	NO
MW373	46.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Cobalt LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data Transformed Background Data Transformed Background Data from Upgradient			
Well Number:	MW370	X = 0.027		Well Number:	MW370
Date Collected	Result	S=0.032		Date Collected	LN(Result)
3/17/2002	0.025	CV= 1.165		3/17/2002	-3.689
4/23/2002	0.025	K factor** = 2.523		4/23/2002	-3.689
7/15/2002	0.025	TL= 0.108		7/15/2002	-3.689
10/8/2002	0.017	Because CV is greater the	nan 1, the natural	10/8/2002	-4.051
1/8/2003	0.011	logarithm of background	d and test well results	1/8/2003	-4.556
4/3/2003	0.009	were calculated.		4/3/2003	-4.677
7/9/2003	0.137	Statistics on		7/9/2003	-1.988
10/6/2003	0.046	Transformed			-3.073
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X= -4.058		Date Collected	LN(Result)
3/18/2002	0.025	S= 1.011		3/18/2002	-3.689
4/23/2002	0.034	CV= -0.249		4/23/2002	-3.381
7/16/2002	0.025			7/16/2002	-3.689
10/8/2002	0.004	K factor** = 2.523		10/8/2002	-5.494
1/7/2003	0.003	TL = -1.507		1/7/2003	-5.672
4/2/2003	0.004			4/2/2003	-5.605
7/9/2003	0.041			7/9/2003	-3.206
10/7/2003	0.008			10/7/2003	-4.776

Third Quarter 2013 Data Collected	in July
2013	•

Well No.	Result	Gradient Re	esult >TL?
MW358	0.002	Downgradient	N/A
MW361	0.001	Downgradient	N/A
MW364	0.001	Downgradient	N/A
MW367	0.002	Sidegradient	N/A
MW370	0.001	Upgradient	N/A
MW373	0.001	Upgradient	N/A

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result >TL?
MW358	-6.175	NO
MW361	-6.908	NO
MW364	-6.908	NO
MW367	-6.166	NO
MW370	-6.908	NO
MW373	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Conductivity

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: umho/cm

Background Data from	
Upgradient Wells	

Well Number:	MW370
Date Collected	Result
3/17/2002	406.000
4/23/2002	543.000
7/15/2002	476.000
10/8/2002	441.000
1/8/2003	486.000
4/3/2003	466.000
7/9/2003	479.000
10/6/2003	435.000
Well Number:	MW373

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data			
X= 608.719			
S= 156.157			
CV = 0.257			
K factor** = 2.523			

TL = 1002.702

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Result

661.000

801.000

774.000

680.000

686.500

763.000

828.000

814.000

Well No.	Result	Gradient F	Result >TL?
MW358	529.00	Downgradien	t NO
MW361	482.00	Downgradien	t NO
MW364	465.00	Downgradien	t NO
MW367	420.00	Sidegradient	NO
MW370	469.00	Upgradient	NO
MW373	918.00	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Dissolved Oxygen LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW370		
Date Collected	Result		
3/17/2002	4.320		
4/23/2002	1.240		
7/15/2002	0.750		
10/8/2002	0.940		
1/8/2003	3.080		
4/3/2003	1.450		
7/9/2003	1.220		
10/6/2003	1.070		
Well Number:	MW373		
Date Collected	Result		

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 1.387
S= 1.153
CV = 0.831
K factor** = 2.523
TL= 4.295

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

3.040

0.030

0.230

0.860

0.210

1.190

1.100

1.460

Well No.	Result	Gradient R	Result >TL?
MW358	1.080	Downgradien	t NO
MW361	3.070	Downgradien	t NO
MW364	0.970	Downgradien	t NO
MW367	0.740	Sidegradient	NO
MW370	3.390	Upgradient	NO
MW373	1.380	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Dissolved Solids LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from
Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	236.000
4/23/2002	337.000
7/15/2002	266.000
10/8/2002	240.000
1/8/2003	282.000
4/3/2003	238.000
7/9/2003	248.000
10/6/2003	224.000
Well Number:	MW373

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 356.188
S= 106.752
CV = 0.300
K factor** = 2.523
TL= 625.523

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Result

427.000

507.000

464.000

408.000 404.000

450.000

487.000

481.000

Well No.	Result	Gradient R	esult >TL?
MW358	303.00	Downgradient	t NO
MW361	294.00	Downgradien	t NO
MW364	250.00	Downgradien	t NO
MW367	242.00	Sidegradient	NO
MW370	230.00	Upgradient	NO
MW373	618.00	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Iron LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Upgradient Wells				
Well Number:	MW370			
Date Collected	Result			
3/17/2002	9.340			
4/23/2002	4.330			
7/15/2002	3.520			
10/8/2002	7.450			
1/8/2003	7.040			
4/3/2003	4.640			
7/9/2003	15.800			
10/6/2003	6.490			

Well Number:

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Rackground Data from

Statistics on Background Data
X= 9.230 S= 8.841
CV= 0.958 K factor** = 2.523
TL= 31.535

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

MW373

Result

37.600

19.000

10.700

3.750

3.870

3.500

7.720

2.930

Well No.	Result	Gradient Re	esult >TL?
MW358	0.363	Downgradient	NO
MW361	0.100	Downgradient	NO
MW364	0.189	Downgradient	NO
MW367	2.060	Sidegradient	NO
MW370	0.100	Upgradient	NO
MW373	0.100	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Magnesium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW370		
Date Collected	Result		
3/17/2002	12.100		
4/23/2002	15.100		
7/15/2002	12.400		
10/8/2002	12.200		
1/8/2003	11.500		
4/3/2003	12.300		
7/9/2003	10.000		
10/6/2003	12.100		
Well Number:	MW373		
Date Collected	Result		
3/18/2002	24.800		
4/23/2002	22.700		
7/16/2002	18.800		

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 17.544 S= 5.911 CV= 0.337 K factor** = 2.523 TL= 32.458

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

21.100 19.900

25.500

23.300

26.900

Well No.	Result	Gradient R	Result >TL?
MW358	14.800	Downgradien	t NO
MW361	13.400	Downgradien	t NO
MW364	11.300	Downgradien	t NO
MW367	11.000	Sidegradient	NO
MW370	11.500	Upgradient	NO
MW373	29.200	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Manganese LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I	Data from
Upgradient W	Vells
Well Number:	MW370

Well Number:	MW370
Date Collected	Result
3/17/2002	0.244
4/23/2002	1.820
7/15/2002	1.220
10/8/2002	0.988
1/8/2003	0.729
4/3/2003	0.637
7/9/2003	2.510
10/6/2003	1.050
Well Number:	MW373

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 1.080
S = 0.674
CV = 0.624
K factor** = 2.523
TL = 2.780

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Result

0.355

2.160

1.390

0.717

0.587

0.545

1.760

0.570

Well No.	Result	Gradient Re	esult >TL?
MW358	0.108	Downgradient	NO
MW361	0.006	Downgradient	NO
MW364	0.023	Downgradient	NO
MW367	0.564	Sidegradient	NO
MW370	0.005	Upgradient	NO
MW373	0.009	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Oxidation-Reduction Potential

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	
Well Number:	MW370	X= 46.688	X= 46.688		MW370
Date Collected	Result	S= 60.986		Date Collected	LN(Result)
3/17/2002	140.000	CV= 1.306		3/17/2002	4.942
4/23/2002	-15.000	K factor** = 2.523		4/23/2002	#Func!
7/15/2002	5.000	TL= 200.555		7/15/2002	1.609
4/3/2003	49.000	Because CV is greater t	han 1, the natural	4/3/2003	3.892
7/9/2003	-35.000	logarithm of backgroun	d and test well results	7/9/2003	#Func!
10/6/2003	40.000	were calculated.	were calculated.		3.689
1/7/2004	101.000	Statistics on		1/7/2004	4.615
4/7/2004	105.000	Transformed			4.654
Well Number:	MW373	Background Data			MW373
Date Collected	Result	X = error	X = error		LN(Result)
3/18/2002	140.000	S = error		3/18/2002	4.942
4/23/2002	-20.000			4/23/2002	#Func!
10/8/2002	10.000	CV = error		10/8/2002	2.303
1/7/2003	10.000	K factor** = 2.523		1/7/2003	2.303
4/2/2003	67.000	TL# = 4.942		4/2/2003	4.205
7/9/2003	-29.000	# Because the natural lo	g was not possible for	7/9/2003	#Func!
10/7/2003	127.000	all background values, t		10/7/2003	4.844
1/6/2004	52.000	equal to the maximum b	equal to the maximum background value.		3.951

Third Quarter 2013 Data Collected in July
2013

Well No.	Result	Gradient	Result >TL?
MW358	236.000	Downgradie	nt N/A
MW361	520.000	Downgradie	nt N/A
MW364	350.000	Downgradie	nt N/A
MW367	330.000	Sidegradient	N/A
MW370	387.000	Upgradient	N/A
MW373	500.000	Upgradient	N/A

Transformed Third Quarter 2013 Data Collected in July 2013

LRGA

UNITS: mV

Well Number LN(Result) Result >TL?

