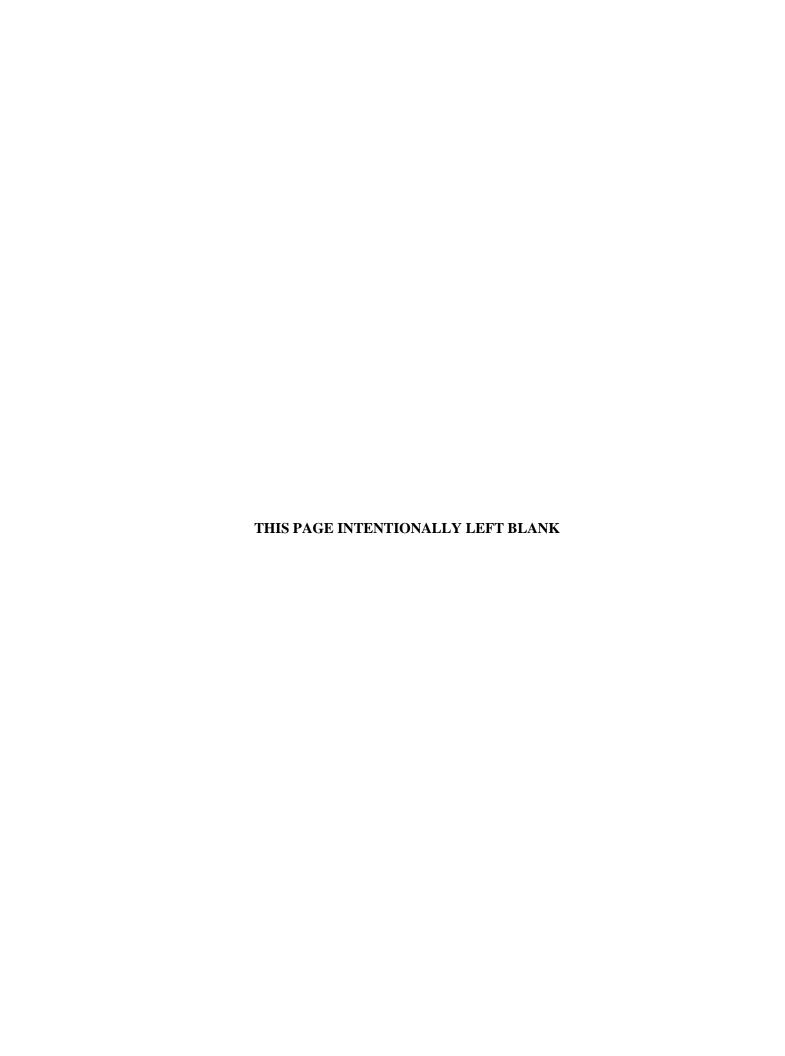
C-746-U Contained Landfill First Quarter Calendar Year 2013 (January-March) **Compliance Monitoring Report** Paducah Gaseous Diffusion Plant, Paducah, Kentucky

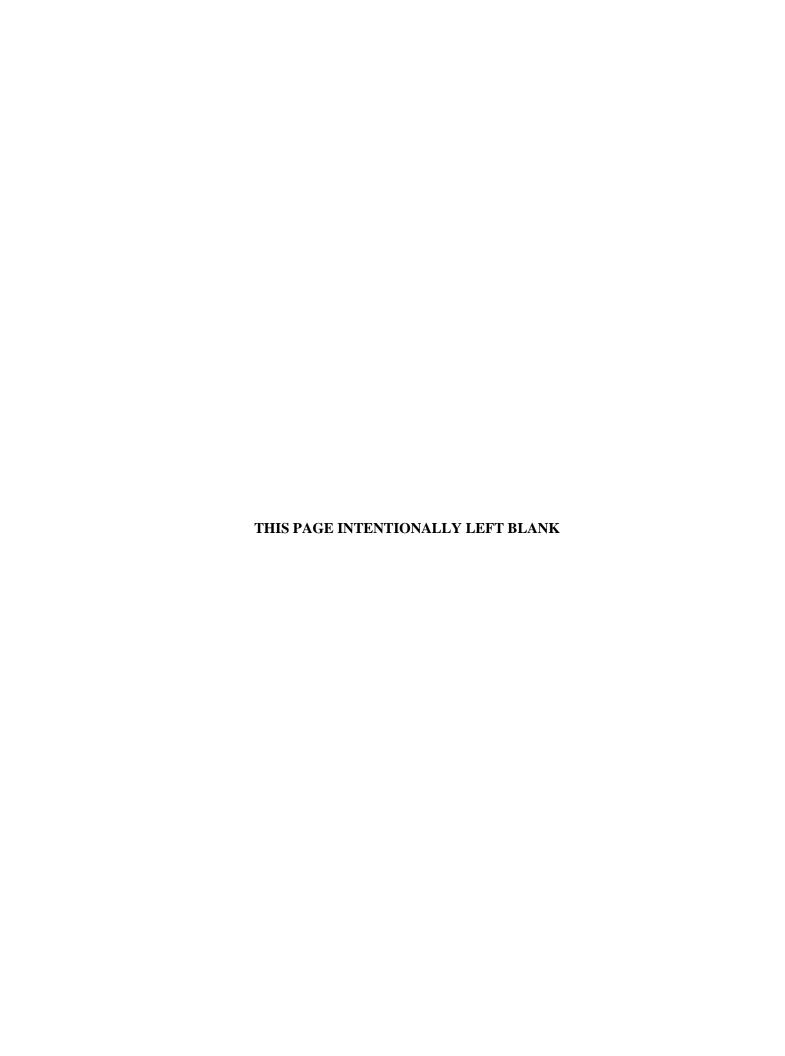
This document is approved for public release per review by:

LATA Kentucky Classification Support

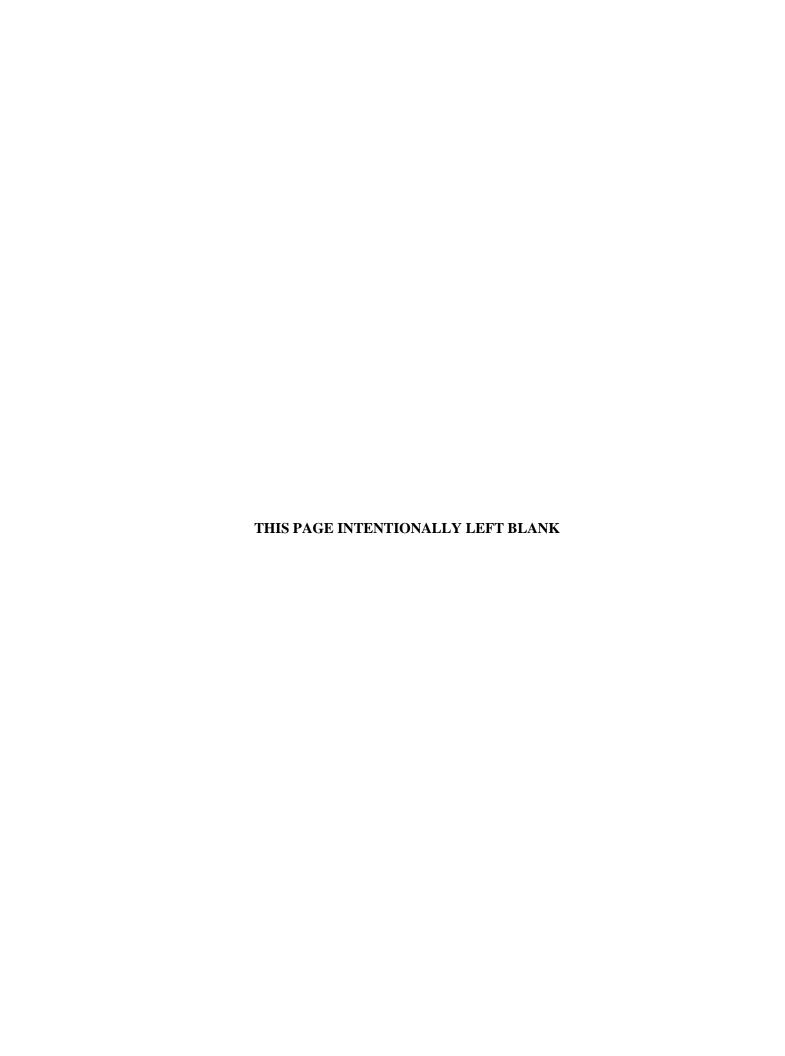

Date

C-746-U Contained Landfill
First Quarter Calendar Year 2013
(January–March)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—May 2013


Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC
managing the
Environmental Remediation Activities at the
Paducah Gaseous Diffusion Plant
under contract DE-AC30-10CC40020


CONTENTS

FIGURES	v
TABLES	v
ACRONYMS	vii
1. INTRODUCTION 1.1 BACKGROUND 1.2 MONITORING PERIOD ACTIVITIES 1.2.1 Groundwater Monitoring 1.2.2 Methane Monitoring 1.2.3 Surface Water Monitoring 1.3 KEY RESULTS	1 1 3 3
2. DATA EVALUATION/STATISTICAL SYNOPSIS	7
3. DATA VALIDATION	9
4. PROFESSIONAL GEOLOGIST AUTHORIZATION	11
5. REFERENCES	13
APPENDIX A: GROUNDWATER, SURFACE WATER, AND METHANE M SAMPLE DATA REPORTING FORM	
APPENDIX B: FACILITY INFORMATION SHEET	B-1
APPENDIX C: GROUNDWATER SAMPLE ANALYSES AND WRITTEN C	OMMENTSC-1
APPENDIX D: STATISTICAL ANALYSES AND QUALIFICATION STATE	MENTD-1
APPENDIX E: GROUNDWATER FLOW RATE AND DIRECTION	E-1
APPENDIX F: NOTIFICATIONS	F-1
APPENDIX G: CHART OF MCL EXCEEDANCES AND STATISTICALLY SINCREASES	
APPENDIX H: METHANE MONITORING DATA	H-1
APPENDIX I: SURFACE WATER MONITORING DATA	I_1

FIGURES

	C-746-U Landfill Groundwater Monitoring Well Network	
	TABLES	
1.	Summary of MCL Exceedances	5
	Summary of Statistical Increases.	
	Monitoring Wells Included in Statistical Analysis	

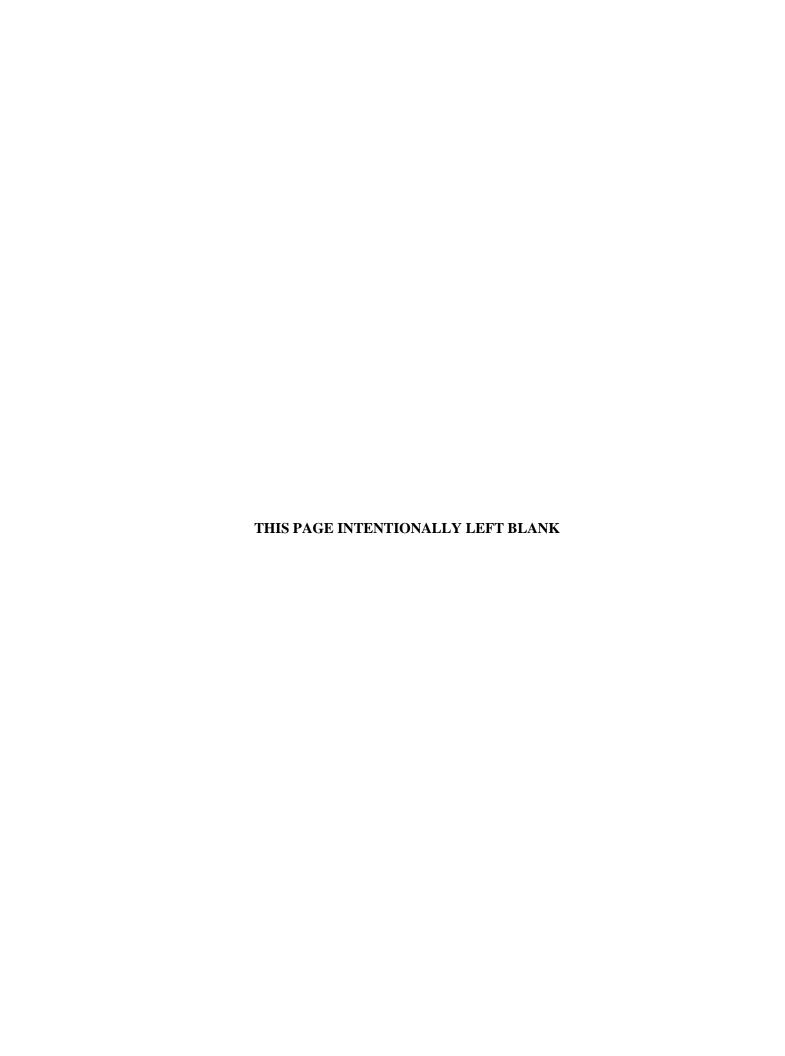
ACRONYMS

CFR Code of Federal Regulations

EPA U.S. Environmental Protection Agency

KAR Kentucky Administrative Regulation

KDWM Kentucky Division of Waste Management


LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

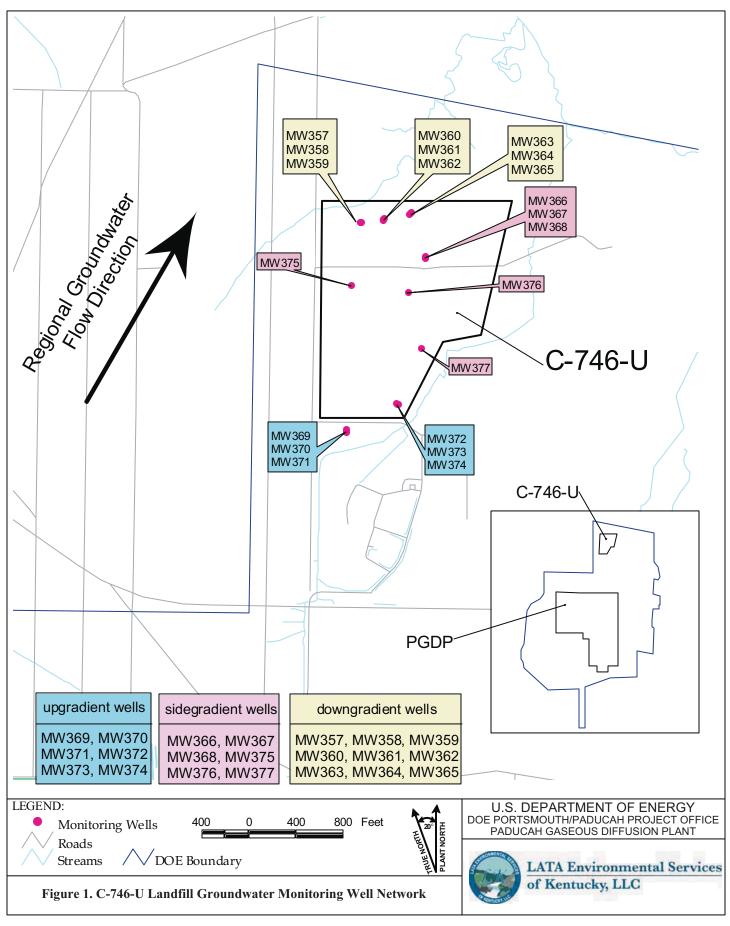
UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

1. INTRODUCTION

This report, C-746-U Contained Landfill First Quarter Calendar Year 2013 (January-March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number 073-00045.

The groundwater, surface water, leachate, and methane monitoring sample data reporting form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The total metals results reported in Appendix C are measured in an unfiltered sample, as required by Permit Condition GSTR0001, Standard Requirement 4. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for parameters that exceed the maximum contaminant level (MCL) and for all parameters that had statistically significant increased concentrations relative to background concentrations, including those parameters listed in 40 CFR § 302.4, Appendix A. Appendix G provides a chart of MCL exceedances and statistically significant increases that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090, Section 4. Appendix I contains the surface water monitoring data.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Gaseous Diffusion Plant and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill was permitted in November 1996 under Solid Waste Landfill Permit Number 073-00045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 3, 4, and 5. Phases 1, 2, and most of Phase 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Groundwater sampling was conducted within the first quarter 2013 during January using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used U.S. Environmental Protection Agency (EPA)-approved methods, as applicable.

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill; nine UCRS wells, six URGA wells, and six LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except for MW359, MW365, MW368, MW376, and MW377. These wells, screened in the UCRS, had an insufficient amount of water to obtain samples this quarter; therefore, there are no analytical results for these locations. MW362, also screened in the UCRS, had an insufficient amount of water to obtain

samples for all analyses; samples for metals and radionuclides were not obtained. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 3, 2013, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 35 vicinity wells define the potentiometric surface for the Regional Gravel Aquifer (RGA). Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient in the vicinity of the C-746-U Landfill in October was 3.12 x 10⁻⁴ ft/ft, while the hydraulic gradient for the upper RGA at the C-746-U Landfill was 6.29 x 10⁻⁴ ft/ft and for the lower RGA was 6.08 x 10⁻⁴ ft/ft. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.07 to 1.82 ft/day for the URGA and 1.03 to 1.76 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Landfill operations staff monitored for the occurrence of methane on March 14, 2013, in four on-site building locations and four locations along the landfill boundary. See Appendix H for a map of the monitoring locations. No potential gas problem areas (i.e., suspect or problem areas) were identified. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was conducted on January 10, 2013, using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2203, *Surface Water Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used U.S. Environmental Protection Agency (EPA)-approved methods, as applicable. Samples were collected at the three permitted monitoring locations. The landfill has an upgradient location, L154; a downgradient location, L351; and a location near the working area of the landfill, L150. A map of the surface water monitoring locations is presented in Figure 2. Surface water was monitored as specified in 401 *KAR* 48:300, Section 2 and the approved surface water monitoring plan. The parameters identified in the Solid Waste Landfill Permit were analyzed for all three locations for reporting only, pursuant to Permit Condition GMNP0001, Standard Requirement 1.

1.3 KEY RESULTS

The following parameters had concentrations that either exceeded the MCL (Table 1) or were shown to have statistically significant increases (Table 2) in concentrations² relative to background concentrations during the first quarter 2013.

_

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

The term "concentration" may refer to a field measurement result such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls (PCBs).

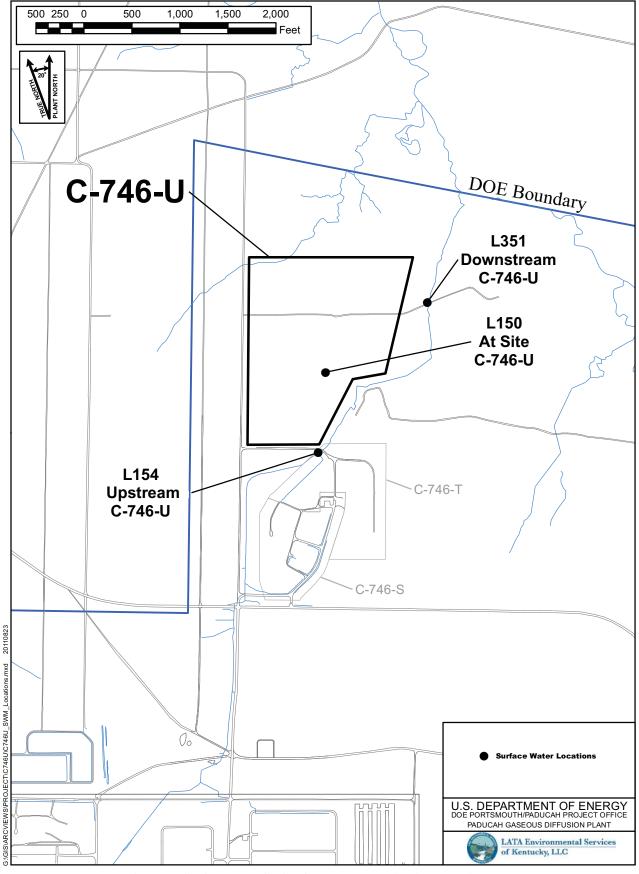


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
(none)	MW357: trichloroethene MW372: beta activity, trichloroethene	MW373: beta activity, trichloroethene

Table 2. Summary of Statistical Increases

UCRS	URGA	LRGA
MW362: dissolved oxygen,	MW357: oxidation-reduction	MW361: oxidation-reduction
oxidation-reduction	potential	potential
potential, sulfate	MW360: oxidation-reduction	MW364: oxidation-reduction
MW371: (upgradient): oxidation-	potential	potential, technetium-99
reduction potential	MW363: oxidation-reduction	MW367: oxidation-reduction
MW374: (upgradient): dissolved	potential, pH	potential, pH
oxygen, oxidation- reduction potential	MW366: oxidation-reduction potential, pH	MW370: (upgradient): oxidation- reduction potential
MW375: oxidation-reduction potential, sulfate	MW369: (upgradient): oxidation- reduction potential MW372: (upgradient): calcium, conductivity, dissolved solids, magnesium,	MW373: (upgradient): calcium, technetium-99
	sulfate	

Sidegradient wells: MW366, MW367, MW368, MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

There were no new MCL exceedances for this quarter. The MCL exceedances—trichloroethene in MW372 and MW373 and beta activity in MW372 and MW373—are related to sources of contamination that are upgradient of the C-746-U Landfill. The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM in accordance with 401 *KAR* 48:300, Section 7, prior to the submittal of this report.

There were no new statistically significant increases in this quarter. All 28 statistically significant increases have occurred previously at least once since fourth quarter calendar year 2002.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to background concentrations, as required by Permit Number 073-00045, Condition GSTR0001, Requirement 8, and 401 *KAR* 48:300, Section 7.

MCL exceedances and parameters shown to have statistically significant increases relative to background concentrations are being assessed in accordance with the *Groundwater Assessment Plan for the C-746-U Landfill* (PRS 2007).

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2013 groundwater data collected from the C-746-U Contained Landfill MWs were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the EPA guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (D17–D76).

For chemicals with an established MCL, no statistical analysis was performed. Parameters that have an MCL can be found in 401 *KAR* 47:030, Section 6. For parameters with no established MCL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistically significant increase in concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. A stepwise list of the interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 3.

Table 3. Monitoring Wells Included Historically in Statistical Analysis*

UCRS	URGA	LRGA
MW359 (dry)**	MW357	MW358
MW362 (partially dry)	MW360	MW361
MW365 (dry)	MW363	MW364
MW368 (dry)	MW366	MW367
MW371 (upgradient)	MW369 (upgradient)	MW370 (upgradient)
MW374 (upgradient)	MW372 (upgradient)	MW373 (upgradient)
MW375	, 10	, 10
MW376 (dry)		
MW377 (dry)		

^{*}A map showing the monitoring well locations is shown on Figure 1.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining statistically significant increases is provided in Appendix D under Statistical Analysis Process. Appendix G summarizes the occurrences (by well and by quarter) of statistically significant increases and MCL exceedances.

^{**}MW359, MW365, MW376, and MW377 had sufficient water to permit a water level measurement, but insufficient water to provide water samples for laboratory analysis.

Upper Continental Recharge System

In this quarter, 20 parameters required statistical analysis in the UCRS. During the first quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed elevated concentrations that were determined to qualify as statistically significant increases and are listed in Table 2.

Upper Regional Gravel Aquifer

In this quarter, 20 parameters required statistical analysis in the URGA. During the first quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, pH, and sulfate displayed elevated concentrations that were determined to qualify as statistically significant increases and are listed in Table 2.

Lower Regional Gravel Aquifer

In this quarter, 19 parameters required statistical analysis in the LRGA. During the first quarter, calcium, oxidation reduction potential, pH, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases and are listed in Table 2.

3. DATA VALIDATION

Data validation was performed on the organic, inorganic, and radiochemical analytical data by an independent third-party validator. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected quarterly during each sampling event. Equipment blanks, field blanks, and trip blanks are obtained to ensure quality control and are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

Data validation results for this data set indicated that all data were considered acceptable.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

First Quarter Calendar Year 2013 (January-March)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0086/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of

KRS Chapter 322A.


PG1194

11


5. REFERENCES

- EPA (U.S. Environmental Protection Agency) 1989. *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Final Guidance, office of Resource Conservation and recovery, U.S. Environmental Protection Agency, Washington, DC.
- PRS (Paducah Remediation Services, LLC) 2007. Groundwater Assessment Plan for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PRS-PROJ-0006, Paducah Remediation Services, LLC, Kevil, KY, February.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE—Paducah G			Activity:	C-746-U Contained Landfill			
	(As officially shown of	on DWM	Permit Face)					
Permit No:	073-00045	Fin	ds/Unit No:	Quarter	& Year1 st Qtr. CY 2013			
Please check the	following as applicable:							
Charact	erization X Quar	terly _	Semiannual	Ann	ual Assessment			
Please check app	licable submittal(s):	X	Groundwater	X	Surface Water			
	vorbane	······································	Leachate	X	_ Methane Monitoring			
45:160) or by statujurisdiction of the hours of making the lab report is a pages. I certify under peraccordance with a Based on my inqui	the (Kentucky Revised Status Division of Waste Managen the determination using states OT considered notification malty of law that the docu- system designed to assure ry of the person or persons of	ness Chapinent. You atistical in Instruction and that qual directly r	ter 224) to conduct group a must report any indicanalyses, direct compactions for completing the dall attachments were lifted personnel properly responsible for gathering	indwater and scation of contrison, or other form are attain prepared under gather and estimation,	at Regulations-401 KAR 48:300 and surface water monitoring under the amination within forty-eight (48) or similar techniques. Submitting ched. Do not submit the instruction er my direction or supervision in evaluate the information submitted, the information submitted is, to the			
	dge and belief, true, accurate ing the possibility of fine an				ficant penalties for submitting false			
	aducah Project Manage mental Services of Ken		LLC		Date			
	el 4 Bam	e.	cel		05/30/13			
Rachel H. Blum	enfeld, Acting Paducal	ı Mte L	ead		/ Date			

U.S. Department of Energy

APPENDIX B FACILITY INFORMATION SHEET


FACILITY INFORMATION SHEET

Groundwater: January 2013 Sampling Date: Surface Water: January 2013 County: McCracken Permit Nos. 073-00045 U.S. DOE - Paducah Gaseous Diffusion Plant Facility Name: (As officially shown on DWM Permit Face) Site Address: 5600 Hobbs Road Kevil, Kentucky 42053 Street City/State Zip Phone No: (270) 441-6800 Latitude: N 37° 07' 38.87" Longitude: W 88° 48' 13.42" OWNER INFORMATION Facility Owner: U.S. DOE – W. E. Murphie, Manager Phone No: (859) 219-4001 Contact Person: Mark J. Duff Phone No: (270) 441-5030 Contact Person Title: Project Manager, LATA Environmental Services of Kentucky, LLC 42053 761 Veterans Avenue Kevil, Kentucky Mailing Address: City/State Street Zip SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY) Company: LATA Environmental Services of Kentucky, LLC Phone No: (270) 441-5444 Contact Person: Jeff Boulton Mailing Address: 42053 761 Veterans Avenue Kevil, Kentucky Zip Street City/State LABORATORY RECORD #1 Laboratory: USEC Analytical Laboratories – Paducah Lab ID No: KY00906 (EPA ID Number) Contact Person: John Price Phone No: (270) 441-5867 Mailing Address: P.O. Box 1410 Paducah, Kentucky 42002-1410 Street City/State Zip **LABORATORY RECORD #2** Laboratory: TestAmerica Laboratories, Inc. Lab ID No: MO00054 (EPA ID Number) Contact Person: Elaine Wild Phone No: (314) 298-8566 Earth City, MO Mailing Address: 13715 Rider Trail North 63045 Street City/State Zip LABORATORY RECORD #3 Laboratory: Lab ID No: Contact Person: Phone No: Mailing Address: City/State Zip Street

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ , Facility Well/Spring Number					8004-4798	3	8004-4799		8004-0981		8004-4800	
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)					357 358			359		360		
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/7/2013 08:	:33	1/7/2013 (09:42	NA		1/8/2013 12:23	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample ID Number (if applicable)				MW357UG2	-13	MW358U0	G2-13	NA		MW360UG2-13		
Laboratory San	mple ID Number (if applicable)				C130070230	001	C1300702	3002	NA		C13008031001	
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	e Or	rganics Anal	ysis	1/10/2013	3	1/10/2013		NA		1/11/2013	
Gradient with	respect to Monitored Unit (UP, DO	NWC	, SIDE, UNKN	OWN)	DOWN		DOWN		DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	<2		<2			*	<2	
16887-00-6	Chloride(s)	т	mg/L	9056	31		29			*	11	
16984-48-8	Fluoride	т	mg/L	9214	0.16		0.19			*	0.24	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.3		<1			*	<1	
14808-79-8	Sulfate	Т	mg/L	9056	62		99			*	9.6	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.42		30.42			*	30.23	
s0145	Specific Conductance	Т	μ MHO/cm	Field	443		541			*	387	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ , Facility Well/Spring Number					8004-4798		8004-4799		8004-0981		8004-4800	
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.)			357		358		359		360			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	318.98		318.94			*	319.17	
N238	Dissolved Oxygen	т	mg/L	Field	4.67		1.01			*	1.95	
s0266	Total Dissolved Solids	т	mg/L	160.1	242		295			*	226	
s0296	Нд	т	Units	Field	6.37		6.47			*	6.48	
NS215	Eh	т	mV	Field	497		136			*	404	
s0907	Temperature	т	°C	Field	13.11		14.67			*	14.17	
7429-90-5	Aluminum	т	mg/L	6020	<0.2		<0.2			*	<0.2	
7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	<0.001		0.00118			*	<0.001	
7440-39-3	Barium	т	mg/L	6020	0.0552		0.058			*	0.167	
7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-42-8	Boron	т	mg/L	6010	0.379	В	0.358	В		*	<0.2	В
7440-43-9	Cadmium	т	mg/L	6020	<0.001	В	<0.001	В		*	<0.001	В
7440-70-2	Calcium	т	mg/L	6010	27.3		35.6			*	19.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00303			*	0.00873	
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
7439-89-6	Iron	Т	mg/L	6010	<0.1		2.15			*	0.855	
7439-92-1	Lead	Т	mg/L	6020	<0.0013	В	<0.0013	В		*	<0.0013	В
7439-95-4	Magnesium	Т	mg/L	6010	11		15.3			*	8.24	
7439-96-5	Manganese	Т	mg/L	6020	0.027		0.57			*	0.138	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBI	ER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	99	8004-0981		8004-480	00
Facility's	Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001	В	<0.001	В		*	<0.001	В
7440-02-0		Nickel	Т	mg/L	6020	<0.005	В	0.00514	В		*	<0.005	В
7440-09-7		Potassium	Т	mg/L	6010	1.65		2.49			*	0.747	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5		Sodium	Т	mg/L	6010	38.6		39.1			*	56.3	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6		Zinc	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01	*J	<0.01	*J		*	<0.01	*J
67-64-1		Acetone	Т	mg/L	8260	<0.01	*J	<0.01	*J		*	<0.01	*J
107-02-8		Acrolein	Т	mg/L	8260	<0.01	J	<0.01	J		*	<0.01	J
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01	*J	<0.01	*J		*	<0.01	*J
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015			*	<0.015	
100-42-5		Styrene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4798		8004-479	9	8004-098	1	8004-480	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-25-2	Tribromomethane	т	mg/L	8260	<0.005	*J	<0.005	*J		*	<0.005	*J
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001	*J	<0.001	*J		*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005			*	<0.005	*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005	*	<0.005	*		*	<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002			*	<0.002	*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0052		0.0039			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	9	8004-098	1	8004-480	0
Facility's Loc	al Well or Spring Number (e.g., N	IW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01			*	<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005	*	<0.005	*		*	<0.005	*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005	*	<0.005	*		*	<0.005	*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01			*	<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002	J	<0.0002			*	<0.0002	J
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005			*	<0.005	*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001	*J	<0.001	*J		*	<0.001	*J
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005	*	<0.005	*		*	<0.005	
1336-36-3	PCB,Total	т	ug/L	8082	<0.17		<0.18			*	<0.18	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.16		<0.17			*	<0.17	
11104-28-2	PCB-1221	т	ug/L	8082	<0.17		<0.18			*	<0.18	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.14		<0.14			*	<0.14	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.1			*	<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12			*	<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480	10
Facility's Loc	cal Well or Spring Number (e.g., N	w−1	1, MW-2, et	:c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07			*	<0.07	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05			*	<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09			*	<0.09	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.366	*	-0.706	*		*	-1.9	*
12587-47-2	Gross Beta	Т	pCi/L	9310	27.2	*	30.9	*		*	2.73	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	0.0595	*	0.0895	*		*	0.0337	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.0798	*	-0.184	*		*	0.152	*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	27.7	*	38.5	*		*	4.54	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	-0.0318	*	-0.0249	*		*	0.0382	*
10028-17-8	Tritium	Т	pCi/L	704R6	-237	*	-14.2	*		*	-222	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<25		<25			*	<25	
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04			*	<0.04	
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2			*	<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1		1.1			*	1.2	
s0586	Total Organic Halides	Т	mg/L	9020	0.018	В	0.02	В		*	0.016	В

