PAD-ENM-0086/V2

C-746-U Contained Landfill Second Quarter Calendar Year 2013 (April–June) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

:

3

This document is approved for public release pe	r review by:
LATA Kentucky Classification Support	<u>8-39-13</u> Date

PAD-ENM-0086/V2

C-746-U Contained Landfill Second Quarter Calendar Year 2013 (April–June) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—August 2013

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC managing the Environmental Remediation Activities at the Paducah Gaseous Diffusion Plant under contract DE-AC30-10CC40020

FIGURES	
TABLES	
ACRONYM	Svii
1.1 BA 1.2 MC 1.2 1.2 1.2 1.2 1.2	.2 Methane Monitoring
2. DATA E	VALUATION/STATISTICAL SYNOPSIS7
3. DATA V	ALIDATION
4. PROFES	SIONAL GEOLOGIST AUTHORIZATION11
5. REFERE	NCES
APPENDIX	A: GROUNDWATER, SURFACE WATER, AND METHANE MONITORING SAMPLE DATA REPORTING FORMA-1
APPENDIX	B: FACILITY INFORMATION SHEETB-1
APPENDIX	C: GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS C-1
APPENDIX	D: STATISTICAL ANALYSES AND QUALIFICATION STATEMENTD-1
APPENDIX	E: GROUNDWATER FLOW RATE AND DIRECTION E-1
APPENDIX	F: NOTIFICATIONSF-1
APPENDIX	G: CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES
APPENDIX	H: METHANE MONITORING DATAH-1
APPENDIX	I: SURFACE WATER MONITORING DATAI-1
APPENDIX	J: ANNUAL LEACHATE MONITORING DATAJ-1

CONTENTS

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
2.	C-746-U Landfill Surface Water Monitoring Locations	4

TABLES

1.	Summary of MCL Exceedances	5
2.	Summary of Statistically Significant Increases	5
3.	Monitoring Wells Included Historically in Statistical Analysis	7

ACRONYMS

CFR	Code of Federal Regulations
EPA	U.S. Environmental Protection Agency
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KPDES	Kentucky Pollutant Discharge Elimination System
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
MCL	maximum contaminant level
MW	monitoring well
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer

1. INTRODUCTION

This report, C-746-U Contained Landfill Second Quarter Calendar Year 2013 (April–June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number 073-00045.

The groundwater, surface water, leachate, and methane monitoring sample data reporting form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The total metals results reported in Appendix C are measured in an unfiltered sample, as required by Permit Condition GSTR0001, Standard Requirement 4. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for parameters that exceed the maximum contaminant level (MCL) and for all parameters that had statistically significant increased concentrations relative to background concentrations, including those parameters listed in 40 *CFR* § 302.4, Appendix A. Appendix G provides a chart of MCL exceedances and statistically significant increases that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090, Section 4. Appendix J contains the annual leachate data, as required by landfill permit condition ACTV0006, Special Condition 1.

1.1 BACKGROUND

The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill was permitted in November 1996 under Solid Waste Landfill Permit Number 073-00045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Groundwater sampling was conducted within the second quarter 2013, during April, using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used U.S. Environmental Protection Agency (EPA)-approved methods, as applicable.

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill; 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except for MW359, MW362, MW368, MW376, and MW377. These wells, screened in the UCRS, had an insufficient amount of water to obtain samples this quarter; therefore, there are no analytical results for these locations.

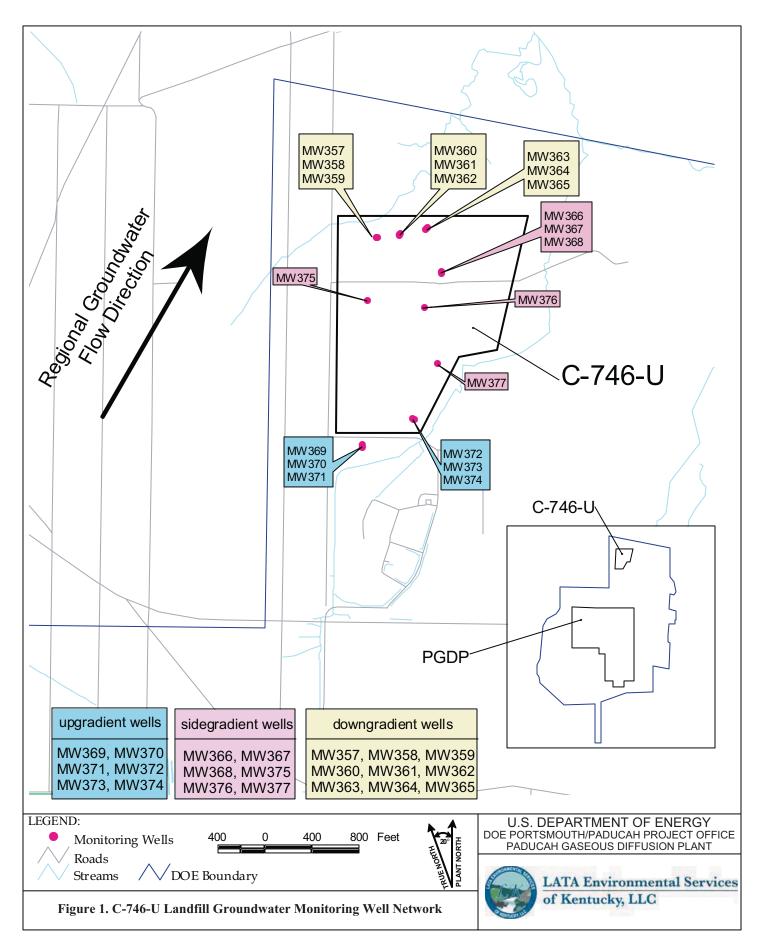


FIGURE No. c5ac90002SK115.apr DATE 04-27-11

The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 16, 2013, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 35 vicinity wells define the potentiometric surface for the Regional Gravel Aquifer (RGA).¹ Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient in the vicinity of the C-746-U Landfill in April was 2.62 x 10^{-4} ft/ft, while the hydraulic gradient for the upper RGA at the C-746-U Landfill was 1.22×10^{-4} ft/ft and for the lower RGA was 1.25×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.21 to 0.35 ft/day for the URGA and 0.21 to 0.36 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Landfill operations staff monitored for the occurrence of methane on June 11, 2013, in four on-site building locations and four locations along the landfill boundary. See Appendix H for a map of the monitoring locations. No potential gas problem areas (i.e., suspect or problem areas) were identified. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was conducted on April 11, 2013, using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2203, *Surface Water Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used EPA-approved methods, as applicable. Samples were collected at the three permitted monitoring locations. The landfill has an upgradient location, L154; a downgradient location, L351; and a location near the working area of the landfill, L150. A map of the surface water monitoring locations is presented in Figure 2. Surface water was monitored, as specified in 401 *KAR* 48:300 § 2, and the approved surface water monitoring plan. The parameters identified in the Solid Waste Landfill Permit were analyzed for all three locations for reporting only, pursuant to Permit Condition GMNP0001, Standard Requirement 1.

The surface water sample collected at L150 indicated a concentration of uranium above those levels generally observed. There are no permit limits that apply to surface water. Sampling location L150 is inside the fence at the landfill, located upstream and flowing into the sedimentation pond. Water from the sedimentation pond is discharged under the Kentucky Pollutant Discharge Elimination System (KPDES) permit at Outfall K019; however, radiological parameters are designated as report only. The effluent of the sedimentation pond is included in DOE's environmental monitoring program and is in compliance with DOE Order 458.1.

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

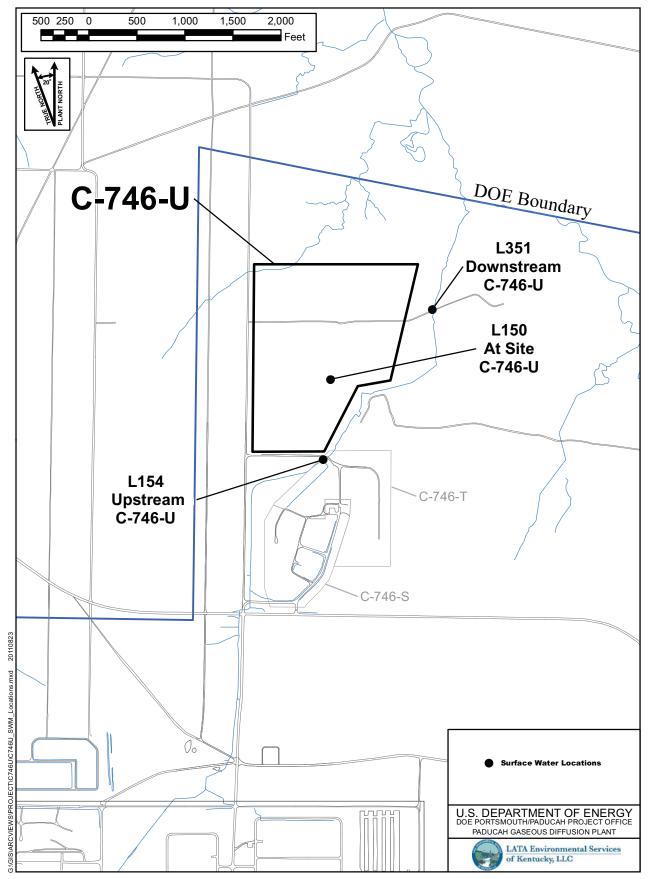


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

1.2.4 Annual Leachate Monitoring

Annual leachate sampling was performed on April 17, 2013, pursuant to Permit ACTV0006, Special Condition 1. The results of the annual leachate sampling for calendar year 2013 are presented in Appendix J. The results indicated an elevated concentration of uranium compared to the previous annual sampling event. These concentrations do not represent an exceedance because there are no standards applicable to untreated leachate. The leachate is treated, and the effluent is regulated at Outfall K020 under the KPDES permit; however, radiological parameters are designated as report only. This effluent is included in DOE's environmental monitoring program and is in compliance with DOE Order 458.1. DOE will continue to coordinate with the Commonwealth of Kentucky on this matter.

1.3 KEY RESULTS

The following parameters had concentrations that either exceeded the MCL (Table 1) or were shown to have statistically significant increases (Table 2) in concentrations² relative to background concentrations during the first quarter 2013.

UCRS	URGA	LRGA
(none)	MW357: trichloroethene	MW358: trichloroethene
	MW372: trichloroethene	MW361: trichloroethene
		MW373: trichloroethene

UCRS	URGA	LRGA
MW365: dissolved oxygen, sulfate	MW357: oxidation-reduction potential	MW358: oxidation-reduction potential
MW371: (upgradient): oxidation- reduction potential	MW360: oxidation-reduction potential	MW361: oxidation-reduction potential
MW374: (upgradient): dissolved oxygen, oxidation-	MW363: oxidation-reduction potential	MW364: oxidation-reduction potential
reduction potential MW375: oxidation-reduction	MW366: oxidation-reduction potential	MW367: oxidation-reduction potential
potential, sulfate	MW369: (upgradient): oxidation- reduction potential	MW370: (upgradient): oxidation- reduction potential
	MW372: (upgradient): calcium, conductivity, dissolved	MW373: (upgradient): oxidation- reduction potential,
	solids, magnesium, sulfate	technetium-99

Sidegradient wells: MW366, MW367, MW368, MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

² The term "concentration" may refer to a field measurement result such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls (PCBs).

MCL exceedances and parameters shown to have statistically significant increases relative to background concentrations are being assessed in accordance with the *Groundwater Assessment Plan for the C-746-U Landfill* (PRS 2007).

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2013 groundwater data collected from the C-746-U Contained Landfill MWs were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the EPA guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (D17–D77).

For chemicals with an established MCL, no statistical analysis was performed. Parameters that have an MCL can be found in 401 *KAR* 47:030, Section 6. For parameters with no established MCL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistically significant increase in concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. A stepwise list of the interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 3.

UCRS	URGA	LRGA
MW359 (dry)**	MW357	MW358
MW362 (dry)	MW360	MW361
MW365	MW363	MW364
MW368 (dry)	MW366	MW367
MW371 (upgradient)	MW369 (upgradient)	MW370 (upgradient)
MW374 (upgradient)	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376 (dry)		
MW377 (dry)		

Table 3. Monitoring Wells Included Historically in Statistical Analysis*

*A map showing the monitoring well locations is shown on Figure 1.

**MW359, MW362, MW368, MW376, and MW377 had sufficient water to permit a water level measurement but insufficient water to provide water samples for laboratory analysis.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining statistically significant increases is provided in Appendix D under Statistical Analysis Process. Appendix G summarizes the occurrences (by well and by quarter) of statistically significant increases and MCL exceedances.

Upper Continental Recharge System

In this quarter, 19 parameters required statistical analysis in the UCRS. During the second quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed elevated concentrations that were determined to qualify as statistically significant increases and are listed in Table 2.

Upper Regional Gravel Aquifer

In this quarter, 22 parameters required statistical analysis in the URGA. During the second quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, and sulfate displayed elevated concentrations that were determined to qualify as statistically significant increases and are listed in Table 2.

Lower Regional Gravel Aquifer

In this quarter, 19 parameters required statistical analysis in the LRGA. During the second quarter, oxidation reduction potential, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases and are listed in Table 2.

3. DATA VALIDATION

Data validation was performed on the organic, inorganic, and radiochemical analytical data by an independent third-party validator. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected quarterly during each sampling event. Equipment blanks, field blanks, and trip blanks are obtained to ensure quality control and are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

Data validation results for this data set indicated that all data were considered acceptable.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill Second Quarter Calendar Year 2013 (April-June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PAD-ENM-0086/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Kenneth R. Davis

<u>Ungust 30, 2013</u> Date

5. REFERENCES

- EPA (U.S. Environmental Protection Agency) 1989. EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance, office of Resource Conservation and recovery, U.S. Environmental Protection Agency, Washington, DC.
- PRS (Paducah Remediation Services, LLC) 2007. Groundwater Assessment Plan for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PRS-PROJ-0006, Paducah Remediation Services, LLC, Kevil, KY, February.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name: U.S. DOE–Paducah Gaseous Diffusion Plant				Activity: C-746-U Contained Landfil		
	(As officially shown	-				
Permit No:	073-00045	Finds	/Unit No:	Quarter &	Year 2 nd Qtr. CY 2013	
Please check the j	Please check the following as applicable:					
Characte	rization <u>X</u> Qua	rterly	Semiannual	_X_ Annua	l Assessment	
Please check appl	licable submittal(s): _	X	Groundwater	X	Surface Water	
	_	Х	Leachate	X	Methane Monitoring	

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Mark J. Duff Pagucah Project Manager LATA Environmental Services of Kentucky, LLC

Rachel H. Blumenfeld, Acting Paducah Site Lead U.S. Department of Energy

Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

	Groundwater: April 2013					
	Surface Water: April 2013					
Sampling Date:	Leachate: April 2013	County:	McCracken Pe	ermit Nos.	073-00045	
				-		
Facility Name: U.S. DOE - Paducah Gaseous Diffusion Plant						
	(As officially shown on DWM Permit Face)					
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053		
	Street	City/State		Zip		
Phone No: (27	(0) 441-6800 Latitude:	N 37° 07' 38.87"	Longitude	: <u>W 88° 4</u>	8' 13.42"	

OWNER INFORMATION

Facility Owner:	U.S. DOE – W. E. Murphie, M	anager Pho	one No:	(859) 219-4001
Contact Person:	Mark J. Duff	Pho	one No:	(270) 441-5030
Contact Person Title	: Project Manager, LATA	Environmental Services of Ke	entucky,	LLC
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053
	Street	City/State		Zip

SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)

Company: LATA	Environmental Services of Ken	tucky, LLC						
Contact Person:	Jeff Boulton		Phone No: (270) 441-5444					
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky	42053					
	Street	City/State	Zip					
	LABOR	ATORY RECORD #1						
Laboratory: USEC	Analytical Laboratories – Padu	Icah Lab ID N	No: KY00906 (EPA ID Number)					
Contact Person:	John Price		Phone No: (270) 441-5867					
Mailing Address:	P.O. Box 1410	Paducah, Kentucky	42002-1410					
	Street	City/State	Zip					
	LABOR	ATORY RECORD #2						
Laboratory: TestA	America Laboratories, Inc.	Lab ID No	: MO00054 (EPA ID Number)					
Contact Person:	Elaine Wild		Phone No: (314) 298-8566					
Mailing Address:	13715 Rider Trail North	Earth City, MO	63045					
	Street	City/State	Zip					
	LABOR	ATORY RECORD #3						
Laboratory:		Lab ID No	:					
Contact Person:		Phone No:						
Mailing Address:								
-	Street	City/State	Zip					

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-OUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502) 564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4798	3	8004-4799		8004-0981		8004-4800		
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)				357		358		359		360		
Sample Sequence #				1		1		1		1		
If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment				NA		NA		NA		NA		
Sample Date and Time (Month/Day/Year hour: minutes)				4/2/2013 08	:10	4/2/2013	09:35	NA		4/2/2013 13:06		
Duplicate ("Y" or "N") ²				N		N		N		N		
Split ("Y" or "N") ³				N		N		Ν		N		
Facility Sample ID Number (if applicable)				MW357UG3	-13	MW358U	G3-13	NA		MW360UG3-13		
Laboratory Sample ID Number (if applicable)				C13092029	001	C13092029002		NA		C13092037001		
Date of Analysis (Month/Day/Year) For Volatile Organics Analysis			4/5/2013		4/5/2013		NA		4/5/2013			
Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)			DOWN		DOWN		DOWN		DOWN			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	<2		<2			*	<2	
16887-00-6	Chloride(s)	т	mg/L	9056	32		32			*	11	
16984-48-8	Fluoride	т	mg/L	9214	0.15		0.19			*	0.21	
S0595	Nitrate & Nitrite	т	mg/L	9056	1.2		<1			*	<1	
14808-79-8	Sulfate	т	mg/L	9056	62		87			*	89	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.26		30.26			*	30.26	
S0145	Specific Conductance	т	µMH0/cm	Field	437		525			*	526	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

- STANDARD FLAGS:
- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID D = Concentration from analysis
 - of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

C-

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4798	3	8004-4799		8004-0981		8004-4800		
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.)			357		358		359		360			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	321.72		321.69			*	321.69	
N238	Dissolved Oxygen	т	mg/L	Field	3.97		0.64			*	1.23	
S0266	Total Dissolved Solids	т	mg/L	160.1	251		307			*	305	
50296	рн	т	Units	Field	6.37		6.33			*	6.23	
NS215	Eh	т	mV	Field	746		329			*	362	
S0907	Temperature	т	°C	Field	13.17		14.5			*	15.22	
7429-90-5	Aluminum	т	mg/L	6020	<0.2		<0.2			*	<0.2	
7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-38-2	Arsenic	т	mg/L	7060	<0.001		0.00132			*	<0.001	
7440-39-3	Barium	т	mg/L	6020	0.054	*	0.0586	*		*	0.211	*
7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-42-8	Boron	т	mg/L	6010	0.369		0.368			*	<0.2	В
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6010	27.8		36.5			*	25.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00316			*	0.0404	
7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02			*	<0.02	
7439-89-6	Iron	т	mg/L	6010	<0.1		1.56			*	5.3	
7439-92-1	Lead	т	mg/L	6020	<0.0013		<0.0013			*	<0.0013	
7439-95-4	Magnesium	т	mg/L	6010	11.4		15.6			*	9.81	
7439-96-5	Manganese	т	mg/L	6020	0.0283	*	0.447	*		*	0.22	*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	8	8004-479	99	8004-0981		8004-480	00
Facility's I	ocal Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В	<0.001	В		*	<0.001	В
7440-02-0	Nickel	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-09-7	Potassium	т	mg/L	6010	1.81	В	2.64	В		*	0.899	В
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001	*В	<0.001	*В		*	<0.001	*В
7440-23-5	Sodium	т	mg/L	6010	39.1		40.4			*	58.3	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02			*	<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01		<0.01			*	<0.01	
67-64-1	Acetone	т	mg/L	8260	<0.01	J	<0.01	J		*	<0.01	J
107-02-8	Acrolein	т	mg/L	8260	<0.01		<0.01			*	<0.01	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01			*	<0.01	
71-43-2	Benzene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015			*	<0.015	
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-88-3	Toluene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

	AKGWA NUMBER1	, Facility Well/Spring Number				8004-4798	3	8004-479	9	8004-098	1	8004-480	0
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	357		358		359		360	
	CAS RN ⁴	CONSTITUENT	Ч Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
ľ	75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
ľ	74-83-9	Methyl bromide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
ľ	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01		<0.01			*	<0.01	
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
יר	75-00-3	Chloroethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	74-87-3	Methyl chloride	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	74-95-3	Methylene bromide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
Ī	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
ſ	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	J		*	<0.005	J
ſ	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001	J	<0.001	J		*	<0.001	J
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	75-01-4	Vinyl chloride	т	mg/L	8260	<0.002		<0.002			*	<0.002	
	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
ſ	79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0059		0.0056			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-7

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	8	8004-479	9	8004-098	1	8004-480	0
Facility's Lo	cal Well or Spring Number (e.g., M	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01			*	<0.01	
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01			*	<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01			*	<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002			*	<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
1336-36-3	PCB,Total	т	ug/L	8082	<0.17		<0.17			*	<0.17	
12674-11-2	PCB-1016	т	ug/L	8082	<0.16		<0.16			*	<0.16	
11104-28-2	PCB-1221	т	ug/L	8082	<0.17		<0.17			*	<0.17	
11141-16-5	PCB-1232	т	ug/L	8082	<0.13		<0.13			*	<0.14	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.1			*	<0.1	
12672-29-6	PCB-1248	т	ug/L	8082	<0.11		<0.11			*	<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798		8004-4799)	8004-098	1	8004-480)0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.07		<0.07	1		*	<0.07	
11096-82-5	PCB-1260	т	ug/L	8082	<0.05		<0.05			*	<0.05	
11100-14-4	PCB-1268	т	ug/L	8082	<0.09		<0.09			*	<0.09	
12587-46-1	Gross Alpha	т	pCi/L	9310	2.7	*	2.94	*		*	0.0315	*
12587-47-2	Gross Beta	т	pCi/L	9310	23.7	*	24.6	*		*	6.57	*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	-0.109	*	0.298	*		*	0.0849	*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	-0.0452	*	0.133	*		*	-0.0119	*
14133-76-7	Technetium-99	т	pCi/L	RL-7100	35.1	*	38.3	*		*	2.71	*
14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.0579	*	0.0477	*		*	0.0856	*
10028-17-8	Tritium	т	pCi/L	704R6	-439	*	-390	*		*	-519	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<25		<25			*	<25	
57-12-5	Cyanide	т	mg/L	9010	<0.04	BJ	<0.04	BJ		*	<0.04	BJ
20461-54-5	Iodide	т	mg/L	345.1	<2		<2			*	<2	
S0268	Total Organic Carbon	т	mg/L	9060	<1		1	*		*	1.7	
s0586	Total Organic Halides	т	mg/L	9020	0.034		0.034			*	0.04	

Division of Waste Management

Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-OUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502) 564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	86	8004-47	96	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	:.)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes))		4/3/2013 09	:26	NA		4/3/2013 12	2:38	4/4/2013 09):22
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG3	-13	NA		MW363UG	3-13	MW364UG3-	-13
Laboratory Sam	mple ID Number (if applicable)		C13093034	001	NA		C13093050	0001	C13094116	001		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	4/5/2013		NA		4/5/201	3	4/6/201	3		
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	IOWN)	DOWN		DOWN		DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<2			*	<2		<2	
16887-00-6	Chloride(s)	т	mg/L	9056	33			*	30		32	
16984-48-8	Fluoride	т	mg/L	9214	0.16			*	0.19		0.16	
S0595	Nitrate & Nitrite	т	mg/L	9056	<1			*	2.2		<1	*
14808-79-8	Sulfate	т	mg/L	9056	76			*	23		64	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.28			*	30.28		30.06	
S0145	Specific Conductance	т	µMH0/cm	Field	466			*	369		443	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

- STANDARD FLAGS:
- * = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

- N = Presumptive ID D = Concentration from analysis
 - of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number			8004-4795	5	8004-0986	6	8004-4796		8004-4797	7	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	321.74			*	321.65		321.82	
N238	Dissolved Oxygen	т	mg/L	Field	3.17			*	1.03		2.18	
S0266	Total Dissolved Solids	т	mg/L	160.1	274			*	208		257	
S0296	PH	т	Units	Field	6.59			*	6.27		6.26	
NS215	Eh	т	mV	Field	487			*	451		385	
S0907	Temperature	т	°C	Field	14.33			*	15.11		14.67	
7429-90-5	Aluminum	т	mg/L	6020	<0.2			*	<0.2		<0.2	
7440-36-0	Antimony	т	mg/L	6020	<0.005			*	<0.005		<0.005	
7440-38-2	Arsenic	т	mg/L	7060	<0.001			*	<0.001		0.00101	
7440-39-3	Barium	т	mg/L	6020	0.058	*		*	0.168	*	0.0815	*
7440-41-7	Beryllium	т	mg/L	6020	<0.001			*	<0.001		<0.001	
7440-42-8	Boron	т	mg/L	6010	0.293			*	<0.2	В	<0.2	В
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*	<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6010	31			*	23.8		27	
7440-47-3	Chromium	т	mg/L	6020	<0.01			*	<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*	<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	<0.02			*	<0.02		<0.02	
7439-89-6	Iron	т	mg/L	6010	<0.1			*	0.575		0.116	
7439-92-1	Lead	т	mg/L	6020	<0.0013			*	<0.0013		<0.0013	
7439-95-4	Magnesium	т	mg/L	6010	12.7			*	9.41		11.1	
7439-96-5	Manganese	т	mg/L	6020	<0.005	*		*	0.174	*	0.0188	*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*	<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	Image: Problem of the second structure Defense of the second structure Defense of the second structure Image: Potassium T mg/L Image: Potassium T mg/L					8004-479	5	8004-098	6	8004-4796	;	8004-479)7
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	D	OF	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7		Molybdenum	т	mg/L	6020	<0.001	В		*	<0.001	В	<0.001	В
7440-02-0		Nickel	т	mg/L	6020	<0.005			*	<0.005		0.0343	
7440-09-7		Potassium	т	mg/L	6010	2.09	В		*	1.13	В	2.04	В
7440-16-6		Rhodium	т	mg/L	6020	<0.005			*	<0.005		<0.005	
7782-49-2		Selenium	т	mg/L	6020	0.00522			*	<0.005		0.00526	
7440-22-4		Silver	т	mg/L	6020	<0.001	*В		*	<0.001	*В	<0.001	*В
7440-23-5		Sodium	т	mg/L	6010	39.9			*	31.7		38.7	
7440-25-7		Tantalum	т	mg/L	6020	<0.005			*	<0.005		<0.005	
7440-28-0		Thallium	т	mg/L	6020	<0.002			*	<0.002		<0.002	
7440-61-1		Uranium	т	mg/L	6020	<0.001			*	<0.001		<0.001	
7440-62-2		Vanadium	т	mg/L	6020	<0.02			*	<0.02		<0.02	
7440-66-6		Zinc	т	mg/L	6020	<0.02			*	<0.02		<0.02	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.01			*	<0.01		<0.01	
67-64-1		Acetone	т	mg/L	8260	<0.01	J		*	<0.01	J	<0.01	J
107-02-8		Acrolein	т	mg/L	8260	<0.01			*	<0.01		<0.01	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.01			*	<0.01		<0.01	
71-43-2		Benzene	т	mg/L	8260	<0.005			*	<0.005		<0.005	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.005			*	<0.005		<0.005	
1330-20-7		Xylenes	т	mg/L	8260	<0.015			*	<0.015		<0.015	
100-42-5		Styrene	т	mg/L	8260	<0.005			*	<0.005		<0.005	
108-88-3		Toluene	т	mg/L	8260	<0.005			*	<0.005		<0.005	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.005			*	<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795	5	8004-0986	5	8004-479	6	8004-479)7
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	361		362		363		364	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005			*	<0.005		<0.005	
	75-25-2	Tribromomethane	т	mg/L	8260	<0.005			*	<0.005		<0.005	
	74-83-9	Methyl bromide	т	mg/L	8260	<0.005			*	<0.005		<0.005	
	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01			*	<0.01		<0.01	
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005			*	<0.005		<0.005	
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005			*	<0.005		<0.005	
C-12	75-00-3	Chloroethane	т	mg/L	8260	<0.005			*	<0.005		<0.005	
2	67-66-3	Chloroform	т	mg/L	8260	<0.001			*	<0.001		<0.001	
	74-87-3	Methyl chloride	т	mg/L	8260	<0.005			*	<0.005		<0.005	
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001			*	<0.001		<0.001	
	74-95-3	Methylene bromide	т	mg/L	8260	<0.005			*	<0.005		<0.005	
	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001			*	<0.001		<0.001	
	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001			*	<0.001		<0.001	
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001			*	<0.001		<0.001	
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005			*	<0.005		<0.005	
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J		*	<0.005	J	<0.005	J
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001			*	<0.001		<0.001	
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001	J		*	<0.001	J	<0.001	J
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005			*	<0.005		<0.005	
	75-01-4	Vinyl chloride	т	mg/L	8260	<0.002			*	<0.002		<0.002	
	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001			*	<0.001		<0.001	
ſ	79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.006			*	<0.001		0.0034	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986		8004-479	6	8004-479	7
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005			*	<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01			*	<0.01		<0.01	
74-88-4	Iodomethane	т	mg/L	8260	<0.01			*	<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005			*	<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005			*	<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005			*	<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01			*	<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002			*	<0.0002	*	<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005			*	<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005			*	<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005			*	<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001			*	<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005			*	<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005			*	<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005			*	<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005			*	<0.005		<0.005	
1336-36-3	PCB,Total	т	ug/L	8082	<0.17			*	0.18		<0.17	
12674-11-2	PCB-1016	т	ug/L	8082	<0.16			*	<0.16		<0.16	
11104-28-2	PCB-1221	т	ug/L	8082	<0.17			*	<0.17		<0.17	
11141-16-5	PCB-1232	т	ug/L	8082	<0.14			*	<0.13		<0.14	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1			*	0.18		<0.1	
12672-29-6	PCB-1248	т	ug/L	8082	<0.12			*	<0.11		<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-4796	6	8004-479	7
Facility's Loc	al Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.07			*	<0.07		<0.07	
11096-82-5	PCB-1260	т	ug/L	8082	<0.05			*	<0.05		<0.05	
11100-14-4	PCB-1268	т	ug/L	8082	<0.09			*	<0.09		<0.09	
12587-46-1	Gross Alpha	т	pCi/L	9310	4.92	*		*	0.48	*	0.994	*
12587-47-2	Gross Beta	т	pCi/L	9310	30.2	*		*	8.55	*	43.7	*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	0.221	*		*	-0.187	*	0.228	*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	0.402	*		*	0.0813	*	-0.502	*
14133-76-7	Technetium-99	т	pCi/L	RL-7100	39.5	*		*	1.4	*	45.5	*
14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.0887	*		*	0.0199	*	0.0718	*
10028-17-8	Tritium	т	pCi/L	704R6	-260	*		*	-710	*	-493	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<25			*	<25		<25	
57-12-5	Cyanide	т	mg/L	9010	<0.04	BJ		*	<0.04		<0.04	
20461-54-5	Iodide	т	mg/L	345.1	<2			*	<2		<2	
s0268	Total Organic Carbon	т	mg/L	9060	<1			*	1.5		<1	
s0586	Total Organic Halides	т	mg/L	9020	0.018			*	0.014		0.025	

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch 14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502) 564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER1	, Facility Well/Spring Number				8004-0984	1	8004-09	982	8004-47	'93	8004-098	3
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, etc	:.)	365		366		367		368	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/15/2013 09	9:17	4/4/2013	12:41	4/8/2013	13:15	NA	
Duplicate ("Y	" or "N") ²				Ν		Ν		Ν		N	
Split ("Y" or	"N") ³				Ν		Ν		N		N	
Facility Samp	le ID Number (if applicable)				MW365UG3	-13	MW366U	G3-13	MW367U0	G3-13	NA	
Laboratory Sa	mple ID Number (if applicable)			C13105020	001	C130941	6002	C1309803	31001	NA		
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	4/16/2013	3	4/6/20	13	4/12/20	13	NA		
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2			*
16887-00-6	Chloride(s)	т	mg/L	9056	5.5		39		33			*
16984-48-8	Fluoride	т	mg/L	9214	0.28		0.18		0.14			*
S0595	Nitrate & Nitrite	т	mg/L	9056	<1		<1	*	<1			*
14808-79-8	Sulfate	т	mg/L	9056	62		42		36			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.88		30.06		29.86			*
S0145	Specific Conductance	т	µMH0/cm	Field	391		443		397			*

 1 AKGWA # is 0000-0000 for any type of blank.

- ²Respond "Y" if the sample was a duplicate of another sample in this report.
- $^3\text{Respond}$ "Y" if the sample was split and analyzed by separate laboratories.
- ⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.
- ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
 D = Concentration from analysis
 - of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984	1	8004-0982	2	8004-4793		8004-0983	3
Facility's Loc	al Well or Spring Number (e.g., Mw	-1, 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
50906	Static Water Level Elevation	т	Ft. MSL	Field	327.24		321.95		322.22			*
N238	Dissolved Oxygen	т	mg/L	Field	5.54		0.86		0.79			*
S0266	Total Dissolved Solids	т	mg/L	160.1	244		251		230			*
s0296	рн	т	Units	Field	6.4		6.11		6.2			*
NS215	Eh	т	mV	Field	99		365		250			*
s0907	Temperature	т	°C	Field	16.28		15.44		17.06			*
7429-90-5	Aluminum	т	mg/L	6020	<0.2		<0.2		<0.2			*
7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-38-2	Arsenic	т	mg/L	7060	<0.001		0.00131		0.00148			*
7440-39-3	Barium	т	mg/L	6020	0.113	*	0.178	*	0.202	*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-42-8	Boron	т	mg/L	6010	<0.2	В	<0.2	В	<0.2	В		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6010	18.8		27.1		25.7			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.00155		<0.001		0.00147			*
7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02		<0.02			*
7439-89-6	Iron	т	mg/L	6010	0.126		<0.1		1.22			*
7439-92-1	Lead	т	mg/L	6020	<0.0013		<0.0013		<0.0013			*
7439-95-4	Magnesium	т	mg/L	6010	8.52		11		10.4			*
7439-96-5	Manganese	т	mg/L	6020	0.0544	*	0.0223	*	0.731	*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	93	8004-098	33
	Facility's L	ocal Well or Spring Number (e.g	1., MW-	1, MW-2, e	tc.)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ſ	7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В		*
	7440-02-0	Nickel	т	mg/L	6020	0.00598		<0.005		<0.005			*
	7440-09-7	Potassium	т	mg/L	6010	0.312	В	1.93	В	2.72			*
	7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
	7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00677		0.00524			*
	7440-22-4	Silver	Т	mg/L	6020	<0.001	*В	<0.001	*В	<0.001	*В		*
2	7440-23-5	Sodium	т	mg/L	6010	41.2		40.6		33.3			*
L	7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005			*
	7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002			*
	7440-61-1	Uranium	т	mg/L	6020	<0.001		<0.001		<0.001			*
	7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02			*
	7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02			*
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.01		<0.01		<0.01			*
	67-64-1	Acetone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01			*
	107-02-8	Acrolein	т	mg/L	8260	<0.01		<0.01		<0.01	J		*
	107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.005		<0.01			*
	71-43-2	Benzene	т	mg/L	8260	<0.005		<0.005		<0.005			*
	108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
	1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015		<0.015			*
	100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005		<0.005			*
	108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER1	Facility Well/Spring Number				8004-0984	Ļ	8004-098	2	8004-47	'93	8004-098	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005		<0.005	*		*
74-83-9	Methyl bromide	т	mg/L	8260	<0.005	J	<0.005		<0.005	J		*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01	J	<0.01		<0.01			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005	J	<0.005		<0.005			*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*J		*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260	<0.005		<0.005		<0.005	J		*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005		<0.005		<0.005			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J		*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001	J	<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002	J	<0.002		<0.002	*		*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.0031		0.0022			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1,	Facility Well/Spring Number				8004-0984	1	8004-0982	2	8004-479	93	8004-098	33
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.01	J	<0.01		<0.01			*
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01		<0.01			*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005		<0.005	*		*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.001		<0.005			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005	*		*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002	*	<0.0002		<0.0002			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005	*		*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005			*
1336-36-3	PCB,Total	т	ug/L	8082	<0.18		<0.18		<0.17			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.17		<0.17		<0.16			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.18		<0.18		<0.17			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.14		<0.14		<0.14			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.1		<0.1			*
12672-29-6	PCB-1248	т	ug/L	8082	<0.12		<0.12		<0.12			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-098	4	8004-098	2	8004-47	93	8004-098	33
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.07		<0.07		<0.07			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.05		<0.05		<0.05			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.09		<0.09		<0.09			*
12587-46-1	Gross Alpha	т	pCi/L	9310	1.44	*	0.47	*	3.81	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	0.216	*	37.5	*	35	*		*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	-0.0301	*	0.276	*	0.592	*		*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	-0.681	*	-0.168	*	0.368	*		*
14133-76-7	Technetium-99	т	pCi/L	RL-7100	-1.41	*	48	*	29.6	*		*
14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.0476	*	0.0231	*	0.0745	*		*
10028-17-8	Tritium	т	pCi/L	704R6	-261	*	-587	*	-276	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<25		<25		<25			*
57-12-5	Cyanide	т	mg/L	9010	<0.04		<0.04		<0.04			*
20461-54-5	Iodide	т	mg/L	345.1	<2		<2		<2			*
S0268	Total Organic Carbon	т	mg/L	9060	1.9		<1		<1			*
s0586	Total Organic Halides	т	mg/L	9020	0.016	В	0.023		0.025			*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502) 564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	4819	8004-4	808
Facility's Lo	cal Well or Spring Number (e.g., M	w−1	., MW-2, etc	:.)	369		37	0	37	1	372	2
Sample Sequend	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/10/2013	08:22	4/10/201	3 09:32	4/9/2013	3 08:11	4/8/2013	08:12
Duplicate ("Y	" or "N") ²				Ν		Ν		Ν		Ν	
Split ("Y" or	"N") ³				Ν		Ν		Ν		Ν	
Facility Samp	le ID Number (if applicable)		MW369UG	3 3-13	MW370	JG3-13	MW3710	JG3-13	MW372U	G3-13		
Laboratory Sar	mple ID Number (if applicable)			C1310001	8001	C13100	018002	C13099	017001	C130980	18001	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	4/15/20	13	4/12/2	2013	4/12/2	2013	4/12/20	013	
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	IOWN)	UP		U	Ρ	UI	Þ	UP	1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride (s)	т	mg/L	9056	36		43		8.4		47	
16984-48-8	Fluoride	т	mg/L	9214	0.2		0.16		0.3		0.18	
S0595	Nitrate & Nitrite	т	mg/L	9056	<1		1.2		<1		<1	
14808-79-8	Sulfate	т	mg/L	9056	7.5		18		11		170	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.88		29.88		29.96		29.86	
S0145	Specific Conductance	т	µMH0/cm	Field	392		432		766		879	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value N = Presumptive ID