MW358	5.464	YES
MW361	6.254	YES
MW364	5.858	YES
MW367	5.799	YES
MW370	5.958	YES
MW373	6.215	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW358

MW361

MW364

MW367

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysi	s LRGA
Oxidation-Reduction Potential (Continued)	UNITS: mV

MW370 MW373

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis pH LRGA UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW370
Date Collected	Result
3/17/2002	6.300
4/23/2002	6.400
7/15/2002	6.300
10/8/2002	6.300
1/8/2003	6.400
4/3/2003	6.500
7/9/2003	6.300
10/6/2003	6.500
Well Number:	MW373
Well Number: Date Collected	
Date Collected	Result
Date Collected 3/18/2002	Result 6.000
Date Collected 3/18/2002 4/23/2002	Result 6.000 6.300
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 6.000 6.300 6.450
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.000 6.300 6.450 6.180
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.000 6.300 6.450 6.180 6.350

Statistics on Background Data		
X= 6.283		
S = 0.159		
CV = 0.025		
K factor** = 2.904		
TL = 6.745		
LL = 5.820		

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient I	Result >TL?	Result <ll?< th=""></ll?<>
MW358	6.380	Downgradio	ent NO	NO
MW361	6.030	Downgradio	ent NO	NO
MW364	6.060	Downgradio	ent NO	NO
MW367	6.130	Sidegradie	nt NO	NO
MW370	6.270	Upgradier	nt NO	NO
MW373	6.130	Upgradier	nt NO	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Third Quarter 2013 Statistical Analysis Potassium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW370		
Date Collected	Result		
3/17/2002	3.220		
4/23/2002	3.430		
7/15/2002	2.980		
10/8/2002	2.460		
1/8/2003	2.410		
4/3/2003	2.430		
7/9/2003	2.440		
10/6/2003	2.480		
Well Number:	MW373		
Date Collected	Result		
3/18/2002	4.340		
4/23/2002	3.040		
7/16/2002	2.930		
10/8/2002	2.300		
1/7/2003	2.450		

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 2.823 S= 0.522
CV= 0.185
K factor** = 2.523 TL= 4.139
1L- 4.139

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

2.700

2.680

2.880

Well No.	Result	Gradient Re	esult >TL?
MW358	2.360	Downgradient	NO
MW361	1.920	Downgradient	NO
MW364	1.960	Downgradient	NO
MW367	2.900	Sidegradient	NO
MW370	2.510	Upgradient	NO
MW373	3.090	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Sodium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW370		
Date Collected	Result		
3/17/2002	31.800		
4/23/2002	50.000		
7/15/2002	44.700		
10/8/2002	40.000		
1/8/2003	44.600		
4/3/2003	41.900		
7/9/2003	40.000		
10/6/2003	38.100		
Well Number:	MW373		
Date Collected	Result		
3/18/2002	43.400		
4/23/2002	79.800		

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 51.544 S= 15.227 CV= 0.295 K factor** = 2.523 TL= 89.962

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

87.700

61.600

59.300

62.100

50.100

49.600

Well No.	Result	Gradient R	esult >TL?
MW358	41.900	Downgradient	. NO
MW361	42.800	Downgradient	NO
MW364	41.600	Downgradient	NO
MW367	36.200	Sidegradient	NO
MW370	38.400	Upgradient	NO
MW373	66.500	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Sulfate

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Upg	
Well Number:	MW370	X= 122.381		Well Number:	MW370
Date Collected	Result	S= 195.095		Date Collected	LN(Result)
3/17/2002	17.400	CV= 1.594		3/17/2002	2.856
4/23/2002	37.900	K factor** = 2.523		4/23/2002	3.635
7/15/2002	15.700	TL= 614.606		7/15/2002	2.754
10/8/2002	13.400	Because CV is greater than	1, the natural	10/8/2002	2.595
1/8/2003	14.400	logarithm of background and	d test well results	1/8/2003	2.667
4/3/2003	18.100	were calculated.		4/3/2003	2.896
7/9/2003	9.600	Statistics on		7/9/2003	2.262
10/6/2003	16.500	Transformed		10/6/2003	2.803
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X= 3.985		Date Collected	LN(Result)
3/18/2002	163.300	S= 1.323		3/18/2002	5.096
4/23/2002	809.600	CV= 0.332		4/23/2002	6.697
7/16/2002	109.400			7/16/2002	4.695
10/8/2002	110.600	K factor** = 2.523		10/8/2002	4.706
1/7/2003	113.700	TL= 7.322		1/7/2003	4.734
4/2/2003	133.000			4/2/2003	4.890
7/9/2003	182.100			7/9/2003	5.205
10/7/2003	193.400			10/7/2003	5.265

Third Quarter 2013 Data Collected in July
2013

Well No.	Result	Gradient 1	Result >TL?
MW358	87.000	Downgradier	nt N/A
MW361	79.000	Downgradier	nt N/A
MW364	61.000	Downgradier	nt N/A
MW367	39.000	Sidegradient	N/A
MW370	18.000	Upgradient	N/A
MW373	220.000	Upgradient	N/A

Transformed Third Quarter 2013 Data Collected in July 2013

LRGA

UNITS: mg/L

Well Number	LN(Result)	Result >TL?
MW358	4.466	NO
MW361	4.369	NO
MW364	4.111	NO
MW367	3.664	NO
MW370	2.890	NO
MW373	5.394	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis **Technetium-99**

UNITS: pCi/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

nckground D pgradient W		Statistics on Background Data		Transformed Data from Up	
ell Number:	MW370	X= 7.655		Well Number:	MW370
ate Collected	Result	S= 13.274		Date Collected	LN(Result)
3/17/2002	10.800	CV= 1.734		3/17/2002	2.380
4/23/2002	8.530		K factor** = 2.523 TL= 41.146	4/23/2002	2.144
7/15/2002	5.090	1L- 41.140		7/15/2002	1.627
10/8/2002	4.780	Because CV is greater that	an 1, the natural	10/8/2002	1.564
1/8/2003	-5.120	logarithm of background	and test well results	1/8/2003	#Func!
4/3/2003	5.110	were calculated.		4/3/2003	1.631
7/9/2003	4.250	Statistics on		7/9/2003	1.447
10/6/2003	6.540	Transformed		10/6/2003	1.878
Vell Number:	MW373	Background Data	Background Data		MW373
ate Collected	Result	X = error		Date Collected	LN(Result)
3/18/2002	16.500	S = error		3/18/2002	2.803
4/23/2002	3.490			4/23/2002	1.250
7/16/2002	1.420	CV = error		7/16/2002	0.351
10/8/2002	-6.060	K factor** = 2.523		10/8/2002	#Func!
1/7/2003	-8.410	TL# = 3.833		1/7/2003	#Func!
4/2/2003	26.300	# Because the natural log	was not possible for	4/2/2003	3.270
7/9/2003	3.060	all background values, the	e TL was considered	7/9/2003	1.118
10/7/2003	46.200	equal to the maximum ba	equal to the maximum background value.		3.833

Third Quarter 2013 Data Collected in July	
2013	

Well No.	Result	Gradient	Result >TL?
MW358	45.400	Downgradie	nt N/A
MW361	51.300	Downgradie	nt N/A
MW364	46.400	Downgradie	nt N/A
MW367	42.800	Sidegradient	N/A
MW370	33.200	Upgradient	N/A
MW373	63.700	Upgradient	N/A

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number LN(Result) Result >TL?