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	796	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	., MW-2, etc	:.)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		1/7/2013 12	:40	1/7/2013	13:38	1/8/2013	07:33	1/8/2013 09	9:53
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG2	-13	MW362U0	G2-13	MW363U0	G2-13	MW364UG	2-13
Laboratory Sam	mple ID Number (if applicable)		C130070320	001	C130080 ²	11001	C1300802	21001	C13008021	1002		
Date of Analys	sis (Month/Day/Year) For Volatile	ysis.	1/10/2013	3	1/10/20	13	1/10/20	13	1/10/201	3		
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOMN)	DOWN		DOW	N	DOW	N	DOWN	l
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	Т	mg/L	9056	32		10		31		32	
16984-48-8	Fluoride	т	mg/L	9214	0.16		0.36		0.17		0.16	
s0595	Nitrate & Nitrite	т	mg/L	9056	1		<1		2.5		<1	
14808-79-8	Sulfate	т	mg/L	9056	81		19		24		63	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.42		30.42		30.27		30.28	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	477		571	_	370		440	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796	i	8004-4797	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	319.08		329		319.17		319.15	
N238	Dissolved Oxygen	Т	mg/L	Field	4.14		3.19		1.38		1.8	
s0266	Total Dissolved Solids	Т	mg/L	160.1	268			*	203		242	
s0296	рН	Т	Units	Field	6.39		6.96		7.03		6.42	
NS215	Eh	Т	mV	Field	349		188		398		274	
s0907	Temperature	Т	°C	Field	13.94		14.83		12.56		13.89	
7429-90-5	Aluminum	Т	mg/L	6020	<0.2			*	<0.2		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005			*	<0.005		<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	<0.001			*	<0.001		<0.001	
7440-39-3	Barium	т	mg/L	6020	0.0544			*	0.152		0.0744	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001			*	<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	<0.2	В		*	<0.2	В	<0.2	В
7440-43-9	Cadmium	Т	mg/L	6020	<0.001	В		*	<0.001	В	<0.001	В
7440-70-2	Calcium	т	mg/L	6010	29.2			*	24.4		28.1	
7440-47-3	Chromium	т	mg/L	6020	<0.01			*	<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001			*	0.00105		<0.001	
7440-50-8	Copper	Т	mg/L	6020	<0.02			*	<0.02		<0.02	
7439-89-6	Iron	т	mg/L	6010	<0.1			*	0.174		0.134	
7439-92-1	Lead	Т	mg/L	6020	<0.0013	В		*	<0.0013	В	0.00162	В
7439-95-4	Magnesium	Т	mg/L	6010	12.1			*	9.94		11.2	
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*	0.127		0.0174	
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*	<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	7 Molybdenum T mg/L 0 Nickel T mg/L 7 Potassium T mg/L 6 Rhodium T mg/L 2 Selenium T mg/L 4 Silver T mg/L 5 Sodium T mg/L 7 Tantalum T mg/L 0 Thallium T mg/L 1 Uranium T mg/L -2 Vanadium T mg/L					8004-479	5	8004-098	36	8004-479	6	8004-479	97
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT		OF	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001	В		*	<0.001	В	<0.001	В
7440-02-0		Nickel	Т	mg/L	6020	<0.005	В		*	<0.005	В	<0.005	В
7440-09-7		Potassium	Т	mg/L	6010	2.02			*	1.15		1.97	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005			*	<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005			*	<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001			*	<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6010	39.1			*	32.8		40.6	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005			*	<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002			*	<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.001			*	<0.001		<0.001	
7440-62-2		Vanadium	Т	mg/L	6020	<0.02			*	<0.02		<0.02	
7440-66-6		Zinc	Т	mg/L	6020	<0.02			*	<0.02		<0.02	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	*J
67-64-1		Acetone	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	*J
107-02-8		Acrolein	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.005	*J
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5		Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-098	6	8004-479	96	8004-47	97
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005	*J	<0.005	*J	<0.005	*J	<0.005	*J
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001	*J	<0.001	*J	<0.001	*J	<0.001	*J
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0034		<0.001		<0.001		0.0026	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-098	6	8004-47	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	l, MW-2, et	:c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002	J	<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001	*J	<0.001	*J	<0.001	*J	<0.001	*J
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.18		<0.18	*	<0.18		<0.18	
12674-11-2	PCB-1016	т	ug/L	8082	<0.17		<0.17	*	<0.17		<0.17	
11104-28-2	PCB-1221	т	ug/L	8082	<0.18		<0.18	*	<0.18		<0.18	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.14		<0.14	*	<0.14		<0.14	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.1	*	<0.1		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12	*	<0.12		<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479	7
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	cc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.07		<0.07	*	<0.07		<0.07	
11096-82-5	PCB-1260	т	ug/L	8082	<0.05		<0.05	*	<0.05		<0.05	
11100-14-4	PCB-1268	т	ug/L	8082	<0.09		<0.09	*	<0.09		<0.09	
12587-46-1	Gross Alpha	Т	pCi/L	9310	7.94	*		*	-0.0977	*	1.64	*
12587-47-2	Gross Beta	Т	pCi/L	9310	31.7	*		*	9.51	*	36.4	*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	-0.122	*		*	0.283	*	0.0743	*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	-0.14	*		*	0.447	*	0.215	*
14133-76-7	Technetium-99	т	pCi/L	RL-7100	39.6	*		*	9.81	*	49.1	*
14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.106	*		*	0.0182	*	0.019	*
10028-17-8	Tritium	т	pCi/L	704R6	171	*	-230	*	-135	*	-189	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<25		<25		<25		<25	
57-12-5	Cyanide	т	mg/L	9010	<0.04		<0.04		<0.04		<0.04	
20461-54-5	Iodide	т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1		4.1		1.2		<1	
s0586	Total Organic Halides	Т	mg/L	9020	0.018	В	0.022	В	0.011	В	0.014	В
												<u> </u>
		Ш										<u> </u>

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	34	8004-0982	2	8004-4793	3	8004-098	3
Facility's Lo	ocal Well or Spring Number (e.g., M	W-1	L, MW-2, etc	.)	365		366		367		368	
Sample Sequer	nce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	and Time (Month/Day/Year hour: minu	tes)		NA		1/9/2013 13	:44	1/9/2013 12:	34	NA	
Duplicate (")	(" or "N") ²				N		N		N		N	
Split ("Y" or	: "N") ³				N		N		N		N	
Facility Samp	ple ID Number (if applicable)				NA		MW366UG2	-13	MW367UG2	-13	NA	
Laboratory Sa	ample ID Number (if applicable)		NA		C130090220	002	C130090220	001	NA			
Date of Analy	vsis (Month/Day/Year) For <u>Volatile</u>	ysis	NA		1/11/2013		1/11/2013		NA			
Gradient with	n respect to Monitored Unit (UP, DC	, SIDE, UNKN	OWN)	DOWN		SIDE		SIDE		SIDE		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DET ECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*	<2		<2			*
16887-00-6	Chloride(s)	т	mg/L	9056		*	41		7.7			*
16984-48-8	Fluoride	т	mg/L	9214		*	0.17		0.11			*
s0595	Nitrate & Nitrite	т	mg/L	9056		*	<1		<1			*
14808-79-8	Sulfate	т	mg/L	9056		*	42		22			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*	30.33		30.33			*
s0145	Specific Conductance	т	μ MH0/cm	Field		*	397		278			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793		8004-0983	3
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*	319.18		319.15			*
N238	Dissolved Oxygen	Т	mg/L	Field		*	2.4		1.5			*
S0266	Total Dissolved Solids	Т	mg/L	160.1		*	246		140			*
s0296	Нд	Т	Units	Field		*	6.84		6.89			*
NS215	Eh	T	mV	Field		*	247		248			*
s0907	Temperature	Т	°C	Field		*	15.11		14.78			*
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.2		<0.2			*
7440-36-0	Antimony	Т	mg/L	6020		*	<0.005		<0.005			*
7440-38-2	Arsenic	Т	mg/L	7060		*	0.00111		0.00309			*
7440-39-3	Barium	Т	mg/L	6020		*	0.167		0.158			*
7440-41-7	Beryllium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-42-8	Boron	Т	mg/L	6010		*	<0.2	В	<0.2	В		*
7440-43-9	Cadmium	Т	mg/L	6020		*	<0.001	В	<0.001	В		*
7440-70-2	Calcium	Т	mg/L	6010		*	28		15.6			*
7440-47-3	Chromium	Т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	Т	mg/L	6020		*	<0.001		0.00339			*
7440-50-8	Copper	Т	mg/L	6020		*	<0.02		<0.02			*
7439-89-6	Iron	т	mg/L	6010		*	0.155		12			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.0013	В	<0.0013	В		*
7439-95-4	Magnesium	Т	mg/L	6010		*	11		7.63			*
7439-96-5	Manganese	т	mg/L	6020		*	0.0228		1.68	*		*
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

Ī	AKGWA NUMBER	t ¹ , Facility Well/Spring Number				8004-098	34	8004-0982	2	8004-4793		8004-098	.3
	Facility's I	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
	7439-98-7	Molybdenum	Т	mg/L	6020		*	<0.001	В	<0.001	В		*
	7440-02-0	Nickel	Т	mg/L	6020		*	<0.005	В	<0.005	В		*
	7440-09-7	Potassium	Т	mg/L	6010		*	1.86		2.61			*
	7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
	7782-49-2	Selenium	Т	mg/L	6020		*	0.00578		<0.005			*
	7440-22-4	Silver	Т	mg/L	6020		*	<0.001		<0.001			*
	7440-23-5	Sodium	Т	mg/L	6010		*	42.1		16.6			*
17	7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
	7440-28-0	Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
	7440-61-1	Uranium	Т	mg/L	6020		*	<0.001		<0.001			*
	7440-62-2	Vanadium	Т	mg/L	6020		*	<0.02		<0.02			*
	7440-66-6	Zinc	Т	mg/L	6020		*	<0.02		<0.02			*
	108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.01	*J	<0.01	*J		*
	67-64-1	Acetone	Т	mg/L	8260		*	<0.01	*J	<0.01	*J		*
	107-02-8	Acrolein	Т	mg/L	8260		*	<0.01	J	<0.01	J		*
	107-13-1	Acrylonitrile	Т	mg/L	8260		*	<0.01	*J	<0.01	*J		*
	71-43-2	Benzene	Т	mg/L	8260		*	<0.005		<0.005			*
	108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.005		<0.005			*
	1330-20-7	Xylenes	Т	mg/L	8260		*	<0.015		<0.015			*
	100-42-5	Styrene	Т	mg/L	8260		*	<0.005		<0.005			*
	108-88-3	Toluene	Т	mg/L	8260		*	<0.005		<0.005			*
	74-97-5	Chlorobromomethane	Т	mg/L	8260		*	<0.005		<0.005			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	1	8004-0982	2	8004-479	3	8004-098	33
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260		*	<0.005		<0.005			*
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.005	*J	<0.005	*J		*
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.005		<0.005			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.01		<0.01			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.005		<0.005			*
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.005		<0.005			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.005		<0.005			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.005	*	<0.005	*		*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.005		<0.005			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.005		<0.005			*
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.002	*	<0.002	*		*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*	0.0028		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	4	8004-0982		8004-479	3	8004-098	33
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260		*	<0.005		<0.005			*
591-78-6	2-Hexanone	Т	mg/L	8260		*	<0.01		<0.01			*
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.01		<0.01			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.005	*	<0.005	*		*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260		*	<0.001		<0.001			*
75-09-2	Dichloromethane	Т	mg/L	8260		*	<0.005	*	<0.005	*		*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260		*	<0.01		<0.01			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011		*	<0.0002		<0.0002			*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005			*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.005		<0.005			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.005	*	<0.005	*		*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001	*J	<0.001	*J		*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.005		<0.005			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.005		<0.005			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005			*
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.17		<0.18			*
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.16		<0.17			*
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.17		<0.18			*
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.14		<0.14			*
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.1		<0.1			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.12		<0.12			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	4	8004-0982		8004-4793		8004-098	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.07		<0.07			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.05		<0.05			*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.09		<0.09			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	4.57	*	0.973	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	36.4	*	6.1	*		*
10043-66-0	Iodine-131	T	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	T	pCi/L	RL-7129		*	0.0273	*	0.474	*		*
10098-97-2	Strontium-90	T	pCi/L	RL-7140		*	0.241	*	-0.00271	*		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*	60.5	*	6.3	*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*	0.00468	*	-0.0197	*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*	-151	*	13.2	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*	<25		<25			*
57-12-5	Cyanide	Т	mg/L	9010		*	<0.04		<0.04			*
20461-54-5	Iodide	Т	mg/L	345.1		*	<2		<2			*
s0268	Total Organic Carbon	Т	mg/L	9060		*	<1		<1			*
s0586	Total Organic Halides	Т	mg/L	9020		*	0.021		0.015			*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4820	0	8004-48	318	8004-48	319	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., M	ſW−1	, MW-2, etc	.)	369		370		371		372	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/10/2013 08	3:27	1/14/2013	08:24	1/10/2013	09:16	1/9/2013 1:	2:46
Duplicate ("Y	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	cility Sample ID Number (if applicable)						MW370U	G2-13	MW371U0	G2-13	MW372UG	2-13
Laboratory Sar	mple ID Number (if applicable)		C130100090	001	C130140	17001	C1301000	9002	C13009025	5001		
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis						1/18/20)13	1/11/20	13	1/11/201	3
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	OWN)	UP		UP		UP		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	т	mg/L	9056	33		43		9.2		47	
16984-48-8	Fluoride	Т	mg/L	9214	0.19		0.16		0.32		0.17	
s0595	Nitrate & Nitrite	Т	mg/L	9056	<1		1.2		<1		<1	
14808-79-8	Sulfate	Т	mg/L	9056	6.5		20		9.6		160	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.28		30.38		30.28		30.23	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	365		436		782		860	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	320.14		319.92		339.34		320.04	
N238	Dissolved Oxygen	т	mg/L	Field	2.43		3.7		1.35		1.8	
s0266	Total Dissolved Solids	т	mg/L	160.1	213		230		456		506	
s0296	Нд	т	Units	Field	6.42		6.2		6.83		6.32	
NS215	Eh	Т	mV	Field	675		725		286		43	
s0907	Temperature	т	°C	Field	12.83		14.06		15.33		15.78	
7429-90-5	Aluminum	т	mg/L	6020	0.475		<0.2		<0.2		<0.2	
7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	0.00109		0.00126		<0.001		0.00187	
7440-39-3	Barium	т	mg/L	6020	0.363		0.197		0.178		0.0665	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	<0.2	В	<0.2	В	<0.2	В	1.39	В
7440-43-9	Cadmium	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-70-2	Calcium	т	mg/L	6010	16.3		29.5		32.8		66.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.0121		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7439-89-6	Iron	т	mg/L	6010	0.45		<0.1		0.114		0.497	
7439-92-1	Lead	Т	mg/L	6020	0.00474	В	<0.0013	В	<0.0013	В	<0.0013	В
7439-95-4	Magnesium	Т	mg/L	6010	6.09		11.7		12.5		26	
7439-96-5	Manganese	Т	mg/L	6020	0.0757		<0.005		<0.005		0.0179	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	18	8004-481	9	8004-480)8
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	369		370		371		372	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0		Nickel	T	mg/L	6020	0.00629	В	<0.005	В	<0.005	В	<0.005	В
7440-09-7		Potassium	Т	mg/L	6010	0.499		2.44		0.322		2.47	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		0.0057	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6010	54		39.2		130		63.7	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.001		<0.001		0.00187		<0.001	
7440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6		Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01	*J	<0.01		<0.01	*J	<0.01	*J
67-64-1		Acetone	Т	mg/L	8260	<0.01	*J	<0.01		<0.01	*J	<0.01	*J
107-02-8		Acrolein	T	mg/L	8260	<0.01	J	<0.01		<0.01	J	<0.01	J
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01	*J	<0.01		<0.005	*J	<0.01	*J
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7		Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5		Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005	J	<0.005		<0.005	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-481	3	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	l, MW-2, et	c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005	J	<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005	*J	<0.005	J	<0.005	*J	<0.005	*J
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005	J	<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005	J	<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005	J	<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001	J	<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005	*	<0.005		<0.005	*	<0.005	*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001	J	<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002	*	<0.002	*	<0.002	*	<0.002	*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.0017		<0.001		0.0061	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	8	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	l, MW-2, et	:c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005	*	<0.005		<0.005	*	<0.005	*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005	*	<0.005		<0.005	*	<0.005	*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002	*	<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005	*	<0.005	J	<0.005	*	<0.005	*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001	*J	<0.001		<0.001	*J	<0.001	*J
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.18		<0.18		<0.18		<0.18	
12674-11-2	PCB-1016	т	ug/L	8082	<0.17		<0.17		<0.17		<0.17	
11104-28-2	PCB-1221	т	ug/L	8082	<0.18		<0.18		<0.18		<0.18	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.14		<0.14		<0.14		<0.14	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.1		<0.1		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12		<0.12		<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480	8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.07		<0.07		<0.07		<0.07	
11096-82-5	PCB-1260	т	ug/L	8082	<0.05		<0.05		<0.05		<0.05	
11100-14-4	PCB-1268	т	ug/L	8082	<0.09		<0.09		<0.09		<0.09	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.54	*	1.88	*	2.33	*	9.39	*
12587-47-2	Gross Beta	Т	pCi/L	9310	16.8	*	12.7	*	4.31	*	95.6	*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	0.14	*	0.107	*	0.288	*	0.121	*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	0.262	*	0.13	*	0.0849	*	-0.138	*
14133-76-7	Technetium-99	т	pCi/L	RL-7100	30.5	*	18.3	*	6.81	*	30.6	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.0937	*	0.0213	*	0.0299	*	0.0234	*
10028-17-8	Tritium	Т	pCi/L	704R6	-34.5	*	-279	*	-275	*	-1.02	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<25		<25		<25		<25	
57-12-5	Cyanide	т	mg/L	9010	<0.04		<0.04		<0.04		<0.04	
20461-54-5	Iodide	т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	т	mg/L	9060	1.4		<1	*	1.8		2.2	
s0586	Total Organic Halides	т	mg/L	9020	0.029		0.02		0.012		0.022	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-09	990	8004-09	85	8004-098	8
Facility's Lo	ocal Well or Spring Number (e.g., A	w−1	, MW-2, etc	.)	373		374		375		376	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/9/2013 14	:05	1/9/2013	08:19	1/9/2013 (09:26	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	. "N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG2	-13	MW374U	G2-13	MW375U0	G2-13	NA	
Laboratory Sa	mple ID Number (if applicable)		C13009025	002	C130090	17001	C1300901	7002	NA			
Date of Analy	rsis (Month/Day/Year) For <u>Volatile</u>	ysis	1/11/2013	3	1/11/20)13	1/11/20	13	NA			
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2			*
16887-00-6	Chloride(s)	Т	mg/L	9056	48		100		6.5			*
16984-48-8	Fluoride	т	mg/L	9214	0.17		0.17		0.3			*
s0595	Nitrate & Nitrite	т	mg/L	9056	<1		<1		<1			*
14808-79-8	Sulfate	Т	mg/L	9056	210		5.3		32			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.23		30.23		30.23			*
s0145	Specific Conductance	т	μ MH 0/cm	Field	935		752		420			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	}
Facility's Lo	ocal Well or Spring Number (e.g., M	V−1 ,	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	320.03		329.39		336.03			*
N238	Dissolved Oxygen	т	mg/L	Field	2.21		3.89		1.54			*
s0266	Total Dissolved Solids	т	mg/L	160.1	568		390		255			*
s0296	рн	т	Units	Field	6.32		6.67		6.59			*
NS215	Eh	т	mV	Field	83		534		348			*
s0907	Temperature	т	°C	Field	15.83		15.22		15.17			*
7429-90-5	Aluminum	т	mg/L	6020	<0.2		0.868		<0.2			*
7440-36-0	Antimony	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-38-2	Arsenic	Т	mg/L	7060	0.00119		0.00224		<0.001			*
7440-39-3	Barium	Т	mg/L	6020	0.0256		0.163		0.163			*
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-42-8	Boron	т	mg/L	6010	2.02	В	<0.2	В	<0.2	В		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В		*
7440-70-2	Calcium	т	mg/L	6010	82.5		20.9		15.3			*
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00222		<0.001			*
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02		<0.02			*
7439-89-6	Iron	т	mg/L	6010	<0.1		1.18		0.149			*
7439-92-1	Lead	Т	mg/L	6020	<0.0013	В	<0.0013	В	<0.0013	В		*
7439-95-4	Magnesium	Т	mg/L	6010	30.3		6.23		5.99			*
7439-96-5	Manganese	т	mg/L	6020	0.0192		0.0525		0.0162			*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-479	12	8004-099	90	8004-098	35	8004-098	38
Facility's	Local Well or Spring Number (e.g.,	, MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В	0.0011	В	<0.001	В		*
7440-02-0	Nickel	Т	mg/L	6020	<0.005	В	0.00503	В	<0.005	В		*
7440-09-7	Potassium	Т	mg/L	6010	3.26		0.557		0.253			*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020	0.00565		0.0274		<0.005			*
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5	Sodium	Т	mg/L	6010	70.4		127		67.1			*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020	<0.001		0.00182		<0.001			*
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02			*
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02			*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J		*
67-64-1	Acetone	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J		*
107-02-8	Acrolein	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J		*
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J		*
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015			*
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005	*J	<0.005	*J	<0.005	*J		*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*		*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002	*	<0.002	*	<0.002	*		*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0066		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	0	8004-09	85	8004-09	88
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	l, MW-2, et	:c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*		*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*		*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002		<0.0002			*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*		*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001	*J	<0.001	*J	<0.001	*J		*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005			*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.18		<0.17		<0.17			*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.17		<0.16		<0.16			*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.18		<0.17		<0.17			*
11141-16-5	PCB-1232	Т	ug/L	8082	<0.14		<0.14		<0.14			*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.1		<0.1			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12		<0.12		<0.12			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	18
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.07		<0.07		<0.07			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05		<0.05		<0.05			*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09		<0.09		<0.09			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-2.38	*	2.56	*	-0.157	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	56.7	*	1.15	*	0.556	*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	0	*	0.102	*	0.144	*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	-0.0299	*	-0.00277	*	0.276	*		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	64	*	-2.22	*	-5.52	*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	-0.00441	*	0.0458	*	0.0411	*		*
10028-17-8	Tritium	Т	pCi/L	704R6	-192	*	-216	*	264	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<25		<25		<25			*
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04		<0.04			*
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2		<2			*
s0268	Total Organic Carbon	Т	mg/L	9060	1		2.3		1.8			*
s0586	Total Organic Halides	Т	mg/L	9020	0.036		0.036		0.045			*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	39	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	cal Well or Spring Number (e.g., I	w−1	., MW-2, etc	:.)	377		E. BLAN	١K	F. BLAN	K	T. BLANK	(1
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		Е		F		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		NA		1/8/2013 0	7:15	1/8/2013 0	9:35	1/7/2013 07	7:25
Duplicate ("Y	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				NA		RI1UG2-	·13	FB1UG2-	13	TB1UG2-	13
Laboratory San	mple ID Number (if applicable)		NA		C1300801	0001	C13008010	0002	C13007037	'001		
Date of Analys	sis (Month/Day/Year) For Volatile	ysis.	NA		1/10/20	13	1/10/021	3	1/10/201	3		
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9214		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	μ MH0/cm	Field		*		*		*		*

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989	9	0000-0000)	0000-0000	1	0000-0000)
Facility's Lo	cal Well or Spring Number (e.g., MV	i-1,	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.2		<0.2			*
7440-36-0	Antimony	Т	mg/L	6020		*	<0.005		<0.005			*
7440-38-2	Arsenic	т	mg/L	7060		*	<0.001		<0.001			*
7440-39-3	Barium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-41-7	Beryllium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-42-8	Boron	т	mg/L	6010		*	<0.2	В	<0.2	В		*
7440-43-9	Cadmium	Т	mg/L	6020		*	<0.001	В	<0.001	В		*
7440-70-2	Calcium	т	mg/L	6010		*	<1	В	<1	В		*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	Т	mg/L	6020		*	<0.02		<0.02			*
7439-89-6	Iron	т	mg/L	6010		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.0013	В	<0.0013	В		*
7439-95-4	Magnesium	Т	mg/L	6010		*	<0.025	В	<0.025	В		*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	R ¹ , Facility Well/Spring Number				8004-098	19	0000-000	00	0000-000	0	0000-000	00
Facility's I	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	(1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.001	В	<0.001	В		*
7440-02-0	Nickel	т	mg/L	6020		*	<0.005	В	<0.005	В		*
7440-09-7	Potassium	Т	mg/L	6010		*	<0.2		<0.2			*
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	Т	mg/L	6010		*	<1		<1			*
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.02		<0.02			*
7440-66-6	Zinc	Т	mg/L	6020		*	<0.02		<0.02			*
108-05-4	Vinyl acetate	Т	mg/L	8260		*	<0.01	*J	<0.01	*J	<0.01	*J
67-64-1	Acetone	Т	mg/L	8260		*	<0.01	*	<0.01	*J	<0.01	*J
107-02-8	Acrolein	Т	mg/L	8260		*	<0.01	7	<0.01	J	<0.01	J
107-13-1	Acrylonitrile	Т	mg/L	8260		*	<0.01	*J	<0.01	*J	<0.01	*J
71-43-2	Benzene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260		*	<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-000	0	0000-000	00	0000-000	00
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	, MW-2, et	c.)	377		E. BLAN	(F. BLAN	IK	T. BLANI	< 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.005	*J	<0.005	*J	<0.005	*J
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001	*J	<0.001	*J	<0.001	*J
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T	mg/L	8260		*	<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260		*	<0.005	*	<0.005	*	<0.005	*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	0	0000-00	00	0000-00	000
Facility's Loc	cal Well or Spring Number (e.g., 1	∕w-1	L, MW-2, et	.c.)	377		E. BLANI	<	F. BLAN	١K	T. BLAN	IK 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.005	*	<0.005	*	<0.005	*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260		*	<0.005	*	<0.005	*	<0.005	*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260		*	<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0002	*	<0.0002	J	<0.0002	*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001	*J	<0.001	*J	<0.001	*J
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.005	*	<0.005	*	<0.005	*
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.18		<0.17			*
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.17		<0.16			*
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.18		<0.17			*
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.14		<0.14			*
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.1		<0.1			*
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.12		<0.12			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-000)0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	377		E. BLANK		F. BLAN	K	T. BLANK	(1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.07		<0.07			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.05		<0.05			*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.09		<0.09			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	-0.0587	*	0.428	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	0.112	*	-1.08	*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*	-0.0575	*	-0.147	*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*	-0.0569	*	0.355	*		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*	12.2	*	-2.99	*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*	0.0771	*	-0.0151	*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*	228	*	205	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	Т	mg/L	345.1		*	<2		<2			*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g., M	w−1	L, MW-2, etc	:.)	T. BLANK	(2	T. BLAN	К 3	T. BLAN	〈 4	T. BLANK	5
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	Т		Т		Т		Т	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/8/2013 00	6:45	1/8/2013 0	7:30	1/9/2013 0	7:23	1/9/2013 11	:45
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				TB2UG2-	13	TB3UG2	-13	TB4UG2-	·13	TB5UG2-	13
Laboratory Sa	mple ID Number (if applicable)		C13008019	0001	C1300803	0001	C13009044	1001	C13009021	001		
Date of Analy	sis (Month/Day/Year) For Volatile	ysis	1/10/201	3	1/10/20	13	1/11/201	3	1/11/201	3		
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9214		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-0000		0000-0000)
Facility's Lo	cal Well or Spring Number (e.g., MV	I-1 , 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK 4	1	T. BLANK	5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	Т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	Т	mg/L	7060		*		*		*		*
7440-39-3	Barium	Т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	Т	mg/L	6020		*		*		*		*
7440-42-8	Boron	Т	mg/L	6010		*		*		*		*
7440-43-9	Cadmium	Т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6010		*		*		*		*
7440-47-3	Chromium	Т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	Т	mg/L	6020		*		*		*		*
7440-50-8	Copper	Т	mg/L	6020		*		*		*		*
7439-89-6	Iron	Т	mg/L	6010		*		*		*		*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6010		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ , Facility Well/Spring Number				0000-000	0	0000-000	00	0000-000	0	0000-000	00
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLANK	(3	T. BLANK	. 4	T. BLANK	(5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020		*		*		*		*
7440-02-0	Nickel	т	mg/L	6020		*		*		*		*
7440-09-7	Potassium	Т	mg/L	6010		*		*		*		*
7440-16-6	Rhodium	Т	mg/L	6020		*		*		*		*
7782-49-2	Selenium	Т	mg/L	6020		*		*		*		*
7440-22-4	Silver	Т	mg/L	6020		*		*		*		*
7440-23-5	Sodium	Т	mg/L	6010		*		*		*		*
7440-25-7	Tantalum	Т	mg/L	6020		*		*		*		*
7440-28-0	Thallium	Т	mg/L	6020		*		*		*		*
7440-61-1	Uranium	Т	mg/L	6020		*		*		*		*
7440-62-2	Vanadium	Т	mg/L	6020		*		*		*		*
7440-66-6	Zinc	Т	mg/L	6020		*		*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	*J
67-64-1	Acetone	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	*J
107-02-8	Acrolein	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	*J
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-000	0	0000-00	00	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	T. BLANI	K 4	T. BLANI	₹5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005	*J	<0.005	*J	<0.005	*J	<0.005	*J
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001	*J	<0.001	*J	<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002	*	<0.002	*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-000	0	0000-000	0	0000-00	00	0000-00	000		
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	T. BLANK	2	T. BLANK	3	T. BLAN	K 4	T. BLAN	K 5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002	J	<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001	*J	<0.001	*J	<0.001	*J	<0.001	*J
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005	*	<0.005	*	<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000	0	0000-0000		0000-0000)	0000-000)0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	T. BLANK	2	T. BLANK 3		T. BLANK	4	T. BLANK	. 5
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*		*		*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	T	mg/L	345.1		*		*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

> LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	8004-480	00	\	
Facility's Loc	al Well or Spring Number (e.g., N	/W−1	., MW-2, etc	:.)	T. BLANK	6	T. BLAN	〈 7	360			
Sample Sequenc	e #				1		1		2			
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	Т		Т		NA			$\neg \neg$
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/10/2013 0	7:10	1/14/2013 07:10		1/8/2013 1	2:23		$\overline{}$
Duplicate ("Y"	or "N") ²				N N			Y			\overline{T}	
Split ("Y" or	"N") ³				N N			N			\overline{T}	
Facility Sampl	e ID Number (if applicable)		TB6UG2-13 TB7UG			-13	MW360DU0	3 2-13		Τ		
Laboratory Sam	ple ID Number (if applicable)		C13010010	0001	C13014016001		C13008031002		\ /			
Date of Analys	is (Month/Day/Year) For Volatile	ysis	1/11/2013		1/18/2013		1/11/2013		\ /			
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOWN)	NA		NA	NA		l	У	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*	<2			1
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*	13			$\uparrow \uparrow$
16984-48-8	Fluoride	т	mg/L	9214		*		*	0.2			
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*	<1			
14808-79-8	Sulfate	Т	mg/L	9056		*		*	20			
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*	30.23			
s0145	Specific Conductance	т	μ MH0/cm	Field		*		*	387		/	