- D = Concentration from analysis
 - of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	3
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
50906	Static Water Level Elevation	т	Ft. MSL	Field	322.52		322.47		339.69		322.48	
N238	Dissolved Oxygen	т	mg/L	Field	1.19		3.25		1.61		0.76	
S0266	Total Dissolved Solids	т	mg/L	160.1	237		239		475		526	
s0296	рн	т	Units	Field	6.32		6.25		6.79		6.24	
NS215	Eh	т	mV	Field	580		505		690		28	
s0907	Temperature	т	°C	Field	18.72		17.83		16.5		16.67	
7429-90-5	Aluminum	т	mg/L	6020	0.201		<0.2		1.31		<0.2	
7440-36-0	Antimony	т	mg/L	6020	<0.005	В	<0.005		<0.005	В	<0.005	
7440-38-2	Arsenic	т	mg/L	7060	0.00158		0.00151		0.00106		0.00296	
7440-39-3	Barium	т	mg/L	6020	0.388		0.199	*	0.171		0.0768	*
7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	т	mg/L	6010	<0.2	В	<0.2	В	<0.2	В	1.43	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6010	16.4		28.2		29.3		65.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.0234	*В	<0.001		<0.001	B*	<0.001	
7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7439-89-6	Iron	т	mg/L	6010	0.725		<0.1		0.852		1.88	
7439-92-1	Lead	т	mg/L	6020	<0.0013	В	<0.0013		<0.0013	В	<0.0013	
7439-95-4	Magnesium	т	mg/L	6010	6.38		11.5		12.6		26	
7439-96-5	Manganese	т	mg/L	6020	0.218	*	<0.005	*	0.0108	*	0.0612	*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	SR ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	18	8004-481	9	8004-480)8
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	369		370		371		372	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7		Molybdenum	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0		Nickel	т	mg/L	6020	0.00706	*	<0.005		<0.005	*	<0.005	
7440-09-7		Potassium	т	mg/L	6010	0.568		2.48		0.477		2.72	В
7440-16-6		Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	т	mg/L	6020	<0.005		0.00623		<0.005		0.00603	
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001	*В	<0.001		<0.001	*В
7440-23-5		Sodium	т	mg/L	6010	52.4		37.2		121		59.7	
7440-25-7		Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	т	mg/L	6020	<0.001		<0.001		0.00199		<0.001	
7440-62-2		Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6		Zinc	т	mg/L	6020	<0.02	В	<0.02		<0.02	В	<0.02	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
67-64-1		Acetone	т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	
107-02-8		Acrolein	т	mg/L	8260	<0.01		<0.01	J	<0.01	J	<0.01	J
107-13-1		Acrylonitrile	т	mg/L	8260	<0.01		<0.01		<0.005		<0.01	
71-43-2		Benzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7		Chlorobenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7		Xylenes	т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5		Styrene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3		Toluene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-48	08
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	*
74-83-9	Methyl bromide	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.005	J	<0.005	*J	<0.005	*J	<0.005	*J
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.005		<0.005	J	<0.005	J	<0.005	J
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002	J	<0.002	*	<0.002	*	<0.002	*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.0013		<0.001		0.0062	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	8	8004-48	19	8004-48	608
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.001		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	т	ug/L	8082	<0.17		<0.17		<0.17		<0.18	
12674-11-2	PCB-1016	т	ug/L	8082	<0.16		<0.16		<0.16		<0.17	
11104-28-2	PCB-1221	т	ug/L	8082	<0.17		<0.17		<0.17		<0.18	
11141-16-5	PCB-1232	т	ug/L	8082	<0.14		<0.14		<0.14		<0.14	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.1		<0.1		<0.1	
12672-29-6	PCB-1248	т	ug/L	8082	<0.12		<0.12		<0.12		<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480	8
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.07		<0.07		<0.07		<0.07	
11096-82-5	PCB-1260	т	ug/L	8082	<0.05		<0.05		<0.05		<0.05	
11100-14-4	PCB-1268	т	ug/L	8082	<0.09		<0.09		<0.09		<0.09	
12587-46-1	Gross Alpha	т	pCi/L	9310	3.19	*	2.82	*	3.13	*	-0.195	*
12587-47-2	Gross Beta	т	pCi/L	9310	22	*	17.2	*	1.66	*	23.2	*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	0.214	*	0.162	*	0.437	*	0.152	*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	0.0601	*	1.09	*	0.595	*	0.502	*
14133-76-7	Technetium-99	т	pCi/L	RL-7100	25.5	*	12	*	-3.76	*	42.9	*
14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.0249	*	0.0331	*	0.0747	*	0.0953	*
10028-17-8	Tritium	т	pCi/L	704R6	-404	*	-633	*	-481	*	-645	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<25		<25		<25		<25	
57-12-5	Cyanide	т	mg/L	9010	<0.04	J	<0.04	J	<0.04		<0.04	
20461-54-5	Iodide	т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	т	mg/L	9060	1.7		<1		1.8		2.5	
s0586	Total Organic Halides	т	mg/L	9020	0.048		0.015		0.023		0.025	

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502) 564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-09	990	8004-09	985	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g., M	1W-1	l, MW-2, etc	:.)	373		374		375		376	
Sample Sequence	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/9/2013 12	:46	4/8/2013	09:21	4/10/2013	12:25	NA	
Duplicate ("Y	' or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)			MW373UG3	-13	MW374U	G3-13	MW375U0	G3-13	NA		
Laboratory Sam	nple ID Number (if applicable)				C13099030	001	C130980	18002	C1310003	31001	NA	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	rganics Anal	ysis	4/12/2013	}	4/12/20)13	4/15/20	13	NA	
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP		UP		SIDE	<u>.</u>	SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2			*
16887-00-6	Chloride(s)	т	mg/L	9056	47		88		5.9			*
16984-48-8	Fluoride	т	mg/L	9214	0.18		0.19		0.32			*
S0595	Nitrate & Nitrite	т	mg/L	9056	<1		<1		<1			*
14808-79-8	Sulfate	т	mg/L	9056	200		6		35			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.96		29.86		29.88			*
S0145	Specific Conductance	т	µMH0/cm	Field	921		750		449			*

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

- N = Presumptive IDD = Concentration from analysis
 - of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	3
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	W-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
50906	Static Water Level Elevation	т	Ft. MSL	Field	322.39		332.26		338.94			*
N238	Dissolved Oxygen	т	mg/L	Field	1.46		6.52		0.74			*
S0266	Total Dissolved Solids	т	mg/L	160.1	585		421		286			*
s0296	рН	т	Units	Field	6.21		6.86		6.59			*
NS215	Eh	т	mV	Field	498		313		403			*
s0907	Temperature	т	°C	Field	18.33		17.5		19			*
7429-90-5	Aluminum	т	mg/L	6020	<0.2		<0.2		<0.2			*
7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-38-2	Arsenic	т	mg/L	7060	0.00168		0.0021		<0.001			*
7440-39-3	Barium	т	mg/L	6020	0.03	*	0.156	*	0.169	*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-42-8	Boron	т	mg/L	6010	1.8		<0.2	В	<0.2	В		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6010	76.1		20.8		15.3			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02		<0.02			*
7439-89-6	Iron	т	mg/L	6010	<0.1		0.14		0.244			*
7439-92-1	Lead	т	mg/L	6020	<0.0013		<0.0013		<0.0013			*
7439-95-4	Magnesium	т	mg/L	6010	29.4		5.9		6.04			*
7439-96-5	Manganese	т	mg/L	6020	0.0558	*	0.00699	*	0.0161	*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	ER ¹ , Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	8
Facility's	Local Well or Spring Number (e.g	9., MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В		*
7440-02-0	Nickel	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-09-7	Potassium	т	mg/L	6010	3.29		0.536	В	0.338	В		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2	Selenium	т	mg/L	6020	0.00747		0.023		<0.005			*
7440-22-4	Silver	т	mg/L	6020	<0.001	*В	<0.001	*В	<0.001	*В		*
7440-23-5	Sodium	т	mg/L	6010	64.1		120		75.6			*
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1	Uranium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02			*
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02			*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01		<0.01		<0.01			*
67-64-1	Acetone	т	mg/L	8260	<0.01		<0.01		<0.01	J		*
107-02-8	Acrolein	т	mg/L	8260	<0.01	J	<0.01	J	<0.01			*
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01		<0.01			*
71-43-2	Benzene	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015			*
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005		<0.005		<0.005			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005			*
74-83-9	Methyl bromide	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J		*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01	J		*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005	J		*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	т	mg/L	8260	<0.005	*J	<0.005	*J	<0.005	J		*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260	<0.005	J	<0.005	J	<0.005			*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005		<0.005		<0.005			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J		*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002	*	<0.002	*	<0.002	J		*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0064		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	0	8004-09	85	8004-09	88
Facility's Loc	al Well or Spring Number (e.g., M	4W-1	L, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01	J		*
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01		<0.01			*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005	*	<0.005	*	<0.005			*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005			*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002	*	<0.0002			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	*	<0.005	*	<0.005			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005			*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005			*
1336-36-3	PCB,Total	т	ug/L	8082	<0.18		<0.17		<0.17			*
12674-11-2	PCB-1016	т	ug/L	8082	<0.17		<0.16		<0.16			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.18		<0.17		<0.17			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.14		<0.14		<0.14			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.1		<0.1			*
12672-29-6	PCB-1248	т	ug/L	8082	<0.12		<0.12		<0.12			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-4792		8004-0990		8004-098	5	8004-098	8		
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.07		<0.07		<0.07			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.05		<0.05		<0.05			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.09		<0.09		<0.09			*
12587-46-1	Gross Alpha	т	pCi/L	9310	4.14	*	1.37	*	2.84	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	40.3	*	1.65	*	4.35	*		*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	0.23	*	0.37	*	0.42	*		*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	0.458	*	0.517	*	0.456	*		*
14133-76-7	Technetium-99	т	pCi/L	RL-7100	63.7	*	0.972	*	-1.47	*		*
14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.0588	*	0.0896	*	-0.0128	*		*
10028-17-8	Tritium	т	pCi/L	704R6	-498	*	-409	*	-820	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<25		<25		<25			*
57-12-5	Cyanide	т	mg/L	9010	<0.04	J	<0.04		<0.04	J		*
20461-54-5	Iodide	т	mg/L	345.1	<2		<2		<2			*
s0268	Total Organic Carbon	т	mg/L	9060	1		2.1		2.3			*
s0586	Total Organic Halides	т	mg/L	9020	0.04		0.041		0.043			*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502) 564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-098	39	0000-00	00	0000-000	00	0000-000)0
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, etc	2.)	377		E. BLAN	١K	F. BLAN	K	T. BLANK	٢1
Sample Sequend	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		E		F		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		NA		4/4/2013 0)7:15	4/3/2013 0	9:20	4/2/2013 07	7:25
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				NA		RI1UG3-	-13	FB1UG3-	·13	TB1UG3-	13
Laboratory Sa	mple ID Number (if applicable)		NA		C1309411	5001	C13093035	5001	C13092039	9001		
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	ysis	NA		4/5/201	3	4/5/201	3	4/5/2013	3		
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9214		*		*		*		*
S0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

- ²Respond "Y" if the sample was a duplicate of another sample in this report.
- ³Respond "Y" if the sample was split and analyzed by separate laboratories.
- $\frac{4}{5}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.
- ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

N = Presumptive ID
D = Concentration from analysis
e." of a secondary dilution

STANDARD FLAGS:

* = See Comments

A = Average value

J = Estimated Value

B = Analyte found in blank

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-0989)	0000-0000)	0000-0000		0000-0000)
Facility's Loo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	377		E. BLANK	ζ.	F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	на	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.2		<0.2			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.005		<0.005	В		*
7440-38-2	Arsenic	т	mg/L	7060		*	<0.001		<0.001			*
7440-39-3	Barium	т	mg/L	6020		*	<0.005	*	<0.005			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.001		<0.001			*
7440-42-8	Boron	т	mg/L	6010		*	<0.2	В	<0.2	В		*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6010		*	<1		<1			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001	В*		*
7440-50-8	Copper	т	mg/L	6020		*	<0.02		<0.02			*
7439-89-6	Iron	т	mg/L	6010		*	<0.1		<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.0013		<0.0013	В		*
7439-95-4	Magnesium	т	mg/L	6010		*	<0.025		<0.025			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005	*	<0.005	*		*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	0
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	377		E. BLAN	K	F. BLAN	к	T. BLANK	(1
CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7		Molybdenum	т	mg/L	6020		*	<0.001	В	<0.001	В		*
7440-02-0		Nickel	т	mg/L	6020		*	<0.005		<0.005	*		*
7440-09-7		Potassium	т	mg/L	6010		*	<0.2	В	<0.2	В		*
7440-16-6		Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	т	mg/L	6020		*	<0.001	*В	<0.001			*
7440-23-5		Sodium	т	mg/L	6010		*	<1		<1			*
7440-25-7		Tantalum	т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0		Thallium	т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	т	mg/L	6020		*	<0.001		<0.001			*
7440-62-2		Vanadium	т	mg/L	6020		*	<0.02		<0.02			*
7440-66-6		Zinc	т	mg/L	6020		*	<0.02		<0.02	В		*
108-05-4		Vinyl acetate	т	mg/L	8260		*	<0.01		<0.01		<0.01	
67-64-1		Acetone	т	mg/L	8260		*	<0.01	J	<0.01	J	<0.01	J
107-02-8		Acrolein	т	mg/L	8260		*	<0.01		<0.01		<0.01	
107-13-1		Acrylonitrile	т	mg/L	8260		*	<0.01		<0.01		<0.01	
71-43-2		Benzene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-90-7		Chlorobenzene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
1330-20-7		Xylenes	т	mg/L	8260		*	<0.015		<0.015		<0.015	
100-42-5		Styrene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-88-3		Toluene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-97-5		Chlorobromomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000	0	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g.,)	MW-1	1, MW-2, et	.c.)	377		E. BLANK	(F. BLAN	IK	T. BLANI	< 1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-66-3	Chloroform	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260		*	<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.005	J	<0.005	J	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001	J	<0.001	J	<0.001	J
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-0000	D	0000-00	00	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	1, MW-2, et	.c.)	377		E. BLANK	<	F. BLAN	١K	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.01		<0.01		<0.01	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.17		<0.17			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.16		<0.16			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.17		<0.17			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.14		<0.13			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.1		<0.1			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.12		<0.11			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-38

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	377		E. BLANK		F. BLAN	к	T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.07		<0.07			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.05		<0.05			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.09		<0.09			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	0.909	*	0.202	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	1.7	*	-0.153	*		*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129		*	0.686	*	0.00391	*		*
10098-97-2	Strontium-90	т	pCi/L	RL-7140		*	0.491	*	0.472	*		*
14133-76-7	Technetium-99	т	pCi/L	RL-7100		*	-0.216	*	5.2	*		*
14269-63-7	Thorium-230	т	pCi/L	RL-7128		*	0.109	*	0.1	*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*	-536	*	-580	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	т	mg/L	345.1		*	<2		<2			*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502) 564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				000-000	00	0000-00	00	0000-000	00	0000-000)0
Facility's Loo	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	:.)	T. BLANK	(2	T. BLAN	K 3	T. BLANK	< 4	T. BLANK	(5
Sample Sequend	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	т		т		т		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/3/2013 0	7:20	4/4/2013 0	7:10	4/8/2013 0	7:20	4/9/2013 07	7:15
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				TB2UG3-	13	TB3UG3	-13	TB4UG3-	·13	TB5UG3-	13
Laboratory Sa	mple ID Number (if applicable)		C13093048	001	C1309411	4001	C13098032	2001	C13099028	001		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	4/5/201	3	4/5/201	3	4/12/201	3	4/12/201	3		
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9214		*		*		*		*
S0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

 1 AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

 $^3\text{Respond}$ "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive IDD = Concentration from analysis

of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000	0	0000-0000	C	0000-0000		0000-0000)
Facility's Lo	ocal Well or Spring Number (e.g., Mw	1-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK 4	1	T. BLANK	5
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
S0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	т	mg/L	7060		*		*		*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6010		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6010		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	т	mg/L	6020		*		*		*		*
7439-89-6	Iron	т	mg/L	6010		*		*		*		*
7439-92-1	Lead	т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	т	mg/L	6010		*		*		*		*
7439-96-5	Manganese	т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				0000-000	0	0000-000	00	0000-000	00	000-000	00
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLAN	٢3	T. BLANK	ζ4	T. BLANK	(5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*		*
7440-02-0	Nickel	т	mg/L	6020		*		*		*		*
7440-09-7	Potassium	т	mg/L	6010		*		*		*		*
7440-16-6	Rhodium	т	mg/L	6020		*		*		*		*
7782-49-2	Selenium	т	mg/L	6020		*		*		*		*
7440-22-4	Silver	т	mg/L	6020		*		*		*		*
7440-23-5	Sodium	т	mg/L	6010		*		*		*		*
7440-25-7	Tantalum	т	mg/L	6020		*		*		*		*
7440-28-0	Thallium	т	mg/L	6020		*		*		*		*
7440-61-1	Uranium	т	mg/L	6020		*		*		*		*
7440-62-2	Vanadium	т	mg/L	6020		*		*		*		*
7440-66-6	Zinc	т	mg/L	6020		*		*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
67-64-1	Acetone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01		<0.01	
107-02-8	Acrolein	т	mg/L	8260	<0.01		<0.01		<0.01	J	<0.01	J
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2	Benzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-000	0	0000-00	00	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	T. BLAN	K 4	T. BLAN	K 5
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	*
74-83-9	Methyl bromide	т	mg/L	8260	<0.005		<0.005		<0.005	J	<0.005	J
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.005		<0.005		<0.005	*J	<0.005	*J
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.005		<0.005		<0.005	J	<0.005	J
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001	J	<0.001	J	<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002		<0.002		<0.002	*	<0.002	*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	0000-00	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK	3	T. BLAN	Κ4	T. BLAN	K 5
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-44

AKGWA NUMBER1	, Facility Well/Spring Number				0000-000	C	0000-0000		0000-0000	0	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	T. BLANK	2	T. BLANK 3		T. BLANK	4	T. BLANK	5
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129		*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	RL-7140		*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	RL-7100		*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	RL-7128		*		*		*		*
10028-17-8	Tritium	т	pCi/L	704R6		*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	т	mg/L	345.1		*		*		*		*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502) 564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		000-000	00	0000-00	00	8004-48	19	Ν			
Facility's Loc	al Well or Spring Number (e.g., M	W-1	., MW-2, etc	:.)	T. BLANK	6	T. BLAN	K 7	371			
Sample Sequenc	e #				1		1		2			
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	Т		Т		NA			
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		4/10/2013 0	7:25	4/15/2013 07:30		4/9/2013 (08:11		
Duplicate ("Y"	or "N") ²				Ν		Ŋ		Y			
Split ("Y" or	"N") ³				Ν		N		N			1
Facility Sampl	e ID Number (if applicable)				TB6UG3-	13	TB7UG3	-13	MW371DU	G3-13		/
Laboratory Sam	aboratory Sample ID Number (if applicable)				C13100030001 C13105023001		C13099017002					
Date of Analys	ate of Analysis (Month/Day/Year) For <u>Volatile Organics</u>			ysis	4/12/201	3	4/15/20	13	4/12/2013			
Gradient with	respect to Monitored Unit (UP, DC	WN,	, SIDE, UNKNOWN)		NA		NA		UP		I Y	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQI ⁵	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*	<2			\mathbf{N}
16887-00-6	Chloride(s)	т	mg/L	9056		*		*	8.5			Λ
16984-48-8	Fluoride	т	mg/L	9214		*		*	0.32			$ \rangle$
S0595	Nitrate & Nitrite	т	mg/L	9056		*		*	<1			
14808-79-8	Sulfate	т	mg/L	9056		*		*	14			
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*	29.96			
S0145	Specific Conductance	т	µMH0/cm	Field		*		*	766			

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

D = Concentration from analysis ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." of a secondary dilution

STANDARD FLAGS:

* = See Comments

A = Average value

N = Presumptive ID

J = Estimated Value

B = Analyte found in blank

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER1,	, Facility Well/Spring Number				0000-0000	C	0000-0000	C	8004-4819)		
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	6	T. BLANK	7	371			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*	339.69			\Box
N238	Dissolved Oxygen	т	mg/L	Field		*		*	1.61			\Box
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*	423			/
s0296	рн	т	Units	Field		*		*	6.79			\mathbf{V}
NS215	Eh	т	mV	Field		*		*	690			
s0907	Temperature	т	°C	Field		*		*	16.5			
7429-90-5	Aluminum	т	mg/L	6020		*		*	0.741			
7440-36-0	Antimony	т	mg/L	6020		*		*	<0.005			
7440-38-2	Arsenic	т	mg/L	7060		*		*	<0.001		X	
7440-39-3	Barium	т	mg/L	6020		*		*	0.146	*		
7440-41-7	Beryllium	т	mg/L	6020		*		*	<0.001			
7440-42-8	Boron	т	mg/L	6010		*		*	<0.2	В		
7440-43-9	Cadmium	т	mg/L	6020		*		*	<0.001			
7440-70-2	Calcium	т	mg/L	6010		*		*	24.3			$\mathbf{\Lambda}$
7440-47-3	Chromium	т	mg/L	6020		*		*	<0.01			\square
7440-48-4	Cobalt	т	mg/L	6020		*		*	<0.001			\square
7440-50-8	Copper	т	mg/L	6020		*		*	<0.02			
7439-89-6	Iron	т	mg/L	6010		*		*	0.369			
7439-92-1	Lead	т	mg/L	6020		*		*	<0.0013			
7439-95-4	Magnesium	т	mg/L	6010		*		*	10.3			
7439-96-5	Manganese	т	mg/L	6020		*		*	<0.005	*		
7439-97-6	Mercury	т	mg/L	7470		*		*	<0.0002			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-47

AKGWA NUMBER	¹ , Facility Well/Spring Number				0000-000	0	0000-000	00	8004-481	9		/
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	T. BLANK	6	T. BLANI	<7	371			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*		*	<0.001	В		\square
7440-02-0	Nickel	т	mg/L	6020		*		*	<0.005			\square
7440-09-7	Potassium	т	mg/L	6010		*		*	0.418	В		
7440-16-6	Rhodium	т	mg/L	6020		*		*	<0.005			
7782-49-2	Selenium	т	mg/L	6020		*		*	<0.005			
7440-22-4	Silver	т	mg/L	6020		*		*	<0.001	*В		
7440-23-5	Sodium	т	mg/L	6010		*		*	113			
7440-25-7	Tantalum	т	mg/L	6020		*		*	<0.005			
7440-28-0	Thallium	т	mg/L	6020		*		*	<0.002		X	
7440-61-1	Uranium	т	mg/L	6020		*		*	0.00147			
7440-62-2	Vanadium	т	mg/L	6020		*		*	<0.02			
7440-66-6	Zinc	т	mg/L	6020		*		*	<0.02			
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01		<0.01		<0.01			
67-64-1	Acetone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01			
107-02-8	Acrolein	т	mg/L	8260	<0.01		<0.01		<0.01	J		
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01		<0.01			
71-43-2	Benzene	т	mg/L	8260	<0.005		<0.005		<0.005			
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005		<0.005			
1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015		<0.015			
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005		<0.005			
108-88-3	Toluene	т	mg/L	8260	<0.005		<0.005		<0.005			
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005		<0.005		<0.005			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-000	0	8004-48	19		
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK 6	6	T. BLANK	7	371			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	타니슈GS
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			17
75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005		<0.005	*		1/
74-83-9	Methyl bromide	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J		/
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01			
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005			
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		$ \rangle /$	
75-00-3	Chloroethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	*J	()	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		V	
74-87-3	Methyl chloride	т	mg/L	8260	<0.005		<0.005		<0.005	J	Å	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			
74-95-3	Methylene bromide	т	mg/L	8260	<0.005		<0.005		<0.005			
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			Ι
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005		<0.005		<0.005			$\left \right\rangle$
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J		$ \rangle$
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005		<0.005			
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002	J	<0.002	J	<0.002	*		
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-49

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	C	0000-000	0	8004-48	19		
Facility's Loc	al Well or Spring Number (e.g., M	ſ₩-1	, MW-2, et	.c.)	T. BLANK	6	T. BLANK	7	371			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L Z G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005			7
591-78-6	2-Hexanone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01			1
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01		<0.01			\Box
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005		<0.005	*		
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005			
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005	*		
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01			
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002	*	<0.0002			
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		X	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005			
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005	*		
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005		<0.005		/ \	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005			
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005			
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005			
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.18			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.17			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.18			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.14			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.1			
12672-29-6	PCB-1248	т	ug/L	8082		*		*	<0.12			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	D	0000-0000		8004-481	9		/
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	T. BLANK	6	T. BLANK 7	7	371			
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*	<0.07			\square
11096-82-5	PCB-1260	т	ug/L	8082		*		*	<0.05			17
11100-14-4	PCB-1268	т	ug/L	8082		*		*	<0.09			/
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*	0.148	*		
12587-47-2	Gross Beta	т	pCi/L	9310		*		*	2.37	*		
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		
13982-63-3	Radium-226	т	pCi/L	RL-7129		*		*	0.47	*		
10098-97-2	Strontium-90	т	pCi/L	RL-7140		*		*	0.134	*	V	
14133-76-7	Technetium-99	т	pCi/L	RL-7100		*		*	-1.42	*	Å	
14269-63-7	Thorium-230	т	pCi/L	RL-7128		*		*	0.0248	*		
10028-17-8	Tritium	т	pCi/L	704R6		*		*	-885	*		
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*	<25			
57-12-5	Cyanide	т	mg/L	9010		*		*	<0.04			
20461-54-5	Iodide	т	mg/L	345.1		*		*	<2			Ν
S0268	Total Organic Carbon	т	mg/L	9060		*		*	1.8			Λ
s0586	Total Organic Halides	т	mg/L	9020		*		*	0.025			\square
												\square
		Π										\square
										1		\square
											1	\square
										1	/	$ \uparrow \rangle$

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4798 MW357	MW357UG3-13	Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.32. Rad error is 1.21.
		Gross beta		TPU is 3.08. Rad error is 2.75.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.365. Rad error is 0.168.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0142. Rad error is 0.0101.
		Technetium-99		TPU is 12.5. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.12. Rad error is 0.0897.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 605. Rad error is 603.
3004-4799 MW358	MW358UG3-13	Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.44. Rad error is 1.32.
		Gross beta		TPU is 3.18. Rad error is 2.83.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.405. Rad error is 0.241.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0411. Rad error is 0.0288.
		Technetium-99		TPU is 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0982. Rad error is 0.0584.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 606. Rad error is 604.
		Total Organic Carbon	Х	Other specific flags and footnotes may be required to properly define the results.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0981 MW359		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sampl was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sampl was collected.
		Eh		During sampling, the well went dry; therefore, no sampl was collected.
		Temperature		During sampling, the well went dry; therefore, no sampl was collected.
		Aluminum		During sampling, the well went dry; therefore, no sampl was collected.
		Antimony		During sampling, the well went dry; therefore, no sampl was collected.
		Arsenic		During sampling, the well went dry; therefore, no sampling sampling, the well went dry; therefore, no sampling samples are collected.
		Barium		During sampling, the well went dry; therefore, no sampl was collected.
		Beryllium		During sampling, the well went dry; therefore, no sampl was collected.
		Boron		During sampling, the well went dry; therefore, no sampl was collected.
		Cadmium		During sampling, the well went dry; therefore, no sampl was collected.
		Calcium		During sampling, the well went dry; therefore, no samplivas collected.
		Chromium		During sampling, the well went dry; therefore, no sampl was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.
		Copper		During sampling, the well went dry; therefore, no sampling was collected.
		Iron		During sampling, the well went dry; therefore, no sampl was collected.
		Lead		During sampling, the well went dry; therefore, no sampl was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0981 MW359	·	Magnesium		During sampling, the well went dry; therefore, no samp was collected.
		Manganese		During sampling, the well went dry; therefore, no samp was collected.
		Mercury		During sampling, the well went dry; therefore, no samp was collected.
		Molybdenum		During sampling, the well went dry; therefore, no samp was collected.
		Nickel		During sampling, the well went dry; therefore, no samp was collected.
		Potassium		During sampling, the well went dry; therefore, no samp was collected.
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.
		Selenium		During sampling, the well went dry; therefore, no samp was collected.
		Silver		During sampling, the well went dry; therefore, no samp was collected.
		Sodium		During sampling, the well went dry; therefore, no samp was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0981 MW359		Tribromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampli was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampling was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sampl was collected.
		lodomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0981 MW359		Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampli was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampli was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampli was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sampli was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sampli was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sampl was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sampling was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sampling sampling, the well went dry; therefore, no sampling samples are collected.
		PCB-1260		During sampling, the well went dry; therefore, no sampling sampling.
		PCB-1268		During sampling, the well went dry; therefore, no sampling sampling.
		Gross alpha		During sampling, the well went dry; therefore, no sampling sampling, the well went dry; therefore, no sampling samples are collected.
		Gross beta		During sampling, the well went dry; therefore, no samplivas collected.
		lodine-131		During sampling, the well went dry; therefore, no sampli was collected.
		Radium-226		During sampling, the well went dry; therefore, no sampl was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sampl was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sampl was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0981 MW359	·	Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no samplivas collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sampl was collected.
		Cyanide		During sampling, the well went dry; therefore, no sampl was collected.
		lodide		During sampling, the well went dry; therefore, no sampl was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sampl was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sampl was collected.
3004-4800 MW360	MW360UG3-13	Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0231. Rad error is 0.0222.
		Gross beta		TPU is 1.08. Rad error is 1.01.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.388. Rad error is 0.17.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.00372. Rad error is 0.00263.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.13. Rad error is 0.103.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 603. Rad error is 601.
8004-4795 MW361	MW361UG3-13	Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.13. Rad error is 1.89.
		Gross beta		TPU is 3.71. Rad error is 3.26.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.38. Rad error is 0.197.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.122. Rad error is 0.0837.
		Technetium-99		TPU is 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.12. Rad error is 0.0894.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 616. Rad error is 615.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0986 MW362		Bromide		During sampling the well became partially dry, this analy was not collected.
		Chloride		During sampling the well became partially dry, this analy was not collected.
		Fluoride		During sampling the well became partially dry, this analy was not collected.
		Nitrate & Nitrite		During sampling the well became partially dry, this analy was not collected.
		Sulfate		During sampling the well became partially dry, this analy was not collected.
		Barometric Pressure Reading		During sampling the well became partially dry, this analy was not collected.
		Specific Conductance		During sampling the well became partially dry, this analy was not collected.
		Static Water Level Elevation		During sampling the well became partially dry, this analy was not collected.
		Dissolved Oxygen		During sampling the well became partially dry, this analy was not collected.
		Total Dissolved Solids		During sampling the well became partially dry, this analy was not collected.
		рН		During sampling the well became partially dry, this analy was not collected.
		Eh		During sampling the well became partially dry, this analy was not collected.
		Temperature		During sampling the well became partially dry, this analy was not collected.
		Aluminum		During sampling the well became partially dry, this analy was not collected.
		Antimony		During sampling the well became partially dry, this analy was not collected.
		Arsenic		During sampling the well became partially dry, this analy was not collected.
		Barium		During sampling the well became partially dry, this analy was not collected.
		Beryllium		During sampling the well became partially dry, this analy was not collected.
		Boron		During sampling the well became partially dry, this analy was not collected.
		Cadmium		During sampling the well became partially dry, this analy was not collected.
		Calcium		During sampling the well became partially dry, this analy was not collected.
		Chromium		During sampling the well became partially dry, this analy was not collected.
		Cobalt		During sampling the well became partially dry, this analy was not collected.
		Copper		During sampling the well became partially dry, this analy was not collected.
		Iron		During sampling the well became partially dry, this analy was not collected.
		Lead		During sampling the well became partially dry, this analy was not collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0986 MW362		Magnesium		During sampling the well became partially dry, this analy was not collected.
		Manganese		During sampling the well became partially dry, this analy was not collected.
		Mercury		During sampling the well became partially dry, this analy was not collected.
		Molybdenum		During sampling the well became partially dry, this analy was not collected.
		Nickel		During sampling the well became partially dry, this analy was not collected.
		Potassium		During sampling the well became partially dry, this analy was not collected.
		Rhodium		During sampling the well became partially dry, this analy was not collected.
		Selenium		During sampling the well became partially dry, this analy was not collected.
		Silver		During sampling the well became partially dry, this analy was not collected.
		Sodium		During sampling the well became partially dry, this analy was not collected.
		Tantalum		During sampling the well became partially dry, this analy was not collected.
		Thallium		During sampling the well became partially dry, this analy was not collected.
		Uranium		During sampling the well became partially dry, this analy was not collected.
		Vanadium		During sampling the well became partially dry, this analy was not collected.
		Zinc		During sampling the well became partially dry, this analy was not collected.
		Vinyl acetate		During sampling the well became partially dry, this analy was not collected.
		Acetone		During sampling the well became partially dry, this analy was not collected.
		Acrolein		During sampling the well became partially dry, this analy was not collected.
		Acrylonitrile		During sampling the well became partially dry, this analy was not collected.
		Benzene		During sampling the well became partially dry, this analy was not collected.
		Chlorobenzene		During sampling the well became partially dry, this analy was not collected.
		Xylenes		During sampling the well became partially dry, this analy was not collected.
		Styrene		During sampling the well became partially dry, this analy was not collected.
		Toluene		During sampling the well became partially dry, this analy was not collected.
		Chlorobromomethane		During sampling the well became partially dry, this analy was not collected.
		Bromodichloromethane		During sampling the well became partially dry, this analy was not collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0986 MW362		Tribromomethane		During sampling the well became partially dry, this analy was not collected.
		Methyl bromide		During sampling the well became partially dry, this analy- was not collected.
		Methyl Ethyl Ketone		During sampling the well became partially dry, this analy was not collected.
		trans-1,4-Dichloro-2-butene		During sampling the well became partially dry, this analy was not collected.
		Carbon disulfide		During sampling the well became partially dry, this analy was not collected.
		Chloroethane		During sampling the well became partially dry, this analy was not collected.
		Chloroform		During sampling the well became partially dry, this analy was not collected.
		Methyl chloride		During sampling the well became partially dry, this analy was not collected.
		cis-1,2-Dichloroethene		During sampling the well became partially dry, this analy was not collected.
		Methylene bromide		During sampling the well became partially dry, this analy was not collected.
		1,1-Dichloroethane		During sampling the well became partially dry, this analy was not collected.
		1,2-Dichloroethane		During sampling the well became partially dry, this analy was not collected.
		1,1-Dichloroethylene		During sampling the well became partially dry, this analy was not collected.
		1,2-Dibromoethane		During sampling the well became partially dry, this analy was not collected.
		1,1,2,2-Tetrachloroethane		During sampling the well became partially dry, this analy was not collected.
		1,1,1-Trichloroethane		During sampling the well became partially dry, this analy was not collected.
		1,1,2-Trichloroethane		During sampling the well became partially dry, this analy was not collected.
		1,1,1,2-Tetrachloroethane		During sampling the well became partially dry, this analy was not collected.
		Vinyl chloride		During sampling the well became partially dry, this analy was not collected.
		Tetrachloroethene		During sampling the well became partially dry, this analy was not collected.
		Trichloroethene		During sampling the well became partially dry, this analy was not collected.
		Ethylbenzene		During sampling the well became partially dry, this analy was not collected.
		2-Hexanone		During sampling the well became partially dry, this analy was not collected.
		lodomethane		During sampling the well became partially dry, this analy was not collected.
		Dibromochloromethane		During sampling the well became partially dry, this analy was not collected.
		Carbon tetrachloride		During sampling the well became partially dry, this analy was not collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0986 MW362		Dichloromethane		During sampling the well became partially dry, this analysi was not collected.
		Methyl Isobutyl Ketone		During sampling the well became partially dry, this analysi was not collected.
		1,2-Dibromo-3-chloropropane		During sampling the well became partially dry, this analysi was not collected.
		1,2-Dichloropropane		During sampling the well became partially dry, this analysi was not collected.
		trans-1,3-Dichloropropene		During sampling the well became partially dry, this analysi was not collected.
		cis-1,3-Dichloropropene		During sampling the well became partially dry, this analysi was not collected.
		trans-1,2-Dichloroethene		During sampling the well became partially dry, this analysi was not collected.
		Trichlorofluoromethane		During sampling the well became partially dry, this analysi was not collected.
		1,2,3-Trichloropropane		During sampling the well became partially dry, this analysi was not collected.
		1,2-Dichlorobenzene		During sampling the well became partially dry, this analysi was not collected.
		1,4-Dichlorobenzene		During sampling the well became partially dry, this analysi was not collected.
		PCB, Total		During sampling the well became partially dry, this analysi was not collected.
		PCB-1016		During sampling the well became partially dry, this analysi was not collected.
		PCB-1221		During sampling the well became partially dry, this analys was not collected.
		PCB-1232		During sampling the well became partially dry, this analys was not collected.
		PCB-1242		During sampling the well became partially dry, this analys was not collected.
		PCB-1248		During sampling the well became partially dry, this analys was not collected.
		PCB-1254		During sampling the well became partially dry, this analysi was not collected.
		PCB-1260		During sampling the well became partially dry, this analysi was not collected.
		PCB-1268		During sampling the well became partially dry, this analys was not collected.
		Gross alpha		During sampling the well became partially dry, this analysi was not collected.
		Gross beta		During sampling the well became partially dry, this analys was not collected.
		lodine-131		During sampling the well became partially dry, this analysi was not collected.
		Radium-226		During sampling the well became partially dry, this analysi was not collected.
		Strontium-90		During sampling the well became partially dry, this analysi was not collected.
		Technetium-99		During sampling the well became partially dry, this analysi was not collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0986 MW362	Gampio ID	Thorium-230	<u> </u>	During sampling the well became partially dry, this analysis was not collected.
		Tritium		During sampling the well became partially dry, this analysi was not collected.
		Chemical Oxygen Demand		During sampling the well became partially dry, this analysi was not collected.
		Cyanide		During sampling the well became partially dry, this analysi was not collected.
		lodide		During sampling the well became partially dry, this analysi was not collected.
		Total Organic Carbon		During sampling the well became partially dry, this analysi was not collected.
		Total Organic Halides		During sampling the well became partially dry, this analysi was not collected.
004-4796 MW363	MW363UG3-13	Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		1,2-Dibromo-3-chloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.318. Rad error is 0.304.
		Gross beta		TPU is 1.35. Rad error is 1.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.395. Rad error is 0.226.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0252. Rad error is 0.0176.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0973. Rad error is 0.0575.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 600. Rad error is 595.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4797 MW364	MW364UG3-13	Nitrate & Nitrite	*	Duplicate analysis not within control limits.
		Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.477. Rad error is 0.434.
		Gross beta		TPU is 4.87. Rad error is 4.15.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.373. Rad error is 0.182.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.165. Rad error is 0.122.
		Technetium-99		TPU is 12.8. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.105. Rad error is 0.0693.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 605. Rad error is 603.
3004-0984 MW365	MW365UG3-13	Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		1,2-Dibromo-3-chloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.956. Rad error is 0.912.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.041. Rad error is 0.039.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.404. Rad error is 0.0601.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.23. Rad error is 0.174.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.098. Rad error is 0.058.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 609. Rad error is 609.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0982 MW366	MW366UG3-13	Nitrate & Nitrite	*	Duplicate analysis not within control limits.
		Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.24. Rad error is 0.221.
		Gross beta		TPU is 4.35. Rad error is 3.76.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.396. Rad error is 0.226.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0531. Rad error is 0.0381.
		Technetium-99		TPU is 12.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0914. Rad error is 0.0467.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 603. Rad error is 600.
004-4793 MW367	MW367UG3-13	Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Tribromomethane	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Chloroethane	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Vinyl chloride	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Dibromochloromethane	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Dichloromethane	Y	MS,MSD recovery and/or RPD failed acceptance crite
		cis-1,3-Dichloropropene	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.65. Rad error is 1.47.
		Gross beta		TPU is 4.12. Rad error is 3.58.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.461. Rad error is 0.32.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.111. Rad error is 0.0763.
		Technetium-99		TPU is 12.3. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0924. Rad error is 0.0469.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 611. Rad error is 610.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0983 MW368		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sampling was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sampli was collected.
		Arsenic		During sampling, the well went dry; therefore, no samplivas collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sampling was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0983 MW368		Magnesium		During sampling, the well went dry; therefore, no samp was collected.
		Manganese		During sampling, the well went dry; therefore, no samp was collected.
		Mercury		During sampling, the well went dry; therefore, no samp was collected.
		Molybdenum		During sampling, the well went dry; therefore, no samp was collected.
		Nickel		During sampling, the well went dry; therefore, no samp was collected.
		Potassium		During sampling, the well went dry; therefore, no samp was collected.
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.
		Selenium		During sampling, the well went dry; therefore, no samp was collected.
		Silver		During sampling, the well went dry; therefore, no samp was collected.
		Sodium		During sampling, the well went dry; therefore, no samp was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0983 MW368		Tribromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sampling was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.
		lodomethane		During sampling, the well went dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0983 MW368	·	Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring	Facility		-	
Point	Sample ID	Constituent	Flag	Description
3004-0983 MW368		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
3004-4820 MW369	MW369UG3-13	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	NX	Sample spike recovery not within control limits. Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.53. Rad error is 1.39.
		Gross beta		TPU is 2.91. Rad error is 2.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.466. Rad error is 0.334.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0187. Rad error is 0.0131.
		Technetium-99		TPU is 11.4. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.106. Rad error is 0.0679.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 607. Rad error is 606.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring	Facility	Quantituurat		Description											
Point	Sample ID	Constituent	Flag	Description											
8004-4818 MW370	MW370UG3-13	Barium	Х	Other specific flags and footnotes may be required to properly define the results.											
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.											
		Silver	Ν	Sample spike recovery not within control limits.											
		Tribromomethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria.											
		Chloroethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria.											
		Vinyl chloride	Y	MS,MSD recovery and/or RPD failed acceptance criteria.											
		Dibromochloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria.											
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.											
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.											
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.41. Rad error is 1.3.											
		Gross beta		TPU is 2.39. Rad error is 2.17.											
		lodine-131		Analysis of constituent not required and not performed.											
													Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.403. Rad error is 0.239.
								Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.317. Rad error is 0.206.					
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.9. Rad error is 10.9.											
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0995. Rad error is 0.0609.											
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 604. Rad error is 600.											