	` ′	
MW358	3.816	NO
MW361	3.938	YES
MW364	3.837	YES
MW367	3.757	NO
MW370	3.503	NO
MW373	4.154	YES

Conclusion	of Statistical	Analysis on	Transformed	Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW361

MW364

MW373

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S)
- Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Third Quarter 2013 Statistical Analysis Total Organic Halides (TOX)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: ug/L

Background Data from Upgradient Wells
--

Well Number:	MW370
Date Collected	Result
3/17/2002	50.000
4/23/2002	228.000
7/15/2002	88.000
10/8/2002	58.000
1/8/2003	72.400
4/3/2003	26.600
7/9/2003	16.400
10/6/2003	31.100
Well Number:	MW373

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 79.819
S= 78.470
CV = 0.983
K factor** = 2.523
TI = 277.708

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Result

50.000

276.000

177.000

76.000

45.900

57.800

10.000

13.900

Well No.	Result	Gradient R	esult >TL?
MW358	22.000	Downgradient	t NO
MW361	21.000	Downgradien	t NO
MW364	14.000	Downgradien	t NO
MW367	20.000	Sidegradient	NO
MW370	16.000	Upgradient	NO
MW373	22.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

October 16, 2013

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Geologist, with a Bachelor of Science degree, I have over eight years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities.


For this project, the statistical analyses conducted on the third quarter 2013 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely,

C. Travis Debnam

LATA Project Geologist

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

Facility: U.S. DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

GROUNDWATER FLOW RATE AND DIRECTION

Finds/Unit: KY8-890-008-982/1

LAB ID: None

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2013 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on August 5 and 6, 2013. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells but MW377 had sufficient water to permit water level measurement during this reporting period. Both MW376 and MW377 had insufficient water to permit sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradient for the URGA at the C-746-U Landfill was 5.00×10^{-4} ft/ft and for the LRGA was 4.92×10^{-4} ft/ft. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 3.41×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the Solid Waste Landfill Permit No. 073-00045 and range from 425 to 725 ft/day (0.150 to 0.256cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. In August, groundwater flow was northeastward with the regional flow.

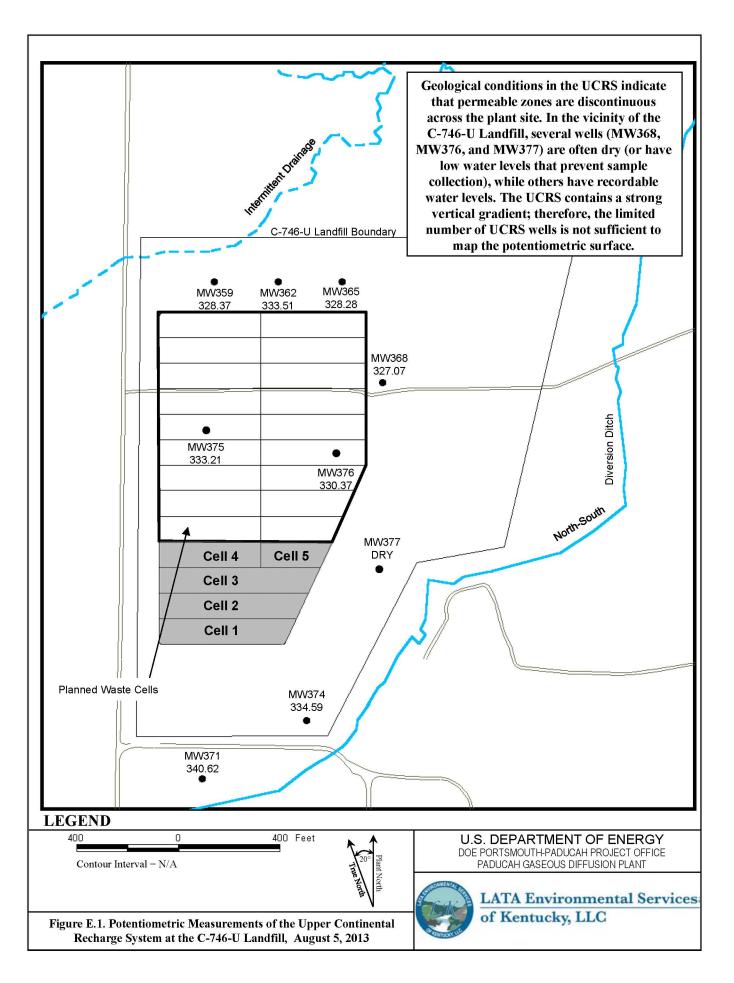


Table E.1. C-746-U Landfill Third Quarter 2013 (August) Water Levels

C-746-U Landfill (August 2013) Water Levels												
							Raw Data		*Corrected Data			
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev		
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)		
8/5/2013	11:17	MW357	URGA	368.90	30.07	-0.01	44.38	324.52	44.37	324.53		
8/5/2013	11:10	MW358	LRGA	369.05	30.07	-0.01	44.55	324.50	44.54	324.51		
8/5/2013	11:13	MW359	UCRS	369.07	30.07	-0.01	40.71	328.36	40.70	328.37		
8/5/2013	11:20	MW360	URGA	362.20	30.07	-0.01	37.70	324.50	37.69	324.51		
8/5/2013	11:25	MW361	LRGA	361.47	30.07	-0.01	36.95	324.52	36.94	324.53		
8/5/2013	11:22	MW362	UCRS	361.95	30.07	-0.01	28.45	333.50	28.44	333.51		
8/5/2013	11:40	MW363	URGA	368.68	30.07	-0.01	44.26	324.42	44.25	324.43		
8/5/2013	11:36	MW364	LRGA	367.63	30.07	-0.01	43.26	324.37	43.25	324.38		
8/5/2013	11:38	MW365	UCRS	368.27	30.07	-0.01	40.00	328.27	39.99	328.28		
8/5/2013	11:29	MW366	URGA	369.06	30.07	-0.01	44.52	324.54	44.51	324.55		
8/5/2013	11:33	MW367	LRGA	369.45	30.07	-0.01	44.94	324.51	44.93	324.52		
8/5/2013	11:31	MW368	UCRS	369.14	30.07	-0.01	42.08	327.06	42.07	327.07		
8/5/2013	9:55	MW369	URGA	364.28	30.06	0.00	38.84	325.44	38.84	325.44		
8/6/2013	10:05	MW370	LRGA	365.15	29.96	0.11	39.66	325.49	39.77	325.38		
8/5/2013	9:53	MW371	UCRS	364.71	30.06	0.00	24.09	340.62	24.09	340.62		
8/5/2013	9:47	MW372	URGA	359.49	30.06	0.00	34.01	325.48	34.01	325.48		
8/5/2013	9:42	MW373	LRGA	359.79	30.06	0.00	34.33	325.46	34.33	325.46		
8/5/2013	9:45	MW374	UCRS	359.50	30.06	0.00	24.91	334.59	24.91	334.59		
8/5/2013	9:38	MW375	UCRS	370.24	30.06	0.00	37.03	333.21	37.03	333.21		
8/5/2013	9:35	MW376	UCRS	370.44	30.06	0.00	40.07	330.37	40.07	330.37		
8/5/2013	9:33	MW377	UCRS	365.76	30.06	0.00	Dry					