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000)	0000-0000)	8004-4800)	\	$\overline{}$		
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	6	T. BLANK	7	360			\Box
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*	319.17			T
N238	Dissolved Oxygen	Т	mg/L	Field		*		*	1.95			
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*	235			$oxed{igwedge}$
s0296	рН	т	Units	Field		*		*	6.48			
NS215	Eh	т	mV	Field		*		*	404			
s0907	Temperature	Т	°C	Field		*		*	14.17		\ /	
7429-90-5	Aluminum	Т	mg/L	6020		*		*	0.422		<u> </u>	
7440-36-0	Antimony	T	mg/L	6020		*		*	<0.005		\bigcup	
7440-38-2	Arsenic	Т	mg/L	7060		*		*	0.00133		<u> </u>	
7440-39-3	Barium	T	mg/L	6020		*		*	0.155			
7440-41-7	Beryllium	T	mg/L	6020		*		*	<0.001			
7440-42-8	Boron	T	mg/L	6010		*		*	<0.2	В		
7440-43-9	Cadmium	T	mg/L	6020		*		*	<0.001	В		
7440-70-2	Calcium	т	mg/L	6010		*		*	22.5			
7440-47-3	Chromium	T	mg/L	6020		*		*	<0.01			\
7440-48-4	Cobalt	Т	mg/L	6020		*		*	0.00637			
7440-50-8	Copper	Т	mg/L	6020		*		*	<0.02			
7439-89-6	Iron	T	mg/L	6010		*		*	1.89			
7439-92-1	Lead	Т	mg/L	6020		*		*	<0.0013	В		
7439-95-4	Magnesium	Т	mg/L	6010		*		*	9.5			
7439-96-5	Manganese	Т	mg/L	6020		*		*	0.076			\
7439-97-6	Mercury	Т	mg/L	7470		*		*	<0.0002			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None For Official Use Only

AKGWA NUMBER	WA NUMBER ¹ , Facility Well/Spring Number					0	0000-000	00	8004-480	00	1
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	6	T. BLAN	< 7	360		/
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED F VALUE L OR 3 PQL6 6
7439-98-7	Molybdenum	т	mg/L	6020		*		*	<0.001	В	
7440-02-0	Nickel	Т	mg/L	6020		*		*	<0.005	В	
7440-09-7	Potassium	Т	mg/L	6010		*		*	1.05		/
7440-16-6	Rhodium	Т	mg/L	6020		*		*	<0.005		\ /
7782-49-2	Selenium	Т	mg/L	6020		*		*	<0.005		\ /
7440-22-4	Silver	Т	mg/L	6020		*		*	<0.001		\ /
7440-23-5	Sodium	Т	mg/L	6010		*		*	50.4		\
7440-25-7	Tantalum	Т	mg/L	6020		*		*	<0.005		\/
7440-28-0	Thallium	Т	mg/L	6020		*		*	<0.002		<u> </u>
7440-61-1	Uranium	Т	mg/L	6020		*		*	<0.001		
7440-62-2	Vanadium	Т	mg/L	6020		*		*	<0.02		
7440-66-6	Zinc	Т	mg/L	6020		*		*	<0.02		/ \
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	*J	<0.01		<0.01	*J	/ /
67-64-1	Acetone	Т	mg/L	8260	<0.01	*J	<0.01		<0.01	*J	
107-02-8	Acrolein	Т	mg/L	8260	<0.01	J	<0.01		<0.01	J	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01	*J	<0.01		<0.01	*J	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		/ \
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		/ \
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005	J	<0.005		<u> </u>
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		V

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000		0000-0000)	8004-48	00				
Facility's Loca	al Well or Spring Number (e.g., 1	1W-1	L, MW-2, et	c.)	T. BLANK 6	6	T. BLANK	7	360			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L Z G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005	J	<0.005			
75-25-2	Tribromomethane	T	mg/L	8260	<0.005	*J	<0.005	J	<0.005	*J		
74-83-9	Methyl bromide	T	mg/L	8260	<0.005		<0.005	J	<0.005			
78-93-3	Methyl ethyl ketone	T	mg/L	8260	<0.01		<0.01		<0.01			
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005	7	<0.005		\ /	
75-00-3	Chloroethane	T	mg/L	8260	<0.005		<0.005	*	<0.005		\ /	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		\bigcup	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005	*	<0.005		L X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005	J	<0.005			
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001	J	<0.001			
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005	*	<0.005		<0.005	*		
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.005		<0.005		<0.005			
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001	J	<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005			
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002	*	<0.002	*	<0.002	*		
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	T	mg/L	8260	<0.001		<0.001		<0.001			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-000	0	0000-000	0	8004-48	00	\			
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	T. BLANK	6	T. BLANK	7	360			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.005		<0.005		<0.005			
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01		<0.01		<0.01			
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01		<0.01			
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005	*	<0.005		<0.005	*		
56-23-5	Carbon Tetrachloride	T	mg/L	8260	<0.001		<0.001		<0.001		\ /	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005	*	<0.005		<0.005	*	\ /	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		\	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002	J	<0.0002	*	\/	
78-87-5	Propane, 1,2-Dichloro-	T	mg/L	8260	<0.005		<0.005		<0.005		X	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.005		<0.005		<0.005		/\	
10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.005	*	<0.005	J	<0.005	*		
156-60-5	trans-1,2-Dichloroethene	T	mg/L	8260	<0.001	*J	<0.001		<0.001	*J		
75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.005		<0.005		<0.005		/	
96-18-4	1,2,3-Trichloropropane	T	mg/L	8260	<0.005		<0.005		<0.005			lacksquare
95-50-1	Benzene, 1,2-Dichloro-	T	mg/L	8260	<0.005		<0.005		<0.005			$ldsymbol{ld}}}}}}}$
106-46-7	Benzene, 1,4-Dichloro-	T	mg/L	8260	<0.005		<0.005		<0.005			\Box
1336-36-3	PCB,Total	Т	ug/L	8082		*		*	<0.18			\Box
12674-11-2	PCB-1016	Т	ug/L	8082		*		*	<0.17			
11104-28-2	PCB-1221	Т	ug/L	8082		*		*	<0.18			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.14			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.1			\prod
12672-29-6	PCB-1248	Т	ug/L	8082		*		*	<0.12			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00045

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-000)	0000-0000		8004-480	0		$\overline{}$		
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK	6	T. BLANK 7	,	360			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*	<0.07			\prod
11096-82-5	PCB-1260	Т	ug/L	8082		*		*	<0.05			1/
11100-14-4	PCB-1268	Т	ug/L	8082		*		*	<0.09			T
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*	1.26	*		
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*	7.21	*	\ /	
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*	\ /	
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*		*	-0.0677	*	\/	
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*		*	0.161	*	Į V	
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*		*	3.61	*	\ \	
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*		*	0.0494	*	/\	
10028-17-8	Tritium	Т	pCi/L	704R6		*		*	-48.8	*	/ \	
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*	<25		/ /	
57-12-5	Cyanide	Т	mg/L	9010		*		*	<0.04			
20461-54-5	Iodide	Т	mg/L	345.1		*		*	<2			\setminus
s0268	Total Organic Carbon	Т	mg/L	9060		*		*	1			\prod
s0586	Total Organic Halides	Т	mg/L	9020		*		*	0.007	В		
											1	
											1/	
											/	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4798 MW357	MW357UG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,1-Dichloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,1,2,2-Tetrachloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,4-Dichlorobenzene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.209. Rad error is 0.203.
		Gross beta		TPU is 3.51. Rad error is 3.03.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.371. Rad error is 0.119.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0253. Rad error is 0.0177.
		Technetium-99		TPU is 13.2. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.899. Rad error is 0.018.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 551. Rad error is 550.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4799 MW358	MW358UG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,1-Dichloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,1,2,2-Tetrachloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,4-Dichlorobenzene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.404. Rad error is 0.392.
		Gross beta		TPU is 3.89. Rad error is 3.32.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.374. Rad error is 0.139.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.06. Rad error is 0.0434.
		Technetium-99		TPU is 14.1. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.897. Rad error is 0.0316.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 615. Rad error is 615.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	•	Bromide	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sampl was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sampl was collected.
		рН		During sampling, the well went dry; therefore, no sampl was collected.
		Eh		During sampling, the well went dry; therefore, no sampl was collected.
		Temperature		During sampling, the well went dry; therefore, no sampl was collected.
		Aluminum		During sampling, the well went dry; therefore, no sampl was collected.
		Antimony		During sampling, the well went dry; therefore, no sampl was collected.
		Arsenic		During sampling, the well went dry; therefore, no sampl was collected.
		Barium		During sampling, the well went dry; therefore, no sampl was collected.
		Beryllium		During sampling, the well went dry; therefore, no sampl was collected.
		Boron		During sampling, the well went dry; therefore, no sampl was collected.
		Cadmium		During sampling, the well went dry; therefore, no sampl was collected.
		Calcium		During sampling, the well went dry; therefore, no sampl was collected.
		Chromium		During sampling, the well went dry; therefore, no sampl was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0981 MW359	•	Magnesium	V	During sampling, the well went dry; therefore, no sampl was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no samp was collected.
		Nickel		During sampling, the well went dry; therefore, no samp was collected.
		Potassium		During sampling, the well went dry; therefore, no samp was collected.
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.
		Selenium		During sampling, the well went dry; therefore, no samp was collected.
		Silver		During sampling, the well went dry; therefore, no samp was collected.
		Sodium		During sampling, the well went dry; therefore, no samp was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359		Tribromomethane	3	During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no samplwas collected.
		2-Hexanone		During sampling, the well went dry; therefore, no samplwas collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW359	·	Dichloromethane	.,	During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sampl was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0981 MW359	·	Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.
3004-4800 MW360	MW360UG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.92. Rad error is 1.9.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.49. Rad error is 0.456.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.367. Rad error is 0.0674.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0478. Rad error is 0.0333.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.897. Rad error is 0.0633.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 548. Rad error is 548.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4795 MW361	MW361UG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,1-Dichloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,1,2,2-Tetrachloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,4-Dichlorobenzene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha		TPU is 2.94. Rad error is 2.72.
		Gross beta		TPU is 3.96. Rad error is 3.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.368. Rad error is 0.122.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0454. Rad error is 0.0327.
		Technetium-99		TPU is 14.3. Rad error is 14.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.899. Rad error is 0.0817.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 564. Rad error is 563.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0986 MW362	MW362UG2-13	Total Dissolved Solids		During sampling the well became partially dry, this analys was not collected.
		Aluminum		During sampling the well became partially dry, this analys was not collected.
		Antimony		During sampling the well became partially dry, this analys was not collected.
		Arsenic		During sampling the well became partially dry, this analyswas not collected.
		Barium		During sampling the well became partially dry, this analyswas not collected.
		Beryllium		During sampling the well became partially dry, this analyswas not collected.
		Boron		During sampling the well became partially dry, this analyswas not collected.
		Cadmium		During sampling the well became partially dry, this analyswas not collected.
		Calcium		During sampling the well became partially dry, this analyswas not collected.
		Chromium		During sampling the well became partially dry, this analyswas not collected.
		Cobalt		During sampling the well became partially dry, this analy was not collected.
		Copper		During sampling the well became partially dry, this analy was not collected.
		Iron		During sampling the well became partially dry, this analy was not collected.
		Lead		During sampling the well became partially dry, this analy was not collected.
		Magnesium		During sampling the well became partially dry, this analy was not collected.
		Manganese		During sampling the well became partially dry, this analy was not collected.
		Mercury		During sampling the well became partially dry, this analy was not collected.
		Molybdenum		During sampling the well became partially dry, this analy was not collected.
		Nickel		During sampling the well became partially dry, this analy was not collected.
		Potassium		During sampling the well became partially dry, this analy was not collected.
		Rhodium		During sampling the well became partially dry, this analywas not collected.
		Selenium		During sampling the well became partially dry, this analywas not collected.
		Silver		During sampling the well became partially dry, this analyswas not collected.
		Sodium		During sampling the well became partially dry, this analyswas not collected.
		Tantalum		During sampling the well became partially dry, this analywas not collected.
		Thallium		During sampling the well became partially dry, this analy was not collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0986 MW362	MW362UG2-13	Uranium		During sampling the well became partially dry, this analys was not collected.
		Vanadium		During sampling the well became partially dry, this analys was not collected.
		Zinc		During sampling the well became partially dry, this analys was not collected.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		1,1-Dichloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		1,1,2,2-Tetrachloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		1,4-Dichlorobenzene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		PCB, Total	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB-1016	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB-1221	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1232	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1242	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1248	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1254	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1260	Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB-1268	Χ	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha		During sampling the well became partially dry, this analyswas not collected.
		Gross beta		During sampling the well became partially dry, this analyswas not collected.
		lodine-131		During sampling the well became partially dry, this analyswas not collected.
		Radium-226		During sampling the well became partially dry, this analyswas not collected.
		Strontium-90		During sampling the well became partially dry, this analyswas not collected.
		Technetium-99		During sampling the well became partially dry, this analyswas not collected.
		Thorium-230		During sampling the well became partially dry, this analyswas not collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0986 MW362	MW362UG2-13	Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 544. Rad error is 544.
3004-4796 MW363	MW363UG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,1-Dichloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,1,2,2-Tetrachloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,4-Dichlorobenzene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0632. Rad error is 0.0618.
		Gross beta		TPU is 1.5. Rad error is 1.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.431. Rad error is 0.253.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.136. Rad error is 0.0912.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.899. Rad error is 0.0791.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 561. Rad error is 561.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4797 MW364	MW364UG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,1-Dichloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,1,2,2-Tetrachloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,4-Dichlorobenzene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.766. Rad error is 0.731.
		Gross beta		TPU is 4.39. Rad error is 3.68.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.393. Rad error is 0.149.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0669. Rad error is 0.0463.
		Technetium-99		TPU is 15. Rad error is 15.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.897. Rad error is 0.0625.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 551. Rad error is 551.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	·	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sampling was collected.
		Barium		During sampling, the well went dry; therefore, no sampl was collected.
		Beryllium		During sampling, the well went dry; therefore, no sampl was collected.
		Boron		During sampling, the well went dry; therefore, no sampl was collected.
		Cadmium		During sampling, the well went dry; therefore, no samplwas collected.
		Calcium		During sampling, the well went dry; therefore, no sampl was collected.
		Chromium		During sampling, the well went dry; therefore, no sampl was collected.
		Cobalt		During sampling, the well went dry; therefore, no sampl was collected.
		Copper		During sampling, the well went dry; therefore, no sampling was collected.
		Iron		During sampling, the well went dry; therefore, no sampl was collected.
		Lead		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0984 MW365	•	Magnesium	<u> </u>	During sampling, the well went dry; therefore, no sampl was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no samp was collected.
		Nickel		During sampling, the well went dry; therefore, no samp was collected.
		Potassium		During sampling, the well went dry; therefore, no samp was collected.
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.
		Selenium		During sampling, the well went dry; therefore, no samp was collected.
		Silver		During sampling, the well went dry; therefore, no samp was collected.
		Sodium		During sampling, the well went dry; therefore, no samp was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samplwas collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	·	Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Point	Sample ID	Constituent	Flag	Description
004-0984 MW365		Thorium-230	3	During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sampl was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sampl was collected.
		Cyanide		During sampling, the well went dry; therefore, no sampl was collected.
		lodide		During sampling, the well went dry; therefore, no sampl was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sampl was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sampl was collected.
004-0982 MW366	MW366UG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.84. Rad error is 1.73.
		Gross beta		TPU is 4.38. Rad error is 3.68.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.359. Rad error is 0.0545.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0749. Rad error is 0.0516.
		Technetium-99		TPU is 15.9. Rad error is 15.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.898. Rad error is 0.0708.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 556. Rad error is 556.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4793 MW367	MW367UG2-13	Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.556. Rad error is 0.54.
		Gross beta		TPU is 1.02. Rad error is 0.933.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.412. Rad error is 0.212.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.000866. Rad error is 0.000614.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.896. Rad error is 0.0352.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 560. Rad error is 560.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	•	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well went dry; therefore, no sampl was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sampl was collected.
		Sulfate		During sampling, the well went dry; therefore, no sampl was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no samp was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sampl was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no samp was collected.
		рН		During sampling, the well went dry; therefore, no samp was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no samp was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no samp was collected.
		Cobalt		During sampling, the well went dry; therefore, no samp was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368		Magnesium	J	During sampling, the well went dry; therefore, no sampl was collected.
		Manganese		During sampling, the well went dry; therefore, no sampl was collected.
		Mercury		During sampling, the well went dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well went dry; therefore, no samp was collected.
		Nickel		During sampling, the well went dry; therefore, no samp was collected.
		Potassium		During sampling, the well went dry; therefore, no samp was collected.
		Rhodium		During sampling, the well went dry; therefore, no samp was collected.
		Selenium		During sampling, the well went dry; therefore, no samp was collected.
		Silver		During sampling, the well went dry; therefore, no samp was collected.
		Sodium		During sampling, the well went dry; therefore, no samp was collected.
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.
		Thallium		During sampling, the well went dry; therefore, no samp was collected.
		Uranium		During sampling, the well went dry; therefore, no samp was collected.
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.
		Zinc		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.
		Acetone		During sampling, the well went dry; therefore, no samp was collected.
		Acrolein		During sampling, the well went dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.
		Benzene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.
		Styrene		During sampling, the well went dry; therefore, no samp was collected.
		Toluene		During sampling, the well went dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	·	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samplwas collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368		Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368		Thorium-230		During sampling, the well went dry; therefore, no sampl was collected.
		Tritium		During sampling, the well went dry; therefore, no sampl was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sampl was collected.
		Cyanide		During sampling, the well went dry; therefore, no sampl was collected.
		lodide		During sampling, the well went dry; therefore, no sampl was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no samp was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sampl was collected.
004-4820 MW369	MW369UG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.798. Rad error is 0.769.
		Gross beta		TPU is 2.4. Rad error is 2.14.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.38. Rad error is 0.154.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0813. Rad error is 0.0559.
		Technetium-99		TPU is 13.5. Rad error is 13.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.898. Rad error is 0.0661.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 559. Rad error is 559.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4818 MW370	MW370UG2-13	Chloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Methyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,2-Dibromo-3-chloropropane	Χ	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.974. Rad error is 0.939.
		Gross beta		TPU is 1.91. Rad error is 1.72.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.373. Rad error is 0.137.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.041. Rad error is 0.0286.
		Technetium-99		TPU is 12.4. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.896. Rad error is 0.0483.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 548. Rad error is 548.
		Total Organic Carbon	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
3004-4819 MW371	MW371UG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.33. Rad error is 1.29.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.752. Rad error is 0.697.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.415. Rad error is 0.224.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0269. Rad error is 0.0189.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.897. Rad error is 0.0634.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 549. Rad error is 549.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4808 MW372	MW372UG2-13	Vinyl acetate	Y	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha		TPU is 3.12. Rad error is 2.83.
		Gross beta		TPU is 9.24. Rad error is 6.79.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.398. Rad error is 0.194.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0448. Rad error is 0.0322.
		Technetium-99		TPU is 13.5. Rad error is 13.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.897. Rad error is 0.0619.
		Tritium	UX	Indicates analyte/nuclide was analyzed for, but not detected. Other specific flags and footnotes may be required to properly define the results. TPU is 59.3. Ra error is 59.3.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4792 MW373	MW373UG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.1. Rad error is 0.972.
		Gross beta		TPU is 7.75. Rad error is 4.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.491. Rad error is 0.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.00959. Rad error is 0.00682.
		Technetium-99		TPU is 16.2. Rad error is 16.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.896. Rad error is 0.0487.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 547. Rad error is 547.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0990 MW374	MW374UG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.46. Rad error is 1.42.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.214. Rad error is 0.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.367. Rad error is 0.117.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.000884. Rad error is 0.000627.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.1. Rad error is 10.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.898. Rad error is 0.0745.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 555. Rad error is 554.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0985 MW375	MW375UG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.113. Rad error is 0.111.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.105. Rad error is 0.0987.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.377. Rad error is 0.146.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0856. Rad error is 0.0588.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.68. Rad error is 9.68.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.897. Rad error is 0.052.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 569. Rad error is 568.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Bromide	<u> </u>	During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample was collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Magnesium	· ·	During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.
		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Tribromomethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sampl was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no samp was collected.
		Chloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Chloroform		During sampling, the well went dry; therefore, no samp was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no samp was collected.
		Iodomethane		During sampling, the well went dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Dichloromethane		During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Bromide	<u> </u>	During sampling, the well went dry; therefore, no sampl was collected.
		Chloride		During sampling, the well went dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no samp was collected.
		Sulfate		During sampling, the well went dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no samp was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no samp was collected.
		рН		During sampling, the well went dry; therefore, no samp was collected.
		Eh		During sampling, the well went dry; therefore, no samp was collected.
		Temperature		During sampling, the well went dry; therefore, no samp was collected.
		Aluminum		During sampling, the well went dry; therefore, no samp was collected.
		Antimony		During sampling, the well went dry; therefore, no samp was collected.
		Arsenic		During sampling, the well went dry; therefore, no samp was collected.
		Barium		During sampling, the well went dry; therefore, no samp was collected.
		Beryllium		During sampling, the well went dry; therefore, no samp was collected.
		Boron		During sampling, the well went dry; therefore, no samp was collected.
		Cadmium		During sampling, the well went dry; therefore, no samp was collected.
		Calcium		During sampling, the well went dry; therefore, no samp was collected.
		Chromium		During sampling, the well went dry; therefore, no samp was collected.
		Cobalt		During sampling, the well went dry; therefore, no samp was collected.
		Copper		During sampling, the well went dry; therefore, no samp was collected.
		Iron		During sampling, the well went dry; therefore, no samp was collected.
		Lead		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description					
004-0989 MW377	•	Magnesium	U	During sampling, the well went dry; therefore, no sample was collected.					
		Manganese		During sampling, the well went dry; therefore, no sample was collected.					
		Mercury		During sampling, the well went dry; therefore, no sample was collected.					
		Molybdenum		During sampling, the well went dry; therefore, no sampl was collected.					
		Nickel		During sampling, the well went dry; therefore, no sampl was collected.					
		Potassium		During sampling, the well went dry; therefore, no sampl was collected.					
		Rhodium		During sampling, the well went dry; therefore, no sampl was collected.					
		Selenium		During sampling, the well went dry; therefore, no sampl was collected.					
		Silver		During sampling, the well went dry; therefore, no sampl was collected.					
		Sodium		During sampling, the well went dry; therefore, no sampl was collected.					
		Tantalum		During sampling, the well went dry; therefore, no samp was collected.					
		Thallium		During sampling, the well went dry; therefore, no samp was collected.					
		Uranium		During sampling, the well went dry; therefore, no samp was collected.					
		Vanadium		During sampling, the well went dry; therefore, no samp was collected.					
		Zinc		During sampling, the well went dry; therefore, no samp was collected.					
		Vinyl acetate		During sampling, the well went dry; therefore, no samp was collected.					
		Acetone		During sampling, the well went dry; therefore, no samp was collected.					
							Acrolein		During sampling, the well went dry; therefore, no samp was collected.
						Acrylonitrile		During sampling, the well went dry; therefore, no samp was collected.	
		Benzene		During sampling, the well went dry; therefore, no samp was collected.					
		Chlorobenzene		During sampling, the well went dry; therefore, no samp was collected.					
		Xylenes		During sampling, the well went dry; therefore, no samp was collected.					
		Styrene		During sampling, the well went dry; therefore, no samp was collected.					
		Toluene		During sampling, the well went dry; therefore, no samp was collected.					
		Chlorobromomethane		During sampling, the well went dry; therefore, no samp was collected.					
		Bromodichloromethane		During sampling, the well went dry; therefore, no samp was collected.					

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

 $Finds/Unit: \underline{KY8-890-008-982 \ / \ 1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	·	Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sampling was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no samplwas collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sampling was collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sampling was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Dichloromethane	·	During sampling, the well went dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well went dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well went dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well went dry; therefore, no samp was collected.
		Gross beta		During sampling, the well went dry; therefore, no samp was collected.
		lodine-131		During sampling, the well went dry; therefore, no samp was collected.
		Radium-226		During sampling, the well went dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well went dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well went dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		Iodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG2-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		1,1-Dichloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		1,1,2,2-Tetrachloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		1,2-Dibromo-3-chloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		1,4-Dichlorobenzene	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0423. Rad error is 0.0415.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0213. Rad error is 0.0201.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.388. Rad error is 0.115.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0183. Rad error is 0.0131.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.898. Rad error is 0.0691.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 568. Rad error is 567.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1UG2-13	Total Organic Halides		Analysis of constituent not required and not performed
	FB1UG2-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		1,1-Dichloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		1,1,2,2-Tetrachloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		1,4-Dichlorobenzene	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.277. Rad error is 0.27.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.216. Rad error is 0.204.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.365. Rad error is 0.111.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.109. Rad error is 0.0744.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.1. Rad error is 10.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.901. Rad error is 0.0513.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 565. Rad error is 564.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG2-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG2-13	Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		1,1-Dichloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		1,1,2,2-Tetrachloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		1,2-Dibromo-3-chloropropane	Χ	Other specific flags and footnotes may be required to properly define the results.
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		1,4-Dichlorobenzene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG2-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG2-13	Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		1,1-Dichloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		1,1,2,2-Tetrachloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		1,4-Dichlorobenzene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG2-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG2-13	Zinc	<u> </u>	Analysis of constituent not required and not performed.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		1,1-Dichloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		1,1,2,2-Tetrachloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		1,4-Dichlorobenzene	Υ	MS,MSD recovery and/or RPD failed acceptance criter
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG2-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG2-13	Zinc	<u> </u>	Analysis of constituent not required and not performed
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha		Analysis of constituent not required and not performe
		Gross beta		Analysis of constituent not required and not performe
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		Analysis of constituent not required and not performe
		Strontium-90		Analysis of constituent not required and not performe
		Technetium-99		Analysis of constituent not required and not performe
		Thorium-230		Analysis of constituent not required and not performe
		Tritium		Analysis of constituent not required and not performe
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		lodide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5UG2-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рH		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5UG2-13	Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6UG2-13	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe
		Vanadium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6UG2-13	Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB7UG2-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB7UG2-13	Zinc		Analysis of constituent not required and not performed.
		Chloroethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		Methyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4800 MW360	MW360DUG2-13	Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acetone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tribromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,2-Dibromoethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Vinyl chloride	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dibromochloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		1,2-Dibromo-3-chloropropane	Χ	Other specific flags and footnotes may be required to properly define the results.
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		trans-1,2-Dichloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.722. Rad error is 0.7.
		Gross beta		TPU is 1.19. Rad error is 1.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.356. Rad error is 0.0782.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0505. Rad error is 0.0351.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.898. Rad error is 0.0698.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 574. Rad error is 574.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Permit Number: 073-00045

Finds/Unit:	
Lab ID: None	
For Official Use Only	

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2013 groundwater data collected from the C-746-U Contained Landfill monitoring wells (MWs) were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data included two background wells for comparison with at least three test wells or sidegradient wells (Exhibit 1). The first quarter 2013 data used to conduct the statistical analyses was collected in January 2013. The statistical analyses for this report utilize data from the first eight quarters that were collected for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals with established maximum contaminant levels (MCLs), no statistical analysis was performed. Parameters that have MCLs can be found in 401 KAR 47:030, Section 6. For parameters with no established MCL, the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. Results of the one-sided tolerance interval statistical test conclude whether the data show a statistically significant increase of concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the data for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant increase in concentration compared to the background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The tolerance limit (TL) was calculated for the background data.
 - For each parameter, the background data were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be potentially normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well has increased concentration with respect to background data.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit 2 presents the parameters from the available data set and the statistical test performed using the one-sided tolerance interval.

Excluding parameters that have an MCL, Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, first quarter 2013. The observations that are listed are not background data. Background data are presented on pages D-17 through D-76. The sampling dates associated with background data are listed next to the result on pages D-17 through D-76. When field duplicate data are available, the higher of the two readings is retained for further evaluation.

lower $TL = X - (K \times S)$

-

 $^{^1}$ For pH, two-sided TL (upper and lower) were calculated with an adjusted K factor using the following equations: upper TL = X + (K x S) $\,$

Exhibit 1. Station Identification for Monitoring Wells Analyzed

Station	Type	Aquifer
MW357	TW	URGA
MW358	TW	LRGA
MW359*	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362**	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365*	TW	UCRS
MW366	SG	URGA
MW367	SG	LRGA
MW368*	SG	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374	BG	UCRS
MW375	SG	UCRS
MW376*	SG	UCRS
MW377*	SG	UCRS

BG: upgradient or background wells TW: downgradient or test wells SG: sidegradient wells * Well was dry this quarter. **Well was partially dry this quarter.

Exhibit 2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test

Parameters Aluminum Boron Calcium Chloride Cobalt Conductivity Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium Sulfate Technetium-99 Total Organic Carbon (TOC) Total Organic Halides (TOX) Uranium

^{*} For pH, the test well results were compared to both an upper and lower TL to determine if statistically significant deviations exist in concentrations with respect to upgradient well data.

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	0	4	0	no
1,1,2,2-Tetrachloroethane	4	0	4	0	no
1,1,2-Trichloroethane	4	0	4	0	no
1,1-Dichloroethane	4	0	4	0	no
1,2,3-Trichloropropane	4	0	4	0	no
1,2-Dibromo-3-chloropropane	4	0	4	0	no
1,2-Dibromoethane	4	0	4	0	no
1,2-Dichlorobenzene	4	0	4	0	no
1,2-Dichloropropane	4	0	4	0	no
2-Butanone	4	0	4	0	no
2-Hexanone	4	0	4	0	no
4-Methyl-2-pentanone	4	0	4	0	no
Acetone	4	0	4	0	no
Acrolein	4	0	4	0	no
Acrylonitrile	4	0	4	0	no
Aluminum	4	1	2	1	YES
Antimony	4	1	3	0	no
Beryllium	4	1	3	0	no
Boron	4	1	3	0	no
Bromide	4	0	4	0	no
Bromochloromethane	4	0	4	0	no
Bromodichloromethane	4	0	4	0	no
Bromoform	4	0	4	0	no
Bromomethane	4	0	4	0	no
Calcium	4	1	0	3	YES
Carbon disulfide	4	0	4	0	no
Chemical Oxygen Demand (COD)	4	0	4	0	no
Chloride	4	0	0	4	YES
Chlorobenzene	4	0	4	0	no
Chloroethane	4	0	4	0	no
Chloroform	4	0	4	0	no
Chloromethane	4	0	4	0	no
cis-1,2-Dichloroethene	4	0	4	0	no
cis-1,3-Dichloropropene	4	0	4	0	no
Cobalt	4	1	2	1	YES
Conductivity	4	0	0	4	YES
Copper	4	1	3	0	no
Cyanide	4	0	4	0	no
Dibromochloromethane	4	0	4	0	no
Dibromomethane	4	0	4	0	
Dimethylbenzene, Total	4	0	4	0	no no
Dissolved Oxygen	4	0	0	4	YES
Dissolved Oxygen Dissolved Solids	4	1	0	3	YES
Ethylbenzene	4	0	4	0	
Iodide	4	0	4	0	no
Iodomethane		0			no
	4 4		4	3	no VEC
Iron		1	0		YES
Magnesium	4	1	0	3 2	YES
Manganese Mathylana ahlarida	4	1	1		YES
Methylene chloride	4	0	4	0	no

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Molybdenum	4	1	2	1	YES
Nickel	4	1	2	1	YES
Oxidation-Reduction Potential	4	0	0	4	YES
PCB, Total	4	0	4	0	no
PCB-1016	4	0	4	0	no
PCB-1221	4	0	4	0	no
PCB-1232	4	0	4	0	no
PCB-1242	4	0	4	0	no
PCB-1248	4	0	4	0	no
PCB-1254	4	0	4	0	no
PCB-1260	4	0	4	0	no
PCB-1268	4	0	4	0	no
pH	4	0	0	4	YES
Potassium	4	1	0	3	YES
Radium-226	4	1	3	0	no
Rhodium	4	1	3	0	no
Sodium	4	1	0	3	YES
Styrene	4	0	4	0	no
Sulfate	4	0	0	4	YES
Tantalum	4	1	3	0	no
Technetium-99	4	1	3	0	no
Tetrachloroethene	4	0	4	0	no
Thallium	4	1	3	0	no
Thorium-230	4	1	3	0	no
Toluene	4	0	4	0	no
Total Organic Carbon (TOC)	4	0	0	4	YES
Total Organic Halides (TOX)	4	0	0	4	YES
trans-1,2-Dichloroethene	4	0	4	0	no
trans-1,3-Dichloropropene	4	0	4	0	no
Trans-1,4-Dichloro-2-butene	4	0	4	0	no
Trichlorofluoromethane	4	0	4	0	no
Uranium	4	1	1	2	YES
Vanadium	4	1	3	0	no
Vinyl acetate	4	0	4	0	no
Zinc	4	1	3	0	no

Bold denotes parameters with at least one uncensored observation.