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description		
8004-4819 MW371	MW371UG3-13	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.		
		Manganese	NX	Sample spike recovery not within control limits. Other specific flags and footnotes may be required to properly define the results.		
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.		
		Tribromomethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria		
		Chloroethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria		
		Vinyl chloride	Y	MS,MSD recovery and/or RPD failed acceptance criteria		
		Dibromochloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria		
		Dichloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria		
		cis-1,3-Dichloropropene	Y	MS,MSD recovery and/or RPD failed acceptance criteria		
				Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.91. Rad error is 1.81.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.303. Rad error is 0.288.		
		lodine-131		Analysis of constituent not required and not performed.		
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.482. Rad error is 0.352.		
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.178. Rad error is 0.12.		
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.1.		
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0973. Rad error is 0.0559.		
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 607. Rad error is 605.		

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility	Constituent	Flag	Description
	Sample ID			•
8004-4808 MW372	MW372UG3-13	Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Tribromomethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria.
		Chloroethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria.
		Vinyl chloride	Y	MS,MSD recovery and/or RPD failed acceptance criteria.
		Dibromochloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria.
		Dichloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria.
		cis-1,3-Dichloropropene	Y	MS,MSD recovery and/or RPD failed acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.119. Rad error is 0.113.
		Gross beta		TPU is 3.07. Rad error is 2.76.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.352. Rad error is 0.138.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.151. Rad error is 0.102.
		Technetium-99		TPU is 12.7. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.106. Rad error is 0.0694.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 598. Rad error is 594.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring	Facility	Constituent	Flag	Description
Point	Sample ID	Constituent	Flag	Description
8004-4792 MW373	MW373UG3-13	Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Tribromomethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria.
		Chloroethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria.
		Vinyl chloride	Y	MS,MSD recovery and/or RPD failed acceptance criteria.
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.88. Rad error is 1.69.
		Gross beta		TPU is 4.65. Rad error is 4.02.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.454. Rad error is 0.318.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.137. Rad error is 0.0931.
		Technetium-99		TPU is 13.3. Rad error is 13.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0973. Rad error is 0.0565.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 605. Rad error is 603.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0990 MW374 MV		Barium	X	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Tribromomethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		Chloroethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		Vinyl chloride	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		1,2-Dibromo-3-chloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		cis-1,3-Dichloropropene	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.95. Rad error is 0.91.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.302. Rad error is 0.287.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.43. Rad error is 0.28.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.155. Rad error is 0.104.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.107. Rad error is 0.0707.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 607. Rad error is 605.
8004-0985 MW375	MW375UG3-13	Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.62. Rad error is 1.52.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.748. Rad error is 0.704.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.431. Rad error is 0.28.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.137. Rad error is 0.0936.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0935. Rad error is 0.00743.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 597. Rad error is 591.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no samp was collected.
		Chloride		During sampling, the well went dry; therefore, no samp was collected.
		Fluoride		During sampling, the well went dry; therefore, no samp was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no samp was collected.
		Sulfate		During sampling, the well went dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sam was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sam was collected.
		рН		During sampling, the well went dry; therefore, no sam was collected.
		Eh		During sampling, the well went dry; therefore, no sam was collected.
		Temperature		During sampling, the well went dry; therefore, no sam was collected.
		Aluminum		During sampling, the well went dry; therefore, no sam was collected.
		Antimony		During sampling, the well went dry; therefore, no sam was collected.
		Arsenic		During sampling, the well went dry; therefore, no sam was collected.
		Barium		During sampling, the well went dry; therefore, no sam was collected.
		Beryllium		During sampling, the well went dry; therefore, no sam was collected.
		Boron		During sampling, the well went dry; therefore, no sam was collected.
		Cadmium		During sampling, the well went dry; therefore, no sam was collected.
		Calcium		During sampling, the well went dry; therefore, no sam was collected.
		Chromium		During sampling, the well went dry; therefore, no sam was collected.
		Cobalt		During sampling, the well went dry; therefore, no sam was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no sam was collected.
		Lead		During sampling, the well went dry; therefore, no sam was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Magnesium		During sampling, the well went dry; therefore, no samp was collected.
		Manganese		During sampling, the well went dry; therefore, no samp was collected.
		Mercury		During sampling, the well went dry; therefore, no samp was collected.
		Molybdenum		During sampling, the well went dry; therefore, no samp was collected.
		Nickel		During sampling, the well went dry; therefore, no samp was collected.
		Potassium		During sampling, the well went dry; therefore, no samp was collected.
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.
		Selenium		During sampling, the well went dry; therefore, no samp was collected.
		Silver		During sampling, the well went dry; therefore, no samp was collected.
		Sodium		During sampling, the well went dry; therefore, no samp was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Tribromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no samp was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no samp was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no samp was collected.
		Chloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Chloroform		During sampling, the well went dry; therefore, no samp was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.
		lodomethane		During sampling, the well went dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sampl was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Thorium-230	0	During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sampling was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377		Magnesium		During sampling, the well went dry; therefore, no sampling was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry; therefore, no sampling was collected.
		Molybdenum		During sampling, the well went dry; therefore, no samp was collected.
		Nickel		During sampling, the well went dry; therefore, no samp was collected.
		Potassium		During sampling, the well went dry; therefore, no samp was collected.
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.
		Selenium		During sampling, the well went dry; therefore, no samp was collected.
		Silver		During sampling, the well went dry; therefore, no samp was collected.
		Sodium		During sampling, the well went dry; therefore, no samp was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sampli was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sampli was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampli was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampli was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		lodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl- was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sampling was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samplivas collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samplivas collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1UG3-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.577. Rad error is 0.548.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.308. Rad error is 0.291.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.481. Rad error is 0.344.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.148. Rad error is 0.1.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.9. Rad error is 13.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.106. Rad error is 0.0689.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 602. Rad error is 599.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1UG3-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	NX	Sample spike recovery not within control limits. Other specific flags and footnotes may be required to proper define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.158. Rad error is 0.153.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0293. Rad error is 0.0279.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.379. Rad error is 0.00782.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.142. Rad error is 0.0968.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.4. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.117. Rad error is 0.0846.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 601. Rad error is 598.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG3-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG3-13	Zinc	riag	Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG3-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performed
		pН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe
		Vanadium		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG3-13	Zinc	i iag	Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG3-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG3-13	Zinc	i iag	Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG3-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performed
		pН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe
		Vanadium		Analysis of constituent not required and not performe

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG3-13	Zinc	0	Analysis of constituent not required and not performed.
		Tribromomethane	Y	MS,MSD recovery and/or RPD failed acceptance criter
		Chloroethane	Y	MS,MSD recovery and/or RPD failed acceptance criteri
		Vinyl chloride	Y	MS,MSD recovery and/or RPD failed acceptance criteri
		Dibromochloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteri
		Dichloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteri
		cis-1,3-Dichloropropene	Y	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5UG3-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рH		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB5UG3-13	Zinc		Analysis of constituent not required and not performed.
		Tribromomethane	Y	MS,MSD recovery and/or RPD failed acceptance criteri
		Chloroethane	Y	MS,MSD recovery and/or RPD failed acceptance criteri
		Vinyl chloride	Y	MS,MSD recovery and/or RPD failed acceptance criteri
		Dibromochloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteri
		Dichloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteri
		cis-1,3-Dichloropropene	Y	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6UG3-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		pН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6UG3-13	Zinc	Flag	Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB7UG3-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		pН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe
		Vanadium		Analysis of constituent not required and not performed

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB7UG3-13	Zinc		Analysis of constituent not required and not performed
		1,2-Dibromo-3-chloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		Analysis of constituent not required and not performe
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performe
		Thorium-230		Analysis of constituent not required and not performe
		Tritium		Analysis of constituent not required and not performe
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		lodide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4819 MW371	MW371DUG3-13	Barium	X	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Tribromomethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		Chloroethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		Vinyl chloride	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.116. Rad error is 0.112.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.426. Rad error is 0.403.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.425. Rad error is 0.269.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0414. Rad error is 0.0289.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0948. Rad error is 0.0529.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 595. Rad error is 587.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/CONTAINED – QUARTERLY, 2nd Quarter 2013 Facility: U.S. DOE – Paducah Gaseous Diffusion Plant Permit Number: 073-00045

Finds/Unit: ______ Lab ID: None For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2013 groundwater data collected from the C-746-U Contained Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data included two background wells for comparison with at least three test wells or sidegradient wells (Exhibit 1). The second quarter 2013 data used to conduct the statistical analyses was collected in April 2013. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals with established maximum contaminant levels (MCLs), no statistical analysis was performed. Parameters that have MCLs can be found in 401 *KAR* 47:030, Section 6. For parameters with no established MCL, the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. Results of the one-sided tolerance interval statistical test conclude whether the data show a statistically significant increase of concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the data for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant increase in concentration compared to the background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The tolerance limit (TL) was calculated for the background data.
 - For each parameter, the background data were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be potentially normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: TL = X + (K | x | S)
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well has increased concentration with respect to background data.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit 2 presents the parameters from the available data set and the statistical test performed using the one-sided tolerance interval.

Excluding parameters that have an MCL, Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, second quarter 2013. The observations that are listed are not background data. Background data are presented on pages D-17 through D-77. The sampling dates associated with background data are listed next to the result on pages D-17 through D-77. When field duplicate data are available, the higher of the two readings is retained for further evaluation.

¹ For pH, two-sided TL (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Station	Туре	Aquifer
MW357	TW	URGA
MW358	TW	LRGA
MW359*	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362*	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365	TW	UCRS
MW366	SG	URGA
MW367	SG	LRGA
MW368*	SG	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374	BG	UCRS
MW375	SG	UCRS
MW376*	SG	UCRS
MW377*	SG	UCRS

Exhibit 1. Station Identification for Monitoring Wells Analyzed

BG: upgradient or background wells TW: downgradient or test wells SG: sidegradient wells * Well was dry this quarter.

	Parameters	
	Aluminum	
	Boron	
	Calcium	
	Chloride	
	Cobalt	
	Conductivity	
	Dissolved Oxygen	
	Dissolved Solids	
	Iron	
	Magnesium	
	Manganese	
	Nickel	
(Oxidation-Reduction Potential	
	PCB, Total	
	PCB-1242	
	pH*	
	Potassium	
	Sodium	
	Sulfate	
	Technetium-99	
	Total Organic Carbon (TOC)	
	Total Organic Halides (TOX) Uranium	

Exhibit 2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test

* For pH, the test well results were compared to both an upper and lower TL to determine if statistically significant deviations exist in concentrations with respect to upgradient well data.

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	0	4	0	no
1,1,2,2-Tetrachloroethane	4	0	4	0	no
1,1,2-Trichloroethane	4	0	4	0	no
1,1-Dichloroethane	4	0	4	0	no
1,2,3-Trichloropropane	4	0	4	0	no
1,2-Dibromo-3-chloropropane	4	0	4	0	no
1,2-Dibromoethane	4	0	4	0	no
1,2-Dichlorobenzene	4	0	4	0	no
1,2-Dichloropropane	4	0	4	0	no
2-Butanone	4	0	4	0	no
2-Hexanone	4	0	4	0	no
4-Methyl-2-pentanone	4	0	4	0	no
Acetone	4	0	4	0	no
Acrolein	4	0	4	0	no
Acrylonitrile	4	0	4	0	no
Aluminum	4	0	3	1	YES
Antimony	4	0	4	0	no
Beryllium	4	0	4	0	no
Boron	4	0	4	0	no
Bromide	4	0	4	0	no
Bromochloromethane	4	0	4	0	
Bromodichloromethane	4	0	4	0	no
Bromoform	4	0	4	0	no
Bromomethane	4	0	4	0	no
Calcium	4	0	0	4	YES
Carbon disulfide	4	0	4	0	no
Chemical Oxygen Demand (COD)	4	0	4	0	
Chloride	4	0	0	4	no YES
Chlorobenzene	4	0	4	0	
Chloroethane	4	0	4	0	no
Chloroform	4	0	4	0	no
Chloromethane	4		4		no
	-	0		0	no
cis-1,2-Dichloroethene	4	0	4	0	no
cis-1,3-Dichloropropene	4	0	4	0	no
Cobalt Conductinity	4	0	3	1	YES
Conductivity	4	0	0	4	YES
Copper	4	0	4	0	no
Cyanide	4	0	4	0	no
Dibromochloromethane	4	0	4	0	no
Dibromomethane	4	0	4	0	no
Dimethylbenzene, Total	4	0	4	0	no
Dissolved Oxygen	4	0	0	4	YES
Dissolved Solids	4	0	0	4	YES
Ethylbenzene	4	0	4	0	no
Iodide	4	0	4	0	no
Iodomethane	4	0	4	0	no
Iron	4	0	0	4	YES
Magnesium	4	0	0	4	YES
Manganese	4	0	0	4	YES
Methylene chloride	4	0	4	0	no

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS

Molybdenum	4	0	4	0	no
Nickel	4	0	3	1	YES
Oxidation-Reduction Potential	4	0	0	4	YES
PCB, Total	4	0	4	0	no
PCB-1016	4	0	4	0	no
PCB-1221	4	0	4	0	no
PCB-1232	4	0	4	0	no
PCB-1242	4	0	4	0	no
PCB-1248	4	0	4	0	no
PCB-1254	4	0	4	0	no
PCB-1260	4	0	4	0	no
PCB-1268	4	0	4	0	no
рН	4	0	0	4	YES
Potassium	4	0	0	4	YES
Radium-226	4	0	4	0	no
Rhodium	4	0	4	0	no
Sodium	4	0	0	4	YES
Styrene	4	0	4	0	no
Sulfate	4	0	0	4	YES
Tantalum	4	0	4	0	no
Technetium-99	4	0	4	0	no
Tetrachloroethene	4	0	4	0	no
Thallium	4	0	4	0	no
Thorium-230	4	0	4	0	no
Toluene	4	0	4	0	no
Total Organic Carbon (TOC)	4	0	0	4	YES
Total Organic Halides (TOX)	4	0	0	4	YES
trans-1,2-Dichloroethene	4	0	4	0	no
trans-1,3-Dichloropropene	4	0	4	0	no
Trans-1,4-Dichloro-2-butene	4	0	4	0	no
Trichlorofluoromethane	4	0	4	0	no
Uranium	4	0	3	1	YES
Vanadium	4	0	4	0	no
Vinyl acetate	4	0	4	0	no
Zinc	4	0	4	0	no

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters			Censored Observation	Uncensored Observation	Statistical Analysis?	
1,1,1,2-Tetrachloroethane	6	0	6	0	no	
1,1,2,2-Tetrachloroethane	6	0	6	0	no	
1,1,2-Trichloroethane	6	0	6	0	no	
1,1-Dichloroethane	6	0	6	0	no	
1,2,3-Trichloropropane	6	0	6	0	no	
1,2-Dibromo-3-chloropropane	6	0	6	0	no	
1,2-Dibromoethane	6	0	6	0	no	
1,2-Dichlorobenzene	6	0	6	0	no	
1,2-Dichloropropane	6	0	6	0	no	
2-Butanone	6	0	6	0	no	
2-Hexanone	6	0	6	0	no	
4-Methyl-2-pentanone	6	0	6	0	no	
Acetone	6	0	6	0	no	
Acrolein	6	0	6	0	no	
Acrylonitrile	6	0	6	0	no	
Aluminum	6	0	5	1	YES	
Antimony	6	0	6	0	no	
Beryllium	6	0	6	0	no	
Boron	6	0	4	2	YES	
Bromide	6	0	6	0	no	
Bromochloromethane	6	0	6	0	no	
Bromodichloromethane	6	0	6	0	no	
Bromoform	6	0	6	0	no	
Bromomethane	6	0	6	0	no	
Calcium	6	0	0	6	YES	
Carbon disulfide	6	0	6	0	no	
Chemical Oxygen Demand (COD)	6	0	6	0	no	
Chloride	6	0	0	6	YES	
Chlorobenzene	6	0	6	0	no	
Chloroethane	6	0	6	0	no	
Chloroform	6	0	6	0	no	
Chloromethane	6	0	6	0	no	
cis-1,2-Dichloroethene	6	0	6	0	no	
cis-1,3-Dichloropropene	6	0	6	0	no	
Cobalt	6	0	4	2	YES	
Conductivity	6	0	0	6	YES	
Copper	6	0	6	0	no	
Cyanide	6	0	6	0	no	
Dibromochloromethane	6	0	6	0	no	
Dibromomethane	6	0	6	0	no	
Dimethylbenzene, Total	6	0	6	0	no	
Dissolved Oxygen	6	0	0	6	YES	
Dissolved Solids	6	0	0	6	YES	
Ethylbenzene	6	0	6	0	no	
Iodide	6	0	6	0	no	
Iodomethane	6	0	6	0	no	
Iron	6	0	2	4	YES	
Magnesium	6	0	0	6	YES	
Manganese	6	0	0	6	YES	
Methylene chloride	6	0	6	0	no	
	0	v	v	0	110	

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA

Molybdenum	6	0	6	0	no
Nickel	6	0	5	1	YES
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	5	1	YES
PCB-1016	6	0	6	0	no
PCB-1221	6	0	6	0	no
PCB-1232	6	0	6	0	no
PCB-1242	6	0	5	1	YES
PCB-1248	6	0	6	0	no
PCB-1254	6	0	6	0	no
PCB-1260	6	0	6	0	no
PCB-1268	6	0	6	0	no
рН	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	6	0	no
Rhodium	6	0	6	0	no
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	no
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	no
Technetium-99	6	0	2	4	YES
Tetrachloroethene	6	0	6	0	no
Thallium	6	0	6	0	no
Thorium-230	6	0	6	0	no
Toluene	6	0	6	0	no
Total Organic Carbon (TOC)	6	0	2	4	YES
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	no
trans-1,3-Dichloropropene	6	0	6	0	no
Trans-1,4-Dichloro-2-butene	6	0	6	0	no
Trichlorofluoromethane	6	0	6	0	no
Uranium	6	0	б	0	no
Vanadium	6	0	6	0	no
Vinyl acetate	6	0	6	0	no
Zinc	6	0	6	0	no

E 1 9 4 4 C	e 3 4 · ·			
Exhibit 4. Summary	' of Missing,	Censored, and Unce	ensored Data—URGA	(Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,2,3-Trichloropropane	6	0	6	0	no
1,2-Dibromo-3-chloropropane	6	0	6	0	no
1,2-Dibromoethane	6	0	6	0	no
1,2-Dichlorobenzene	6	0	6	0	no
1,2-Dichloropropane	6	0	6	0	no
2-Butanone	6	0	6	0	no
2-Hexanone	6	0	6	0	no
4-Methyl-2-pentanone	6	0	6	0	no
Acetone	6	0	6	0	no
Acrolein	6	0	6	0	no
Acrylonitrile	6	0	6	0	no
Aluminum	6	0	6	0	no
Antimony	6	0	6	0	no
Beryllium	6	0	6	0	no
Boron	6	0	3	3	YES
Bromide	6	0	6	0	no
Bromochloromethane	6	0	6	0	no
Bromodichloromethane	6	0	6	0	no
Bromoform	6	0	6	0	no
Bromomethane	6	0	6	0	no
Calcium	6	0	0	6	YES
Carbon disulfide	6	0	6	0	no
Chemical Oxygen Demand (COD)	6	0	6	0	no
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	no
Chloroethane	6	0	6	0	no
Chloroform	6	0	6	0	no
Chloromethane	6	0	6	0	no
cis-1,2-Dichloroethene	6	0	6	0	no
cis-1,3-Dichloropropene	6	0	6	0	no
Cobalt	6	0	4	2	YES
Conductivity	6	0	0	6	YES
Copper	6	0	6	0	no
Cyanide	6	0	6	0	no
Dibromochloromethane	6	0	6	0	
Dibromoethane	6	0	6	0	no
Dimethylbenzene, Total	6	0	6	0	no
Dissolved Oxygen	6	0	0	6	YES
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	no
Iodide	6	0	6	0	no
Iodomethane	6	0	6	0	no
Iron	6	0	3	3	YES
Magnesium	6	0	0	6	YES
8	6		0 2	4	
Manganese Methylene chloride	6	0 0	6	4 0	YES
Molybdenum	6	0	6	0	no
•					no VES
Nickel	6	0	5	1	YES
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	6	0	no
PCB-1016	6	0	6	0	no
PCB-1221 PCB-1232	6 6	0 0	6 6	0 0	no

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

PCB-1242	6	0	6	0	no
PCB-1248	6	0	6	0	no
PCB-1254	б	0	б	0	no
PCB-1260	6	0	б	0	no
PCB-1268	б	0	б	0	no
рН	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	6	0	no
Rhodium	6	0	б	0	no
Sodium	6	0	0	6	YES
Styrene	6	0	б	0	no
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	no
Technetium-99	6	0	1	5	YES
Tetrachloroethene	6	0	б	0	no
Thallium	6	0	6	0	no
Thorium-230	6	0	6	0	no
Toluene	6	0	6	0	no
Total Organic Carbon (TOC)	6	0	4	2	YES
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	б	0	no
trans-1,3-Dichloropropene	6	0	6	0	no
Trans-1,4-Dichloro-2-butene	6	0	б	0	no
Trichlorofluoromethane	6	0	б	0	no
Uranium	6	0	6	0	no
Vanadium	6	0	б	0	no
Vinyl acetate	6	0	6	0	no
Zinc	6	0	6	0	no

Bold denotes parameters with at least one uncensored observation.

Discussion of Results

For the UCRS, URGA, and LRGA, the results of the one-sided upper tolerance interval test are presented on pages D-17 through D-77 and the statistician qualification statement is presented on page D-78. For the UCRS, URGA, and LRGA, the test was applied to 19, 22, and 19 parameters, respectively, listed in bold print in Exhibits 3, 4, and 5. A summary of statistically significant increases by well number is shown in Exhibit 6.

UCRS

In this quarter, statistical test results indicated there were statistically significant increases for dissolved oxygen, oxidation-reduction potential, and sulfate.

<u>URGA</u>

In this quarter, statistical test results indicated that there were statistically significant increases for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, and sulfate.

LRGA

In this quarter, statistical test results indicated that there were statistically significant increases for oxidation reduction potential, and technetium-99.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

UCRS	URGA	LRGA
MW365: dissolved oxygen,	MW357: oxidation-reduction	MW358: oxidation-reduction
sulfate	potential	potential
MW371: (upgradient): oxidation-	MW360: oxidation-reduction	MW361: oxidation-reduction
reduction potential	potential	potential
MW374: (upgradient): dissolved	MW363: oxidation-reduction	MW364: oxidation-reduction
oxygen, oxidation-	potential	potential
reduction potential	MW366: oxidation-reduction	MW367: oxidation-reduction
MW375: oxidation-reduction	potential	potential
potential, sulfate	MW369: (upgradient): oxidation-	MW370: (upgradient): oxidation-
	reduction potential	reduction potential
	MW372: (upgradient): calcium,	MW373: (upgradient): oxidation-
	conductivity, dissolved	reduction potential,
	solids, magnesium,	technetium-99
	sulfate	

Exhibit 6. Summary of Statistically Significant Increases

Parameter	eter Performed Test		Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.95	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	1.31	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.45	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.55	Statistically significant increases relative to background data in MW365 and MW374
Dissolved Solids	Tolerance Interval	0.42	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.98	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.27	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.89	No statistically significant increases relative to background data
Nickel	Tolerance Interval	0.98	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	3.54	Statistically significant increases relative to background data in MW371, MW374, and MW375
рН	Tolerance Interval	0.05	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.72	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	0.49	Statistically significant increases relative to background data in MW365 and MW375
Total Organic Carbon	Tolerance Interval	1.38	No statistically significant increases relative to background data

Exhibit 7. Tests Summary for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Total Organic Halides	Tolerance Interval	1.08	No statistically significant increases relative to background data
Uranium	Tolerance Interval	1.68	No statistically significant increases relative to background data

Exhibit 7. Test Summary for qualified Parameters—UCRS (Continued)

D-15

Parameter	eter Performed Test		Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No statistically significant increases relative to background data
Boron	Tolerance Interval	0.84	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.29	Statistically significant increase relative to background data in MW372
Chloride	Tolerance Interval	0.10	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	0.85	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.12	Statistically significant increase relative to background data in MW372
Dissolved Oxygen	Tolerance Interval	0.76	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.16	Statistically significant increase relative to background data in MW372
Iron	Tolerance Interval	0.95	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.27	Statistically significant increase relative to background data in MW372
Manganese	Tolerance Interval	0.66	No statistically significant increases relative to background data
Nickel	Tolerance Interval	0.91	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	1.26	Statistically significant increases relative to background data in MW357, MW360, MW363, MW366, and MW369
PCB, Total	Tolerance Interval	0.90	No statistically significant increases relative to background data
PCB-1242	Tolerance Interval	1.36	No statistically significant increases relative to background data
рН	Tolerance Interval	0.03	No statistically significant deviations relative to background data

Exhibit 8. Tests Summary for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Potassium	Tolerance Interval	0.72	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.26	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	0.75	Statistically significant increase relative to background data in MW372
Technetium-99	Tolerance Interval	0.87	No statistically significant increases relative to background data
Total Organic Carbon	Tolerance Interval	1.23	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.95	No statistically significant increases relative to background data

Exhibit 8. Test Summary for Qualified Parameters—URGA (Continued)

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Boron	Tolerance Interval	0.68	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.31	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.16	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	1.17	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.26	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.83	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.30	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.96	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.34	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.62	No statistically significant increases relative to background data
Nickel	Tolerance Interval	0.90	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	1.31	Statistically significant increases relative to background data in MW358, MW361, MW364, MW367, MW370, and MW373
рН	Tolerance Interval	0.03	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.19	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.30	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	1.59	No statistically significant increases relative to background data

Exhibit 9. Tests Summary for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Technetium-99	Tolerance Interval	1.73	Statistically significant increase relative to background data in MW373
Total Organic Carbon	Tolerance Interval	1.96	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.98	No statistically significant increases relative to background data

Exhibit 9. Test Summary for Qualified Parameters—LRGA (Continued)

CV: coefficient of variation

C-746-U Second Quarter 2013 Statistical Analysis Aluminum

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed D Data from Upg	Background gradient Wells
Well Number:	MW371	X= 3.300		Well Number:	MW371
Date Collected	Result	S= 6.859		Date Collected	LN(Result)
3/18/2002	2.240	CV= 2.078		3/18/2002	0.806
4/22/2002	0.200	K factor** = 2.523		4/22/2002	-1.609
7/15/2002	0.200	TL= 20.604		7/15/2002	-1.609
10/8/2002	0.200	Because CV is greater t	han 1, the natural	10/8/2002	-1.609
1/8/2003	0.200	logarithm of backgroun	-	1/8/2003	-1.609
4/3/2003	0.200	were calculated.		4/3/2003	-1.609
7/9/2003	0.200	Statistics on		7/9/2003	-1.609
10/6/2003	0.200	Transformed		10/6/2003	-1.609
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= -0.371		Date Collected	LN(Result)
10/8/2002	21.300	S= 1.678		10/8/2002	3.059
1/7/2003	20.000			1/7/2003	2.996
4/2/2003	4.110	CV= -4.521		4/2/2003	1.413
7/9/2003	1.410	K factor** = 2.523		7/9/2003	0.344
10/7/2003	1.090	TL= 3.863		10/7/2003	0.086
1/6/2004	0.854		1	1/6/2004	-0.158
4/7/2004	0.200			4/7/2004	-1.609
7/14/2004	0.200			7/14/2004	-1.609

April 2013			Dry/Par	tially Dry Wells	Collected in April 2013				
Well No.	Result	Gradient Res	sult >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?	•
MW365	0.200	Downgradient	N/A	MW359	Downgradient	MW365	-1.609	NO	
MW371	1.310	Upgradient	N/A	MW368	Sidegradient	MW371	0.270	NO	
MW374	0.200	Upgradient	N/A	MW376	Sidegradient	MW374	-1.609	NO	
MW375	0.200	Sidegradient	N/A	MW377	Sidegradient	MW375	-1.609	NO	

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Calcium

UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgrour Upgradien				Statis Back		cs on ound Data	ı		
Well Numbe	er: l	MW371		X= 3	4.1	100			
Date Collect	ted	Result		S= 1	3.6	637			
3/18/2002	2	17.200		CV=			_		
4/22/2002	2	22.400				r** = 2.52	3		
7/15/2002	2	25.500		TL=	68	505			
10/8/2002	2	26.400		Becaus	e (CV is less	thar	or equal to	1.
1/8/2003		27.200						tion and con	
4/3/2003		30.300		with sta	atis	stical anay	lsis.		
7/9/2003		25.900							
10/6/2003	;	27.000							
Well Numbe	er: l	MW374							
Date Collect	ted	Result							
10/8/2002	2	67.300							
1/7/2003		60.600							
4/2/2003		47.200							
7/9/2003		34.700							
10/7/2003	;	37.100							
1/6/2004		37.700							
4/7/2004		32.200							
7/14/2004	ŀ	26.900							
Second Qua April 2013	arter	2013 Data (Collected	d in			-	rter 2013 y Dry Wells	5
Well No. R	esult	Gradient	Result	>TL?		Well No.	Gr	adient	
MW365 1	8.800	Downgradi	ent	NO		MW359	Do	owngradient	
MW371 2	9.300	Upgradient	ţ	NO		MW368	Si	degradient	
MW374 2	0.800	Upgradient	ţ	NO		MW376	Si	degradient	
MW375 1	5.300	Sidegradie	nt	NO		MW377	Si	degradient	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Chloride

UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgro Upgradi				Statist Backg	ics on round Data	a
Well Nun	nber: 1	MW371		X= 91.	.300	
Date Coll	ected	Result		S= 86.	.959	
7/15/20	002	8.300		CV= 0		
10/8/20	002	7.600			$or^{**} = 2.52$	23
1/8/200)3	7.700		TL= 3	10.697	
4/3/200)3	8.800		Because	CV is less	than or equal to 1,
7/9/200)3	8.100				ribution and continue
10/6/20	003	8.600		with stat	istical anay	lsis.
1/7/200)4	7.600				
4/6/200)4	7.600				
Well Nun	nber: 1	MW374				
Date Coll	ected	Result				
10/8/20	002	199.200				
1/7/200)3	199.700				
4/2/200)3	171.800				
7/9/200)3	178.700				
10/7/20	003	175.600				
1/6/200)4	170.400				
4/7/200)4	156.400				
7/14/20	004	144.700				
Second Q April 201		2013 Data (Collected	l in		Quarter 2013 tially Dry Wells
Well No.	Result	Gradient	Result	>TL?	Well No.	Gradient
MW365	5.500	Downgrad	ient	NO	MW359	Downgradient
MW371	8.500	Upgradien	t	NO	MW368	Sidegradient
MW374	88.000	Upgradien	t	NO	MW376	Sidegradient
MW375	5.900	Sidegradie	nt	NO	MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Cobalt