Initial Barometric Pressure

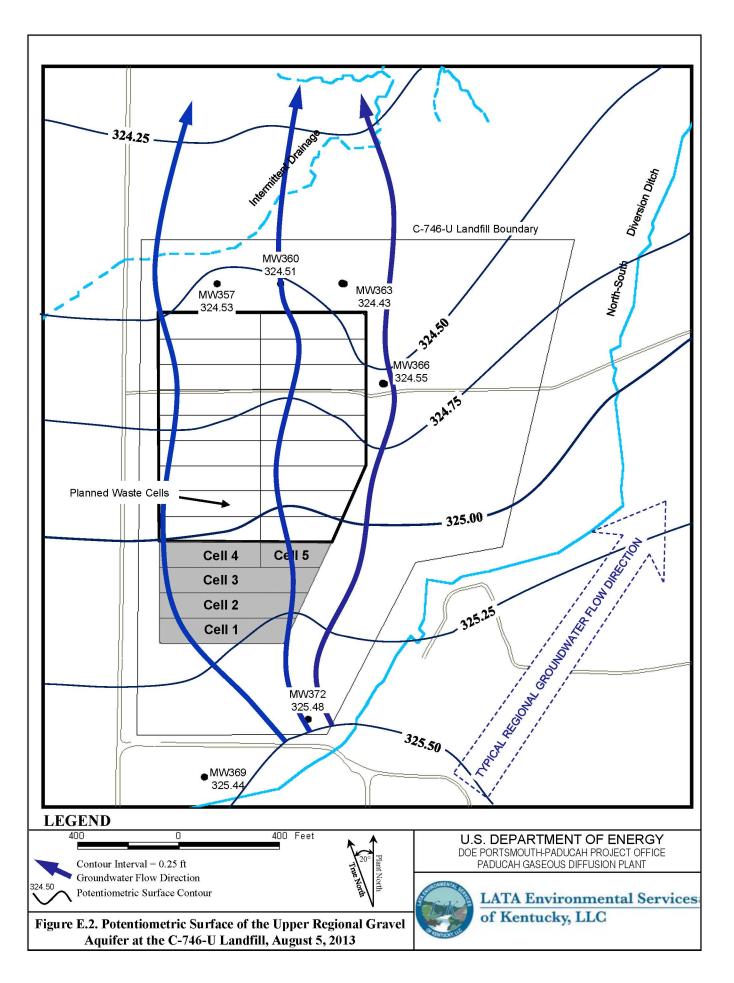
30.06

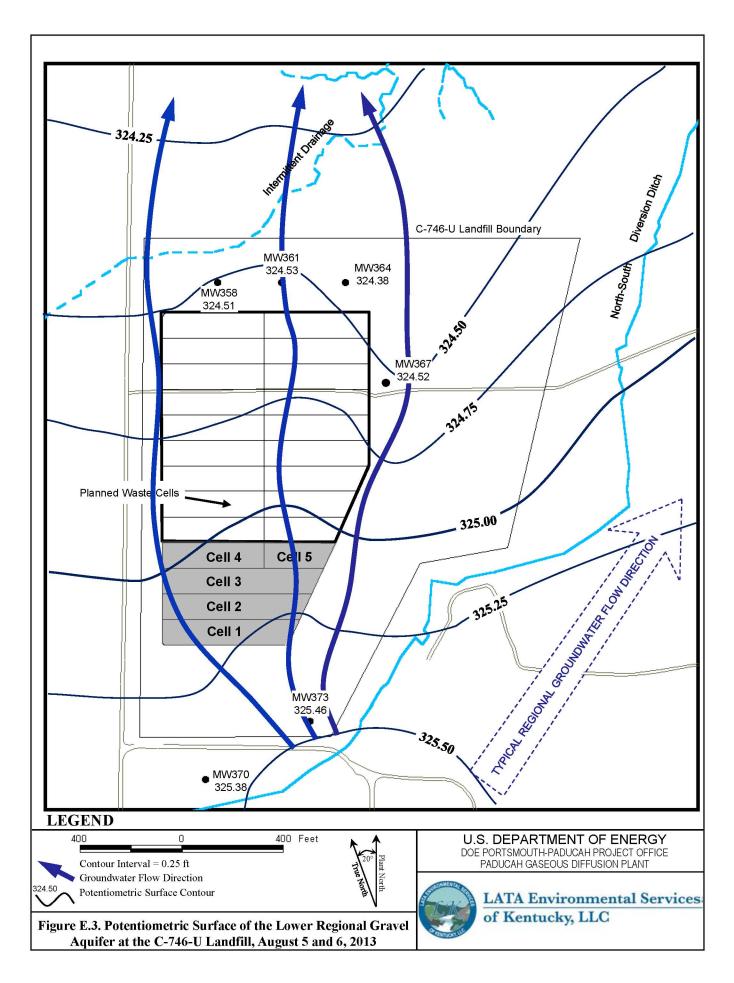
Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer


LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

ND = No Data acquired

*Assumes a barometric efficiency of 1.0

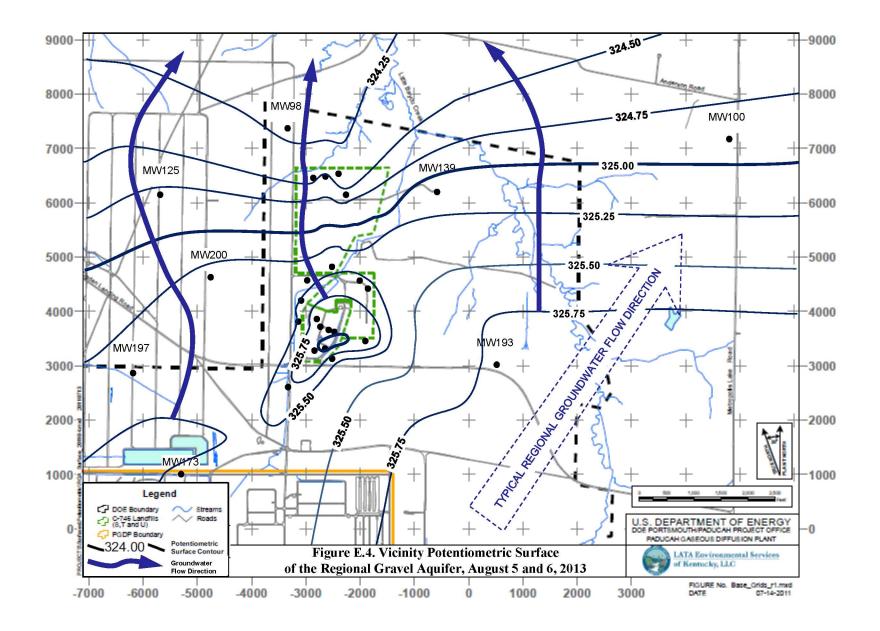
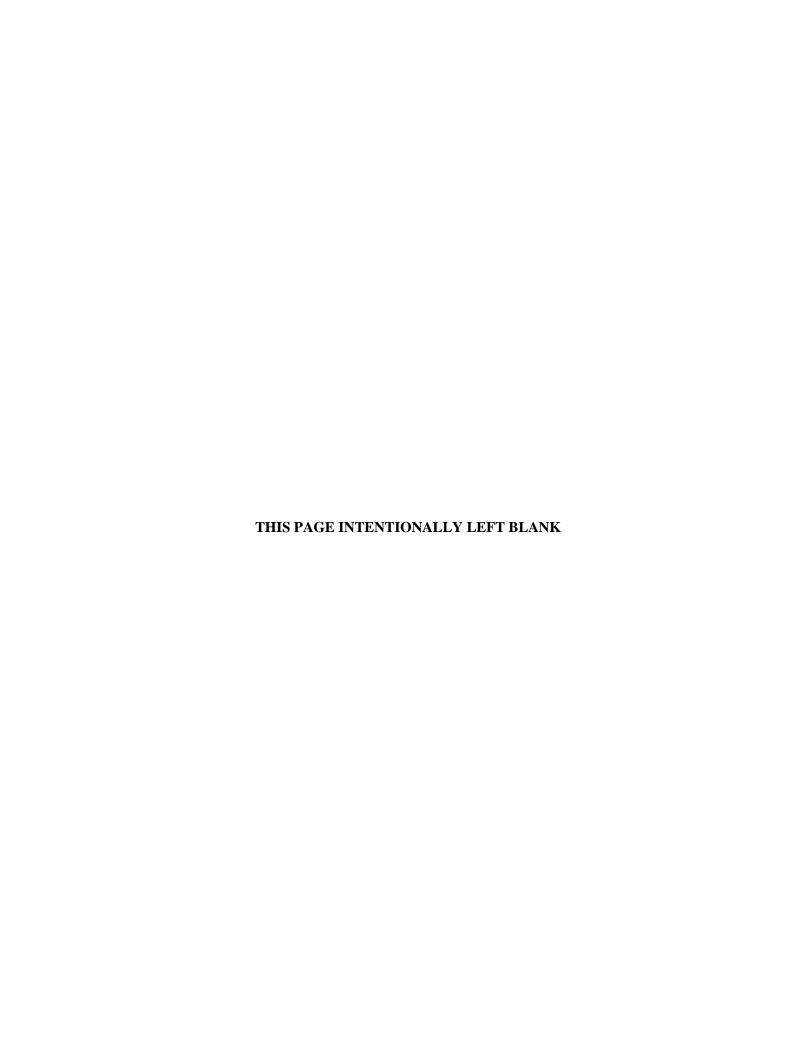