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	no
1,1,2,2-Tetrachloroethane	6	0	6	0	no
1,1,2-Trichloroethane	6	0	6	0	no
1,1-Dichloroethane	6	0	6	0	no
1,2,3-Trichloropropane	6	0	6	0	no
1,2-Dibromo-3-chloropropane	6	0	6	0	no
1,2-Dibromoethane	6	0	6	0	no
1,2-Dichlorobenzene	6	0	6	0	no
1,2-Dichloropropane	6	0	6	0	no
2-Butanone	6	0	6	0	no
2-Hexanone	6	0	6	0	no
4-Methyl-2-pentanone	6	0	6	0	no
Acetone	6	0	6	0	no
Acrolein	6	0	6	0	no
Acrylonitrile	6	0	6	0	no
Aluminum	6	0	4	2	YES
Antimony	6	0	6	0	no
Beryllium	6	0	6	0	no
Boron	6	0	4	2	YES
Bromide	6	0	6	0	no
Bromochloromethane	6	0	6	0	no
Bromodichloromethane	6	0	6	0	no
Bromoform	6	0	6	0	no
Bromomethane	6	0	6	0	no
Calcium	6	0	0	6	YES
Carbon disulfide	6	0	6	0	no
Chemical Oxygen Demand (COD)	6	0	6	0	no
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	no
Chloroethane	6	0	6	0	no
Chloroform	6	0	6	0	no
Chloromethane	6	0	6	0	no
cis-1,2-Dichloroethene	6	0	6	0	no
cis-1,3-Dichloropropene	6	0	6	0	no
Cobalt	6	0	3	3	YES
Conductivity	6	0	0	6	YES
Copper	6	0	6	0	no
Cyanide	6	0	6	0	no
Dibromochloromethane	6	0	6	0	no
Dibromomethane	6	0	6	0	no
Dimethylbenzene, Total	6	0	6	0	no
Dissolved Oxygen	6	0	0	6	YES
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	no
Iodide	6	0	6	0	no
Iodomethane	6	0	6	0	no
Iron	6	0	1	5	YES
Magnesium	6	0	0	6	YES
Manganese	6	0	0	6	YES
Methylene chloride	6	0	6	0	no

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Molybdenum	6	0	6	0	no
Nickel	6	0	5	1	YES
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	6	0	no
PCB-1016	6	0	6	0	no
PCB-1221	6	0	6	0	no
PCB-1232	6	0	6	0	no
PCB-1242	6	0	6	0	no
PCB-1248	6	0	6	0	no
PCB-1254	6	0	6	0	no
PCB-1260	6	0	6	0	no
PCB-1268	6	0	6	0	no
pН	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	6	0	no
Rhodium	6	0	6	0	no
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	no
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	no
Technetium-99	6	0	2	4	YES
Tetrachloroethene	6	0	6	0	no
Thallium	6	0	6	0	no
Thorium-230	6	0	6	0	no
Toluene	6	0	6	0	no
Total Organic Carbon (TOC)	6	0	2	4	YES
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	no
trans-1,3-Dichloropropene	6	0	6	0	no
Trans-1,4-Dichloro-2-butene	6	0	6	0	no
Trichlorofluoromethane	6	0	6	0	no
Uranium	6	0	6	0	no
Vanadium	6	0	6	0	no
Vinyl acetate	6	0	6	0	no
Zinc	6	0	6	0	no

Bold denotes parameters with at least one uncensored observation.

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA

1,1,1,2-Tetrachloroethane	no no
1,1,2-Trichloroethane	no
1,1-Dichloroethane 6 0 6 0 1,2,3-Trichloroproppane 6 0 6 0 1,2-Dibromo-3-chloropropane 6 0 6 0 1,2-Dibromoethane 6 0 6 0 1,2-Dichloropropane 6 0 6 0 2-Butanone 6 0 6 0 2-Hexanone 6 0 6 0 2-Hexanone 6 0 6 0 4-Methyl-2-pentanone 6 0 6 0 4-Methyl-2-pentanone 6 0 6 0 Acrolein 6 0 6 0 Aluminum 6 0 6 0	
1,2,3-Trichloropropane 6 0 6 0 1,2-Dibromo-3-chloropropane 6 0 6 0 1,2-Dibromoethane 6 0 6 0 1,2-Dichlorobenzene 6 0 6 0 1,2-Dichloropropane 6 0 6 0 2-Butanone 6 0 6 0 4-Methyl-2-pentanone 6 0 6 0 4-Methyl-2-pentanone 6 0 6 0 Acetone 6 0 6 0 Acrolein 6 0 6 0 Acrylonitrile 6 0 6 0 Aluminum 6 0 6 0	no
1,2-Dibromo-3-chloropropane 6 0 6 0 1,2-Dibromoethane 6 0 6 0 1,2-Dichlorobenzene 6 0 6 0 1,2-Dichloropropane 6 0 6 0 2-Butanone 6 0 6 0 2-Hexanone 6 0 6 0 4-Methyl-2-pentanone 6 0 6 0 Acetone 6 0 6 0 Acrolein 6 0 6 0 Aluminum 6 0 6 0 Aluminum	no
1,2-Diblomoethane 6 0 6 0 1,2-Dichlorobenzene 6 0 6 0 1,2-Dichloropropane 6 0 6 0 2-Butanone 6 0 6 0 2-Hexanone 6 0 6 0 4-Methyl-2-pentanone 6 0 6 0 Acrolein 6 0 6 0 Aluminum 6 0 6 0 Aluminum 6	no
1,2-Dichlorobenzene 6 0 6 0 1,2-Dichloropropane 6 0 6 0 2-Butanone 6 0 6 0 2-Hexanone 6 0 6 0 4-Methyl-2-pentanone 6 0 6 0 Acetone 6 0 6 0 Acrolein 6 0 6 0 Acrylonitrile 6 0 6 0 Aluminum 6 0 6 0 Aluminum 6 0 6 0 Antimony 6 0 6 0 Antimony 6 0 6 0 Beryllium 6 0 6 0 Bromide 6 0 6 0 Bromochloromethane 6 0 6 0 Bromoform 6 0 6 0 Bromoform 6	no
1,2-Dichloropropane 6 0 6 0 2-Hexanone 6 0 6 0 2-Hexanone 6 0 6 0 4-Methyl-2-pentanone 6 0 6 0 Acctone 6 0 6 0 Acrolein 6 0 6 0 Aluminum 6 0 6 0 Aluminum 6 0 6 0 Beryllium 6 0 6 0 Beryllium 6 0 6 0 Bromodeloromethane 6 0 6 0 Bromodichloromethane 6	no
2-Butanone 6 0 6 0 6 0 2-Hexanone 6 0 0 6 0 4-Methyl-2-pentanone 6 0 0 6 0 4-Methyl-2-pentanone 6 0 0 6 0 Acctone 6 0 0 6 0 Acrolein 6 0 6 0 6 0 Acrylonitrile 6 0 0 6 0 Aluminum 6 0 6 0 6 0 Antimony 6 0 6 0 6 0 Beryllium 6 0 6 0 6 0 Beryllium 6 0 6 0 6 0 Bromo 6 0 4 2 Bromide 6 0 6 0 6 0 Bromochloromethane 6 0 6 0 6 0 Bromochloromethane 6 0 6 0 6 0 Bromodichloromethane 6 0 6 0 6 0 Calcium 6 0 6 0 6 0 Chloride 6 0 6 0 6 0 Chlorobenzene 6 0 6 0 6 0 Chlorothane 6 0 6 0 6 0	no
2-Hexanone 6 0 6 0 4-Methyl-2-pentanone 6 0 6 0 Acetone 6 0 6 0 Acrolein 6 0 6 0 Acrylonitrile 6 0 6 0 Acrylonitrile 6 0 6 0 Aluminum 6 0 6 0 Aluminum 6 0 6 0 Antimony 6 0 6 0 Antimony 6 0 6 0 Beryllium 6 0 6 0 Beryllium 6 0 6 0 Bromide 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromodichloromethane 6 0 6 0 Calcium 6<	no
4-Methyl-2-pentanone 6 0 6 0 Acetone 6 0 6 0 Acrylein 6 0 6 0 Acrylonitrile 6 0 6 0 Aluminum 6 0 6 0 Aluminum 6 0 6 0 Antimony 6 0 6 0 Antimony 6 0 6 0 Beryllium 6 0 6 0 Bromide 6 0 6 0 Bromide 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromoform 6 0 6 0 Bromoform 6 0 6 0 Carbon disulfide 6 0 6 0 Carbon disulfide 6 <td>no</td>	no
Acetone 6 0 6 0 Acrolein 6 0 6 0 Acrylonitrile 6 0 6 0 Aluminum 6 0 6 0 Antimony 6 0 6 0 Beryllium 6 0 6 0 Beron 6 0 4 2 Bromide 6 0 6 0 Bromide 6 0 6 0 Bromochloromethane 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromoform 6 0 6 0 Bromoform 6 0 6 0 Bromoform 6 0 6 0 Carbon disulfide 6 0 6 0 Carbon disulfide 6 0 6 0 Chloride 6 0	no
Acrolein 6 0 6 0 Acrylonitrile 6 0 6 0 Aluminum 6 0 6 0 Antimony 6 0 6 0 Beryllium 6 0 6 0 Bromo 6 0 4 2 Bromide 6 0 6 0 Bromide 6 0 6 0 Bromochloromethane 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromoform 6 0 6 0 Calcium 6 0 6 0 Carbon disulfide 6 0 6 0 Chloride 6 0	no
Acrylonitrile 6 0 6 0 Aluminum 6 0 6 0 Antimony 6 0 6 0 Beryllium 6 0 6 0 Boron 6 0 6 0 Bromide 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromoform 6 0 6 0 Bromoform 6 0 6 0 Bromomethane 6 0 6 0 Carbon disulfide 6 0 6 0 Carbon disulfide 6 0 6 0 Chloride 6 0 6 0 Chloride 6 0 6 0 Chloropethane 6 0 6 0 Chloropethane 6 </td <td>no</td>	no
Aluminum 6 0 6 0 Antimony 6 0 6 0 Beryllium 6 0 6 0 Boron 6 0 4 2 Bromide 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromoform 6 0 6 0 Bromomethane 6 0 6 0 Bromomethane 6 0 6 0 Carbon disulfide 6 0 6 0 Carbon disulfide 6 0 6 0 Chloride 6 0 6 0 Chloride 6 0 6 0 Chloropatene 6 0 6 0 Chloropatene 6 0 6 0 Chloropatene 6 </td <td>no</td>	no
Aluminum 6 0 6 0 Antimony 6 0 6 0 Beryllium 6 0 6 0 Boron 6 0 4 2 Bromide 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromoform 6 0 6 0 Bromomethane 6 0 6 0 Bromomethane 6 0 6 0 Carbon disulfide 6 0 6 0 Carbon disulfide 6 0 6 0 Chloride 6 0 6 0 Chloride 6 0 6 0 Chloropatene 6 0 6 0 Chloropatene 6 0 6 0 Chloropatene 6 </td <td>no</td>	no
Beryllium 6 0 4 2 Boron 6 0 4 2 Bromide 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromoform 6 0 6 0 Bromomethane 6 0 6 0 Calcium 6 0 6 0 Carbon disulfide 6 0 6 0 Chemical Oxygen Demand (COD) 6 0 6 0 Chloride 6 0 6 0 Chlorobenzene 6 0 6 0 Chloroform 6 0 6 0 Chloroform	no
Beryllium 6 0 4 2 Boron 6 0 4 2 Bromide 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromoform 6 0 6 0 Bromomethane 6 0 6 0 Calcium 6 0 6 0 Carbon disulfide 6 0 6 0 Chemical Oxygen Demand (COD) 6 0 6 0 Chloride 6 0 6 0 Chlorobenzene 6 0 6 0 Chloroform 6 0 6 0 Chloroform	no
Boron 6 0 4 2 Bromide 6 0 6 0 Bromochloromethane 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromoform 6 0 6 0 Bromomethane 6 0 6 0 Bromoform 6 0 6 0 Calcium 6 0 6 0 Carbon disulfide 6 0 6 0 Carbon disulfide 6 0 6 0 Chemical Oxygen Demand (COD) 6 0 6 0 Chloride 6 0 6 0 Chlorobenzene 6 0 6 0 Chlorotethane 6 0 6 0 Chlorotethane 6 0 6 0 Chloromethane 6 0 6 0 Cis-1,2-	no
Bromide 6 0 6 0 Bromochloromethane 6 0 6 0 Bromodichloromethane 6 0 6 0 Bromoform 6 0 6 0 Bromomethane 6 0 6 0 Calcium 6 0 0 6 Carbon disulfide 6 0 6 0 Carbon disulfide 6 0 6 0 Chemical Oxygen Demand (COD) 6 0 6 0 Chloride 6 0 0 6 0 Chlorobenzene 6 0 6 0 0 6 Chloroethane 6 0 6 0	YES
Bromodichloromethane 6 0 6 0 Bromoform 6 0 6 0 Bromomethane 6 0 6 0 Calcium 6 0 0 6 Carbon disulfide 6 0 6 0 Chemical Oxygen Demand (COD) 6 0 6 0 Chloride 6 0 0 6 0 Chlorobenzene 6 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 <td< td=""><td>no</td></td<>	no
Bromodichloromethane 6 0 6 0 Bromoform 6 0 6 0 Bromomethane 6 0 6 0 Calcium 6 0 0 6 Carbon disulfide 6 0 6 0 Chemical Oxygen Demand (COD) 6 0 6 0 Chloride 6 0 0 6 0 Chlorobenzene 6 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 6 0 <td< td=""><td>no</td></td<>	no
Bromoform 6 0 6 0 Bromomethane 6 0 6 0 Calcium 6 0 0 6 Carbon disulfide 6 0 0 6 Carbon disulfide 6 0 6 0 Chemical Oxygen Demand (COD) 6 0 6 0 Chloride 6 0 0 6 0 Chlorobenzene 6 0 6 0 6 0 6 0 Chloroethane 6 0 6 0 6 0 0 6 0 Chloroform 6 0 6 0 0 6 0 0 6 0 Chloromethane 6 0 6 0 6 0 0 6 0 Cis-1,2-Dichloroethene 6 0 6 0 6 0 0 6 0 Cobalt<	no
Bromomethane 6 0 6 0 Calcium 6 0 0 6 Carbon disulfide 6 0 6 0 Chemical Oxygen Demand (COD) 6 0 6 0 Chloride 6 0 0 6 Chlorobenzene 6 0 6 0 Chloroethane 6 0 6 0 Chloroform 6 0 6 0 Chloromethane 6 0 6 0 Chloropethane 6 0 6 0 Cis-1,2-Dichloropethene 6 0 6 0 Cobalt 6 0 4 2 Conductivity 6 0 6 0 Cop	no
Calcium 6 0 6 Carbon disulfide 6 0 6 0 Chemical Oxygen Demand (COD) 6 0 6 0 Chloride 6 0 0 6 Chlorobenzene 6 0 6 0 Chloroethane 6 0 6 0 Chloroform 6 0 6 0 Chloromethane 6 0 6 0 Chloromethane 6 0 6 0 cis-1,2-Dichloroethene 6 0 6 0 cis-1,3-Dichloropropene 6 0 6 0 Cobalt 6 0 4 2 Conductivity 6 0 6 0 Copper 6 0 6 0 Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	no
Carbon disulfide 6 0 6 0 Chemical Oxygen Demand (COD) 6 0 6 0 Chloride 6 0 0 6 Chlorobenzene 6 0 6 0 Chloroethane 6 0 6 0 Chloroform 6 0 6 0 Chloromethane 6 0 6 0 Chloromethane 6 0 6 0 Cis-1,2-Dichloroethene 6 0 6 0 cis-1,3-Dichloropropene 6 0 6 0 Cobalt 6 0 4 2 Conductivity 6 0 6 0 Copper 6 0 6 0 Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	YES
Chemical Oxygen Demand (COD) 6 0 6 0 Chloride 6 0 6 0 6 Chlorobenzene 6 0 6 0 6 0 Chloropethane 6 0 6 0 0 6 0 Chloromethane 6 0 6 0 0 6 0 Cis-1,2-Dichloropropene 6 0 6 0 6 0 Cobalt 6 0 4 2 2 Conductivity 6 0 6 0 6 Copper 6 0 6 0 6 Cyanide 6 0 6	no
Chloride 6 0 0 6 Chlorobenzene 6 0 6 0 Chloroethane 6 0 6 0 Chloroform 6 0 6 0 Chloromethane 6 0 6 0 Chloromethane 6 0 6 0 Cis-1,2-Dichloroethene 6 0 6 0 cis-1,3-Dichloropropene 6 0 6 0 Cobalt 6 0 4 2 Conductivity 6 0 6 0 Copper 6 0 6 0 Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	no
Chlorobenzene 6 0 6 0 Chloroethane 6 0 6 0 Chloroform 6 0 6 0 Chloromethane 6 0 6 0 Cis-1,2-Dichloroethene 6 0 6 0 cis-1,3-Dichloropropene 6 0 6 0 Cobalt 6 0 4 2 Conductivity 6 0 6 0 Copper 6 0 6 0 Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	YES
Chloroethane 6 0 6 0 Chloroform 6 0 6 0 Chloromethane 6 0 6 0 cis-1,2-Dichloroethene 6 0 6 0 cis-1,3-Dichloropropene 6 0 6 0 Cobalt 6 0 4 2 Conductivity 6 0 6 0 Copper 6 0 6 0 Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	no
Chloroform 6 0 6 0 Chloromethane 6 0 6 0 cis-1,2-Dichloroethene 6 0 6 0 cis-1,3-Dichloropropene 6 0 6 0 Cobalt 6 0 4 2 Conductivity 6 0 0 6 Copper 6 0 6 0 Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	no
Chloromethane 6 0 6 0 cis-1,2-Dichloroethene 6 0 6 0 cis-1,3-Dichloropropene 6 0 6 0 Cobalt 6 0 4 2 Conductivity 6 0 0 6 Copper 6 0 6 0 Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	no
cis-1,2-Dichloroethene 6 0 6 0 cis-1,3-Dichloropropene 6 0 6 0 Cobalt 6 0 4 2 Conductivity 6 0 0 6 Copper 6 0 6 0 Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	no
cis-1,3-Dichloropropene 6 0 6 0 Cobalt 6 0 4 2 Conductivity 6 0 0 6 Copper 6 0 6 0 Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	no
Cobalt 6 0 4 2 Conductivity 6 0 0 6 Copper 6 0 6 0 Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	no
Conductivity 6 0 0 6 Copper 6 0 6 0 Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	YES
Copper 6 0 6 0 Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	YES
Cyanide 6 0 6 0 Dibromochloromethane 6 0 6 0	no
Dibromochloromethane 6 0 6	no
	no
Dibromomethane 6 0 6 0	no
Dimethylbenzene, Total 6 0 6 0	no
Dissolved Oxygen 6 0 6	YES
Dissolved Solids 6 0 0 6	YES
Ethylbenzene 6 0 6 0	no
Iodide 6 0 6 0	no
Iodomethane 6 0 6 0	no
Iron 6 0 3 3	YES
Magnesium 6 0 0 6	YES
Manganese 6 0 2 4	YES
Methylene chloride 6 0 6 0	no
Molybdenum 6 0 6 0	no
Nickel 6 0 5 1	YES
Oxidation-Reduction Potential 6 0 0 6	YES

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

PCB, Total	6	0	6	0	no
PCB-1016	6	0	6	0	no
PCB-1221	6	0	6	0	no
PCB-1232	6	0	6	0	no
PCB-1242	6	0	6	0	no
PCB-1248	6	0	6	0	no
PCB-1254	6	0	6	0	no
PCB-1260	6	0	6	0	no
PCB-1268	6	0	6	0	no
рН	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	6	0	no
Rhodium	6	0	6	0	no
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	no
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	no
Technetium-99	6	0	1	5	YES
Tetrachloroethene	6	0	6	0	no
Thallium	6	0	6	0	no
Thorium-230	6	0	6	0	no
Toluene	6	0	6	0	no
Total Organic Carbon (TOC)	6	0	4	2	YES
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	no
trans-1,3-Dichloropropene	6	0	6	0	no
Trans-1,4-Dichloro-2-butene	6	0	6	0	no
Trichlorofluoromethane	6	0	6	0	no
Uranium	6	0	6	0	no
Vanadium	6	0	6	0	no
Vinyl acetate	6	0	6	0	no
Zinc	6	0	6	0	no

Bold denotes parameters with at least one uncensored observation.

Discussion of Results

For the UCRS, URGA, and LRGA, the results of the one-sided upper tolerance interval test are presented on pages D-17 through D-75 and the statistician qualification statement is presented on page D-76. For the UCRS, URGA, and LRGA, the test was applied to 20, 20, and 19 parameters, respectively, listed in bold print in Exhibits 3, 4, and 5. A summary of statistical increases by well number is shown in Exhibit 6.

UCRS

In this quarter, statistical test results indicated there were elevated concentrations of dissolved oxygen, oxidation-reduction potential, and sulfate.

URGA

In this quarter, statistical test results indicated that there were elevated concentrations of calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, pH, and sulfate.

LRGA

In this quarter, statistical test results indicated that there were elevated concentrations of calcium, oxidation reduction potential, pH, and technetium-99.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

Exhibit 6. Summary of Statistical Increases

UCRS	URGA	LRGA
MW362: dissolved oxygen,	MW357: oxidation-reduction	MW361: oxidation-reduction
oxidation-reduction	potential	potential
potential, sulfate	MW360: oxidation-reduction	MW364: oxidation-reduction
MW371: (upgradient): oxidation-	potential	potential, technetium-99
reduction potential	MW363: oxidation-reduction	MW367: oxidation-reduction
MW374: (upgradient): dissolved	potential, pH	potential, pH
oxygen, oxidation-	MW366: oxidation-reduction	MW370: (upgradient): oxidation-
reduction potential	potential, pH	reduction potential
MW375: oxidation-reduction	MW369: (upgradient): oxidation-	MW373: (upgradient): calcium,
potential, sulfate	reduction potential	technetium-99
	MW372: (upgradient): calcium,	
	conductivity, dissolved	
	solids, magnesium,	
	sulfate	

Exhibit 7. Tests Summary for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No elevated concentrations
Calcium	Tolerance Interval	0.40	No elevated concentrations
Chloride	Tolerance Interval	0.95	No elevated concentrations
Cobalt	Tolerance Interval	1.31	No elevated concentrations
Conductivity	Tolerance Interval	0.45	No elevated concentrations
Dissolved Oxygen	Tolerance Interval	0.55	Elevated concentrations in MW362 and MW374
Dissolved Solids	Tolerance Interval	0.42	No elevated concentrations
Iron	Tolerance Interval	0.98	No elevated concentrations
Magnesium	Tolerance Interval	0.27	No elevated concentrations
Manganese	Tolerance Interval	0.89	No elevated concentrations
Molybdenum	Tolerance Interval	1.65	No elevated concentrations
Nickel	Tolerance Interval	0.98	No elevated concentrations
Oxidation-Reduction Potential	Tolerance Interval	3.54	Elevated concentrations in MW362, MW371, MW374, and MW375
pH	Tolerance Interval	0.05	No deviated concentrations
Potassium	Tolerance Interval	0.72	No elevated concentrations
Sodium	Tolerance Interval	0.40	No elevated concentrations
Sulfate	Tolerance Interval	0.49	Elevated concentrations in MW362 and MW375
Total Organic Carbon	Tolerance Interval	1.38	No elevated concentrations
Total Organic Halides	Tolerance Interval	1.08	No elevated concentrations
Uranium	Tolerance Interval	1.68	No elevated concentrations

CV: coefficient of variation

Exhibit 8. Tests Summary for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No elevated concentrations
Boron	Tolerance Interval	0.84	No elevated concentrations
Calcium	Tolerance Interval	0.29	Elevated concentration in MW372
Chloride	Tolerance Interval	0.10	No elevated concentrations
Cobalt	Tolerance Interval	0.85	No elevated concentrations
Conductivity	Tolerance Interval	0.12	Elevated concentration in MW372
Dissolved Oxygen	Tolerance Interval	0.76	No elevated concentrations
Dissolved Solids	Tolerance Interval	0.16	Elevated concentration in MW372
Iron	Tolerance Interval	0.95	No elevated concentrations
Magnesium	Tolerance Interval	0.27	Elevated concentration in MW372
Manganese	Tolerance Interval	0.66	No elevated concentrations
Nickel	Tolerance Interval	0.91	No elevated concentrations
Oxidation-Reduction Potential	Tolerance Interval	1.26	Elevated concentrations in MW357, MW360, MW363, MW366, and MW369
pH	Tolerance Interval	0.03	Elevated concentrations in MW363 and MW366
Potassium	Tolerance Interval	0.72	No elevated concentrations
Sodium	Tolerance Interval	0.26	No elevated concentrations
Sulfate	Tolerance Interval	0.75	Elevated concentration in MW372
Technetium-99	Tolerance Interval	0.87	No elevated concentrations
Total Organic Carbon	Tolerance Interval	1.23	No elevated concentrations
Total Organic Halides	Tolerance Interval	0.95	No elevated concentrations

CV: coefficient of variation

Exhibit 9. Tests Summary for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Boron	Tolerance Interval	0.68	No elevated concentrations
Calcium	Tolerance Interval	0.31	Elevated concentration in MW373
Chloride	Tolerance Interval	0.16	No elevated concentrations
Cobalt	Tolerance Interval	1.17	No elevated concentrations
Conductivity	Tolerance Interval	0.26	No elevated concentrations
Dissolved Oxygen	Tolerance Interval	0.83	No elevated concentrations
Dissolved Solids	Tolerance Interval	0.30	No elevated concentrations
Iron	Tolerance Interval	0.96	No elevated concentrations
Magnesium	Tolerance Interval	0.34	No elevated concentrations
Manganese	Tolerance Interval	0.62	No elevated concentrations
Nickel	Tolerance Interval	0.90	No elevated concentrations
Oxidation-Reduction Potential	Tolerance Interval	1.31	Elevated concentrations in MW361, MW364, MW367, and MW370
pH	Tolerance Interval	0.03	Elevated concentration in MW367
Potassium	Tolerance Interval	0.19	No elevated concentrations
Sodium	Tolerance Interval	0.30	No elevated concentrations
Sulfate	Tolerance Interval	1.59	No elevated concentrations
Technetium-99	Tolerance Interval	1.73	Elevated concentrations in MW364 and MW373
Total Organic Carbon	Tolerance Interval	1.96	No elevated concentrations
Total Organic Halides	Tolerance Interval	0.98	No elevated concentrations

CV: coefficient of variation

C-746-U First Quarter 2013 Statistical Analysis Aluminum

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

Background I Upgradient W		Statist Backg	ics on round Data			Transformed Data from Upg	Background gradient Wells
Well Number:	MW371	X=3.3	300			Well Number:	MW371
Date Collected	Result	S=6.8				Date Collected	LN(Result)
3/18/2002	2.240	CV= 2				3/18/2002	0.806
4/22/2002	0.200		$0r^{**} = 2.523$			4/22/2002	-1.609
7/15/2002	0.200	TL= 2	0.004			7/15/2002	-1.609
10/8/2002	0.200	Because	CV is greater	than 1, the natu	ral	10/8/2002	-1.609
1/8/2003	0.200	•	_	nd and test well	results	1/8/2003	-1.609
4/3/2003	0.200	were cal	culated.			4/3/2003	-1.609
7/9/2003	0.200	Statist	ics on	7		7/9/2003	-1.609
10/6/2003	0.200		formed			10/6/2003	-1.609
Well Number:	MW374	Backg	round Data			Well Number:	MW374
Date Collected	Result	X= -0.	371	7		Date Collected	LN(Result)
10/8/2002	21.300	S= 1.6				10/8/2002	3.059
1/7/2003	20.000		-			1/7/2003	2.996
4/2/2003	4.110	CV= -4				4/2/2003	1.413
7/9/2003	1.410	K facto	or** = 2.523			7/9/2003	0.344
10/7/2003	1.090	TL=3	3.863			10/7/2003	0.086
1/6/2004	0.854			_		1/6/2004	-0.158
4/7/2004	0.200					4/7/2004	-1.609
7/14/2004	0.200					7/14/2004	-1.609
First Quarter 2013 Data Collected in January 2013 First Quart Dry/Partial			ter 2013 lly Dry Wells		ormed First Qua ed in January 20		
Well No. Resu	lt Gradient Re	esult >TL?	Well No. G	radient	Well Nu	mber LN(Resu	lt) Result >TL?
MW371 0.20	0 Upgradient	N/A	MW359 D	owngradient	MW371	-1.609	NO
MW374 0.86	8 Upgradient	N/A	MW368 S	idegradient	MW374	-0.142	NO
MW375 0.20	0 Sidegradient	N/A	MW376 S	idegradient	MW375	-1.609	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Sidegradient

MW377

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Calcium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background E Upgradient W		Stat Bac
Well Number:	MW371	 X= S=
Date Collected	Result	
3/18/2002	17.200	CV
4/22/2002	22.400	K fa
7/15/2002	25 500	TL:

Statistics on Background Data X= 34.100 S= 13.637 CV= 0.400 K factor** = 2.523 TL= 68.505

 3/18/2002
 17.200

 4/22/2002
 22.400

 7/15/2002
 25.500

 10/8/2002
 26.400

 1/8/2003
 27.200

 4/3/2003
 30.300

 7/9/2003
 25.900

 10/6/2003
 27.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Well Number: MW374 Date Collected Result 10/8/2002 67.300 1/7/2003 60.600 4/2/2003 47.200 7/9/2003 34.700 10/7/2003 37.100 1/6/2004 37.700 4/7/2004 32.200 7/14/2004 26.900

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient	Result >TL?
MW371	32.800	Upgradient	NO
MW374	20.900	Upgradient	NO
MW375	15.300	Sidegradien	t NO

First Quarter 2013 Dry/Partially Dry Wells

well No.	Gradient
MW359	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Chloride UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW371 Date Collected Result 7/15/2002 8.300 10/8/2002 7.600 1/8/2003 7.700 4/3/2003 8.800 7/9/2003 8.100 10/6/2003 8.600 1/7/2004 7.600 4/6/2004 7.600 Well Number: MW374 Date Collected Result

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data
X= 91.300 S= 86.959 CV= 0.952 K factor** = 2.523 TL= 310.697

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

199.200

199.700

171.800

178.700

175.600

170,400

156.400 144.700

Well No.	Result	Gradient	Result >TL?
MW362	10.000	Downgradie	nt NO
MW371	9.200	Upgradient	NO
MW374	100.00	Upgradient	NO
MW375	6.500	Sidegradient	NO

First Quarter 2013
Dry/Partially Dry Wells

_	well No.	Gradient
	MW359	Downgradient
	MW368	Sidegradient
	MW376	Sidegradient
	MW377	Sidegradient

Wall No

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Cobalt UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Statistics on Background Data				Transformed Background Data from Upgradient Wells			
Well Number:	MW371	X = 0.007				Well Number:	MW371
Date Collected	Result	S=0.0				Date Collected	LN(Result)
3/18/2002	0.025	CV= 1				3/18/2002	-3.689
4/22/2002	0.025	TL= 0	$r^{**} = 2.523$			4/22/2002	-3.689
7/15/2002	0.025	IL= 0	.031]		7/15/2002	-3.689
10/8/2002	0.001	Because	Because CV is greater than 1, the natural		ral	10/8/2002	-6.908
1/8/2003	0.001	logarithn	n of backgroun	d and test well		1/8/2003	-6.908
4/3/2003	0.001	were calc	culated.			4/3/2003	-6.908
7/9/2003	0.001	Statisti	ice on]		7/9/2003	-6.908
10/6/2003	0.001	Statistics on Transformed				10/6/2003	-6.908
Well Number:	MW374	Backgi	Background Data			Well Number:	MW374
Date Collected	Result	X= -5.8	843			Date Collected	LN(Result)
10/8/2002	0.010	S= 1.3	92			10/8/2002	-4.605
1/7/2003	0.010	CV= -(1/7/2003	-4.605
4/2/2003	0.010					4/2/2003	-4.605
7/9/2003	0.002	K facto	$r^{**} = 2.523$			7/9/2003	-6.432
10/7/2003	0.001	TL= -	2.331			10/7/2003	-6.908
1/6/2004	0.001			-		1/6/2004	-6.908
4/7/2004	0.001					4/7/2004	-6.908
7/14/2004	0.001					7/14/2004	-6.908
		First Quarte Dry/Partiall	er 2013 y Dry Wells		rmed First Qua d in January 20		
Well No. Resul	lt Gradient R	esult >TL?	Well No. Gr	adient	Well Nur	nber LN(Resu	lt) Result >TL?
MW371 0.00	1 Upgradient	N/A	MW359 Do	owngradient	MW371	-6.908	NO
MW374 0.00	2 Upgradient	N/A	MW368 Sie	degradient	MW374	-6.110	NO