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W		Statist Backg	ics on round Data			Transformed I Data from Upg	Background gradient Wells
Well Number:	MW371	X= 0.0	007			Well Number:	MW371
Date Collected	Result	S= 0.0				Date Collected	LN(Result)
3/18/2002	0.025	CV= 1				3/18/2002	-3.689
4/22/2002	0.025		$or^{**} = 2.523$			4/22/2002	-3.689
7/15/2002	0.025	TL=0	.031			7/15/2002	-3.689
10/8/2002	0.001	Because	CV is greater t	han 1, the natura	al	10/8/2002	-6.908
1/8/2003	0.001		e	d and test well r		1/8/2003	-6.908
4/3/2003	0.001	were cal	culated.			4/3/2003	-6.908
7/9/2003	0.001	Statist	ias on			7/9/2003	-6.908
10/6/2003	0.001		formed			10/6/2003	-6.908
Well Number:	MW374	Backg	round Data			Well Number:	MW374
Date Collected	Result	X= -5.	843			Date Collected	LN(Result)
10/8/2002	0.010	S= 1.3	197			10/8/2002	-4.605
1/7/2003	0.010	CV = -1				1/7/2003	-4.605
4/2/2003	0.010	÷.				4/2/2003	-4.605
7/9/2003	0.002	K fact	or** = 2.523			7/9/2003	-6.432
10/7/2003	0.001	TL=	-2.331			10/7/2003	-6.908
1/6/2004	0.001					1/6/2004	-6.908
4/7/2004	0.001					4/7/2004	-6.908
7/14/2004	0.001					7/14/2004	-6.908
Second Quarte April 2013	Second Quarter 2013 Data Collected in April 2013			rter 2013 y Dry Wells		rmed Second Q d in April 2013	uarter 2013 Data

I	-							
Well No.	Result	Gradient Re	sult >TL?	Well No. Gradient		Well Number	LN(Result)	Result >TL?
MW365	0.002	Downgradient	N/A	MW359	Downgradient	MW365	-6.470	NO
MW371	0.001	Upgradient	N/A	MW368	Sidegradient	MW371	-6.908	NO
MW374	0.001	Upgradient	N/A	MW376	Sidegradient	MW374	-6.908	NO
MW375	0.001	Sidegradient	N/A	MW377	Sidegradient	MW375	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Conductivity

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background E Upgradient W			tics on ground Data			
Well Number:	MW371	X= 9 1	18.744			
Date Collected	Result	S= 41	17.257			
3/18/2002	541.000	CV=				
4/22/2002	643.000		tor** = 2.523			
7/15/2002	632.000	TL=	1971.483			
10/8/2002	631.000	Because	e CV is less th	an or equal to 1,		
1/8/2003	680.000	assume normal distribution and continu				
4/3/2003	749.000	with statistical anaylsis.				
7/9/2003	734.000					
10/6/2003	753.000					
Well Number:	MW374					
Date Collected	Result					
3/18/2002	1007.00					
10/8/2002	1680.00					
1/7/2003	1715.90					
4/2/2003	172.000					
7/9/2003	1231.00					
10/7/2003	1214.00					
1/6/2004	1172.00					
4/7/2004	1145.00					
Second Quarte April 2013	r 2013 Data Colleo	cted in		uarter 2013 ally Dry Wells		
Well No. Resu	lt Gradient Res	sult >TL?	Well No.	Gradient		
MW365 391.0	0 Downgradient	NO	MW359	Downgradient		
MW371 766.0	0 Upgradient	NO	MW368	Sidegradient		
MW374 750.0	0 Upgradient	NO	MW376	Sidegradient		

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Dissolved Oxygen

UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				Statis Back		es on ound Data	a	
Well Num	ber:	MW371	-	X= 1	.13	8		
Date Colle	ected	Result		S= 0	.62	1		
3/18/20	02	2.260		CV=				
4/22/20	02	1.150				$r^{**} = 2.52$	23	
7/15/20	02	0.940		TL= 2.704				
10/8/20	02	0.740		Becaus	e (CV is less	than	or equal to 1.
1/8/200	3	2.620		Because CV is less than or equal to 1, assume normal distribution and continue				
4/3/2002	3	1.500		with sta	atis	tical anay	lsis.	
7/9/2003	3	1.660						
10/6/20	03	1.280						
Well Num	ber:	MW374						
Date Colle	ected	Result						
3/18/20	02	0.600						
10/8/20	02	0.670						
1/7/2003	3	0.230						
4/2/200	3	0.650						
7/9/200	3	0.920						
10/7/20	03	0.990						
1/6/2004	4	1.110						
4/7/2004	4	0.880						
						~ .	-	
Second Q April 2013		2013 Data (Collected	d in			-	rter 2013 y Dry Wells
April 201	3	2013 Data Gradient	Collected Result				tiall	y Dry Wells
April 201	3		Result			Dry/Par	tiall Gra	y Dry Wells
April 2013 Well No.	3 Result	Gradient	Result	>TL?		Dry/Par Well No.	tiall Gra Do	y Dry Wells
April 2013 Well No. MW365	3 Result 5.540	Gradient Downgrad	Result lient t	>TL? YES		Dry/Part Well No. MW359	tiall Gra Do Sio	y Dry Wells adient wwngradient

Conclusion of Statistical Analysis on Data
The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.
MW365
MW374

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Dissolved Solids

UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W		Statistics on Background Da	ta			
Well Number:	MW371	X= 590.000				
Date Collected	Result	S= 248.068				
3/18/2002	274.000	CV= 0.420				
4/22/2002	409.000	K factor** = 2.5	523			
7/15/2002	418.000	TL= 1215.876				
10/8/2002	424.000	Because CV is less than or equal to 1, assume normal distribution and continue with statistical anaylsis.				
1/8/2003	431.000					
4/3/2003	444.000					
7/9/2003	445.000					
10/6/2003	438.000					
Well Number:	MW374					
Date Collected	Result					
10/8/2002	1136.00					
1/7/2003	1101.00					
4/2/2003	863.000					
7/9/2003	682.000					
10/7/2003	589.000					
1/6/2004	603.000					
4/7/2004	601.000					
7/14/2004	582.000					
Second Quarte April 2013	er 2013 Data Col		Quarter 2013 rtially Dry Wells			
	lt Gradient R	esult >TL? Well No	. Gradient			
Well No. Resu						
	00 Downgradien	NO MW359	Downgradient			
MW365 244.0	00 Downgradien 00 Upgradient	NO MW359 NO MW368	•			
MW365 244.0 MW371 475.0			Sidegradient			

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Iron

UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

	Background Data from Upgradient Wells			Statis Backg		es on ound Data	a		
Well Nun	nber:	MW371	-	X= 6.612					
Date Coll	ected	Result		S= 6.	48	57			
3/18/20	002	1.310		CV=					
4/22/20	002	0.913				$r^{**} = 2.52$.3		
7/15/20	002	0.881		TL= 2	22	.979			
10/8/20	002	3.860		Because CV is less than			or equal to 1		
1/8/200)3	1.880		assume normal distribution and continue					
4/3/200)3	3.180	with statistical anaylsis.						
7/9/200)3	0.484							
10/6/20	003	2.720							
Well Nun	nber:								
Date Coll	ected	Result							
10/8/20	002	23.000							
1/7/200)3	13.900							
4/2/200)3	14.000							
7/9/200)3	14.200							
10/7/20	003	7.920							
1/6/200)4	7.860							
4/7/200)4	4.820							
7/14/20)04	4.870			i				
Second Q April 201	-	2013 Data (Collected	l in				rter 2013 y Dry Wells	
Well No.	Result	Gradient	Result	>TL?		Well No.	Gr	adient	
MW365	0.126	Downgrad	ient	NO		MW359	Do	owngradient	-
MW371	0.852	Upgradien	t	NO		MW368	Sie	degradient	
MW374	0.140	Upgradien	t	NO		MW376	Sie	degradient	
MW375	0.244	Sidegradie	ent	NO		MW377	Sic	degradient	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Magnesium

UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgro Upgradie				Statisti Backgr	cs on ound Data	a			
Well Num	ber: 1	MW371		X= 11.	347				
Date Colle	ected	Result		S= 3.0					
3/18/20	02	7.100		CV= 0.					
4/22/20	02	9.770			$r^{**} = 2.52$	23			
7/15/20	02	10.400		TL= 18	8.963				
10/8/20	02	10.200		Because	CV is less	than or equal to 1,			
1/8/200	3	10.700		assume normal distribution and continue					
4/3/200	4/3/2003 11.900			with stati	stical anay	lsis.			
7/9/200	3	10.800							
10/6/20	03	10.900							
Well Num	iber: I	MW374							
Date Colle	ected	Result							
10/8/20	02	20.000							
1/7/200	3	16.100							
4/2/200	3	13.100							
7/9/200	3	10.300							
10/7/20	03	11.100							
1/6/200	4	11.000							
4/7/200	4	9.690							
7/14/20	04	8.490							
Second Q April 201		2013 Data (Collected	lin		Quarter 2013 tially Dry Wells			
Well No.	Result	Gradient	Result	>TL?	Well No.	Gradient			
MW365	8.520	Downgrad	ient	NO	MW359	Downgradient			
MW371	12.600	Upgradien	t	NO	MW368	Sidegradient			
MW374	5.900	Upgradien	t	NO	MW376	Sidegradient			
MW375	6.040	Sidegradie	nt	NO	MW377	Sidegradient			

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Manganese

UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgro Upgradi				Statis Back		cs on ound Data	ı		
Well Num	ber:	MW371		X= 0.248					
Date Colle	ected	Result		S= 0.222 CV= 0.894 K factor** = 2.523 TL= 0.809					
3/18/20	02	0.063							
4/22/20	02	0.067							
7/15/20	02	0.074							
10/8/20	02	0.052		Becaus	se (CV is less	than	or equal	to 1.
1/8/200	3	0.039	Because CV is less than or equal to 1, assume normal distribution and continue						
4/3/200	3	0.055		with sta	ati	stical anay	lsis.		
7/9/200	3	0.055							
10/6/20	03	0.054							
Well Num	ber:	MW374							
Date Colle	ected	Result							
10/8/20	02	0.596							
1/7/200	3	0.565							
4/2/200	3	0.675							
7/9/200	3	0.397							
10/7/20	03	0.312							
1/6/200	4	0.299							
4/7/200	4	0.329							
7/14/20	04	0.342							
Second Q April 201		2013 Data (Collected	l in		Second (Dry/Part			
Well No.	Result	Gradient	Result	>TL?		Well No.	Gra	adient	
MW365	0.054	Downgrad	ient	NO		MW359	Do	wngradie	nt
MW371	0.011	Upgradien	t	NO		MW368	Sic	legradien	t
MW374	0.007	Upgradien	t	NO		MW376	Sic	legradien	t
MW375	0.016	Sidegradie	nt	NO		MW377	Sic	legradien	t

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Nickel

```
UCRS
UNITS: mg/L
```

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

	Background Data from Upgradient Wells			Statistics on Background Data					
Well Nur	nber:	MW371		X= 0.	.02	23			
Date Coll	lected	Result		S= 0.	.02	22			
3/18/20	002	0.050		CV=			_		
4/22/20	002	0.050				r** = 2.52	3		
7/15/20	002	0.050		TL=	0.	078			
10/8/20	002	0.012		Becaus	e (CV is less	than	or equal to 1	
1/8/200	03	0.005						tion and conti	· · · · · · · · · · · · · · · · · · ·
4/3/200	03	0.005		with sta	atis	stical anay	lsis.		
7/9/200	03	0.005							
10/6/20	003	0.005							
Well Nur	nber:	MW374							
Date Coll	lected	Result							
10/8/20	002	0.050							
1/7/200	03	0.050							
4/2/200	03	0.050							
7/9/200	03	0.008							
10/7/20	003	0.005							
1/6/200	04	0.005							
4/7/200	04	0.005							
7/14/20	004	0.005							
Second Q April 201		2013 Data C	ollected	l in			-	rter 2013 y Dry Wells	
Well No.	Result	Gradient	Result	>TL?		Well No.	Gr	adient	_
MW365	0.006	Downgradi	ent	NO		MW359	Do	owngradient	-
MW371	0.005	Upgradient		NO		MW368	Sic	degradient	
MW374	0.005	Upgradient		NO		MW376	Sie	degradient	
MW375	0.005	Sidegradier	nt	NO		MW377	Sie	degradient	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis **Oxidation-Reduction Potential**

UCRS **UNITS: mV**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statist Backg	tics on round Data			Transformed I Data from Upg		
Well Number:	MW371	X= 22	.281			Well Number:	MW371	
Date Collected	Result	S= 78				Date Collected	LN(Result)	
3/18/2002	75.000	CV=3				3/18/2002	4.317	
4/22/2002	165.000		$rar{*} = 2.523$			4/22/2002	5.106	
7/15/2002	65.000	IL = 2	221.319			7/15/2002	4.174	
4/3/2003	-19.000	Because	CV is greater t	han 1, the natura	al	4/3/2003	#Func!	
7/9/2003	114.000	•	•	d and test well r	esults	7/9/2003	4.736	
10/6/2003	-22.000	were cal	culated.			10/6/2003	#Func!	
1/7/2004	20.500	Statisti	ies on	1		1/7/2004	3.020	
4/6/2004	113.000	Transf				4/6/2004	4.727	
Well Number:	MW374	Backg	round Data			Well Number:	MW374	
Date Collected	Result	$\mathbf{X} = \mathbf{e}$	rror			Date Collected	LN(Result)	
3/18/2002	135.000	S = er	ror			3/18/2002	4.905	
4/2/2003	-56.000		-			4/2/2003	#Func!	
7/9/2003	-68.000	CV =				7/9/2003	#Func!	
10/7/2003	-50.000	K fact	$or^{**} = 2.523$			10/7/2003	#Func!	
1/6/2004	-85.000	TL# =	= 5.106			1/6/2004	#Func!	
4/7/2004	6.000	# Becau	se the natural lo	og was not possi	ble for	4/7/2004	1.792	
7/14/2004	-38.000	all backs	ground values, t	the TL was cons	idered	7/14/2004	#Func!	
10/7/2004	1.000	equal to	the maximum b	background valu	ie.	10/7/2004	0.000	
Second Quarter 2013 Data Collected in April 2013			Second Qua Dry/Partiall	y Dry Wells		ansformed Second Quarter 2013 ta Collected in April 2013		
Well No. Resu	lt Gradient	t Result >TL?	Well No. Gra	adient	Wall New	mhor I N(Do14)	Degult STL 9	
MW365 99.0	000 Downg	radient N/A		owngradient	wen nu	mber LN(Result)	Result >1L?	
MW371 690	.000 Upgrad	ient N/A	MW368 Sid	degradient	MW365	4.595	NO	

MW371

MW374

MW375

6.537

5.746

5.999

YES

YES

YES

313.000 Upgradient

403.000 Sidegradient

Conclusion of Statistical Analysis on Transformed Data

elevated concentration with respect to background data.

MW374

MW375

MW371 MW374 MW375 N/A

N/A

MW376

MW377

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of

Sidegradient

Sidegradient

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis pН

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background D Upgradient W						tics on ground Data	
Well Number:	MW371				X= 6.	.619	
Date Collected	Result				S= 0.		
3/18/2002	6.300				CV=		
4/22/2002	6.500					tor** = 2.904	
7/15/2002	6.500				TL=		
10/8/2002	6.600				LL=	5.764	
1/8/2003	6.600]	Becaus	e CV is less than	or equal to 1,
4/3/2003 6.900							ion and continue
7/9/2003 6.700					with sta	tistical anaylsis.	
10/6/2003	7.000						
Well Number:	MW374						
Date Collected	Result						
3/18/2002	5.750						
10/8/2002	6.600						
1/7/2003	6.820						
4/2/2003	6.860						
7/9/2003	6.700						
10/7/2003	6.600						
1/6/2004	6.900						
4/7/2004	6.580						
	ond Quarter ollected in A					Quarter 2013 tially Dry Wells	
Well No. Result	Gradient 1	Result >TL?	Result <ll?< td=""><td>We</td><td>ell No.</td><td>Gradient</td><td></td></ll?<>	We	ell No.	Gradient	
MW365 6.400 MW371 6.790	Downgradi Upgradier		NO NO		W359 W368	Downgradient Sidegradient	_

Upgradient

Sidegradient

NO

NO

6.860

MW374

MW375 6.590

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

NO

NO

MW376

MW377

Sidegradient

Sidegradient

Mean, X = (sum of background results)/(count of background results)Х

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Second Quarter 2013 Statistical Analysis Potassium

UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgro Upgradie				Statist Backg		es on ound Data	a		
Well Num	ber:	MW371		X= 1.	26	52			
Date Colle	ected	Result		S= 0.	90	7			
3/18/20	02	2.000		CV = 0			_		
4/22/20	02	2.000				r** = 2.52	23		
7/15/20	02	2.000		TL= 3	3.5	549			
10/8/20	02	0.408		Because	e (CV is less	thar	n or equal to	1.
1/8/200	3	0.384						tion and cor	
4/3/200	3	0.368		with sta	tis	stical anay	lsis		
7/9/200	3	0.587							
10/6/20	03	0.382							
Well Num	ber:	MW374							
Date Colle	ected	Result							
10/8/20	02	3.040							
1/7/200	3	2.830							
4/2/200	3	2.000							
7/9/200	3	1.090							
10/7/20	03	0.802							
1/6/200	4	0.897							
4/7/200	4	0.689							
7/14/20	04	0.716							
-	Second Quarter 2013 Data Collected April 2013			l in				rter 2013 y Dry Wel	ls
Well No.	Result	Gradient	Result	>TL?		Well No.	Gr	adient	
MW365	0.312	Downgrad	ient	NO		MW359	Do	owngradien	t —
MW371	0.477	Upgradien	t	NO		MW368	Si	degradient	
MW374	0.536	Upgradien	t	NO		MW376	Si	degradient	
MW375	0.338	Sidegradie	nt	NO		MW377	Si	degradient	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Sodium

UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgroun Upgradient	d Data from t Wells		istics on ‹ground Data	
Well Numbe	r: MW371	X = 1	183.063	
Date Collect	ed Result	S= 7	73.222	
3/18/2002	129.000		= 0.400	
4/22/2002	131.000		$ctor^{**} = 2.523$	
7/15/2002	127.000	TL=	367.800	
10/8/2002	123.000	Becau	se CV is less than	or equal to 1.
1/8/2003	128.000		e normal distribut	
4/3/2003	144.000	with s	tatistical anaylsis.	
7/9/2003	126.000			
10/6/2003	120.000			
Well Numbe	r: MW374			
Date Collect	ed Result			
10/8/2002	336.000			
1/7/2003	329.000			
4/2/2003	287.000			
7/9/2003	181.000			
10/7/2003	182.000			
1/6/2004	206.000			
4/7/2004	182.000			
7/14/2004	198.000			
Second Qua April 2013	rter 2013 Data	Collected in	Second Qua Dry/Partiall	
Well No. Re	esult Gradient	Result >TL?	Well No. Gr	adient
MW365 41	.200 Downgrad	ient NO	MW359 Do	owngradient
MW371 12	21.00 Upgradien	t NO	MW368 Sie	degradient
MW374 12	20.00 Upgradien	t NO	MW376 Sie	degradient
MW375 75	5.600 Sidegradie	ent NO	MW377 Sie	degradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Sulfate

UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgroun Upgradien		rom	Statis Back		es on ound Data	a		
Well Numbe	er: MW	371	X= 6	5.4 6	i9			
Date Collect	ed Re	sult	S= 3	5.15	3			
3/18/2002	16.	.300	CV=					
4/22/2002	8.6	500			$r^{**} = 2.52$	3		
7/15/2002	6.7	/00	TL=	14	.423			
10/8/2002	5.0	000	Becaus	se (CV is less	than	or equal to 1	
1/8/2003	5.0	000	Because CV is less than or equal to 1 assume normal distribution and conti					
4/3/2003	5.0	000	with st	atis	tical anay	lsis.		
7/9/2003	5.0	000						
10/6/2003	5.0	000						
Well Numbe	er: MW	374						
Date Collect	ed Re	sult						
10/8/2002	5.0	000						
1/7/2003	5.0	000						
4/2/2003	5.0	000						
7/9/2003	5.6	600						
10/7/2003	5.0	000						
1/6/2004	5.0	000						
4/7/2004	11.	.300						
7/14/2004	5.0	000						
Second Quarter 2013 Data Colle April 2013			ted in			-	rter 2013 y Dry Wells	
Well No. R	esult Gr	adient Resu	ult >TL?		Well No.	Gra	adient	
MW365 62	2.000 Do	wngradient	YES		MW359	Do	wngradient	_
MW371 14	4.000 Up	gradient	NO		MW368	Sic	degradient	
MW374 6.	000 Up	gradient	NO		MW376	Sic	degradient	
MW375 35	5.000 Sid	legradient	YES		MW377	Sic	degradient	

Conclusion of Statistical Analysis on Data
The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.
MW365
MW375

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Total Organic Carbon (TOC)

```
UCRS
UNITS: mg/L
```

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background E Upgradient W		Statistics on Background Data		Transformed Data from Upg	Background gradient Wells
Well Number:	MW371	X= 17.631		Well Number:	MW371
Date Collected	Result	S= 24.314		Date Collected	LN(Result)
3/18/2002	11.100	CV= 1.379		3/18/2002	2.407
4/22/2002	7.000	K factor** = 2.523		4/22/2002	1.946
7/15/2002	4.100	TL= 78.977	-	7/15/2002	1.411
10/8/2002	6.000	Because CV is greater t	han 1, the natural	10/8/2002	1.792
1/8/2003	5.300	logarithm of backgroun	d and test well results	1/8/2003	1.668
4/3/2003	5.300	were calculated.		4/3/2003	1.668
7/9/2003	2.900	Statistics on		7/9/2003	1.065
10/6/2003	3.200	Transformed		10/6/2003	1.163
Well Number:	MW374	Background Data		Well Number:	MW374
Date Collected	Result	X= 2.318		Date Collected	LN(Result)
10/8/2002	90.000	S= 0.979		10/8/2002	4.500
1/7/2003	64.000			1/7/2003	4.159
4/2/2003	25.000	CV= 0.422		4/2/2003	3.219
7/9/2003	16.000	K factor** = 2.523		7/9/2003	2.773
10/7/2003	13.000	TL= 4.788		10/7/2003	2.565
1/6/2004	10.000			1/6/2004	2.303
4/7/2004	7.200			4/7/2004	
7/14/2004	12.000			7/14/2004	2.485
4/7/2004	7.200 12.000			4/7/2004	1.974 2.485

April 201	April 2013			Dry/Partially Dry Wells		Collected in A	Collected in April 2013			
Well No.	Result	Gradient Res	ult >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?		
MW365	1.900	Downgradient	N/A	MW359	Downgradient	MW365	0.642	NO		
MW371	1.800	Upgradient	N/A	MW368	Sidegradient	MW371	0.588	NO		
MW374	2.100	Upgradient	N/A	MW376	Sidegradient	MW374	0.742	NO		
MW375	2.300	Sidegradient	N/A	MW377	Sidegradient	MW375	0.833	NO		

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Total Organic Halides (TOX)

```
UCRS
UNITS: ug/L
```

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W			Statistics on Background Data			Transformed Background Data from Upgradient Wells		
Well Number:	MW371	X= 214	4.094			Well Number:	MW371	
Date Collected	Result	S= 23				Date Collected	LN(Result)	
3/18/2002	50.000	CV= 1				3/18/2002	3.912	
4/22/2002	105.000		$or^{**} = 2.523$			4/22/2002	4.654	
7/15/2002	70.000	TL= 7	97.131			7/15/2002	4.248	
10/8/2002	52.000	Because	CV is greater t	han 1, the natura	1	10/8/2002	3.951	
1/8/2003	20.200			d and test well re		1/8/2003	3.006	
4/3/2003	104.000	were cal	culated.			4/3/2003	4.644	
7/9/2003	34.200	State 1	•	1		7/9/2003	3.532	
10/6/2003	46.100	Statist	ics on formed			10/6/2003	3.831	
Well Number:	MW374		round Data			Well Number:	MW374	
Date Collected	Result	X= 4.8	867			Date Collected	LN(Result)	
10/8/2002	903.000	S= 1.0	65			10/8/2002	6.806	
1/7/2003	539.000					1/7/2003	6.290	
4/2/2003	295.000	CV= 0				4/2/2003	5.687	
7/9/2003	272.000	K fact	$or^{**} = 2.523$			7/9/2003	5.606	
10/7/2003	197.000	TL = 2	7.554			10/7/2003	5.283	
1/6/2004	330.000			1		1/6/2004	5.799	
4/7/2004	183.000					4/7/2004	5.209	
7/14/2004	225.000					7/14/2004	5.416	
Second Quarter 2013 Data Collected in April 2013			Second Qua Dry/Partiall			rmed Second Q d in April 2013	uarter 2013 Data	

	P	-							
We	ell No.	Result	Gradient	Result >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
М	W365	16.000	Downgradi	ent N/A	MW359	Downgradient	MW365	2.773	NO
М	W371	25.000	Upgradient		MW368	Sidegradient	MW371	3.219	NO
М	W374	41.000	Upgradient		MW376	Sidegradient	MW374	3.714	NO
М	W375	43.000	Sidegradier		MW377	Sidegradient	MW375	3.761	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Uranium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background E Upgradient W		Statist Backg	ics on round Data			Transformed I Data from Upg	Background gradient Wells
Well Number:	MW371	X= 0.0	007			Well Number:	MW371
Date Collected	Result	S= 0.0				Date Collected	LN(Result)
3/18/2002	0.001	CV= 1				3/18/2002	-6.908
4/22/2002	0.001		$or^{**} = 2.523$			4/22/2002	-6.908
7/15/2002	0.001	TL=0	.037			7/15/2002	-6.908
10/8/2002	0.027	Because	CV is greater t	han 1, the natura	al	10/8/2002	-3.612
1/8/2003	0.001			d and test well r		1/8/2003	-6.908
4/3/2003	0.001	were cal	culated.			4/3/2003	-6.908
7/9/2003	0.001	Statist	ias an]		7/9/2003	-6.822
10/6/2003	0.001		formed			10/6/2003	-6.908
Well Number:	MW374		round Data			Well Number:	MW374
Date Collected	Result	X= -5.	884	1		Date Collected	LN(Result)
10/8/2002	0.044	S= 1.2				10/8/2002	-3.128
1/7/2003	0.011					1/7/2003	-4.510
4/2/2003	0.009	CV= -(4/2/2003	-4.705
7/9/2003	0.007	K fact	or** = 2.523			7/9/2003	-4.970
10/7/2003	0.001	TL= ·	-2.607			10/7/2003	-6.908
1/6/2004	0.003			•		1/6/2004	-5.760
4/7/2004	0.003					4/7/2004	-5.960
7/14/2004	0.002					7/14/2004	-6.320
Second Quarter 2013 Data Collected in April 2013			Second Qua Dry/Partiall			rmed Second Q d in April 2013	uarter 2013 Data

inpin 20							_			
Well No.	Result	Gradient Res	ult >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?		
MW365	0.001	Downgradient	N/A	MW359	Downgradient	MW365	-6.908	NO		
MW371	0.002	Upgradient	N/A	MW368	Sidegradient	MW371	-6.220	NO		
MW374	0.001	Upgradient	N/A	MW376	Sidegradient	MW374	-6.908	NO		
MW375	0.001	Sidegradient	N/A	MW377	Sidegradient	MW375	-6.908	NO		

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Aluminum

URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W		Statistics on Background Data			Transformed I Data from Upg	
Well Number:	MW369	X= 0.625		L	Well Number:	MW369
Date Collected	Result	S= 0.774		-	Date Collected	LN(Result)
3/18/2002	0.255	CV= 1.239			3/18/2002	-1.366
4/22/2002	0.200	K factor** = 2.523			4/22/2002	-1.609
7/15/2002	0.322	TL= 2.578			7/15/2002	-1.133
10/8/2002	0.200	Because CV is greater	than 1, the natural	l	10/8/2002	-1.609
1/8/2003	0.200	logarithm of backgrour			1/8/2003	-1.609
4/3/2003	0.200	were calculated.			4/3/2003	-1.609
7/8/2003	0.200	Statistics on	7		7/8/2003	-1.609
10/6/2003	0.689	Transformed			10/6/2003	-0.373
Well Number:	MW372	Background Data			Well Number:	MW372
Date Collected	Result	X= -0.973	1	-	Date Collected	LN(Result)
3/19/2002	2.610	S= 0.935			3/19/2002	0.959
4/23/2002	0.200	CV = -0.961			4/23/2002	-1.609
7/16/2002	1.140				7/16/2002	0.131
10/8/2002	0.862	K factor** = 2.523			10/8/2002	-0.149
1/7/2003	2.320	TL= 1.386			1/7/2003	0.842
4/2/2003	0.200		_		4/2/2003	-1.609
7/9/2003	0.200				7/9/2003	-1.609
10/7/2003	0.200				10/7/2003	-1.609
Second Quarte April 2013	er 2013 Data Coll	lected in			rmed Second Q l in April 2013	uarter 2013 Da
Well No. Resu	ılt Gradient	Result >TL?		Well Num	ber LN(Resul	t) Result >TL
MW357 0.20	00 Downgradi	ent N/A		MW357	-1.609	NO
MW360 0.20	e e			MW360	-1.609	NO
MW363 0.20	-			MW363	-1.609	NO
MW366 0.20	-			MW366	-1.609	NO
MW369 0.20	e			MW369	-1.604	NO
MW372 0.20				MW372	-1.609	NO
	10	lysis on Transformed Da	ata			
None of the te	st wells exceede	ed the Upper Tolerance l ted concentrations with	Limit, which is			t evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Boron

URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

2				
Background I Upgradient W			stics on ground Data	
Well Number:	MW369	X= 0	.985	
Date Collected	Result	S= 0	.825	
3/18/2002	2.000		0.838	
4/22/2002	2.000		$ctor^{**} = 2.523$	
7/15/2002	2.000	TL=	3.067	
10/8/2002	0.200	Becaus	se CV is less than	or equal to 1.
1/8/2003	0.200		e normal distribut	
4/3/2003	0.200	with st	atistical anaylsis.	
7/8/2003	0.200			
10/6/2003	0.200			
Well Number:	MW372			
Date Collected	Result			
3/19/2002	2.000			
4/23/2002	2.000			
7/16/2002	2.000			
10/8/2002	0.492			
1/7/2003	0.492			
4/2/2003	0.600			
7/9/2003	0.570			
10/7/2003	0.604			
Second Quarte	er 2013 Data (Collected in		
April 2013				
Well No. Resu	ılt Gradient	Result >TL?		
MW357 0.369	9 Downgradi	ent NO		
MW360 0.200	•			
MW363 0.200	U			
MW366 0.200	U			
MW369 0.200	10			
MW372 1.430	0 Upgradient	t NO		
Conclusion of	Statistical A	nalysis on Da	nta	
None of the te	st wells exce	eded the Upp	er Tolerance L	imit, which is statistically significant evide

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Calcium

URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Well Number:MW369Date CollectedResult $3/18/2002$ 29,500 $4/22/2002$ 29,800 $7/15/2002$ 25,300 $10/8/2002$ 21.900 $18/2003$ 22.200 $7/8/2003$ 22.200 $7/8/2003$ 22.900 $10/6/2003$ 21.700Well Number:MW372Date CollectedResult $3/19/2002$ 41.500 $4/23/2002$ 43.600 $7/16/2003$ 35.100 $10/8/2002$ 35.100 $10/7/2003$ 42.900 $7/9/2003$ 35.100 $10/7/2003$ 46.600
3/18/2002 29.500 $4/22/2002$ 29.800 $7/15/2002$ 25.300 $10/8/2002$ 21.900 Because CV is less than or equal to 1, $1/8/2003$ 22.900 $10/6/2003$ 22.900 $10/6/2003$ 21.900 with statistical anaylsis. $7/8/2003$ 22.900 $10/6/2003$ 21.700 Well Number: MW372 Date Collected Result $3/19/2002$ 41.500 $4/23/2002$ 38.800 $1/7/2003$ 41.100 $4/2/2003$ 42.900 $7/9/2003$ 35.100 $10/7/2003$ 46.600
3/13/2002 $29,300$ $4/22/2002$ $29,800$ $7/15/2002$ $25,300$ $10/8/2002$ 21.900 Because CV is less than or equal to 1, $1/8/2003$ 22.200 $4/3/2003$ 22.200 with statistical anaylsis. $7/8/2003$ 22.900 $10/6/2003$ 21.700 Well Number: MW372 Date Collected Result $3/19/2002$ 41.500 $4/23/2002$ 43.600 $7/16/2002$ 40.400 $10/8/2002$ 38.800 $1/7/2003$ 41.100 $4/2/2003$ 42.900 $7/9/2003$ 35.100
4/22/2002 29.800 $7/15/2002$ 25.300 $10/8/2002$ 21.900 Because CV is less than or equal to 1, $4/3/2003$ 22.200 $4/3/2003$ 22.200 with statistical anaylsis. $7/8/2003$ 22.900 $10/6/2003$ 21.700 Well Number: MW372 Date Collected Result $3/19/2002$ 41.500 $4/23/2002$ 43.600 $7/16/2002$ 40.400 $10/8/2002$ 38.800 $1/7/2003$ 41.100 $4/2/2003$ 42.900 $7/9/2003$ 35.100 $10/7/2003$ 46.600
//15/2002 25.300 10/8/2002 21.900 assume normal distribution and continue 4/3/2003 22.200 with statistical anaylsis. 7/8/2003 22.900 10/6/2003 21.700 Well Number: MW372 Date Collected Result 3/19/2002 41.500 4/23/2002 43.600 7/16/2002 40.400 10/8/2002 38.800 1/7/2003 41.100 4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
1/8/2003 20.900 assume normal distribution and continue 4/3/2003 22.200 with statistical anaylsis. 7/8/2003 22.900 with statistical anaylsis. 10/6/2003 21.700 with statistical anaylsis. Well Number: MW372 Date Collected Result 3/19/2002 41.500 4/23/2002 43.600 7/16/2002 40.400 10/8/2002 38.800 1/7/2003 41.100 4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
1/8/2003 20.900 assume normal distribution and continue 4/3/2003 22.200 with statistical anaylsis. 7/8/2003 21.700 with statistical anaylsis. Well Number: MW372 Date Collected Result 3/19/2002 41.500 4/23/2002 43.600 7/16/2002 40.400 10/8/2002 38.800 1/7/2003 41.100 4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
7/8/2003 22.900 10/6/2003 21.700 Well Number: MW372 Date Collected Result 3/19/2002 41.500 4/23/2002 43.600 7/16/2002 40.400 10/8/2002 38.800 1/7/2003 41.100 4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
10/6/2003 21.700 Well Number: MW372 Date Collected Result 3/19/2002 41.500 4/23/2002 43.600 7/16/2002 40.400 10/8/2002 38.800 1/7/2003 41.100 4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
Well Number: MW372 Date Collected Result 3/19/2002 41.500 4/23/2002 43.600 7/16/2002 40.400 10/8/2002 38.800 1/7/2003 41.100 4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
Date Collected Result 3/19/2002 41.500 4/23/2002 43.600 7/16/2002 40.400 10/8/2002 38.800 1/7/2003 41.100 4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
3/19/2002 41.500 4/23/2002 43.600 7/16/2002 40.400 10/8/2002 38.800 1/7/2003 41.100 4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
4/23/2002 43.600 7/16/2002 40.400 10/8/2002 38.800 1/7/2003 41.100 4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
7/16/2002 40.400 10/8/2002 38.800 1/7/2003 41.100 4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
10/8/2002 38.800 1/7/2003 41.100 4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
1/7/2003 41.100 4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
4/2/2003 42.900 7/9/2003 35.100 10/7/2003 46.600
7/9/2003 35.100 10/7/2003 46.600
10/7/2003 46.600
Second Quarter 2013 Data Collected in
April 2013
Well No. Result Gradient Result >TL?
MW357 27.800 Downgradient NO
MW360 25.900 Downgradient NO
MW363 23.800 Downgradient NO
MW366 27.100 Sidegradient NO
MW369 16.400 Upgradient NO
MW372 65.900 Upgradient YES
Conclusion of Statistical Analysis on Data
The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.
MW372

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Chloride

URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

statisticali	y sigin			valed concentration	In that wen.
Backgro Upgradi				Statistics on Background Data	
Well Nun	nber:	MW369	Γ	X= 44.119	
Date Coll	ected	Result		S= 4.554	
7/15/20	002	48.300		CV= 0.103	
10/8/20	002	47.700		K factor** = 2.523	
1/8/200)3	45.700		TL= 55.607	
4/3/200)3	47.400	В	ecause CV is less than	or equal to 1.
7/8/200)3	55.900	as	ssume normal distribut	tion and continue
10/6/20)03	47.400	W	ith statistical anaylsis.	
1/7/200)4	45.500			
4/7/200)4	43.400			
Well Nun	nber:	MW372			
Date Coll	ected	Result			
7/16/20	002	39.800			
10/8/20	002	41.000			
1/7/200)3	39.400			
4/2/200)3	39.200			
7/9/200)3	39.800			
10/7/20)03	40.000			
1/5/200)4	43.400			
4/5/200)4	42.000			
Second Q April 201	-	2013 Data (Collected in	n	
Well No.	Result	Gradient	Result >7	ГL?	
MW357	32.000) Downgradi	ient N	10	
MW360	11.000) Downgradi	ient N	10	
MW363	30.000) Downgrad	ient N	10	
MW366	39.000) Sidegradie	nt N	10	
MW369	36.000) Upgradient	t N	10	
MW372	47.000) Upgradient	t N	10	
Conclusi	on of S	Statistical A	analysis o	n Data	
None of t	the test	t wells exce	eded the	Upper Tolerance L	imit, which is statistically significant evidence
		-	-		

that these wells have no elevated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Cobalt