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill – Upper RGA	5.00×10^{-4}
Beneath Landfill – Lower RGA	4.92×10^{-4}
Vicinity	3.41×10^{-4}

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	c Discharge (q)	Average	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.36	1.28×10^{-4}	1.45	5.12×10^{-4}
425	0.150	0.21	7.50×10^{-5}	0.85	3.00×10^{-4}
Lower RGA					
725	0.256	0.36	1.26×10^{-4}	1.43	5.04×10^{-4}
425	0.150	0.21	7.38×10^{-5}	0.84	2.95×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300, Section 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the third quarter 2013 groundwater data collected from the C-746-U Landfill monitoring wells (MW) were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The following are the parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to background concentrations.

<u>Parameter</u>	Monitoring Well	
Upper Continental Recharge System		
None		
Upper Regional Gravel Aquifer		
Technetium-99	MW366, MW372	
Lower Regional Gravel Aquifer		
Technetium-99	MW361, MW364, MW373	

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

MCL Notification

A notification was submitted for parameters that exceeded the MCL. The parameters submitted are listed on the following page.

8/28/2013

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL PERMIT NUMBER 073-00045

MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4798	MW357	Trichloroethene	8260B/OA7302E	6.9	ug/L	5
8004-4808	MW372	Beta activity Trichloroethene	9310/RL7111 8260B/OA7302E	115 7.3	pCi/L ug/L	50 5
8004-4792	MW373	Beta activity Trichloroethene	9310/RL7111 8260B/OA7302E	52.2 7.6	pCi/L ug/L	50 5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	T			Ţ	JCR:	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
ACETONE	500	373	370	511	337	302	303	571	37.	300	500	303	307	30)	312	501	301	501	330	370	373
Quarter 3, 2002										*	*	*									Γ
Quarter 4, 2002										*	*	*									
Quarter 1, 2003										T	*	*									-
Quarter 1, 2003 Quarter 2, 2003											*	*									<u> </u>
Quarter 3, 2003	*						*			*	*	*			*			*		\vdash	_
	不					*	*			不	*	不		*	不			不		\vdash	_
Quarter 4, 2003						*	不				不			不		*				\vdash	_
Quarter 3, 2004						*										不					
Quarter 3, 2005	-																			_	-
Quarter 4, 2005						*														<u> </u>	
ALPHA ACTIVITY	1		ı	ı	ı		1				ı	1					ı		ı		_
Quarter 1, 2004	-					_															
Quarter 2, 2004						-															
Quarter 3, 2009																					<u> </u>
ALUMINUM		1	ı	ı	ı		1		1			1	ı				ı		ı		
Quarter 3, 2003											*									<u> </u>	
BETA ACTIVITY						1								1	1			1			
Quarter 1, 2004																				<u> </u>	<u> </u>
Quarter 2, 2004																					
Quarter 3, 2004																					<u> </u>
Quarter 4, 2004																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010	1														_						
Quarter 3, 2010	f															-					
Quarter 4, 2010	1																				
Quarter 2, 2011	1																				
Quarter 4, 2011	1																				
Quarter 1, 2012	1														_						
	1																				
Quarter 2, 2012	1-														_					<u> </u>	
Quarter 3, 2012	1																			<u> </u>	<u> </u>
Quarter 4, 2012	1																				

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368												357							370	373
Quarter 1, 2013																					
Quarter 3, 2013																					
BROMIDE					1	1											1				
Quarter 2, 2004													*								
CALCIUM													ı								
Quarter 3, 2003										*											
Quarter 2, 2005																					*
Quarter 3, 2006															*						
Quarter 2, 2008															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011																					*
Quarter 4, 2011															*						*
Quarter 1, 2012															*						*
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						*
Quarter 2, 2013															*						
Quarter 3, 2013															*						*
CARBON DISULFIDE																					
Quarter 3, 2003										*											
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006						*															
Quarter 3, 2010		*									*										
Quarter 4, 2010														*							
Quarter 1, 2011															*						
CHEMICAL OXYGEN DEMA	ND																				
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003						*				*	*										
Quarter 3, 2004										*											
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
CHLORIDE																					
Quarter 1, 2006																				*	

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	1			Ţ	JCR	S						UR	GA					LR	.GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
COBALT												ı				•	ı		ı		
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	
Quarter 1, 2004														*							
CONDUCTIVITY						ı						1			ı		1	ı	1		<u> </u>
Quarter 4, 2002										*											
Quarter 1, 2003										*											1
Quarter 2, 2003										*	*										
Quarter 4, 2003										*	_										1
Quarter 1, 2004										*											
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 1, 2005															*						1
Quarter 2, 2005															*					<u> </u>	
Quarter 3, 2005						*													*	<u> </u>	
Quarter 4, 2005															*			*		<u> </u>	
Quarter 1, 2006															*						
Quarter 2, 2006															*						
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007	1														*					 	1
Quarter 3, 2007	1														*					 	1
Quarter 4, 2007															*						-
Quarter 1, 2008															*						-
Quarter 2, 2008															*						-
Quarter 3, 2008															*					-	
Quarter 4, 2008	1														*					 	1
Quarter 1, 2009															*						-
Quarter 2, 2009															*						-
Quarter 3, 2009															*						-
Quarter 4, 2009	1														*					 	1
Quarter 1, 2010	1														*					 	1
Quarter 2, 2010	1														*					 	1
Quarter 3, 2010	1														*					 	1
Quarter 4, 2010	1														*					 	1
Quarter 1, 2011															*					<u> </u>	
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*					<u> </u>	
Quarter 2, 2012															*					<u> </u>	
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
DISSOLVED OXYGEN		1	1	1	1	I	1	1	1		1	1		I		-	1		1	1	1
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*					*											
Quarter 4, 2003					*																
Zumiter 1, 2000	-	1	<u> </u>	<u> </u>		1					<u> </u>				L		<u> </u>	Щ.			—