Conclusion of Statistical Analysis on Transformed Data

N/A

Sidegradient

MW375 0.001

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

MW377

MW376 Sidegradient

Sidegradient

-6.908

MW375

NO

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371
Date Collected	Result
3/18/2002	541.000
4/22/2002	643.000
7/15/2002	632.000
10/8/2002	631.000
1/8/2003	680.000
4/3/2003	749.000
7/9/2003	734.000
10/6/2003	753.000
Well Number:	MW374

Date Collected

3/18/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

Statistics on Background Data

X= 918.744 S= 417.257 CV= 0.454 K factor** = 2.523 TL= 1971.483

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

Result

1007.00

1680.00

1715.90

172.000

1231.00

1214.00

1172.00

1145.00

Well No.	Result	Gradient	Result >TL?
MW362	571.00	Downgradie	nt NO
MW371	782.00	Upgradient	NO
MW374	752.00	Upgradient	NO
MW375	420.00	Sidegradient	NO

First Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Dissolved Oxygen

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

Background Data from Upgradient Wells Well Number: MW371 Date Collected Result 3/18/2002 2.260 4/22/2002 1.150 7/15/2002 0.940 10/8/2002 0.740 1/8/2003 2.620 4/3/2003 1.500 7/9/2003 1.660 10/6/2003 1.280 Well Number: MW374

Date Collected

3/18/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

Statistics on Background Data
X= 1.138 S= 0.621
CV= 0.546
K factor** = 2.523 TL= 2.704

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

Result

0.600

0.670

0.230

0.650

0.920

0.990

1.110

0.880

Well No.	Result	Gradient	Result >TL?	
MW362	3.190	Downgradie	nt YES	
MW371	1.350	Upgradient	NO	
MW374	3.890	Upgradient	YES	
MW375	1.540	Sidegradient	NO	

First Quarter 2013 Dry/Partially Dry Wells

well No.	Gradient
MW359	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW362

MW374

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Dissolved Solids

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

Background Data from Upgradient Wells		
Well Number:	MW371	
Date Collected	Result	
3/18/2002	274.000	
4/22/2002	409.000	
7/15/2002	418.000	
10/8/2002	424.000	
1/8/2003	431.000	
4/3/2003	444.000	
7/9/2003	445.000	
10/6/2003	438.000	
Well Number:	MW374	

Date Collected

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data	
X= 590.000	_
S= 248.068 CV= 0.420	
K factor** = 2.523	
TL= 1215.876	

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

Result

1136.00

1101.00

863.000

682.000

589.000

603.000

601.000

582.000

Well No.	Result	Gradient	Result >TL?
MW371	456.00	Upgradient	NO
MW374	390.00	Upgradient	NO
MW375	255.00	Sidegradien	t NO

First Quarter 2013
Dry/Partially Dry Wells

well No.	Gradient
MW359	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Iron UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				
Well Number:	MW371			
Date Collected	Result			
3/18/2002	1.310			
4/22/2002	0.913			
7/15/2002	0.881			
10/8/2002	3.860			
1/8/2003	1.880			
4/3/2003	3.180			
7/9/2003	0.484			
10/6/2003	2.720			
Well Number:	MW374			
Date Collected	Result			
10/8/2002	23.000			
1/7/2003	13.900			

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data
X= 6.612
S = 6.487
CV = 0.981
K factor** = 2.523
TL= 22.979

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

14.000

14.200

7.920

7.860

4.820

4.870

Well No.	Result	Gradient	Result >TL?
MW371	0.114	Upgradient	NO
MW374	1.180	Upgradient	NO
MW375	0.149	Sidegradien	t NO

First	Quarter 2013
Dry/	Partially Dry Wells

well No.	Gradient
MW359	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Magnesium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				
Well Number:	MW371			
Date Collected	Result			
3/18/2002	7.100			
4/22/2002	9.770			
7/15/2002	10.400			
10/8/2002	10.200			
1/8/2003	10.700			
4/3/2003	11.900			
7/9/2003	10.800			
10/6/2003	10.900			
Well Number:	MW374			
Date Collected	Result			
10/8/2002	20.000			
1/7/2003	16.100			

4/2/2003

7/9/2003

4/7/2004

7/14/2004

10/7/2003 1/6/2004

Statistics on Background Data		
X= 11.347		
S= 3.019		
CV = 0.266		
K factor** = 2.523		
TL= 18.963		

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

13.100

10.300 11.100

11.000

9.690

8.490

Well No.	Result	Gradient	Result >TL?
MW371	12.500	Upgradient	NO
MW374	6.230	Upgradient	NO
MW375	5.990	Sidegradien	t NO

First Quarter 2013
Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Manganese UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW371 Date Collected Result 3/18/2002 0.063 4/22/2002 0.067 7/15/2002 0.074 10/8/2002 0.052 1/8/2003 0.039 4/3/2003 0.055 7/9/2003 0.055 10/6/2003 0.054 Well Number: MW374 Date Collected Result

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data		
X= 0.248		
S = 0.222		
CV = 0.894		
K factor** = 2.523		
TL= 0.809		

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

0.596

0.565

0.675

0.397

0.312

0.299

0.329

0.342

Well No.	Result	Gradient	Result >TL?
MW371	0.005	Upgradient	NO
MW374	0.053	Upgradient	NO
MW375	0.016	Sidegradien	t NO

First Quarter 2013
Dry/Partially Dry Wells

well No.	Gradient
MW359	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Molybdenum

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

Background I Upgradient V		Statist Backg	ics on round Data			Transformed I	Background gradient Wells
Well Number:	MW371	X=0.0	006			Well Number:	MW371
Date Collected	Result	S=0.0				Date Collected	LN(Result)
3/18/2002	0.025	CV= 1				3/18/2002	-3.689
4/22/2002	0.025		$0r^{**} = 2.523$			4/22/2002	-3.689
7/15/2002	0.025	TL=0	.030			7/15/2002	-3.689
10/8/2002	0.001	Because	CV is greater	than 1, the natur	al	10/8/2002	-6.908
1/8/2003	0.001			and test well		1/8/2003	-6.717
4/3/2003	0.001	were cal	culated.			4/3/2003	-6.908
7/9/2003	0.001	Statist	ios on			7/9/2003	-6.803
10/6/2003	0.001		ics on formed			10/6/2003	-6.908
Well Number:	MW374		round Data			Well Number:	MW374
Date Collected	Result	X= -6.	108	7		Date Collected	LN(Result)
10/8/2002	0.002	S= 1.2				10/8/2002	-6.110
1/7/2003	0.002					1/7/2003	-6.210
4/2/2003	0.002	CV= -(4/2/2003	-6.444
7/9/2003	0.002	K facto	or** = 2.523			7/9/2003	-6.024
10/7/2003	0.001	TL= ·	-2.983			10/7/2003	-6.908
1/6/2004	0.001					1/6/2004	-6.908
4/7/2004	0.001					4/7/2004	-6.908
7/14/2004	0.001					7/14/2004	-6.908
First Quarter January 2013	2013 Data Collected	d in	First Quar Dry/Partia	rter 2013 ally Dry Wells		ormed First Qua ed in January 20	
Well No. Resu	ılt Gradient R	esult >TL?	Well No. O	Gradient	Well Nu	nber LN(Resul	t) Result >TL?
MW371 0.00	01 Upgradient	N/A	MW359	Downgradient	MW371	-6.908	NO
MW374 0.00	01 Upgradient	N/A	MW368	Sidegradient	MW374	-6.812	NO
MW375 0.00	O1 Sidegradient	N/A	MW376	Sidegradient	MW375	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

MW377 Sidegradient

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Nickel UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW371		
Date Collected	Result		
3/18/2002	0.050		
4/22/2002	0.050		
7/15/2002	0.050		
10/8/2002	0.012		
1/8/2003	0.005		
4/3/2003	0.005		
7/9/2003	0.005		

Statistics on Background Data		
X= 0.023 S= 0.022 CV= 0.980 K factor** = 2.523 TL= 0.078		

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Date Collected	Result		
10/8/2002	0.050		
1/7/2003	0.050		
4/2/2003	0.050		
7/9/2003	0.008		
10/7/2003	0.005		
1/6/2004	0.005		
4/7/2004	0.005		
7/14/2004	0.005		
First Quarter 2013 Data			

10/6/2003

Well Number:

First Qu January			13 E	ata	Co	llecte	ed in	
XX7 11 X T	ъ	1.	_	1.	-	ъ	1	_

0.005 MW374

Well No.	Result	Gradient	Result >TL?
MW371	0.005	Upgradient	NO
MW374	0.005	Upgradient	NO
MW375	0.005	Sidegradien	t NO

First Quarter 2013
Dry/Partially Dry Wells

well No.	Gradient
MW359	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Oxidation-Reduction Potential

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mV

Background D Upgradient W			Statistics on Background Data				Transformed Data from Up	Background gradient Wells
Well Number:	MW371		X= 22.281 S= 78.889				Well Number:	MW371
Date Collected	Result						Date Collected	LN(Result)
3/18/2002	75.000		CV= 3				3/18/2002	4.317
4/22/2002	165.000		K factor** = 2.523 TL= 221.319				4/22/2002	5.106
7/15/2002	65.000		IL- Z	21.319			7/15/2002	4.174
4/3/2003	-19.000	I	Because CV is greater t		r than 1, the natur	al	4/3/2003	#Func!
7/9/2003	114.000	1	ogarithn	n of backgro	and and test well		7/9/2003	4.736
10/6/2003	-22.000	7	were cal	culated.			10/6/2003	#Func!
1/7/2004	20.500		Statisti	cs on			1/7/2004	3.020
4/6/2004	113.000		Transfo				4/6/2004	4.727
Well Number:	MW374			ound Data				MW374
Date Collected	Result		X = er	ror			Date Collected	LN(Result)
3/18/2002	135.000						3/18/2002	4.905
4/2/2003	-56.000		S = error CV = error K factor** = 2.523				4/2/2003	#Func!
7/9/2003	-68.000						7/9/2003	#Func!
10/7/2003	-50.000							#Func!
1/6/2004	-85.000		TL# =	5.106			1/6/2004	#Func!
4/7/2004	6.000	#	# Becaus	se the natural	log was not possi	ble for	4/7/2004	1.792
7/14/2004	-38.000	2	all backg	round value	s, the TL was cons	sidered	7/14/2004	#Func!
10/7/2004	1.000	ϵ	equal to	the maximur	n background valu	ıe.	10/7/2004	0.000
First Quarter 2 January 2013 Well No. Resul			t >TL?	First Qua Dry/Parti Well No.	ally Dry Wells		sformed First Qua Collected in Janu	
MW362 188.	000 Downgrad	dient	N/A	MW359	Downgradient	Well N	Number LN(Result	Result >TL?
	000 Upgradiei		N/A		Sidegradient	MW36	52 5.236	YES
MW374 534.	000 Upgradiei	nt	N/A	MW376	Sidegradient	MW37	1 5.656	YES
MW375 348.	000 Sidegradi	ent	N/A	MW377	Sidegradient	MW37	4 6.280	YES
						MW37	5.852	YES
Conclusion of S	tatistical Analy	sis on T	ransfor	med Data				
The following to elevated concentration					imit, which is sta	itisticall	ly significant evide	ence of
MW362								
MW371								
MW374								
MW375								

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis pH

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW371	
Date Collected	Result	
3/18/2002	6.300	
4/22/2002	6.500	
7/15/2002	6.500	
10/8/2002	6.600	
1/8/2003	6.600	
4/3/2003	6.900	
7/9/2003	6.700	
10/6/2003	7.000	
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	
Date Collected	Result	
Date Collected 3/18/2002	Result 5.750	
Date Collected 3/18/2002 10/8/2002	Result 5.750 6.600	
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.750 6.600 6.820	
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.750 6.600 6.820 6.860	
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.750 6.600 6.820 6.860 6.700	

Statistics on Background Data
X= 6.619
S = 0.295
CV = 0.045
K factor** = 2.904
TL= 7.475

LL = 5.764

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

UCRS

UNITS: Std Unit

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient Res	sult >TL?	Result <ll'< td=""></ll'<>
MW362	6.960	Downgradient	NO	NO
MW371	6.830	Upgradient	NO	NO
MW374	6.670	Upgradient	NO	NO
MW375	6.590	Sidegradient	NO	NO

First Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW359	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U First Quarter 2013 Statistical Analysis Potassium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW371	
Date Collected	Result	
3/18/2002	2.000	
4/22/2002	2.000	
7/15/2002	2.000	
10/8/2002	0.408	
1/8/2003	0.384	
4/3/2003	0.368	
7/9/2003	0.587	
10/6/2003	0.382	
Well Number:	MW374	
Date Collected	Result	

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

7/14/2004

Statistics on Background Data
X= 1.262 S= 0.907
CV= 0.718
K factor** = 2.523 TL= 3.549

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

3.040

2.830

2.000

1.090

0.802

0.897

0.689

0.716

Well No.	Result	Gradient	Result >TL?
MW371	0.322	Upgradient	NO
MW374	0.557	Upgradient	NO
MW375	0.253	Sidegradien	t NO

First Q	uarter 2013
Dry/Pa	rtially Dry Wells

well No.	Gradient
MW359	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Sodium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Well Number: MW371 Date Collected Result 3/18/2002 129.000 4/22/2002 131.000

Statistics on Background Data X= 183.063 S= 73.222 CV= 0.400 K factor** = 2.523 TL= 367.800

 4/22/2002
 131.000

 7/15/2002
 127.000

 10/8/2002
 123.000

 1/8/2003
 128.000

 4/3/2003
 144.000

 7/9/2003
 126.000

 10/6/2003
 120.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Well Number: MW374 Date Collected Result 10/8/2002 336.000 1/7/2003 329.000 4/2/2003 287.000 7/9/2003 181.000 10/7/2003 182.000 1/6/2004 206.000 4/7/2004 182.000 198.000 7/14/2004

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient	Result >TL?
MW371	130.00	Upgradient	NO
MW374	127.00	Upgradient	NO
MW375	67.100	Sidegradien	t NO

First Quarter 2013 Dry/Partially Dry Wells

well No.	Gradient
MW359	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Sulfate UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Well Number: MW371 Date Collected Result 3/18/2002 16.300 4/22/2002 8.600 7/15/2002 6.700 10/8/2002 5.000 1/8/2003 5.000 4/3/2003 5.000 7/9/2003 5.000 10/6/2003 5.000 Well Number: MW374 Date Collected Result 10/8/2002 5.000 1/7/2003 5.000 4/2/2003 5.000 7/9/2003 5.600 10/7/2003 5.000 1/6/2004 5.000 4/7/2004 11.300

Statistics on Background Data
X= 6.469 S= 3.153 CV= 0.487 K factor** = 2.523
TL= 14.423

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

5.000

7/14/2004

Well No.	Result	Gradient	Resul	t >TL?
MW362	19.000	Downgradie	ent	YES
MW371	9.600	Upgradient		NO
MW374	5.300	Upgradient		NO
MW375	32.000	Sidegradien	ıt	YES

First Quarter 2013 Dry/Partially Dry Wells

well No.	Gradient
MW359	Downgradient
MW368	Sidegradient
MW376	Sidegradient
MW377	Sidegradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW362

MW375

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Total Organic Carbon (TOC)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UCRS

UNITS: mg/L

Background Data from Upgradient Wells			Statistics on Background Data			Transformed Backgro Data from Upgradient		
Well Number:	MW371	X= 17	7.631			Well Number:	MW371	
Date Collected	Result	S= 24				Date Collected	LN(Result)	
3/18/2002	11.100	CV=				3/18/2002	2.407	
4/22/2002	7.000		tor** = 2.523			4/22/2002	1.946	
7/15/2002	4.100	TL=	78.977			7/15/2002	1.411	
10/8/2002	6.000	Because	e CV is greater t	han 1, the natur	al	10/8/2002	1.792	
1/8/2003	5.300		m of backgroun			1/8/2003	1.668	
4/3/2003	5.300	were ca	lculated.			4/3/2003	1.668	
7/9/2003	2.900	Statis	tics on	1		7/9/2003	1.065	
10/6/2003	3.200		tics on sformed			10/6/2003	1.163	
Well Number:	MW374		ground Data			Well Number:	MW374	
Date Collected	Result	X= 2.	318			Date Collected	LN(Result)	
10/8/2002	90.000	S= 0.	979			10/8/2002	4.500	
1/7/2003	64.000					1/7/2003	4.159	
4/2/2003	25.000	CV=				4/2/2003	3.219	
7/9/2003	16.000	K fac	tor** = 2.523			7/9/2003	2.773	
10/7/2003	13.000	TL=	4.788			10/7/2003	2.565	
1/6/2004	10.000			4		1/6/2004	2.303	
4/7/2004	7.200					4/7/2004	1.974	
7/14/2004	12.000					7/14/2004	2.485	
-				er 2013 y Dry Wells		ormed First Qua ed in January 20		
Well No. Resu	lt Gradient	Result >TL?	Well No. Gr	adient	Well Nu	mber LN(Resu	lt) Result >TI	
MW362 4 10	0 Downer	radiant N/A	MW350 D	wngradient	MW362	1 411	NO	

Well No.	Result	Gradient Re	esult >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?	
MW362	4.100	Downgradient	N/A	MW359	Downgradient	MW362	1.411	NO	
MW371	1.800	Upgradient	N/A	MW368	Sidegradient	MW371	0.588	NO	
MW374	2.300	Upgradient	N/A	MW376	Sidegradient	MW374	0.833	NO	
MW375	1.800	Sidegradient	N/A	MW377	Sidegradient	MW375	0.588	NO	

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Total Organic Halides (TOX)

UCRS UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data			Transformed Data from Upg	Background gradient Wells		
Well Number:	MW371	X= 214.094			Well Number:	MW371		
Date Collected	Result	S= 231.089			Date Collected	LN(Result)		
3/18/2002	50.000	CV= 1.079			3/18/2002	3.912		
4/22/2002	105.000	K factor** = 2.523			4/22/2002	4.654		
7/15/2002	70.000	TL= 797.131]		7/15/2002	4.248		
10/8/2002	52.000	Because CV is greater to	Because CV is greater than 1, the natural					
1/8/2003	20.200	logarithm of backgroun			10/8/2002 1/8/2003	3.951 3.006		
4/3/2003	104.000	were calculated.			4/3/2003	4.644		
7/9/2003	34.200	Statistics on	1		7/9/2003	3.532		
10/6/2003	46.100	Transformed			10/6/2003	3.831		
Well Number:	MW374	Background Data			Well Number:	MW374		
Date Collected	Result	X= 4.867			Date Collected	LN(Result)		
10/8/2002	903.000	S= 1.065			10/8/2002	6.806		
1/7/2003	539.000				1/7/2003	6.290		
4/2/2003	295.000	CV = 0.219			4/2/2003	5.687		
7/9/2003	272.000	K factor** = 2.523			7/9/2003	5.606		
10/7/2003	197.000	TL= 7.554			10/7/2003	5.283		
1/6/2004	330.000		_		1/6/2004	5.799		
4/7/2004	183.000				4/7/2004	5.209		
7/14/2004	225.000				7/14/2004	5.416		
First Quarter 2013 Data Collected in First Quarter 2013 Transformed First Quarter 2013 Data Collected in First Quarter 2013					rter 2013 Data			

First Quarter 2013 Data Collected in January 2013			First Quarter 2013 Dry/Partially Dry Wells		Transformed First Quarter 2013 Data Collected in January 2013			
Well No.	Result	Gradient	Result >TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW362	22.000	Downgradie	ent N/A	MW359	Downgradient	MW362	3.091	NO
MW371	12.000	Upgradient	N/A	MW368	Sidegradient	MW371	2.485	NO
MW374	36.000	Upgradient	N/A	MW376	Sidegradient	MW374	3.584	NO
MW375	45.000	Sidegradien	t N/A	MW377	Sidegradient	MW375	3.807	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Uranium UCRS UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W	V.II.		ics on round Data			Transformed Data from Upg	Background gradient Wells
Well Number:	MW371	X=0.0	07			Well Number:	MW371
Date Collected	Result	S= 0.0				Date Collected	LN(Result)
3/18/2002	0.001	CV= 1				3/18/2002	-6.908
4/22/2002	0.001	TL= 0	$0r^{**} = 2.523$			4/22/2002	-6.908
7/15/2002	0.001	IL= U	.03 /			7/15/2002	-6.908
10/8/2002	0.027	Because	CV is greate	r than 1, the natu	ral	10/8/2002	-3.612
1/8/2003	0.001	logarithn	n of backgro	and and test well	results	1/8/2003	-6.908
4/3/2003	0.001	were calc	culated.			4/3/2003	-6.908
7/9/2003	0.001	Statisti				7/9/2003	-6.822
10/6/2003	0.001	Transf				10/6/2003	-6.908
Well Number:	MW374		round Data			Well Number:	MW374
Date Collected	Result	X= -5.3	884			Date Collected	LN(Result)
10/8/2002	0.044	S= 1.2				10/8/2002	-3.128
1/7/2003	0.011					1/7/2003	-4.510
4/2/2003	0.009	CV= -(4/2/2003	-4.705
7/9/2003	0.007	K facto	pr** = 2.523			7/9/2003	-4.970
10/7/2003	0.001	TL= -	-2.607			10/7/2003	-6.908
1/6/2004	0.003					1/6/2004	-5.760
4/7/2004	0.003					4/7/2004	-5.960
7/14/2004	0.002					7/14/2004	-6.320
First Quarter 2013 Data Collected in January 2013		ed in				ormed First Qua ed in January 20	
Well No. Resul	lt Gradient I	Result >TL?	Well No. 0	Gradient	Well Nu	mber LN(Resu	lt) Result >TL?
MW371 0.00	2 Upgradient	N/A	MW359	Downgradient	MW371	-6.282	NO
MW374 0.00	2 Upgradient	N/A	MW368	Sidegradient	MW374	-6.309	NO
MW375 0.00	1 Sidegradient	N/A	MW376	Sidegradient	MW375	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Sidegradient

MW377

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Aluminum

UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells	
Well Number:	MW369	X = 0.625		Well Number:	MW369	
Date Collected	Result	S = 0.774		Date Collected	LN(Result)	
3/18/2002	0.255	CV= 1.239		3/18/2002	-1.366	
4/22/2002	0.200	K factor** = 2.523 TL= 2.578		4/22/2002	-1.609	
7/15/2002	0.322	1L= 2.5/8		7/15/2002	-1.133	
10/8/2002	0.200	Because CV is greater t	han 1, the natural	10/8/2002	-1.609	
1/8/2003	0.200	logarithm of backgroun	d and test well results	1/8/2003	-1.609	
4/3/2003	0.200	were calculated.		4/3/2003	-1.609	
7/8/2003	0.200	Statistics on		7/8/2003	-1.609	
10/6/2003	0.689	Transformed		10/6/2003	-0.373	
Well Number:	MW372	Background Data		Well Number:	MW372	
Date Collected	Result	X= -0.973		Date Collected	LN(Result)	
3/19/2002	2.610	S= 0.935		3/19/2002	0.959	
4/23/2002	0.200	CV= -0.961		4/23/2002	-1.609	
7/16/2002	1.140			7/16/2002	0.131	
10/8/2002	0.862	K factor** = 2.523		10/8/2002	-0.149	
1/7/2003	2.320	TL= 1.386		1/7/2003	0.842	
4/2/2003	0.200		.	4/2/2003	-1.609	
7/9/2003	0.200			7/9/2003	-1.609	
10/7/2003	0.200			10/7/2003	-1.609	

First Quarter 2013 Data Collected in
January 2013

Well No.	Result	Gradient	Result >TL?
MW357	0.200	Downgradie	nt N/A
MW360	0.422	Downgradie	nt N/A
MW363	0.200	Downgradie	nt N/A
MW366	0.200	Sidegradient	N/A
MW369	0.475	Upgradient	N/A
MW372	0.200	Upgradient	N/A

Transformed First Quarter 2013 Data Collected in January 2013

Well Number	LN(Result)	Result >TL?
MW357	-1.609	NO
MW360	-0.863	NO
MW363	-1.609	NO
MW366	-1.609	NO
MW369	-0.744	NO
MW372	-1.609	NO

Conclusion of Statistical Analysis on Transformed Data

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	2.000		
4/22/2002	2.000		
7/15/2002	2.000		
10/8/2002	0.200		
1/8/2003	0.200		
4/3/2003	0.200		
7/8/2003	0.200		
10/6/2003	0.200		
Well Number:	MW372		
Date Collected	Result		
3/19/2002	2.000		
4/23/2002	2.000		

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data		
X= 0.985 S= 0.825 CV= 0.838 K factor** = 2.523		
TL= 3.067		

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

2.000

0.492 0.492

0.600

0.570

0.604

Well No.	Result	Gradient Resu	ılt >TL?
MW357	0.379	Downgradient	NO
MW360	0.200	Downgradient	NO
MW363	0.200	Downgradient	NO
MW366	0.200	Sidegradient	NO
MW369	0.200	Upgradient	NO
MW372	1.390	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Calcium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data
Well Number:	MW369	X= 32.763
Date Collected	Result	S= 9.391
3/18/2002	29.500	CV = 0.287
4/22/2002	29.800	K factor** = 2.523
7/15/2002	25.300	TL= 56.456
10/8/2002	21.900	Because CV is less th
1/8/2003	20.900	assume normal distrib

22.200

22.900

21.700

MW372

Result

41.500

43.600

40.400

38.800

41.100

42.900

35.100

46.600

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient Resul	lt > TL?
MW357	27.300	Downgradient	NO
MW360	22.500	Downgradient	NO
MW363	24.400	Downgradient	NO
MW366	28.000	Sidegradient	NO
MW369	16.300	Upgradient	NO
MW372	66.900	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

4/3/2003

7/8/2003

10/6/2003

Well Number:

Date Collected

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis **URGA** UNITS: mg/L Chloride

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result	_	

7/15/2002 48.300 47.700 10/8/2002 1/8/2003 45.700 4/3/2003 47.400 7/8/2003 55.900 10/6/2003 47.400 1/7/2004 45.500

4/7/2004

Statistics on **Background Data** X = 44.119S = 4.554CV = 0.103K factor** = 2.523 TL = 55.607

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Well Number: Date Collected Result 7/16/2002 39.800 10/8/2002 41.000 1/7/2003 39.400 4/2/2003 39.200 7/9/2003 39.800 10/7/2003 40.000 1/5/2004 43.400 4/5/2004 42.000

First Quarter 2013 Data Collected in January 2013

43.400

MW372

Well No.	Result	Gradient R	esult >TL?
MW357	31.000	Downgradient	NO
MW360	13.000	Downgradient	NO
MW363	31.000	Downgradient	NO
MW366	41.000	Sidegradient	NO
MW369	33.000	Upgradient	NO
MW372	47.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Cobalt URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W		Statistics on Background Data
Well Number:	MW369	X= 0.025
Date Collected	Result	S= 0.021
3/18/2002	0.025	CV=0.845
4/22/2002	0.025	K factor** = 2.523
7/15/2002	0.025	TL= 0.077

0.009

0.005

0.006

0.054

0.069

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Well Number:	MW372
Date Collected	Result
3/19/2002	0.025
4/23/2002	0.025
7/16/2002	0.025
10/8/2002	0.002
1/7/2003	0.015
4/2/2003	0.012
7/9/2003	0.065
10/7/2003	0.008

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient R	esult >TL?
MW357	0.001	Downgradient	NO
MW360	0.009	Downgradient	NO
MW363	0.001	Downgradient	NO
MW366	0.001	Sidegradient	NO
MW369	0.012	Upgradient	NO
MW372	0.001	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Conductivity

UNITS: umho/cm

If so, the current test well results

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data	from
Upgradient Wells	

Well Number:	MW369
Date Collected	Result
3/18/2002	388.000
4/22/2002	404.000
7/15/2002	394.000
10/8/2002	403.000
1/8/2003	520.000
4/3/2003	487.000
7/8/2003	478.000
10/6/2003	476.000
Well Number:	MW372

Date Collected

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data X= 482.856 S= 57.603 CV= 0.119 K factor** = 2.523 TL= 628.189

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

Result

508.000

501.000

507.000

495.000 508.700

515.000

576.000 565.000

Well No.	Result	Gradient Re	esult >TL?
MW357	443.00	Downgradient	NO
MW360	387.00	Downgradient	NO
MW363	370.00	Downgradient	NO
MW366	397.00	Sidegradient	NO
MW369	365.00	Upgradient	NO
MW372	860.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Dissolved Oxygen

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Upgradient Wells		
Well Number:	MW369	
Date Collected	Result	
3/18/2002	5.410	
4/22/2002	1.570	
7/15/2002	0.800	
10/8/2002	1.090	
1/8/2003	2.690	
4/3/2003	2.040	

1.190

1.780

MW372

Result

3.890

0.050

1.330

7/8/2003

10/6/2003

Well Number:

Date Collected

3/19/2002

4/23/2002

7/16/2002

Rackground Data from

Statistics on Background Data
X= 1.781
S= 1.351
CV = 0.759
K factor** = 2.523
TL= 5.190

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

10/8/2002 2.660 1/7/2003 0.400 4/2/2003 0.910 7/9/2003 1.420 10/7/2003 1.260

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient Res	ult >TL?
MW357	4.670	Downgradient	NO
MW360	1.950	Downgradient	NO
MW363	1.380	Downgradient	NO
MW366	2.400	Sidegradient	NO
MW369	2.430	Upgradient	NO
MW372	1.800	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis **Dissolved Solids**

UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from
Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	173.000
4/22/2002	246.000
7/15/2002	232.000
10/8/2002	275.000
1/8/2003	269.000
4/3/2003	250.000
7/8/2003	295.000
10/6/2003	276.000
Well Number:	MW372

Date Collected

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on **Background Data**

X = 285.188S = 44.908CV = 0.157K factor** = 2.523TL=398.489

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

Result

295.000

322.000

329.000

290.000

316.000

311.000

347.000 337.000

Well No.	Result	Gradient Res	ult >TL?
MW357	242.00	Downgradient	NO
MW360	235.00	Downgradient	NO
MW363	203.00	Downgradient	NO
MW366	246.00	Sidegradient	NO
MW369	213.00	Upgradient	NO
MW372	506.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I	Oata from
Upgradient W	Vells
Wall Number	MW260

Well Number:	MW369
Date Collected	Result
3/18/2002	0.656
4/22/2002	0.695
7/15/2002	7.100
10/8/2002	21.500
1/8/2003	18.500
4/3/2003	14.900
7/8/2003	11.300
10/6/2003	14.900
Well Number:	MW372

Date Collected

3/19/2002

4/23/2002

7/16/2002

10/8/2002

Statistics on Background Data
X= 7.385
S= 6.991
CV = 0.947
K factor** = 2.523
TL= 25.024

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

1/7/2003 3.550 4/2/2003 5.020 7/9/2003 10.000 10/7/2003 0.733

First Quarter 2013 Data Collected in January 2013

Result

5.950

0.792

1.780

0.776

Well No.	Result	Gradient R	esult >TL?
MW357	0.100	Downgradient	NO
MW360	1.890	Downgradient	NO
MW363	0.174	Downgradient	NO
MW366	0.155	Sidegradient	NO
MW369	0.450	Upgradient	NO
MW372	0.497	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Magnesium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Background D Upgradient W		Statistics o Backgroun
Well Number:	MW369	X= 12.864
Date Collected	Result	S= 3.505
3/18/2002	11.400	CV = 0.272
4/22/2002	12.000	K factor**
7/15/2002	10.000	TL= 21.70
10/8/2002	8.620	Because CV
1/8/2003	7.890	assume norm
4/3/2003	7.970	with statistic

10.300

9.140

MW372

Result

15.700

16.600

Statistics on Background Data
X= 12.864
S= 3.505
CV = 0.272
K factor** = 2.523
TL= 21.707

is less than or equal to 1, nal distribution and continue with statistical analysis.