URGA UNITS: mg/L

e

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I		Stati	stics on			
Upgradient W	ells		kground Data			
Well Number:	MW369	X= (0.025			
Date Collected	Result	S= (0.021			
3/18/2002	0.025		0.845			
4/22/2002	0.025		$ctor^{**} = 2.523$			
7/15/2002	0.025	TL=	0.077			
10/8/2002	0.009	Becaus	se CV is less than	or equal to 1.		
1/8/2003	0.005	assume normal distribution and continue				
4/3/2003	0.006	with st	tatistical anaylsis.			
7/8/2003	0.054					
10/6/2003	0.069					
Well Number:	MW372					
Date Collected	Result					
3/19/2002	0.025					
4/23/2002	0.025					
7/16/2002	0.025					
10/8/2002	0.002					
1/7/2003	0.015					
4/2/2003	0.012					
7/9/2003	0.065					
10/7/2003	0.008					
Second Quarte	er 2013 Data	Collected in				
April 2013						
Well No. Resu	lt Gradient	Result >TL?	-			
MW357 0.00	1 Downgrad	ient NO				
MW360 0.040	0 Downgrad	ient NO				
MW363 0.00	1 Downgrad	ient NO				
MW366 0.00	1 Sidegradie	ent NO				
MW369 0.023	3 Upgradien	t NO				
MW372 0.00	1 Upgradien	t NO				
Conclusion of	Statistical A	Analysis on Da	ata			
None of the te	st wells exce	eded the Upp	er Tolerance L	imit, which is statistically significant evidence		

that these wells have no elevated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Conductivity

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W			istics on kground Data	
Well Number:	MW369	X= 4	482.856	
Date Collected	Result		57.603	1
3/18/2002	388.000		= 0.119	1
4/22/2002	404.000		$ctor^{**} = 2.523$	1
7/15/2002	394.000		628.189	1
10/8/2002	403.000	Becaus	se CV is less than	or equal to 1,
1/8/2003	520.000	assume	e normal distributi	tion and continue
4/3/2003	487.000	with st	tatistical anaylsis.	
7/8/2003	478.000			
10/6/2003	476.000			
Well Number:	MW372			
Date Collected	Result			
3/19/2002	508.000			
4/23/2002	501.000			
7/16/2002	507.000			
10/8/2002	495.000			
1/7/2003	508.700			
4/2/2003	515.000			
7/9/2003	576.000			
10/7/2003	565.000	,	-	
Second Quarter April 2013	r 2013 Data (Collected in	1	
Well No. Resul	lt Gradient	Result >TL?	-	
	0 Downgrad			
	00 Downgrad			
	00 Downgradi			
	00 Sidegradie			
	00 Upgradient		a	
MW372 879.0	00 Upgradient	nt YES	ı	
Conclusion of	Statistical A	Analysis on Da	ata	
			Upper Tolerand respect to bacl	ce Limit, which is statistically significant skground data.
MW372				

141 44 3

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Dissolved Oxygen

URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

	Background Data from Upgradient Wells				istics on «ground Data								
Well Number	: 1	MW369		X = 1	1.781								
Date Collecte	d	Result			1.351								
3/18/2002		5.410			= 0.759								
4/22/2002		1.570			factor** = 2.523								
7/15/2002		0.800		TL=	L= 5.190								
10/8/2002		1.090		Because CV is less than or equal to 1,									
1/8/2003		2.690	assume normal distribution and continue										
4/3/2003		2.040		with statistical anaylsis.									
7/8/2003		1.190											
10/6/2003		1.780											
Well Number	: 1	MW372											
Date Collecte	d	Result											
3/19/2002		3.890											
4/23/2002		0.050											
7/16/2002		1.330											
10/8/2002		2.660											
1/7/2003		0.400											
4/2/2003		0.910											
7/9/2003		1.420											
10/7/2003		1.260											
Second Quar April 2013	ter 1	2013 Data (Collected	in									
Well No. Re	sult	Gradient	Result	>TL?	•								
MW357 3.9	70	Downgradi	ent	NO									
MW360 1.2	230	Downgradi	ent	NO									
MW363 1.0	030	Downgradi	ent	NO									
MW366 0.8	60	Sidegradie	nt	NO									
MW369 1.1	90	Upgradient	t	NO									
MW372 0.7	60	Upgradient	t	NO									
Conclusion	of S	tatistical A	nalysis	on Da	ata								
None of the	test	wells exce	eded th	e Upp	er Tolerance	Lim	nit, wh	ich is s	tatisti	cally s	ignifi	cant ev	idence

that these wells have no elevated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Dissolved Solids

URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W			stics on ground Data						
Well Number:	MW369	X= 2	85.188						
Date Collected	Result	S= 4	4.908						
3/18/2002	173.000		0.157						
4/22/2002	246.000		tor** = 2.523						
7/15/2002	232.000	TL=	398.489						
10/8/2002	275.000	Becaus	e CV is less than	or equal to 1,					
1/8/2003	269.000			ion and continue					
4/3/2003	250.000	with sta	atistical anaylsis.						
7/8/2003	295.000								
10/6/2003	276.000								
Well Number:	MW372								
Date Collected	Result								
3/19/2002	295.000								
4/23/2002	322.000								
7/16/2002	329.000								
10/8/2002	290.000								
1/7/2003	316.000								
4/2/2003	311.000								
7/9/2003	347.000								
10/7/2003	337.000								
Second Quarte April 2013	r 2013 Data C	Collected in							
Well No. Resu	lt Gradient	Result >TL?							
	00 Downgradi								
	00 Downgradi								
	00 Downgradi								
	00 Sidegradier								
	00 Upgradient								
MW372 526.0	0 Upgradient	YES							
Conclusion of		v							
0	The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.								
MW372	atten conte		- opered to such						
1W3/2									

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Iron

URGA UNITS: mg/L

e

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W			stics on ground Data	
Well Number:	MW369	X= 7	7.385	
Date Collected	Result	S= 6	5.991	
3/18/2002	0.656		0.947	
4/22/2002	0.695		ctor** = 2.523	
7/15/2002	7.100	TL=	25.024	
10/8/2002	21.500	Becaus	se CV is less than	or equal to 1.
1/8/2003	18.500		e normal distribut	
4/3/2003	14.900	with st	atistical anaylsis.	
7/8/2003	11.300			
10/6/2003	14.900			
Well Number:	MW372			
Date Collected	Result			
3/19/2002	5.950			
4/23/2002	0.792			
7/16/2002	1.780			
10/8/2002	0.776			
1/7/2003	3.550			
4/2/2003	5.020			
7/9/2003	10.000			
10/7/2003	0.733			
Second Quarte April 2013	er 2013 Data C	ollected in		
Well No. Resu	ılt Gradient	Result >TL?		
MW357 0.100	0 Downgradie	ent NO		
MW360 5.300	0 Downgradie	ent NO		
MW363 0.575	5 Downgradie	ent NO		
MW366 0.100	U			
MW369 0.725		NO		
MW372 1.880	0 Upgradient	NO		
Conclusion of	Statistical A	nalysis on Da	nta	
None of the te	st wells excee	eded the Upp	er Tolerance L	imit, which is statistically significant evidenc

that these wells have no elevated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Magnesium

URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W			istics on kground Data	
Well Number:	MW369	X=	12.864	
Date Collected	Result		3.505	
3/18/2002	11.400		= 0.272	
4/22/2002	12.000		$actor^{**} = 2.523$	
7/15/2002	10.000	TL=	= 21.707	
10/8/2002	8.620	Becau	se CV is less than	or equal to 1,
1/8/2003	7.890		e normal distribut	
4/3/2003	7.970	with s	tatistical anaylsis.	
7/8/2003	10.300			
10/6/2003	9.140			
Well Number:	MW372			
Date Collected	Result			
3/19/2002	15.700			
4/23/2002	16.600			
7/16/2002	15.400			
10/8/2002	15.800			
1/7/2003	15.800			
4/2/2003	16.400			
7/9/2003	15.200			
10/7/2003	17.600		_	
Second Quarte April 2013	r 2013 Data (Collected in		
Well No. Resu	lt Gradient	Result >TL?	-	
MW357 11.40	0 Downgrad	ient NO		
MW360 9.810	Downgrad	ient NO		
MW363 9.410	Downgrad	ient NO		
MW366 11.00	00 Sidegradie			
MW369 6.380				
MW372 26.00	0 Upgradien	t YES		
Conclusion of	Statistical A	Analysis on D	ata	
			Upper Toleran n respect to bac	ce Limit, which is statistically significant kground data.
MW372			•	

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Manganese

URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgrou Upgradie				Statistics on Background Data	
Well Num	ber:	MW369		X= 0.413	
Date Colle	ected	Result		S= 0.274	
3/18/200	02	0.034		CV= 0.664	
4/22/200	02	0.062		K factor** = 2.523	
7/15/200	02	0.436		TL= 1.105	J
10/8/200	02	0.867	В	ecause CV is less than	n or equal to 1.
1/8/2003	3	0.828		ssume normal distribut	
4/3/2003	3	0.672	W	ith statistical anaylsis.	
7/8/2003	3	0.321			
10/6/200	03	0.714			
Well Num	ber:	MW372			
Date Colle	ected	Result			
3/19/200	02	0.205			
4/23/200	02	0.345			
7/16/200	02	0.210			
10/8/200	02	0.054			
1/7/2003	3	0.537			
4/2/2003	3	0.415			
7/9/2003	3	0.654			
10/7/200	03	0.254			
Second Qu April 2013		2013 Data (Collected in	n	
Well No.	Result	Gradient	Result >7	ΓL?	
MW357	0.028	Downgrad	ient N	10	
MW360	0.220	Downgrad	ient N	10	
MW363	0.174	Downgrad	ient N	10	
MW366	0.022	Sidegradie	nt N	10	
MW369	0.218	Upgradien	t N	10	
MW372	0.061	Upgradien	t N	10	
Conclusio	on of S	Statistical A	Analysis o	n Data	
None of the	he test	t wells exce	eded the	Upper Tolerance I	imit, which is statistically significant evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Nickel

URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgroun Upgradien				Statistics on Background Data	
Well Numb	er:	MW369	2	X= 0.024	
Date Collec	ted	Result	5	S= 0.021	
3/18/2002	2	0.050		CV= 0.910	
4/22/2002	2	0.050		K factor** = 2.523	
7/15/2002	2	0.050	1	ΓL= 0.078	
10/8/2002	2	0.005	Be	ecause CV is less than	n or equal to 1.
1/8/2003		0.005	as	sume normal distribut	ution and continue
4/3/2003		0.005	wi	ith statistical anaylsis.	5.
7/8/2003		0.013			
10/6/2003	3	0.010			
Well Numb	er:	MW372			
Date Collec	ted	Result			
3/19/2002	2	0.050			
4/23/2002	2	0.050			
7/16/2002	2	0.050			
10/8/2002	2	0.005			
1/7/2003		0.005			
4/2/2003		0.005			
7/9/2003		0.019			
10/7/2003	3	0.005			
Second Qua April 2013	arter	2013 Data (Collected in	1	
Well No. R	Result	Gradient	Result >T	Ľl?	
MW357 0	.005	Downgrad	ient N	0	
MW360 0	.005	Downgrad	ient N	0	
MW363 0	.005	Downgrad	ient N	0	
MW366 0	.005	Sidegradie		0	
	.007	Upgradien		0	
MW372 0	.005	Upgradien	t N	0	
Conclusion	n of S	tatistical A	Analysis or	n Data	
None of the	e test	wells exce	eded the U	Upper Tolerance L	Limit, which is statistically significant evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Oxidation-Reduction Potential

URGA UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	Background gradient Wells	
Well Number:	MW369	X= 74.563		Well Number:	MW369	
Date Collected	Result	S= 94.243		Date Collected	LN(Result)	
3/18/2002	215.000	CV= 1.264		3/18/2002	5.371	
4/22/2002	110.000	K factor** = 2.523		4/22/2002	4.700	
7/15/2002	20.000	TL= 312.337		7/15/2002	2.996	
1/8/2003	-5.000	Because CV is greater t	han 1, the natural	1/8/2003	#Func!	
4/3/2003	-18.000	logarithm of backgroun		4/3/2003	#Func!	
7/8/2003	-67.000	were calculated.		7/8/2003	#Func!	
10/6/2003	-1.000	Statistics on		10/6/2003	#Func!	
1/7/2004	55.000	Transformed		1/7/2004	4.007	
Well Number:	MW372	Background Data		Well Number:	MW372	
Date Collected	Result	X = error		Date Collected	LN(Result)	
3/19/2002	210.000	S = error		3/19/2002	5.347	
4/23/2002	65.000	~		4/23/2002	4.174	
7/16/2002	215.000	CV = error		7/16/2002	5.371	
10/8/2002	185.000	K factor** = 2.523		10/8/2002	5.220	
1/7/2003	45.000	TL# = 5.371		1/7/2003	3.807	
4/2/2003	65.000	# Because the natural lo	g was not possible for	4/2/2003	4.174	
7/9/2003	-39.000	all background values, t	he TL was considered	7/9/2003	#Func!	
10/7/2003	138.000	equal to the maximum b	background value.	10/7/2003	4.927	
Second Quarte April 2013 Well No. Resu				formed Second Q Collected in April		
Well No. Result Gradient Result >TL? MW357 746.000 Downgradient N/A						

MW357	6.615	YES
MW360	5.892	YES
MW363	6.111	YES
MW366	5.900	YES
MW369	6.363	YES
MW372	3.332	NO

Conclusion of Statistical Analysis on Transformed Data

Upgradient

362.000 Downgradient

451.000 Downgradient

365.000 Sidegradient

580.000 Upgradient

28.000

MW360

MW363

MW366

MW369

MW372

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW357
MW360
MW363
MW366
MW369

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

N/A

N/A

N/A

N/A

N/A

** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis PCB, total

URGA UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgroun Upgradient					istics on cground Data				
Well Numbe	r: N	1W369		X= (0.390				
Date Collect	ed	Result		S= (0.350				
3/18/2002		1.000			= 0.897				
4/22/2002		0.170			ctor** = 2.523				
7/15/2002		0.170		TL=	1.272				
7/8/2003		1.150		Becau	se CV is less that	n or equal to	o 1.		
10/6/2003		0.605		assum	e normal distribu	tion and co			
7/13/2004		0.420		with st	tatistical anaylsis				
7/20/2005		0.280							
4/4/2006		0.230							
Well Numbe	r: N	1W372							
Date Collect	ed	Result							
3/19/2002		1.000							
4/23/2002		0.170							
7/16/2002		0.170							
7/9/2003		0.170							
10/7/2003		0.170							
7/14/2004		0.180							
7/21/2005		0.170							
4/5/2006		0.180			-				
Second Qua April 2013									
Well No. Re	esult	Gradient	Result >	>TL?					
		Downgrad		NO					
		Downgrad		NO					
		Downgrad		NO					
		Sidegradie		NO					
		Upgradien		NO					
MW372 0.	180	Upgradien	t	NO					
Conclusion	of St	atistical A	alysis	on Da	ata				
					er Tolerance l				lence
that these w	vells l	nave no el	evated c	oncer	ntrations with	respect to) backgrou	ınd data.	

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis PCB-1242

URGA UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data			Transformed Data from Upg	Background gradient Wells
Well Number:	MW369	X= 0.281			Well Number:	MW369
Date Collected	Result	S= 0.383			Date Collected	LN(Result)
3/18/2002	1.000	CV= 1.361			3/18/2002	0.000
4/22/2002	0.110	K factor** = 2.523 TL= 1.247			4/22/2002	-2.207
7/15/2002	0.110	1L- 1.24/	J		7/15/2002	-2.207
7/8/2003	1.150	Because CV is greater	than 1, the natural	l	7/8/2003	0.140
10/6/2003	0.090	logarithm of backgroun	nd and test well re	sults	10/6/2003	-2.408
7/13/2004	0.100	were calculated.			7/13/2004	-2.303
7/20/2005	0.100	Statistics on]		7/20/2005	-2.303
4/4/2006	0.100	Transformed			4/4/2006	-2.303
Well Number:	MW372	Background Data			Well Number:	MW372
Date Collected	Result	X= -1.835	1		Date Collected	LN(Result)
3/19/2002	1.000	S= 0.938			3/19/2002	0.000
4/23/2002	0.110	CV= -0.511			4/23/2002	-2.207
7/16/2002	0.110				7/16/2002	-2.207
7/9/2003	0.130	K factor** = 2.523			7/9/2003	-2.040
10/7/2003	0.090	TL = 0.532			10/7/2003	-2.408
7/14/2004	0.100		_		7/14/2004	-2.303
7/21/2005	0.100				7/21/2005	-2.303
4/5/2006	0.100				4/5/2006	-2.303
Second Quarte April 2013	er 2013 Data Collect	ed in			rmed Second Q d in April 2013	uarter 2013 Da
Well No. Resu	lt Gradient Re	esult >TL?		Well Nun	nber LN(Resu	t) Result >TL
MW357 0.10	00 Downgradient	N/A		MW357	-2.303	NO
MW360 0.10	e	N/A		MW360	-2.303	NO
MW363 0.18		N/A		MW363	-1.715	NO
MW366 0.10	-	N/A		MW366	-2.303	NO
MW369 0.10	e	N/A		MW369	-2.303	NO
MW372 0.10		N/A		MW372	-2.303	NO
Conclusion of	Statistical Analys	is on Transformed Da	ita			
None of the tes	st wells exceeded	the Upper Tolerance I I concentrations with	Limit, which is			t evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis pH

URGA UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells						Statistics on Background Data	
Well Numb	ber:	MW369				X= 6.274	
Date Collec	cted	Result				S= 0.194	
3/18/200)2	6.100				CV= 0.031	
4/22/200)2	6.100				K factor** = 2.904	
7/15/200)2	6.100				TL= 6.837	
10/8/200)2	6.500				LL= 5.711	
1/8/2003	3	6.500				Because CV is less than	
4/3/2003	3	6.600				assume normal distribut	
7/8/2003	3	6.500				with statistical anaylsis.	
10/6/200)3	6.500					
Well Numb	ber:	MW372					
Date Collec	cted	Result					
3/19/200)2	6.100					
4/23/200)2	6.120					
7/16/200)2	6.100					
10/8/200)2	6.060					
1/7/2003	3	6.260					
4/2/2003	3	6.150					
7/9/2003	3	6.300					
10/7/200)3	6.400					
		ond Quarter 201 ollected in Apri					
Well No. Re	esult	Gradient Res	ult >TL?	Result <ll?< th=""><th></th><th></th><th></th></ll?<>			
MW357 6	5.370	Downgradient	NO	NO			
MW360 6	5.230	Downgradient	NO	NO			
MW363 6	5.270	Downgradient	NO	NO			
MW366 6	6.110	Sidegradient	NO	NO			
MW369 6	5.320	Upgradient	NO	NO			
MW372 6	5.240	Upgradient	NO	NO			
Conclusion	n of S	Statistical Ana	lysis on	Data			
None of th	ne tes	t wells exceed	ed the U	pper Tolera	nce Lin	nit or were less than	the Lower Tolerance

Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

X Mean, X = (sum of background results)/(count of background results)

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Second Quarter 2013 Statistical Analysis Potassium

URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W	Data from	Stati	stics on	
10			ground Data	
Well Number:	MW369	X= 1		
Date Collected	Result	S=0	0.293	
3/18/2002	2.000		$tor^{**} = 2.523$	
4/22/2002	2.210		2.895	
7/15/2002	2.000	11-	2.075	
10/8/2002	0.966	Becaus	se CV is less than	or equal to 1,
1/8/2003	0.727		e normal distributi	ion and continue
4/3/2003	0.800	with st	atistical anaylsis.	
7/8/2003	1.620			
10/6/2003	1.140			
Well Number:	MW372			
Date Collected	Result			
3/19/2002	2.040			
4/23/2002	2.030			
7/16/2002	2.000			
10/8/2002	1.540			
1/7/2003	1.880			
4/2/2003	2.090			
7/9/2003	1.780			
10/7/2003	1.790		_	
Second Quarte April 2013	er 2013 Data (Collected in		
Well No. Resu	lt Gradient	Result >TL?		
MW357 1.810	0 Downgrad	ient NO		
MW360 0.899	9 Downgrad	ient NO		
MW363 1.130	0 Downgrad	ient NO		
MW366 1.930	0 Sidegradie	nt NO		
MW369 0.568	8 Upgradien	t NO		
MW372 2.720	0 Upgradien	t NO		
Conclusion of	Statistical A	Analysis on Da	ata	
None of the te	st wells exce	eded the Upp	er Tolerance L	imit, which is statistically significant evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Sodium

URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgrou Upgradie					istics on kground Data						
Well Numb	ber:	MW369		X = 4	45.100						
Date Colle	cted	Result			11.875						
3/18/200)2	35.700			= 0.263						
4/22/200)2	37.600			ctor** = 2.523						
7/15/200)2	42.400		TL=	75.061						
10/8/200)2	66.900		Becau	se CV is less tha	n or equa	1 to 1.				
1/8/2003	3	67.900			e normal distribu						
4/3/2003	3	61.800		with st	tatistical anaylsis	5.					
7/8/2003	3	45.600									
10/6/200)3	59.100									
Well Numb	ber:	MW372									
Date Colle	cted	Result									
3/19/200)2	37.200									
4/23/200)2	38.600									
7/16/200)2	35.600									
10/8/200)2	37.500									
1/7/2003	3	34.100									
4/2/2003	3	34.400									
7/9/2003	3	44.100									
10/7/200)3	43.100									
Second Qu April 2013		2013 Data (Collected	in							
Well No.	Result	Gradient	Result	>TL?							
MW357	39.100	Downgrad	ient	NO							
MW360	58.300	Downgrad	ient	NO							
MW363	31.700	Downgrad	ient	NO							
MW366	40.600	Sidegradie	ent	NO							
MW369	52.400	Upgradien	t	NO							
MW372	59.700	Upgradien	t	NO							
Conclusio	n of S	tatistical A	Analysis	on Da	ata						
None of th	ie test	wells exce	eded th	e Upp	er Tolerance	Limit, w	hich is s	tatistica	lly signi	ificant evide	ence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Sulfate

URGA UNITS: mg/L

Background Data from Upgradient Wells	Statistics on Background D	ata
Well Number: MW369	X= 45.031	
Date Collected Result	S= 33.919	
3/18/2002 15.500	CV= 0.753	
4/22/2002 15.800	K factor** = 2	523
7/15/2002 13.800	TL= 130.609	
10/8/2002 6.900	Because CV is le	ss than or equal to 1,
1/8/2003 10.500	assume normal d	stribution and continue
4/3/2003 10.500	with statistical ar	aylsis.
7/8/2003 10.900		
10/6/2003 16.300		
Well Number: MW372		
Date Collected Result		
3/19/2002 71.700		
4/23/2002 74.700		
7/16/2002 74.100		
10/8/2002 70.500		
1/7/2003 75.800		
4/2/2003 81.800		
7/9/2003 83.600		
10/7/2003 88.100		
Second Quarter 2013 Data Co April 2013		
Well No. Result Gradient	Result >TL?	
MW357 62.000 Downgradie		
MW360 89.000 Downgradie		
MW363 23.000 Downgradie		
MW366 42.000 Sidegradient	NO	
MW369 7.500 Upgradient	NO	
MW372 170.00 Upgradient	YES	
Conclusion of Statistical Ar	alysis on Data	
The following test well(s) exercise evidence of elevated concern		lerance Limit, which is statistically significant o background data.
MW372		

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Technetium-99

URGA UNITS: pCi/L

Background Upgradient V			stics on ground Data	
Well Number:	MW369	X= 2	20.821	
Date Collected	Result		18.044	
3/18/2002	41.700		0.867	
4/22/2002	53.100		$ctor^{**} = 2.523$	
7/15/2002	18.100	IL=	66.344	
10/8/2002	16.400	Becau	se CV is less than	an or equal to 1,
1/8/2003	3.490			bution and continue
4/3/2003	9.340	with st	atistical anaylsis.	is.
7/8/2003	17.500			
10/6/2003	17.000			
Well Number:	MW372			
Date Collected	Result			
3/19/2002	44.800			
4/23/2002	0.802			
7/16/2002	19.800			
10/8/2002	46.100			
1/7/2003	-0.973			
4/2/2003	9.070			
7/9/2003	0.000			
10/7/2003	36.900			
Second Quart April 2013	er 2013 Data	Collected in		
Well No. Rest	ult Gradient	Result >TL?		
MW357 35.1	00 Downgrad	lient NO		
MW360 2.71	0 Downgrad	lient NO		
MW363 1.40	0 Downgrad	lient NO		
	000 Sidegradie			
	500 Upgradier			
MW372 42.9	000 Upgradier	nt NO		
Conclusion of	f Statistical	Analysis on Da	ata	
				Limit, which is statistically significant evidence n respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Total Organic Carbon (TOC)

URGA UNITS: mg/L

Background D Upgradient W		Statistics on Background Data			Transformed Data from Up;	Background gradient Wells
Well Number:	MW369	X= 3.513		ļ	Well Number:	MW369
Date Collected	Result	S= 4.307			Date Collected	LN(Result)
3/18/2002	1.700	CV= 1.226			3/18/2002	0.531
4/22/2002	1.600	K factor** = 2.523 TL= 14.378			4/22/2002	0.470
7/15/2002	3.100	1L- 14.3/8	J		7/15/2002	1.131
10/8/2002	17.700	Because CV is greater t	han 1, the natura	1	10/8/2002	2.874
1/8/2003	9.000	logarithm of backgroun	d and test well re	sults	1/8/2003	2.197
4/3/2003	4.000	were calculated.			4/3/2003	1.386
7/8/2003	4.900	Statistics on	1		7/8/2003	1.589
10/6/2003	2.400	Transformed			10/6/2003	0.875
Well Number:	MW372	Background Data			Well Number:	MW372
Date Collected	Result	X= 0.851			Date Collected	LN(Result)
3/19/2002	1.000	S= 0.828			3/19/2002	0.000
4/23/2002	1.200	CV = 0.973			4/23/2002	0.182
7/16/2002	1.000				7/16/2002	0.000
10/8/2002	1.000	K factor** = 2.523			10/8/2002	0.000
1/7/2003	1.600	TL= 2.940			1/7/2003	0.470
4/2/2003	1.500		_		4/2/2003	0.405
7/9/2003	3.000				7/9/2003	1.099
10/7/2003	1.500				10/7/2003	0.405
Second Quarte April 2013	r 2013 Data Collecte	ed in			rmed Second Q d in April 2013	uarter 2013 Da
Well No. Resul	lt Gradient Re	sult >TL?		Well Nun	nber LN(Resu	lt) Result >TL
MW357 1.00	0 Downgradient	N/A		MW357	0.000	NO
MW360 1.70	-	N/A		MW360	0.531	NO
MW363 1.50	e	N/A		MW363	0.405	NO
MW366 1.00	-	N/A		MW366	0.000	NO
MW369 1.70	e	N/A		MW369	0.531	NO
MW372 2.50		N/A		MW372	0.916	NO
		s on Transformed Da	ta			
None of the tes	t wells exceeded t	he Upper Tolerance I concentrations with	limit, which is			t evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Total Organic Halides (TOX)

URGA UNITS: ug/L

Background L Upgradient V			stics on ground Data	
Well Number:	MW369	X= 6	57.963	
Date Collected	Result		54.316	
3/18/2002	50.000		0.946	
4/22/2002	50.000		ctor** = 2.523	
7/15/2002	81.000	TL=	230.231	J
10/8/2002	202.000	Becaus	se CV is less than	n or equal to 1,
1/8/2003	177.000			tion and continue
4/3/2003	93.100	with st	atistical anaylsis.	
7/8/2003	17.500			
10/6/2003	37.500			
Well Number:	MW372			
Date Collected	Result			
3/19/2002	184.000			
4/23/2002	50.000			
7/16/2002	50.000			
10/8/2002	50.000			
1/7/2003	10.000			
4/2/2003	12.700			
7/9/2003	10.000			
10/7/2003	12.600			
Second Quarte April 2013	er 2013 Data (Collected in		
Well No. Resu	ult Gradient	Result >TL?		
MW357 34.0	00 Downgrad	lient NO		
MW360 40.0	00 Downgrad	lient NO		
	00 Downgrad			
	00 Sidegradie			
	00 Upgradien			
MW372 25.0	00 Upgradien	nt NO		
Conclusion of	f Statistical A	Analysis on Da	nta	
				Limit, which is statistically significant evidence
that these well	ls have no e	levated concer	ntrations with n	respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Boron

LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Upgradient					stics on ground Data				
Well Number	r: :	MW370		X= 1	.140				
Date Collecte	ed	Result		S= 0					
3/17/2002		2.000			0.684				
4/23/2002		2.000			$ctor^{**} = 2.523$				
7/15/2002		2.000		TL=	3.108	J			
10/8/2002		0.200		Becaus	se CV is less that	n or equal to 1.			
1/8/2003		0.200			e normal distribu				
4/3/2003		0.200	,	with st	atistical anaylsis				
7/9/2003		0.200							
10/6/2003		0.200							
Well Number	r: :	MW373							
Date Collecte	ed	Result							
3/18/2002		2.000							
4/23/2002		2.000							
7/16/2002		2.000							
10/8/2002		0.790							
1/7/2003		0.807							
4/2/2003		1.130							
7/9/2003		1.280							
10/7/2003		1.240							
Second Quar April 2013	rter	2013 Data (Collected	in					
Well No. Re	esult	Gradient	Result >	>TL?					
MW358 0.3	368	Downgrad	ient	NO					
MW361 0.2	293	Downgrad	ient	NO					
MW364 0.2	200	Downgrad	ient	NO					
MW367 0.2	200	Sidegradie	nt	NO					
MW370 0.2	200	Upgradien	t	NO					
MW373 1.8	800	Upgradien	t	NO					
Conclusion	of S	tatistical A	nalysis	on Da	ita				
None of the	test	wells exce	eded the	e Upp	er Tolerance I	Limit, which	is statistical	lly significant ev	idence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Calcium

statistically sign			a concentration	
Background D Upgradient W			stics on ground Data	
Well Number:	MW370	X= 4	3.413	
Date Collected	Result	S= 1	3.444	
3/17/2002	34.800		0.310	
4/23/2002	43.400		ctor** = 2.523	
7/15/2002	33.200	TL=	77.331	
10/8/2002	29.200	Becaus	se CV is less than	or equal to 1,
1/8/2003	31.300	assume	e normal distribut	ion and continue
4/3/2003	32.400	with st	atistical anaylsis.	
7/9/2003	22.900			
10/6/2003	28.000			
Well Number:	MW373			
Date Collected	Result			
3/18/2002	61.900			
4/23/2002	59.200			
7/16/2002	47.600			
10/8/2002	46.100			
1/7/2003	49.200			
4/2/2003	57.800			
7/9/2003	52.700			
10/7/2003	64.900		l l	
Second Quarter April 2013	· 2013 Data C	Collected in		
Well No. Resul	t Gradient	Result >TL?		
MW358 36.50	0 Downgradi	ent NO		
MW361 31.00	0 Downgradi	ent NO		
MW364 27.00	0 Downgradi	ent NO		
MW367 25.70	0 Sidegradier	nt NO		
MW370 28.20	0 Upgradient	NO		
MW373 76.10	0 Upgradient	NO		
Conclusion of	Statistical A	nalysis on Da	nta	
				imit, which is statistically significant evidence
that these wells	s have no ele	evated concer	ntrations with r	espect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Chloride

LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgro Upgradi				Statistics on Background Data		
Well Num	nber:	MW370		X= 45.919		
Date Colle	ected	Result		S= 7.524		
7/15/20	002	55.500		CV= 0.164		
10/8/20	002	53.600		K factor** = 2.523	3	
1/8/200	3	52.900		TL= 64.901		
4/3/200	13	53.600	1	Because CV is less th	nan	n or equal to 1.
7/9/200	3	51.900		assume normal distri		
10/6/20	003	53.000	V	with statistical anayl	sis.	5.
1/7/200	4	53.000				
4/7/200	4	51.600				
Well Num	nber:	MW373				
Date Colle	ected	Result				
7/16/20	002	40.600				
10/8/20	002	38.800				
1/7/200	13	39.000				
4/2/200	3	38.400				
7/9/200	3	38.100				
10/7/20	003	38.000				
1/6/200	94	37.900				
4/7/200)4	38.800				
Second Q April 201	-	2013 Data (Collected	in		
Well No.	Result	Gradient	Result >	>TL?		
MW358	32.000	Downgrad	ient	NO		
MW361	33.000	Downgrad	ient	NO		
MW364	32.000	Downgrad	ient	NO		
MW367	33.000	Sidegradie	nt	NO		
MW370	43.000	Upgradien	t	NO		
MW373	47.000	Upgradien	t	NO		
Conclusio	on of S	statistical A	Analysis	on Data		
None of t	he test	wells exce	eded the	e Upper Tolerance	e Li	Limit, which is statistically significant evidenc

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Cobalt

LRGA UNITS: mg/L

Background I Upgradient W		Statistics on Background Data			Transformed D Data from Upg	Background gradient Wells
Well Number:	MW370	X= 0.027		ļ	Well Number:	MW370
Date Collected	Result	S= 0.032			Date Collected	LN(Result)
3/17/2002	0.025	CV= 1.165			3/17/2002	-3.689
4/23/2002	0.025	K factor** = 2.523			4/23/2002	-3.689
7/15/2002	0.025	TL= 0.108			7/15/2002	-3.689
10/8/2002	0.017	Because CV is greater	than 1, the natural		10/8/2002	-4.051
1/8/2003	0.011	logarithm of backgroun			1/8/2003	-4.556
4/3/2003	0.009	were calculated.			4/3/2003	-4.677
7/9/2003	0.137	Statistics on	1		7/9/2003	-1.988
10/6/2003	0.046	Transformed			10/6/2003	-3.073
Well Number:	MW373	Background Data			Well Number:	MW373
Date Collected	Result	X= -4.058	1		Date Collected	LN(Result)
3/18/2002	0.025	S= 1.011			3/18/2002	-3.689
4/23/2002	0.034	CV = -0.249			4/23/2002	-3.381
7/16/2002	0.025				7/16/2002	-3.689
10/8/2002	0.004	K factor** = 2.523			10/8/2002	-5.494
1/7/2003	0.003	TL= -1.507			1/7/2003	-5.672
4/2/2003	0.004		-		4/2/2003	-5.605
7/9/2003	0.041				7/9/2003	-3.206
10/7/2003	0.008				10/7/2003	-4.776
Second Quarte April 2013	er 2013 Data Collect	ted in			rmed Second Q d in April 2013	uarter 2013 Da
Well No. Resu	ılt Gradient R	esult >TL?	- -	Well Nun	nber LN(Resu	lt) Result >TL
MW358 0.00	03 Downgradient	N/A		MW358	-5.757	NO
MW361 0.00	e			MW361	-6.908	NO
MW364 0.00	-			MW364	-6.908	NO
MW367 0.00	-	N/A		MW367	-6.522	NO
MW370 0.00	e	N/A		MW370	-6.908	NO
MW373 0.00		N/A		MW373	-6.908	NO
Conclusion of	10	sis on Transformed Da	ita			
None of the te	st wells exceeded	the Upper Tolerance I d concentrations with	Limit, which is			tevidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Conductivity

Background I Upgradient W	Data from	Stati	istics on kground Data	
Well Number:	MW370	X= (508.719	
Date Collected	Result	S = 1	156.157	
3/17/2002	406.000		0.257	
4/23/2002	543.000		$ctor^{**} = 2.523$	
7/15/2002	476.000	TL=	1002.702	
10/8/2002	441.000	Becau	se CV is less than	or equal to 1,
1/8/2003	486.000	assum	e normal distribut	ion and continue
4/3/2003	466.000	with st	tatistical anaylsis.	
7/9/2003	479.000			
10/6/2003	435.000			
Well Number:	MW373			
Date Collected	Result			
3/18/2002	661.000			
4/23/2002	801.000			
7/16/2002	774.000			
10/8/2002	680.000			
1/7/2003	686.500			
4/2/2003	763.000			
7/9/2003	828.000			
10/7/2003	814.000		1	
Second Quarte April 2013		Collected in		
Well No. Resu	ılt Gradient	Result >TL?		
MW358 525.0	00 Downgrad	ient NO		
MW361 466.0	00 Downgrad	ient NO		
	00 Downgrad			
	00 Sidegradie			
	00 Upgradien			
MW373 921.0	00 Upgradien	t NO		
Conclusion of	Statistical A	Analysis on Da	ata	
				imit, which is statistically significant evidence
that these well	ls have no e	levated concer	ntrations with r	respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Dissolved Oxygen

LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background L Upgradient V		Statistics o Backgrour		
Well Number:	MW370	X= 1.387		
Date Collected	Result	S= 1.153		
3/17/2002	4.320	CV= 0.831		
4/23/2002	1.240	K factor**		
7/15/2002	0.750	TL= 4.295	,	J
10/8/2002	0.940	Because CV	is less than	n or equal to 1,
1/8/2003	3.080	assume norm	nal distribut	tion and continue
4/3/2003	1.450	with statistic	al anaylsis.	
7/9/2003	1.220			
10/6/2003	1.070			
Well Number:	MW373			
Date Collected	Result			
3/18/2002	3.040			
4/23/2002	0.030			
7/16/2002	0.230			
10/8/2002	0.860			
1/7/2003	0.210			
4/2/2003	1.190			
7/9/2003	1.100			
10/7/2003	1.460			
Second Quarte April 2013	er 2013 Data (Collected in		
Well No. Resu	ult Gradient	Result >TL?		
MW358 0.64	0 Downgrad	ient NO		
MW361 3.17	0 Downgrad	ient NO		
MW364 2.18	0 Downgrad	ient NO		
MW367 0.79	U			
MW370 3.25				
MW373 1.46	0 Upgradien	t NO		
Conclusion of	f Statistical A	Analysis on Data		
				Limit, which is statistically significant evidence respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

S Standard Deviation, S – [Sum ([(background result-X) 2]/[count of background result-X]

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Dissolved Solids

LRGA UNITS: mg/L

Background I Upgradient W	Data from	Stati	stics on sground Data	
Well Number:	MW370	X= 3	356.188	
Date Collected	Result		106.752	
3/17/2002	236.000		0.300	
4/23/2002	337.000		$ctor^{**} = 2.523$	
7/15/2002	266.000	TL=	625.523	
10/8/2002	240.000	Becaus	se CV is less than	or equal to 1,
1/8/2003	282.000	assume	e normal distribut	ion and continue
4/3/2003	238.000	with st	atistical anaylsis.	
7/9/2003	248.000			
10/6/2003	224.000			
Well Number:	MW373			
Date Collected	Result			
3/18/2002	427.000			
4/23/2002	507.000			
7/16/2002	464.000			
10/8/2002	408.000			
1/7/2003	404.000			
4/2/2003	450.000			
7/9/2003	487.000			
10/7/2003	481.000			
Second Quarte April 2013	r 2013 Data (Collected in		
Well No. Resu	lt Gradient	Result >TL?	-	
MW358 307.0	00 Downgrad	lient NO		
MW361 274.0	00 Downgrad	lient NO		
MW364 257.0	00 Downgrad	lient NO		
MW367 230.0	00 Sidegradie	ent NO		
MW370 239.0	00 Upgradien	nt NO		
MW373 585.0	00 Upgradien	t NO		
Conclusion of	Statistical A	Analysis on Da	ata	
				imit, which is statistically significant evidence respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Iron

LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgroun Upgradient				Statistics on Background Data	
Well Number	r:	MW370		X= 9.230	
Date Collecte	ed	Result		S= 8.841	
3/17/2002		9.340		CV= 0.958	
4/23/2002		4.330		K factor** = 2.523	
7/15/2002		3.520		TL= 31.535	
10/8/2002		7.450]	Because CV is less that	n or equal to 1.
1/8/2003		7.040		assume normal distribu	
4/3/2003		4.640	,	with statistical anaylsis	
7/9/2003		15.800			
10/6/2003		6.490			
Well Number	r:	MW373			
Date Collecte	ed	Result			
3/18/2002		37.600			
4/23/2002		19.000			
7/16/2002		10.700			
10/8/2002		3.750			
1/7/2003		3.870			
4/2/2003		3.500			
7/9/2003		7.720			
10/7/2003		2.930			
Second Qua April 2013	rter	2013 Data (Collected	in	
Well No. Re	esult	Gradient	Result >	>TL?	
MW358 1.:	560	Downgrad	ient	NO	
MW361 0.	100	Downgrad	ient	NO	
MW364 0.	116	Downgrad	ient	NO	
MW367 1.2	220	Sidegradie		NO	
MW370 0.	100	Upgradien		NO	
MW373 0.	100	Upgradien	t	NO	
Conclusion	of S	statistical A	Analysis	on Data	
None of the	test	wells exce	eded the	e Upper Tolerance I	Limit, which is statistically significant evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Magnesium

LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W			stics on ground Data	
Well Number:	MW370	X= 1	7.544	
Date Collected	Result	S= 5		
3/17/2002	12.100		0.337	
4/23/2002	15.100		$etor^{**} = 2.523$	
7/15/2002	12.400	TL=	32.458	
10/8/2002	12.200	Becaus	e CV is less than	or equal to 1.
1/8/2003	11.500			tion and continue
4/3/2003	12.300	with st	atistical anaylsis.	
7/9/2003	10.000			
10/6/2003	12.100			
Well Number:	MW373			
Date Collected	Result			
3/18/2002	24.800			
4/23/2002	22.700			
7/16/2002	18.800			
10/8/2002	21.100			
1/7/2003	19.900			
4/2/2003	25.500			
7/9/2003	23.300			
10/7/2003	26.900			
Second Quarte April 2013	er 2013 Data (Collected in		
Well No. Resu	lt Gradient	Result >TL?		
MW358 15.60	00 Downgradi	ent NO		
MW361 12.70	00 Downgradi	ient NO		
MW364 11.10	00 Downgradi	ient NO		
MW367 10.40	00 Sidegradier	nt NO		
MW370 11.50	00 Upgradient	t NO		
MW373 29.40	00 Upgradient	t NO		
Conclusion of	Statistical A	nalysis on Da	ita	
None of the te	st wells exce	eded the Upp	er Tolerance L	imit, which is statistically significant evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Manganese

LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgro Upgradie				Statistics on Background Data	
Well Num	nber:	MW370		X= 1.080	
Date Colle	ected	Result		S= 0.674	
3/17/20	002	0.244		CV= 0.624	
4/23/20	002	1.820		K factor** = 2.523	
7/15/20	02	1.220		TL= 2.780	
10/8/20	02	0.988	В	ecause CV is less than	n or equal to 1.
1/8/200	3	0.729		ssume normal distribu	
4/3/200	3	0.637	W	vith statistical anaylsis	
7/9/200	3	2.510			
10/6/20	003	1.050			
Well Num	nber:	MW373			
Date Colle	ected	Result			
3/18/20	002	0.355			
4/23/20	002	2.160			
7/16/20	002	1.390			
10/8/20	02	0.717			
1/7/200	3	0.587			
4/2/200	13	0.545			
7/9/200	13	1.760			
10/7/20	003	0.570			
Second Q April 201		2013 Data (Collected in	n	
Well No.	Result	Gradient	Result >7	TL?	
MW358	0.447	Downgrad	ient N	10	
MW361	0.005	Downgrad	ient N	10	
MW364	0.019	Downgrad	ient N	10	
MW367	0.731	Sidegradie	nt N	10	
MW370	0.005	Upgradien	t N	01	
MW373	0.056	Upgradien	t N	10	
Conclusio	on of S	Statistical A	Analysis o	on Data	
None of t	he tes	t wells exce	eded the	Upper Tolerance I	Limit, which is statistically significant evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Nickel

LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgroun Upgradient					stics on ground Data				
Well Numbe	r: 1	MW370		X= 0	.024				
Date Collect	ed	Result		S= 0	.022				
3/17/2002		0.050			0.901				
4/23/2002		0.050			$ctor^{**} = 2.523$				
7/15/2002		0.050		TL=	0.078				
10/8/2002		0.005	F	Becaus	se CV is less that	n or equal to	1.		
1/8/2003		0.005			e normal distribu				
4/3/2003		0.005	v	vith st	atistical anaylsis				
7/9/2003		0.026							
10/6/2003		0.010							
Well Numbe	r: 1	MW373							
Date Collect	ed	Result							
3/18/2002		0.050							
4/23/2002		0.050							
7/16/2002		0.050							
10/8/2002		0.005							
1/7/2003		0.005							
4/2/2003		0.005							
7/9/2003		0.011							
10/7/2003		0.005							
Second Qua April 2013	rter	2013 Data (Collected	in					
Well No. Re	esult	Gradient	Result >	TL?					
MW358 0.	005	Downgrad	ient 1	NO					
MW361 0.	005	Downgrad	ient 1	NO					
MW364 0.	034	Downgrad	ient 1	NO					
MW367 0.	005	Sidegradie	nt 1	NO					
	005	Upgradien		NO					
MW373 0.	005	Upgradien	t 1	NO					
Conclusion	of S	tatistical A	Analysis of	on Da	ita				
None of the	test	wells exce	eded the	Upp	er Tolerance I	limit, whic	h is statist	ically sign	ificant evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Oxidation-Reduction Potential

LRGA UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W			Statistics on Background Data			Transformed I Data from Upg	
Well Number:	MW370		X= 46.688			Well Number:	MW370
Date Collected	Result		S= 60.986			Date Collected	LN(Result)
3/17/2002	140.000		CV= 1.306			3/17/2002	4.942
4/23/2002	-15.000		K factor** = 2.523 TL= 200.555			4/23/2002	#Func!
7/15/2002	5.000		TL= 200.555	J		7/15/2002	1.609
4/3/2003	49.000]	Because CV is greater t	han 1, the natura	1	4/3/2003	3.892
7/9/2003	-35.000		logarithm of backgroun	d and test well re	sults	7/9/2003	#Func!
10/6/2003	40.000	,	were calculated.			10/6/2003	3.689
1/7/2004	101.000		Statistics on			1/7/2004	4.615
4/7/2004	105.000		Transformed			4/7/2004	4.654
Well Number:	MW373		Background Data			Well Number:	MW373
Date Collected	Result		X = error			Date Collected	LN(Result)
3/18/2002	140.000		S = error			3/18/2002	4.942
4/23/2002	-20.000		CV = error			4/23/2002	#Func!
10/8/2002	10.000		- · · · ·			10/8/2002	2.303
1/7/2003	10.000		K factor** = 2.523			1/7/2003	2.303
4/2/2003	67.000		TL# = 4.942			4/2/2003	4.205
7/9/2003	-29.000	7	# Because the natural lo	og was not possib	le for	7/9/2003	#Func!
10/7/2003	127.000	:	all background values, t	the TL was consi	dered	10/7/2003	4.844
1/6/2004	52.000	(equal to the maximum b	background value	e.	1/6/2004	3.951
Second Quarte April 2013 Well No. Resu						ormed Second Q ollected in April	
			$\frac{\text{lt} > \text{TL}?}{\text{N}(t)}$		Well Nu	mber LN(Result)	Result >TL?
	.000 Downg		N/A		MW358	5.796	YES
MW361 487	.000 Downg	radient	N/A		NIW 336		ILS

MW358	5.796	YES
MW361	6.188	YES
MW364	5.953	YES
MW367	5.521	YES
MW370	6.225	YES
MW373	6.211	YES

Conclusion of Statistical Analysis on Transformed Data

385.000 Downgradient

250.000 Sidegradient

505.000 Upgradient

498.000 Upgradient

MW364

MW367

MW370

MW373

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW358	
MW361	
MW364	
MW367	
MW370	

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

N/A

N/A

N/A

N/A

** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis	LRGA
Oxidation-Reduction Potential (Continued)	UNITS: mV
MW373	

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis pH

LRGA UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Backgro Upgradi		ata from ells				Statistics on Background Data	
Well Nun	nber:	MW370				X= 6.283	
Date Coll	lected	Result				S= 0.159	
3/17/20	002	6.300				CV= 0.025	
4/23/20	002	6.400				K factor** = 2.904	
7/15/20	002	6.300				TL= 6.745	
10/8/20	002	6.300				LL= 5.820	
1/8/200	03	6.400				Because CV is less than	
4/3/200	03	6.500				assume normal distribut	
7/9/200	03	6.300			,	with statistical anaylsis.	
10/6/20	003	6.500					
Well Nun	nber:	MW373					
Date Coll	lected	Result					
3/18/20	002	6.000					
4/23/20	002	6.300					
7/16/20	002	6.450					
10/8/20	002	6.180					
1/7/200	03	6.350					
4/2/200	03	6.140					
7/9/200	03	6.100					
10/7/20	003	6.000					
		ond Quarter 2 ollected in Ap					
Well No. 1	Result	Gradient R	esult >TL?	Result <ll?< th=""><th>_</th><th></th><th></th></ll?<>	_		
MW358	6.330	Downgradie	nt NO	NO			
MW361	6.590	Downgradie	nt NO	NO			
MW364	6.260	Downgradie	nt NO	NO			
MW367	6.200	Sidegradien	t NO	NO			
MW370	6.250	Upgradient	NO	NO			
MW373	6.210	Upgradient	NO	NO			
Conclusi	on of	Statistical A	nalysis on	Data			
None of t	the tes	t wells excee	ded the U	pper Tolera	nce Lim	it or were less than	the Lower Tolerance

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

X Mean, X = (sum of background results)/(count of background results)

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U Second Quarter 2013 Statistical Analysis Potassium

LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgroun Upgradient					stics on ground Data				
Well Numbe	r:	MW370		X= 2	2.823				
Date Collecto	ed	Result		S= (
3/17/2002		3.220			0.185				
4/23/2002		3.430			ctor** = 2.523				
7/15/2002		2.980		TL=	4.139				
10/8/2002		2.460]	Becau	se CV is less thar	n or equal to	1.		
1/8/2003		2.410			e normal distribu				
4/3/2003		2.430	,	with st	tatistical anaylsis				
7/9/2003		2.440							
10/6/2003		2.480							
Well Number	r:	MW373							
Date Collecte	ed	Result							
3/18/2002		4.340							
4/23/2002		3.040							
7/16/2002		2.930							
10/8/2002		2.300							
1/7/2003		2.450							
4/2/2003		2.700							
7/9/2003		2.680							
10/7/2003		2.880							
Second Qua April 2013	rter	2013 Data (Collected	in					
Well No. Re	esult	Gradient	Result >	·TL?					
MW358 2.	640	Downgrad	ient	NO					
MW361 2.	090	Downgrad	ient	NO					
MW364 2.	040	Downgrad	ient	NO					
MW367 2.	720	Sidegradie	nt	NO					
MW370 2.4	480	Upgradien	t	NO					
MW373 3.	290	Upgradien	t	NO					
Conclusion	of S	statistical A	Analysis	on Da	ata				
None of the	test	wells exce	eded the	Upp	er Tolerance I	.imit, whic	ch is statis	tically sig	nificant evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Sodium

LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgrou Upgradie					istics on kground Data					
Well Num	ber:	MW370		X= 5	51.544					
Date Colle	cted	Result			15.227					
3/17/200	02	31.800			0.295					
4/23/200	02	50.000			ctor** = 2.523					
7/15/200	02	44.700		TL=	89.962					
10/8/200	02	40.000		Becau	se CV is less tha	n or equal	to 1.			
1/8/2003	3	44.600			e normal distribu					
4/3/2003	3	41.900		with st	tatistical anaylsis	5.				
7/9/2003	3	40.000								
10/6/200	03	38.100								
Well Num	ber:	MW373								
Date Colle	cted	Result								
3/18/200	02	43.400								
4/23/200	02	79.800								
7/16/200	02	87.700								
10/8/200	02	61.600								
1/7/2003	3	59.300								
4/2/2003	3	62.100								
7/9/2003	3	50.100								
10/7/200	03	49.600								
Second Qu April 2013		2013 Data (Collected	in						
Well No.	Result	Gradient	Result >	>TL?						
MW358	40.400	Downgrad	ient	NO						
MW361	39.900	Downgrad	ient	NO						
MW364	38.700	Downgrad	ient	NO						
MW367	33.300	Sidegradie	ent	NO						
MW370	37.200	Upgradien	t	NO						
MW373	64.100	Upgradien	t	NO						
Conclusio	on of S	tatistical A	Analysis	on Da	ata					
None of th	he test	wells exce	eded the	e Upp	er Tolerance	Limit, wh	ich is sta	tistically	significa	nt evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Sulfate

LRGA UNITS: mg/L

Background I Upgradient W		Statistics on Background Data				Background gradient Wells
Well Number:	MW370	X= 122.381		Well	Number:	MW370
Date Collected	Result	S= 195.095		Date	Collected	LN(Result)
3/17/2002	17.400	CV= 1.594			7/2002	2.856
4/23/2002	37.900	K factor** = 2.523			3/2002	3.635
7/15/2002	15.700	TL= 614.606			5/2002	2.754
10/8/2002	13.400	Because CV is greater t	than 1, the natural		3/2002	2.595
1/8/2003	14.400	logarithm of backgroun	d and test well res		2003	2.667
4/3/2003	18.100	were calculated.	were calculated.			2.896
7/9/2003	9.600	Statistics on	1	7/9/	2003	2.262
10/6/2003	16.500	Transformed			5/2003	2.803
Well Number:	MW373	Background Data		Well	Number:	MW373
Date Collected	Result	X= 3.985		Date	Collected	LN(Result)
3/18/2002	163.300	S= 1.323		3/18	3/2002	5.096
4/23/2002	809.600				3/2002	6.697
7/16/2002	109.400	CV=0.332			5/2002	4.695
10/8/2002	110.600	K factor** = 2.523			3/2002	4.706
1/7/2003	113.700	TL= 7.322			2003	4.734
4/2/2003	133.000		_	4/2/	2003	4.890
7/9/2003	182.100			7/9/	2003	5.205
10/7/2003	193.400			10/	7/2003	5.265
Second Quarte April 2013	er 2013 Data Colle	cted in		Transformed Collected in J		uarter 2013 Dat
Well No. Resu	ılt Gradient	Result >TL?	N	Well Number	LN(Resul	t) Result >TL?
MW358 87.0	000 Downgradier	nt N/A	_	MW358	4.466	NO
MW361 76.0	e			MW361	4.331	NO
MW364 64.0	e e			MW364	4.159	NO
MW367 36.0	e	N/A		MW367	3.584	NO
MW370 18.0	e	N/A		MW370	2.890	NO
	.000 Upgradient	N/A		MW373	5.298	NO
		ysis on Transformed Da	ita			
		l the Upper Tolerance I		statistically	significant	evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Technetium-99

LRGA UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W			Statistics on Background Data			Transformed I Data from Upg	
Well Number:	MW370		X= 7.655			Well Number:	MW370
Date Collected	Result		S= 13.274			Date Collected	LN(Result)
3/17/2002	10.800		CV= 1.734 K factor** = 2.523			3/17/2002	2.380
4/23/2002	8.530		K = 41.146			4/23/2002	2.144
7/15/2002	5.090		1L- 41.140	J		7/15/2002	1.627
10/8/2002	4.780		Because CV is greater t	han 1, the natura	1	10/8/2002	1.564
1/8/2003	-5.120		logarithm of backgroun			1/8/2003	#Func!
4/3/2003	5.110		were calculated.			4/3/2003	1.631
7/9/2003	4.250		Statistics on	1		7/9/2003	1.447
10/6/2003	6.540		Transformed			10/6/2003	1.878
Well Number:	MW373		Background Data			Well Number:	MW373
Date Collected	Result		X = error	1		Date Collected	LN(Result)
3/18/2002	16.500		S = error			3/18/2002	2.803
4/23/2002	3.490					4/23/2002	1.250
7/16/2002	1.420		CV = error			7/16/2002	0.351
10/8/2002	-6.060		K factor** = 2.523			10/8/2002	#Func!
1/7/2003	-8.410		TL# = 3.833			1/7/2003	#Func!
4/2/2003	26.300		# Because the natural lo	og was not possib	le for	4/2/2003	3.270
7/9/2003	3.060		all background values, t	the TL was consi	dered	7/9/2003	1.118
10/7/2003	46.200		equal to the maximum b	background value	e.	10/7/2003	3.833
Second Quarte April 2013						ormed Second Q ollected in April	
Well No. Resu			ult >TL?		Well Nu	mber LN(Result)	Result >TL?
MW358 38.3	U		N/A			, ,	
MW361 39.5	500 Downgr	adient	N/A		MW358	3.645	NO

MW358	3.645	NO
MW361	3.676	NO
MW364	3.818	NO
MW367	3.388	NO
MW370	2.485	NO
MW373	4.154	YES

Conclusion of Statistical Analysis on Transformed Data

Downgradient

Sidegradient

Upgradient

Upgradient

N/A

N/A

N/A

N/A

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW364

MW367

MW370

MW373

45.500

29.600

12.000

63.700

MW373

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Total Organic Carbon (TOC)

LRGA UNITS: mg/L

Background Data from Upgradient Wells	Statistics on Background Data			Transformed D Data from Upg	Background gradient Wells
Well Number: MW370	X= 6.169		L	Well Number:	MW370
Date Collected Result	S= 12.072		-	Date Collected	LN(Result)
3/17/2002 1.200	CV= 1.957			3/17/2002	0.182
4/23/2002 4.300	K factor** = 2.523			4/23/2002	1.459
7/15/2002 2.600	TL= 36.626			7/15/2002	0.956
10/8/2002 2.300	Because CV is greater	than 1, the natural		10/8/2002	0.833
1/8/2003 3.000	logarithm of backgroun			1/8/2003	1.099
4/3/2003 1.200	were calculated.			4/3/2003	0.182
7/9/2003 2.600	Statistics on]		7/9/2003	0.956
10/6/2003 1.700	Transformed			10/6/2003	0.531
Well Number: MW373	Background Data			Well Number:	MW373
Date Collected Result	X= 1.069	1	-	Date Collected	LN(Result)
3/18/2002 1.100	S= 1.014			3/18/2002	0.095
4/23/2002 17.500				4/23/2002	2.862
7/16/2002 49.000	CV= 0.948			7/16/2002	3.892
10/8/2002 2.900	K factor** = 2.523			10/8/2002	1.065
1/7/2003 3.900	TL = 3.626			1/7/2003	1.361
4/2/2003 2.500		-		4/2/2003	0.916
7/9/2003 1.700				7/9/2003	0.531
10/7/2003 1.200				10/7/2003	0.182
Second Quarter 2013 Data Collec April 2013	eted in			med Second Q 1 in April 2013	uarter 2013 Da
Vell No. Result Gradient R	tesult >TL?	,	Well Num	iber LN(Resu	t) Result >TL
MW358 1.000 Downgradien	t N/A		MW358	0.000	NO
MW361 1.000 Downgradien			MW361	0.000	NO
MW364 1.000 Downgradien			MW364	0.000	NO
MW367 1.000 Sidegradient	N/A		MW367	0.000	NO
MW370 1.000 Upgradient	N/A		MW370	0.000	NO
MW373 1.000 Upgradient	N/A		MW373	0.000	NO
Conclusion of Statistical Analy	sis on Transformed Da	ita			
None of the test wells exceeded hat these wells have no elevate	* *				t evidence

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-U Second Quarter 2013 Statistical Analysis Total Organic Halides (TOX)

LRGA UNITS: ug/L

Background Data from Upgradient Wells			istics on «ground Data	
Well Number:	MW370	X= 7	79.819	
Date Collected	Result		78.470	
3/17/2002	50.000		= 0.983	
4/23/2002	228.000		ctor** = 2.523 277.798	
7/15/2002	88.000	TL=		
10/8/2002	58.000	Becau	e CV is less than or equal to 1, e normal distribution and continue atistical anaylsis.	
1/8/2003	72.400	assum		
4/3/2003	26.600	with st		
7/9/2003	16.400			
10/6/2003	31.100			
Well Number:	MW373			
Date Collected	Result			
3/18/2002	50.000			
4/23/2002	276.000			
7/16/2002	177.000			
10/8/2002	76.000			
1/7/2003	45.900			
4/2/2003	57.800			
7/9/2003	10.000			
10/7/2003	13.900		_	
Second Quarter 2013 Data Collected in April 2013				
Well No. Resu	lt Gradient	Result >TL?		
MW358 34.00	0 Downgrad	lient NO		
MW361 18.00	0 Downgrad	lient NO		
	0 Downgrad			
MW367 25.00	00 Sidegradie	ent NO		
	00 Upgradien			
MW373 40.00	00 Upgradien	t NO		
Conclusion of Statistical Analysis on Data				
None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.				

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

August 2, 2013

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Geologist, with a Bachelor of Science degree, I have over eight years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities.

For this project, the statistical analyses conducted on the second quarter 2013 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely,

C. Travis Debnam LATA Project Geologist

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

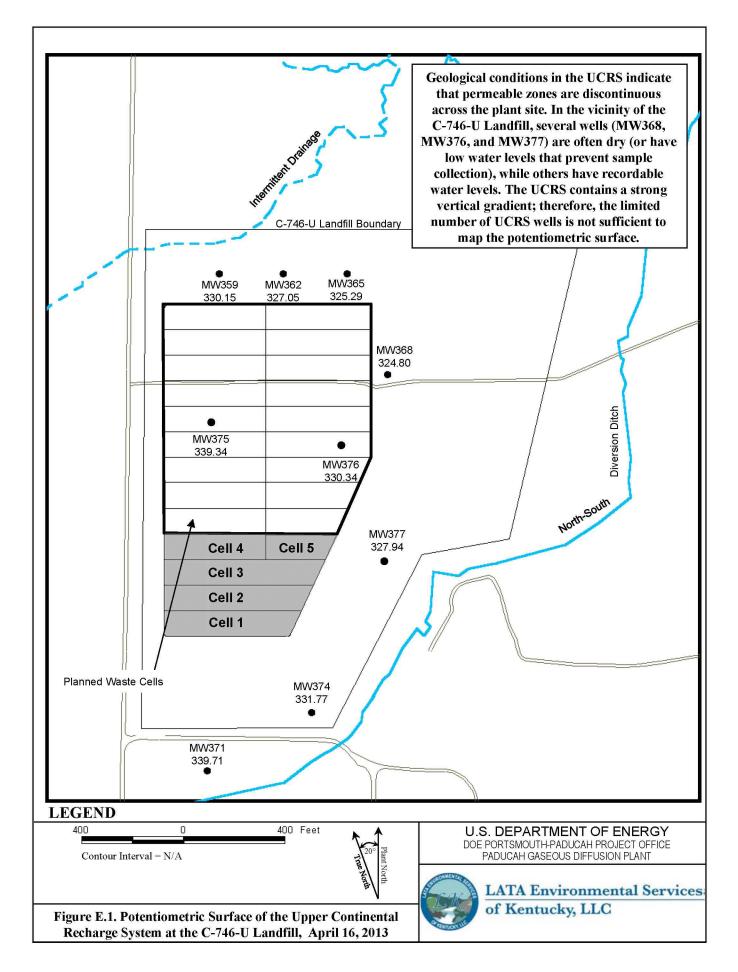
THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/CONTAINED - QUARTERLY, 2nd CY 2013Finds/Unit: <u>KY8-890-008-982/1</u>

Facility:U.S. DOE - Paducah Gaseous Diffusion PlantLAIPermit Number:073-00045

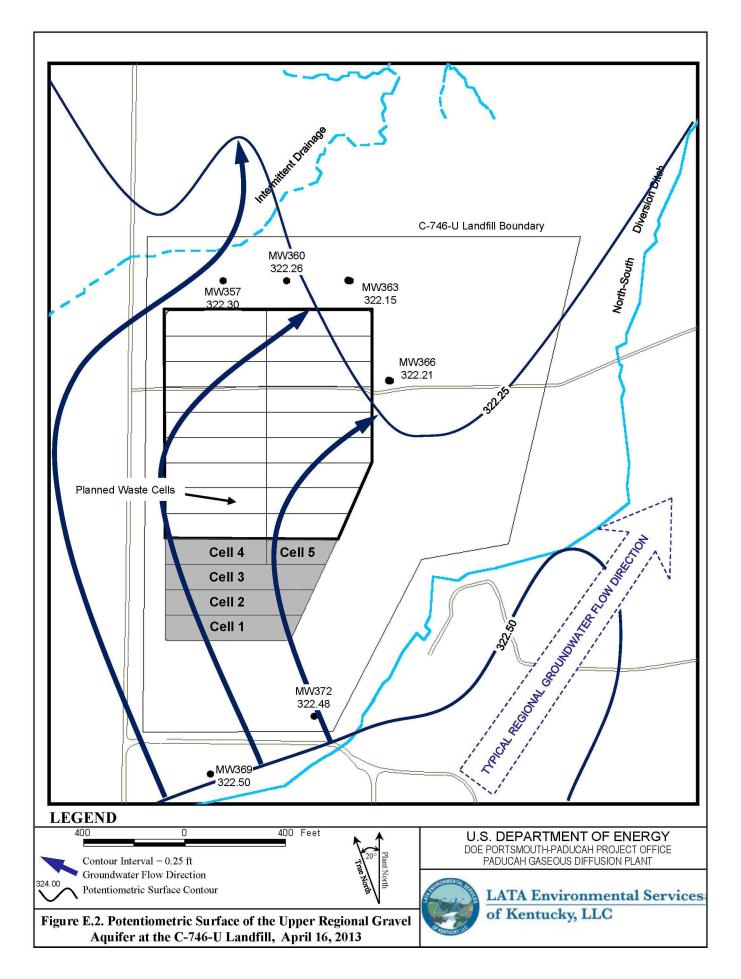
LAB ID: None

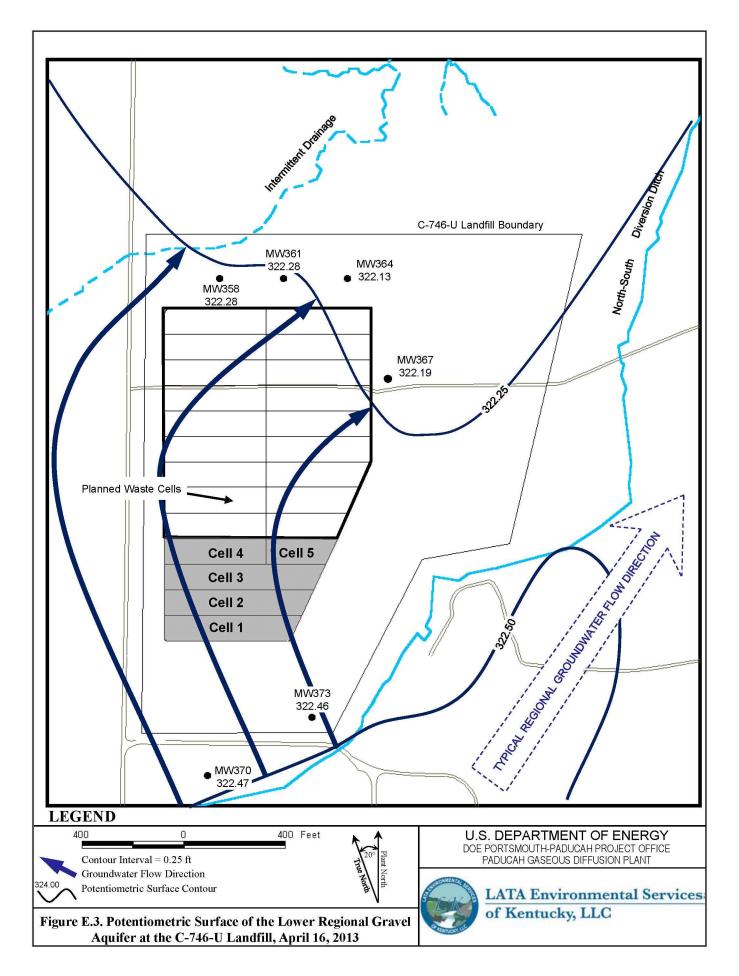
GROUNDWATER FLOW RATE AND DIRECTION

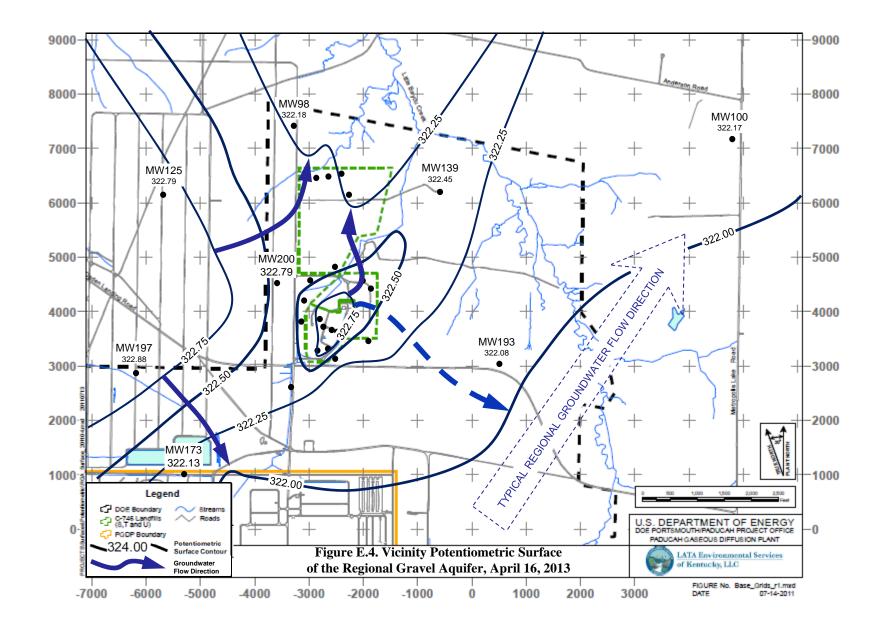

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 *KAR* 48.300, Section 11. The uppermost aquifer below C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2013 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on April 16, 2013. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW359, MW362, MW368, MW376, and MW377 had insufficient water to permit sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradient for the URGA at the C-746-U Landfill was 1.22×10^{-4} ft/ft and for the LRGA was 1.25×10^{-4} ft/ft. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 2.62×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.


The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.


Groundwater flow beneath the landfill typically trends northeastward toward the Ohio River. However, during the period of April 9 through May 2, 2013, the Ohio River stage rose dramatically resulting in unusual groundwater flow trends on April 16, 2013. Groundwater flow arced northwest to northeast beneath the C-746-U Landfill during this reporting period.



									*Co	rrected
							Rav	v Data	I	Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/16/2013	09:27	MW357	URGA	368.90	30.04	0.00	46.60	322.30	46.60	322.30
4/16/2013	09:30	MW358	LRGA	369.05	30.04	0.00	46.77	322.28	46.77	322.28
4/16/2013	09:29	MW359	UCRS	369.07	30.04	0.00	38.92	330.15	38.92	330.15
4/16/2013	09:24	MW360	URGA	362.20	30.04	0.00	39.94	322.26	39.94	322.26
4/16/2013	09:20	MW361	LRGA	361.47	30.04	0.00	39.19	322.28	39.19	322.28
4/16/2013	09:22	MW362	UCRS	361.95	30.04	0.00	34.90	327.05	34.90	327.05
4/16/2013	09:37	MW363	URGA	368.68	30.04	0.00	46.53	322.15	46.53	322.15
4/16/2013	09:41	MW364	LRGA	367.63	30.04	0.00	45.50	322.13	45.50	322.13
4/16/2013	09:39	MW365	UCRS	368.27	30.04	0.00	42.98	325.29	42.98	325.29
4/16/2013	13:55	MW366	URGA	369.06	30.00	0.05	46.80	322.26	46.85	322.21
4/16/2013	13:58	MW367	LRGA	369.45	30.00	0.05	47.21	322.24	47.26	322.19
4/16/2013	09:46	MW368	UCRS	369.14	30.04	0.00	44.34	324.80	44.34	324.80
4/16/2013	08:44	MW369	URGA	364.28	30.04	0.00	41.78	322.50	41.78	322.50
4/16/2013	08:47	MW370	LRGA	365.15	30.04	0.00	42.68	322.47	42.68	322.47
4/16/2013	08:45	MW371	UCRS	364.71	30.04	0.00	25.00	339.71	25.00	339.71
4/16/2013	08:56	MW372	URGA	359.49	30.04	0.00	37.01	322.48	37.01	322.48
4/16/2013	08:51	MW373	LRGA	359.79	30.04	0.00	37.33	322.46	37.33	322.46
4/16/2013	08:53	MW374	UCRS	359.50	30.04	0.00	27.73	331.77	27.73	331.77
4/16/2013	09:07	MW375	UCRS	370.24	30.04	0.00	30.90	339.34	30.90	339.34
4/16/2013	09:03	MW376	UCRS	370.44	30.04	0.00	40.10	330.34	40.10	330.34
4/16/2013	09:00	MW377	UCRS	365.76	30.04	0.00	37.82	327.94	37.82	327.94
Initial Baro	metric Pr	essure	30.04							
Elev = elev	ation									
amsl = abov	ve mean s	sea level								
BP = baron	etric pre	ssure								
DTW = dep	oth to wat	er in feet bel	ow datum							
URGA = U	pper Reg	ional Gravel	Aquifer							
LRGA = Lc	ower Reg	ional Gravel	Aquifer							
$UCRS = U_{I}$	oper Cont	inental Rech	narge System							
*Assumes a	a baromet	ric efficienc	v of 1.0							

Table E.1. C-746-U Landfill Second Quarter 2013 (April) Water Levels

Table E.2. C-746-U Hydraulic Gradients

	ft/ft
Beneath Landfill Mound – Upper RGA	1.22 x 10 ⁻⁴
Beneath Landfill Mound – Lower RGA	1.25 x 10 ⁻⁴
Vicinity	2.62 x 10 ⁻⁴

Table E.3. C-746-U Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specifi	c Discharge (q)	Average	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.09	3.12 x 10 ⁻⁵	0.35	1.25 x 10 ⁻⁴
425	0.150	0.05	1.83 x 10 ⁻⁵	0.21	7.32 x 10 ⁻⁵
Lower RGA					
725	0.256	0.09	3.20 x 10 ⁻⁵	0.36	1.28 x 10 ⁻⁴
425	0.150	0.05	1.88 x 10 ⁻⁵	0.21	7.51 x 10 ⁻⁵

APPENDIX F

NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 *KAR* 48:300, Section 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the second quarter 2013 groundwater data collected from the C-746-U Landfill monitoring wells (MW) were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The following are the parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to background concentrations.