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	_												357								
Quarter 1, 2004	200	2,3	270	211	*	232	2 33	5,1	271	2 30	230	2 33	20,	237	2,2	201	231	231	220	2,0	2,3
Quarter 2, 2004					т.			*								*					
Quarter 1, 2005					*			Т.								Т.					
Quarter 2, 2005					т.			*													
Quarter 1, 2006					*			不													
Quarter 2, 2006					*			*													
Quarter 3, 2006					*			*													
Quarter 4, 2006					*			不	*												
Quarter 2, 2007					*			*	不												
					*			*	*												
Quarter 1, 2009					*			不	不										*		
Quarter 1, 2008					不			*	*										不		
Quarter 2, 2008								*	不												
Quarter 1, 2008							*	木													-
Quarter 1, 2009					*		木	JI.	JI.												
Quarter 2, 2009					木	J.		*	*												
Quarter 1, 2010	1				.	*	ماد	*	*												
Quarter 1, 2010	1				*	AP.	*	JI.	J											JI.	JI.
Quarter 2, 2010						*		*	*											*	*
Quarter 3, 2010					*	*						444								444	
Quarter 4, 2010							*					*								*	
Quarter 1, 2011						*															
Quarter 2, 2011					*	*	*	*	*					*							
Quarter 3, 2011						*			*												
Quarter 1, 2012							*		*												
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012						*															
Quarter 4, 2012									*												
Quarter 1, 2013						*			*												
Quarter 2, 2013							*		*												
Quarter 3, 2013	*				*		*	*	*												
DISSOLVED SOLIDS			1											1				1	1		
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003							*			*	*										
Quarter 4, 2003										*											
Quarter 3, 2005	1					*															
Quarter 4, 2006	1														*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	1			τ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
Quarter 1, 2011	300	313	370	311	337	302	303	3/1	314	500	300	303	331	307	*	301	501	304	330	310	373
Quarter 2, 2011	-														*						+
Quarter 3, 2011	-														*						+
Quarter 4, 2011	1														*						+
Quarter 1, 2012	-													*	*						+
Quarter 1, 2012 Quarter 2, 2012	1													不	*						*
Quarter 3, 2012	1														*						*
Quarter 4, 2012	-														*						<u> </u>
Quarter 1, 2013	+														*						+
Quarter 1, 2013 Quarter 2, 2013	1														*						+
	+														*						+
Quarter 3, 2013 IODIDE															不						Ш_
Quarter 2, 2003	1			l		l	I	l								*					T
	*									*						不					+
Quarter 3, 2003	不						*			不											╂
Quarter 4, 2003	+					- J	木	- J					*				*				┼
Quarter 3, 2010						*		*					木				木				
IODINE-131			I	I		I	I	I			l		l				I	_			т—
Quarter 3, 2010																					<u> </u>
IODOMETHANE	1			1			ı	1			1		ı					I			
Quarter 4, 2003						*															
IRON			1	1		4	1	1									1				
Quarter 4, 2002	-					*										4					╁──
Quarter 3, 2003	+									NI.						*					-
Quarter 4, 2003	-									*						*					₩
Quarter 1, 2004	-									*						*					₩
Quarter 2, 2004	-									*											₩
Quarter 3, 2004	-									*											
Quarter 3, 2005																*					<u> </u>
MAGNESIUM			1	1		1	1	1			1		1		ala .		1	ı			T
Quarter 2, 2005	-														*						*
Quarter 3, 2005	-					*															*
Quarter 2, 2006															*						*
Quarter 3, 2006															*						
Quarter 1, 2007															*						<u> </u>
Quarter 2, 2008															*						<u> </u>
Quarter 2, 2009															*						<u> </u>
Quarter 3, 2009															*						<u> </u>
Quarter 4, 2009															*						<u> </u>
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Zumitor 1, 2012						1	I —				1		1								
Quarter 2, 2012				L		L		L							*						上
															*						

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Į	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
Quarter 1, 2013	200	515	270	511	557	302	202	5/1	J / F	200	230	202	331	237	*	237	551	201	220	570	513
Quarter 2, 2013	1														*						
Quarter 3, 2013															*						
MANGANESE		l				l					l				Т		<u> </u>		l		<u> </u>
Quarter 3, 2002										*		*									
Quarter 4, 2002		*				*	*			*		*		*							
Quarter 2, 2003		<i>*</i>				<i>*</i>	ጥ			*		*		т —							
Quarter 3, 2003										*		*	*			*	*	*	*		
Quarter 4, 2003										*	*	*	*			~	*	*	<u>~</u>		
Quarter 1, 2004										*	*	*	<u>~</u>			*	*	*			
Quarter 2, 2004							*			*	*	*				~	T	*			-
Quarter 3, 2004							*			*	*	*				*		<u>~</u>			
Quarter 4, 2004	ł						不			*	*	*				*					1
Quarter 4, 2004 Quarter 1, 2005	1									*		*				不					
	1									*		*									
Quarter 2, 2005 Quarter 3, 2005	1									*		*				*					
										*		不				*					-
Quarter 4, 2005										*						木					
Quarter 1, 2006							4					4									-
Quarter 2, 2006							*			*		*				NI.					-
Quarter 3, 2006										*						*					-
Quarter 4, 2006										*											<u> </u>
Quarter 1, 2007							.1.			*											<u> </u>
Quarter 2, 2007							*			*											<u> </u>
Quarter 3, 2007							*														<u> </u>
Quarter 3, 2008							*														<u> </u>
Quarter 4, 2008							*														<u> </u>
Quarter 3, 2009							*														
Quarter 3, 2011							*														
NICKEL			1		1									1							
Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTE	NTI	AL			1					1		ı	1					1		
Quarter 4, 2002																	*		*		<u> </u>
Quarter 1, 2003																	*		*		<u> </u>
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004													*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006					*			*	*								*				*
Quarter 2, 2006					*		*	*					*				*			*	
Quarter 3, 2006					*			*					*				*			*	
Quarter 4, 2006	Ī				*		*			*		*	*				*			*	*
Quarter 1, 2007	Ī	*			*			*					*				*			*	*
Quarter 2, 2007	1				*								*				*			*	*

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well			376										357					364	358		
Quarter 3, 2007	-	0,0	2,0		*	202	-	*	0,.		200	000		207	0,2		*			*	0,0
Quarter 4, 2007					71.			7,1									*			*	*
Quarter 1, 2008					*			*				*	*				**		*	*	***
Quarter 2, 2008					*			*		*		717	*	*				*	41	*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008					71.		71.	*	7,7	*		*	*	**			*	*	41	*	*
Quarter 1, 2009							*	*		*		*	*				***	*		*	***
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*			71.	*	*	*	*	*		*	*	**			*	*	*	*	*
Quarter 1, 2010		*			*	*1*	*	*	7,7	*		717	*			*	*	*	41	*	***
Quarter 2, 2010		***			*	*	71.	*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*	717	*	*	*	7,1	*	*	*	*	*
Quarter 4, 2010		*			٠٣	*	*	*	*	*	*	*	*	*	٠٢	*	*	*	*	*	*
Quarter 1, 2011		41*				*	-1,	*	717	*	*	*	*	*		*	*	*	*	*	71
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*			-17	*	-17	*	*	*	-17	*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*	41	*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012	T	*		*	T	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*	<i>*</i>	*	Т
Quarter 2, 2013		*				т —		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
PCB, TOTAL	*1*	*1*	l .		***	***	***		,	*1*	***	•••	_ ·•·	*1*	*1*	*,,*	*1*	***	***	*1*	***
Quarter 4, 2003																	*				
Quarter 3, 2004												*									
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016	_					1					1							1			
Quarter 3, 2004												*									
Quarter 2, 2006							*					*									
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Z, 2000			.			1		Щ.	L		<u> </u>	L					l	<u> </u>			

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357	_							1
Quarter 3, 2009			- , 5	_ , ,			*	- / 2	- ' '	- 55	_ 55	- 50					- 51			- , 5	
Quarter 1, 2010	1						*														
Quarter 2, 2010	1						*														
Quarter 4, 2010	1						*														
PCB-1242				l			714						l						l		
Quarter 3, 2006							*					*									
Quarter 4, 2006										*											
Quarter 1, 2008							*			-											
Quarter 2, 2012							*														
PCB-1248				l								l	<u> </u>						l .		
Quarter 2, 2008							*														
PCB-1260				<u> </u>								l	l .						<u> </u>		<u> </u>
Quarter 2, 2006							*														
pH		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>				<u> </u>	<u> </u>			·	1	1	<u> </u>		1
Quarter 3, 2002										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005	1					*												*	*		
Quarter 4, 2005						*													*		
Quarter 3, 2006																*					
Quarter 2, 2011														*							
Quarter 3, 2011														*							
Quarter 4, 2011														*							
Quarter 1, 2012														_		*	*				
Quarter 2, 2012												*									
Quarter 1, 2013										*		*				*					
RADIUM-228				l								l	l						l		
Quarter 2, 2005																					
Quarter 4, 2005																					
SELENIUM		1		1	1	1	1	1				I	ı					1	1		1
Quarter 4, 2003																					
SODIUM																	1				
Quarter 3, 2002										*	*		*								
Quarter 4, 2002	Ī									*	*			*							
Quarter 1, 2003	1									*											
Quarter 2, 2003	1									*	*										
Quarter 3, 2003											*										
Quarter 1, 2007	1										*										
Quarter 1, 2012	1													*							
STRONTIUM-90																					
Quarter 3, 2003																					
SULFATE			ı																	ı	
Quarter 1, 2003							*														
Quarter 2, 2003	1					*	*														
																			1		