7/16/2002 15.400 10/8/2002 15.800 1/7/2003 15.800 4/2/2003 16.400 7/9/2003 15.200 10/7/2003 17.600

7/8/2003

10/6/2003

Well Number:

Date Collected

3/19/2002

4/23/2002

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient Resul	t > TL?
MW357	11.000	Downgradient	NO
MW360	9.500	Downgradient	NO
MW363	9.940	Downgradient	NO
MW366	11.000	Sidegradient	NO
MW369	6.090	Upgradient	NO
MW372	26.000	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Manganese

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mg/L

Background	Data from
Upgradient V	Vells

18	
Well Number:	MW369
Date Collected	Result
3/18/2002	0.034
4/22/2002	0.062
7/15/2002	0.436
10/8/2002	0.867
1/8/2003	0.828
4/3/2003	0.672
7/8/2003	0.321
10/6/2003	0.714
Well Number:	MW372

Statistics on Background Data
X= 0.413
S = 0.274
CV = 0.664
K factor** = 2.523
TL = 1.105

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

10/8/2002 0.054 1/7/2003 0.537 4/2/2003 0.415 7/9/2003 0.654 10/7/2003 0.254

Date Collected

3/19/2002

4/23/2002

7/16/2002

First Quarter 2013 Data Collected in January 2013

Result

0.205

0.345

0.210

Well No.	Result	Gradient Resu	ılt >TL?
MW357	0.027	Downgradient	NO
MW360	0.138	Downgradient	NO
MW363	0.127	Downgradient	NO
MW366	0.023	Sidegradient	NO
MW369	0.076	Upgradient	NO
MW372	0.018	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells	
Well Number:	MW369

Well Number:	MW369
Date Collected	Result
3/18/2002	0.050
4/22/2002	0.050
7/15/2002	0.050
10/8/2002	0.005
1/8/2003	0.005
4/3/2003	0.005
7/8/2003	0.013
10/6/2003	0.010
Well Number:	MW372

Date Collected

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 0.024 S= 0.021 CV= 0.910 K factor** = 2.523 TL= 0.078

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

Result

0.050

0.050

0.050

0.005

0.005

0.005

0.019

0.005

Well No.	Result	Gradient Res	ult >TL?
MW357	0.005	Downgradient	NO
MW360	0.005	Downgradient	NO
MW363	0.005	Downgradient	NO
MW366	0.005	Sidegradient	NO
MW369	0.006	Upgradient	NO
MW372	0.005	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Oxidation-Reduction Potential

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: mV

Background Data from Upgradient Wells			Statistics on Background Data			Transformed I Data from Upg	0
Well Number:	MW369		X= 74.563			Well Number:	MW369
Date Collected	l Result		S= 94.243			Date Collected	LN(Result)
3/18/2002 215.000 4/22/2002 110.000 7/15/2002 20.000			CV= 1.264 K factor** = 2.523 TL= 312.337			3/18/2002	5.371
						4/22/2002	4.700
						7/15/2002	2.996
1/8/2003 -5.000		В	Because CV is greater than 1, the natural		1	1/8/2003	#Func!
4/3/2003	-18.000		logarithm of background and test well re				#Func!
7/8/2003 -67.000		W	were calculated.			7/8/2003	#Func!
10/6/2003 -1.000			Statistics on			10/6/2003	#Func!
1/7/2004	55.000		Transformed			1/7/2004	4.007
Well Number:	MW372		Background Data			Well Number:	MW372
Date Collected	l Result		X = error			Date Collected	LN(Result)
3/19/2002	210.000		S = error			3/19/2002	5.347
4/23/2002	65.000					4/23/2002	4.174
7/16/2002	215.000		CV = error			7/16/2002	5.371
10/8/2002	185.000		K factor** = 2.523			10/8/2002	5.220
1/7/2003 45.000		'	TL# = 5.371			1/7/2003	3.807
4/2/2003 65.000		#	# Because the natural log was not possible all background values, the TL was considerable to the transfer of t		le for	4/2/2003	4.174
7/9/2003 -39.000						7/9/2003	#Func!
10/7/2003 138.000		ec	qual to the maximum b	ackground value	. .	10/7/2003	4.927
First Quarter 2013 Data Collected in January 2013 Well No. Result Gradient Result			TI 2			ormed First Qua ollected in Janua	
			N/A		Well Nu	mber LN(Result)	Result >TL?
	7.000 Downg: 4.000 Downg:		N/A N/A		MW357	6.209	VEC
	4.000 Downg: 8.000 Downg:		N/A N/A			6.209	YES
	7.000 Bowing.		N/A N/A		MW360		YES
	7.000 Sidegra 5.000 Upgrad		N/A N/A		MW363	5.986	YES
					MW366	5.509	YES
IVI W 3 / 2 43.	.000 Upgrad	lent	N/A		MW369	6.515	YES
					MW372	3.761	NO

Conclusion of Statistical Analysis on Transformed Data
The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.
MW357
MW360
MW363
MW366
MW369

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis pH

URGA
UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW369
Date Collected	Result
3/18/2002	6.100
4/22/2002	6.100
7/15/2002	6.100
10/8/2002	6.500
1/8/2003	6.500
4/3/2003	6.600
7/8/2003	6.500
10/6/2003	6.500
Well Number:	MW372
Well Number: Date Collected	MW372 Result
Date Collected	Result
Date Collected 3/19/2002	Result 6.100
Date Collected 3/19/2002 4/23/2002	Result 6.100 6.120
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 6.100 6.120 6.100
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.100 6.120 6.100 6.060
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.100 6.120 6.100 6.060 6.260

Statistics on Background Data
X= 6.274
S = 0.194
CV = 0.031
K factor** = 2.904
TL = 6.837
LL= 5.711

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient Resu	ılt >TL?	Result <ll?< th=""></ll?<>
MW357	6.370	Downgradient	NO	NO
MW360	6.480	Downgradient	NO	NO
MW363	7.030	Downgradient	YES	NO
MW366	6.840	Sidegradient	YES	NO
MW369	6.420	Upgradient	NO	NO
MW372	6.320	Upgradient	NO	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW363

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U First Quarter 2013 Statistical Analysis Potassium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I	Oata from
Upgradient W	Vells
Wall Number	MW260

-18	
Well Number:	MW369
Date Collected	Result
3/18/2002	2.000
4/22/2002	2.210
7/15/2002	2.000
10/8/2002	0.966
1/8/2003	0.727
4/3/2003	0.800
7/8/2003	1.620
10/6/2003	1.140
Well Number:	MW372

Date Collected

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

January 2013

Statistics on Background Data
X= 1.663
S = 0.488
CV = 0.293
K factor** = 2.523
TL= 2.895

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

7/9/2003 1.780 10/7/2003 1.790 First Quarter 2013 Data Collected in

Result	Gradient F	Result >TL?
1.650	Downgradien	t NO
1.050	Downgradien	t NO
1.150	Downgradien	t NO
1.860	Sidegradient	NO
0.499	Upgradient	NO
2.470	Upgradient	NO
	1.650 1.050 1.150 1.860 0.499	1.650 Downgradien 1.050 Downgradien 1.150 Downgradien 1.860 Sidegradient 0.499 Upgradient

Result

2.040

2.030

2.000

1.540

1.880

2.090

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Sodium URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			
Well Number:	MW369		
Date Collected	Result		
3/18/2002	35.700		
4/22/2002	37.600		
7/15/2002	42.400		
10/8/2002	66.900		
1/8/2003	67.900		
4/3/2003	61.800		
7/8/2003	45.600		
10/6/2003	59.100		
Well Number:	MW372		
Date Collected	Result		
3/19/2002	37.200		
4/23/2002	38.600		
7/16/2002	35.600		
10/8/2002	37.500		
1/7/2003	34.100		

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data
X= 45.100
S= 11.875
CV = 0.263
K factor** = 2.523
TL= 75.061

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

34.400

44.100 43.100

Well No.	Result	Gradient Re	esult >TL?
MW357	38.600	Downgradient	NO
MW360	56.300	Downgradient	NO
MW363	32.800	Downgradient	NO
MW366	42.100	Sidegradient	NO
MW369	54.000	Upgradient	NO
MW372	63.700	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W	
Well Number:	MW369
Date Collected	Result
3/18/2002	15.500
4/22/2002	15.800
7/15/2002	13.800
10/8/2002	6.900
1/8/2003	10.500
4/3/2003	10.500
7/8/2003	10.900
10/6/2003	16.300
Well Number:	MW372
Date Collected	Result
3/19/2002	71.700
4/23/2002	74.700
7/16/2002	74.100

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

70.500

75.800

81.800

83.600

88.100

10/8/2002 1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well No.	Result	Gradient Resu	lt > TL?
MW357	62.000	Downgradient	NO
MW360	20.000	Downgradient	NO
MW363	24.000	Downgradient	NO
MW366	42.000	Sidegradient	NO
MW369	6.500	Upgradient	NO
MW372	160.00	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis **Technetium-99**

UNITS: pCi/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW369	_
Data Callastad	Dogult	_

Well Number:	MW369
Date Collected	Result
3/18/2002	41.700
4/22/2002	53.100
7/15/2002	18.100
10/8/2002	16.400
1/8/2003	3.490
4/3/2003	9.340
7/8/2003	17.500
10/6/2003	17.000
Well Number:	MW372

Date Collected

3/19/2002

4/23/2002

7/16/2002

10/8/2002

Statistics on **Background Data**

X = 20.821S = 18.044CV = 0.867K factor** = 2.523 TL= 66.344

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

1/7/2003 -0.9734/2/2003 9.070 7/9/2003 0.000 10/7/2003 36.900

First Quarter 2013 Data Collected in January 2013

Result

44.800

0.802

19.800

46.100

Well No.	Result	Gradient R	lesult >TL?
MW357	27.700	Downgradien	t NO
MW360	4.540	Downgradien	t NO
MW363	9.810	Downgradien	t NO
MW366	60.500	Sidegradient	NO
MW369	30.500	Upgradient	NO
MW372	30.600	Upgradient	NO

Conclusion of Statistical Analysis on Data

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis **Total Organic Carbon (TOC)**

UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data					
Well Number:	MW369	X= 3.513		Well Number:	MW369		
Date Collected	Result	S= 4.307		Date Collected	LN(Result)		
3/18/2002	1.700	CV= 1.226		3/18/2002	0.531		
4/22/2002	1.600	K factor** = 2.523 TL= 14.378		4/22/2002	0.470		
7/15/2002	3.100	1L= 14.3/8		7/15/2002	1.131		
10/8/2002	17.700	Because CV is greater t	han 1, the natural	10/8/2002	2.874		
1/8/2003	9.000	logarithm of backgroun	d and test well results	1/8/2003	2.197		
4/3/2003	4.000	were calculated.		4/3/2003	1.386		
7/8/2003	4.900	Statistics on		7/8/2003	1.589		
10/6/2003	2.400	Transformed		10/6/2003	0.875		
Well Number:	MW372	Background Data		Well Number:	MW372		
Date Collected	Result	X= 0.851		Date Collected	LN(Result)		
3/19/2002	1.000	S= 0.828		3/19/2002	0.000		
4/23/2002	1.200	CV= 0.973		4/23/2002	0.182		
7/16/2002	1.000			7/16/2002	0.000		
10/8/2002	1.000	K factor** = 2.523		10/8/2002	0.000		
1/7/2003	1.600	TL= 2.940		1/7/2003	0.470		
4/2/2003	1.500			4/2/2003	0.405		
7/9/2003	3.000			7/9/2003	1.099		
10/7/2003	1.500			10/7/2003	0.405		

First Quarter 2013 Data Collected in	
January 2013	

Well No.	Result	Gradient	Result >TL?
MW357	1.000	Downgradie	nt N/A
MW360	1.200	Downgradie	nt N/A
MW363	1.200	Downgradie	nt N/A
MW366	1.000	Sidegradient	N/A
MW369	1.400	Upgradient	N/A
MW372	2.200	Upgradient	N/A

Transformed First Quarter 2013 Data Collected in January 2013

Well Number	LN(Result)	Result >TL?
MW357	0.000	NO
MW360	0.182	NO
MW363	0.182	NO
MW366	0.000	NO
MW369	0.336	NO
MW372	0.788	NO

Conclusion of Statistical Analysis on Transformed Data

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Total Organic Halides (TOX)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

URGA

UNITS: ug/L

Background D Upgradient W	
Well Number:	MW369
Date Collected	Result
3/18/2002	50.000
4/22/2002	50.000
7/15/2002	81.000
10/8/2002	202.000
1/8/2003	177.000
4/3/2003	93.100

17.500

37.500

MW372

Result

184.000

50.000

7/16/2002 50.000 10/8/2002 50.000 1/7/2003 10.000 4/2/2003 12.700 7/9/2003 10.000 10/7/2003 12.600

7/8/2003

10/6/2003

Well Number:

Date Collected

3/19/2002

4/23/2002

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient I	Result >TL?
MW357	18.000	Downgradier	nt NO
MW360	16.000	Downgradier	nt NO
MW363	11.000	Downgradier	nt NO
MW366	21.000	Sidegradient	NO
MW369	29.000	Upgradient	NO
MW372	22.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Boron LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Well Number:	MW370
Date Collected	Result
3/17/2002	2.000
4/23/2002	2.000
7/15/2002	2.000
10/8/2002	0.200
1/8/2003	0.200
4/3/2003	0.200
7/9/2003	0.200
10/6/2003	0.200
Well Number:	MW373

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Statistics on Background Data

X= 1.140 S= 0.780 CV= 0.684 K factor** = 2.523 TL= 3.108

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

Result

2.000

2.000

2.000

0.790

0.807

1.130

1.280

1.240

Well No.	Result	Gradient R	Result >TL?
MW358	0.358	Downgradien	t NO
MW361	0.200	Downgradien	t NO
MW364	0.200	Downgradien	t NO
MW367	0.200	Sidegradient	NO
MW370	0.200	Upgradient	NO
MW373	2.020	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis **LRGA** UNITS: mg/L **Calcium**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is entration in that well.

atistically significant evidence of elevated conce				
Background D Upgradient W		Statistics on Background		
Well Number: MW370		X= 43.413		
Date Collected	Result	S= 13.444		
3/17/2002	34.800	CV = 0.310		
4/23/2002	43.400	K factor**		
7/15/2002	33.200	TL= 77.331		
10/8/2002	29.200	Because CV is		
1/8/2003	31.300	assume norma		
4/3/2003	32.400	with statistical		
7/9/2003	22.900			
10/6/2003	28.000			
Well Number:	MW373	_		
Date Collected	Result	-		
3/18/2002	61.900			
4/23/2002	59.200			

Statistics on Background Data
X= 43.413
S= 13.444
CV = 0.310
K factor** = 2.523
TL= 77.331

is less than or equal to 1, al distribution and continue al anaylsis.

First Quarter 2013 Data Collected in January 2013

47.600

46.100

49.200

57.800

52.700

64.900

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well No.	Result	Gradient Resul	lt >TL?
MW358	35.600	Downgradient	NO
MW361	29.200	Downgradient	NO
MW364	28.100	Downgradient	NO
MW367	15.600	Sidegradient	NO
MW370	29.500	Upgradient	NO
MW373	82.500	Upgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Chloride

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: mg/L

Background Data from Upgradient Wells		
Well Number:	MW370	
Date Collected	Result	
7/15/2002	55.500	
10/8/2002	53.600	
1/8/2003	52.900	
4/3/2003	53.600	
7/9/2003	51.900	
10/6/2003	53.000	
1/7/2004	53.000	
4/7/2004	51.600	
Well Number:	MW373	
Date Collected	Result	

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

Statistics on Background Data
X= 45.919 S= 7.524 CV= 0.164 K factor** = 2.523 TL= 64.901

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

40.600

38.800

39.000

38.400

38.100

38.000

37.900

38.800

Well No.	Result	Gradient I	Result >TL?
MW358	29.000	Downgradien	t NO
MW361	32.000	Downgradien	t NO
MW364	32.000	Downgradien	t NO
MW367	7.700	Sidegradient	NO
MW370	43.000	Upgradient	NO
MW373	48.000	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Cobalt

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	
Well Number:	MW370	X= 0.027		Well Number:	MW370
Date Collected	Result	S = 0.032		Date Collected	LN(Result)
3/17/2002	0.025	CV= 1.165		3/17/2002	-3.689
4/23/2002	0.025	K factor** = 2.523		4/23/2002	-3.689
7/15/2002	0.025	TL= 0.108		7/15/2002	-3.689
10/8/2002	0.017	Because CV is greater the	han 1, the natural	10/8/2002	-4.051
1/8/2003	0.011	logarithm of background		1/8/2003	-4.556
4/3/2003	0.009	were calculated.		4/3/2003	-4.677
7/9/2003	0.137	Statistics on		7/9/2003	-1.988
10/6/2003	0.046	Transformed			-3.073
Well Number:	MW373	Background Data			MW373
Date Collected	Result	X= -4.058		Date Collected	LN(Result)
3/18/2002	0.025	S= 1.011		3/18/2002	-3.689
4/23/2002	0.034	CV = -0.249		4/23/2002	-3.381
7/16/2002	0.025	1 - 1 - 1		7/16/2002	-3.689
10/8/2002	0.004	K factor** = 2.523		10/8/2002	-5.494
1/7/2003	0.003	TL = -1.507		1/7/2003	-5.672
4/2/2003	0.004			4/2/2003	-5.605
7/9/2003	0.041			7/9/2003	-3.206
10/7/2003	0.008			10/7/2003	-4.776

First Quarter 2013 Data Collected in
January 2013

Well No.	Result	Gradient	Result >TL?
MW358	0.003	Downgradie	nt N/A
MW361	0.001	Downgradie	nt N/A
MW364	0.001	Downgradie	nt N/A
MW367	0.003	Sidegradient	N/A
MW370	0.001	Upgradient	N/A
MW373	0.001	Upgradient	N/A

LRGA

UNITS: mg/L

Well Number	LN(Result)	Result >TL?	
MW358	-5.799	NO	
MW361	-6.908	NO	
MW364	-6.908	NO	
MW367	-5.687	NO	
MW370	-6.908	NO	
MW373	-6.908	NO	

Conclusion of Statistical Analysis on Transformed Data

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Conductivity

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: umho/cm

Background Data from Upgradient Wells		
Well Number:	MW370	
Date Collected	Result	
3/17/2002	406.000	
4/23/2002	543.000	
7/15/2002	476.000	
10/8/2002	441.000	
1/8/2003	486.000	
4/3/2003	466.000	
7/9/2003	479.000	
10/6/2003	435.000	
Well Number:	MW373	
Date Collected	Result	
3/18/2002	661.000	

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

10/7/2003

X= 608.719 S= 156.157 CV= 0.257 K factor** = 2.523
TL= 1002.702

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

801.000

774.000

680.000 686.500

763.000

828.000

814.000

Well No.	Result	Gradient I	Result >TL?
MW358	541.00	Downgradien	t NO
MW361	477.00	Downgradien	t NO
MW364	440.00	Downgradien	t NO
MW367	278.00	Sidegradient	NO
MW370	436.00	Upgradient	NO
MW373	935.00	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Dissolved Oxygen

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: mg/L

Upgradient Wells	
Well Number:	MW370
Date Collected	Result
3/17/2002	4.320
4/23/2002	1.240
7/15/2002	0.750
10/8/2002	0.940
1/8/2003	3.080

1.450

1.220

1.070

Statistics on Background Data
X= 1.387 S= 1.153 CV= 0.831
K factor** = 2.523 TL= 4.295

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Well Number: MW373 Date Collected Result 3/18/2002 3.040 4/23/2002 0.030 7/16/2002 0.230 10/8/2002 0.860 1/7/2003 0.210 4/2/2003 1.190 7/9/2003 1.100 10/7/2003 1.460

4/3/2003

7/9/2003

10/6/2003

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient Resu	ılt >TL?
MW358	1.010	Downgradient	NO
MW361	4.140	Downgradient	NO
MW364	1.800	Downgradient	NO
MW367	1.500	Sidegradient	NO
MW370	3.700	Upgradient	NO
MW373	2.210	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis **Dissolved Solids**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: mg/L

Background Data from Upgradient Wells		Statistics on Background Data
Well Number:	MW370	X= 356.188
Date Collected	Result	S= 106.752
3/17/2002	236.000	CV = 0.300
4/23/2002	337.000	K factor** = 2.523
7/15/2002	266.000	TL= 625.523
10/8/2002	240.000	Because CV is less that
1/8/2003	282.000	assume normal distrib

238.000

248.000

224.000

MW373

Result

427.000

507.000

464.000

408.000 404.000

450.000

487.000

481.000

less than or equal to 1, distribution and continue with statistical analysis.

10/7/2003 First Quarter 2013 Data Collected in January 2013

4/3/2003

7/9/2003

10/6/2003

Well Number:

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003 4/2/2003

7/9/2003

Well No. Result Gradient Result >	·IL!
MW358 295.00 Downgradient	NO
MW361 268.00 Downgradient	NO
MW364 242.00 Downgradient	NO
MW367 140.00 Sidegradient	NO
MW370 230.00 Upgradient	NO
MW373 568.00 Upgradient	NO

Conclusion of Statistical Analysis on Data

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Iron LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW370	
Date Collected	Result	
3/17/2002	9.340	
4/23/2002	4.330	
7/15/2002	3.520	
10/8/2002	7.450	
1/8/2003	7.040	
4/3/2003	4.640	
7/9/2003	15.800	

6.490

MW373

Result

37.600

19.000

10.700

3.750

3.870

10/6/2003

Well Number:

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

January 2013

Statistics on Background Data
X= 9.230
S= 8.841
CV = 0.958
K factor** = 2.523
TL= 31.535

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

4/2/2003 3.500 7/9/2003 7.720 10/7/2003 2.930 First Quarter 2013 Data Collected in

Well No.	Result	Gradient I	Result >TL?
MW358	2.150	Downgradier	nt NO
MW361	0.100	Downgradier	nt NO
MW364	0.134	Downgradier	nt NO
MW367	12.000	Sidegradient	NO
MW370	0.100	Upgradient	NO
MW373	0.100	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Magnesium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data
Well Number:	MW370	X= 17.544
Date Collected	Result	S= 5.911
3/17/2002	12.100	CV = 0.337
4/23/2002	15.100	K factor** = 2.523
7/15/2002	12.400	TL= 32.458
10/8/2002	12.200	Because CV is less that
1/8/2003	11.500	assume normal distrib

12.300

10.000

12.100

MW373

Result

24.800

22.700

18.800

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

 10/8/2002
 21.100

 1/7/2003
 19.900

 4/2/2003
 25.500

 7/9/2003
 23.300

 10/7/2003
 26.900

4/3/2003

7/9/2003

10/6/2003

Well Number:

Date Collected

3/18/2002

4/23/2002

7/16/2002

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient F	Result >TL?
MW358	15.300	Downgradien	t NO
MW361	12.100	Downgradien	t NO
MW364	11.200	Downgradien	t NO
MW367	7.630	Sidegradient	NO
MW370	11.700	Upgradient	NO
MW373	30.300	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW370	
Date Collected	Result	-

3/17/2002 0.244 4/23/2002 1.820 7/15/2002 1.220 10/8/2002 0.9881/8/2003 0.729 4/3/2003 0.637 7/9/2003 2.510 10/6/2003 1.050

Well Number:

Date Collected

3/18/2002

4/23/2002

7/16/2002

Statistics on Background Data X= 1.080 S= 0.674

CV= 0.624 K factor** = 2.523 TL= 2.780

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

10/8/2002 0.717 1/7/2003 0.587 4/2/2003 0.545 7/9/2003 1.760 10/7/2003 0.570

First Quarter 2013 Data Collected in January 2013

MW373

Result

0.355

2.160

1.390

Well No.	Result	Gradient Re	esult >TL?
MW358	0.570	Downgradient	NO
MW361	0.005	Downgradient	NO
MW364	0.017	Downgradient	NO
MW367	1.680	Sidegradient	NO
MW370	0.005	Upgradient	NO
MW373	0.019	Upgradient	NO
MW373	0.019	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Nickel LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		
Well Number:	MW370	
Date Collected	Result	
3/17/2002	0.050	
4/23/2002	0.050	
7/15/2002	0.050	<u>_</u>
10/8/2002	0.005	В

0.005

0.005

0.026

Statistics on Background Data
X= 0.024
S= 0.022 CV= 0.901
K factor** = 2.523 TL= 0.078

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

10/6/2003 0.010 Well Number: MW373 Date Collected Result 3/18/2002 0.050 4/23/2002 0.050 7/16/2002 0.050 10/8/2002 0.005 1/7/2003 0.005 4/2/2003 0.005 7/9/2003 0.011 10/7/2003 0.005

1/8/2003

4/3/2003

7/9/2003

First Quarter 2013 Data Collected in January 2013

MW358 0.005 Downgradient NO	
11111330 0.003 Downgradient 140	
MW361 0.005 Downgradient NO	
MW364 0.005 Downgradient NO	
MW367 0.005 Sidegradient NO	
MW370 0.005 Upgradient NO	
MW373 0.005 Upgradient NO	

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis **Oxidation-Reduction Potential**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: mV

Background I Upgradient W		Statistics on Background Data Transformed Backgr Data from Upgradien				
Well Number:	MW370	X= 46.688			Well Number:	MW370
Date Collected	Result	S= 60.986			Date Collected	LN(Result)
3/17/2002	140.000	CV= 1.306			3/17/2002	4.942
4/23/2002	-15.000	K factor** = 2.523 TL= 200.555			4/23/2002	#Func!
7/15/2002	5.000	1L- 200.555			7/15/2002	1.609
4/3/2003	49.000	Because CV is greater t	han 1, the natural		4/3/2003	3.892
7/9/2003	-35.000	logarithm of backgroun	d and test well resul	lts	7/9/2003	#Func!
10/6/2003	40.000	were calculated.			10/6/2003	3.689
1/7/2004	101.000	Statistics on			1/7/2004	4.615
4/7/2004	105.000	Transformed			4/7/2004	4.654
Well Number:	MW373	Background Data			Well Number:	MW373
Date Collected	Result	X = error			Date Collected	LN(Result)
3/18/2002	140.000	S = error			3/18/2002	4.942
4/23/2002	-20.000	CV = error			4/23/2002	#Func!
10/8/2002	10.000				10/8/2002	2.303
1/7/2003	10.000	K factor** = 2.523			1/7/2003	2.303
4/2/2003	67.000	TL# = 4.942			4/2/2003	4.205
7/9/2003	-29.000	# Because the natural lo	g was not possible	for	7/9/2003	#Func!
10/7/2003	127.000	all background values, t		red	10/7/2003	4.844
1/6/2004	52.000	equal to the maximum b	background value.		1/6/2004	3.951
First Quarter 2013 Data Collected in January 2013 Transformed First Quarter 2013 Data Collected in January 2013						
Well No. Resu	lt Gradient Res	sult >TL?	W	all No	mber LN(Result)	Pacult >TI 9
	000 Downgradient	N/A	w	en nu	inder Lin(Result)	Result >1L?
	000 Downgradient	N/A	M	W358	4.913	NO
	000 Downgradient	N/A	M	W361	5.855	YES
MW367 248.	000 Sidegradient	N/A	M	W364	5.613	YES

	MW373	4.419	NO
Conclusion of Statistical Analysis on Transformed Data			
The following test well(s) exceeded the Upper Tolerance Limit, whi elevated concentration with respect to background data.	ch is statistically sig	nificant eviden	ce of
MW361			
MW364			
MW367			
MW370			

MW367

MW370

5.513

6.586

YES

YES

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S)

725.000 Upgradient

83.000 Upgradient

MW370

MW373

Mean, X = (sum of background results)/(count of background results)

N/A

N/A

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis pH

d. If so, the current test well results

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from
Upgradient Wells

<u> </u>	
Well Number:	MW370
Date Collected	Result
3/17/2002	6.300
4/23/2002	6.400
7/15/2002	6.300
10/8/2002	6.300
1/8/2003	6.400
4/3/2003	6.500
7/9/2003	6.300
10/6/2003	6.500
Well Number:	MW373
Well Number: Date Collected	
Date Collected	Result
Date Collected 3/18/2002	Result 6.000
Date Collected 3/18/2002 4/23/2002	Result 6.000 6.300
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 6.000 6.300 6.450
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.000 6.300 6.450 6.180
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.000 6.300 6.450 6.180 6.350
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 6.000 6.300 6.450 6.180 6.350 6.140

Statistics on Background Data
X= 6.283
S = 0.159
CV = 0.025
K factor** = 2.904
TL = 6.745
LL= 5.820

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient Resu	lt >TL?	Result <ll?< th=""></ll?<>
MW358	6.470	Downgradient	NO	NO
MW361	6.390	Downgradient	NO	NO
MW364	6.420	Downgradient	NO	NO
MW367	6.890	Sidegradient	YES	NO
MW370	6.200	Upgradient	NO	NO
MW373	6.320	Upgradient	NO	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-U First Quarter 2013 Statistical Analysis Potassium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: mg/L

Background Data from Upgradient Wells			
Well Number:	MW370		
Date Collected	Result		
3/17/2002	3.220		
4/23/2002	3.430		
7/15/2002	2.980		
10/8/2002	2.460		
1/8/2003	2.410		
4/3/2003	2.430		

2.440

Statistics on Background Data
X= 2.823
S= 0.522 CV= 0.185
K factor** = 2.523
TL= 4.139

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

10/6/2003 2.480 Well Number: MW373 Date Collected Result 3/18/2002 4.340 4/23/2002 3.040 7/16/2002 2.930 10/8/2002 2.300 1/7/2003 2.450 4/2/2003 2.700 7/9/2003 2.680 10/7/2003 2.880

7/9/2003

First Quarter 2013 Data Collected in January 2013

MW358 2.490 Downgradient NO)
MW361 2.020 Downgradient NO)
MW364 1.970 Downgradient NO)
MW367 2.610 Sidegradient NO)
MW370 2.440 Upgradient NO)
MW373 3.260 Upgradient NO)

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Sodium LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data
Well Number:	MW370	X= 51.544
Date Collected	Result	S= 15.227
3/17/2002	31.800	CV = 0.295
4/23/2002	50.000	K factor** = 2.523
7/15/2002	44.700	TL= 89.962
10/8/2002	40.000	Because CV is less that
1/8/2003	44.600	assume normal distrib

41.900

40.000

38.100

MW373

Result

43.400

79.800

87.700

61.600

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

1/7/2003 59.300 4/2/2003 62.100 7/9/2003 50.100 10/7/2003 49.600

4/3/2003

7/9/2003

10/6/2003

Well Number:

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

First Quarter 2013 Data Collected in January 2013

Well No.	Result	Gradient Re	esult >TL?
MW358	39.100	Downgradient	NO
MW361	39.100	Downgradient	NO
MW364	40.600	Downgradient	NO
MW367	16.600	Sidegradient	NO
MW370	39.200	Upgradient	NO
MW373	70.400	Upgradient	NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Sulfate LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data			Transformed Data from Upg	Background gradient Wells
Well Number:	MW370	X= 122.381			Well Number:	MW370
Date Collected	Result	S= 195.095			Date Collected	LN(Result)
3/17/2002	17.400	CV= 1.594			3/17/2002	2.856
4/23/2002	37.900	K factor** = 2.523 TL= 614.606			4/23/2002	3.635
7/15/2002	15.700	TL= 014.000			7/15/2002	2.754
10/8/2002	13.400	Because CV is greater t	han 1, the natural		10/8/2002	2.595
1/8/2003	14.400	logarithm of backgroun	d and test well res	sults	1/8/2003	2.667
4/3/2003	18.100	were calculated.			4/3/2003	2.896
7/9/2003	9.600	Statistics on			7/9/2003	2.262
10/6/2003	16.500	Transformed			10/6/2003	2.803
Well Number:	MW373	Background Data			Well Number:	MW373
Date Collected	Result	X= 3.985			Date Collected	LN(Result)
3/18/2002	163.300	S= 1.323			3/18/2002	5.096
4/23/2002	809.600	CV = 0.332			4/23/2002	6.697
7/16/2002	109.400				7/16/2002	4.695
10/8/2002	110.600	K factor** = 2.523			10/8/2002	4.706
1/7/2003	113.700	TL= 7.322			1/7/2003	4.734
4/2/2003	133.000		-		4/2/2003	4.890
7/9/2003	182.100				7/9/2003	5.205
10/7/2003	193.400				10/7/2003	5.265
First Quarter 2	2013 Data Co	llected in		Transfo	rmed First Qua	rter 2013 Data

First Quarter 2013 Data Collected in	
January 2013	

Well No.	Result	Gradient	Result >T	Ľ?
MW358	99.000	Downgradie	nt N	/A
MW361	81.000	Downgradie	nt N	/A
MW364	63.000	Downgradie	nt N	/A
MW367	22.000	Sidegradient	N.	/A
MW370	20.000	Upgradient	N.	/A
MW373	210.000	Upgradient	N.	/A

Transformed First Quarter 2013 Data Collected in January 2013

Well Number	LN(Result)	Result >TL?
MW358	4.595	NO
MW361	4.394	NO
MW364	4.143	NO
MW367	3.091	NO
MW370	2.996	NO
MW373	5.347	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Technetium-99

LRGA UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data			Background gradient Wells
Well Number:	MW370	X= 7.655		Well Number:	MW370
Date Collected	Result	S= 13.274		Date Collected	LN(Result)
3/17/2002	10.800	CV= 1.734		3/17/2002	2.380
4/23/2002	8.530	K factor** = 2.523		4/23/2002	2.144
7/15/2002	5.090	TL= 41.146		7/15/2002	1.627
10/8/2002	4.780	Because CV is greater than 1,	, the natural	10/8/2002	1.564
1/8/2003	-5.120	logarithm of background and	test well results	1/8/2003	#Func!
4/3/2003	5.110	were calculated.		4/3/2003	1.631
7/9/2003	4.250	Statistics on		7/9/2003	1.447
10/6/2003	6.540	Transformed		10/6/2003	1.878
Well Number:	MW373	Background Data		Well Number:	MW373
Date Collected	Result	X = error		Date Collected	LN(Result)
3/18/2002	16.500	S = error		3/18/2002	2.803
4/23/2002	3.490			4/23/2002	1.250
7/16/2002	1.420	CV = error		7/16/2002	0.351
10/8/2002	-6.060	K factor** = 2.523		10/8/2002	#Func!
1/7/2003	-8.410	TL# = 3.833		1/7/2003	#Func!
4/2/2003	26.300	# Because the natural log was	not possible for	4/2/2003	3.270
7/9/2003	3.060	all background values, the TL		7/9/2003	1.118
10/7/2003	46.200	equal to the maximum backgr		10/7/2003	3.833

irst Qu anuary			3 Da	ta (Colle	cted	in	
 11 3 7	_	•	~			_	-	

Well No.	Result	Gradient	Result >TL?
MW358	38.500	Downgradie	nt N/A
MW361	39.600	Downgradie	nt N/A
MW364	49.100	Downgradie	nt N/A
MW367	6.300	Sidegradient	N/A
MW370	18.300	Upgradient	N/A
MW373	64.000	Upgradient	N/A

Transformed First Quarter 2013
Data Collected in January 2013

Well Number	er LN(Result)	Result >TL?
MW358	3.651	NO
MW361	3.679	NO
MW364	3.894	YES
MW367	1.841	NO
MW370	2.907	NO
MW373	4.159	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW364

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis **Total Organic Carbon (TOC)**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	Background gradient Wells	
Well Number:	MW370	X= 6.169		Well Number:	MW370	
Date Collected	Result	S= 12.072		Date Collected	LN(Result)	
3/17/2002	1.200	CV= 1.957 K factor** = 2.523		3/17/2002	0.182	
4/23/2002	4.300	K = 2.523 $TL = 36.626$		4/23/2002	1.459	
7/15/2002	2.600	1L- 30.020		7/15/2002	0.956	
10/8/2002	2.300	Because CV is greater t	han 1, the natural	10/8/2002	0.833	
1/8/2003	3.000	logarithm of backgroun	d and test well results	1/8/2003	1.099	
4/3/2003	1.200	were calculated.		4/3/2003	0.182	
7/9/2003	2.600	Statistics on		7/9/2003	0.956	
10/6/2003	1.700	Transformed		10/6/2003	0.531	
Well Number:	MW373	Background Data		Well Number:	MW373	
Date Collected	Result	X= 1.069		Date Collected	LN(Result)	
3/18/2002	1.100	S= 1.014		3/18/2002	0.095	
4/23/2002	17.500	CV= 0.948		4/23/2002	2.862	
7/16/2002	49.000			7/16/2002	3.892	
10/8/2002	2.900	K factor** = 2.523		10/8/2002	1.065	
1/7/2003	3.900	TL= 3.626		1/7/2003	1.361	
4/2/2003	2.500			4/2/2003	0.916	
7/9/2003	1.700			7/9/2003	0.531	
10/7/2003	1.200			10/7/2003	0.182	
First Quarter 2 January 2013	First Quarter 2013 Data Collected in January 2013 Transformed First Quarter 2013 Data Collected in January 2013					
Well No. Resul	Vell No. Result Gradient Result >TL? Well Number LN(Result) Result >TL?					