Parameter	Monitoring Well	
Upper Continental Recharge S	ystem	
None		
Upper Regional Gravel Aquifer	μ	
None		
Lower Regional Gravel Aquife	r	
Technetium-99	MW373	
OTE : Although technetium-99 is reported along with the particular technetic sector b and 	s not cited in 40 <i>CFR</i> § 302.4, Appendix A, this rad	lionuclide is being

MCL Notification

A notification was submitted for parameters that exceeded the MCL. The parameters submitted are listed on the following page.

5/28/2013

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL PERMIT NUMBER 073-00045 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL	
8004-4798	MW357	Trichloroethene	8260B/OA7302E	5.9	ug/L	5	
8004-4799	MW358	Trichloroethene	8260B/OA7302E	5.6	ug/L	5	
8004-4795	MW361	Trichloroethene	8260B/OA7302E	6	ug/L	5	
8004-4808	MW372	Trichloroethene	8260B/OA7302E	6.2	ug/L	5	
8004-4792	MW373	Trichloroethene	8260B/OA7302E	6.4	ug/L	5	

NOTE 1: These limits are defined in 401 KAR 47:030.

APPENDIX G

CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368					362	365						357	369	372	367	361		358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2002	_									т	*	*									-
Quarter 2, 2003	_										*	*									-
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*			4	*	-11		*	4.			-11			
Quarter 3, 2004						*	-11				4			~~		*					
Quarter 3, 2004	_					*										~					-
Quarter 4, 2005						*															
ALPHA ACTIVITY						ጥ														L	
Quarter 1, 2004								<u> </u>													
Quarter 2, 2004																					
Quarter 3, 2009	-																				<u> </u>
ALUMINUM																				L	
Quarter 3, 2003								1			*							1			
BETA ACTIVITY											Τ									L	
Quarter 1, 2004								<u> </u>													
Quarter 2, 2004	_																				
Quarter 3, 2004																					_
Quarter 4, 2004																					
Quarter 4, 2004 Quarter 4, 2005	_																			 	
Quarter 1, 2005	-																			├	
	-																			├	
Quarter 2, 2006																				├───	╞
Quarter 3, 2006															_					├───	
Quarter 4, 2006																				├───	╞
Quarter 1, 2007	_														_					┝───	
Quarter 2, 2007	_																			┝───	
Quarter 3, 2007	_														_					┝───	
Quarter 4, 2007	_									╞										┝───	
Quarter 1, 2008										-				_		_				╞───	<u> </u>
Quarter 2, 2008	_																			┝───	<u> </u>
Quarter 3, 2008															_					╞───	<u> </u>
Quarter 4, 2008																				╞───	<u> </u>
Quarter 1, 2009										-						_	_			╞───	<u> </u>
Quarter 2, 2009	_									_										──	┣—
Quarter 3, 2009																				├──	├
Quarter 4, 2009																				├──	┣—
Quarter 1, 2010										-										├──	┣—
Quarter 2, 2010	_							<u> </u>			<u> </u>						<u> </u>			┣──	┣—
Quarter 3, 2010															_					┣──	┣—
Quarter 4, 2010										_						_				┣──	┣—
Quarter 2, 2011															_					┣──	┣—
Quarter 4, 2011										<u> </u>										┣──	┣—
Quarter 1, 2012											<u> </u>						<u> </u>			└──	┣
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					

Groundwater Flow System				τ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
Quarter 1, 2013																					
BROMIDE			1		1		1						*					1			—
Quarter 2, 2004													不								
CALCIUM										*								1			T
Quarter 3, 2003										不											*
Quarter 2, 2005															*						不
Quarter 3, 2006															* *						–
Quarter 2, 2008																					–
Quarter 3, 2009				-											*						┢
Quarter 4, 2009																					<u> </u>
Quarter 1, 2010															*						<u> </u>
Quarter 2, 2010															*						<u> </u>
Quarter 3, 2010															*						⊢
Quarter 1, 2011															*						⊢
Quarter 2, 2011															*						
Quarter 3, 2011																					*
Quarter 4, 2011					<u> </u>										*			<u> </u>			*
Quarter 1, 2012				-											*						*
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						*
Quarter 2, 2013															*						
CARBON DISULFIDE					1												1			1	
Quarter 3, 2003							_			*											
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006				-		*															
Quarter 2, 2006						*															
Quarter 3, 2010		*									*										
Quarter 4, 2010														*							
Quarter 1, 2011															*						
CHEMICAL OXYGEN DEN	MAND				r		r			-		1							1	1	
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002					L					*	*										\vdash
Quarter 1, 2003										*	*										\vdash
Quarter 2, 2003										*	*	*									\vdash
Quarter 3, 2003	*									*	*					*					\vdash
Quarter 4, 2003						*				*	*										\vdash
Quarter 3, 2004										*											\vdash
Quarter 3, 2005						*				*					*	*			*		\vdash
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
CHLORIDE		1				1					1								1	1	
Quarter 1, 2006																				*	
COBALT						_				_		_			_		_	_		_	
Quarter 3, 2003	*						*			*	*		*	*	*	*	*	*		*	
Quarter 1, 2004	1				I									*			1	1			1

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368					362							357							370	373
CONDUCTIVITY																		1			
Quarter 4, 2002										*											
Quarter 1, 2002 Quarter 1, 2003										*											
Quarter 2, 2003										*	*										
Quarter 4, 2003										*											
Quarter 1, 2005										*											
Quarter 2, 2004	_									*											
Quarter 3, 2004	_									*											
Quarter 1, 2005										.1.					*						
Quarter 2, 2005	_														*						
Quarter 3, 2005	_					*									т				*		
Quarter 4, 2005	-					T									*			*	т		
Quarter 1, 2005	_														*			<u>т</u>			
Quarter 2, 2006															*						
Quarter 3, 2006	_														*						
Quarter 1, 2007	_			-											*						<u> </u>
	_			-											*						<u> </u>
Quarter 2, 2007															*						<u> </u>
Quarter 3, 2007	_																				<u> </u>
Quarter 4, 2007	_			-											*						<u> </u>
Quarter 1, 2008	_			-																	<u> </u>
Quarter 2, 2008															*						<u> </u>
Quarter 3, 2008	_														*						
Quarter 4, 2008				-											*						<u> </u>
Quarter 1, 2009	_														*						<u> </u>
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009															*						
Quarter 1, 2010	_			-											*						<u> </u>
Quarter 2, 2010	_			-											*						<u> </u>
Quarter 3, 2010	_														*						<u> </u>
Quarter 4, 2010	_														*						<u> </u>
Quarter 1, 2011	_														*						
Quarter 2, 2011	_														*						
Quarter 3, 2011				-											*						
Quarter 4, 2011				-											*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013													_		*						
DISSOLVED OXYGEN					-	-	-	_			-			-	-				-		
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*					*											
Quarter 4, 2003					*																
Quarter 1, 2004					*																
Quarter 2, 2004								*								*					
Quarter 1, 2005					*																
Quarter 2, 2005								*													

Groundwater Flow System				J	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368						365							369	372						373
Quarter 1, 2006					*																
Quarter 2, 2006					*			*													
Quarter 3, 2006					*			*													
Quarter 4, 2006					*				*												
Quarter 2, 2007					*			*													
Quarter 3, 2007					*			*	*												
Quarter 1, 2008					*														*		
Quarter 2, 2008								*	*												
Quarter 3, 2008								*													
Quarter 1, 2009							*														
Quarter 2, 2009					*			*	*												
Quarter 3, 2009						*		*	*												
Quarter 1, 2010					*		*														
Quarter 2, 2010					*	*	-17	*	*											*	*
Quarter 3, 2010					*	*		**	**											*1*	*1*
Quarter 4, 2010					т	т	*					*								*	
Quarter 1, 2010						*	т					т								<u>т</u>	┝──┦
Quarter 2, 2011					*	*	*	*	*					*							
Quarter 3, 2011					Υ	*	<u>т</u>	<u>т</u>	*					ጥ							
Quarter 1, 2012						*	*		*												
Quarter 2, 2012	*			*	*	*	~	*	*												
Quarter 3, 2012	*			Ŧ	不	*			不									-			┟──┤
						不			*												┢──┤
Quarter 4, 2012						*			*												┢──┤
Quarter 1, 2013	-					不	*		*												┝──┦
Quarter 2, 2013							木		木											<u> </u>	Щ
DISSOLVED SOLIDS	1		1				T	<u>т </u>		J.											-
Quarter 4, 2002	-							<u> </u>		*											┢──┤
Quarter 1, 2003	_																				\mid
Quarter 2, 2003	_						*			*	*										\mid
Quarter 3, 2003	_						不				不										\mid
Quarter 4, 2003	_					J.				*											\mid
Quarter 3, 2005	_					*									1						\mid
Quarter 4, 2006	_														*						\mid
Quarter 1, 2007	_																				\mid
Quarter 2, 2007															*						\mid
Quarter 4, 2008																					\mid
Quarter 1, 2009															*						$\mid = \mid$
Quarter 2, 2009						<u> </u>	 			<u> </u>					*						\parallel
Quarter 3, 2009						<u> </u>	 			<u> </u>					*						\parallel
Quarter 4, 2009						<u> </u>	 			<u> </u>					*						\parallel
Quarter 1, 2010							<u> </u>								*					!	\mid
Quarter 2, 2010							<u> </u>								*					!	\mid
Quarter 3, 2010						<u> </u>									*						\square
Quarter 4, 2010						<u> </u>									*						\square
Quarter 1, 2011							┣								*						
Quarter 2, 2011							<u> </u>								*						
Quarter 3, 2011						ļ	<u> </u>								*						
Quarter 4, 2011						ļ	<u> </u>								*						
Quarter 1, 2012	1													*	*						

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	_												357								
Quarter 2, 2012	-														*						*
Quarter 3, 2012	_														*						*
Quarter 4, 2012	_														*						
Quarter 1, 2012	_														*						
Quarter 2, 2013	_														*						
IODIDE																					
Quarter 2, 2003																*					
Quarter 3, 2003	*									*						-					
Quarter 4, 2003	-						*														
Quarter 3, 2010	-					*		*					*				*				
IODINE-131																					L
Quarter 3, 2010																					
IODOMETHANE																					L
Quarter 4, 2003						*															
IRON																					
Quarter 4, 2002						*															
Quarter 3, 2002	_					4										*					
Quarter 4, 2003	_									*						*					
Quarter 1, 2003	_									*						*					
Quarter 2, 2004	_									*						~					
Quarter 3, 2004	_									*											
Quarter 3, 2004	_									44						*					
MAGNESIUM																Т					
Quarter 2, 2005					<u> </u>										*						*
Quarter 3, 2005	_					*									4						*
Quarter 2, 2006	_														*						*
Quarter 3, 2006	_														*						~~~
Quarter 1, 2007	_														*						
Quarter 2, 2008	_														*						
Quarter 2, 2009	_														*						
Quarter 3, 2009	_														*						
Quarter 4, 2009	_														*						
Quarter 1, 2010	_														*						
Quarter 2, 2010	_														*						
Quarter 3, 2010	_														*						
Quarter 1, 2011	_														*						
Quarter 2, 2011	_														*						
Quarter 3, 2011	_														*						
Quarter 4, 2011	_														*						
Quarter 1, 2012	_														* *						
Quarter 2, 2012	-														*						
Quarter 3, 2012	_														* *						├──
Quarter 4, 2012	_														* *						├──
Quarter 1, 2012					<u> </u>	<u> </u>	-	<u> </u>				<u> </u>			* *						┝──
	-						-	-							* *						├──
Quarter 2, 2013						<u> </u>	<u> </u>	<u> </u>				<u> </u>			Ŧ						L
MANGANESE							1	1		*		*									
Quarter 3, 2002	_	*				*	*			*		*		*							├──
Quarter 4, 2002	_	*				ボ	不			*		*		*							├──
Quarter 2, 2003										木		木									<u> </u>

Monitoring Well 3 Quarter 3, 2003 2 Quarter 4, 2003 2 Quarter 1, 2004 2 Quarter 2, 2004 2 Quarter 3, 2004 2 Quarter 1, 2005 2 Quarter 3, 2005 2 Quarter 4, 2005 2	S 368	<u>S</u> 375	S 376	S 377	D 359	D 362	D 365	U 371	U 374	S 266	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well 3 Quarter 3, 2003 2 Quarter 4, 2003 2 Quarter 1, 2004 2 Quarter 2, 2004 2 Quarter 3, 2004 2 Quarter 1, 2005 2 Quarter 3, 2005 2 Quarter 4, 2005 2	368														-						
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005									J/T	300	360	363	357	369	372	367	361	364	358	370	373
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005								Ì		*		*	*			*	*	*	*		
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005										*	*	*	*			-	*	*			
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005										*	*	*	-			*	*	*			
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005							*			*	*	*						*			
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005							*			*	*	*				*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005										*		*				*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005										*		*				•1•					
Quarter 3, 2005 Quarter 4, 2005										*		*									
Quarter 4, 2005										*		*				*					
										*		т				*					
Quarter 1, 2006										*						*					
Quarter 2, 2006							*			*		*									
Quarter 3, 2006							~			*		*				*					
Quarter 3, 2006 Quarter 4, 2006						<u> </u>		<u> </u>		*						不		<u> </u>			<u> </u>
Quarter 4, 2006 Quarter 1, 2007						<u> </u>		<u> </u>		*								<u> </u>			├──
~							¥			*											
Quarter 2, 2007					<u> </u>	<u> </u>	*	<u> </u>		ボ	<u> </u>					<u> </u>		<u> </u>			├──
Quarter 3, 2007							*														<u> </u>
Quarter 3, 2008				-																	
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 3, 2011							*														
NICKEL					<u> </u>	1	<u> </u>	1			1							1			—
Quarter 3, 2003										*											
OXIDATION-REDUCTION PO	ТЕ	NTI	AL		r —	r	r —	r			r	-						r			-
Quarter 4, 2002																	*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
X	*			-																	
Quarter 4, 2003					*																
Quarter 2, 2004													*	_			*			_	*
Quarter 3, 2004					*			*				_	*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005				-													*			*	*
Quarter 2, 2005				-				*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006					*			*	*								*				*
Quarter 2, 2006					*		*	*					*				*			*	
Quarter 3, 2006					*			*					*				*			*	
Quarter 4, 2006					*		*			*		*	*				*			*	*
Quarter 1, 2007		*			*			*					*				*			*	*
Quarter 2, 2007					*								*				*			*	*
Quarter 3, 2007					*			*									*			*	
Quarter 4, 2007																	*			*	*
Quarter 1, 2008		_			*			*				*	*						*	*	
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*	İ	*	*				*	*		*	*
Quarter 1, 2009							*	*		*		*	*					*		*	

Groundwater Flow System				τ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368					362	365							369	372					370	373
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009	-	*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009	-	*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2009	-	*			*		*	*	.1.	*			*			*	*	*	-1-	*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*	-	*	*	*		*	*	*	*	*
Quarter 4, 2010		*			-	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011		-				*		*		*	*	*	*	*		*	*	*	*	*	<u> </u>
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*			-	*		*	*	*	-	*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*			-	*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	-
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
PCB, TOTAL				1							-	-					-				
Quarter 4, 2003																	*				
Quarter 3, 2004												*					-				
Quarter 3, 2005							*					-									
Quarter 2, 2006							*														
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004												*									
Quarter 2, 2006							*					*									
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242																					
Quarter 3, 2006							*					*									
Quarter 4, 2006										*									<u> </u>	1	T
Xumitor 1, 2000										T											L

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375				362	365		374		360		357	369	372	367	361	364	358	370	373
Quarter 2, 2012							*														
PCB-1248																					
Quarter 2, 2008							*														
PCB-1260							_														
Quarter 2, 2006							*														
pH							-														<u> </u>
Quarter 3, 2002										*											1
Quarter 4, 2002										*											1
Quarter 1, 2002										*											
Quarter 2, 2003	-									*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*			-1-						*					
Quarter 1, 2003	1				-		*									*		+			+
Quarter 3, 2005	1				-	*	~P									*1		*	*		+
Quarter 4, 2005	-					* *												*	*		+
Quarter 3, 2005	-	<u> </u>			-	*	<u> </u>							<u> </u>		*	<u> </u>		ጥ	<u> </u>	
Quarter 3, 2006 Quarter 2, 2011	-													*		ጥ					+
Quarter 2, 2011 Quarter 3, 2011	-													*							+
	_													*							
Quarter 4, 2011	-													不		*	*				
Quarter 1, 2012	-											J.				*	木				
Quarter 2, 2012	_									4		*				4					
Quarter 1, 2013										*		*				*					
RADIUM-228		1	1	1		1	1					1					<u> </u>	1	1	1	
Quarter 2, 2005						_						_						-			-
Quarter 4, 2005																					
SELENIUM	-	r –	r –		r –	r –	r –	r – –	_			1		r –			1	1		r –	
Quarter 4, 2003																					
SODIUM		1	1	1	1	1	1	1		-	-		-	1			r	1	1	1	
Quarter 3, 2002										*	*		*								<u> </u>
Quarter 4, 2002	_									*	*			*							<u> </u>
Quarter 1, 2003	_									*											<u> </u>
Quarter 2, 2003										*	*										<u> </u>
Quarter 3, 2003	_										*										\vdash
Quarter 1, 2007	_										*										
Quarter 1, 2012														*							
STRONTIUM-90		1	1			1								1			1	1		1	.
Quarter 3, 2003																					
SULFATE	_	1	1			1	1											-		1	
Quarter 1, 2003	1						*											<u> </u>			<u> </u>
Quarter 2, 2003						*	*														
Quarter 3, 2003	*					*															
Quarter 4, 2003					*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005					*		*		*						*						
C																					1
Quarter 3, 2005					*	*	*														

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 4, 2007		*																			
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008		*				*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*									*						
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010		*			*	*	*								*						
Quarter 3, 2010		*			*	*	*								*						
Quarter 4, 2010		*				*	*								*						
Quarter 1, 2011		*																			
Quarter 2, 2011		*			*	*	*								*						
Quarter 3, 2011		*				*	*	*							*						
Quarter 4, 2011		*				*									*						
Quarter 1, 2012		*					*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						
Quarter 2, 2013		*													*						
TECHNETIUM-99																					
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003																	*				
Quarter 4, 2003																	*				*
Quarter 1, 2004															*		*				*
Quarter 2, 2004															*						*
Quarter 3, 2004															*						*
Quarter 4, 2004	_														*		*				*
Quarter 3, 2005	_																*				
Quarter 1, 2006	_														*						*
Quarter 2, 2006	_	*							*												*
Quarter 3, 2006	_																				*
Quarter 4, 2006	_														*						*
Quarter 1, 2007	_																				*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007	_														*		*	*			
Quarter 4, 2007	_									*					*				*		*
Quarter 1, 2008	_														*					*	*
Quarter 2, 2008							*	*						*		*			*		

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375				362	365		374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*							-				
Quarter 2, 2009										-								*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*					-	*	*	*	*		
Quarter 3, 2010										*					*						
Quarter 4, 2010																		*			
Quarter 1, 2011		*								*							*				
Quarter 2, 2011																*	*	*	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012								*										*			+
																	4	-			-
Quarter 3, 2012					L	<u> </u>	<u> </u>	<u> </u>				L					*	*			<u> </u>
Quarter 4, 2012															*			*			*
Quarter 1, 2013																		*			*
Quarter 2, 2013																					*
TOTAL ORGANIC CARBON											1							1			
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003											*										
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										
Quarter 1, 2004											*										
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
TOTAL ORGANIC HALIDES	5																				
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 1, 2004																*					
TRICHLOROETHENE																					
Quarter 3, 2002																					
Quarter 4, 2002																					
Quarter 1, 2003																					
Quarter 2, 2003																					Τ
Quarter 3, 2003																					
Quarter 4, 2003																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					
Quarter 4, 2005																					
			r		r	*	*	T		_	r	-	-				r	-	r		

Groundwater Flow System				τ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 1, 2011																					
Quarter 2, 2011																					
Quarter 3, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013																					
Quarter 2, 2013																					
TURBIDITY		1	r	1	1	1	r	r			r	1		1				-	r		
Quarter 1, 2003										*											
URANIUM		1	r	1	1	1	r	r			r	1		1				-	r		
Quarter 4, 2002	_	*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC	-	1	1	1	1	1	1	1			1		1	-	1		-	1			
Quarter 3, 2005																			*		
* Statistical test		indi	cate	an e	levat	ed co	oncei	ntrati	on (i	i.e., a	a stat	istic	al ex	ceeda	ance)					
MCL Exceeda	ince																				
UCRS Upper Contine	ental R	echa	rge S	Syste	m																
URGA Upper Region																					
LRGA Lower Region																					
S Sidegradient;		V 1 11	D		Do	wnoi	adie	nt [.]			U		Uno	gradie	ent						
5 Sidegiaulelli,			υ		00	wiigi	aure	m,			U		Obs	Jaure	JIII						_

APPENDIX H

METHANE MONITORING DATA

C-746-U LANDFILL METHANE LOG

PADUCAH GASEOUS DIFFUSION PLANT Permit #: 073-00045 McCracken County, Kentucky

Date: June 11, 2013

Time	Location	% LEL of Methane Reading	Remarks	Weather Conditions
1235	C-746-U1	0	Checked @ Floor Level	Inside office
1240	C-746-U2	0	Checked @ Floor Level	Inside Office
1243	C-746-U-T-14	0	Checked @ Floor Level	Change out trailer
1305	C-746-U15	0	Checked @ Floor Level	Treatment building
1247	MG1	0	Dry casing	Wind out of S. 90 [°]
1251	MG2	0	Small amount of water in casing	Wind out of S. 90 [®]
1256	MG3	0	Dry casing	Wind out of S. 90 ^o
1259	MG4	0	Dry casing	Wind out of S. 90°
N/A	Suspect or Problem Areas	N/A	No problems noted	N/A
			111/13	
			Swint 6/11/13	
~*			mun	
		animut	สมพัฒนาและและและและและเจาะจะเจาะจะเป็น เป็นการและเป็นเป็นและเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็น	
		V		
<u> </u>				

Jammer Signature

WD-F-0053 (2/20/13) PAD-WD-0017

Review the Identified Source Document for This Form Prior to Attempting Completion

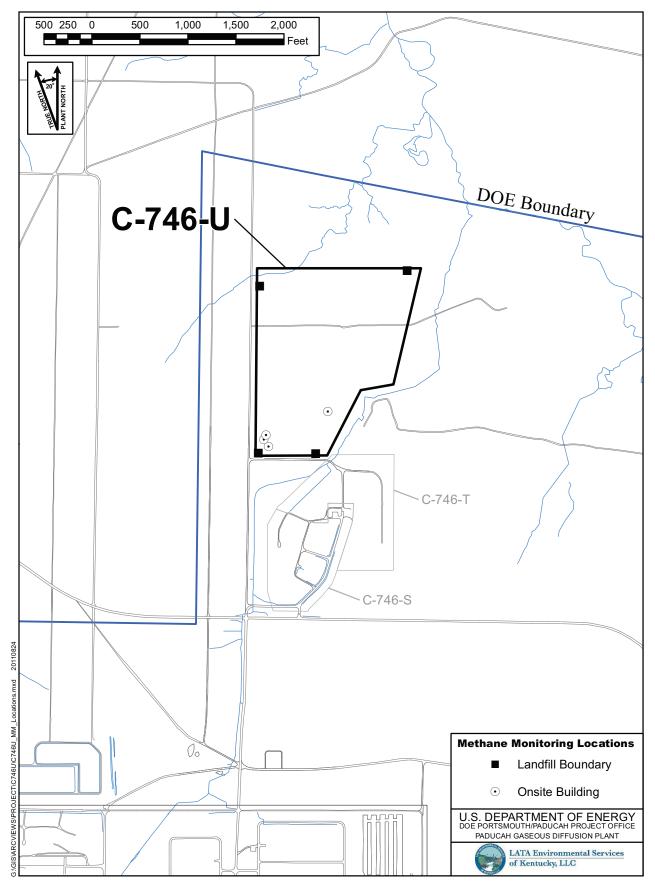


Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I

SURFACE WATER MONITORING DATA

Division of Waste Management **RESIDENTIAL/CONTAINED-QUARTERLY** Solid Waste Branch Permit Number: 073-00045 14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (5)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L150 AT SITI	E	L154 UPSTRE	AM	L351 DOWNST	REAM	$\overline{\mathbf{N}}$		
Sample Sequer	nce	#				1		1		1	\mathbf{N}		/	
If sample is a	a Bl	ank, specify Type: (F)ield, (NA		NA		NA	\Box						
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		4/11/2013 08:2	22	4/11/2013 08:	35	4/11/2013 07	':59	\Box		
Duplicate ("Y	(" c	or "N") ¹				N		N		N				
Split ('Y' or	- "N	[") ²				N		N		N				1
Facility Samp	le	ID Number (if applicable)				L150US3-13	3	L154US3-1	3	L351US3-1	3			/
Laboratory Sa	mpl	e ID Number (if applicable)				C1310101800)2	C131010180	03	C131010180	001			/
Date of Analy	rsis	(Month/Day/Year)				5/1/2013		5/1/2013		5/1/2013				
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷		ETECIED VALUE OR PQL ⁵	F L G S ⁷
A200-00-0	0	Flow	т	MGD	Field		*	1.43		3.26				
16887-00-6	2	Chloride(s)	т	MG/L	300.0	<2		<2		<2			7	V
14808-79-8	0	Sulfate	т	MG/L	300.0	27		4		5.3			7	X
7439-89-6	0	Iron	т	MG/L	200.7 R3.3	1.84		2.97		2.84				$\left \right\rangle$
7440-23-5	0	Sodium	т	MG/L	200.7 R3.3	1.81		1.94		2.24		\square		
S0268	0	Organic Carbon ⁶	т	MG/L	9060	16.5	D	22.5	D*	21.8	D*	\square		
S0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*	17		
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	35		47		42		\mathbb{V}		

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

Page 2 of 2

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	: (KPDES Discharge Number, or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	REAM	\backslash		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵ G S ⁷
s0145	1	Specific Conductance	т	µнмs/см	Field	2.8		95		94		
s0270	0	Total Suspended Solids	т	MG/L	160.1	27		23		<50		
S0266	0	Total Dissolved Solids	т	MG/L	160.2	184	*	187	*	<87	*	
S0269	0	Total Solids	т	MG/L	160.3	230		231		155		
s0296	0	рН	т	Units	Field	7.27		7.5		6.98		
7440-61-1		Uranium	т	MG/L	IN7105	0.024		0.00168		0.00253		$\langle \rangle$
12587-46-1		Gross Alpha (α)	т	pCi/L	900.0	8.94	*	2.32	*	2.38	*	
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	12.5	*	6.46	*	13.5	*	X
												/

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L150	L150US3-13	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 4.25. Rad error is 3.65.
		Beta activity		TPU is 2.53. Rad error is 2.11.
L154	L154US3-13	Total Organic Carbon (TOC)	Е	Concentration exceeds calibration range of the instrument.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.41. Rad error is 1.29.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.39. Rad error is 1.2.
L351	L351US3-13	Total Organic Carbon (TOC)	Е	Concentration exceeds calibration range of the instrument.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.4. Rad error is 1.27.
		Beta activity		TPU is 2.69. Rad error is 2.24.

APPENDIX J

ANNUAL LEACHATE MONITORING DATA

THIS PAGE INTENTIONALLY LEFT BLANK

ULS13-01-01		from: C-7	46-U	on 4	/17/20	13 Media: V	VW	SmpMethod: GR	
Comments:									
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
ANION									
Bromide	2		mg/L	U		2		SW846-9056	/ X /
Chloride	4.1		mg/L			2		SW846-9056	S/X/
Fluoride	0.4		mg/L			0.1		9214	/ X /
Nitrate as Nitrogen	1		mg/L	U		1		SW846-9056	/ X /
Sulfate	270		mg/L			20		SW846-9056	/ X /
FS									
Conductivity	1.345		umho/cm					FS	11
Dissolved Oxygen	11		mg/L					FS	11
рН	7.14		Std Unit					FS	11
Redox	287		mV					FS	11
Temperature	67.5		deg F					FS	11
METAL									
Aluminum	13.2		mg/L			0.2		SW846-6010B	/ X /
Antimony	0.005		mg/L	UB		0.005		SW846-6020	/ X /
Arsenic	0.0166		mg/L	Х		0.01		SW846-6020	/ X /
Barium	0.159		mg/L			0.005		SW846-6020	S/X/
Beryllium	0.00333		mg/L			0.001		SW846-6020	/ X /
Boron	0.46		mg/L			0.2		SW846-6010B	/ X /
Cadmium	0.001		mg/L	U		0.001		SW846-6020	/ X /
Calcium	174		mg/L			1		SW846-6010B	S/X/
Chromium	0.0119		mg/L			0.01		SW846-6020	S/X/
Cobalt	0.0061		mg/L	ВX		0.001		SW846-6020	/ X /
Copper	0.00651		mg/L			0.0052		SW846-6020	/ X /
Iron	16.2		mg/L			0.1		SW846-6010B	/ X /
Lead	0.0103		mg/L			0.0013		SW846-6020	/ X /
Magnesium	42		mg/L	Ν		0.025		SW846-6010B	/ X /
Manganese	0.28		mg/L	NX		0.005		SW846-6020	/ X /
Mercury	0.0002		mg/L	U		0.0002		SW846-7470A	/ X /
Molybdenum	0.00114		mg/L	В		0.001		SW846-6020	/ X /
Nickel	0.0158		mg/L	X		0.005		SW846-6020	/ X /
Phosphorous	0.87		-	Λ		0.005		EPA-365.3	/ X /
Potassium	4.68		mg/L mg/L			0.08		SW846-6010B	/ X /
Rhodium	0.005		mg/L	U		0.2		SW846-6020	/ X /
	0.005		•			0.005		SW846-6020	/ X /
Selenium Silver	0.005		mg/L	U U		0.005		SW846-6020	/ X /
			mg/L	0					
Sodium	77		mg/L			1		SW846-6010B	/ X /
Tantalum	0.005		mg/L	U		0.005		SW846-6020	/X/
Thallium	0.002		mg/L	U		0.002		SW846-6020	/ X /
Tin	0.005		mg/L	UB		0.005		SW846-6020	/ X /
Titanium	0.0731		mg/L			0.005		SW846-6020	/X/
Uranium	0.162		mg/L			0.01		SW846-6020	I/X/
Vanadium	0.0205		mg/L	D		0.02		SW846-6020	/ X /
	0.0613		mg/L	В		0.02		SW846-6020	/ X /
METAL-D								0.140	
Antimony, Dissolved	0.005		mg/L	U		0.005		SW846-6020	/ X /
Arsenic, Dissolved	0.00352		mg/L			0.001		SW846-6020	S/X/
Barium, Dissolved	0.114		mg/L			0.005		SW846-6020	/ X /
Cadmium, Dissolved	0.001		mg/L	U		0.001		SW846-6020	/ X /
Chromium, Dissolved	0.01		mg/L	U		0.01		SW846-6020	/ X /
Cobalt, Dissolved	0.00174		mg/L	ВX		0.001		SW846-6020	/ X /

*Verification/Validation/Assessment

7/31/2013 Page 1 of 8

		Fauucai	IUKEIS	Keport I	lor UL513-	UI		
Copper, Dissolved	0.0052		mg/L	UN	0.0052		SW846-6020	/ X /
Lead, Dissolved	0.0013		mg/L	U	0.0013		SW846-6020	/ X /
Manganese, Dissolved	0.277		mg/L		0.005		SW846-6020	S/X/
Nickel, Dissolved	0.00741		mg/L		0.005		SW846-6020	/ X /
Selenium, Dissolved	0.005		mg/L	U	0.005		SW846-6020	/ X /
Silver, Dissolved	0.001		mg/L	UNB	0.001		SW846-6020	/ X /
Tin, Dissolved	0.005		mg/L	U	0.005		SW846-6020	/ X /
Titanium, Dissolved	0.005		mg/L	U	0.005		SW846-6020	/ X /
Uranium, Dissolved	0.147		mg/L		0.01		SW846-6020	S/X/
Vanadium, Dissolved	0.02		mg/L	U	0.02		SW846-6020	/ X /
Zinc, Dissolved	0.02		mg/L	U	0.02		SW846-6020	/ X /
OTHOR								
Oil and Grease	7		mg/L	U	7		EPA-1664	/ X /
PPCB								
PCB-1016	0.16		ug/L	UX	0.16		SW846-8082	/ X /
PCB-1221	0.17		ug/L	UX	0.17		SW846-8082	/ X /
PCB-1232	0.14		ug/L	UX	0.14		SW846-8082	/ X /
PCB-1242	0.1		ug/L	UX	0.1		SW846-8082	/ X /
PCB-1248	0.12		ug/L	UX	0.12		SW846-8082	/ X /
PCB-1254	0.07		ug/L	UX	0.07		SW846-8082	/ X /
PCB-1260	0.05		ug/L	UX	0.05		SW846-8082	/ X /
PCB-1268	0.09		ug/L	UX	0.09		SW846-8082	/ X /
Polychlorinated biphenyl	0.17		ug/L	UX	0.17		SW846-8082	/ X /
RADS								
Alpha activity	38.1	7.95	pCi/L		10.8	12.2	SW846-9310	I/X/
Americium-241	-0.00258	0.0174	pCi/L	U	0.217	0.0876	RL-7128	/ X /
Beta activity	58.7	4.87	pCi/L	C C	8.39	8.14	SW846-9310	/ X /
Cesium-137	1.2	2.41	pCi/L	U	1.91	2.41	RL-7124	/ X /
Cobalt-60	0.117	0.234	pCi/L	U	2.05	1.41	RL-7124	/ X /
Dissolved Alpha	52.3	13.5	pCi/L	Ũ	15.1	18.6	RL-7111	/ X /
Dissolved Beta	57.4	6.79	pCi/L		11.1	9.32	RL-7111	/ X /
Neptunium-237	0.00918	0.0239	pCi/L	U	0.145	0.0557	RL-7128	/ X /
Plutonium-239/240	-0.00187	0.0123	pCi/L	U	0.235	0.094	RL-7128	/ X /
Radium-226	0.524	0.297	pCi/L	U	0.771	0.419	RL-7129	/ X /
Strontium-90	0.0914	0.0198	pCi/L	U	2.06	0.0283	RL-7140	/ X /
Technetium-99	21.1	10.1	pCi/L	0	14.7	10.1	RL-7100	/ X /
Thorium-230	0.27	0.105	pCi/L		0.224	0.143	RL-7128	/ X /
Thorium-234	35.8	71.6	pCi/L pCi/L	U	50	71.6	RL-7124	/ X /
Tritium	42.8	599	pCi/L pCi/L	U	240	599	RL-7155	/ X /
Uranium	66.9	15.7	pCi/L	0	0.802	26.7	RL-7128	/ X /
Uranium-234	11.6	0.763	pCi/L pCi/L		0.444	2.28	RL-7128	/ X /
Uranium-235	1.29	0.29	pCi/L pCi/L		0.444	0.379	RL-7128	/ X /
Uranium-238	54.1	1.64	pCi/L pCi/L		0.102	10.1	RL-7128	/ X /
	0111	1.01	p0#2		0.100			
RADS-D Americium-241	-0.014	0.00184	pCi/L	U	0.218	0.0875	RL-7128	/ X /
Cesium-137	-0.512	1.02	pCi/L pCi/L	U	1.65	1.14	RL-7124	/ X /
Cobalt-60	0.277	0.554	pCi/L pCi/L	U	2.01	1.43	RL-7124	/ X /
Neptunium-237 Plutonium-239/240	-0.00743 -0.00636	0.00673 0.00336	pCi/L	U U	0.139	0.0558 0.0957	RL-7128 RL-7128	/ X / / X /
Technetium-99			pCi/L	0	0.233 14.7	10.1	RL-7128	/ X / / X /
	23.1	10.1	pCi/L				RL-7100	
Thorium-230	0.0426	0.0549	pCi/L	U	0.232	0.101	RL-7128	/ X /
Thorium-234	-15.2	30.5	pCi/L	U	49.9	31.5	RL-7124	/ X /
Uranium, Dissolved	56.3	16.9	pCi/L		0.795	24.7	RL-7128	/ X /
Uranium-234	9.69	0.666	pCi/L		0.476	1.89	RL-7128	/ X /
Uranium-235	0.677	0.199	pCi/L		0.139	0.238	RL-7128	/ X /