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Į	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	-											_	357								
Quarter 4, 2003					*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004	1				*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005	1				*		*		*						*						
Quarter 3, 2005	1				*	*	*														
Quarter 4, 2005															*						
Quarter 1, 2006	1				*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006	1						*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 4, 2007		*																			
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008		*				*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*									*						
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010		*			*	*	*								*						
Quarter 3, 2010		*			*	*	*								*						
Quarter 4, 2010		*				*	*								*						
Quarter 1, 2011		*																			
Quarter 2, 2011		*			*	*	*								*						
Quarter 3, 2011		*				*	*	*							*						
Quarter 4, 2011		*				*									*						
Quarter 1, 2012		*					*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*													*						
Quarter 3, 2013	*	*		*	*	*	*								*						
TECHNETIUM-99																					
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003																	*				
Quarter 4, 2003																	*				*
Quarter 1, 2004															*		*				*
Quarter 2, 2004															*						*
Quarter 3, 2004															*						*
Quarter 4, 2004															*		*				*
Quarter 3, 2005																	*				
Quarter 1, 2006															*						*

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	J C R.	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368						365						357	369				364		370	373
Quarter 2, 2006		*							*												*
Quarter 3, 2006	l																				*
Quarter 4, 2006	l														*						*
Quarter 1, 2007	l																				*
Quarter 2, 2007	l												*		*					*	-
Quarter 3, 2007															*		*	*			
Quarter 4, 2007										*					*		_	-	*		*
Quarter 1, 2008	Ì														*					*	*
Quarter 2, 2008	İ						*	*						*		*			*		
Quarter 3, 2008	İ														*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009	ĺ									*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010																		*			
Quarter 1, 2011		*								*							*				
Quarter 2, 2011																*	*	*	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012								*										*			
Quarter 3, 2012																	*	*			
Quarter 4, 2012	Ì														*			*			*
Quarter 1, 2013																		*			*
Quarter 2, 2013																					*
Quarter 3, 2013	l									*											*
TOTAL ORGANIC CARBON										不											不
Quarter 3, 2002	I									*	*	*		*							*
Quarter 4, 2002										*	*	Т.		*							T
Quarter 1, 2003	ł									~	*			*							
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003	 "									*	*					<u> </u>					
Quarter 1, 2004	t										*										\vdash
Quarter 3, 2005	1					*				*	***				*	*			*		
Quarter 4, 2005	t					*									-			*	*		
Quarter 1, 2006	T																		*		
TOTAL ORGANIC HALIDES	3					·					<u> </u>	1					1				
Quarter 4, 2002										*											
Quarter 1, 2003	Ī									*											
Quarter 2, 2003	Ī									*											
Quarter 1, 2004	ĺ															*					
TRICHLOROETHENE																					
Quarter 3, 2002																					
Quarter 4, 2002																					
Quarter 1, 2003	Ĺ																				
Quarter 2, 2003																					
Quarter 3, 2003																					


Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				J	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 4, 2003																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 1, 2011																					
Quarter 2, 2011																					
Quarter 3, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013																					
Quarter 2, 2013																					
Quarter 3, 2013																					
TURBIDITY	-	1	1	1	1	1	1	1				1		1	1		1	ı	1	1	
Quarter 1, 2003										*											匚
URANIUM			ı		T		T												T		
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC		ı	ı	1	1	ı	1	1				ı	ı	1	1		ı	1		1	_
Quarter 3, 2005																			*		oxdot
* Statistical test	results	indi	cate	an e	levat	ed co	once:	<u>ntrat</u> i	on (i	.e., a	a stat	<u>istic</u>	al ex	ceed	ance)					
■ MCL Exceeda	ance																				

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater	Flow System				J	JCR.	S						UR	.GA					LR	GA		
Gradient		S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring V	Vell	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
UCRS	Upper Continen	tal R	echai	rge S	yste	m																
URGA	Upper Regional	Grav	el A	quife	er																	
LRGA	Lower Regional	Grav	el A	quif	er																	
S	Sidegradient;			D		Dov	vngr	adie	nt;			U		Upg	radio	ent						

APPENDIX H METHANE MONITORING DATA

C-746-U LANDFILL METHANE LOG

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

Date: September 18, 2013

Time	Location	% LEL of Methane Reading	Remarks	Weather Conditions
1300	C-746-U1	0	Checked at floor level	Inside office
1304	C-746-U2	0	Checked at floor level	Inside office
1309	C-746-U-T-14	0	Checked at floor level	Change out trailer
1315	C-746-U15	0	Checked at floor level	Treatment building
1323	MG1	0	Dry casing	Wind out of S. 83.4
1338	MG2	0	Dry casing	Wind out of S. 84.6
1334	MG3	0	Dry casing	Wind out of S. 84.8
1330	MG4	0	Dry casing	Wind out of S. 85.2
N/A	Suspect or Problem Areas	N/A	No problems noted	N/A
			1 18-13	
44,4-44			Swift	
		10	numy Suit 9-18-13	
			V	
			`	

WD-F-0053 (2/20/13) PAD-WD-0017 Month Signature

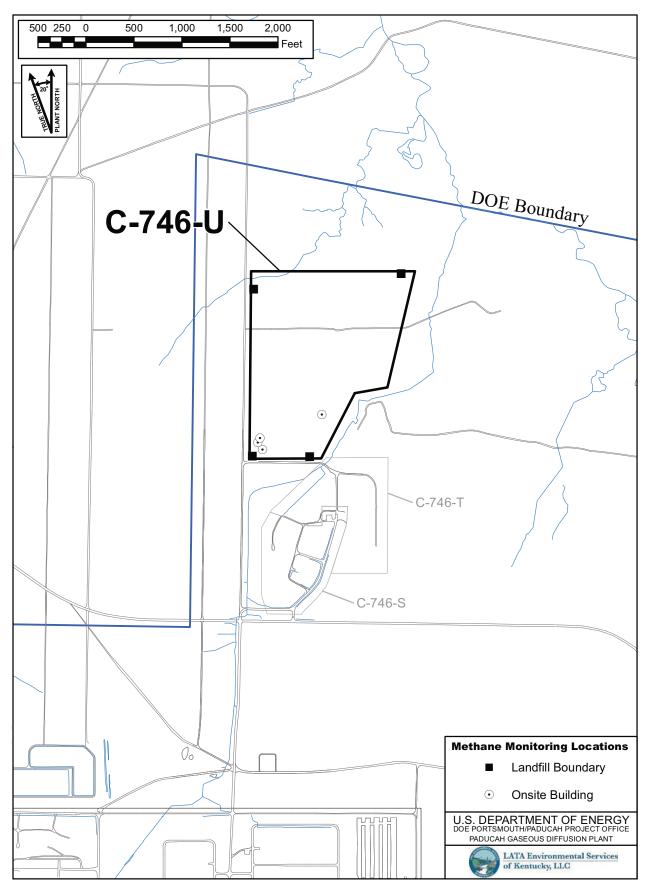
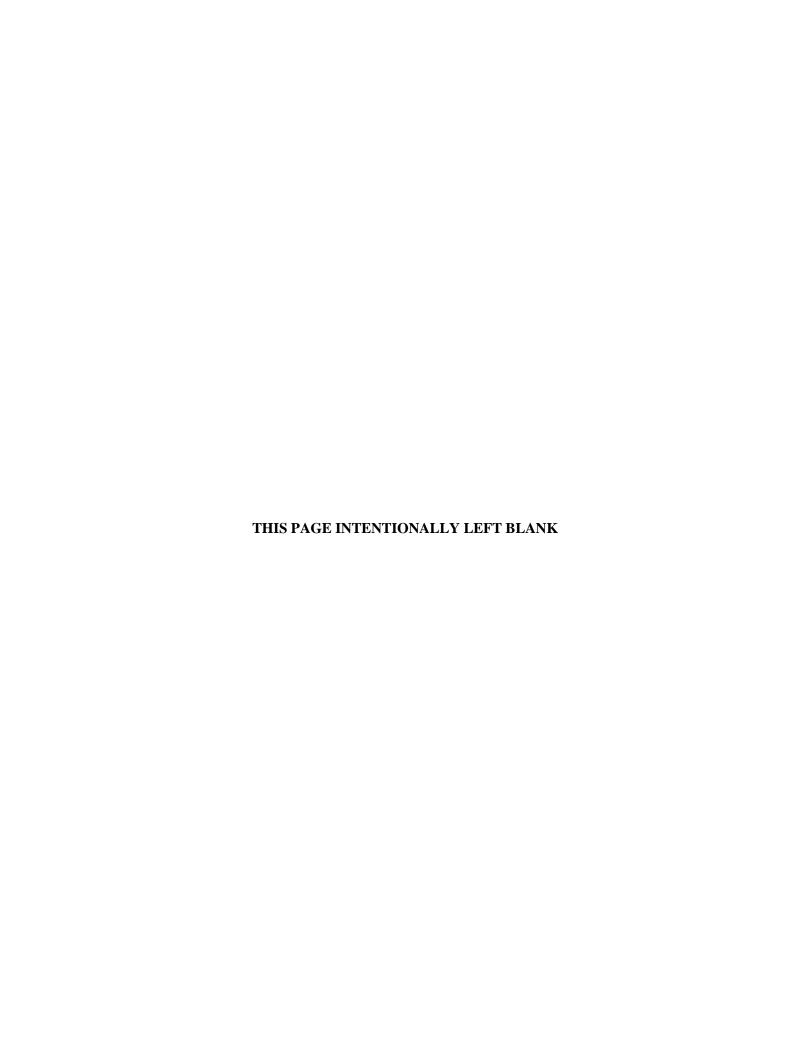



Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I SURFACE WATER MONITORING DATA

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	int	(KPDES Discharge Number, or "U	L150 AT SITE		L154 UPSTRE	AM	L351 DOWNST	REAM					
Sample Sequer	ıce	#	1		1		1						
If sample is	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment							NA		NA			\neg
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		8/7/2013 09:0	8	8/7/2013 09:2	25	8/7/2013 08:	:42		\overline{T}
Duplicate (")	" (or "N")1				N		N		N			7
Split ('Y' o	. "1	v") ²				N		N		N			7
Facility Samp	ole	ID Number (if applicable)				L150US4-13		L154US4-13	3	L351US4-1	3	\ /	
Laboratory Sa	mp]	le ID Number (if applicable)				C1321902000)2	C1322402500)1	C132190200	001	\ /	
Date of Analy	sis	s (Month/Day/Year)				9/3/2013		9/3/2013		9/3/2013			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	Т	MGD	Field	0.01		0.21		2.09			
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	3.4		2.3		2.5		/ \	
14808-79-8	0	Sulfate	т	MG/L	300.0	37		4		4.3			
7439-89-6	0	Iron	Т	MG/L	200.7 R3.3	0.902		0.997		1.17			
7440-23-5	0	Sodium	т	MG/L	200.7 R3.3	3.22		1.26		0.971			
s0268	0	Organic Carbon ⁶	т	MG/L	9060	8.1	*D	14.4	*D	16.8	*D		\prod
s0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	<36		<36		76			

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

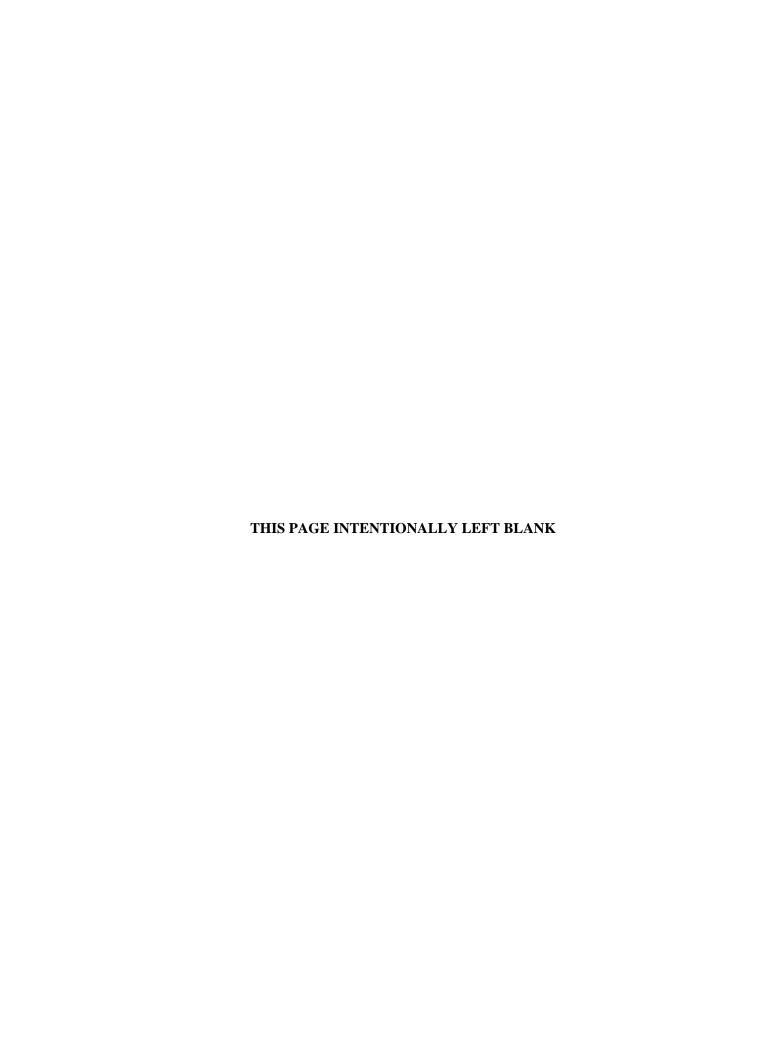
Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	(KPDES Discharge Number, or	ז" :	JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	REAM	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED F VALUE L OR A PQL ⁵ G
s0145	1	Specific Conductance	Т	µнмs/см	Field	267		113		97		
s0270	0	Total Suspended Solids	Т	MG/L	160.1	32	*	<20	*	<25	*	
S0266	0	Total Dissolved Solids	Т	MG/L	160.2	180		98		97		
s0269	0	Total Solids	Т	MG/L	160.3	202		110		104		
s0296	0	рН	Т	Units	Field	8.28		8.23		8.38		\ /
7440-61-1		Uranium	Т	MG/L	IN7105	0.00117		0.00101		0.00205		\
12587-46-1		Gross Alpha (α)	Т	pCi/L	900.0	2.44	*	2.34	*	0.443	*	\/
12587-47-2		Gross Beta (β)	Т	pCi/L	900.0	6.96	*	10.9	*	14	*	X
												/\
												/ \
												/ \
												/
												/

RESIDENTIAL/CONTAINED – QUARTERLY


Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitorii Point	ng Facility Sample ID	Constituent	Flag	Description
L150	L150US4-13	Total Organic Carbon (TOC)	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.23. Rad error is 1.15.
		Beta activity		TPU is 1.36. Rad error is 1.14.
L154	L154US4-13	Total Organic Carbon (TOC)	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.939. Rad error is 0.816.
		Beta activity		TPU is 1.77. Rad error is 1.31.
L351	L351US4-13	Total Organic Carbon (TOC)	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.243. Rad error is 0.229.
		Beta activity		TPU is 2.44. Rad error is 1.94.