Well No.	Result	Gradient	Result >TL?
MW358	1.100	Downgradie	nt N/A
MW361	1.000	Downgradie	nt N/A
MW364	1.000	Downgradie	nt N/A
MW367	1.000	Sidegradient	N/A
MW370	1.000	Upgradient	N/A
MW373	1.000	Upgradient N/A	

Well Number	LN(Result)	Result >TL?
MW358	0.095	NO
MW361	0.000	NO
MW364	0.000	NO
MW367	0.000	NO
MW370	0.000	NO
MW373	0.000	NO

LRGA

UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Data

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-U First Quarter 2013 Statistical Analysis Total Organic Halides (TOX)

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

LRGA

UNITS: ug/L

Background Data from Upgradient Wells
--

Well Number:	MW370
Date Collected	Result
3/17/2002	50.000
4/23/2002	228.000
7/15/2002	88.000
10/8/2002	58.000
1/8/2003	72.400
4/3/2003	26.600
7/9/2003	16.400
10/6/2003	31.100

Well Number:

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

January 2013

Statistics on Background Data X= 79.819 S= 78.470 CV= 0.983

K factor** = 2.523 TL= 277.798

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

4/2/2003 57.800 7/9/2003 10.000 10/7/2003 13.900 First Quarter 2013 Data Collected in

MW373

Result

50.000

276.000

177.000

76.000

45.900

Well No. Result Gradient Result >TL? MW358 20.000 Downgradient NO 18.000 Downgradient NO MW361 MW364 14.000 Downgradient NO MW367 15.000 Sidegradient NO MW370 20.000 Upgradient NO MW373 36.000 Upgradient NO

Conclusion of Statistical Analysis on Data

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

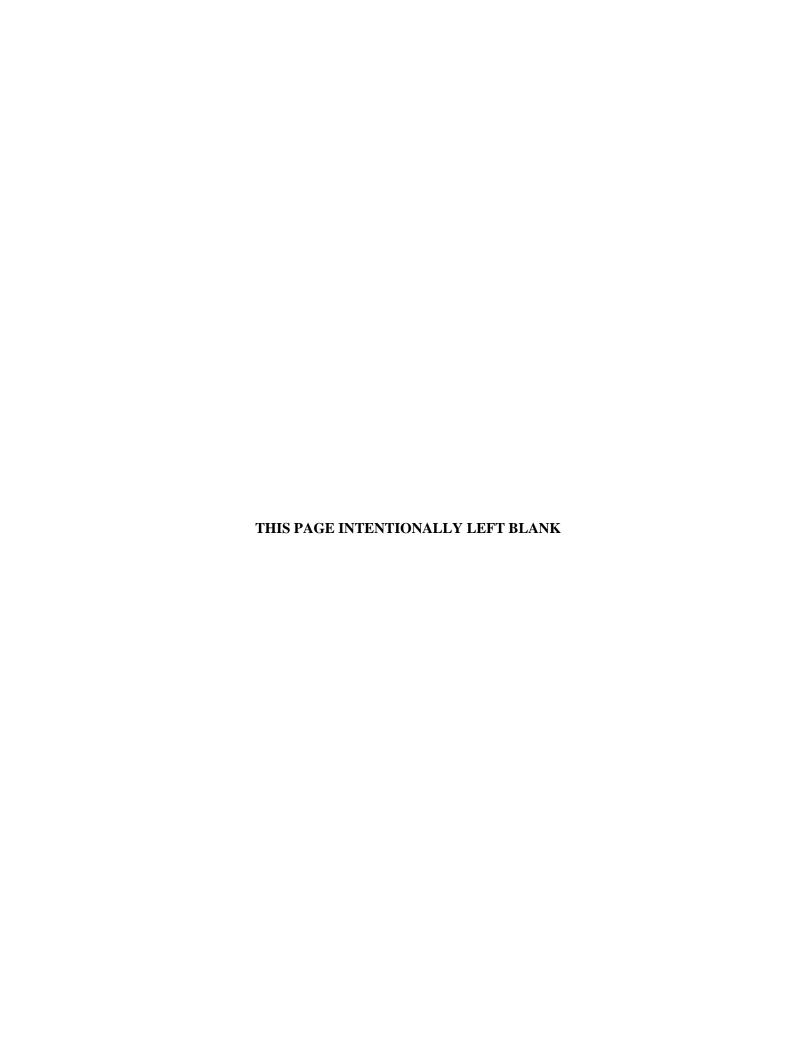
May 2, 2013

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Geologist, with a Bachelor of Science degree, I have over eight years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities.


For this project, the statistical analyses conducted on the first quarter 2013 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely,

C. Travis Debnam

LATA Project Geologist

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

Facility: U.S. DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

GROUNDWATER FLOW RATE AND DIRECTION

Finds/Unit: KY8-890-008-982/1

LAB ID: None

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2013 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on January 3, 2013. As shown on Figure E.1, Upper Continental Recharge System (UCRS) well MW368 had insufficient water to permit both water level measurement and sampling. In addition, during this reporting period, UCRS wells MW359, MW365, MW376 and MW377 had insufficient water to permit sampling (but an adequate amount of water for water level measurement). UCRS well MW362 had insufficient water to permit the full collection of the well sample (but an adequate amount of water for water level measurement).

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradient for the URGA at the C-746-U Landfill was 6.29 x 10⁻⁴ ft/ft and for the LRGA was 6.08 x 10⁻⁴ ft/ft. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 3.12 x 10⁻⁴ ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the landfill typically trends northeastward toward the Ohio River. In January 2013, groundwater flow was northeastward with the regional flow.

Table E.1. C-746-U Landfill First Quarter 2013 (January) Water Levels

			C-746-U	Landfill (Janua	ry 2013) V	Vater Levels				
							Raw	y Data	*Corre	ected Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/3/2013	08:04	MW357	URGA	368.90	30.33	0.01	49.89	319.01	49.90	319.00
1/3/2013	08:07	MW358	LRGA	369.05	30.33	0.01	50.05	319.00	50.06	318.99
1/3/2013	08:06	MW359	UCRS	369.07	30.33	0.01	41.86	327.21	41.87	327.20
1/3/2013	07:59	MW360	URGA	362.20	30.33	0.01	43.22	318.98	43.23	318.97
1/3/2013	08:01	MW361	LRGA	361.47	30.33	0.01	42.46	319.01	42.47	319.00
1/3/2013	08:00	MW362	UCRS	361.95	30.33	0.01	32.81	329.14	32.82	329.13
1/3/2013	08:10	MW363	URGA	368.68	30.33	0.01	49.8	318.88	49.81	318.87
1/3/2013	08:16	MW364	LRGA	367.63	30.33	0.01	48.79	318.84	48.80	318.83
1/3/2013	08:15	MW365	UCRS	368.27	30.33	0.01	44.85	323.42	44.86	323.41
1/3/2013	08:23	MW366	URGA	369.06	30.33	0.01	50.04	319.02	50.05	319.01
1/3/2013	08:21	MW367	LRGA	369.45	30.33	0.01	50.51	318.94	50.52	318.93
1/3/2013	08:22	MW368	UCRS	369.14	30.33	0.01	DRY		DRY	
1/3/2013	09:09	MW369	URGA	364.28	30.34	0.00	44.26	320.02	44.26	320.02
1/3/2013	09:05	MW370	LRGA	365.15	30.34	0.00	45.18	319.97	45.18	319.97
1/3/2013	09:07	MW371	UCRS	364.71	30.34	0.00	25.54	339.17	25.54	339.17
1/3/2013	09:16	MW372	URGA	359.49	30.34	0.00	39.49	320.00	39.49	320.00
1/3/2013	09:14	MW373	LRGA	359.79	30.34	0.00	39.81	319.98	39.81	319.98
1/3/2013	09:15	MW374	UCRS	359.50	30.34	0.00	30.05	329.45	30.05	329.45
1/3/2013	08:36	MW375	UCRS	370.24	30.33	0.01	35.03	335.21	35.04	335.20
1/3/2013	08:38	MW376	UCRS	370.44	30.33	0.01	40.12	330.32	40.13	330.31
1/3/2013	08:40	MW377	UCRS	365.76	30.33	0.01	37.82	327.94	37.83	327.93

Initial Barometric

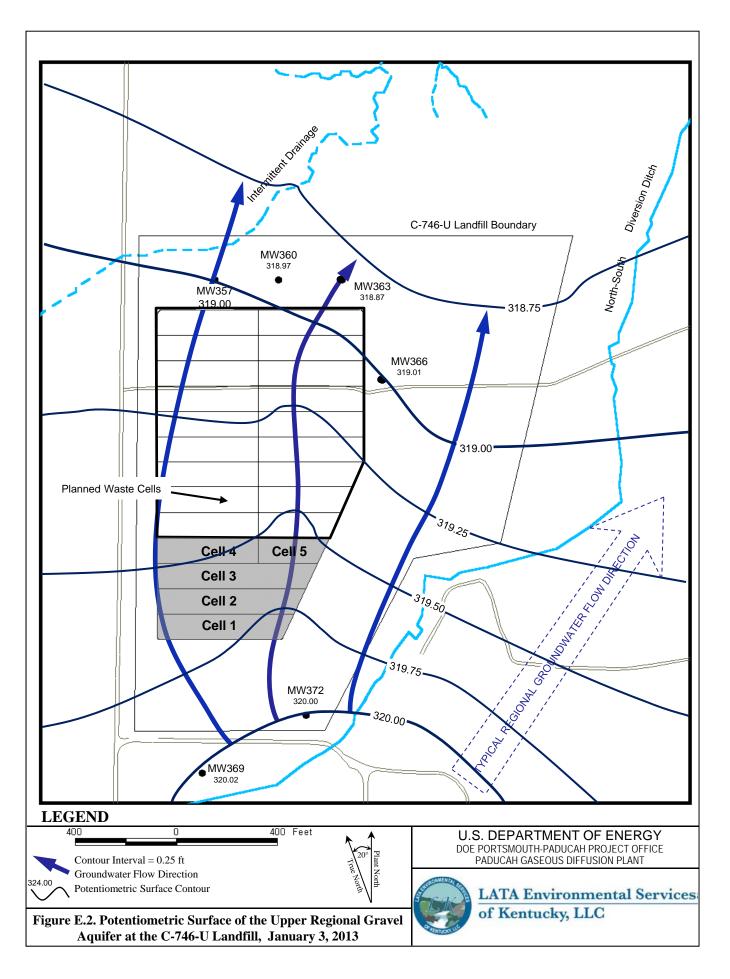
Pressure 30.34

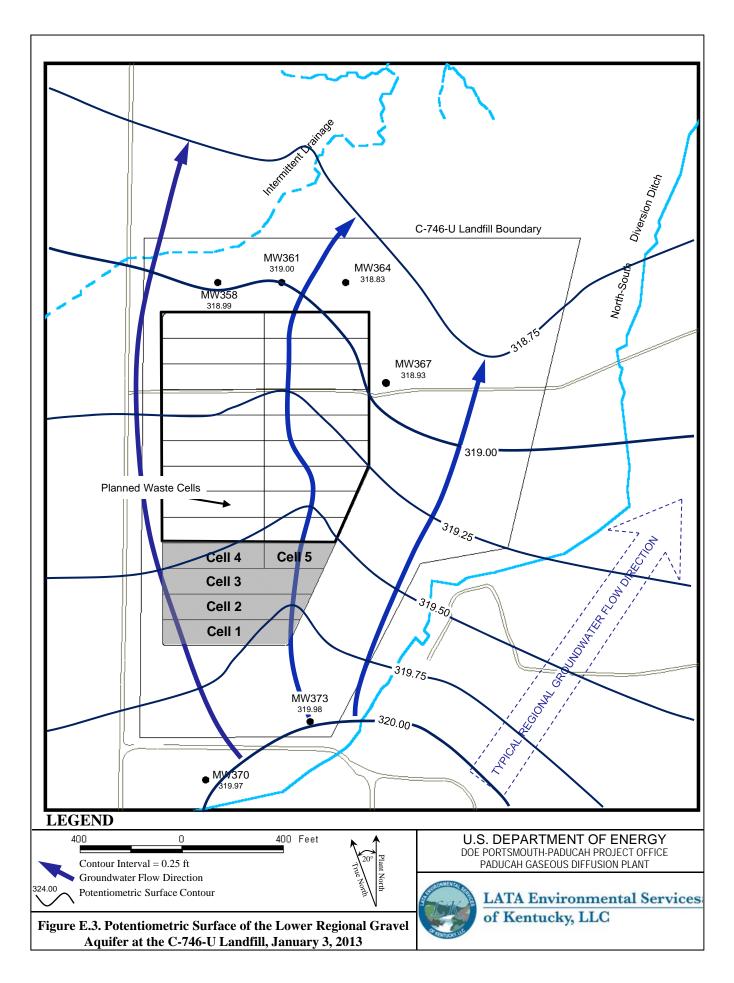
Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer


LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

ND = No Data acquired

*Assumes a barometric efficiency of 1.0

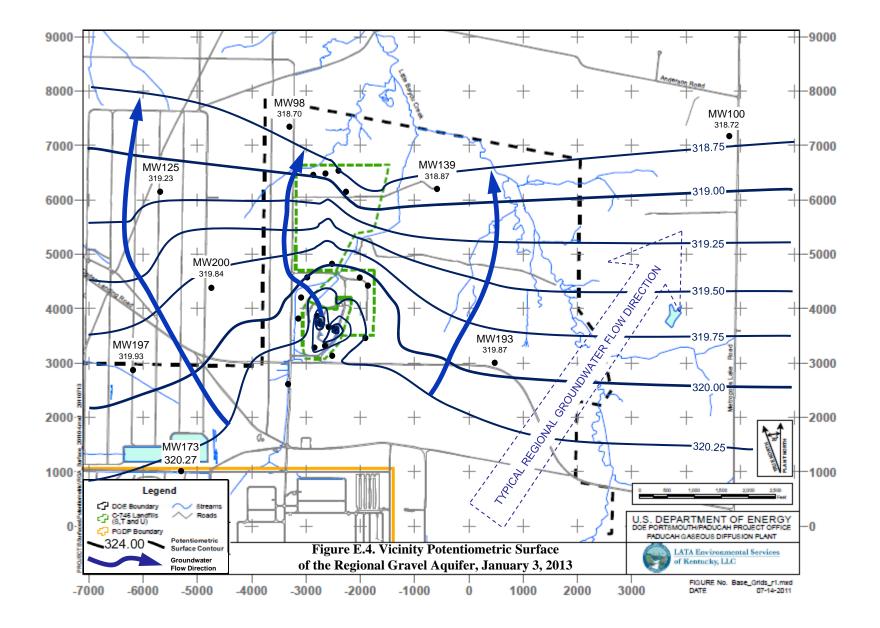
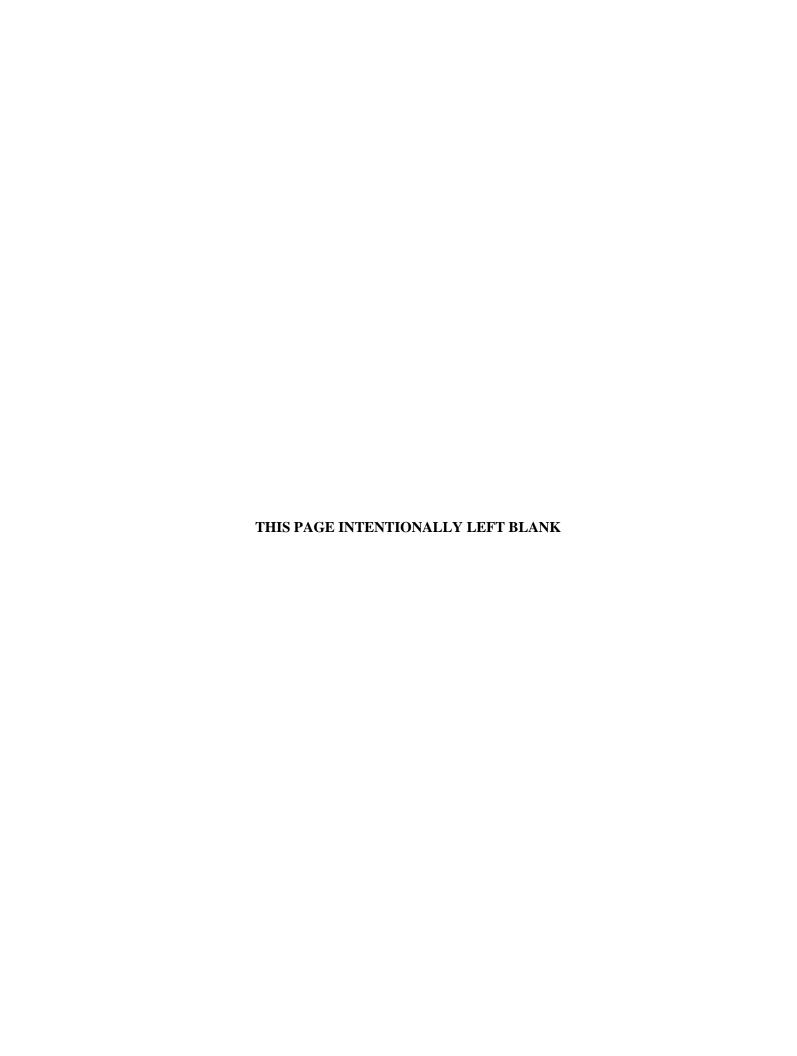



Table E.2. C-746-U Hydraulic Gradients


	ft/ft
Beneath Landfill Mound – Upper RGA	6.29 x 10 ⁻⁴
Beneath Landfill Mound – Lower RGA	6.08 x 10 ⁻⁴
Vicinity	3.12 x 10 ⁻⁴

Table E.3. C-746-U Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	c Discharge (q)	Average	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Upper RGA					
725	0.256	0.46	1.61 x 10 ⁻⁴	1.82	6.44 x 10 ⁻⁴
425	0.150	0.27	9.43 x 10 ⁻⁵	1.07	3.77 x 10 ⁻⁴
Lower RGA					
725	0.256	0.44	1.56 x 10 ⁻⁴	1.76	6.22 x 10 ⁻⁴
425	0.150	0.26	9.12 x 10 ⁻⁵	1.03	3.65 x 10 ⁻⁴

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300, Section 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the first quarter 2013 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The following are the parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to background concentrations.

Parameter Monitoring Well

Upper Continental Recharge System

None

Upper Regional Gravel Aquifer

None

Lower Regional Gravel Aquifer

Technetium-99 MW364, MW373

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

MCL Notification

A notification was submitted for parameters that exceeded the MCL. The parameters submitted are listed on the following page.

2/22/2013

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL PERMIT NUMBER 073-00045

MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4798	MW357	Trichloroethene	8260B/OA7302E	5.2	ug/L	5
8004-4808	MW372	Beta activity Trichloroethene	9310/RL7111 8260B/OA7302E	95.6 6.1	pCi/L ug/L	50 5
8004-4792	MW373	Beta activity Trichloroethene	9310/RL7111 8260B/OA7302E	56.7 6.6	pCi/L ug/L	50 5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR:	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003	+									т	*	*									
Quarter 2, 2003	+										*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003	*					*	*			<u>~</u>	*	т		*	т.			т.			
Quarter 3, 2004	1					*	<u>~</u>				<u>~</u>			<u>~</u>		*					
Quarter 3, 2004 Quarter 3, 2005	-					*										Т.					-
Quarter 4, 2005	1					*															<u> </u>
ALPHA ACTIVITY		l			l	不					l			l							<u>. </u>
	1	l			l		l	I			l		1	l	l						_
Quarter 1, 2004	+																			<u> </u>	
Quarter 2, 2004	-																			_	₩
Quarter 3, 2009																				<u> </u>	<u> </u>
ALUMINUM		1			1		1	1			4		1	1	1						T
Quarter 3, 2003											*									<u> </u>	<u> </u>
BETA ACTIVITY		I			I		I	I	l I		I		1	I	-						т—
Quarter 1, 2004																				<u> </u>	<u> </u>
Quarter 2, 2004	-																			<u> </u>	
Quarter 3, 2004	-																			<u> </u>	<u> </u>
Quarter 4, 2004																				L	<u> </u>
Quarter 4, 2005																				L	Ь
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 4, 2011	1									ľ											
Quarter 1, 2012	1																				
Quarter 2, 2012	1																				
Quarter 3, 2012																				\vdash	
																				\vdash	
Quarter 4, 2012																				<u> </u>	

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Gradient	Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Monitoring Well	-	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Quarter 1, 2013				_																		
DROMIDE Quarter 2, 2004																						
CALCIUM																						
CALCIUM Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2012 Quarter 3, 2010 Quarter 3, 2001 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2002 Quarter 4, 2012 Quarter 4, 2010 Quarter 3, 2005 Quarter 1, 2006 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quart			l					1						ملد	l		l					
Quarter 2, 2005														*								<u> </u>
Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2005 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2001 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 200			l					1			.u.			l	1		I					1
Quarter 3, 2006 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2015 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2005 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2003 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2010 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 8, 2000 Quarter 9, 200											*											114
Quarter 2, 2008																Ala.						*
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2001 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2005 Quarter 5, 2005 Quarter 6, 2005 Quarter 6, 2005 Quarter 7, 2006 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2006 Quarter 3, 2003 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 3, 2003 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 8, 2000 Quarter 9, 200																						
Quarter 4, 2009																						<u> </u>
Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2003 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2010 Quarter 4, 2005 Quarter 2, 2006 Quarter 4, 2010 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2005 Quarter 4, 2010 Quarter 3, 2005 Quarter 4, 2010 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 8, 2000 Quarter 8, 2000 Quarter 9, 200																						
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2008 Quarter 2, 2008 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 8, 2000 Quarter 9, 200																						
Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 CARBON DISULFIDE Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2005 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2000 Quarter 5, 2000 Quarter 6, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 8, 2010 Quarter 8, 2010 Quarter 9, 2010 Quarter 9, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 1, 2001 Quarter 1, 2001 Quarter 1, 2001 Quarter 2, 2006 Quarter 3, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 8, 2000 Quarter 9,																						
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 CARBON DISULFIDE Quarter 3, 2003 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2010 Quarter 2, 2006 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2000 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 1, 2001 Quarter 1, 2001 Quarter 1, 2001 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 8, 2000 Quarter 9, 2000 Quarter 9, 2000 Quarter 1, 2000		_																				<u> </u>
Quarter 2, 2011									-													<u> </u>
Quarter 3, 2011 Quarter 4, 2011 Quarter 7, 2012 Quarter 8, 2012 Quarter 9, 2003 Quarter 9, 2005 Quarter 1, 2006 Quarter 1, 2010 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 1, 2006 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2004 Quarter 3, 2006 Quarter 3, 200									<u> </u>													
Quarter 4, 2011																*						L_
Quarter 1, 2012																						
Quarter 2, 2012																						
Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2003 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2010 Quarter 3, 2002 Quarter 3, 2002 Quarter 3, 2003 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 CHLORIDE Quarter 1, 2006 CHLORIDE Quarter 1, 2006 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 COBALT Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *																						
Quarter 4, 2012																						
Quarter 1, 2013																						*
CARBON DISULFIDE																						
Quarter 3, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 8, 2000 Quarter 9, 2000 Quarte																*						*
Quarter 2, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 20003 Quarter 3, 20004 Quarter 3, 20005 Quarter 3, 20005 Quarter 3, 20005 Quarter 3, 20006 Quarter 3, 20006 CHLORIDE Quarter 1, 20003 R R R R R R R R R R R R R R R R R R R				,				1														
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 CHLORIDE Quarter 1, 2006 CHORIDE Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *											*											
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 CHEMICAL OXYGEN DEMAND Quarter 3, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *								*														
Quarter 1, 2006	Quarter 3, 2005																					
Quarter 2, 2006 * *																						
Quarter 3, 2010 *	Quarter 1, 2006																					
Quarter 4, 2010	Quarter 2, 2006						*															
Quarter 1, 2011	Quarter 3, 2010		*									*										
CHEMICAL OXYGEN DEMAND Quarter 3, 2002	Quarter 4, 2010														*							
Quarter 3, 2002																*						
Quarter 4, 2002 * * * <td></td> <td>ND</td> <td></td>		ND																				
Quarter 1, 2003	Quarter 3, 2002												*	*	*	*						
Quarter 2, 2003 * * * * * * * * * * * * * * * * Quarter 3, 2003 * * * * * * * * * * * * * * * * * * *	Quarter 4, 2002																					
Quarter 3, 2003 *																						
Quarter 4, 2003 *	Quarter 2, 2003												*									
Quarter 3, 2004 *	Quarter 3, 2003	*															*					
Quarter 3, 2005 *	Quarter 4, 2003						*					*										
Quarter 4, 2005 *	Quarter 3, 2004																					
Quarter 1, 2006 *	Quarter 3, 2005						*				*					*	*					
CHLORIDE Quarter 1, 2006	Quarter 4, 2005						*												*	*		
Quarter 1, 2006	Quarter 1, 2006																			*		
COBALT Quarter 3, 2003 * </td <td>CHLORIDE</td> <td></td>	CHLORIDE																					
COBALT Quarter 3, 2003 * </td <td>Quarter 1, 2006</td> <td></td> <td>*</td> <td></td>	Quarter 1, 2006																				*	
Quarter 1, 2004 *																						
Quarter 1, 2004 *		*						*			*	*		*	*	*	*	*	*		*	
		_	•	•		•	•	•	•										•			