*Verification/Validation/Assessment

7/31/2013 Page 2 of 8

		Paduca	n OKEIS	Keport	Ior ULS13	-01		
Uranium-238	46	1.44	pCi/L		0.18	8.45	RL-7128	/ X /
VOA								
1,1,1,2-Tetrachloroethane	5		ug/L	U	5		SW846-8260B	/ X /
1,1,1-Trichloroethane	1		ug/L	U	1		SW846-8260B	/ X /
1,1,2,2-Tetrachloroethane	5		ug/L	UJ	5		SW846-8260B	/ X /
1,1,2-Trichloroethane	1		ug/L	U	1		SW846-8260B	/ X /
1,1-Dichloroethane	1		ug/L	U	1		SW846-8260B	/ X /
1,1-Dichloroethene	1		ug/L	U	1		SW846-8260B	/ X /
1,2,3-Trichloropropane	5		ug/L	U	5		SW846-8260B	/ X /
1,2-Dibromo-3-chloropropane	0.2		ug/L	U	0.2		SW846-8011	/ X /
1.2-Dibromoethane	5		ug/L	U	5		SW846-8260B	/ X /
1,2-Dichlorobenzene	5		ug/L	U	5		SW846-8260B	/ X /
1,2-Dichloroethane	1		ug/L	U	1		SW846-8260B	/ X /
1,2-Dichloropropane	5		ug/L	U	5		SW846-8260B	/ X /
1,2-Dimethylbenzene	5		ug/L	U	5		SW846-8260B	/ X /
1,4-Dichlorobenzene	5		ug/L	U	5		SW846-8260B	/ X /
2-Butanone	10		ug/L	U	10		SW846-8260B	/ X /
2-Hexanone	10		ug/L	U	10		SW846-8260B	/ X /
4-Methyl-2-pentanone	10		ug/L	U	10		SW846-8260B	/ X /
Acetone	10			U	10		SW846-8260B	/ X /
Acrolein	10		ug/L ug/L	U	10		SW846-8260B	/ X /
	10		•		10		SW846-8260B	/ X /
Acrylonitrile			ug/L	U				
Benzene	5		ug/L	U	5		SW846-8260B	/ X /
Bromochloromethane	5		ug/L	U	5		SW846-8260B	/ X /
Bromodichloromethane	5		ug/L	U	5		SW846-8260B	/ X /
Bromoform	5		ug/L	U	5		SW846-8260B	/ X /
Bromomethane	5		ug/L	U	5		SW846-8260B	/ X /
Carbon disulfide	5		ug/L	U	5		SW846-8260B	/ X /
Carbon tetrachloride	5		ug/L	U	5		SW846-8260B	/ X /
Chlorobenzene	5		ug/L	U	5		SW846-8260B	/ X /
Chloroethane	5		ug/L	JU	5		SW846-8260B	/ X /
Chloroform	1		ug/L	U	1		SW846-8260B	/ X /
Chloromethane	5		ug/L	U	5		SW846-8260B	/ X /
cis-1,2-Dichloroethene	1		ug/L	U	1		SW846-8260B	/ X /
cis-1,3-Dichloropropene	5		ug/L	U	5		SW846-8260B	/ X /
Dibromochloromethane	5		ug/L	U	5		SW846-8260B	/ X /
Dibromomethane	5		ug/L	U	5		SW846-8260B	/ X /
Ethylbenzene	5		ug/L	U	5		SW846-8260B	/ X /
lodomethane	10		ug/L	U	10		SW846-8260B	/ X /
m,p-Xylene	10		ug/L	U	10		SW846-8260B	/ X /
Methylene chloride	5		ug/L	U	5		SW846-8260B	/ X /
Styrene	5		ug/L	U	5		SW846-8260B	/ X /
Tetrachloroethene	1		ug/L	U	1		SW846-8260B	/ X /
Toluene	5		ug/L	U	5		SW846-8260B	/ X /
Total Xylene	15		ug/L	U	15		SW846-8260B	/ X /
trans-1,2-Dichloroethene	1		ug/L	U	1		SW846-8260B	/ X /
trans-1,3-Dichloropropene	5		ug/L	U	5		SW846-8260B	/ X /
Trans-1,4-Dichloro-2-butene	5		ug/L	U	5		SW846-8260B	/ X /
Trichloroethene	1		ug/L	U	1		SW846-8260B	/ X /
Trichlorofluoromethane	5		ug/L	U	5		SW846-8260B	/ X /
Vinyl acetate	10		ug/L	UJ	10		SW846-8260B	/ X /
Vinyl chloride	2		ug/L	U	2		SW846-8260B	/ X /
WETCHEM								
Carbonaceous Biochemical Oxygen Demand (CBOD)	5		mg/L	U	5		SM-5210 B	/ X /
Chemical Oxygen Demand (COD)	25		mg/L	U	25		EPA-410.4	/ X /
. ,								

*Verification/Validation/Assessment

7/31/2013 Page 3 of 8

Cyanide	0.04	mg/L	U	0.04	SW846-9010C	/ X /
Dissolved Solids	875	mg/L		87	EPA-160.1	S/X/
Hardness - Total as CaCO3	600	mg/L		20	EPA-130.2	S/X/
lodide	2	mg/L	U	2	EPA-345.1	/ X /
Suspended Solids	560	mg/L		200	EPA-160.2	/ X /
Total Organic Carbon (TOC)	9.3	mg/L	D	2	SW846-9060	/ X /
Total Organic Halides (TOX)	38	ug/L		5	SW846-9020B	/ X /

FBULS13-01		from: QC		on 4/17	/2013 Media: V	VQ	SmpMethod:	
Comments:								
Analysis	Results	Counting Error	Units		oot Reporting ote Limit	TPU	Method	V/V/A*
ANION								
Bromide	2		mg/L	U	2		SW846-9056	/ X /
Chloride	2		mg/L	U	2		SW846-9056	/ X /
Fluoride	0.1		mg/L	U	0.1		9214	/ X /
Nitrate as Nitrogen	1		mg/L	U	1		SW846-9056	/ X /
Sulfate	2		mg/L	U	2		SW846-9056	/ X /
METAL								
Aluminum	0.2		mg/L	U	0.2		SW846-6010B	/ X /
Antimony	0.005		mg/L	UB	0.005		SW846-6020	/ X /
Arsenic	0.001		mg/L	U	0.001		SW846-6020	/ X /
Barium	0.005		mg/L	U	0.005		SW846-6020	/ X /
Beryllium	0.001		mg/L	U	0.001		SW846-6020	/ X /
Boron	0.2		mg/L	UB	0.2		SW846-6010B	/ X /
Cadmium	0.001		mg/L	U	0.001		SW846-6020	/ X /
Calcium	1		mg/L	U	1		SW846-6010B	/ X /
Chromium	0.01		mg/L	U	0.01		SW846-6020	/ X /
Cobalt	0.001		mg/L	UBX	0.001		SW846-6020	/ X /
Copper	0.0052		mg/L	U	0.0052		SW846-6020	/ X /
Iron	0.1		mg/L	U	0.1		SW846-6010B	/ X /
Lead	0.0013		mg/L	UB	0.0013		SW846-6020	/ X /
Magnesium	0.025		mg/L	UN	0.025		SW846-6010B	/ X /
Manganese	0.005		mg/L	UNX	0.005		SW846-6020	/ X /
Mercury	0.0002		mg/L	U	0.0002		SW846-7470A	/ X /
Molybdenum	0.001		mg/L	UB	0.001		SW846-6020	/ X /
Nickel	0.005		mg/L	UX	0.005		SW846-6020	/ X /
Phosphorous	0.003		mg/L	U	0.04		EPA-365.3	/ X /
Potassium	0.2		mg/L	UB	0.2		SW846-6010B	/ X /
Rhodium	0.2		•	U	0.2		SW846-6020	/ X /
	0.005		mg/L		0.005		SW846-6020	
Selenium			mg/L	U				/ X /
Silver	0.001		mg/L	U	0.001		SW846-6020	/ X /
Sodium	1		mg/L	U	1		SW846-6010B	/ X /
Tantalum	0.005		mg/L	U	0.005		SW846-6020	/ X /
Thallium	0.002		mg/L	U	0.002		SW846-6020	/ X /
Tin	0.005		mg/L	UB	0.005		SW846-6020	/ X /
Titanium	0.005		mg/L	U	0.005		SW846-6020	/ X /
Uranium	0.001		mg/L	U	0.001		SW846-6020	/ X /
Vanadium Zinc	0.02 0.02		mg/L mg/L	U UB	0.02 0.02		SW846-6020 SW846-6020	/ X / / X /
	0.02		ing/∟	08	0.02		311840-0020	/ / /
OTHOR Oil and Grease	7		mg/L	U	7		EPA-1664	/ X /
			g , _	-				
PPCB PCB-1016	0.17		ug/L	U	0.17		SW846-8082	/ X /
PCB-1010 PCB-1221	0.17		ug/L	U	0.18		SW846-8082	/ X /
PCB-1221 PCB-1232	0.18				0.18		SW846-8082	
			ug/L	U				/ X /
PCB-1242	0.1		ug/L	U	0.1		SW846-8082	/ X /
PCB-1248	0.12		ug/L	U	0.12		SW846-8082	/ X /
PCB-1254	0.07		ug/L	U	0.07		SW846-8082	/ X /
PCB-1260	0.05		ug/L	U	0.05		SW846-8082	/ X /
PCB-1268	0.09		ug/L	U	0.09		SW846-8082	/ X /
Polychlorinated biphenyl	0.18		ug/L	U	0.18		SW846-8082	/ X /

*Verification/Validation/Assessment

7/31/2013 Page 5 of 8

		1 auutan	OKEIS	Keport		UI		
RADS	0.740	0.014	·· • • • //		5 50	0.000	014/04/00/10	
Alpha activity	-0.748	0.611	pCi/L	U	5.59	0.638	SW846-9310	/ X /
Americium-241	0.0264	0.0342	pCi/L	U	0.216	0.0926	RL-7128	/ X /
Beta activity	0.842	0.174	pCi/L	U	8.82	0.197	SW846-9310	/ X /
Cesium-137	-0.0848	0.17	pCi/L	U	1.65	0.961	RL-7124	/ X /
Cobalt-60	-0.727	1.45	pCi/L	U	1.75	1.45	RL-7124	/ X /
Neptunium-237	-0.00477	0.00143	pCi/L	U	0.143	0.0588	RL-7128	/ X /
Plutonium-239/240	-0.00804	0	pCi/L	U	0.232	0.132	RL-7128	/ X /
Radium-226	-0.157	0.118	pCi/L	U	0.81	0.311	RL-7129	/ X /
Strontium-90	-0.129	0.0291	pCi/L	U	2.37	0.0407	RL-7140	/ X /
Technetium-99	-4.33	9.09	pCi/L	U	14.7	9.1	RL-7100	/ X /
Thorium-230	0.0283	0.0501	pCi/L	U	0.242	0.0978	RL-7128	/ X /
Thorium-234	9.04	18.1	pCi/L	U	50	31.4	RL-7124	/ X /
Tritium	-149	593	pCi/L	U	240	593	RL-7155	/ X /
Uranium	0.489	0.504	pCi/L	U	0.699	0.766	RL-7128	/ X /
Uranium-234	0.307	0.0995	pCi/L	U	0.417	0.201	RL-7128	/ X /
Uranium-235	0.033	0.0379	pCi/L	U	0.128	0.0563	RL-7128	/ X /
Uranium-238	0.15	0.0656	pCi/L	U	0.154	0.0861	RL-7128	/ X /
VOA								
1,1,1,2-Tetrachloroethane	5		ug/L	U	5		SW846-8260B	/ X /
1,1,1-Trichloroethane	1		ug/L	U	1		SW846-8260B	/ X /
1,1,2,2-Tetrachloroethane	5		ug/L	UJ	5		SW846-8260B	/ X /
1,1,2-Trichloroethane	1		ug/L	U	1		SW846-8260B	/ X /
1,1-Dichloroethane	1		ug/L	U	1		SW846-8260B	/ X /
1,1-Dichloroethene	1		ug/L	U	1		SW846-8260B	/ X /
1,2,3-Trichloropropane	5		ug/L	U	5		SW846-8260B	/ X /
1,2-Dibromo-3-chloropropane	0.2		ug/L	U	0.2		SW846-8011	/ X /
1,2-Dibromoethane	5		ug/L	U	5		SW846-8260B	/ X /
1,2-Dichlorobenzene	5		ug/L	U	5		SW846-8260B	/ X /
1,2-Dichloroethane	1		ug/L	U	1		SW846-8260B	/ X /
1,2-Dichloropropane	5		ug/L	U	5		SW846-8260B	/ X /
1,2-Dimethylbenzene	5		ug/L	U	5		SW846-8260B	/ X /
1,4-Dichlorobenzene	5		ug/L	U	5		SW846-8260B	/ X /
2-Butanone	10		ug/L	U	10		SW846-8260B	/ X /
2-Hexanone	10		ug/L	U	10		SW846-8260B	/ X /
4-Methyl-2-pentanone	10		ug/L	U	10		SW846-8260B	/ X /
Acetone	10		ug/L	U	10		SW846-8260B	/ X /
Acrolein	10		ug/L	U	10		SW846-8260B	/ X /
Acrylonitrile	10		ug/L	U	10		SW846-8260B	/ X /
Benzene	5		ug/L	U	5		SW846-8260B	/ X /
Bromochloromethane	5		ug/L	U	5		SW846-8260B	/ X /
Bromodichloromethane	5		ug/L	U	5		SW846-8260B	/ X /
Bromoform	5		ug/L	U	5		SW846-8260B	/ X /
Bromomethane	5		ug/L	U	5		SW846-8260B	/ X /
Carbon disulfide	5		ug/L	U	5		SW846-8260B	/ X /
Carbon tetrachloride	5		ug/L	U	5		SW846-8260B	/ X /
Chlorobenzene	5		ug/L	U	5		SW846-8260B	/ X /
Chloroethane	5		ug/L	JU	5		SW846-8260B	/ X /
Chloroform	1		ug/L	U	1		SW846-8260B	/ X /
Chloromethane	5		ug/L	U	5		SW846-8260B	/ X /
cis-1,2-Dichloroethene	1		ug/L	U	1		SW846-8260B	/ X /
cis-1,3-Dichloropropene	5		ug/L	U	5		SW846-8260B	/ X /
Dibromochloromethane	5		ug/L	U	5		SW846-8260B	/ X /
Dibromomethane	5		ug/L	U	5		SW846-8260B	/ X /
Ethylbenzene	5		ug/L	U	5		SW846-8260B	/ X /
lodomethane	10		ug/L	U	10		SW846-8260B	/ X /

*Verification/Validation/Assessment

			1			
m,p-Xylene	10	ug/L	U	10	SW846-8260B	/ X /
Methylene chloride	5	ug/L	U	5	SW846-8260B	/ X /
Styrene	5	ug/L	U	5	SW846-8260B	/ X /
Tetrachloroethene	1	ug/L	U	1	SW846-8260B	/ X /
Toluene	5	ug/L	U	5	SW846-8260B	/ X /
Total Xylene	15	ug/L	U	15	SW846-8260B	/ X /
trans-1,2-Dichloroethene	1	ug/L	U	1	SW846-8260B	/ X /
trans-1,3-Dichloropropene	5	ug/L	U	5	SW846-8260B	/ X /
Trans-1,4-Dichloro-2-butene	5	ug/L	U	5	SW846-8260B	/ X /
Trichloroethene	1	ug/L	U	1	SW846-8260B	/ X /
Trichlorofluoromethane	5	ug/L	U	5	SW846-8260B	/ X /
Vinyl acetate	10	ug/L	UJ	10	SW846-8260B	/ X /
Vinyl chloride	2	ug/L	U	2	SW846-8260B	/ X /
WETCHEM						
Chemical Oxygen Demand (COD)	25	mg/L	U	25	EPA-410.4	/ X /
Hardness - Total as CaCO3	10	mg/L	U	10	EPA-130.2	/ X /
lodide	2	mg/L	U	2	EPA-345.1	/ X /
Total Organic Carbon (TOC)	1	mg/L	U	1	SW846-9060	/ X /

TBULS13-01		from: QC		on 4	/17/201	3	Media: WQ		SmpMethod:	
Comments:										
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Repo Lin		TPU	Method	V/V/A*
VOA										
1,1,1,2-Tetrachloroethane	5		ug/L	U		5			SW846-8260B	/ X /
1,1,1-Trichloroethane	1		ug/L	U		1			SW846-8260B	/ X /
1,1,2,2-Tetrachloroethane	5		ug/L	UJ		5			SW846-8260B	/ X /
1,1,2-Trichloroethane	1		ug/L	U		1			SW846-8260B	/ X /
1,1-Dichloroethane	1		ug/L	U		1			SW846-8260B	/ X /
1,1-Dichloroethene	1		ug/L	U		1			SW846-8260B	/ X /
1,2,3-Trichloropropane	5		ug/L	U		5			SW846-8260B	/ X /
1,2-Dibromo-3-chloropropane	0.2		ug/L	UX		0.2			SW846-8011	/ X /
1,2-Dibromoethane	5		ug/L	U		5			SW846-8260B	/ X /
1,2-Dichlorobenzene	5		ug/L	U		5			SW846-8260B	/ X /
1,2-Dichloroethane	1		ug/L	U		1			SW846-8260B	/ X /
1,2-Dichloropropane	5		ug/L	U		5			SW846-8260B	/ X /
1,2-Dimethylbenzene	5		ug/L	U		5			SW846-8260B	/ X /
1,4-Dichlorobenzene	5		ug/L	U		5			SW846-8260B	/ X /
2-Butanone	10		ug/L	U		10			SW846-8260B	/ X /
2-Hexanone	10		ug/L	U		10			SW846-8260B	/ X /
4-Methyl-2-pentanone	10		ug/L	U		10			SW846-8260B	/ X /
Acetone	10		ug/L	U		10			SW846-8260B	/ X /
Acrolein	10		ug/L	U		10			SW846-8260B	/ X /
Acrylonitrile	10		ug/L	U		10			SW846-8260B	/ X /
Benzene	5		ug/L	U		5			SW846-8260B	/ X /
Bromochloromethane	5		ug/L	U		5			SW846-8260B	/ X /
Bromodichloromethane	5		ug/L	U		5			SW846-8260B	/ X /
Bromoform	5		ug/L	U		5			SW846-8260B	/ X /
Bromomethane	5		ug/L	U		5			SW846-8260B	/ X /
Carbon disulfide	5		ug/L	U		5			SW846-8260B	/ X /
Carbon tetrachloride	5		ug/L	U		5			SW846-8260B	/ X /
Chlorobenzene	5		ug/L	U		5			SW846-8260B	/ X /
Chloroethane	5		ug/L	JU		5			SW846-8260B	/ X /
Chloroform	1		ug/L	U		1			SW846-8260B	/ X /
Chloromethane	5		ug/L	U		5			SW846-8260B	/ X /
cis-1,2-Dichloroethene	1		ug/L	U		1			SW846-8260B	/ X /
cis-1,3-Dichloropropene	5		ug/L	U		5			SW846-8260B	/ X /
Dibromochloromethane	5		ug/∟ ug/L	U		5			SW846-8260B	/ X /
Dibromomethane	5		ug/L ug/L	U		5			SW846-8260B	/ X /
Ethylbenzene	5			U		5			SW846-8260B	/ X /
lodomethane	5 10		ug/L	U		5 10			SW846-8260B	/ X /
			ug/L							
m,p-Xylene	10 5		ug/L	U		10 5			SW846-8260B	/ X /
Methylene chloride	5		ug/L	U		5			SW846-8260B	/ X /
Styrene	5		ug/L	U		5			SW846-8260B	/ X /
Tetrachloroethene	1		ug/L	U		1			SW846-8260B	/ X /
Toluene	5		ug/L	U		5			SW846-8260B	/ X /
Total Xylene	15		ug/L	U		15			SW846-8260B	/ X /
trans-1,2-Dichloroethene	1		ug/L	U		1			SW846-8260B	/ X /
trans-1,3-Dichloropropene	5		ug/L	U		5			SW846-8260B	/ X /
Trans-1,4-Dichloro-2-butene	5		ug/L	U		5			SW846-8260B	/ X /
Trichloroethene	1		ug/L	U		1			SW846-8260B	/ X /
Trichlorofluoromethane	5		ug/L	U		5			SW846-8260B	/ X /
Vinyl acetate	10		ug/L	UJ		10			SW846-8260B	/ X /
Vinyl chloride	2		ug/L	U		2			SW846-8260B	/ X /

*Verification/Validation/Assessment

PEMS/OREIS CODES

Media (Codes
AG	Soil Gas
AQ	Air Quality Control Matrix
DĈ	Drill Cuttings
FR	Filter Residue
FT	Filter
GR	Grout
LD	Drilling Fluid
LF	Floating/Free Product on Groundwater Table
LO	Oil, All Types (Transformer, Waste, Motor, Mineral)
LT	Liquid from tank
LZ	Liquid Waste
MD	Meteorological
MS	Metal Shavings
NA	Not Available
NW	Non-Water Liquid
QA	Aquatic Animal
QB	Aquatic Bird
QC	Aquatic (Some combination of at least 2) of bird,
	plant, animal; Excludes benthic organism
QN	Benthic Organism
QP	Aquatic Plant
SC	Cement
DIL	Laboratory dilution
SE	Sediment (associated with surface water)
SF	Filter Sandpack
SL	Sludge
SO	Soil
SP	Floor Sweepings
SQ	Soil/Solid Quality Control Matrix
SS	Scrapings
SW	Swab or Wipe
SZ	Solid Waste
TB	Terrestrial Bird
TC	Terrestrial (Some combination at least 2) of bird,
	plant, or animal.
TW	Treated Water
WC	Wall corings
WG	Groundwater
WL	Water that has leached through waste
WQ	Water Quality Control Matrix
WS	Surface Water
WW WZ	Waste Water
WZ	Special Water Control Matrix

Smp Method Codes

Sample Type Codes

?	Other, defined in COMMENTS column
DI	Deionized Water used for preparing blanks, etc.
FB	Field Blank
FR	Field Replicate (Code used for Field Duplicate)
FTB	Filter Blank
PRBL	Preservative blank
RB	Refrigerator blank
REG	Regular
REG2	Regular sample, secondary analysis
DED	Denlieste

REP Replicate

- REP1 Replicate 1
- RI QC Equipment Rinseate/Decon
- TB Trip Blank
- TLC Toxicity Laboratory Control Sample

Verification Codes

?	Other, defined in COMMENTS column
В	Result exceeds background criteria

- I Result exceeds established criteria
- S Result exceeds statistical controls based on historical data
- T Holding time exceeded for this analysis
- X Result exceeds permit limits

Validation Codes

=	alidated result, which is detected and unqualified	

- ? Other, defined in COMMENTS columnD Analyte, compound or nuclide detected above the
- D Analyte, compound or nuclide detected above the reported detection limit, and the reported detection limit is approximated due to quality deficiency.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- R Result rejected by validator.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- X Not validated; Refer to the RSLTQUAL field for more information

Assessment Codes

?	Other, defined in COMMENTS column.		
BH-CONT	Result may be biased high due to		
	contamination of the sample from the field		
	or laboratory.		
BH-CONT, NOVAI	Result may be biased high due to		
	contamination of the sample from the field		
	or laboratory; Validation requested but		
	qualifier not provided due to missing Form		
	I.		
BH-ER	Result may be biased high; chemical		
	detected in associated equipment rinseate.		
BH-FB	Result may be biased high; chemical		
	detected in associated field blank.		
BH-FB BH-RI	Result may be biased high; chemical		
	detected in associated field blank and Result		
	may be biased high, chemical detected in		
	associated equipment rinseate.		
BH-FB BH-TB	Result may be biased high; chemical		
	detected in associated field blank and result		
	may be biased high; chemical detected in		
	associated trip blank.		
BH-FB, ?	Result may be biased high; chemical		
	detected in associated field blank & Other,		
	defined in COMMENTS column.		
BH-FB,&	Result may be biased high; chemical		
	detected in associate field blank. See		
	comments for additional assessment		
	qualifiers.		

PEMS/OREIS CODES

Assessment Codes (cont.)						
BH-LAB	Result may be biased high; compound is a					
	known or probable lab contaminant.					
BH-LABPR	Result biased high due to laboratory process.					
BH-PURGE	Result may be biased high; sample may be					
	diluted with drilling fluid due to					
	insufficient purging prior to sampling.					
BH-QC	Result may be biased high based upon lab					
BH-RB	QC (i.e. surrogate, MS/MSD, etc.). Result may be biased high; chemical					
DII-KD	detected in associated refrigerator blank.					
BH-RI	Result may be biased high, chemical					
	detected in associated equipment rinseate.					
BH-SOLID	Result biased high due to sampling containing a large amount of solids.					
BH-SS	Results may be biased high; sample may					
	contain particles of the acetate sampling					
	sleeve.					
BH-TB	Result may be biased high, chemical					
BH-TB, BL-TEMP	detected in associated trip blank. Result may be biased high, chemical					
	detected in associated trip blank, result					
	biased high due to a temperature					
	exceedance.					
BH-TEMP	Result biased high due to a temperature exceedance.					
BL-AIR	Biased low due to air rotary drilling					
	method.					
BL-AIR,&	Biased low due to air rotary drilling					
	method. See comments for additional assessment qualifiers.					
BL-HS	Biased low due to headspace in sample					
	container.					
BL-HS, BL-TEMP	Biased low due to headspace in sample					
	container & result biased low due to a					
BL-LAB	temperature exceedance. Result may be biased low; compound is a					
DE END	known or probable lab contaminant.					
BL-LABPR	Result may be biased low due to					
DI DDEC	laboratory process.					
BL-PRES	Result may be biased low due to improper preservative added.					
BL-PRES, ?	Result may be biased low due to improper					
,	preservative added., Other defined in					
	COMMENTS column.					
BL-PURGE	Result may be biased low; sample may be diluted with drilling fluid due to the					
	insufficient purging prior to sampling.					
BL-PURGE,&	Result may be biased low; sample may be					
	diluted with drilling fluid due to					
	insufficient purging prior to sampling. See comments for additional assessment					
	qualifiers.					
BL-QC	Result may be biased low based upon lab					
	QC (i.e. surrogate, MS/MSD, etc.)					
BL-T	Result may be biased low; sample holding					
BL-T, BL-QC	time exceeded. Result may be biased low; sample holding					
22 I, 22 QC	time exceeded and result may be biased					
	low based upon lab QC (i.e. surrogate,					
	MS/MSD, etc.)					
BL-T,J	Result may be biased low; sample holding time exceeded, estimated.					
BL-TEMP	Result may be biased low due to					
	temperature exceedance.					

BL-TEMP, BL-PRES Result biased low due to a temperature exceedance, Result may be biased low due							
BL-TEMP, J	to improper preservative added. Result biased low due to a temperature						
	exceedance, estimated.						
BL-TEMP, NOVAI	Result biased low due to a temperature exceedance, Validation requested but						
	qualifier not provided due to missing Form						
	I.						
BL-TEMP, U	Result biased low due to a temperature exceedance, not detected.						
BL-TEMP, U, BH-QC Result biased high due to a temperature							
	exceedance, Not detected, may be biased						
CCCSEVD	high based upon lab QC. Continuous Calibration Check Standard						
CCCSEXP	Expired						
DIL	Result is obtained from dilution						
DIS-EDDF1	Discrepancies between the EDD and the						
	Form 1. Form 1s are generated by instrument software that automatically						
	reports all detected compounds. It is the						
	lab's policy to not report quantities below						
	LCRs within their EDD format. Both sets of						
	data are correct. However, the EDD format data, which feeds OREIS, will be used for						
	reporting.						
DR	Discrepancy between summary data report						
EDUD OUT	and raw data. Field duplicate exceeds the RPD criterion.						
FDUP-OUT ICPTIMS-ER	ICP-MS and TIMS error for the						
	concentration of Uranium-235 is less than						
	the 285 pCi/g level at one standard						
ICSEXP	deviation. Initial Calibration Standard Expired.						
IN-LAB	Result should be considered information						
	only. Compound is a known or probable lab						
	contaminant. Result should be considered information						
IN-LAB,&	only. Compound is a known or probable lab						
	contaminant. See comments for additional						
DI LADOC	assessment qualifiers						
IN-LABQC	Result should be considered information only. Quality control requirements of the						
	laboratory method were not met.						
IN-METH	Result should be considered information						
J	only. Lab utilized a modified method. Result estimated						
, KYRHTAB-50	Kentucky Radiation Health and Toxic						
	Agents Branch (KYRHTAB) has performed						
	an independent data evaluation (not to be						
	confused with data verification and validation) and the rad error accounts for						
	greater than 50% of the results.						
KYRHTAB-ER	Kentucky Radiation Health and Toxic						
	Agents Branch (KYRHTAB) has performed an independent data evaluation (not to be						
	confused with data verification and						
	validation) and the data presents error						
	problems (ie., no counting uncertainty or						
KYRHTAB-LT	zero counting uncertainty). Kentucky Radiation Health and Toxic						
KIKIIAD-LI	Agents Branch (KYRHTAB) has performed						
	an independent data evaluation (not to be						
	confused with data verification and validation) and the results are less than (LT)						
	the maximum detectable activity (MDA) or						
	detection limit and should not be plotted.						

PEMS/OREIS CODES

		R-NTRS	Result rejected; not a true representative
Assessment Code			sample.
KYRHTAB-NE	Kentucky Radiation Health and Toxic Agents Branch (KYRHTAB) has	R-NTRSFW	Result rejected; not a true representative sample of formation water.
	performed an independent data evaluation (not to be confused with data verification	R-PRES	Result rejected due to improper preservative added.
	and validation) and the rad error exhibits a negative value, which is a statistical	R-RERUN	Result unusable; results for re-analysis should be used.
	outlier.	R-T	Result rejected due to missing holding time.
KYRHTAB-OK	Kentucky Radiation Health and Toxic Agents Branch (KYRHTAB) has performed an independent data evaluation (not to be confused with data verification	REM	Location sampled has been remediated due to a CERCLA or RCRA action and should not be considered representative of current site conditions.
	and validation) and the data is acceptable	U	Not detected.
	for use.	U,J	Not detected and result estimated.
LAB-PREP	Prep method used by the lab valid but not proceduralized.	U-RAD	Result considered a non-detect; instrument measurement error is equal to or greater than
LCSEXP	LCS Expired		the reported result.
LCSNA	Laboratory control sample not analyzed.	U-RAD,&	Result considered a non-detect; instrument
LCSNI	LCS Not Independent		measurement error is equal to or greater than
MDA-METHOD	The recalculated MDA is considered a method-wide MDA. Batch specific MDAs		the reported result, see comments for additional assessment qualifiers.
	were not calculated.	USECNITRIC-CE	During the period from May 2004 to
MDA-RECALC	The original MDA of 21.4 pCi/L was calculated incorrectly and was	oblemine er	September 2009, the USEC-PGDP lab used method RL-7128-NITRIC for isotopic
	recalculated during the Field Laboratory		uranium analysis by alpha spec. Method RL-
	evaluation. The recalculated MDA is 24.7 pCi/L.		7128-NITRIC utilizes only nitric acid for dissolution rather than hydrofluoric/nitric
MSMSDEXP	Matrix Spike/Matrix Spike Duplicate		acid. The use of nitric acid only is a less
	Standard Expired.		aggressive dissolution for isotopic uranium
N/A	Not Applicable.		analysis by alpha spec. It has been
NOVAL	Validation requested but qualifier not		demonstrated that Method RL-7128-
	provided due to missing Form I.		NITRIC can only be utilized for isotopic
NOVAL-FLAB	Validation targeted for this project but not required for field laboratory data.		uranium analysis of soil with activity greater than 10 pCi/g due to low recoveries below
NR	Assessment question not resolved.		that level. Therefore, if the data from
PENP	PE Sample Not Performed.		Method RL-7128-NITRIC will be screened
QUAL	This data should be considered qualitative due to the sampling process, the variability		against the background values reported in Background Levels of Selected
	in the medium sampled or issues with the		Radionuclides and Metals in Soils and
	analytical process.		Geologic Media at the PGDP (1997), the
R	Result unusable.		following adjusted background values must
R-C	Result questionable, credibility at issue.		be used: U-234: 1.73 pCi/g surface and 1.63
R-C, ?	Result questionable, credibility at issue, other defined in COMMENTS column.		pCi/g subsurface, U-235: 0.10 pCi/g, and U- 238: 0.40 pCi/g (Methods for Conducting
R-C, BH-RI	Result questionable, credibility at issue. Result may be biased high, chemical		Risk Assessments and Risk Evaluations at the Paducah Gaseous Diffusion Plant,
	detected in associated equipment rinseate.		Appendix E (2009)). Risk assessors may use
R-C, &	Result questionable, credibility at issue.		data from this time period for comparison
	See comments for additional assessment		against other thresholds below 10 pCi/g
	qualifiers.		without adjusting the values as long as the
R-DUPVAR	Result questionable, measured variability of the field duplicate is outside PARCC		level of uncertainty and its impact on the
	parameter expectations, therefore		risk assessment/evaluation are adequately discussed. No additional action is required
	population estimates of variability may be		for comparisons to thresholds above 10
	off by several orders of magnitude.		pCi/g.
R-H	Result unusable due to historical trending		r 0.
	(i.e., other).		
R-HSS	Rejected due to high suspended solids content.		
R-MTRX	Result rejected due to matrix interference.		
R-NORAD	Result unusable; Uranium-235 portion of		
	calculation is below reliable detection		
D MOD I T	limits.		
R-NORAD,&	Result unusable; Uranium-235 portion of		
	calculation is below reliable detection limits. See comments for additional		

assessment qualifiers.

Laboratory Footnotes and Qualifiers

Footnote

- A. Insufficient uranium present in the sample to determine an assay.
- B. Maximum assay was used to calculate the MDA for total uranium activities.
- C. Normal assay was used to calculate the MDA for total uranium activities.
- D. The relative bias for the LCS is greater than 25%.
- E. Gross activities are a calculated value. Gamma activity is converted to the corresponding gross alpha/beta measurement.
- F. Insufficient sample available/provided for gross beta analysis.
- G. TIMS assay used to calculate total uranium activity.
- H. No nuclide meet criteria for gross gamma.
- I. The MDA of all principle nuclide not identified and nuclide identified were summed to provide max, reportable activity
- J. No analysis result available. Sample signal too weak.
- K. No analysis result available. Total U below reporting limit.
- L. No minor isotope determination available. Signal strength insufficient.
- M. Result is biased high and MDA is biased low due to interfering lines and/or increases in BKG due to sample activity.
- N. Measured U-235 act/mass was below MDA therefore all other cal. U isotopes & U-total will be rpt as below their resp. MDAs.
- O. Gross Gamma has no output error.
- P. The max plant assay was assumed since the calculated assay was not within the range of the plant cascade assays.
- Q. Mass of U-235 is < or = MDM, thus mass of total U/U isotopes won't be reported. Total U/U isotopes will be < their MDAs Asbestos Not Detected
- R. Cs-134 activity will be understated due to the short half-life and will exclude any previous site induced Cs-134.
- S. Gross gamma is a Cs-137 equivalence. Activity assumes branch yield and det eff of Cs-137 for all line in spectrum.
- T. Analyte is a common volatile laboratory contaminant
- T1. Sample analysis is below LCR for concent, however above report. limit for assay.
- T1Z1. Samp analysis below LCR concent, above report.limit assay/.05wt% = or >2 sigma?
- V. Method 5030A (Purge & Trap)
- W. Analyte is present at the LCR.
- X. See comments for explanation
- Y. U/U-234 act are estimated. Assay used was determined by gamma. U/U-234 results can't be used for any NCS/NMC&A purposes. Uranium
- Z. Std Dev is calculated based on controls (SRM) prepared and analyzed with each sample batch. SRM is ~0.711 wt% U-235.
- Z1. This 0.05 wt% value equal to or > 2 sigma for controls associated w/data.

Inorganic Qualifiers

- * Duplicate analysis not within control limits.
- + Method of standard additions (MSA) correlation coefficient less than 0.995.
- A Indicates that a TIC is suspected aldol-condensation product.
- B Applies when the analyte is found in the associated blank
- D All compounds identified in the analysis at the secondary dilution factor.
- E Result estimated due to interferences.
- J Indicates an estimated value
- M Duplicate injection precision not met.
- N Sample spike recovery not within control limits.
- Q No analytical result available or not required because total analyses< PQL.
- R QC indicates that data are not usable. Resampling and re-analysis are necessary for verification.
- S Result determined by method of standard additions (MSA).
- U Analyte analyzed for but not detected at or below the lowest concentration reported.
- W Post-digestion spike recovery out of control limits.
- X Other specific flags and footnotes may be required to properly define the results.

Organic Qualifiers

- A Tentatively identified compound (TIC) is suspected aldol-condensation product.
- B Compound found in blank as well as sample.
- C Compound presence confirmed by GC/MS (GC/MS flag).
- D Compounds identified in an analysis at a secondary dilution filter.
- E Result exceeds calibration range (GC/MS flag).
- J Indicates an estimated value.
- N Presumption evidence of a compound GC/MS flag).
- P Difference between results from two GC columns unacceptable.
- U Compound analyzed for but not detected at or below the lowest concentration reported.
- X Other specific flags and footnotes may be required to properly define the results.
- Y MS, MSD recovery and/or RPD failed acceptance criteria.
- Z (Reserved by CLP for a laboratory-defined organic date qualifier.)

Rad Qualifiers

- A Analyzed but not detected at the analyte quantitation limit.
- B Method blank not statistically different from sample at 95% level of confidence.
- D Sample is statistically different from duplicate at 95% level of confidence.

- J Indicates an estimated value.
- Expected and measured value for LCS is statistically different at 95% level of confidence. L
- Expected and measured value for MS is statistically different at 95% level of confidence. М
- QC indicates that data are not usable. Resampling and reanalysis are necessary for verification. R
- Т Tracer recovery is < or equal to 30% or > or equal to 105%.
- Value reported is < the MDA and/or < 2 sigma TPE.
- U X Other specific flags and footnotes may be required to properly define the results.

THIS PAGE INTENTIONALLY LEFT BLANK