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Gradient S. S. S. S. D. D. D. U. U. S. D. D. D. D. D. U. S. D. D. D. D. D. U. S. D. D. D. D. U. S. D. D. D. D. D. D. U. S. D.	Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Monitoring Well 368 375 376 377 359 362 365 371 374 366 360 363 357 369 372 367 361 364 358 370 373 374 369 372 373 374 367 373 374 374 375 375 375 375 375 375 375 375 375 375		S	S	S				D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 9, 201																						
Quarter 1, 2003		200	373	570	577	557	302	303	571	57.		500	505	307	507	372	507	501	501	550	570	373
Ouarter 2, 2003 Ouarter 1, 2004 Ouarter 1, 2004 Ouarter 2, 2004 Ouarter 2, 2004 Ouarter 3, 2005 Ouarter 3, 2005 Ouarter 3, 2005 Ouarter 3, 2006 Ouarter 3, 2006 Ouarter 3, 2006 Ouarter 3, 2006 Ouarter 3, 2007 Ouarter 3, 2007 Ouarter 3, 2007 Ouarter 3, 2007 Ouarter 3, 2008 Ouarter 3, 2008 Ouarter 4, 2007 Ouarter 3, 2008 Ouarter 3, 2009 Ouarter 4, 2009 Ouarter 3, 2009 Ouarter 3, 2009 Ouarter 3, 2009 Ouarter 3, 2009 Ouarter 4, 2009 Ouarter 4, 2009 Ouarter 3, 2009 Ouarter 4, 2009 Ouarter 4, 2009 Ouarter 4, 2010 Ouarter 3, 2010 Ouarter 4, 2010 Ouarter 5, 2011 Ouarter 6, 2012 Ouarter 7, 2012 Ouarter 7, 2012 Ouarter 1, 2013 Ouarter 1, 2004 Ouarter 1, 2005 Ouarter 2, 2004 Ouarter 1, 2005 Ouarter 2, 2004 Ouarter 1, 2005 Ouarter 2, 2004 Ouarter 1, 2005 Ouarter 1, 2005 Ouarter 1, 2005 Ouarter 2, 2004 Ouarter 1, 2005 Ouarter 1, 2005 Ouarter 1, 2005																						-
Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2012 Quarter 7, 2012 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005												3 Ł										-
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 2011 Quarter 7, 2011 Quarter 7, 2012 Quarter 7, 2002 Quarter 1, 2013 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2012 Quarter 3, 2010 Quarter 1, 2012 Quarter 3, 2010 Quarter 1, 2012 Quarter 2, 2004 Quarter 1, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005												不										1
Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 1, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2003 Quarter 7, 2004 Quarter 7, 2004 Quarter 7, 2004 Quarter 7, 2004 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2003 Quarter 4, 2003 Quarter 6, 2003 Quarter 6, 2003 Quarter 7, 2004 Quarter 7, 2004 Quarter 2, 2005 Quarter 1, 2006																						-
Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2009 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2010 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2010 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2010 Quarter 3, 200																						-
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 1, 2015 Quarter 1, 2016 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 1, 2000 Quarter 2, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 200																						
Quarter 2, 2005											不					4						-
Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2001 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2010 Quarter 5, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2010 Quarter 1, 2013 DISSOLVED OXYGEN Quarter 1, 2005 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006																						
Quarter 4, 2005							4									不				4		-
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 5, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2015 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2006							木									4			- Ju	木		
Quarter 2, 2006																			*			
Quarter 3, 2006																						
Quarter 1, 2007																						
Quarter 2, 2007																						
Quarter 3, 2007																						
Quarter 4, 2007																						
Quarter 1, 2008																						<u> </u>
Quarter 2, 2008																						-
Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 8, 2011 Quarter 9, 2011 Quarter 9, 2011 Quarter 1, 2012 Quarter 1, 2013 DISSOLVED OXYGEN Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2006																						
Quarter 4, 2008																						ļ
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 DISSOLVED OXYGEN Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006																						
Quarter 2, 2009																						ļ
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2010 Quarter 1, 2003 Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 **																						
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 DISSOLVED OXYGEN Quarter 1, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 ** ** * * * * *																						ļ
Quarter 1, 2010 * * * Quarter 2, 2010 * * * Quarter 3, 2010 * * * Quarter 4, 2010 * * * Quarter 1, 2011 * * * Quarter 2, 2011 * * * Quarter 3, 2011 * * * Quarter 1, 2012 * * * Quarter 2, 2012 * * * Quarter 3, 2012 * * * Quarter 4, 2012 * * * Quarter 1, 2013 * * * DISSOLVED OXYGEN Quarter 1, 2003 * * * Quarter 4, 2003 * * * Quarter 1, 2004 * * * Quarter 2, 2004 * * * Quarter 1, 2005 * * * Quarter 1, 2006 * * *	Quarter 3, 2009																					
Quarter 2, 2010 * * * Quarter 3, 2010 * * * Quarter 4, 2010 * * * Quarter 1, 2011 * * * Quarter 2, 2011 * * * Quarter 3, 2011 * * * Quarter 1, 2012 * * * Quarter 2, 2012 * * * Quarter 3, 2012 * * * Quarter 4, 2012 * * * Quarter 1, 2013 * * * DISSOLVED OXYGEN Quarter 1, 2003 * * * Quarter 3, 2003 * * * Quarter 4, 2003 * * * Quarter 1, 2004 * * * Quarter 2, 2004 * * * Quarter 1, 2005 * * * Quarter 1, 2006 * * *	Quarter 4, 2009																					
Quarter 3, 2010	Quarter 1, 2010																					
Quarter 4, 2010 # #	,																					
Quarter 1, 2011	Quarter 3, 2010																					
Quarter 2, 2011	Quarter 4, 2010																					
Quarter 3, 2011	Quarter 1, 2011																					
Quarter 4, 2011	Quarter 2, 2011															*						
Quarter 1, 2012 ** ** * Quarter 2, 2012 ** ** * Quarter 3, 2012 ** ** * Quarter 4, 2012 ** ** * Quarter 1, 2013 ** * * DISSOLVED OXYGEN Quarter 1, 2003 ** * * Quarter 3, 2003 ** * * Quarter 4, 2003 * * * Quarter 1, 2004 * * * Quarter 2, 2004 * * * Quarter 1, 2005 * * * Quarter 1, 2006 * * *	Quarter 3, 2011																					
Quarter 2, 2012 *	Quarter 4, 2011															*						
Quarter 3, 2012	Quarter 1, 2012														*	*						
Quarter 4, 2012	Quarter 2, 2012															*						
Quarter 1, 2013 * * * DISSOLVED OXYGEN Quarter 1, 2003 * * * * Quarter 3, 2003 * * * * Quarter 4, 2003 * * * * Quarter 1, 2004 * * * * Quarter 2, 2004 * * * * Quarter 1, 2005 * * * * Quarter 2, 2005 * * * * Quarter 1, 2006 * * * *	Quarter 3, 2012															*						
DISSOLVED OXYGEN Quarter 1, 2003 * * * * * * * * * * * * * * * * * * *	Quarter 4, 2012															*						
Quarter 1, 2003 * * * * * <td>Quarter 1, 2013</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Quarter 1, 2013															*						
Quarter 3, 2003 * * *	DISSOLVED OXYGEN																					
Quarter 4, 2003 * *	Quarter 1, 2003						*															
Quarter 1, 2004 *	Quarter 3, 2003										*											
Quarter 2, 2004 * * * * Quarter 1, 2005 * * * * * Quarter 2, 2005 * * * * * * Quarter 1, 2006 * <t< td=""><td>Quarter 4, 2003</td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Quarter 4, 2003					*																
Quarter 1, 2005 * *	Quarter 1, 2004					*																
Quarter 2, 2005 * Quarter 1, 2006 *	Quarter 2, 2004								*								*					
Quarter 2, 2005 * Quarter 1, 2006 *	Quarter 1, 2005					*																
Quarter 1, 2006 *									*													
						*																
, Quarter 2, 2000	Quarter 2, 2006					*			*													

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
Quarter 3, 2006					*			*													
Quarter 4, 2006					*			-11*	*												
Quarter 2, 2007					*			*	7,7												
Quarter 3, 2007					*			*	*												
Quarter 1, 2008					*			71	71.										*		
Quarter 2, 2008					***			*	*										***		
Quarter 3, 2008								*	V ₁ V												
Quarter 1, 2009							*	***													
Quarter 2, 2009					*		***	*	*												
Quarter 3, 2009					717	*		*	*												
Quarter 1, 2010					*	т-	*	<u> </u>	*												
Quarter 2, 2010					*	*	ጥ	*	*											*	*
Quarter 3, 2010					*	*		т	т.											т	<u>~</u>
Quarter 4, 2010					*	<u> </u>	*					*								*	
Quarter 1, 2011						*	ጥ					T								T	
Quarter 2, 2011					*	*	*	*	*					*							
Quarter 3, 2011					*	*	*	*	*					*							
Quarter 1, 2012						<u>~</u>	*		*												
Quarter 2, 2012	*			*	*	*	т	*	*												
Quarter 3, 2012	不			不	不	*		*	不												
						<u>~</u>			*												
Quarter 4, 2012						*			*												
Quarter 1, 2013						不			不												
DISSOLVED SOLIDS		l	l					1		*	l			l			1			1	l
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003							4			*	4										
Quarter 3, 2003							*			*	*										
Quarter 4, 2003						4				*											
Quarter 3, 2005						*									4						
Quarter 4, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009						-									*						-
Quarter 1, 2010	_														*						_
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System Gradient Monitoring Well Quarter 1, 2013 IODIDE Quarter 2, 2003 Quarter 3, 2003	S 368	S 375	S	S	D	D			_		_										
Monitoring Well Quarter 1, 2013 IODIDE Quarter 2, 2003	_				עו	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Quarter 1, 2013 IODIDE Quarter 2, 2003			376										357								
IODIDE Quarter 2, 2003															*						
Quarter 2, 2003			<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			l		l .	l			<u> </u>			<u> </u>	<u> </u>
																*					
	*									*											
Quarter 4, 2003							*														
Quarter 3, 2010	l					*		*					*				*				
IODINE-131			I	I	I		I	I -			l .		I	l .						l	
Quarter 3, 2010																					
IODOMETHANE			l	l	l		l	l			l .		I	l .			l		1	l	
Quarter 4, 2003						*															
IRON			l	l	l		l	l			l .		l	l .							
Quarter 4, 2002						*															
Quarter 3, 2003	1															*					
Quarter 4, 2003	t									*						*					
Quarter 1, 2004	1									*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM			l	l	l		l	l			l .		l	l .							
Quarter 2, 2005															*						*
Quarter 3, 2005	l					*									-						*
Quarter 2, 2006	l														*						*
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2008															*						
Quarter 2, 2009	1														*						
Quarter 3, 2009	1														*						
Quarter 4, 2009	1														*						
Quarter 1, 2010	1														*						
Quarter 2, 2010	İ														*						
Quarter 3, 2010	1														*						
Quarter 1, 2011	İ														*						
Quarter 2, 2011	1														*						
Quarter 3, 2011	İ														*						
Quarter 4, 2011	İ														*						
Quarter 1, 2012	Ì														*						
Quarter 2, 2012	İ														*						
Quarter 3, 2012	İ														*						
Quarter 4, 2012	İ														*						
Quarter 1, 2013															*						
MANGANESE	4											<u> </u>						1	1		
Quarter 3, 2002										*		*									
Quarter 4, 2002	Ī	*				*	*			*		*		*							
Quarter 2, 2003	Ī									*		*									
Quarter 3, 2003	Ī									*		*	*			*	*	*	*		
Quarter 4, 2003	Ī									*	*	*	*				*	*			
Quarter 1, 2004	Ī									*	*	*				*	*	*			
Quarter 2, 2004	Ī						*			*	*	*						*			
Quarter 3, 2004	t						*			*	*	*				*					

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well			_										357					364			1
Quarter 4, 2004										*		*				*					
Quarter 1, 2005										*		*									
Quarter 2, 2005										*		*									
Quarter 3, 2005										*		*				*					
Quarter 4, 2005										*						*					
Quarter 1, 2006										*											
Quarter 2, 2006							*			*		*									
Quarter 3, 2006										*						*					
Quarter 4, 2006										*											
Quarter 1, 2007										*											
Quarter 2, 2007							*			*											
Quarter 3, 2007							*														
Quarter 3, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 3, 2011							*														
NICKEL	-	i	1	1	1		1	1				1		1						i	
Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTE	NTI	AL		1			1				1									
Quarter 4, 2002																	*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004													*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006					*			*	*								*				*
Quarter 2, 2006					*		*	*					*				*			*	
Quarter 3, 2006					*			*					*				*			*	
Quarter 4, 2006					*		*			*		*	*				*			*	*
Quarter 1, 2007		*			*			*					*				*			*	*
Quarter 2, 2007					*								*				*			*	*
Quarter 3, 2007					*			*									*			*	
Quarter 4, 2007																	*			*	*
Quarter 1, 2008					*			*				*	*						*	*	
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System	ĺ			Ţ	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	_		376										357							370	
	300	*	370	311	*	*	*	*	*	*	*	303	*	*	*	307	*	*	*	*	*
Quarter 3, 2010		*			不	*	*	*	*	*	*	*	*	*	不	*	*	*	*	*	*
Quarter 4, 2010		不				*	不	*	不	*	*	*	*	*		*	*	*	*	*	不
Quarter 1, 2011		4			4		4		4		_						*	_			.
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*		*	*	*	*
Quarter 3, 2011		*				*			*		44	*	*	*			*	*	未	*	
Quarter 4, 2011		*				*	ىد	*	*	*	*	*	*	*		*	*	*	4	*	*
Quarter 1, 2012	4	*		٠	4	*	*	*	*	*	*	*	*	*		*		*	*	*	
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*	4		44		*	*		*		*	*		
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	<u> </u>
PCB, TOTAL				1	1		1						1	1	1		4				Т
Quarter 4, 2003												*					*				
Quarter 3, 2004	1						Ju.					木									-
Quarter 3, 2005							*														<u> </u>
Quarter 2, 2006							*														-
Quarter 3, 2006							*														-
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														<u> </u>
Quarter 4, 2008							*														<u> </u>
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																				1	,
Quarter 3, 2004												*									<u> </u>
Quarter 2, 2006							*					*									
Quarter 1, 2007							*														<u> </u>
Quarter 2, 2007							*														ļ
Quarter 3, 2007							*														ļ
Quarter 2, 2008							*														ļ
Quarter 4, 2008							*														<u> </u>
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242				1	1	1	-				1	-	1	ı	1		1				Т
Quarter 3, 2006							*					*									ļ
Quarter 4, 2006	1									*											<u> </u>
Quarter 1, 2008							*														<u> </u>
Quarter 2, 2012	1						*														
PCB-1248			1	1	1	1		1			1		1	1	1		1				Т
Quarter 2, 2008	1						*														
PCB-1260				ı	ı								ı	ı	ı		ı				Т
Quarter 2, 2006							*														
pН																					

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Į	JCR	S						UR	RGA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
Quarter 3, 2002	-	0,0	2,0			002	000	0,1	υ, .	*	000	202		20)	0,2	20,	001		-	2,0	0,0
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003	71						*									*					
Quarter 1, 2004							*									*					
Quarter 3, 2005						*										-11		*	*		
Quarter 4, 2005						*													*		
Quarter 3, 2006						7,										*			**		
Quarter 2, 2011														*							
Quarter 3, 2011														*							
Quarter 4, 2011														*							
Quarter 1, 2012														*P		*	*				
Quarter 2, 2012												*				**	**				
Quarter 1, 2013										*		*				*					
RADIUM-228	-	l	1	l			l	1	l	-,*	1	••	i	l	l	-,,		l	l	l	1
Quarter 2, 2005																					
Quarter 4, 2005														_							
SELENIUM		l		<u> </u>								_		l	<u> </u>			_	l	l	
Quarter 4, 2003																					
SODIUM		l		l			l		_					l .	l			l	l .	l	
Quarter 3, 2002										*	*		*								
Quarter 4, 2002										*	*			*							
Quarter 1, 2003										*											
Quarter 2, 2003										*	*										
Quarter 3, 2003											*										
Quarter 1, 2007											*										
Quarter 1, 2012														*							
STRONTIUM-90		l												l					l	l	
Quarter 3, 2003																					
SULFATE												1									1
Quarter 1, 2003							*														
Quarter 2, 2003						*	*														
Quarter 3, 2003	*					*															
Quarter 4, 2003					*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005															*						
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
		l				1			l .				L		ı .		1	.		l	

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

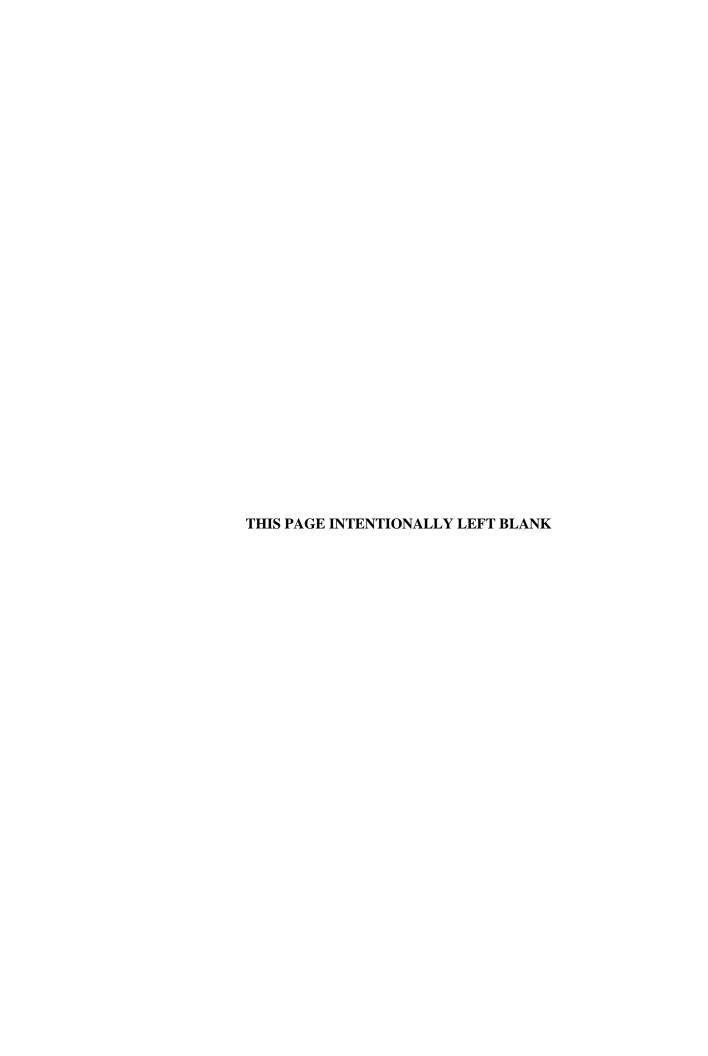

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 4, 2007		*																			
Quarter 1, 2008	1	*			*		*		*												
Quarter 2, 2008	1	*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008		*			-	*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*	-								*						
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010		*			*	*	*								*						
Quarter 3, 2010		*			*	*	*								*						
Quarter 4, 2010	1	*				*	*								*						
Quarter 1, 2011	1	*					"														
Quarter 2, 2011	1	*			*	*	*								*						
Quarter 3, 2011		*			-	*	*	*							*						
Quarter 4, 2011	1	*				*									*						
Quarter 1, 2012	1	*					*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013	1	*				*									*						
TECHNETIUM-99				1	1		· · · · ·	· · · · ·							<u> </u>		· · · · ·				
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003	1						*						*			*	*	*	*		*
Quarter 3, 2003	1															 	*				
Quarter 4, 2003																	不				
uui toi 1, 200 <i>3</i>																	*				*
															*						*
Quarter 1, 2004															*		*				
Quarter 1, 2004 Quarter 2, 2004																	*				*
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004															*		*				*
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004															*		*				* *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004															*		* *				* *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006		*							*						* *		* *				* * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006		*							*						* *		* *				* * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006		*							*						* *		* *				* * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006		*							*						* * *		* *				* * * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006		*							*				*		* * *		* *			*	* * * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007		*							*				*		* * *		* *	*		*	* * * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007		*							*	*			*		* * *		* * *	*	*	*	* * * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007		*							*	*			*		* * * * *		* * *	*	*	*	* * * * * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007		*					*	*	*	*			*	*	* * * * * *	*	* * *	*	*		* * * * * * * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008		*					*	*	*	*			*	*	* * * * * *	*	* * *	*			* * * * * * * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008		*					*	*	*	*			*	*	* * * * * *	*	* * *	*			* * * * * * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008		*					*	*	*				*	*	* * * * * *	*	**	*	*		* * * * * * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009		*					*	*	*	*			*	*	* * * * * *	*	**	*	*		* * * * * * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009		*					*	*	*	*			*	*	* * * * * *	*	**		*		* * * * * * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009		*					*		*	*			*	*	***	*	**		*		* * * * * * * *
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009		*					*		*	* *			*	*	***	*	**	*	*		* * * * * * * *

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well													357								
Quarter 3, 2010	- 55	0	_ , 0							*	2 0 0				*					0	0
Quarter 4, 2010										7,1					**			*			
Quarter 1, 2011		*								*							*				
Quarter 2, 2011																*	*	*	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012								*										*			
Quarter 3, 2012																	*	*			
Quarter 4, 2012															*			*			*
Quarter 1, 2013																		*			*
TOTAL ORGANIC CARBON																					
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003											*										
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										
Quarter 1, 2004											*										
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
TOTAL ORGANIC HALIDES																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 1, 2004																*					
TRICHLOROETHENE																					
Quarter 3, 2002																					
Quarter 4, 2002																					
Quarter 1, 2003																					
Quarter 2, 2003																					
Quarter 3, 2003																					▝
Quarter 4, 2003															_					_	
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					-
Quarter 4, 2004																				-	-
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					
Quarter 4, 2005																					-
Quarter 1, 2006																					
Quarter 2, 2006																				-	
Quarter 4, 2006																					
Quarter 1, 2006																					=
Quarter 1, 2007 Quarter 2, 2007																					
Quarter 2, 2007 Quarter 3, 2007																					
Quarter 3, 2007 Quarter 4, 2007																					
Quarter 4, 2007 Quarter 1, 2008																					
Quarter 1, 2000		l	l .		1	<u> </u>	<u> </u>	1	l		1	1		1			<u> </u>				

Chart of MCL Exceedances and Statistical Increases for C-746-U Contained Landfill

Groundwater Flow System				Ţ	JCR	S						UR	GA					LR	GA		
Gradient	S	S	S	S	D	D	D	U	U	S	D	D	D	U	U	S	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 1, 2011																					
Quarter 2, 2011																					
Quarter 3, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013																					
TURBIDITY		1											1				1				
Quarter 1, 2003										*											<u> </u>
URANIUM			1				_				_		_	_			ı				
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC			1		1	1		1							1		ı	1	484	1	
Quarter 3, 2005																			*		
* Statistical test re	sults	indi	cate	an el	levat	ed co	oncer	ntrati	on (i	.e., a	a stat	istic	al ex	ceeda	ance)					
■ MCL Exceedance	ce																				
UCRS Upper Continent	atal Recharge System																				
URGA Upper Regional	Gravel Aquifer																				
LRGA Lower Regional	Grav	el A	quif	er																	
S Sidegradient;			D		Do	wngr	adie	nt;			U		Upg	radie	ent						

APPENDIX H METHANE MONITORING DATA

C-746-U LANDFILL METHANE LOG

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

Date: <u>3-14-13</u>

Time	Location	% LEL of Methane Reading	Remarks	Weather Conditions
1315	C-746-U1	0	CHECKED @ Floor LEVEL	TUSIDE Office
1320	C-746-U2	0	CHECKED & FlOOR LEVEL	INSIDE SHOP
1323	C-746-U-T-14	0	CHECKED @ FIMP LEVEL	CHANGEOUT TRAILER.
1327	C-746-U15	0	CHECKED @ Floor LEVEL	TREATMENT BUILDING
1333	MG1	0	WATER FN CASING	Wind Calm 43°
1337	MG2	0	WATER FN CASING	WIND CALM 436
1342	MG3	0	WATER IN CASING	WIND CALM 43°
1348	MG4	0	Casina DO	WIND CALM 430
153 H13	Suspect or Problem Areas		NO PROBLEMS NOTED	KS 3-14-13
			3-14-13	
			3	
		Ho	:	
	Kun			

Signature

WD-F-0053 (10/20/2011) PAD-WD-0017

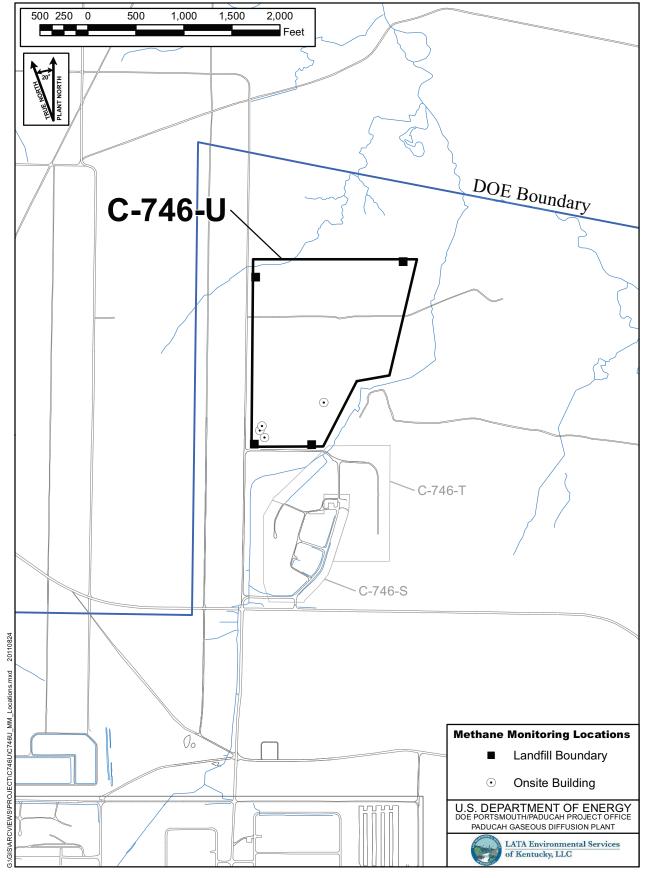
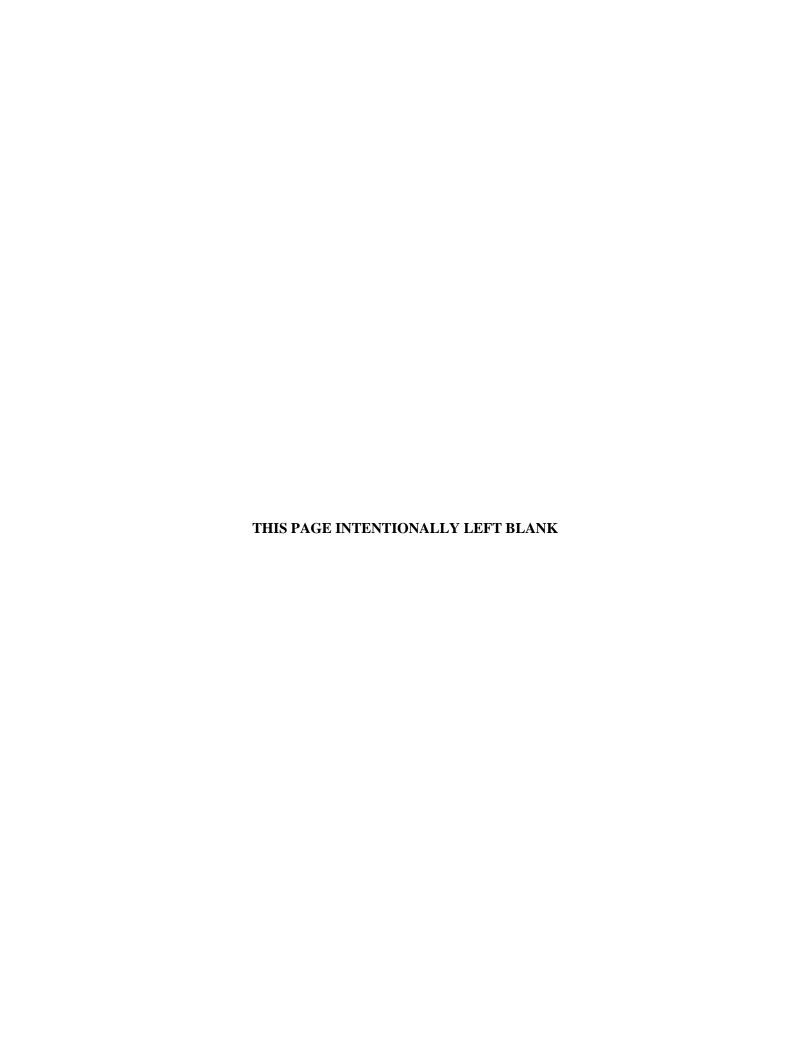



Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I SURFACE WATER MONITORING DATA

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L150 AT SITE		L154 UPSTREAM		L351 DOWNSTREAM			
Sample Sequer	ıce	#				1		1		1			
If sample is	a Bl	lank, specify Type: (F)ield, (T)r	ip, (M)ethod	, or (E)quipment	NA		NA	NA				\neg
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		1/10/2013 12:4	40	1/10/2013 12:	50	1/10/2013 12	:30		$ \mathcal{T} $
Duplicate (")	" (or "N")1				N		N	N				7
Split ('Y' or	: "1	v ") ²				N		N		N			7
Facility Samp	ole	ID Number (if applicable)				L150US2-13		L154US2-13	3	L351US2-1	3	\ /	
Laboratory Sa	mp]	le ID Number (if applicable)				C1301003800)2	C1301003800	03	C130100380	001	\ /	
Date of Analy	rsis	s (Month/Day/Year)				1/29/2013		1/29/2013		1/29/2013		\ /	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	Т	MGD	Field	0.03		0.39		1.14			
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	8.7		6.3		6.9		/ \	
14808-79-8	0	Sulfate	Т	MG/L	300.0	46		14		12			
7439-89-6	0	Iron	Т	MG/L	200.7 R3.3	4.6	*	4.65	*	5.9	*		\backslash
7440-23-5	0	Sodium	Т	MG/L	200.7 R3.3	5.6		3.9		5.01			
s0268	0	Organic Carbon ⁶	т	MG/L	9060	9.4	D*	15.8	D*	16.5	D*		\prod
s0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	<25		31		31			

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{4&}quot;T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

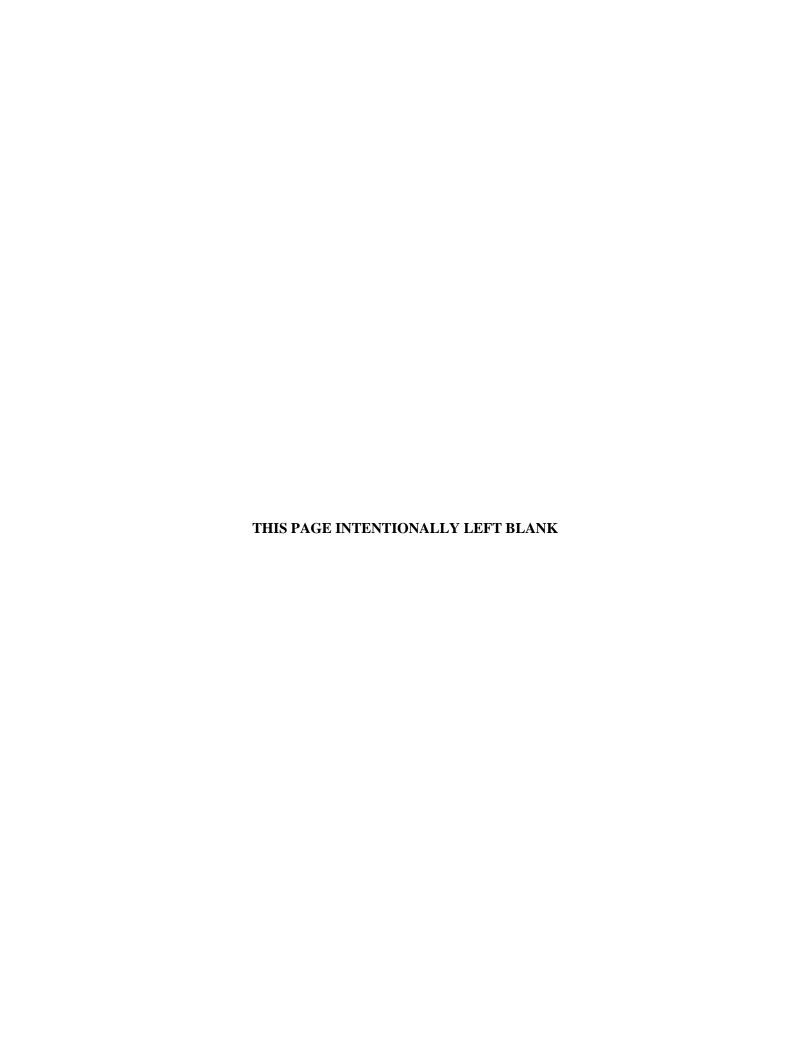
Permit Number: 073-00045 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	(KPDES Discharge Number, or	ן" ־	PSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	REAM		
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	A G S ⁷
S0145	1	Specific Conductance	Т	µHMS/CM	Field	278		174		145			
s0270	0	Total Suspended Solids	Т	MG/L	160.1	82	*	162	*	492	*		
S0266	0	Total Dissolved Solids	T	MG/L	160.2	200		130		<174			
S0269	0	Total Solids	Т	MG/L	160.3	259		311		762			
S0296	0	рH	Т	Units	Field	8.11		8.04		7.98			
7440-61-1		Uranium	Т	MG/L	IN7105	0.00257		0.0045		0.00425			
12587-46-1		Gross Alpha (α)	т	pCi/L	900.0	5.06	*	6.66		4.65		\/	
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	6.24		14.2		15.6		X	
													\prod
												7	

RESIDENTIAL/CONTAINED – QUARTERLY


Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitorir Point	ng Facility Sample ID	Constituent	Flag	Description
L150	L150US2-13	Iron	N	Sample spike recovery not within control limits.
		Total Organic Carbon (TOC)	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.35. Rad error is 2.07.
		Beta activity		TPU is 1.26. Rad error is 1.06.
L154	L154US2-13	Iron	N	Sample spike recovery not within control limits.
		Total Organic Carbon (TOC)	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 2.71. Rad error is 2.28.
		Beta activity		TPU is 2.52. Rad error is 1.99.
L351	L351US2-13	Iron	N	Sample spike recovery not within control limits.
		Total Organic Carbon (TOC)	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 2.01. Rad error is 1.73.
		Beta activity		TPU is 2.72. Rad error is 2.13.

